JP5924658B2 - Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration - Google Patents

Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration Download PDF

Info

Publication number
JP5924658B2
JP5924658B2 JP2011211687A JP2011211687A JP5924658B2 JP 5924658 B2 JP5924658 B2 JP 5924658B2 JP 2011211687 A JP2011211687 A JP 2011211687A JP 2011211687 A JP2011211687 A JP 2011211687A JP 5924658 B2 JP5924658 B2 JP 5924658B2
Authority
JP
Japan
Prior art keywords
light
time
light intensity
optical path
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211687A
Other languages
Japanese (ja)
Other versions
JP2013070822A (en
Inventor
西田 和弘
和弘 西田
孝一 清水
孝一 清水
祐次 加藤
祐次 加藤
健 浪田
健 浪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Seiko Epson Corp
Original Assignee
Hokkaido University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Seiko Epson Corp filed Critical Hokkaido University NUC
Priority to JP2011211687A priority Critical patent/JP5924658B2/en
Publication of JP2013070822A publication Critical patent/JP2013070822A/en
Application granted granted Critical
Publication of JP5924658B2 publication Critical patent/JP5924658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明のいくつかの様態は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置、光吸収係数算出方法、等価散乱係数算出方法、濃度定量方法、光吸収係数の算出を行うプログラム及び濃度の算出を行うプログラムに関する。   Some aspects of the present invention include a concentration quantification apparatus, a light absorption coefficient calculation method, and an equivalent scattering coefficient calculation for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers. The present invention relates to a method, a concentration determination method, a program for calculating a light absorption coefficient, and a program for calculating a concentration.

従来、血糖値の測定は、指先などから採血を行い、血中のグルコースに対する酵素活性を測ることで行っていた。しかし、このような血糖値の測定方法は、指先などから血液を採取して測定しなければならず、採血に手間と痛みを伴うことや、血液を付着させる測定チップが必要なことから、採血を必要としない非侵襲型の血糖値の測定方法が望まれている。   Conventionally, the blood sugar level has been measured by collecting blood from a fingertip or the like and measuring the enzyme activity for glucose in the blood. However, such a blood glucose level measurement method requires blood sampling from a fingertip or the like, and is troublesome and painful in blood sampling, or requires a measurement chip to attach blood. There is a demand for a non-invasive blood glucose level measurement method that does not require a blood pressure.

そこで、皮膚に近赤外光を照射し、その光吸収量からグルコースの濃度を求める方法が検討されている(例えば、特許文献1を参照)。具体的には、予めグルコース濃度と照射する光の波長と光の吸収量との関係を示す検量線を作成しておき、モノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する吸収量を求め、当該波長及び吸収量と検量線とを比較することでグルコース濃度を算出する。   Then, the method of irradiating near infrared light to skin and calculating | requiring the density | concentration of glucose from the light absorption amount is examined (for example, refer patent document 1). Specifically, a calibration curve indicating the relationship between the glucose concentration, the wavelength of light to be irradiated, and the amount of light absorbed is prepared in advance, a certain wavelength range is scanned using a monochromator, etc. The amount of absorption with respect to the wavelength is obtained, and the glucose concentration is calculated by comparing the wavelength and the amount of absorption with a calibration curve.

特許第3931638号公報Japanese Patent No. 3931638

しかしながら、従来の非侵襲血糖値測定方法は、光の入出射間距離を定めることによって、真皮層の近赤外スペクトルを測定するため、測定したスペクトルに、真皮層のスペクトルのみならず表皮層や皮下組織層のスペクトルも含まれ、観測される光吸収係数の変化には表皮層や皮下組織層によるノイズが含まれてしまうという問題があった。   However, since the conventional non-invasive blood sugar level measurement method measures the near-infrared spectrum of the dermis layer by determining the distance between the light input and output, the measured spectrum includes not only the spectrum of the dermis layer but also the epidermis layer. The spectrum of the subcutaneous tissue layer was also included, and there was a problem that the observed change in the light absorption coefficient included noise due to the epidermis layer or the subcutaneous tissue layer.

本発明は上記の点に鑑みてなされたものであり、その目的は、目的の層以外の層によるノイズの影響を軽減する濃度定量装置、光吸収係数算出方法、等価散乱係数算出方法、濃度定量方法、光吸収係数の算出を行うプログラム及び濃度の算出を行うプログラムを提供することにある。   The present invention has been made in view of the above points, and its purpose is to reduce the influence of noise caused by layers other than the target layer, a concentration determination device, a light absorption coefficient calculation method, an equivalent scattering coefficient calculation method, a concentration determination. A method, a program for calculating a light absorption coefficient, and a program for calculating a concentration are provided.

本発明にかかるひとつの態様は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における光吸収係数を算出する光吸収係数算出方法であって、照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記短時間パルス光が前記観測対象によって後方散乱した光の強度、第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数、任意の時刻における前記等価散乱係数に基づいて生成された前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデル、任意の時刻における前記等価散乱係数に基づいて生成された前記短時間パルス光の時間分解波形のモデル、前記伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度、を取得する第1の工程と、前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、光強度モデル、に基づいて、前記任意の層の光吸収係数を算出する第2の工程と、を有することを特徴とする。
本発明にかかるひとつの態様は、観測対象がn層以上の積層構造からなり、第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数をμ ’(t)、第m層の等価散乱係数をμ sm ’、時刻tにおける第m層の平均光路長をL ’(t)、時刻tにおける第m層の光路長をL (t)、短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、下記の(2)式から複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記時刻tにおける前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出することを特徴とする等価散乱係数算出方法である。
本発明にかかるひとつの態様は、コンピュータを、複数の光散乱媒質の層から形成される観測対象に短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する第1受光手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光するとともに、前記観測対象に前記短時間パルス光が照射される照射位置から前記観測対象によって後方散乱した光を受光する位置までの距離が前記第1受光手段と異なるように配置された第2受光手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第1受光手段が受光した光の強度を取得する第1光強度取得手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第2受光手段が受光した光の強度を取得する第2光強度取得手段と、前記第1光強度取得手段が取得した光強度と前記第2光強度取得手段が取得した光強度とに基づいて、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する第1等価散乱係数算出手段と、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第1光強度取得及び前記第2光強度取得手段とは異なる第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、任意の層の光吸収係数を算出する光吸収係数算出手段と、として機能させるための光吸収係数の算出を行うプログラムである。
本発明のいくつかの態様は上記の課題を解決するためになされたものであり、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する第1受光手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光するとともに、前記観測対象に前記短時間パルス光が照射される照射位置から前記観測対象によって後方散乱した光を受光する位置までの距離が前記第1受光手段と異なるように配置された第2受光手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第1受光手段が受光した光の強度を取得する第1光強度取得手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第2受光手段が受光した光の強度を取得する第2光強度取得手段と、前記第1光強度取得手段が取得した光強度と前記第2光強度取得手段が取得した光強度とに基づいて、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する第1等価散乱係数算出手段と、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第1光強度取得手段及び前記第2光強度取得手段とは異なる第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を含むことを特徴とする。
One aspect of the present invention is a light absorption coefficient calculation method for calculating a light absorption coefficient in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers, in which the irradiation unit is a short-time pulse. Intensity of light backscattered by the observation object at a predetermined time after light irradiation, equivalent scattering coefficient of propagation path of light received by the first light receiving means or the second light receiving means, arbitrary A model of propagation optical path length distribution in each of the layers of the plurality of light scattering media generated based on the equivalent scattering coefficient at the time of the time, the short time generated based on the equivalent scattering coefficient at an arbitrary time A model of a time-resolved waveform of pulsed light, an optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, the short-time pulsed light A first step of acquiring the light intensity at the predetermined time of the model of the time-resolved waveform, the light intensity acquired in the first step, and the optical path length of each of the layers of the plurality of light scattering media And a second step of calculating a light absorption coefficient of the arbitrary layer based on the light intensity model.
According to one aspect of the present invention, the observation target has a laminated structure of n layers or more, and the equivalent scattering coefficient of the propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), The equivalent scattering coefficient of the m layer is μ sm ′, the average optical path length of the mth layer at time t is L m ′ (t), the optical path length of the mth layer at time t is L m (t), and the short-time pulse light When the light intensity at time t of the model of the time-resolved waveform is N (t), the light intensity at least for a predetermined time τ1 to τ2 is acquired, and a plurality of light scattering media are obtained from the following equation (2). An approximate solution of the equivalent scattering coefficient of each layer is calculated, and each of the layers of the plurality of light scattering media at the time t of the propagation path length distribution model generated from the approximate solution of the equivalent scattering coefficient is calculated. Before the correction of the optical path length of the layer and the model of the time-resolved waveform of the short-time pulse light The correction value of the light intensity at a predetermined time is obtained, and the correction value of the optical path length and the correction value of the light intensity model are substituted into the following equation (2), and the plurality of light scattering media By repeatedly calculating the correction value of the equivalent scattering coefficient of each layer of the layers until it converges to the true value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media, An equivalent scattering coefficient calculation method characterized by calculating an equivalent scattering coefficient.
One aspect of the present invention includes a computer, an irradiation unit that irradiates an observation target formed of a plurality of light scattering medium layers with a short-time pulsed light, and the short-time pulsed light is backscattered by the observation target. A first light receiving means for receiving light, and light received by the short-time pulsed light backscattered by the observation target, and rearward by the observation target from an irradiation position where the observation target is irradiated with the short-time pulsed light. A second light receiving means disposed so that a distance to a position for receiving scattered light is different from that of the first light receiving means; and the first light receiving means at a predetermined time after a time when the irradiation means emits short-time pulse light. First light intensity acquisition means for acquiring the intensity of light received by the light receiving means; and the second light receiving means at a predetermined time after the time when the irradiation means irradiates the pulse light for a short time. Based on the second light intensity acquisition means for acquiring the intensity of the received light, the light intensity acquired by the first light intensity acquisition means, and the light intensity acquired by the second light intensity acquisition means, the first light reception Or the first equivalent scattering coefficient calculating means for calculating the equivalent scattering coefficient of the propagation path of the light received by the second light receiving means, and the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means. The optical path length distribution storage means for storing the propagation path length distribution model in each of the layers of the plurality of light scattering media generated by the above, and the equivalent at any time calculated by the first equivalent scattering coefficient calculation means The time-resolved waveform storage means for storing the time-resolved waveform model of the short-time pulsed light generated based on the scattering coefficient, and the optical path length distribution storage means from the propagation path length distribution model The optical path length acquisition means for acquiring the optical path length of each of the layers of the plurality of light scattering media at a fixed time, and the time-resolved waveform storage means, the time-resolved waveform model of the time-resolved waveform model Light intensity model acquisition means for acquiring light intensity at a predetermined time and the first light intensity acquisition means or the second light intensity acquisition means, or the first light intensity acquisition and the second light intensity acquisition means Light intensity acquired by different third light intensity acquisition means, optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition means, and light intensity acquired by the light intensity model acquisition means A program for calculating a light absorption coefficient for functioning as a light absorption coefficient calculation means for calculating a light absorption coefficient of an arbitrary layer based on the model.
Some aspects of the present invention have been made in order to solve the above-described problem, and a concentration for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers. An quantification device, wherein an irradiating means for irradiating the observation target with a short-time pulsed light, a first light-receiving means for receiving the light back-scattered by the observation target by the short-time pulsed light, and the short-time pulsed light The first light receiving means receives the light backscattered by the observation target and the distance from the irradiation position at which the short time pulse light is irradiated to the observation target to the position at which the light backscattered by the observation target is received. The second light receiving means arranged differently from the first light receiving means, and the intensity of the light received by the first light receiving means at a predetermined time after the time when the irradiating means irradiated the short-time pulse light. First light intensity acquisition means, second light intensity acquisition means for acquiring the intensity of light received by the second light receiving means at a predetermined time after the time when the irradiation means irradiates the pulse light for a short time, Based on the light intensity acquired by the one light intensity acquisition means and the light intensity acquired by the second light intensity acquisition means, the equivalent scattering coefficient of the propagation optical path of the light received by the first light receiving means or the second light receiving means A first equivalent scattering coefficient calculating means for calculating the first scattering coefficient, and an equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means for each of the layers of the plurality of light scattering media. Time resolution of the short-time pulse light generated based on an equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means and an optical path length distribution storing means for storing a propagation optical path length distribution model An optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the time-resolved waveform storage means for storing the shape model and the optical path length distribution storage means An optical path length acquisition means for acquiring the light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means, and the first Light intensity acquired by a third light intensity acquisition means different from the light intensity acquisition means or the second light intensity acquisition means, or the first light intensity acquisition means and the second light intensity acquisition means, and the optical path length acquisition means The light for calculating the light absorption coefficient of the arbitrary layer based on the optical path length of each of the layers of the plurality of light scattering media acquired by and the light intensity model acquired by the light intensity model acquisition means Absorption coefficient And a concentration calculating means for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means.

この構成によれば、第1光強度取得手段または第2光強度取得手段、若しくは第3光強度取得手段が取得した光強度と、光路長取得手段が取得した複数の光散乱媒質の層の各々の層の光路長と、光強度モデル取得手段が取得した光強度モデルと、に基づいて、任意の層の光吸収係数を選択的に算出することができる。また、観測対象の伝搬光路長分布のモデル及び時間分解波形のモデルを、第1受光手段及び第2受光手段の2つの受光手段が受光した後方散乱光の強度に基づいて任意の時刻における等価散乱係数により生成する方法を採用する。これにより、任意の層の光吸収係数を算出する際の誤差要因が生じることを抑制し、任意の層の光吸収係数を高精度に算出することができる。   According to this configuration, the light intensity acquired by the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit, and each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit Based on the optical path length of the layer and the light intensity model acquired by the light intensity model acquisition means, the light absorption coefficient of an arbitrary layer can be selectively calculated. Also, the model of the propagation optical path length distribution and the model of the time-resolved waveform to be observed are equivalently scattered at an arbitrary time based on the intensity of the backscattered light received by the two light receiving means of the first light receiving means and the second light receiving means. A method of generating by coefficients is adopted. Thereby, it is possible to suppress the occurrence of an error factor when calculating the light absorption coefficient of an arbitrary layer, and to calculate the light absorption coefficient of an arbitrary layer with high accuracy.

また、本発明のいくつかの態様は、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記第1光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)、前記第2光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)としたときに、前記第1等価散乱係数算出手段は、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the equivalent scattering coefficient of the propagation path of light received by the first light receiving unit or the second light receiving unit is μ s ′ (t), and the speed of light in the scatterer is set. c, a distance from an irradiation position at which the observation target is irradiated with the short-time pulsed light to a position at which the first light receiving unit receives light backscattered by the observation target, ρ 1 , and a distance from the irradiation position to the second The distance to the position where the light receiving means receives the light backscattered by the observation target is ρ 2 , the light intensity acquired by the first light intensity acquisition means at time t is R (ρ 1 , t), and the second light. When the light intensity acquired by the intensity acquisition unit at time t is R (ρ 2 , t), the first equivalent scattering coefficient calculation unit calculates the first light receiving unit or the second unit from the following equation (1). Equivalent scattering of the propagation path of light received by the light receiving means It calculates the number, characterized in that.

Figure 0005924658
Figure 0005924658

この構成によれば、上記の(1)式により任意の時刻における等価散乱係数が算出される。よって、光の伝搬光路の等価散乱係数時間関数を高精度に算出することができる。   According to this configuration, the equivalent scattering coefficient at an arbitrary time is calculated by the above equation (1). Therefore, the equivalent scattering coefficient time function of the light propagation optical path can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の等価散乱係数を算出する第2等価散乱係数算出手段を備え、前記光吸収係数算出手段は、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記第2等価散乱係数算出手段が算出した前記任意の層の等価散乱係数と、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする。   Further, according to some aspects of the present invention, an optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit, a light intensity model acquired by the light intensity model acquisition unit, 2nd equivalent scattering coefficient calculation means for calculating an equivalent scattering coefficient of the arbitrary layer based on the first light intensity acquisition means or the second light intensity acquisition means, or The light intensity acquired by the third light intensity acquisition unit, the optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit, and the light intensity acquired by the light intensity model acquisition unit The light absorption coefficient of the arbitrary layer is calculated based on the model and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculating means.

