JPH05109601A - Aligner and exposure method - Google Patents

Aligner and exposure method

Info

Publication number
JPH05109601A
JPH05109601A JP29392091A JP29392091A JPH05109601A JP H05109601 A JPH05109601 A JP H05109601A JP 29392091 A JP29392091 A JP 29392091A JP 29392091 A JP29392091 A JP 29392091A JP H05109601 A JPH05109601 A JP H05109601A
Authority
JP
Japan
Prior art keywords
light
pattern
photomask
mask
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29392091A
Other languages
Japanese (ja)
Inventor
Naomasa Shiraishi
直正 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP29392091A priority Critical patent/JPH05109601A/en
Publication of JPH05109601A publication Critical patent/JPH05109601A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To provide an aligner and an exposure method wherein the image of the optical contrast of a fine pattern can be transferred. CONSTITUTION:A beam of irradiation light from a light source 1 is incident on a polarization plate 6 via an oval mirror 2, a mirror 3, a condenser lens 4 and an optical integrator 5. The polarization plate 6 is supported by a support utensil 7; it can be turned around an optical axis Ax or an axis which is parallel to it; the polarization direction of a transmitted light flux can be set arbitrarily. The beam of irradiation light is converted into a beam of linearly polarized light which is vibrated in a direction parallel to the lengthwise direction of a line-and-space pattern on a photomask 11; it is guided to a condenser lens 8 and a mirror 9; a pattern 12 on the rear surface of the mask 11 is irradiated. A beam of transmitted and diffracted light from the mask 11 is condensed by means of a projection optical system 13; the image of the pattern 12 is formed on a wafer 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路パター
ン等の微細パターンの露光転写技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for exposing and transferring a fine pattern such as a semiconductor integrated circuit pattern.

【0002】[0002]

【従来の技術】半導体集積回路パターン等の微細パター
ンをレジストが塗布されたウエハ等の感応基板に露光転
写するためには、従来、フォトマスク(レチクルとも言
う)を透過照明して、ウエハ面にマスクパターンを投影
する方法が行なわれてきた。この際、従来の露光方法で
は、照明光の偏光状態を積極的に制御するということは
行なわれておらず、干渉性の強いレーザ光源を使用する
場合に、スペックルを低減する目的で直線偏光を円偏光
やランダム偏光に変換するということがなされている程
度であった。
2. Description of the Related Art In order to transfer a fine pattern such as a semiconductor integrated circuit pattern onto a sensitive substrate such as a resist-coated wafer by exposure, a photomask (also referred to as a reticle) is conventionally transmitted and illuminated onto the wafer surface. Methods have been implemented for projecting mask patterns. At this time, in the conventional exposure method, the polarization state of the illumination light is not positively controlled, and when a laser light source with strong coherence is used, linearly polarized light is used for the purpose of reducing speckle. Was converted to circularly polarized light or random polarized light.

【0003】また、最近では、フォトマスクと感応基板
(ウエハ等)の間に投影光学系を介在させ、マスクパタ
ーンをウエハ面に結像投影(特に縮小投影)する方法が
一般的となっているが、この場合も照明光の偏光状態を
パターン応じて積極的に制御するということは行なわれ
ていない。
In recent years, a method of interposing a projection optical system between a photomask and a sensitive substrate (wafer or the like) to project an image of the mask pattern on the wafer surface (in particular, reduction projection) has become common. However, even in this case, the polarization state of the illumination light is not actively controlled according to the pattern.

【0004】一方、微細パターンの転写に適したフォト
マスクとして、光透過部の一部に透過光の位相を変化さ
せる位相部材を付加した位相シフトマスクが知られてい
る。この位相シフトマスクを使用すると、一般的な露光
装置であっても解像度や焦点深度が向上する。
On the other hand, as a photomask suitable for transferring a fine pattern, a phase shift mask in which a phase member for changing the phase of transmitted light is added to a part of a light transmitting portion is known. The use of this phase shift mask improves the resolution and the depth of focus even in a general exposure apparatus.

【0005】例えば、投影露光装置を使用し、投影光学
系のウエハ側開口数がNAw、露光波長がλであるとす
ると、位相シフトマスクにより原理的には0.5λ/N
Awの微細なピッチのパターンまで解像可能であるとさ
れている。
For example, if a projection exposure apparatus is used, and the numerical aperture on the wafer side of the projection optical system is NAw and the exposure wavelength is λ, then 0.5 λ / N in principle due to the phase shift mask.
It is said that even a fine pitch pattern of Aw can be resolved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たような投影露光装置と位相シフトマスクを用いたとし
ても、実際の解像度(実際にレジストパターンを分離す
る解像度)は、原理上の解像度程高くない。
However, even if the projection exposure apparatus and the phase shift mask as described above are used, the actual resolution (the resolution for actually separating the resist pattern) is not as high as the theoretical resolution. .

【0007】この原因の1つとしては、ウエハ面に塗布
されるレジストには厚みがあるため、レジスト層を解像
するには最低限その厚み分だけの焦点深度が必要なこと
が挙げられ、この点については種々の検討がなされてい
る。
One of the causes for this is that the resist applied to the wafer surface has a thickness, and therefore, in order to resolve the resist layer, a depth of focus of at least that thickness is required. Various studies have been made on this point.

【0008】しかし、従来の露光装置では、上記の焦点
深度の問題の他に、照明光の偏光状態が不適当(詳細後
述)であるために像のコントラストが低下するという本
質的な問題がある。特に開口数(NA)の大きな投影露
光装置、或いはコンタクト型、またはプロキシミティー
型の装置ではこの問題はきわめて重大となる。
However, in the conventional exposure apparatus, in addition to the problem of the depth of focus described above, there is an essential problem that the contrast of the image is lowered because the polarization state of the illumination light is inappropriate (details will be described later). . This problem becomes extremely serious particularly in a projection exposure apparatus having a large numerical aperture (NA), a contact type apparatus, or a proximity type apparatus.

【0009】この発明は、かかる点に鑑みてなされたも
のであり、これまで検討されてこなかった照明光の偏光
状態に着眼することによって、微細パターンの高コント
ラストの像を得ることのできる露光装置及び露光方法を
提供することを目的とするものである。
The present invention has been made in view of the above points, and an exposure apparatus capable of obtaining a high-contrast image of a fine pattern by focusing on the polarization state of the illumination light, which has not been studied so far. And an exposure method.

【0010】[0010]

【課題を解決するための手段】請求項1の発明による露
光装置は、フォトマスクを照明するための照明光学系を
有し、上記の課題を達成するために、前記フォトマスク
への照明光束の偏光状態を制御する偏光部材を備えたも
のである。
An exposure apparatus according to a first aspect of the present invention has an illumination optical system for illuminating a photomask, and in order to achieve the above object, an exposure light flux for the photomask is provided. It is provided with a polarizing member for controlling the polarization state.

【0011】また、請求項3の発明による露光方法は、
フォトマスクを照明することにより、フォトマスクに形
成されたパターンを感応基板上に露光転写するに際し
て、上記の課題を達成するために、前記フォトマスクへ
の照明光の偏光状態を、前記パターンに応じて制御する
ものである。
The exposure method according to the invention of claim 3 is
When the pattern formed on the photomask is exposed and transferred onto the sensitive substrate by illuminating the photomask, the polarization state of the illumination light to the photomask is changed according to the pattern in order to achieve the above object. Control it.

【0012】[0012]

【作用】図3を参照して、本発明の作用を説明する。図
3(A) は、一次元方向に並んだラインアンドスペースパ
ターンを有するマスクの平面図であり、図3(B) は(A)
のマスクに対してほぼ垂直に照明光Liが入射し、かつ
投影光学系13によってその像がウエハ14に結像され
る様子を示す光路図である。
The operation of the present invention will be described with reference to FIG. FIG. 3 (A) is a plan view of a mask having line-and-space patterns arranged in one-dimensional direction, and FIG. 3 (B) is (A).
FIG. 9 is an optical path diagram showing a state in which illumination light Li is incident on the mask of FIG. 10 substantially perpendicularly and an image thereof is formed on a wafer 14 by a projection optical system 13.

【0013】ここで、図3(A) に示されたマスク11
は、透過光の位相を(2m+1)π(mは整数)だけ変
化させる位相部材12aが一定のピッチで配列された空
間周波数変調型の位相シフトマスク(例えば特公昭62
−50811号公報に開示されている)あるとすると、
位相部材12aの被着部と非被着部をそれぞれ透過した
零次回折光同志は相殺されるので、図3(B) においてマ
スクパターン12より発生する回折光は主として+1次
回折光Dp と−1次回折光Dm になる。これら2光束は
投影光学系13により集光されウエハ14に至り、ここ
に干渉縞を形成する。この干渉縞が図3(C) ,(D) に示
すマスクパターン12の像15a,15b(図では強度
分布として示されている)である。
Here, the mask 11 shown in FIG.
Is a spatial frequency modulation type phase shift mask in which phase members 12a for changing the phase of transmitted light by (2m + 1) π (m is an integer) are arranged at a constant pitch (for example, Japanese Patent Publication No.
(Disclosed in Japanese Patent Laid-Open No. 50811),
Since the zero-order diffracted lights that have passed through the adhered part and the non-adhered part of the phase member 12a are canceled out, the diffracted lights generated from the mask pattern 12 in FIG. 3B are mainly + first-order diffracted lights D p and -1. It becomes the next diffracted light D m . These two light fluxes are condensed by the projection optical system 13 and reach the wafer 14, where interference fringes are formed. The interference fringes are the images 15a and 15b of the mask pattern 12 shown in FIGS. 3C and 3D (shown as intensity distribution in the figure).