この構成によれば、第1光強度取得手段または第2光強度取得手段、若しくは第3光強度取得手段が取得した光強度と、光路長取得手段が取得した複数の光散乱媒質の層の各々の層の光路長と、光強度モデル取得手段が取得した光強度モデルと、第2等価散乱係数算出手段が算出した任意の層の等価散乱係数と、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、等価散乱係数が加味されるので、光吸収係数の算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this configuration, the light intensity acquired by the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit, and each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit The light absorption coefficient of an arbitrary layer based on the optical path length of the layer, the light intensity model acquired by the light intensity model acquisition means, and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation means Can be calculated selectively. Since the equivalent scattering coefficient is taken into account when calculating the light absorption coefficient, the calculation result of the light absorption coefficient is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、前記光強度取得手段は、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記第2等価散乱係数算出手段は、下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、ことを特徴とする。 In some embodiments of the present invention, the observation target has a laminated structure of n layers or more, and an equivalent scattering coefficient of a light propagation path of light received by the first light receiving unit or the second light receiving unit is expressed as μ s ′. (T), the equivalent scattering coefficient of the m-th layer is μ sm , the average optical path length of the m-th layer at time t is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), When the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), the light intensity acquisition means acquires the light intensity at least for a predetermined time τ1 to τ2, The second equivalent scattering coefficient calculating means calculates an approximate solution of an equivalent scattering coefficient of each of the plurality of light scattering medium layers from the following equation (2), and is generated from the approximate solution of the equivalent scattering coefficient. The plurality of light scattering media at the predetermined time of the propagation optical path length distribution model A correction value of the optical path length of each layer of the quality layer and a correction value of the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light, and the correction value of the optical path length And calculating the correction value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media by substituting the correction value of the light intensity model and the correction value of the light intensity model into the following equation (2): It is characterized in that the equivalent scattering coefficient of the arbitrary layer is calculated by repeatedly performing until it converges to the true value of the equivalent scattering coefficient of each layer of the medium.

Figure 0005924658
Figure 0005924658

この構成によれば、等価散乱係数を算出する際、等価散乱係数の真値に収束するまで上記の(2)式を用いた繰り返し演算が行われる。よって、任意の層の等価散乱係数を高精度に算出することができる。   According to this configuration, when calculating the equivalent scattering coefficient, iterative calculation using the above equation (2) is performed until it converges to the true value of the equivalent scattering coefficient. Therefore, the equivalent scattering coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記光強度取得手段が時刻tにおいて取得した光強度をR(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとしたときに、前記光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、下記の(3)式から前記任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulsed light is N (t), and the light intensity The light intensity acquired by the acquisition means at time t is R (t), the light absorption coefficient of the m-th layer is μ am , and the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t) When the number of incident photons is N in and the incident light intensity is I in , the light intensity acquisition means acquires light intensity at a plurality of times t 1 to t m , and the light absorption coefficient calculation means The light absorption coefficient of the arbitrary layer is calculated from the equation (3).

Figure 0005924658
Figure 0005924658

この構成によれば、上記の(3)式により任意の層の光吸収係数が算出される。よって、任意の層の光吸収係数を高精度に算出することができる。   According to this configuration, the light absorption coefficient of an arbitrary layer is calculated by the above equation (3). Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記光強度取得手段が時刻tにおいて取得した光強度をR(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとしたときに、前記光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記光吸収係数算出手段は、下記の(4)式から前記任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulsed light is N (t), and the light intensity The light intensity acquired by the acquisition means at time t is R (t), the light absorption coefficient of the m-th layer is μ am , and the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t) When the number of incident photons is N in and the incident light intensity is I in , the light intensity acquisition means acquires the light intensity between a predetermined time and at least a predetermined time τ1 to τ2, and the light absorption coefficient The calculating means calculates the light absorption coefficient of the arbitrary layer from the following equation (4).

Figure 0005924658
Figure 0005924658

この構成によれば、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   According to this configuration, since the light absorption coefficient is calculated by the integral value of the optical path length between the times τ1 and τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity can be reduced. it can.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記任意の層である第m層における光吸収係数をμam、前記観測対象を形成する第i成分の光吸収係数をμai、前記観測対象を形成する第i成分の体積濃度をcviとしたときに、前記濃度算出手段は、下記の(5)式から前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light absorption coefficient in the m-th layer that is the arbitrary layer is μ am , and the i-th component that forms the observation target Where the light absorption coefficient is μ ai and the volume concentration of the i-th component forming the observation target is c vi , the concentration calculation means calculates the target component in the arbitrary layer from the following equation (5): The density is calculated.

Figure 0005924658
Figure 0005924658

この構成によれば、上記の(5)式により任意の層における目的成分の濃度が算出される。よって、任意の層の目的成分の濃度を高精度に算出することができる。   According to this structure, the density | concentration of the target component in arbitrary layers is computed by said (5) Formula. Therefore, the concentration of the target component in any layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記任意の層である第m層における光吸収係数をμam、前記観測対象を形成する第i成分のモル吸光係数をε、前記観測対象を形成する第i成分のモル濃度をcとしたときに、前記濃度算出手段は、下記の(6)式から前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light absorption coefficient in the m-th layer that is the arbitrary layer is μ am , and the i-th component that forms the observation target the molar extinction coefficient epsilon i, the molar concentration of the i component forming the observation target is taken as c i, the concentration calculating means, the following (6) from the equation of the target component in the arbitrary layer The density is calculated.

Figure 0005924658
Figure 0005924658

この構成によれば、上記の(6)式により任意の層における目的成分の濃度が算出される。よって、任意の層の目的成分の濃度を高精度に算出することができる。   According to this configuration, the concentration of the target component in an arbitrary layer is calculated by the above equation (6). Therefore, the concentration of the target component in any layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記濃度算出手段は、前記任意の層における前記光吸収係数に基づいて、多変量解析を用いて特性が既知であるものを測定した値から検量線作成をして、未知測定対象の測定値を検量線に照合することで前記任意の層における前記目的成分の濃度を算出することを特徴とする。   Further, according to some aspects of the present invention, the concentration calculation unit generates a calibration curve from values obtained by measuring a characteristic whose characteristics are known using multivariate analysis based on the light absorption coefficient in the arbitrary layer. Then, the concentration of the target component in the arbitrary layer is calculated by collating the measurement value of the unknown measurement target with a calibration curve.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

この構成によれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this configuration, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, it is possible to reduce the influence of noise caused by other layers and to determine the glucose concentration with high accuracy. Can do.

また、本発明のいくつかの態様は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における光吸収係数を算出する光吸収係数算出方法であって、照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記短時間パルス光が前記観測対象によって後方散乱した光の強度、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数、任意の時刻における前記等価散乱係数に基づいて生成された前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデル、任意の時刻における前記等価散乱係数に基づいて生成された前記短時間パルス光の時間分解波形のモデル、前記伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度、を取得する第1の工程と、前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、前記光強度モデル、に基づいて、前記任意の層の光吸収係数を算出する第2の工程と、を有することを特徴とする。   Further, some aspects of the present invention are light absorption coefficient calculation methods for calculating a light absorption coefficient in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers, wherein the irradiation means is short. The intensity of the light back-scattered by the observation target at the predetermined time after the time pulse light irradiation, the equivalent of the propagation path of the light received by the first light receiving means or the second light receiving means A scattering coefficient, a model of propagation path length distribution in each layer of the plurality of light scattering medium layers generated based on the equivalent scattering coefficient at an arbitrary time, and generated based on the equivalent scattering coefficient at an arbitrary time In addition, the time-resolved waveform model of the short-time pulsed light, the propagation optical path length distribution model, the optical path length of each of the layers of the plurality of light scattering media at the predetermined time, the short time A first step of acquiring the light intensity at the predetermined time of the time-resolved waveform model of the pulsed light; the light intensity acquired in the first step; and each of the layers of the plurality of light scattering media And a second step of calculating a light absorption coefficient of the arbitrary layer based on the optical path length and the light intensity model.

この方法によれば、第1の工程で取得した光強度、複数の光散乱媒質の層の各々の層の光路長、光強度モデル、に基づいて、任意の層の光吸収係数を選択的に算出することができる。また、観測対象の伝搬光路長分布のモデル及び時間分解波形のモデルを、任意の時刻における等価散乱係数に基づいて生成する方法を採用する。これにより、任意の層の光吸収係数を算出する際の誤差要因が生じることを抑制し、任意の層の光吸収係数を高精度に算出することができる。   According to this method, the light absorption coefficient of an arbitrary layer is selectively selected based on the light intensity acquired in the first step, the optical path length of each layer of the plurality of light scattering media, and the light intensity model. Can be calculated. In addition, a method of generating a propagation optical path length distribution model and a time-resolved waveform model to be observed based on an equivalent scattering coefficient at an arbitrary time is adopted. Thereby, it is possible to suppress the occurrence of an error factor when calculating the light absorption coefficient of an arbitrary layer, and to calculate the light absorption coefficient of an arbitrary layer with high accuracy.

また、本発明のいくつかの態様は、第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記第1光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)、前記第2光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)としたときに、前記第1の工程において、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、ことを特徴とする。 In some embodiments of the present invention, the equivalent scattering coefficient of the propagation optical path of light received by the first light receiving means or the second light receiving means is μ s ′ (t), the speed of light in the scatterer is c, The distance from the irradiation position at which the observation target is irradiated with the short-time pulse light to the position at which the first light receiving unit receives the light backscattered by the observation target is represented by ρ 1 , and the second light receiving unit from the irradiation position. Is the distance to the position for receiving the light backscattered by the observation object, ρ 2 , the light intensity acquired by the first light intensity acquisition means at time t is R (ρ 1 , t), and the second light intensity acquisition When the light intensity acquired by the means at time t is R (ρ 2 , t), in the first step, the first light receiving means or the second light receiving means receives light from the following equation (1). Calculate the equivalent scattering coefficient of the light propagation path, And wherein the door.

Figure 0005924658
Figure 0005924658

この方法によれば、上記の(1)式により任意の時刻における等価散乱係数が算出される。よって、光の伝搬光路の等価散乱係数時間関数を高精度に算出することができる。   According to this method, the equivalent scattering coefficient at an arbitrary time is calculated by the above equation (1). Therefore, the equivalent scattering coefficient time function of the light propagation optical path can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記第1の工程において、前記複数の光散乱媒質の層の各々の層の光路長、前記光強度モデル、に基づいて、前記任意の層の等価散乱係数を取得し、前記第2の工程において、前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、前記光強度モデル、前記任意の層の前記等価散乱係数、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする。   Further, according to some aspects of the present invention, in the first step, the equivalent scattering of the arbitrary layer based on the optical path length of each of the layers of the plurality of light scattering media and the light intensity model. A coefficient is obtained, and in the second step, the light intensity obtained in the first step, the optical path length of each of the layers of the plurality of light scattering media, the light intensity model, and the arbitrary layer The light absorption coefficient of the arbitrary layer is calculated based on the equivalent scattering coefficient.

この方法によれば、第2の工程において、第1の工程で取得した光強度、複数の光散乱媒質の層の各々の層の光路長、光強度モデル、任意の層の等価散乱係数、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、等価散乱係数が加味されるので、光吸収係数の算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this method, in the second step, the light intensity acquired in the first step, the optical path length of each of the layers of the plurality of light scattering media, the light intensity model, the equivalent scattering coefficient of an arbitrary layer, Based on this, the light absorption coefficient of an arbitrary layer can be selectively calculated. Since the equivalent scattering coefficient is taken into account when calculating the light absorption coefficient, the calculation result of the light absorption coefficient is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、前記第1の工程において、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、ことを特徴とする。 In some embodiments of the present invention, the observation target has a laminated structure of n layers or more, and an equivalent scattering coefficient of a light propagation path of light received by the first light receiving unit or the second light receiving unit is expressed as μ s ′. (T), the equivalent scattering coefficient of the m-th layer is μ sm , the average optical path length of the m-th layer at time t is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), When the light intensity at time t of the model of the time-resolved waveform of the short-time pulsed light is N (t), in the first step, the light intensity at least for a predetermined time τ1 to τ2 is acquired, The approximate solution of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media is calculated from the following equation (2), and the model of the propagation optical path length distribution generated from the approximate solution of the equivalent scattering coefficient is calculated. Correction of optical path length of each layer of the plurality of light scattering media at a predetermined time And a correction value of the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulse light, and the correction value of the optical path length and the correction value of the light intensity model are obtained as follows: Substituting into the equation (2), the correction value of the equivalent scattering coefficient of each of the plurality of light scattering medium layers is calculated as the equivalent scattering coefficient of each of the plurality of light scattering medium layers. It is characterized in that the equivalent scattering coefficient of the arbitrary layer is calculated by repeatedly performing until convergence to a true value.

Figure 0005924658
Figure 0005924658

この方法によれば、等価散乱係数を算出する際、等価散乱係数の真値に収束するまで上記の(2)式を用いた繰り返し演算が行われる。よって、任意の層の等価散乱係数を高精度に算出することができる。   According to this method, when calculating the equivalent scattering coefficient, iterative calculation using the above equation (2) is performed until it converges to the true value of the equivalent scattering coefficient. Therefore, the equivalent scattering coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、観測対象がn層以上の積層構造からなり、第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、下記の(2)式から複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記時刻tにおける前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出することを特徴とする。 In some embodiments of the present invention, the observation target has a laminated structure of n layers or more, and the equivalent scattering coefficient of the light propagation path of the light received by the first light receiving means or the second light receiving means is expressed as μ s ′ (t). , The equivalent scattering coefficient of the m-th layer is μ sm , the average optical path length of the m-th layer at time t is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), and the short-time pulse When the light intensity at time t of the model of the time-resolved waveform of light is N (t), the light intensity at least for a predetermined time τ1 to τ2 is acquired, and a plurality of light scatterings are obtained from the following equation (2). An approximate solution of the equivalent scattering coefficient of each layer of the medium is calculated, and the layers of the plurality of light scattering media at the time t of the propagation path length distribution model generated from the approximate solution of the equivalent scattering coefficient are calculated. The correction value of the optical path length of each layer and the model of the time-resolved waveform of the short-time pulsed light The light intensity correction value at the predetermined time is obtained, the optical path length correction value and the light intensity model correction value are substituted into the following equation (2), and the plurality of light scattering media: Repeatedly calculating the correction value of the equivalent scattering coefficient of each layer of the plurality of layers until the true value of the equivalent scattering coefficient of each layer of the plurality of light scattering media converges to the arbitrary layer. The equivalent scattering coefficient is calculated.

Figure 0005924658
Figure 0005924658

この方法によれば、等価散乱係数を算出する際、等価散乱係数の真値に収束するまで上記の(2)式を用いた繰り返し演算が行われる。よって、任意の層の等価散乱係数を高精度に算出することができる。   According to this method, when calculating the equivalent scattering coefficient, iterative calculation using the above equation (2) is performed until it converges to the true value of the equivalent scattering coefficient. Therefore, the equivalent scattering coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記第2の工程で算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出することを特徴とする。   In some embodiments of the present invention, the concentration of the target component in the arbitrary layer is calculated based on the light absorption coefficient calculated in the second step.

この方法によれば、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this method, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする。   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

この方法によれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this method, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, it is possible to reduce the influence of noise caused by other layers and to accurately determine the concentration of glucose. Can do.

また、本発明のいくつかの態様は、複数の光散乱媒質の層から形成される観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を、前記観測対象に短時間パルス光を照射する照射手段、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する第1受光手段、前記短時間パルス光が前記観測対象によって後方散乱した光を受光するとともに、前記観測対象に前記短時間パルス光が照射される照射位置から前記観測対象によって後方散乱した光を受光する位置までの距離が前記第1受光手段と異なるように配置された第2受光手段、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第1受光手段が受光した光の強度を取得する第1光強度取得手段、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第2受光手段が受光した光の強度を取得する第2光強度取得手段、前記第1光強度取得手段が取得した光強度と前記第2光強度取得手段が取得した光強度とに基づいて、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する第1等価散乱係数算出手段、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段、前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第1光強度取得手段及び前記第2光強度取得手段とは異なる第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段、として動作させるための光吸収係数の算出を行うプログラムである。   Further, according to some aspects of the present invention, there is provided a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers. Irradiating means for irradiating the light, first light receiving means for receiving the light back-scattered by the observation object, the short-time pulse light, receiving the light back-scattered by the observation object for the short-time pulse light, and the observation object A second light receiving means and an irradiating means arranged so that a distance from an irradiation position irradiated with the short-time pulse light to a position for receiving the light backscattered by the observation object is different from that of the first light receiving means; First light intensity acquisition means for acquiring the intensity of light received by the first light receiving means at a predetermined time after the time when the short time pulse light is applied, and the irradiation means receives the short time pulse light. Second light intensity acquisition means for acquiring the intensity of light received by the second light receiving means at a predetermined time after the shooting time, light intensity acquired by the first light intensity acquisition means and the second light intensity acquisition means The first equivalent scattering coefficient calculating means for calculating the equivalent scattering coefficient of the propagation optical path of the light received by the first light receiving means or the second light receiving means based on the light intensity acquired by the first light receiving means, and the first equivalent scattering coefficient calculation Optical path length distribution storage means for storing a model of propagation optical path length distribution in each of the layers of the plurality of light scattering media generated based on the equivalent scattering coefficient at an arbitrary time calculated by the means, the first equivalent Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light generated based on the equivalent scattering coefficient at an arbitrary time calculated by the scattering coefficient calculating means, and the optical path length distribution record From the optical path length acquisition means for acquiring the optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution, and from the time-resolved waveform storage means, Light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the time pulse light, the first light intensity acquisition means or the second light intensity acquisition means, or the first light intensity acquisition Means and a light intensity acquired by a third light intensity acquisition unit different from the second light intensity acquisition unit, an optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit, and A program for calculating a light absorption coefficient for operating as a light absorption coefficient calculation means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity model acquired by the light intensity model acquisition means. is there.

このプログラムによれば、第1光強度取得手段または第2光強度取得手段、若しくは第3光強度取得手段が取得した光強度と、光路長取得手段が取得した複数の光散乱媒質の層の各々の層の光路長と、光強度モデル取得手段が取得した光強度モデルと、に基づいて、任意の層の光吸収係数を選択的に算出することができる。また、観測対象の伝搬光路長分布のモデル及び時間分解波形のモデルを、第1受光手段及び第2受光手段の2つの受光手段が受光した後方散乱光の強度に基づいて任意の時刻における等価散乱係数により生成する方法を採用する。これにより、任意の層の光吸収係数を算出する際の誤差要因が生じることを抑制し、任意の層の光吸収係数を高精度に算出することができる。   According to this program, the light intensity acquired by the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit, and each of the plurality of light scattering medium layers acquired by the optical path length acquisition unit Based on the optical path length of the layer and the light intensity model acquired by the light intensity model acquisition means, the light absorption coefficient of an arbitrary layer can be selectively calculated. Also, the model of the propagation optical path length distribution and the model of the time-resolved waveform to be observed are equivalently scattered at an arbitrary time based on the intensity of the backscattered light received by the two light receiving means of the first light receiving means and the second light receiving means. A method of generating by coefficients is adopted. Thereby, it is possible to suppress the occurrence of an error factor when calculating the light absorption coefficient of an arbitrary layer, and to calculate the light absorption coefficient of an arbitrary layer with high accuracy.

また、本発明のいくつかの態様は、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記第1光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)、前記第2光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)としたときに、前記第1等価散乱係数算出手段は、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the equivalent scattering coefficient of the propagation path of light received by the first light receiving unit or the second light receiving unit is μ s ′ (t), and the speed of light in the scatterer is set. c, a distance from an irradiation position at which the observation target is irradiated with the short-time pulsed light to a position at which the first light receiving unit receives light backscattered by the observation target, ρ 1 , and a distance from the irradiation position to the second The distance to the position where the light receiving means receives the light backscattered by the observation target is ρ 2 , the light intensity acquired by the first light intensity acquisition means at time t is R (ρ 1 , t), and the second light. When the light intensity acquired by the intensity acquisition unit at time t is R (ρ 2 , t), the first equivalent scattering coefficient calculation unit calculates the first light receiving unit or the second unit from the following equation (1). Equivalent scattering of the propagation path of light received by the light receiving means It calculates the number, characterized in that.

Figure 0005924658
Figure 0005924658

このプログラムによれば、上記の(1)式により任意の時刻における等価散乱係数が算出される。よって、光の伝搬光路の等価散乱係数時間関数を高精度に算出することができる。   According to this program, the equivalent scattering coefficient at an arbitrary time is calculated by the above equation (1). Therefore, the equivalent scattering coefficient time function of the light propagation optical path can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の等価散乱係数を算出する第2等価散乱係数算出手段、として動作させ、前記光吸収係数算出手段は、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記第2等価散乱係数算出手段が算出した前記任意の層の等価散乱係数と、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする。   Further, according to some aspects of the present invention, an optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit, a light intensity model acquired by the light intensity model acquisition unit, Based on the above, the second equivalent scattering coefficient calculating means for calculating the equivalent scattering coefficient of the arbitrary layer is operated, and the light absorption coefficient calculating means is the first light intensity acquiring means or the second light intensity acquiring means. Alternatively, the light intensity acquired by the third light intensity acquisition unit, the optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit, and the light intensity model acquisition unit acquired The light absorption coefficient of the arbitrary layer is calculated based on the light intensity model and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation means.

このプログラムによれば、第1光強度取得手段または第2光強度取得手段、若しくは第3光強度取得手段が取得した光強度と、光路長取得手段が取得した複数の光散乱媒質の層の各々の層の光路長と、光強度モデル取得手段が取得した光強度モデルと、第2等価散乱係数算出手段が算出した任意の層の等価散乱係数と、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、等価散乱係数が加味されるので、光吸収係数の算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this program, the light intensity acquired by the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit, and each of the plurality of light scattering medium layers acquired by the optical path length acquisition unit The light absorption coefficient of an arbitrary layer based on the optical path length of the layer, the light intensity model acquired by the light intensity model acquisition means, and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation means Can be calculated selectively. Since the equivalent scattering coefficient is taken into account when calculating the light absorption coefficient, the calculation result of the light absorption coefficient is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、前記光強度取得手段は、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記第2等価散乱係数算出手段は、下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、ことを特徴とする。 In some embodiments of the present invention, the observation target has a laminated structure of n layers or more, and an equivalent scattering coefficient of a light propagation path of light received by the first light receiving unit or the second light receiving unit is expressed as μ s ′. (T), the equivalent scattering coefficient of the m-th layer is μ sm , the average optical path length of the m-th layer at time t is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), When the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), the light intensity acquisition means acquires the light intensity at least for a predetermined time τ1 to τ2, The second equivalent scattering coefficient calculating means calculates an approximate solution of an equivalent scattering coefficient of each of the plurality of light scattering medium layers from the following equation (2), and is generated from the approximate solution of the equivalent scattering coefficient. The plurality of light scattering media at the predetermined time of the propagation optical path length distribution model A correction value of the optical path length of each layer of the quality layer and a correction value of the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light, and the correction value of the optical path length And calculating the correction value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media by substituting the correction value of the light intensity model and the correction value of the light intensity model into the following equation (2): It is characterized in that the equivalent scattering coefficient of the arbitrary layer is calculated by repeatedly performing until it converges to the true value of the equivalent scattering coefficient of each layer of the medium.

Figure 0005924658
Figure 0005924658

このプログラムによれば、等価散乱係数を算出する際、等価散乱係数の真値に収束するまで上記の(2)式を用いた繰り返し演算が行われる。よって、任意の層の等価散乱係数を高精度に算出することができる。   According to this program, when calculating the equivalent scattering coefficient, iterative calculation is performed using the above equation (2) until it converges to the true value of the equivalent scattering coefficient. Therefore, the equivalent scattering coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段として動作させるための濃度の算出を行うプログラムである。   Further, according to some aspects of the present invention, a concentration for operating as a concentration calculating unit that calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating unit. This is a program that performs calculation.

このプログラムによれば、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this program, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする。   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

このプログラムによれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this program, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, the influence of noise by other layers can be reduced, and the concentration of glucose can be determined with high accuracy. Can do.

本発明の第1実施形態に係る血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus which concerns on 1st Embodiment of this invention. シミュレーション部が算出した各層の伝搬光路長分布を示すグラフである。It is a graph which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示すグラフである。It is a graph which shows the time-resolved waveform which the simulation part computed. 皮膚の主成分の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the main component of skin. 本発明の第1実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which the blood glucose level measuring apparatus which concerns on 1st Embodiment of this invention measures a blood glucose level. 本発明の第2実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which the blood glucose level measuring apparatus which concerns on 2nd Embodiment of this invention measures a blood glucose level. 本発明の第3実施形態に係る血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which the blood glucose level measuring apparatus which concerns on 3rd Embodiment of this invention measures a blood glucose level.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態による血糖値測定装置の構成を示す概略ブロック図である。
血糖値測定装置100(濃度定量装置)は、照射部101(照射手段)、第1受光部102(第1受光手段)、第2受光部103(第2受光手段)、第1計測光強度取得部104(第1光強度取得手段)、第2計測光強度取得部105(第2光強度取得手段)、第1等価散乱係数算出部106(第1等価散乱係数算出手段)、シミュレーション部107、光路長分布記憶部108(光路長分布記憶手段)、時間分解波形記憶部109(時間分解波形記憶手段)、光路長取得部110(光路長取得手段)、無吸収時光強度取得部111(光強度モデル取得手段)、光吸収係数算出部112(光吸収係数算出手段)、成分吸収情報記憶部113、濃度算出部114(濃度算出手段)、濃度単位変換部115、濃度表示部116、を備える。
(First embodiment)
FIG. 1 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the first embodiment of the present invention.
The blood glucose level measuring apparatus 100 (concentration determination apparatus) includes an irradiation unit 101 (irradiation unit), a first light receiving unit 102 (first light receiving unit), a second light receiving unit 103 (second light receiving unit), and first measurement light intensity acquisition. Unit 104 (first light intensity acquisition unit), second measurement light intensity acquisition unit 105 (second light intensity acquisition unit), first equivalent scattering coefficient calculation unit 106 (first equivalent scattering coefficient calculation unit), simulation unit 107, Optical path length distribution storage unit 108 (optical path length distribution storage unit), time-resolved waveform storage unit 109 (time-resolved waveform storage unit), optical path length acquisition unit 110 (optical path length acquisition unit), non-absorption light intensity acquisition unit 111 (light intensity) A model acquisition unit), a light absorption coefficient calculation unit 112 (light absorption coefficient calculation unit), a component absorption information storage unit 113, a concentration calculation unit 114 (concentration calculation unit), a concentration unit conversion unit 115, and a concentration display unit 116.

血糖値測定装置100は、皮膚(観測対象)の真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を測定する。   The blood glucose level measuring apparatus 100 measures the concentration of glucose (target component) contained in the dermis layer (arbitrary layer) of the skin (observation target).

照射部101は、皮膚に対して短時間パルス光を照射する。この照射部101が照射する複数の短時間パルス光は、皮膚を構成する主成分の各々の成分の吸収スペクトル分布の直交性が高くなる波長の光、すなわち、皮膚を構成する主成分の各々の成分のうち、ある主成分における特定成分の吸収スペクトルの極大値が他の成分の吸収スペクトルの極大値と大きく異なる波長の光を含んでいる。   The irradiation unit 101 irradiates the skin with short-time pulsed light. The plurality of short-time pulse lights emitted by the irradiation unit 101 is light having a wavelength at which the orthogonality of the absorption spectrum distribution of each component of the main component constituting the skin increases, that is, each of the main components constituting the skin. Among the components, the maximum value of the absorption spectrum of a specific component in a certain main component includes light having a wavelength that is significantly different from the maximum value of the absorption spectrum of another component.

第1受光部102は、短時間パルス光が皮膚によって後方散乱した光を受光する。
第2受光部103は、短時間パルス光が皮膚によって後方散乱した光を受光する。第2受光部103は、皮膚に短時間パルス光が照射される照射位置から皮膚によって後方散乱した光を受光する位置までの距離が第1受光部102と異なるように配置されている。
The first light receiving unit 102 receives light obtained by back-scattering short-time pulsed light by the skin.
The second light receiving unit 103 receives light obtained by backscattering the short-time pulsed light by the skin. The second light receiving unit 103 is arranged such that the distance from the irradiation position where the pulsed light is irradiated to the skin for a short time to the position where the light backscattered by the skin is received is different from that of the first light receiving unit 102.

第1計測光強度取得部104は、第1受光部102が受光した光のある時刻における光強度を取得する。
第2計測光強度取得部105は、第2受光部103が受光した光のある時刻における光強度を取得する。
The first measurement light intensity acquisition unit 104 acquires the light intensity at a certain time of the light received by the first light receiving unit 102.
The second measurement light intensity acquisition unit 105 acquires the light intensity at a certain time when the light received by the second light receiving unit 103 is received.

第1等価散乱係数算出部106は、第1計測光強度取得部104が取得した光強度と第2計測光強度取得部105が取得した光強度とに基づいて、第1受光部102若しくは第2受光部103が受光した光の伝搬光路の等価散乱係数を算出する。   Based on the light intensity acquired by the first measurement light intensity acquisition unit 104 and the light intensity acquired by the second measurement light intensity acquisition unit 105, the first equivalent scattering coefficient calculation unit 106 The equivalent scattering coefficient of the propagation optical path of the light received by the light receiving unit 103 is calculated.

シミュレーション部107は、第1等価散乱係数算出部106が算出した任意の時刻における等価散乱係数に基づいて、皮膚の各層の伝搬光路長分布のモデル、短時間パルス光の時間分解波形のモデル、を生成する。シミュレーションは、例えばモンテカルロ法を用いて行われる。   Based on the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculation unit 106, the simulation unit 107 calculates a propagation optical path length distribution model of each layer of skin and a model of time-resolved waveform of short-time pulsed light. Generate. The simulation is performed using, for example, a Monte Carlo method.

光路長分布記憶部108は、シミュレーション部107が生成した皮膚の各層の伝搬光路長分布のモデルを記憶する。
時間分解波形記憶部109は、シミュレーション部107が生成した短時間パルス光の時間分解波形のモデルを記憶する。
The optical path length distribution storage unit 108 stores a model of the propagation optical path length distribution of each skin layer generated by the simulation unit 107.
The time-resolved waveform storage unit 109 stores a model of the time-resolved waveform of the short-time pulsed light generated by the simulation unit 107.

光路長取得部110は、光路長分布記憶部108からある時刻における光路長を取得する。
無吸収時光強度取得部111は、時間分解波形記憶部109からある時刻における光強度を取得する。
The optical path length acquisition unit 110 acquires the optical path length at a certain time from the optical path length distribution storage unit 108.
The non-absorption light intensity acquisition unit 111 acquires the light intensity at a certain time from the time-resolved waveform storage unit 109.

光吸収係数算出部112は、短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
成分吸収情報記憶部113は、皮膚の主成分の光吸収係数、またはモル吸光係数を予め記憶する。
The light absorption coefficient calculation unit 112 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light.
The component absorption information storage unit 113 stores in advance the light absorption coefficient or molar absorption coefficient of the main component of the skin.

濃度算出部114は、真皮層に含まれるグルコースの濃度を算出する。
濃度単位変換部115は、グルコースの濃度の単位を所望の単位に変換する。
濃度表示部116は、グルコースの濃度を表示する。
The concentration calculation unit 114 calculates the concentration of glucose contained in the dermis layer.
The concentration unit converter 115 converts the glucose concentration unit into a desired unit.
The concentration display unit 116 displays the glucose concentration.

本実施形態の血糖値測定装置100においては、照射部101は皮膚に短時間パルス光を照射する。第1受光部102は短時間パルス光が皮膚によって後方散乱した光を受光し、第1計測光強度取得部104は時刻tにおいて第1受光部102が受光した光の強度を取得する。第2受光部103は短時間パルス光が皮膚によって後方散乱した光を受光し、第2計測光強度取得部105は時刻tにおいて第2受光部103が受光した光の強度を取得する。次に、第1等価散乱係数算出部106は第1計測光強度取得部104が取得した光強度と第2計測光強度取得部105が取得した光強度とに基づいて真皮層における任意の時刻における等価散乱係数を算出する。次に、シミュレーション部107は任意の時刻における等価散乱係数に基づいて皮膚の各層の伝搬光路長分布のモデル、短時間パルス光の時間分解波形のモデルを生成する。光路長分布記憶部108はシミュレーション部107が生成した皮膚の各層の伝搬光路長分布のモデルを記憶する。時間分解波形記憶部109はシミュレーション部107が生成した短時間パルス光の時間分解波形のモデルを記憶する。光路長取得部110は光路長分布記憶部108から皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚の各層の光路長を取得する。無吸収時光強度取得部111は時間分解波形記憶部109から皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。   In the blood sugar level measuring apparatus 100 of the present embodiment, the irradiation unit 101 irradiates the skin with pulsed light for a short time. The first light receiving unit 102 receives light obtained by backscattering the short-time pulse light by the skin, and the first measurement light intensity acquisition unit 104 acquires the intensity of light received by the first light receiving unit 102 at time t. The second light receiving unit 103 receives light obtained by back-scattering the short-time pulsed light by the skin, and the second measurement light intensity acquisition unit 105 acquires the intensity of light received by the second light receiving unit 103 at time t. Next, the first equivalent scattering coefficient calculation unit 106 at an arbitrary time in the dermis layer based on the light intensity acquired by the first measurement light intensity acquisition unit 104 and the light intensity acquired by the second measurement light intensity acquisition unit 105. Calculate the equivalent scattering coefficient. Next, the simulation unit 107 generates a model of the propagation optical path length distribution of each layer of the skin and a model of the time-resolved waveform of the short-time pulsed light based on the equivalent scattering coefficient at an arbitrary time. The optical path length distribution storage unit 108 stores a model of the propagation optical path length distribution of each skin layer generated by the simulation unit 107. The time-resolved waveform storage unit 109 stores a model of the time-resolved waveform of the short-time pulse light generated by the simulation unit 107. The optical path length acquisition unit 110 acquires the optical path length of each layer of the skin at time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 108. The non-absorption light intensity acquisition unit 111 acquires the light intensity at time t of the time-resolved waveform of the short-time pulsed light in the skin model from the time-resolved waveform storage unit 109.