【0014】このとき照明光Liの偏光方向について考
える。図3(C) は照明光Liの偏光方向(電場ベクトル
の向き)が紙面に垂直、即ちパターン12の長手方向と
平行である場合(いわゆるS偏光)の結像の様子を示す
概念図である。この場合、フォトマスクのパターン面か
ら発生する各回折光(±1次回折光Dp ,Dm )の偏光
方向もやはり紙面に垂直となる。ウエハ14上において
はこの2本の回折光Dp ,Dm が振幅加算(コヒーレン
ス加算)される。
At this time, the polarization direction of the illumination light Li will be considered. FIG. 3C is a conceptual diagram showing a state of image formation when the polarization direction (direction of electric field vector) of the illumination light Li is perpendicular to the paper surface, that is, parallel to the longitudinal direction of the pattern 12 (so-called S-polarized light). .. In this case, the polarization direction of each diffracted light (± first-order diffracted light D p , D m ) generated from the pattern surface of the photomask is also perpendicular to the paper surface. On the wafer 14, the two diffracted lights D p and D m are amplitude-added (coherence addition).

【0015】図3(C) では+1次光Dp 、−1次光Dm
の電場ベクトルの向きは平行であるため、両者の向きが
等しく、かつ大きさを1とすれば、その和の大きさは
2、向きが逆であれば、その和の大きさは0となる。従
って、ウエハ上では強度として、4(=|2|2 あるい
は|−2|2 )の最大値と、0(=|0|2 )の最小値
からなるコントラスト100%の像15aが形成される
ことになる。
In FIG. 3C, the + 1st order light D p and the −1st order light D m
Since the directions of the electric field vectors of are parallel, if both directions are equal and the magnitude is 1, the magnitude of the sum is 2, and if the directions are opposite, the magnitude of the sum is 0. .. Therefore, on the wafer, as the intensity, an image 15a having a contrast of 100% having a maximum value of 4 (= | 2 | 2 or | −2 | 2 ) and a minimum value of 0 (= | 0 | 2 ) is formed. It will be.

【0016】一方、図3(D) は照明光Liの偏光方向が
紙面に平行な場合(P偏光)であって、従って±1次回
折光Dp ,Dm の偏光面も紙面に平行である。この場合
にもウエハ14上において、±1次回折光Dp ,Dm
振幅加算されるが、両者の偏光方向が平行でないため
(入射角θの倍だけ平行からずれる)、S偏光による結
像の場合(図3(C) )とは異なった干渉を起こす。図3
(D) における振幅和の絶対値の最大は2cosθ、最小
は2sinθとなる。
On the other hand, FIG. 3D shows the case where the polarization direction of the illumination light Li is parallel to the paper surface (P polarized light), and therefore the polarization planes of the ± first-order diffracted lights D p and D m are also parallel to the paper surface. . In this case as well, the amplitudes of the ± 1st-order diffracted lights D p and D m are added on the wafer 14, but the polarization directions of the two are not parallel (shifted from the parallel by twice the incident angle θ), and thus the image is formed by S-polarized light. In the case of (Fig. 3 (C)), different interference occurs. Figure 3
The maximum absolute value of the amplitude sum in (D) is 2 cos θ, and the minimum is 2 sin θ.

【0017】従って、強度の最大は4cos2 θ、最小
は4sin2 θとなり、図3(C) の場合よりコントラス
トの低い干渉縞15bが生じる。例えば、ウエハ14面
への入射角θが30°であれば、最大強度は4×(3
1/2 /2)2 =3、最小強度は4×(0.5)2 =1と
なり、コントラストは(3−1)/(3+1)=50%
しかない。
Therefore, the maximum intensity is 4 cos 2 θ and the minimum intensity is 4 sin 2 θ, and the interference fringes 15b having a lower contrast than in the case of FIG. 3C are generated. For example, if the incident angle θ on the surface of the wafer 14 is 30 °, the maximum intensity is 4 × (3
1/2/2 ) 2 = 3, minimum intensity is 4 × (0.5) 2 = 1 and contrast is (3-1) / (3 + 1) = 50%
There is nothing.