次に、光吸収係数算出部112は、第1計測光強度取得部104または第2計測光強度取得部105が取得した光強度と、光路長取得部110が取得した皮膚の各層の光路長と、無吸収時光強度取得部111が取得した光強度と、に基づいて、皮膚の真皮層の光吸収係数を算出する。そして、濃度算出部114は、光吸収係数算出部112が算出した光吸収係数に基づいて、真皮層におけるグルコースの濃度を算出する。
前記の光強度は、第1計測光強度取得部104、第2計測光強度取得部105とは異なる第3計測光強度取得部が取得した光強度であることもできる。この場合、第3計測光強度取得部は第1計測光強度取得部104と第2計測光強度取得部105の間に配置するのが望ましい。
Next, the light absorption coefficient calculation unit 112 includes the light intensity acquired by the first measurement light intensity acquisition unit 104 or the second measurement light intensity acquisition unit 105, the optical path length of each layer of the skin acquired by the optical path length acquisition unit 110, and The light absorption coefficient of the dermis layer of the skin is calculated based on the light intensity acquired by the non-absorption light intensity acquisition unit 111. Then, the concentration calculation unit 114 calculates the glucose concentration in the dermis layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 112.
The light intensity may be a light intensity acquired by a third measurement light intensity acquisition unit different from the first measurement light intensity acquisition unit 104 and the second measurement light intensity acquisition unit 105. In this case, it is desirable to arrange the third measurement light intensity acquisition unit between the first measurement light intensity acquisition unit 104 and the second measurement light intensity acquisition unit 105.

これにより、真皮層以外の層によるノイズの影響を軽減して、真皮層に含まれるグルコースの濃度を算出することができる。なお、濃度算出部114が算出したグルコースの濃度は、濃度単位変換部115により所望の単位に変換され、濃度表示部116に表示される。   Thereby, the influence of noise by layers other than the dermis layer can be reduced, and the concentration of glucose contained in the dermis layer can be calculated. The glucose concentration calculated by the concentration calculation unit 114 is converted into a desired unit by the concentration unit conversion unit 115 and displayed on the concentration display unit 116.

次に、血糖値測定装置100の動作を説明する。
血糖値測定装置100は、血糖値を測定する前に、予め皮膚の各層における伝搬光路長分布と時間分解波形とを算出する。
Next, the operation of the blood sugar level measuring apparatus 100 will be described.
The blood glucose level measuring apparatus 100 calculates the propagation optical path length distribution and the time-resolved waveform in each layer of the skin in advance before measuring the blood glucose level.

ところで、伝搬光路長分布及び時間分解波形の算出方法としては、予めサンプルを取ることによって決定された皮膚の各層の光散乱係数、光吸収係数及び厚みに基づいて一般的な光学特性を持つ皮膚モデルを生成し、当該皮膚モデルに光を照射するシミュレーションを行うことにより算出する方法がある。しかしながら、当該皮膚モデルを用いたシミュレーションでは、各個人の差や測定時の体調などによる一般値からのずれが、皮膚の真皮層の光吸収係数を算出する際の誤差要因となる懸念がある。   By the way, as a method of calculating the propagation optical path length distribution and the time-resolved waveform, a skin model having general optical characteristics based on the light scattering coefficient, light absorption coefficient and thickness of each layer of the skin determined by taking a sample in advance. There is a method of calculating by generating a light and performing a simulation of irradiating the skin model with light. However, in the simulation using the skin model, there is a concern that a deviation from a general value due to individual differences or physical condition at the time of measurement may be an error factor when calculating the light absorption coefficient of the dermis layer of the skin.

これに対し、本実施形態においては、皮膚の伝搬光路長分布のモデル及び時間分解波形のモデルを、第1受光部102及び第2受光部103の2つの受光部が受光した後方散乱光の強度に基づいて任意の時刻における等価散乱係数により生成する方法を採用する。これにより、皮膚の真皮層の光吸収係数を算出する際の誤差要因が生じることを抑制し、真皮層の光吸収係数を高精度に算出することを可能にしている。   On the other hand, in this embodiment, the intensity of the backscattered light received by the two light receiving units, the first light receiving unit 102 and the second light receiving unit 103, of the skin propagation optical path length distribution model and the time-resolved waveform model. Based on the above, a method of generating with an equivalent scattering coefficient at an arbitrary time is adopted. This suppresses the occurrence of an error factor when calculating the light absorption coefficient of the dermis layer of the skin, and enables the light absorption coefficient of the dermis layer to be calculated with high accuracy.

シミュレーション部107は、第1等価散乱係数算出部106が算出した任意の時刻における等価散乱係数を用いて、皮膚の伝搬光路長分布のモデル及び時間分解波形のモデルを生成する。なお、ここで用いる皮膚の光吸収係数はゼロとする。   The simulation unit 107 generates a skin propagation optical path length distribution model and a time-resolved waveform model using the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculation unit 106. The light absorption coefficient of the skin used here is zero.

シミュレーション部107は、皮膚に光を照射するシミュレーションを行う。このとき、照射部101の位置と第1受光部102の位置との間の距離、照射部101の位置と第2受光部103の位置との間の距離、を決定しておく必要がある。なお、第1受光部102と第2受光部103とは、皮膚に短時間パルス光が照射される照射位置から皮膚によって後方散乱した光を受光する位置までの距離が互いに異なるように位置決めされる。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。   The simulation unit 107 performs a simulation of irradiating the skin with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 101 and the position of the first light receiving unit 102 and the distance between the position of the irradiation unit 101 and the position of the second light receiving unit 103. The first light receiving unit 102 and the second light receiving unit 103 are positioned so that the distances from the irradiation position where the pulsed light is applied to the skin for a short time to the position where the light backscattered by the skin is received are different from each other. . The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.

まず、シミュレーション部107は、照射する光のモデルを光子(光束)とし、当該光子を皮膚に照射する計算を行う。皮膚に照射された光子は、皮膚内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数R(0≦R≦1)によって決定する。シミュレーション部107は、光子が次に進む点までの距離Lの計算を、(10)式によって行う。   First, the simulation unit 107 performs calculation to irradiate the skin with a photon (light beam) as a model of light to be irradiated. Photons irradiated on the skin move in the skin. At this time, the photon determines the distance L and the direction θ to the next advancing point by a random number R (0 ≦ R ≦ 1). The simulation unit 107 calculates the distance L to the point at which the photon advances next using the equation (10).

Figure 0005924658
Figure 0005924658

但し、ln(A)は、Aの自然対数を示す。また、μsmは、皮膚の第m層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。
また、シミュレーション部107は、光子が次に進む点までの方向θの計算を、(11)式によって行う。
Here, ln (A) represents the natural logarithm of A. Μ sm represents the scattering coefficient of the m-th layer of the skin (any one of the epidermis layer, dermis layer, and subcutaneous tissue layer).
In addition, the simulation unit 107 calculates the direction θ up to the next point where the photon travels according to equation (11).

Figure 0005924658
Figure 0005924658

但し、gは、散乱角度のコサインの平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。
シミュレーション部107は、上記(10)式、(11)式の計算を単位時間毎に繰り返すことにより、照射部101から第1受光部102までの光子の移動経路を算出することができる。シミュレーション部107は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部107は、10個の光子について移動距離を算出する。
However, g shows the anisotropic parameter which is the average of the cosine of a scattering angle, and the anisotropic parameter of skin is about 0.9.
The simulation unit 107 can calculate the photon movement path from the irradiation unit 101 to the first light receiving unit 102 by repeating the calculations of the above equations (10) and (11) every unit time. The simulation unit 107 calculates the movement distance for a plurality of photons. For example, the simulation unit 107 calculates the movement distance for 10 8 photons.

図2は、シミュレーション部が算出した各層(表皮層、真皮層、皮下組織層)の伝搬光路長分布を示すグラフである。なお、本図においては、一例として、2つの受光部のうち第1受光部102を用いている。
図2の横軸は光子の照射からの経過時間を示し、縦軸は光路長の対数表示を示している。シミュレーション部107は、第1受光部102に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部107は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図2に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 2 is a graph showing the propagation optical path length distribution of each layer (skin layer, dermis layer, subcutaneous tissue layer) calculated by the simulation unit. In the figure, as an example, the first light receiving unit 102 of the two light receiving units is used.
The horizontal axis of FIG. 2 shows the elapsed time from photon irradiation, and the vertical axis shows the logarithmic display of the optical path length. The simulation unit 107 classifies the movement path of each photon that has reached the first light receiving unit 102 for each layer through which the movement path passes. Then, the simulation unit 107 calculates the propagation path length distribution of each layer of the skin as shown in FIG. 2 by calculating the average length of the movement path of the photons that arrived per unit time for each classified layer.

図3は、シミュレーション部が算出した時間分解波形を示すグラフである。なお、本図においては、一例として、2つの受光部のうち第1受光部102を用いている。
図3の横軸は光子の照射からの経過時間を示し、縦軸は第1受光部102が検出した光子数を示している。シミュレーション部107は、単位時間毎に第1受光部102に到達した光子の個数を算出することで、図3に示すような時間分解波形を算出する。
上述したような処理により、シミュレーション部107は、複数の波長に対して、伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部107は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの直交性が高くなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 3 is a graph showing a time-resolved waveform calculated by the simulation unit. In the figure, as an example, the first light receiving unit 102 of the two light receiving units is used.
The horizontal axis in FIG. 3 indicates the elapsed time from the photon irradiation, and the vertical axis indicates the number of photons detected by the first light receiving unit 102. The simulation unit 107 calculates a time-resolved waveform as shown in FIG. 3 by calculating the number of photons that have reached the first light receiving unit 102 per unit time.
Through the processing described above, the simulation unit 107 calculates the propagation optical path length distribution and the time-resolved waveform for a plurality of wavelengths. At this time, the simulation unit 107 may calculate the propagation optical path length distribution and the time-resolved waveform with respect to the wavelength at which the orthogonality of the absorption spectrum of the skin main components (water, protein, lipid, glucose, etc.) becomes high.

図4は、皮膚の主成分の吸収スペクトルを示すグラフである。
図4の横軸は照射する光の波長を示し、縦軸は光吸収係数を示している。図4を参照すると、グルコースの光吸収係数は、波長が1600nmのときに極大となり、水の光吸収係数は、波長が1450nmのときに極大となる。そのため、シミュレーション部107は、例えば1450nm、1600nmといった皮膚の主成分の吸収スペクトルの直交性が高くなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 4 is a graph showing the absorption spectrum of the main component of the skin.
The horizontal axis in FIG. 4 indicates the wavelength of light to be irradiated, and the vertical axis indicates the light absorption coefficient. Referring to FIG. 4, the light absorption coefficient of glucose becomes maximum when the wavelength is 1600 nm, and the light absorption coefficient of water becomes maximum when the wavelength is 1450 nm. For this reason, the simulation unit 107 may calculate the propagation optical path length distribution and the time-resolved waveform with respect to a wavelength at which the orthogonality of the absorption spectrum of the main component of skin, such as 1450 nm and 1600 nm, becomes high.

次に、血糖値測定装置100が血糖値を測定する動作について説明する。
図5は、第1実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。
まず、ユーザが血糖値測定装置100を皮膚にあてがい、測定開始スイッチ(図示せず)の押下等によって血糖値測定装置100を動作させると、照射部101は、皮膚に対して波長λの短時間パルス光を照射する(ステップS1)。ここで、波長λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
Next, the operation in which the blood sugar level measuring apparatus 100 measures the blood sugar level will be described.
FIG. 5 is a flowchart showing the operation of the blood sugar level measuring apparatus according to the first embodiment for measuring the blood sugar level.
First, when the user places the blood glucose level measuring device 100 on the skin and operates the blood glucose level measuring device 100 by pressing a measurement start switch (not shown) or the like, the irradiation unit 101 has a short wavelength λ 1 with respect to the skin. Time pulse light is irradiated (step S1). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

照射部101が短時間パルス光を照射すると、第1受光部102、第2受光部103は、照射部101から照射され、皮膚によって後方散乱した光を受光する(ステップS2)。このとき、第1受光部102、第2受光部103は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。   When the irradiation unit 101 irradiates the pulsed light for a short time, the first light receiving unit 102 and the second light receiving unit 103 receive the light irradiated from the irradiation unit 101 and back-scattered by the skin (step S2). At this time, the first light receiving unit 102 and the second light receiving unit 103 register the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.

第1受光部102が受光を完了すると、第1計測光強度取得部104は、第1受光部102の内部メモリに格納されている、異なる時刻tにおける受光強度R(ρ,t)を照射開始からの所定の時間内に所定の時間分解能にて取得する(ステップS3)。すなわち、第1計測光強度取得部104は、受光強度の時間特性を取得する。
第2受光部103が受光を完了すると、第2計測光強度取得部105は、第2受光部103の内部メモリに格納されている、異なる時刻tにおける受光強度R(ρ,t)を照射開始からの所定の時間内に所定の時間分解能にて取得する(ステップS3)。すなわち、第2計測光強度取得部105は、受光強度の時間特性を取得する。
When the first light receiving unit 102 completes the light reception, the first measurement light intensity acquisition unit 104 irradiates the light reception intensity R (ρ 1 , t) at different times t stored in the internal memory of the first light receiving unit 102. It is acquired at a predetermined time resolution within a predetermined time from the start (step S3). That is, the first measurement light intensity acquisition unit 104 acquires the time characteristic of the received light intensity.
When the second light receiving unit 103 completes the light reception, the second measurement light intensity acquisition unit 105 irradiates the received light intensity R (ρ 2 , t) at a different time t stored in the internal memory of the second light receiving unit 103. It is acquired at a predetermined time resolution within a predetermined time from the start (step S3). That is, the second measurement light intensity acquisition unit 105 acquires the time characteristic of the received light intensity.

各計測光強度取得部104,105が光強度を取得すると、第1等価散乱係数算出部106は、ある受光強度R(ρ,t),R(ρ,t)から任意の時刻における等価散乱係数を算出する(ステップS4)。 When the measurement light intensity acquisition units 104 and 105 acquire the light intensity, the first equivalent scattering coefficient calculation unit 106 calculates the equivalent at an arbitrary time from a certain received light intensity R (ρ 1 , t), R (ρ 2 , t). A scattering coefficient is calculated (step S4).

本実施形態において、第1等価散乱係数算出部106は、下記の(12)式から任意の時刻における等価散乱係数を算出する。但し、自然対数をln(・)、任意の層の時刻tにおける任意の時刻における等価散乱係数をμ’(t)、光吸収係数をμ、散乱体中での光の速度をc、観測対象に短時間パルス光が照射される照射位置から第1受光部102が観測対象によって後方散乱した光を受光する位置までの距離をρ、照射位置から第2受光手段103が観測対象によって後方散乱した光を受光する位置までの距離をρ、第1光強度取得部104が時刻tにおいて取得した光強度をR(ρ,t)、第2光強度取得部105が時刻tにおいて取得した光強度をR(ρ,t)とする。 In the present embodiment, the first equivalent scattering coefficient calculation unit 106 calculates an equivalent scattering coefficient at an arbitrary time from the following equation (12). However, the natural logarithm is ln (•), the equivalent scattering coefficient at an arbitrary time at an arbitrary time t is μ s ′ (t), the light absorption coefficient is μ a , the speed of light in the scatterer is c, The distance from the irradiation position where the observation target is irradiated with the short-time pulse light to the position where the first light receiving unit 102 receives the light backscattered by the observation target is ρ 1 , and the second light receiving means 103 from the irradiation position depends on the observation target. The distance to the position for receiving the backscattered light is ρ 2 , the light intensity acquired by the first light intensity acquisition unit 104 at time t is R (ρ 1 , t), and the second light intensity acquisition unit 105 is at time t. Let the acquired light intensity be R (ρ 2 , t).

Figure 0005924658
Figure 0005924658

ここで、(12)式の導出過程について説明する。
散乱体にインパルス光を入射した際の反射型のインパルス応答Rは、輸送方程式の拡散近似解析解(参考文献:M.S,Patterson,B.Chance and B.C,Wilson,‘‘Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,’’Appl.Opt.,28,12,2331-6,1989)より、入射点からの距離ρ、時刻tの関数として、下記の(13)式で与えられる。
Here, the derivation process of the equation (12) will be described.
The reflection-type impulse response R when the impulse light is incident on the scatterer is expressed by the diffusion approximate analytical solution of the transport equation (reference: MS, Patterson, B. Chance and BC, Wilson, “Time resolved reflectance and transmittance for the From noninvasive measurement of tissue optical properties, “Appl. Opt., 28, 12, 2331-6, 1989), the following equation (13) is given as a function of the distance ρ from the incident point and time t.

Figure 0005924658
Figure 0005924658

ここで、cは散乱体中での光の速度、μは散乱係数、μは光吸収係数、μ’は任意の時刻における等価散乱係数、gは非等方性パラメータである。よって、異なる距離ρ1,ρ2における時間分解波形R(ρ,t),R(ρ,t)は上記の(13)式より、下記の(14)式、(15)式のように表される。 Here, c is the speed of light in the scatterer, μ s is a scattering coefficient, μ a is a light absorption coefficient, μ s ′ is an equivalent scattering coefficient at an arbitrary time, and g is an anisotropic parameter. Therefore, the time-resolved waveforms R (ρ 1 , t) and R (ρ 2 , t) at different distances ρ1 and ρ2 are expressed by the following equations (14) and (15) from the above equation (13). Is done.

Figure 0005924658
Figure 0005924658
Figure 0005924658
Figure 0005924658

ここで、上記の(14)式と(15)式との比を取ると下記の(16)式となる。これにより、光吸収係数μの影響を強く表すexp(−μct)を消去することができる。 Here, when the ratio of the above-mentioned formulas (14) and (15) is taken, the following formula (16) is obtained. As a result, exp (−μ a ct) that strongly expresses the influence of the light absorption coefficient μ a can be eliminated.

Figure 0005924658
Figure 0005924658

一般に生体組織ではμ<<μ’の関係が成り立つので、上記の(16)式をμ’について変形することにより、下記の(1)式に示す任意の時刻における等価散乱係数の推定式を得る。 In general, since the relationship of μ a << μ s ′ is established in living tissue, the equivalent scattering coefficient at an arbitrary time shown in the following equation (1) is estimated by modifying the above equation (16) with respect to μ s ′. Get the formula.

Figure 0005924658
Figure 0005924658

このようにして、上記の(12)式が導出される。   In this way, the above equation (12) is derived.

なお、任意の時刻における等価散乱係数は散乱係数を用いて下記の(17)式のように表すこともできる。   Note that the equivalent scattering coefficient at an arbitrary time can also be expressed as the following expression (17) using the scattering coefficient.

Figure 0005924658
Figure 0005924658

ここで、gは非等方性パラメータである。gは散乱の方向性を示す指標である。gは−1から1の間の値をとり、1の場合は完全な前方散乱、−1の場合は完全な後方散乱を示す。また、0の場合は等方散乱を示し、任意の時刻における等価散乱係数と散乱係数とが等しくなる。   Here, g is an anisotropic parameter. g is an index indicating the directionality of scattering. g takes a value between -1 and 1, with 1 indicating complete forward scattering and -1 indicating complete backscattering. In the case of 0, isotropic scattering is indicated, and the equivalent scattering coefficient and the scattering coefficient at an arbitrary time are equal.

生体組織内で起こる散乱はg=0.9の強い前方散乱であるが、組織内で何度も散乱を繰り返すことで、結果的には見かけ上、等方散乱に似た状態が観測される。そこで、等方散乱とみなした場合の散乱係数が任意の時刻における等価散乱係数となる。任意の時刻における等価散乱係数は、散乱を等方散乱とみなした場合に散乱係数がいくつに相当するかを表したものであるといえる。例えばg=0.9の場合は、散乱係数が1/10の等方散乱とみなせることになる。   Scattering that occurs in living tissue is strong forward scattering with g = 0.9, but by repeating the scattering many times in the tissue, a state similar to isotropic scattering is observed as a result. . Therefore, the scattering coefficient when it is regarded as isotropic scattering becomes an equivalent scattering coefficient at an arbitrary time. It can be said that the equivalent scattering coefficient at an arbitrary time represents how many scattering coefficients correspond when scattering is considered as isotropic scattering. For example, when g = 0.9, it can be regarded as isotropic scattering with a scattering coefficient of 1/10.

図5に戻り、第1等価散乱係数算出部106が任意の時刻における等価散乱係数を算出すると、シミュレーション部107は、任意の時刻における等価散乱係数に基づいて皮膚の各層の伝搬光路長分布のモデル、短時間パルス光の時間分解波形のモデルを生成する。   Returning to FIG. 5, when the first equivalent scattering coefficient calculation unit 106 calculates the equivalent scattering coefficient at an arbitrary time, the simulation unit 107 models the propagation optical path length distribution of each layer of the skin based on the equivalent scattering coefficient at the arbitrary time. A model of a time-resolved waveform of short-time pulse light is generated.

光路長分布記憶部108はシミュレーション部107が生成した皮膚の各層の伝搬光路長分布のモデルを記憶する。時間分解波形記憶部109はシミュレーション部107が生成した短時間パルス光の時間分解波形のモデルを記憶する。   The optical path length distribution storage unit 108 stores a model of the propagation optical path length distribution of each skin layer generated by the simulation unit 107. The time-resolved waveform storage unit 109 stores a model of the time-resolved waveform of the short-time pulse light generated by the simulation unit 107.

光路長取得部110は、光路長分布記憶部108から、時刻t〜tにおける皮膚の各層の光路長L(t)〜L(t)、L(t)〜L(t)、L(t)〜L(t)を取得する(ステップS5)。 Optical path length obtaining unit 110, the optical path length distribution storage unit 108, the optical path length of each layer of the skin at time t 1 ~t 3 L 1 (t 1) ~L 1 (t 3), L 2 (t 1) ~L 2 (t 3 ), L 3 (t 1 ) to L 3 (t 3 ) are acquired (step S5).

また、無吸収時光強度取得部111は、時間分解波形記憶部109から、時刻t〜tにおける検出光子数N(t)〜N(t)を取得する(ステップS6)。 Further, the non-absorption light intensity acquisition unit 111 acquires the numbers of detected photons N (t 1 ) to N (t 3 ) at times t 1 to t 3 from the time-resolved waveform storage unit 109 (step S6).

光路長取得部110が皮膚の各層の光路長を取得し、無吸収時光強度取得部111が検出光子数を取得すると、光吸収係数算出部112は、下記の(3)式に基づいて、皮膚の各層の光吸収係数を算出する(ステップS7)。
但し、自然対数をln(・)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をR(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとする。
When the optical path length acquisition unit 110 acquires the optical path length of each layer of the skin and the non-absorption light intensity acquisition unit 111 acquires the number of detected photons, the light absorption coefficient calculation unit 112 calculates the skin based on the following equation (3): The light absorption coefficient of each layer is calculated (step S7).
However, the natural logarithm is ln (·), the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), and the light intensity received by the light receiving means at time t is R (t), The optical absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), the number of incident photons is N in , and the incident light intensity is I in . .

Figure 0005924658
Figure 0005924658

なお、上記の(3)式は一般式である。(3)式を、本実施形態における三層構造に適用するように変形すると下記の(18)式となる。   In addition, said (3) Formula is a general formula. When the expression (3) is modified so as to be applied to the three-layer structure in the present embodiment, the following expression (18) is obtained.

Figure 0005924658
Figure 0005924658

光吸収係数算出部112は、(3)式を本実施形態の三層構造に適用した(18)式に基づいて、皮膚の各層の光吸収係数μa1〜μa3を算出する(ステップS7)。ここで、光吸収係数μa1は、表皮層の光吸収係数を示し、光吸収係数μa2は、真皮層の光吸収係数を示し、光吸収係数μa3は、皮下組織層の光吸収係数を示す。 The light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of each layer of the skin based on the expression (18) in which the expression (3) is applied to the three-layer structure of the present embodiment (step S7). . Here, the light absorption coefficient μ a1 represents the light absorption coefficient of the epidermis layer, the light absorption coefficient μ a2 represents the light absorption coefficient of the dermis layer, and the light absorption coefficient μ a3 represents the light absorption coefficient of the subcutaneous tissue layer. Show.

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部101が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部107が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulse light irradiated by the irradiation unit 101. N in indicates the number of photons on which the simulation unit 107 has simulated irradiation.

光吸収係数算出部112が皮膚の各層の光吸収係数μa1〜μa3を算出すると、光吸収係数算出部112は、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μa1〜μa3を算出したか否かを判定する(ステップS8)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部112は、4種類の波長λ〜λに対して光吸収係数μa1〜μa3を算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of each layer of the skin, the light absorption coefficient calculation unit 112 calculates the light absorption coefficient μ for the same number of wavelengths as the number of main components of the skin. It determines whether to calculate the a1 ~μ a3 (step S8). In the present embodiment, since the blood sugar level is measured with four types of main components of the skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 112 emits light with respect to four types of wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ a1 to μ a3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部112が、光吸収係数μa1〜μa3を算出していない波長λ〜λがあると判定した場合(ステップS8:NO)、ステップS1に戻り、まだ光吸収係数μa1〜μa3を算出していない波長λ〜λの光吸収係数μa1〜μa3の算出を行う。 When the light absorption coefficient calculation unit 112 determines that there are wavelengths λ 1 to λ 4 for which the light absorption coefficients μ a1 to μ a3 are not calculated (step S8: NO), the process returns to step S1 and still has the light absorption coefficient μ. and calculates the light absorption coefficient μ a1a3 wavelength lambda 1 to [lambda] 4, which is not calculated a1 ~μ a3.

他方、光吸収係数算出部112が、波長λ〜λの光吸収係数μa1〜μa3を算出していると判定した場合(ステップS8:YES)、濃度算出部114は、下記の式(5)に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS9)。 On the other hand, when the light absorption coefficient calculation unit 112 determines that the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 are calculated (step S8: YES), the concentration calculation unit 114 calculates the following formula: Based on (5), the concentration of glucose contained in the dermis is calculated (step S9).

Figure 0005924658
Figure 0005924658

但し、第m層における光吸収係数をμam、皮膚を形成する第i成分の光吸収係数をμai、皮膚を形成する第i成分の体積濃度をcviとする。
なお、上記の(5)式は一般式である。(5)式を、本実施形態における4つの波長に適用するよう変形すると下記の(19)式となる。
Here, the light absorption coefficient in the m-th layer is μ am , the light absorption coefficient of the i-th component forming the skin is μ ai , and the volume concentration of the i-th component forming the skin is c vi .
The above formula (5) is a general formula. When the equation (5) is modified to apply to the four wavelengths in the present embodiment, the following equation (19) is obtained.

Figure 0005924658
Figure 0005924658

但し、μa2(λ)は真皮層における波長λ〜λの光吸収係数、μaw(λ)は真皮層における波長λ〜λの水の光吸収係数、μap(λ)は真皮層における波長λ〜λのたんぱく質の光吸収係数、μal(λ)は真皮層における波長λ〜λの脂質の光吸収係数、μag(λ)は真皮層における波長λ〜λのグルコースの光吸収係数を示す。また、cvwは水の体積濃度(体積分率)、cvpはたんぱく質の体積濃度(体積分率)、cvlは脂質の体積濃度(体積分率)、cvgはグルコースの体積濃度(体積分率)を示す。 However, μ a2 (λ) is the optical absorption coefficient of the wavelength lambda 1 to [lambda] 4 in the dermis layer, μ aw (λ) is the optical absorption coefficient of water in the wavelength lambda 1 to [lambda] 4 in the dermis layer, μ ap (λ) is The light absorption coefficient of the protein with wavelengths λ 1 to λ 4 in the dermis layer, μ al (λ) is the light absorption coefficient of the lipid with wavelengths λ 1 to λ 4 in the dermis layer, and μ ag (λ) is the wavelength λ 1 in the dermis layer. The light absorption coefficient of glucose of ˜λ 4 is shown. C vw is the volume concentration of water (volume fraction), c vp is the volume concentration of protein (volume fraction), c vl is the volume concentration of lipid (volume fraction), and c vg is the volume concentration of volume (volume). Fraction).

濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分の光吸収係数と、上記の(19)式により算出された真皮層における光吸収係数μa2とからグルコースの濃度を算出する。 The concentration calculation unit 114 calculates glucose from the light absorption coefficient of the main component in the measurement target stored in the component absorption information storage unit 113 and the light absorption coefficient μ a2 in the dermis layer calculated by the above equation (19). The concentration of is calculated.

なお、上記の(5)式に替えて下記の(6)式を用いてグルコースの濃度を算出してもよい。   The glucose concentration may be calculated using the following equation (6) instead of the above equation (5).

Figure 0005924658
Figure 0005924658

但し、第m層における光吸収係数をμam、皮膚を形成する第i成分のモル吸光係数をε、皮膚を形成する第i成分のモル濃度をcとする。
なお、上記の(6)式は一般式である。(6)式を、本実施形態における三層構造に適用するよう変形すると下記の(20)式となる。
However, the light absorption coefficient in the m-th layer is μ am , the molar extinction coefficient of the i-th component forming the skin is ε i , and the molar concentration of the i-th component forming the skin is c i .
The above formula (6) is a general formula. When the equation (6) is modified to be applied to the three-layer structure in the present embodiment, the following equation (20) is obtained.

Figure 0005924658
Figure 0005924658

但し、ε(λ)は真皮層における波長λ〜λの水のモル吸光係数、ε(λ)は真皮層における波長λ〜λのたんぱく質のモル吸光係数、ε(λ)は真皮層における波長λ〜λの脂質のモル吸光係数、ε(λ)は真皮層における波長λ〜λのグルコースのモル吸光係数を示す。また、cは水のモル濃度、cはたんぱく質のモル濃度、cは脂質のモル濃度、cはグルコースのモル濃度を示す。 Where ε w (λ) is the molar extinction coefficient of water of wavelengths λ 1 to λ 4 in the dermis layer, ε p (λ) is the molar extinction coefficient of protein of wavelengths λ 1 to λ 4 in the dermis layer, and ε l (λ ) Represents the molar extinction coefficient of lipids with wavelengths λ 1 to λ 4 in the dermis layer, and ε g (λ) represents the molar extinction coefficient of glucose with wavelengths λ 1 to λ 4 in the dermis layer. Further, c w represents molar concentration of water, c p is the molar concentration of the protein, c l is the molar concentration of the lipid, c g is the molar concentration of glucose.

濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分のモル吸光係数と、上記の(20)式により算出された真皮層におけるモル吸光係数εとからグルコースの濃度を算出する。   The concentration calculation unit 114 calculates the glucose concentration from the molar extinction coefficient of the main component in the measurement target stored in the component absorption information storage unit 113 and the molar extinction coefficient ε in the dermis layer calculated by the above equation (20). Calculate the concentration.

濃度単位変換部115は、濃度算出部114で算出したグルコースの濃度の単位を所望の単位に変換する。濃度表示部116は、グルコースの濃度を表示する。   The concentration unit converter 115 converts the glucose concentration unit calculated by the concentration calculator 114 into a desired unit. The concentration display unit 116 displays the glucose concentration.

このように、本実施形態によれば、皮膚に短時間パルス光を照射し、所定の時刻において受光した光の強度と、伝搬光路長分布のモデルの所定の時刻における各層の光路長と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度と、に基づいて、真皮層の光吸収係数を選択的に算出することができる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   As described above, according to this embodiment, the skin is irradiated with pulsed light for a short time, the intensity of the light received at a predetermined time, the optical path length of each layer at the predetermined time of the model of the propagation optical path length distribution, and the short The light absorption coefficient of the dermis layer can be selectively calculated based on the light intensity at a predetermined time of the time-resolved waveform model of the time pulse light. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

ところで、伝搬光路長分布及び時間分解波形の算出方法としては、予めサンプルを取ることによって決定された皮膚の各層の光散乱係数、光吸収係数及び厚みに基づいて一般的な光学特性を持つ皮膚モデルを生成し、当該皮膚モデルに光を照射するシミュレーションを行うことにより算出する方法がある。しかしながら、当該皮膚モデルを用いたシミュレーションでは、各個人の差や測定時の体調などによる一般値からのずれが、皮膚の真皮層の光吸収係数を算出する際の誤差要因となる懸念がある。   By the way, as a method of calculating the propagation optical path length distribution and the time-resolved waveform, a skin model having general optical characteristics based on the light scattering coefficient, light absorption coefficient and thickness of each layer of the skin determined by taking a sample in advance. There is a method of calculating by generating a light and performing a simulation of irradiating the skin model with light. However, in the simulation using the skin model, there is a concern that a deviation from a general value due to individual differences or physical condition at the time of measurement may be an error factor when calculating the light absorption coefficient of the dermis layer of the skin.