【0018】実際の露光においては、フォトレジスト中
の光量が問題となり、レジスト中の±1次回折光Dp
m の傾きθ’は、sinθ’=sinθ/n(nはレ
ジストの屈折率)となるので、レジストの屈折率nが
1.6であれば、sinθ’=0.3125,cos
θ’=0.9499(入射角θ=30°)となる。この
とき、強度の最大は4×cos2 θ’=3.609,最
小は4×sin2 θ’=0.391であり、コントラス
トは、(3.609−0.391)/(3.609+
0.391)=80%である。
In actual exposure, the amount of light in the photoresist becomes a problem, and the ± first-order diffracted light D p in the resist,
Since the slope θ ′ of D m is sin θ ′ = sin θ / n (n is the refractive index of the resist), if the refractive index n of the resist is 1.6, sin θ ′ = 0.3125, cos
θ ′ = 0.9499 (incident angle θ = 30 °). At this time, the maximum intensity is 4 × cos 2 θ ′ = 3.609, the minimum is 4 × sin 2 θ ′ = 0.391, and the contrast is (3.609−0.391) / (3.609+).
0.391) = 80%.

【0019】一方、図3(C) のS偏光による結像の場
合、当然レジスト中においても像のコントラストは10
0%である。
On the other hand, in the case of image formation by S-polarized light in FIG. 3C, the image contrast is naturally 10 even in the resist.
It is 0%.

【0020】従って、マスクに形成されたパターンがラ
インアンドスペースパターンのとき、パターンの長手方
向と平行な方向に照明光の偏光方向(電場ベクトル)を
揃えることで、より高い像コントラストが得られること
になる。従来使用されている露光装置では、S偏光とP
偏光の平均状態で結像されるが、照明光をパターンに応
じて制御することで、像のコントラストを向上させるこ
とが可能となる。
Therefore, when the pattern formed on the mask is a line-and-space pattern, a higher image contrast can be obtained by aligning the polarization direction (electric field vector) of the illumination light in a direction parallel to the longitudinal direction of the pattern. become. In the conventional exposure apparatus, S-polarized light and P-polarized light are used.
Although the image is formed in the average polarization state, the contrast of the image can be improved by controlling the illumination light according to the pattern.

【0021】図3ではフォトマスクとして位置シフトマ
スクを使用したが、クロム等からなる遮光部材だけでパ
ターン形成された通常マスクであっても上述した作用は
同様であり、照明光の偏光方向をパターンの長手方向と
平行な方向に揃えることで、像のコントラストが高ま
る。また、投影光学系による結像投影を行なう場合だけ
でなく、プロキシミティー方式の露光装置であっても同
様にコントラストの向上が図られる。
Although the position shift mask is used as the photomask in FIG. 3, the above-described operation is the same even in the case of a normal mask in which a pattern is formed only by a light shielding member made of chromium or the like, and the polarization direction of the illumination light is patterned. By aligning in a direction parallel to the longitudinal direction of, the image contrast is enhanced. Further, not only when the image projection is performed by the projection optical system, but also in the proximity type exposure apparatus, the contrast is similarly improved.

【0022】そして、照明光の偏光方向を制御すること
による効果は、どのような形式の露光装置であっても、
ウエハ上に転写すべきパターンが微細である程大きい。
このことは、例えば図3の例において図中のθがパター
ンの微細化と共に大きくなり、P偏光による結像では、
θ(実際にはθ’)が45°になると、sin2 θ=c
os2 θとなってコントラストが0となることを考えれ
ば明白である。
The effect of controlling the polarization direction of the illumination light can be obtained by any type of exposure apparatus.
The finer the pattern to be transferred onto the wafer, the larger.
This means that, for example, in the example of FIG. 3, θ in the figure becomes larger as the pattern becomes finer, and in imaging by P-polarized light,
When θ (actually θ ′) becomes 45 °, sin 2 θ = c
It is obvious when considering that the contrast becomes os 2 θ and the contrast becomes 0.

【0023】なお、投影露光装置においてS偏光による
結像を行なうためには、投影光学系のフーリエ変換面に
偏光部材を配置してマスクを透過した光の偏光状態を制
御することも考えられるが、照明光がS偏光とP偏光の
平均状態である場合、偏光部材は照明光の1/2の光量
を吸収することになり、偏光部材の吸熱による結像性能
への影響が問題となる。このため、本発明ではマスク透
過後の光束ではなく、照明光の偏光状態を制御するもの
としている。
In order to form an image with S-polarized light in the projection exposure apparatus, it is possible to arrange a polarizing member on the Fourier transform plane of the projection optical system to control the polarization state of the light transmitted through the mask. When the illumination light is in an average state of S-polarized light and P-polarized light, the polarizing member absorbs half the amount of the illumination light, and the heat absorption of the polarizing member affects the imaging performance. Therefore, in the present invention, the polarization state of the illumination light is controlled, not the light flux after passing through the mask.

【0024】[0024]

【実施例】図1は本発明の実施例による露光装置の構成
図であり、本実施例では照明光学系中に偏光板6を設け
ている。図において、水銀ランプ等の光源1より放射さ
れた照明光は楕円鏡2、ミラー3、集光レンズ4、オプ
チカルインテグレーター5を介して、偏光板6に入射す
る。この偏光板6は支持具7により支持され、かつ、光
軸Ax あるいは、それと平行な軸を中心として回転可能
となっている。この回転は支持具7上に設けられたモー
ター(不図示)等により行なう。従って偏光板6を透過
する照明光束は、この偏光板6の回転方向に応じた偏光
方向(直線偏光)の光束となる。
1 is a block diagram of an exposure apparatus according to an embodiment of the present invention. In this embodiment, a polarizing plate 6 is provided in an illumination optical system. In the figure, illumination light emitted from a light source 1 such as a mercury lamp enters a polarizing plate 6 via an elliptical mirror 2, a mirror 3, a condenser lens 4 and an optical integrator 5. The polarizing plate 6 is supported by a support 7 and is rotatable about an optical axis A x or an axis parallel to the optical axis A x . This rotation is performed by a motor (not shown) provided on the support 7. Therefore, the illumination light beam that passes through the polarizing plate 6 becomes a light beam having a polarization direction (linearly polarized light) according to the rotation direction of the polarizing plate 6.

【0025】偏光板6を通過した光束は、コンデンサー
レンズ8,10、ミラー9に導かれてフォトマスク(レ
チクル)11上の(下面の)パターン12を照明する。
フォトマスク11からの透過、回折光は投影光学系13
により集光、結像され、ウエハ14にマスクパターン1
2の像を結ぶ。この際、図1中のミラー9が照明光の振
動方向に対して垂直又は平行となる位置からずれると、
直線偏光が楕円偏光に変換されることになるので、この
点に留意する必要がある。
The light flux passing through the polarizing plate 6 is guided to condenser lenses 8 and 10 and a mirror 9 to illuminate a pattern 12 (on the lower surface) on a photomask (reticle) 11.
The transmitted and diffracted light from the photomask 11 is projected by the projection optical system 13.
Is focused and imaged by the mask pattern 1 on the wafer 14.
Connect the two images. At this time, if the mirror 9 in FIG. 1 is displaced from the position perpendicular or parallel to the vibration direction of the illumination light,
This point needs to be noted because linearly polarized light will be converted to elliptically polarized light.

【0026】ここで、マスクパターン12は図示の如
く、1次元のラインアンドハペースパターンとした。実
際の半導体集積回路パターンにおいては、すべてのパタ
ーンが一次元ラインアンドスペースパターンで、かつ方
向性も等しいということはないが、例えばメモリー回路
の場合、微細なパターンはほぼ一次元のラインアンドス
ペースパターンであり、かつその方向性も1枚のマスク
中においてはほぼ等しいものである。また、一次元ライ
ンアンドスペースパターン以外のパターンの寸法は、ラ
インアンドスペースパターンに比べて大きくなってい
る。
Here, the mask pattern 12 is a one-dimensional line and space pattern as shown in the figure. In an actual semiconductor integrated circuit pattern, all patterns are not one-dimensional line-and-space patterns and have the same directionality. For example, in the case of a memory circuit, a fine pattern is almost a one-dimensional line-and-space pattern. And the directionality thereof is almost the same in one mask. The dimensions of the patterns other than the one-dimensional line and space pattern are larger than those of the line and space pattern.

【0027】従って、偏光板6によって照明光の偏光方
向をマスクパターン12の長手方向と平行に揃えること
により、微細なラインアンドスペースパターン像のコン
トラストを向上することができ、集積回路の微細化が可
能になる。微細な一次元ラインアンドスペースパターン
以外では、パターンの微細度が比較的ゆるいため、パタ
ーンに対して照明光の偏光が正確に最適化されていなく
ても、生じるコントラストの低下はわずかである。
Therefore, by aligning the polarization direction of the illumination light in parallel with the longitudinal direction of the mask pattern 12 by the polarizing plate 6, it is possible to improve the contrast of a fine line and space pattern image and miniaturize the integrated circuit. It will be possible. Except for the fine one-dimensional line-and-space pattern, the fineness of the pattern is relatively low, and therefore, even if the polarization of the illumination light is not accurately optimized with respect to the pattern, the decrease in contrast is slight.

【0028】ここで、図1においては、光源1は水銀ラ
ンプとしたが、他のランプやレーザー光源であっても良
い。特に光源が直線偏光または円偏光を射出するレーザ
である場合は、偏光状態を制御するための部材として1
/2波長板や1/4波長板を用いることができる。
Although the light source 1 is a mercury lamp in FIG. 1, it may be another lamp or a laser light source. In particular, when the light source is a laser that emits linearly polarized light or circularly polarized light, 1 is used as a member for controlling the polarization state.
A half wave plate or a quarter wave plate can be used.