これに対し、本実施形態においては、皮膚の伝搬光路長分布のモデル及び時間分解波形のモデルを、第1受光部102及び第2受光部103の2つの受光部が受光した後方散乱光の強度に基づいて任意の時刻における等価散乱係数により生成する方法を採用する。したがって、皮膚の真皮層の光吸収係数を算出する際の誤差要因が生じることを抑制し、真皮層の光吸収係数を高精度に算出することができる。   On the other hand, in this embodiment, the intensity of the backscattered light received by the two light receiving units, the first light receiving unit 102 and the second light receiving unit 103, of the skin propagation optical path length distribution model and the time-resolved waveform model. Based on the above, a method of generating with an equivalent scattering coefficient at an arbitrary time is adopted. Therefore, it is possible to suppress the occurrence of an error factor when calculating the light absorption coefficient of the dermis layer of the skin, and to calculate the light absorption coefficient of the dermis layer with high accuracy.

なお、上記実施形態において、光吸収係数がゼロ、入射光子数が1のときの後方散乱光強度N’(t)は、下記の(21)式を用いて算出することもできる。   In the above embodiment, the backscattered light intensity N ′ (t) when the light absorption coefficient is zero and the number of incident photons is 1 can also be calculated using the following equation (21).

Figure 0005924658
Figure 0005924658

但し、自然対数をln(・)、散乱体中での光の速度をc、観測対象に短時間パルス光が照射される照射位置から第1受光部102が観測対象によって後方散乱した光を受光する位置までの距離をρ、照射位置から第2受光手段103が観測対象によって後方散乱した光を受光する位置までの距離をρ、第1光強度取得部104が時刻tにおいて取得した光強度をR(ρ,t)、第2光強度取得部105が時刻tにおいて取得した光強度をR(ρ,t)とする。 However, the natural logarithm is ln (·), the speed of light in the scatterer is c, and the first light receiving unit 102 receives the light backscattered by the observation target from the irradiation position where the observation target is irradiated with the short-time pulse light. Ρ 1 , the distance from the irradiation position to the position where the second light receiving means 103 receives the light backscattered by the observation object, ρ 2 , and the light acquired by the first light intensity acquisition unit 104 at time t Assume that the intensity is R (ρ 1 , t), and the light intensity acquired by the second light intensity acquisition unit 105 at time t is R (ρ 2 , t).

(第2実施形態)
次に、本発明の第2実施形態について詳しく説明する。
第2の実施形態は、第1の実施形態による血糖値測定装置100と同じ構成であり、各計測光強度取得部104,105、第1等価散乱係数算出部106、光路長取得部110、無吸収時光強度取得部111、光吸収係数算出部112の動作が異なる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail.
The second embodiment has the same configuration as the blood glucose level measuring apparatus 100 according to the first embodiment, and each measurement light intensity acquisition unit 104, 105, first equivalent scattering coefficient calculation unit 106, optical path length acquisition unit 110, none The operations of the absorption light intensity acquisition unit 111 and the light absorption coefficient calculation unit 112 are different.

図6は、第2実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。
まず、血糖値測定装置100を動作させると、照射部101は、皮膚に対して波長λの短時間パルス光を照射する(ステップS11)。ここで、波長λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
FIG. 6 is a flowchart showing an operation in which the blood sugar level measuring apparatus according to the second embodiment measures the blood sugar level.
First, when operating the blood glucose measuring device 100, the irradiation unit 101 irradiates the short pulse light having a wavelength lambda 1 to the skin (step S11). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

照射部101が短時間パルス光を照射すると、第1受光部102、第2受光部103は、照射部101から照射され、皮膚によって後方散乱した光を受光する(ステップS12)。このとき、第1受光部102、第2受光部103は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。   When the irradiation unit 101 emits the short-time pulse light, the first light receiving unit 102 and the second light receiving unit 103 receive the light emitted from the irradiation unit 101 and back-scattered by the skin (step S12). At this time, the first light receiving unit 102 and the second light receiving unit 103 register the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.

第1受光部102が受光を完了すると、第1計測光強度取得部104は、第1受光部102の内部メモリに格納されている受光強度から、照射開始からの所定の時間内に所定の時間分解能にて受光強度の時間分布を取得する(ステップS13)。第2受光部103が受光を完了すると、第2計測光強度取得部105は、第2受光部103の内部メモリに格納されている受光強度から、照射開始からの所定の時間内に所定の時間分解能にて受光強度の時間分布を取得する(ステップS13)   When the first light receiving unit 102 completes the light reception, the first measurement light intensity acquisition unit 104 determines a predetermined time within a predetermined time from the start of irradiation based on the received light intensity stored in the internal memory of the first light receiving unit 102. The time distribution of the received light intensity is acquired with the resolution (step S13). When the second light receiving unit 103 completes the light reception, the second measurement light intensity acquisition unit 105 determines a predetermined time within a predetermined time from the start of irradiation based on the received light intensity stored in the internal memory of the second light receiving unit 103. The time distribution of the received light intensity is acquired with the resolution (step S13).

各計測光強度取得部104,105が光強度を取得すると、第1等価散乱係数算出部106は、照射開始からの所定の時間内の所定の時間分解能の受光強度の時間分布から任意の時刻における等価散乱係数を算出する(ステップS14)。   When each of the measurement light intensity acquisition units 104 and 105 acquires the light intensity, the first equivalent scattering coefficient calculation unit 106 at a given time from the time distribution of the received light intensity with a predetermined time resolution within a predetermined time from the start of irradiation. An equivalent scattering coefficient is calculated (step S14).

第1等価散乱係数算出部106が任意の時刻における等価散乱係数を算出すると、シミュレーション部107は、任意の時刻における等価散乱係数に基づいて皮膚の各層の伝搬光路長分布のモデル、短時間パルス光の時間分解波形のモデルを生成する。   When the first equivalent scattering coefficient calculation unit 106 calculates an equivalent scattering coefficient at an arbitrary time, the simulation unit 107 calculates a propagation optical path length distribution model of each layer of skin based on the equivalent scattering coefficient at an arbitrary time, short-time pulse light. Generate a model of the time-resolved waveform.

光路長分布記憶部108はシミュレーション部107が生成した皮膚の各層の伝搬光路長分布のモデルを記憶する。時間分解波形記憶部109はシミュレーション部107が生成した短時間パルス光の時間分解波形のモデルを記憶する。   The optical path length distribution storage unit 108 stores a model of the propagation optical path length distribution of each skin layer generated by the simulation unit 107. The time-resolved waveform storage unit 109 stores a model of the time-resolved waveform of the short-time pulse light generated by the simulation unit 107.

光路長取得部110は、光路長分布記憶部108が記憶する波長λの伝搬光路長分布から、ある時間τ1〜τ2の間の皮膚の各層の光路長L〜Lを取得する(ステップS15)。 The optical path length acquisition unit 110 acquires the optical path lengths L 1 to L 3 of each layer of the skin during a certain time τ 1 to τ 2 from the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 108 (step) S15).

また、無吸収時光強度取得部111は、時間分解波形記憶部109が記憶する波長λの時間分解波形から、ある時間τ1〜τ2の間の検出光子数を取得する(ステップS16)。 Further, no absorption at the light intensity acquisition unit 111, a time-resolved waveform of the wavelength lambda 1 for storing the time-resolved waveform storage unit 109, acquires the detection number of photons during a time Tau1~tau2 (step S16).

光路長取得部110が皮膚の各層の光路長を取得し、無吸収時光強度取得部111が検出光子数を取得すると、光吸収係数算出部112は、下記の(4)式に基づいて、皮膚の各層の光吸収係数を算出する(ステップS17)。但し、自然対数をln(・)、短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、光強度取得部が時刻tにおいて取得した光強度をR(t)、第m層の光吸収係数をμam、伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとする。 When the optical path length acquisition unit 110 acquires the optical path length of each layer of the skin and the non-absorption light intensity acquisition unit 111 acquires the number of detected photons, the light absorption coefficient calculation unit 112 calculates the skin based on the following equation (4): The light absorption coefficient of each layer is calculated (step S17). However, the natural logarithm is ln (·), the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light intensity acquired by the light intensity acquisition unit at time t is R (t), The light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the propagation optical path length distribution model is L m (t), the number of incident photons is N in , and the incident light intensity is I in .

Figure 0005924658
Figure 0005924658

なお、上記の(4)式は、第1実施形態で用いた(3)式を積分型に発展させた式である。   The above expression (4) is an expression obtained by developing the expression (3) used in the first embodiment into an integral type.

光吸収係数算出部112は、(4)式に基づいて、皮膚の各層の光吸収係数μa1〜μa3を算出する(ステップS17)。ここで、光吸収係数μa1は表皮層の光吸収係数を示し、光吸収係数μa2は真皮層の光吸収係数を示し、光吸収係数μa3は、皮下組織層の光吸収係数を示す。 The light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of each layer of the skin based on the equation (4) (step S17). Here, the light absorption coefficient μ a1 represents the light absorption coefficient of the epidermis layer, the light absorption coefficient μ a2 represents the light absorption coefficient of the dermis layer, and the light absorption coefficient μ a3 represents the light absorption coefficient of the subcutaneous tissue layer.

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部101が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部107が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulse light irradiated by the irradiation unit 101. N in indicates the number of photons on which the simulation unit 107 has simulated irradiation.

光吸収係数算出部112が皮膚の各層の光吸収係数μa1〜μa3を算出すると、光吸収係数算出部112は、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μa1〜μa3を算出したか否かを判定する(ステップS18)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部112は、4種類の波長λ〜λに対して光吸収係数μa1〜μa3を算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of each layer of the skin, the light absorption coefficient calculation unit 112 calculates the light absorption coefficient μ for the same number of wavelengths as the number of main components of the skin. It determines whether to calculate the a1 ~μ a3 (step S18). In the present embodiment, since the blood sugar level is measured with four types of main components of the skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 112 emits light with respect to four types of wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ a1 to μ a3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部112が、光吸収係数μa1〜μa3を算出していない波長λ〜λがあると判定した場合(ステップS18:NO)、ステップS1に戻り、まだ光吸収係数μa1〜μa3を算出していない波長λ〜λの光吸収係数μa1〜μa3の算出を行う。 When the light absorption coefficient calculating unit 112 determines that there are wavelengths λ 1 to λ 4 for which the light absorption coefficients μ a1 to μ a3 are not calculated (step S18: NO), the process returns to step S1 and still has the light absorption coefficient μ. and calculates the light absorption coefficient μ a1a3 wavelength lambda 1 to [lambda] 4, which is not calculated a1 ~μ a3.

他方、光吸収係数算出部112が、波長λ〜λの光吸収係数μa1〜μa3を算出していると判定した場合(ステップS18:YES)、濃度算出部114は、上記の式(5)を本実施形態における4つの波長に適用した上記の(19)式に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS19)。 On the other hand, when the light absorption coefficient calculation unit 112 determines that the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 are calculated (step S18: YES), the concentration calculation unit 114 calculates the above formula. Based on the above equation (19) in which (5) is applied to the four wavelengths in this embodiment, the concentration of glucose contained in the dermis is calculated (step S19).

濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分の光吸収係数と、上記の(19)式により算出された真皮層における光吸収係数μa2とからグルコースの濃度を算出する。 The concentration calculation unit 114 calculates glucose from the light absorption coefficient of the main component in the measurement target stored in the component absorption information storage unit 113 and the light absorption coefficient μ a2 in the dermis layer calculated by the above equation (19). The concentration of is calculated.

なお、濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分のモル吸光係数と、上記の(20)式により算出された真皮層におけるモル吸光係数εとからグルコースの濃度を算出してもよい。   The concentration calculation unit 114 is based on the molar extinction coefficient of the main component in the measurement object stored in the component absorption information storage unit 113 and the molar extinction coefficient ε in the dermis layer calculated by the above equation (20). The concentration of glucose may be calculated.

濃度単位変換部115は、濃度算出部114で算出したグルコースの濃度の単位を所望の単位に変換する。濃度表示部116は、グルコースの濃度を表示する。   The concentration unit converter 115 converts the glucose concentration unit calculated by the concentration calculator 114 into a desired unit. The concentration display unit 116 displays the glucose concentration.

このように、本実施形態においても、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。また、皮膚の真皮層の光吸収係数を算出する際の誤差要因が生じることを抑制し、真皮層の光吸収係数を高精度に算出することができる。   As described above, also in this embodiment, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise by other layers and perform highly accurate concentration quantification. . Further, it is possible to suppress the occurrence of an error factor when calculating the light absorption coefficient of the dermis layer of the skin, and to calculate the light absorption coefficient of the dermis layer with high accuracy.

また、本実施形態によれば、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   Further, according to the present embodiment, since the light absorption coefficient is calculated by the integral value of the optical path length during the time τ1 to τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity is reduced. can do.

なお、上記実施形態において、光吸収係数がゼロ、入射光子数が1のときの後方散乱光強度N’(t)は、下記の(21)式を用いて算出することもできる。   In the above embodiment, the backscattered light intensity N ′ (t) when the light absorption coefficient is zero and the number of incident photons is 1 can also be calculated using the following equation (21).

Figure 0005924658
Figure 0005924658

但し、自然対数をln(・)、散乱体中での光の速度をc、観測対象に短時間パルス光が照射される照射位置から第1受光部102が観測対象によって後方散乱した光を受光する位置までの距離をρ、照射位置から第2受光手段103が観測対象によって後方散乱した光を受光する位置までの距離をρ、第1光強度取得部104が時刻tにおいて取得した光強度をR(ρ,t)、第2光強度取得部105が時刻tにおいて取得した光強度をR(ρ,t)とする。 However, the natural logarithm is ln (·), the speed of light in the scatterer is c, and the first light receiving unit 102 receives the light backscattered by the observation target from the irradiation position where the observation target is irradiated with the short-time pulse light. Ρ 1 , the distance from the irradiation position to the position where the second light receiving means 103 receives the light backscattered by the observation object, ρ 2 , and the light acquired by the first light intensity acquisition unit 104 at time t Assume that the intensity is R (ρ 1 , t), and the light intensity acquired by the second light intensity acquisition unit 105 at time t is R (ρ 2 , t).

(第3実施形態)
次に、本発明の第3実施形態について詳しく説明する。
第3実施形態に係る血糖値測定装置200は、第1実施形態に係る血糖値測定装置100と基本的な構成は同じであり、さらに第2等価散乱係数算出部117を備える点が異なる。その他の構成は、第1実施形態の構成と同様であるので詳細な説明は省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described in detail.
The blood sugar level measuring apparatus 200 according to the third embodiment has the same basic configuration as that of the blood sugar level measuring apparatus 100 according to the first embodiment, and further includes a second equivalent scattering coefficient calculating unit 117. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.

図7は、本発明の第3実施形態に係る血糖値測定装置の構成を示す概略ブロック図である。
血糖値測定装置200(濃度定量装置)は、照射部101(照射手段)、第1受光部102(第1受光手段)、第2受光部103(第2受光手段)、第1計測光強度取得部104(第1光強度取得手段)、第2計測光強度取得部105(第2光強度取得手段)、第1等価散乱係数算出部106(第1等価散乱係数算出手段)、シミュレーション部107、光路長分布記憶部108(光路長分布記憶手段)、時間分解波形記憶部109(時間分解波形記憶手段)、光路長取得部110(光路長取得手段)、無吸収時光強度取得部111(光強度モデル取得手段)、第2等価散乱係数算出部117(第2等価散乱係数算出手段)、光吸収係数算出部112(光吸収係数算出手段)、成分吸収情報記憶部113、濃度算出部114(濃度算出手段)、濃度単位変換部115、濃度表示部116、を備える。
FIG. 7 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the third embodiment of the present invention.
The blood glucose level measuring apparatus 200 (concentration determination apparatus) includes an irradiation unit 101 (irradiation unit), a first light receiving unit 102 (first light receiving unit), a second light receiving unit 103 (second light receiving unit), and first measurement light intensity acquisition. Unit 104 (first light intensity acquisition unit), second measurement light intensity acquisition unit 105 (second light intensity acquisition unit), first equivalent scattering coefficient calculation unit 106 (first equivalent scattering coefficient calculation unit), simulation unit 107, Optical path length distribution storage unit 108 (optical path length distribution storage unit), time-resolved waveform storage unit 109 (time-resolved waveform storage unit), optical path length acquisition unit 110 (optical path length acquisition unit), non-absorption light intensity acquisition unit 111 (light intensity) Model acquisition unit), second equivalent scattering coefficient calculation unit 117 (second equivalent scattering coefficient calculation unit), light absorption coefficient calculation unit 112 (light absorption coefficient calculation unit), component absorption information storage unit 113, concentration calculation unit 114 (concentration) Calculation means) Comprising a density units conversion unit 115, density display section 116.