【0029】図2(A) は光源としてレーザを用いる場合
の偏光部材の例を示す説明図である。図において、直線
偏光(偏光方向は紙面上下方向)である入射光L0 (光
源からの光束)は、1/2波長板6aに入射する。この
とき1/2波長板6aの基準軸方向(図中2点鎖線)
と、入射光L0 の偏光方向がθだけ傾いているものとす
る。この結果、射出光L1 の偏光方向は、入射光L0
偏光方向に対して2θだけ傾いたものとなる。従って、
保持具7により1/2波長板6aを照明光に垂直な面内
で回転することにより、射出光L1 の偏光方向を任意の
方向に設定することができる。
FIG. 2A is an explanatory view showing an example of a polarizing member when a laser is used as a light source. In the figure, incident light L 0 (light flux from the light source) that is linearly polarized light (the polarization direction is the vertical direction on the paper surface) is incident on the ½ wavelength plate 6 a. At this time, the reference axis direction of the half-wave plate 6a (two-dot chain line in the figure)
Then, it is assumed that the polarization direction of the incident light L 0 is inclined by θ. As a result, the polarization direction of the emitted light L 1 is inclined by 2θ with respect to the polarization direction of the incident light L 0 . Therefore,
By rotating the half-wave plate 6a in the plane perpendicular to the illumination light by the holder 7, the polarization direction of the emitted light L 1 can be set to an arbitrary direction.

【0030】なお、1/2波長板6aの基準軸は、図2
(B) に示される如く、基準軸(2点鎖線)に平行な偏光
方向の透過光に対しては、l1 =mλ+αの光路長差を
与え、垂直な偏光方向の透過光に対しては、l2 =mλ
+α+λ/2=l1 +λ/2の光路長を与える軸とし
た。
The reference axis of the half-wave plate 6a is shown in FIG.
As shown in (B), the optical path length difference of l 1 = mλ + α is given to the transmitted light in the polarization direction parallel to the reference axis (two-dot chain line), and the transmitted light in the vertical polarization direction is given. , L 2 = mλ
The axis giving an optical path length of + α + λ / 2 = l 1 + λ / 2.

【0031】光源から放射される光が直線偏光でなく円
偏光である場合は、1/2波長板の代わりに1/4波長
板を使うことにより、図2で説明したと同様にして射出
光の偏光方向を制御することができる。この場合、射出
される光束は、1/4波長板の回転位置方向に応じた直
線偏光となる。
When the light emitted from the light source is circularly polarized light rather than linearly polarized light, the quarter wave plate is used instead of the half wave plate, and the emitted light is the same as described with reference to FIG. The polarization direction of can be controlled. In this case, the emitted light beam becomes linearly polarized light according to the rotational position direction of the quarter-wave plate.

【0032】上記のように、光源として直線偏光または
円偏光を射出するレーザを用い、偏光部材として1/2
波長板や1/4波長板を用いれば、光源からの光量を損
失することなく偏光方向を最適な方向に変換してマスク
に導くことができる。これに対し、光源としてランプを
用いた場合(非偏光状態の光が光源から放射される場
合)、偏光部材通過後の光量は原理的に半分になってし
まうので、この点に留意する必要がある。
As described above, a laser that emits linearly polarized light or circularly polarized light is used as the light source, and 1/2 is used as the polarizing member.
If a wave plate or a quarter wave plate is used, the polarization direction can be converted to an optimum direction and guided to the mask without loss of the light amount from the light source. On the other hand, when a lamp is used as the light source (when light in the non-polarized state is emitted from the light source), the amount of light after passing through the polarizing member is theoretically halved, so it is necessary to pay attention to this point. is there.

【0033】なお、偏光部材として1/4波長板,1/
2波長板を使用する場合、入射光束は平行光束に近いこ
とが望ましい。従って、1/4波長板,1/2波長板は
図1中のオプチカルインテグレーター5射出後でなく、
例えばリレーレンズ4より光源(レーザ光源)側に設定
することが好ましい。この配置は、水銀ランプ等の光源
を用いる場合に対して適用してもかまわない。
As a polarizing member, a 1/4 wavelength plate, 1 /
When a two-wave plate is used, it is desirable that the incident light flux be close to a parallel light flux. Therefore, the quarter-wave plate and the half-wave plate are not after the injection of the optical integrator 5 in FIG.
For example, it is preferable to set it on the light source (laser light source) side of the relay lens 4. This arrangement may be applied to the case where a light source such as a mercury lamp is used.