第2等価散乱係数算出部117は、光路長取得部110が取得した皮膚の各層の光路長と、無吸収時光強度取得部111が取得した光強度と、に基づいて、任意の層の等価散乱係数を算出する。   The second equivalent scattering coefficient calculation unit 117 calculates the equivalent scattering of an arbitrary layer based on the optical path length of each skin layer acquired by the optical path length acquisition unit 110 and the light intensity acquired by the non-absorption light intensity acquisition unit 111. Calculate the coefficient.

本実施形態において、光吸収係数算出部112は、第1計測光強度取得部104または第2計測光強度取得部105が取得した光強度と、光路長取得部110が取得した皮膚の各層の光路長と、無吸収時光強度取得部111が取得した光強度と、第2等価散乱係数算出部117が算出した任意の層の等価散乱係数と、に基づいて、皮膚の真皮層の光吸収係数を算出する。そして、濃度算出部114は、光吸収係数算出部112が算出した光吸収係数に基づいて、真皮層におけるグルコースの濃度を算出する。
前記の光強度は、第1計測光強度取得部104、第2計測光強度取得部105とは異なる第3計測光強度取得部が取得した光強度であることもできる。この場合、第3計測光強度取得部は第1計測光強度取得部104と第2計測光強度取得部105の間に配置するのが望ましい。
In the present embodiment, the light absorption coefficient calculation unit 112 includes the light intensity acquired by the first measurement light intensity acquisition unit 104 or the second measurement light intensity acquisition unit 105, and the optical path of each layer of the skin acquired by the optical path length acquisition unit 110. Based on the length, the light intensity acquired by the non-absorption light intensity acquisition unit 111, and the equivalent scattering coefficient of an arbitrary layer calculated by the second equivalent scattering coefficient calculation unit 117, the light absorption coefficient of the dermis layer of the skin is calculated. calculate. Then, the concentration calculation unit 114 calculates the glucose concentration in the dermis layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 112.
The light intensity may be a light intensity acquired by a third measurement light intensity acquisition unit different from the first measurement light intensity acquisition unit 104 and the second measurement light intensity acquisition unit 105. In this case, it is desirable to arrange the third measurement light intensity acquisition unit between the first measurement light intensity acquisition unit 104 and the second measurement light intensity acquisition unit 105.

次に、血糖値測定装置200が血糖値を測定する動作について説明する。
図8は、第3実施形態に係る血糖値測定装置が血糖値を測定する動作を示すフローチャートである。
まず、ユーザが血糖値測定装置200を皮膚にあてがい、測定開始スイッチ(図示せず)の押下等によって血糖値測定装置200を動作させると、照射部101は、皮膚に対して波長λの短時間パルス光を照射する(ステップS21)。ここで、波長λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
Next, the operation in which the blood sugar level measuring apparatus 200 measures the blood sugar level will be described.
FIG. 8 is a flowchart showing the operation of the blood sugar level measuring apparatus according to the third embodiment for measuring the blood sugar level.
First, when the user places the blood sugar level measuring device 200 on the skin and operates the blood sugar level measuring device 200 by pressing a measurement start switch (not shown) or the like, the irradiation unit 101 has a short wavelength λ 1 with respect to the skin. The time pulse light is irradiated (step S21). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

照射部101が短時間パルス光を照射すると、第1受光部102、第2受光部103は、照射部101から照射され、皮膚によって後方散乱した光を受光する(ステップS22)。このとき、第1受光部102、第2受光部103は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。   When the irradiation unit 101 irradiates the pulsed light for a short time, the first light receiving unit 102 and the second light receiving unit 103 receive the light irradiated from the irradiation unit 101 and back-scattered by the skin (step S22). At this time, the first light receiving unit 102 and the second light receiving unit 103 register the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.

第1受光部102が受光を完了すると、第1計測光強度取得部104は、第1受光部102の内部メモリに格納されている、異なる時刻tにおける受光強度R(ρ,t)を照射開始からの所定の時間内に所定の時間分解能にて取得する(ステップS23)。すなわち、第1計測光強度取得部104は、受光強度の時間特性を取得する。
第2受光部103が受光を完了すると、第2計測光強度取得部105は、第2受光部103の内部メモリに格納されている、異なる時刻tにおける受光強度R(ρ,t)を照射開始からの所定の時間内に所定の時間分解能にて取得する(ステップS23)。すなわち、第2計測光強度取得部105は、受光強度の時間特性を取得する。
When the first light receiving unit 102 completes the light reception, the first measurement light intensity acquisition unit 104 irradiates the light reception intensity R (ρ 1 , t) at different times t stored in the internal memory of the first light receiving unit 102. Obtained at a predetermined time resolution within a predetermined time from the start (step S23). That is, the first measurement light intensity acquisition unit 104 acquires the time characteristic of the received light intensity.
When the second light receiving unit 103 completes the light reception, the second measurement light intensity acquisition unit 105 irradiates the received light intensity R (ρ 2 , t) at a different time t stored in the internal memory of the second light receiving unit 103. Obtained at a predetermined time resolution within a predetermined time from the start (step S23). That is, the second measurement light intensity acquisition unit 105 acquires the time characteristic of the received light intensity.

各計測光強度取得部104,105が光強度を取得すると、第1等価散乱係数算出部106は、ある受光強度R(ρ,t),R(ρ,t)から任意の時刻における等価散乱係数を算出する(ステップS24)。第1等価散乱係数算出部106は、上記の(12)式から任意の時刻における等価散乱係数を算出する。 When the measurement light intensity acquisition units 104 and 105 acquire the light intensity, the first equivalent scattering coefficient calculation unit 106 calculates the equivalent at an arbitrary time from a certain received light intensity R (ρ 1 , t), R (ρ 2 , t). A scattering coefficient is calculated (step S24). The first equivalent scattering coefficient calculation unit 106 calculates an equivalent scattering coefficient at an arbitrary time from the above equation (12).

第1等価散乱係数算出部106が任意の時刻における等価散乱係数を算出すると、シミュレーション部107は、任意の時刻における等価散乱係数に基づいて皮膚の各層の伝搬光路長分布のモデル、短時間パルス光の時間分解波形のモデルを生成する。   When the first equivalent scattering coefficient calculation unit 106 calculates an equivalent scattering coefficient at an arbitrary time, the simulation unit 107 calculates a propagation optical path length distribution model of each layer of skin based on the equivalent scattering coefficient at an arbitrary time, short-time pulse light. Generate a model of the time-resolved waveform.

光路長分布記憶部108はシミュレーション部107が生成した皮膚の各層の伝搬光路長分布のモデルを記憶する。時間分解波形記憶部109はシミュレーション部107が生成した短時間パルス光の時間分解波形のモデルを記憶する。   The optical path length distribution storage unit 108 stores a model of the propagation optical path length distribution of each skin layer generated by the simulation unit 107. The time-resolved waveform storage unit 109 stores a model of the time-resolved waveform of the short-time pulse light generated by the simulation unit 107.

光路長取得部110は、光路長分布記憶部108が記憶する波長λの伝搬光路長分布から、ある時間τ1〜τ2の間の皮膚の各層の光路長L〜Lを取得する(ステップS25)。 The optical path length acquisition unit 110 acquires the optical path lengths L 1 to L 3 of each layer of the skin during a certain time τ 1 to τ 2 from the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 108 (step) S25).

また、無吸収時光強度取得部111は、時間分解波形記憶部109が記憶する波長λの時間分解波形から、ある時間τ1〜τ2の間の検出光子数を取得する(ステップS26)。 Further, no absorption at the light intensity acquisition unit 111, a time-resolved waveform of the wavelength lambda 1 for storing the time-resolved waveform storage unit 109, acquires the detection number of photons during a time Tau1~tau2 (step S26).

光路長取得部110が皮膚の各層の光路長を取得し、無吸収時光強度取得部111が検出光子数を取得すると、第2等価散乱係数算出部117は、皮膚の任意の層の等価散乱係数を算出する(ステップS27)。   When the optical path length acquisition unit 110 acquires the optical path length of each layer of the skin and the non-absorbing light intensity acquisition unit 111 acquires the number of detected photons, the second equivalent scattering coefficient calculation unit 117 calculates the equivalent scattering coefficient of any layer of the skin Is calculated (step S27).

本実施形態において、第2等価散乱係数算出部117は、先ず下記の(2)式から皮膚の各層の等価散乱係数の近似解を算出する。次いで、シミュレーション部107は、当該等価散乱係数の近似解に基づいて、伝搬光路長分布のモデルの所定の時刻における皮膚の各層の光路長の補正値と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度の補正値と、を生成する。そして、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、皮膚の各層の等価散乱係数の補正値を算出することを皮膚の各層の等価散乱係数の真値に収束するまで繰り返し行う。これにより、任意の層の等価散乱係数を算出する。但し、任意の層の時刻tにおける任意の時刻における等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)とする。 In the present embodiment, the second equivalent scattering coefficient calculation unit 117 first calculates an approximate solution of the equivalent scattering coefficient of each layer of the skin from the following equation (2). Next, based on the approximate solution of the equivalent scattering coefficient, the simulation unit 107 corrects the optical path length of each layer of the skin at a predetermined time of the propagation optical path length distribution model and the model of the time-resolved waveform of the short-time pulse light. The correction value of the light intensity at a predetermined time is generated. Then, by substituting the correction value of the optical path length and the correction value of the light intensity model into the following equation (2), calculating the correction value of the equivalent scattering coefficient of each layer of the skin is equivalent scattering of each layer of the skin Repeat until it converges to the true value of the coefficient. Thereby, the equivalent scattering coefficient of an arbitrary layer is calculated. However, the equivalent scattering coefficient at an arbitrary time at an arbitrary layer time t is μ s ′ (t), the equivalent scattering coefficient at the m-th layer is μ sm ′, and the average optical path length of the m-th layer at the time t is L m ′. (T), the optical path length of the m-th layer at time t is L m (t), and the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t).

Figure 0005924658
Figure 0005924658

ここで、上記の(2)式の導出過程について説明する。
対象散乱体を深さ方向に任意のn層に分割して考える。各層の等価散乱係数をμsm’(m=1,2,・・・n)とすると、上記の(1)式により得られるμ’(t)は、各層の等価散乱係数の影響をある重みに応じて受けているはずである。また、その重みは光子が各層を通る光路長に依存すると考えられる。よって、上記の(1)式により得られるμ’(t)は、各光子の第m番目の層の平均光路長L’(t)を用いて下記の(22)式に近似できると考えられる。
Here, the process of deriving the above equation (2) will be described.
Consider the target scatterer divided into arbitrary n layers in the depth direction. If the equivalent scattering coefficient of each layer is μ sm '(m = 1, 2,... N), μ s ′ (t) obtained by the above equation (1) has an influence of the equivalent scattering coefficient of each layer. Should be received according to the weight. The weight is considered to depend on the optical path length through which the photon passes through each layer. Therefore, μ s ′ (t) obtained by the above equation (1) can be approximated by the following equation (22) using the average optical path length L m ′ (t) of the mth layer of each photon. Conceivable.

Figure 0005924658
Figure 0005924658

また、ノイズ低減のために、上記の(22)式の両辺にL’(t)を作用させ、時刻tをτ1からτ2まで積分すると下記の(2)式で表される。 Further, in order to reduce noise, when L m ′ (t) is applied to both sides of the above equation (22) and time t is integrated from τ1 to τ2, the following equation (2) is obtained.

このようにして、(2)式が得られる。   In this way, equation (2) is obtained.

図8に戻り、皮膚の各層の等価散乱係数の補正値の算出は繰り返し行われる。具体的には、第2等価散乱係数算出部117は、上記の(2)式から皮膚の各層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解に基づいてシミュレーション部107が生成した伝搬光路長分布のモデルの所定の時刻における皮膚の各層の光路長の補正値と短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度の補正値とを上記の(2)式に代入して、皮膚の各層の等価散乱係数の補正値を算出する。この補正値の算出は、皮膚の各層の等価散乱係数の真値に収束するまで繰り返し行われる(ステップS28)。   Returning to FIG. 8, the calculation of the correction value of the equivalent scattering coefficient of each layer of the skin is repeated. Specifically, the second equivalent scattering coefficient calculation unit 117 calculates an approximate solution of the equivalent scattering coefficient of each layer of skin from the above equation (2), and the simulation unit 107 calculates the approximate solution of the equivalent scattering coefficient based on the approximate solution of the equivalent scattering coefficient. The correction value of the optical path length of each layer of the skin at a predetermined time of the generated propagation optical path length distribution model and the correction value of the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light are (2 Substituting into the formula, the correction value of the equivalent scattering coefficient of each layer of the skin is calculated. The calculation of the correction value is repeated until it converges to the true value of the equivalent scattering coefficient of each skin layer (step S28).

なお、繰り返し回数は、前回の算出値(例えば一次補正値)と今回の算出値(例えば二次補正値)との変化量がある一定量以下になるまで繰り返し行ってもよい。また、繰り返し回数を予め設定しておいてもよい。   Note that the number of repetitions may be repeated until the amount of change between the previous calculated value (for example, the primary correction value) and the current calculated value (for example, the secondary correction value) falls below a certain amount. Further, the number of repetitions may be set in advance.

ここで、上記の(2)式を用いて、繰り返し計算をする際の打ち切り判断について説明する。
等価散乱係数の推定においては、精度の必要度合い(小数点以下何桁目まで必要か)によって収束の判断を都度変えるとよい。
得られた等価散乱係数を、さらに光吸収係数や目的成分の濃度の算出に用いる場合について具体例を挙げる。
血糖値測定測定に応用することを想定し、単純なグルコース水溶液について考えると、光吸収係数は0.00001/mmオーダーで求める必要がある。
例えば、特許文献(特開2010−237139)の(1)式を均一モデルに適用した下記の(23)式を用いて光吸収係数を求める場合を考える。等価散乱係数を求める収束演算にて算出されるN(t)、L(t)を下記の(23)に代入するとμa1が得られる。したがって、繰り返し計算をする際の打ち切り判断については、計算結果のμa1の小数点以下5桁目の数字が繰り返し計算の数回から10回程度にわたって変動しない場合には、結果が必要な範囲で収束したと判断できる。
Here, using the above equation (2), a description will be given of the abort determination when iteratively calculating.
In the estimation of the equivalent scattering coefficient, it is preferable to change the judgment of convergence each time depending on the degree of accuracy (how many decimal places are necessary).
A specific example will be given of the case where the obtained equivalent scattering coefficient is further used for calculating the light absorption coefficient and the concentration of the target component.
Assuming application to blood glucose level measurement and measurement, considering a simple aqueous glucose solution, it is necessary to obtain the light absorption coefficient on the order of 0.00001 / mm.
For example, consider a case where the light absorption coefficient is obtained using the following equation (23) in which the equation (1) of the patent document (Japanese Patent Application Laid-Open No. 2010-237139) is applied to a uniform model. By substituting N (t) and L 1 (t) calculated by the convergence calculation for obtaining the equivalent scattering coefficient into the following (23), μ a1 is obtained. Therefore, regarding the decision to abort when performing repeated calculation, if the number of the fifth decimal place of μ a1 of the calculation result does not vary over several to 10 times of the repeated calculation, the result converges within the required range. It can be judged that

図8に戻り、皮膚の各層の等価散乱係数の真値に収束していないと判定した場合(ステップS28:NO)、ステップS25に戻り、皮膚の各層の光路長を取得する。   Returning to FIG. 8, when it is determined that the true value of the equivalent scattering coefficient of each layer of the skin has not converged (step S28: NO), the process returns to step S25, and the optical path length of each layer of the skin is acquired.

他方、皮膚の各層の等価散乱係数の真値に収束したと判定した場合(ステップS28:YES)、光吸収係数算出部112は、上記の(4)式に基づいて、皮膚の各層の光吸収係数μa1〜μa3を算出する(ステップS29)。ここで、光吸収係数μa1は、表皮層の光吸収係数を示し、光吸収係数μa2は、真皮層の光吸収係数を示し、光吸収係数μa3は、皮下組織層の光吸収係数を示す。 On the other hand, when it determines with having converged on the true value of the equivalent scattering coefficient of each layer of skin (step S28: YES), the light absorption coefficient calculation part 112 is light absorption of each layer of skin based on said (4) Formula. The coefficients μ a1 to μ a3 are calculated (step S29). Here, the light absorption coefficient μ a1 represents the light absorption coefficient of the epidermis layer, the light absorption coefficient μ a2 represents the light absorption coefficient of the dermis layer, and the light absorption coefficient μ a3 represents the light absorption coefficient of the subcutaneous tissue layer. Show.