【0034】[0034]

【発明の効果】以上にように本発明においては、マスク
パターン、特に微細な一次元ラインアンドスペースパタ
ーンに応じて照明光の偏光状態を制御するので、パター
ン形成面からの回折光の干渉性が高まり、感応基板上に
極めて高いコントラストの微細パターンの像を転写する
ことが可能となる。この際、位相シフトマスクを使用す
れば、一層像のコントラストを高めることができる。ま
た、照明光の偏光状態を制御するに際して、偏光部材と
して1/2または1/4波長板を使用し、光源としてレ
ーザを使用すれば照明光量を損失することもない。
As described above, in the present invention, since the polarization state of the illumination light is controlled according to the mask pattern, particularly the fine one-dimensional line-and-space pattern, the coherence of the diffracted light from the pattern formation surface is As a result, it becomes possible to transfer an image of a fine pattern with extremely high contrast onto the sensitive substrate. At this time, if a phase shift mask is used, the contrast of the image can be further enhanced. Further, when controlling the polarization state of the illumination light, if a 1/2 or 1/4 wavelength plate is used as the polarization member and a laser is used as the light source, the amount of illumination light will not be lost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例による露光装置の構成図である。FIG. 1 is a configuration diagram of an exposure apparatus according to an embodiment of the present invention.

【図2】(A) ,(B) は光源にレーザを用いる場合の偏光
部材について説明するための外面図である。
2A and 2B are external views for explaining a polarizing member when a laser is used as a light source.

【図3】(A) 〜(D) は本発明の作用を説明するための概
念図である。
FIGS. 3A to 3D are conceptual diagrams for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 楕円鏡 3,9 ミラー 4 集光レンズ 5 オプチカルインテグレータ 6 偏光板 6a 1/2波長板 7 支持具 8,10 コンデンサーレンズ 11 フォトマスク(レチクル) 13 投影光学系 14 ウエハ DESCRIPTION OF SYMBOLS 1 Light source 2 Elliptical mirror 3,9 Mirror 4 Condensing lens 5 Optical integrator 6 Polarizing plate 6a 1/2 wavelength plate 7 Support tool 8,10 Condenser lens 11 Photomask (reticle) 13 Projection optical system 14 Wafer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7352−4M H01L 21/30 311 W ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7352-4M H01L 21/30 311 W

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フォトマスクを照明する照明光学系を有
する露光装置において、前記フォトマスクへの照明光束
の偏光状態を制御する偏光部材を備えたことを特徴とす
る露光装置。
1. An exposure apparatus having an illumination optical system for illuminating a photomask, the exposure apparatus comprising a polarizing member for controlling a polarization state of an illumination light beam to the photomask.
【請求項2】 前記偏光部材は1/2波長板または1/
4波長板により構成されることを特徴とする請求項1の
露光装置。
2. The polarizing member is a half-wave plate or a one-half wave plate.
The exposure apparatus according to claim 1, wherein the exposure apparatus comprises a four-wave plate.
【請求項3】 フォトマスクを照明することにより、前
記フォトマスクに形成されたパターンを感応基板上に転
写する露光方法において、前記フォトマスクへの照明光
の偏光状態を、前記パターンに応じて制御することを特
徴とする露光方法。
3. An exposure method in which a pattern formed on the photomask is transferred onto a sensitive substrate by illuminating the photomask, and a polarization state of illumination light to the photomask is controlled according to the pattern. An exposure method comprising:
【請求項4】 前記フォトマスクとして、光透過部と該
光透過部に透過光の位相を変化させる位相部材が付加さ
れた位相シフト部とからなるパターンを有する位相シフ
トマスクを用いることを特徴とする露光方法。
4. A phase shift mask having a pattern comprising a light transmitting portion and a phase shift portion having a phase member for changing the phase of transmitted light added to the light transmitting portion is used as the photomask. Exposure method.
JP29392091A 1991-10-15 1991-10-15 Aligner and exposure method Pending JPH05109601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29392091A JPH05109601A (en) 1991-10-15 1991-10-15 Aligner and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29392091A JPH05109601A (en) 1991-10-15 1991-10-15 Aligner and exposure method

Publications (1)

Publication Number Publication Date
JPH05109601A true JPH05109601A (en) 1993-04-30

Family

ID=17800875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29392091A Pending JPH05109601A (en) 1991-10-15 1991-10-15 Aligner and exposure method

Country Status (1)

Country Link
JP (1) JPH05109601A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673103A (en) * 1993-09-24 1997-09-30 Kabushiki Kaisha Toshiba Exposure apparatus and method
WO2005010963A1 (en) * 2003-07-24 2005-02-03 Nikon Corporation Illuminating optical system, exposure system and exposure method
WO2005041277A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
KR100598981B1 (en) * 2004-10-01 2006-07-12 주식회사 하이닉스반도체 Exposure device
JP2006332355A (en) * 2005-05-26 2006-12-07 Nec Electronics Corp Method and device for exposure
EP2017670A1 (en) 2007-07-19 2009-01-21 Canon Kabushiki Kaisha Phase shift mask
US7482110B2 (en) 2004-06-30 2009-01-27 Infineon Technologies Ag Method for adapting structure dimensions during the photolithographic projection of a pattern of structure elements onto a semiconductor wafer
US7807320B2 (en) 2005-09-01 2010-10-05 Infineon Technologies Ag Overlay target for polarized light lithography
US7843645B2 (en) 2007-09-27 2010-11-30 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and method of manufacturing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10801967B2 (en) 2018-12-11 2020-10-13 Lasertec Corporation Mask inspection apparatus, switching method, and mask inspection method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US7088425B2 (en) 1993-06-30 2006-08-08 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US5673103A (en) * 1993-09-24 1997-09-30 Kabushiki Kaisha Toshiba Exposure apparatus and method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
WO2005010963A1 (en) * 2003-07-24 2005-02-03 Nikon Corporation Illuminating optical system, exposure system and exposure method
EP3229076A2 (en) 2003-10-28 2017-10-11 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2927935A2 (en) 2003-10-28 2015-10-07 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
WO2005041277A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
EP2654073A2 (en) 2003-10-28 2013-10-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645407A2 (en) 2003-10-28 2013-10-02 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645405A2 (en) 2003-10-28 2013-10-02 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645406A2 (en) 2003-10-28 2013-10-02 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7482110B2 (en) 2004-06-30 2009-01-27 Infineon Technologies Ag Method for adapting structure dimensions during the photolithographic projection of a pattern of structure elements onto a semiconductor wafer
KR100598981B1 (en) * 2004-10-01 2006-07-12 주식회사 하이닉스반도체 Exposure device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7295286B2 (en) 2005-05-26 2007-11-13 Nec Electronics Corporation Exposure device and method of exposure
JP2006332355A (en) * 2005-05-26 2006-12-07 Nec Electronics Corp Method and device for exposure
JP4676815B2 (en) * 2005-05-26 2011-04-27 ルネサスエレクトロニクス株式会社 Exposure apparatus and exposure method
US8203223B2 (en) 2005-09-01 2012-06-19 Infineon Technologies Ag Overlay target for polarized light lithography
US7807320B2 (en) 2005-09-01 2010-10-05 Infineon Technologies Ag Overlay target for polarized light lithography
US7846625B2 (en) 2007-07-19 2010-12-07 Canon Kabushiki Kaisha Phase shift mask
EP2133742A1 (en) 2007-07-19 2009-12-16 Canon Kabushiki Kaisha Exposure method using pattern dependant dose control
EP2017670A1 (en) 2007-07-19 2009-01-21 Canon Kabushiki Kaisha Phase shift mask
US7843645B2 (en) 2007-09-27 2010-11-30 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and method of manufacturing device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US10801967B2 (en) 2018-12-11 2020-10-13 Lasertec Corporation Mask inspection apparatus, switching method, and mask inspection method

Similar Documents

Publication Publication Date Title
JPH05109601A (en) Aligner and exposure method
US6965484B2 (en) Optical imaging systems and methods using polarized illumination and coordinated pupil filter
JP3246615B2 (en) Illumination optical device, exposure apparatus, and exposure method
JP2884947B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
TWI474132B (en) Optical illumination device, projection exposure device, exposure method and device manufacturing method
US5347356A (en) Substrate aligning device using interference light generated by two beams irradiating diffraction grating
JP3099933B2 (en) Exposure method and exposure apparatus
JPH0590128A (en) Aligner
JPH07183201A (en) Exposure device and method therefor
JP2009009143A (en) Stationary and dynamic radial transverse electric polarizer for high numerical aperture system
JPH0757993A (en) Projection aligner
JPH02192114A (en) Aligner
JP3322274B2 (en) Projection exposure method and projection exposure apparatus
JPH05241324A (en) Photomask and exposing method
JPH07122469A (en) Projection aligner
JP3128396B2 (en) Exposure method and exposure apparatus
US5120974A (en) Position detecting method and device using image pickup of a mark
JPH10232497A (en) Exposure device
US7692769B2 (en) Exposure apparatus, exposure method, and semiconductor device manufacturing method
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JPH0666246B2 (en) Illumination optics
JP3087353B2 (en) Photomask and exposure method using the same
JP2888233B2 (en) Position detecting apparatus, exposure apparatus and method
JPH08203806A (en) Exposure illuminating device
JP3316695B2 (en) Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same