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部101が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部107が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulse light irradiated by the irradiation unit 101. N in indicates the number of photons on which the simulation unit 107 has simulated irradiation.

光吸収係数算出部112が皮膚の各層の光吸収係数μa1〜μa3を算出すると、光吸収係数算出部112は、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μa1〜μa3を算出したか否かを判定する(ステップS30)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部112は、4種類の波長λ〜λに対して光吸収係数μa1〜μa3を算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部107が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of each layer of the skin, the light absorption coefficient calculation unit 112 calculates the light absorption coefficient μ for the same number of wavelengths as the number of main components of the skin. It determines whether to calculate the a1 ~μ a3 (step S30). In the present embodiment, since the blood sugar level is measured with four types of main components of the skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 112 emits light with respect to four types of wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ a1 to μ a3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 107 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部112が、光吸収係数μa1〜μa3を算出していない波長λ〜λがあると判定した場合(ステップS30:NO)、ステップS1に戻り、まだ光吸収係数μa1〜μa3を算出していない波長λ〜λの光吸収係数μa1〜μa3の算出を行う。 When the light absorption coefficient calculating unit 112 determines that there are wavelengths λ 1 to λ 4 for which the light absorption coefficients μ a1 to μ a3 are not calculated (step S30: NO), the process returns to step S1, and the light absorption coefficient μ is still present. and calculates the light absorption coefficient μ a1a3 wavelength lambda 1 to [lambda] 4, which is not calculated a1 ~μ a3.

他方、光吸収係数算出部112が、波長λ〜λの光吸収係数μa1〜μa3を算出していると判定した場合(ステップS30:YES)、濃度算出部114は、上記の(19)式に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS31)。 On the other hand, when it is determined that the light absorption coefficient calculation unit 112 calculates the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 (step S30: YES), the concentration calculation unit 114 19) The concentration of glucose contained in the dermis is calculated based on the equation (step S31).

濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分の光吸収係数と、上記の(19)式により算出された真皮層における光吸収係数μa2とからグルコースの濃度を算出する。 The concentration calculation unit 114 calculates glucose from the light absorption coefficient of the main component in the measurement target stored in the component absorption information storage unit 113 and the light absorption coefficient μ a2 in the dermis layer calculated by the above equation (19). The concentration of is calculated.

なお、濃度算出部114は、成分吸収情報記憶部113に記憶されている測定対象中の主成分のモル吸光係数と、上記の(20)式により算出された真皮層におけるモル吸光係数εとからグルコースの濃度を算出してもよい。   The concentration calculation unit 114 is based on the molar extinction coefficient of the main component in the measurement object stored in the component absorption information storage unit 113 and the molar extinction coefficient ε in the dermis layer calculated by the above equation (20). The concentration of glucose may be calculated.

濃度単位変換部115は、濃度算出部114で算出したグルコースの濃度の単位を所望の単位に変換する。濃度表示部116は、グルコースの濃度を表示する。   The concentration unit converter 115 converts the glucose concentration unit calculated by the concentration calculator 114 into a desired unit. The concentration display unit 116 displays the glucose concentration.

このように、本実施形態によれば、第1光強度取得部104または第2光強度取得部105、若しくは第3光強度取得部が取得した光強度と、光路長取得部110が取得した皮膚の各層の光路長と、無吸収時光強度取得部111が取得した光強度モデルと、第2等価散乱係数算出部117が算出した任意の層の等価散乱係数と、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、等価散乱係数が加味されるので、光吸収係数の算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   Thus, according to the present embodiment, the light intensity acquired by the first light intensity acquisition unit 104, the second light intensity acquisition unit 105, or the third light intensity acquisition unit, and the skin acquired by the optical path length acquisition unit 110. Based on the optical path length of each layer, the light intensity model acquired by the non-absorbing light intensity acquisition unit 111, and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation unit 117. The light absorption coefficient can be selectively calculated. Since the equivalent scattering coefficient is taken into account when calculating the light absorption coefficient, the calculation result of the light absorption coefficient is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本実施形態によれば、等価散乱係数を算出する際、等価散乱係数の真値に収束するまで上記の(2)式を用いた繰り返し演算が行われる。よって、任意の層の等価散乱係数を高精度に算出することができる。   Further, according to the present embodiment, when calculating the equivalent scattering coefficient, iterative calculation using the above equation (2) is performed until it converges to the true value of the equivalent scattering coefficient. Therefore, the equivalent scattering coefficient of an arbitrary layer can be calculated with high accuracy.

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、第1実施形態及び第2実施形態では、濃度定量方法を血糖値測定装置100に実装し、皮膚の真皮層に含まれるグルコースの濃度を測定する場合を説明したが、これに限られず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いても良い。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in the first embodiment and the second embodiment, the case where the concentration determination method is implemented in the blood glucose level measurement device 100 and the concentration of glucose contained in the dermis layer of the skin is measured has been described. The concentration determination method may be used for another apparatus for determining the concentration of a target component in an arbitrary observation target layer formed from a plurality of light scattering medium layers.

上述の血糖値測定装置100は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The blood sugar level measuring apparatus 100 described above has a computer system inside. The operation of each processing unit described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

100,200…血糖値測定装置(濃度定量装置)、101…照射部(照射手段)、102…第1受光部(第1受光手段)、103…第2受光部(第2受光手段)、104…第1計測光強度取得部(第1光強度取得手段)、105…第2計測光強度取得部(第2光強度取得手段)、106…第1等価散乱係数算出部(第1等価散乱係数算出手段)、107…シミュレーション部、108…光路長分布記憶部(光路長分布記憶手段)、109…時間分解波形記憶部(時間分解波形記憶手段)、110……光路長取得部(光路長取得手段)、111…無吸収時光強度取得部(光強度モデル取得手段)、112…光吸収係数算出部(光吸収係数算出手段)、114…濃度算出部(濃度算出手段)、115…濃度単位変換部、116…濃度表示部、117…第2等価散乱係数算出部(第2等価散乱係数算出手段) DESCRIPTION OF SYMBOLS 100,200 ... Blood glucose level measuring apparatus (concentration determination apparatus), 101 ... Irradiation part (irradiation means), 102 ... First light receiving part (first light receiving part), 103 ... Second light receiving part (second light receiving part), 104 ... 1st measurement light intensity acquisition part (1st light intensity acquisition means), 105 ... 2nd measurement light intensity acquisition part (2nd light intensity acquisition means), 106 ... 1st equivalent scattering coefficient calculation part (1st equivalent scattering coefficient) Calculation means), 107 ... Simulation section, 108 ... Optical path length distribution storage section (optical path length distribution storage means), 109 ... Time-resolved waveform storage section (time-resolved waveform storage means), 110 ... Optical path length acquisition section (optical path length acquisition) Means), 111 ... Non-absorption light intensity acquisition part (light intensity model acquisition means), 112 ... Light absorption coefficient calculation part (light absorption coefficient calculation means), 114 ... Concentration calculation part (concentration calculation means), 115 ... Concentration unit conversion Part, 116... Density display part, 1 7 ... second scattering coefficient calculation unit (second scattering coefficient calculation means)

Claims (23)

複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に短時間パルス光を照射する照射手段と、
前記短時間パルス光が前記観測対象によって後方散乱した光を受光する第1受光手段と、
前記短時間パルス光が前記観測対象によって後方散乱した光を受光するとともに、前記観測対象に前記短時間パルス光が照射される照射位置から前記観測対象によって後方散乱した光を受光する位置までの距離が前記第1受光手段と異なるように配置された第2受光手段と、
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第1受光手段が受光した光の強度を取得する第1光強度取得手段と、
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第2受光手段が受光した光の強度を取得する第2光強度取得手段と、
前記第1光強度取得手段が取得した光強度と前記第2光強度取得手段が取得した光強度とに基づいて、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する第1等価散乱係数算出手段と、
前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第1光強度取得手段及び前記第2光強度取得手段とは異なる第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、
を含むことを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers,
Irradiating means for irradiating the observation object with short-time pulsed light;
First light receiving means for receiving the light back-scattered by the observation object by the short-time pulse light;
The distance from the irradiation position at which the short-time pulsed light is back-scattered by the observation target and the position at which the short-time pulsed light is irradiated to the observation target to the position at which the back-scattered light is received by the observation target A second light receiving means arranged different from the first light receiving means,
First light intensity obtaining means for obtaining the intensity of light received by the first light receiving means at a predetermined time after the time when the irradiating means radiated pulsed light for a short time;
Second light intensity acquisition means for acquiring the intensity of the light received by the second light receiving means at a predetermined time after the time when the irradiation means irradiates the pulsed light for a short time;
Based on the light intensity acquired by the first light intensity acquisition means and the light intensity acquired by the second light intensity acquisition means, the equivalent of the propagation optical path of the light received by the first light receiving means or the second light receiving means First equivalent scattering coefficient calculating means for calculating a scattering coefficient;
An optical path length distribution storing a propagation optical path length distribution model in each of the layers of the plurality of light scattering media generated based on the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means. Storage means;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light generated based on the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means;
An optical path length acquisition means for acquiring an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means;
A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquired by the first light intensity acquisition means, the second light intensity acquisition means, or a third light intensity acquisition means different from the first light intensity acquisition means and the second light intensity acquisition means, and the optical path Based on the optical path length of each of the layers of the plurality of light scattering media acquired by the length acquisition unit and the light intensity model acquired by the light intensity model acquisition unit, the light absorption coefficient of the arbitrary layer is calculated. A light absorption coefficient calculating means for calculating;
Based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the target component in the arbitrary layer;
Concentration determination apparatus characterized by including.
前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記第1光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)、前記第2光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)としたときに、
前記第1等価散乱係数算出手段は、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、
ことを特徴とする請求項1に記載の濃度定量装置。
Figure 0005924658
The equivalent scattering coefficient of the light propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the speed of light in the scatterer is c, and the short-time pulse light is applied to the observation target. Is a distance from the irradiation position where the first light receiving means receives the light backscattered by the observation target to ρ 1 , and the light from the irradiation position back scattered by the observation target from the second light receiving means Ρ 2 , the light intensity acquired by the first light intensity acquisition unit at time t is R (ρ 1 , t), and the light intensity acquired by the second light intensity acquisition unit at time t. Is R (ρ 2 , t),
The first equivalent scattering coefficient calculating means calculates an equivalent scattering coefficient of a propagation optical path of light received by the first light receiving means or the second light receiving means from the following equation (1):
The concentration determination apparatus according to claim 1, wherein:
Figure 0005924658
前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の等価散乱係数を算出する第2等価散乱係数算出手段を備え、
前記光吸収係数算出手段は、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記第2等価散乱係数算出手段が算出した前記任意の層の等価散乱係数と、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする請求項1または2に記載の濃度定量装置。
Based on the optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition unit and the light intensity model acquired by the light intensity model acquisition unit, the equivalent scattering of the arbitrary layer A second equivalent scattering coefficient calculating means for calculating a coefficient;
The light absorption coefficient calculating means includes the light intensity obtained by the first light intensity obtaining means, the second light intensity obtaining means, or the third light intensity obtaining means, and the plurality of light path length obtaining means obtained by the plurality of light intensity acquisition means. The optical path length of each layer of the light scattering medium, the light intensity model acquired by the light intensity model acquisition means, and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation means The concentration determination apparatus according to claim 1, wherein the light absorption coefficient of the arbitrary layer is calculated based on the concentration determination apparatus.
前記観測対象がn層以上の積層構造からなり、
前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段は、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記第2等価散乱係数算出手段は、下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、
ことを特徴とする請求項3に記載の濃度定量装置。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The equivalent scattering coefficient of the propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the equivalent scattering coefficient of the m th layer is μ sm ′, and the average of the m th layer at time t. The optical path length is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), and the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t). sometimes,
The first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit acquires a light intensity at least for a predetermined time τ1 to τ2,
The second equivalent scattering coefficient calculating means calculates an approximate solution of an equivalent scattering coefficient of each of the plurality of light scattering medium layers from the following equation (2), and is generated from the approximate solution of the equivalent scattering coefficient. Further, a correction value of the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution and the predetermined time of the model of the time-resolved waveform of the short-time pulsed light Each of the plurality of layers of the light scattering medium by substituting the correction value of the light path length and the correction value of the light intensity model into the following equation (2): The calculation of the correction value of the equivalent scattering coefficient of each layer of the plurality of light scattering media is repeated until it converges to the true value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media. To calculate,
The concentration determination apparatus according to claim 3.
Figure 0005924658
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が時刻tにおいて取得した光強度をR(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとしたときに、
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、下記の(3)式から前記任意の層の光吸収係数を算出する、
ことを特徴とする請求項1から4のいずれか一項に記載の濃度定量装置。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulse light is N (t), and the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit performs the time t R (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), and the number of incident photons is N in , where the incident light intensity is I in
The first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit acquires light intensities at a plurality of times t 1 to t m ,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer from the following equation (3):
The concentration quantification apparatus according to any one of claims 1 to 4, wherein
Figure 0005924658
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が時刻tにおいて取得した光強度をR(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIinとしたときに、
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記光吸収係数算出手段は、下記の(4)式から前記任意の層の光吸収係数を算出する、
ことを特徴とする請求項1から4のいずれか一項に記載の濃度定量装置。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulse light is N (t), and the first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit performs the time t R (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), and the number of incident photons is N in , where the incident light intensity is I in
The first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit acquires a light intensity between a predetermined time and at least a predetermined time τ1 to τ2,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer from the following equation (4):
The concentration quantification apparatus according to any one of claims 1 to 4, wherein
Figure 0005924658
前記観測対象がn層以上の積層構造からなり、
前記任意の層である第m層における光吸収係数をμam、前記観測対象を形成する第i成分の光吸収係数をμai、前記観測対象を形成する第i成分の体積濃度をcviとしたときに、
前記濃度算出手段は、下記の(5)式から前記任意の層における前記目的成分の濃度を算出する、
ことを特徴とする請求項1から6のいずれか一項に記載の濃度定量装置。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The light absorption coefficient in the m-th layer which is the arbitrary layer is μ am , the light absorption coefficient of the i-th component forming the observation target is μ ai , and the volume concentration of the i-th component forming the observation target is c vi . When
The concentration calculation means calculates the concentration of the target component in the arbitrary layer from the following equation (5):
The concentration quantification apparatus according to any one of claims 1 to 6, wherein
Figure 0005924658
前記観測対象がn層以上の積層構造からなり、
前記任意の層である第m層における光吸収係数をμam、前記観測対象を形成する第i成分のモル吸光係数をε、前記観測対象を形成する第i成分のモル濃度をcとしたときに、
前記濃度算出手段は、下記の(6)式から前記任意の層における前記目的成分の濃度を算出する、
ことを特徴とする請求項1から6のいずれか一項に記載の濃度定量装置。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The light absorption coefficient in the m-th layer, which is the arbitrary layer, is μ am , the molar extinction coefficient of the i-th component forming the observation target is ε i , and the molar concentration of the i-th component forming the observation target is c i . When
The concentration calculation means calculates the concentration of the target component in the arbitrary layer from the following equation (6):
The concentration quantification apparatus according to any one of claims 1 to 6, wherein
Figure 0005924658
前記濃度算出手段は、前記任意の層における前記光吸収係数に基づいて、多変量解析を用いて特性が既知であるものを測定した値から検量線作成をして、未知測定対象の測定値を検量線に照合することで前記任意の層における前記目的成分の濃度を算出することを特徴とする請求項1から8のいずれか一項に記載の濃度定量装置。   Based on the light absorption coefficient in the arbitrary layer, the concentration calculation means creates a calibration curve from a value obtained by measuring a characteristic whose characteristics are known using multivariate analysis, and obtains a measurement value of an unknown measurement target. The concentration quantification apparatus according to claim 1, wherein the concentration of the target component in the arbitrary layer is calculated by collating with a calibration curve. 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項1から9のいずれか一項に記載の濃度定量装置。   10. The glucose concentration contained in the dermis layer is quantified when the observation target is skin and the arbitrary layer is a dermis layer. Concentration determination device. 複数の光散乱媒質の層から形成される観測対象のうち、任意の層における光吸収係数を算出する光吸収係数算出方法であって、
照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記短時間パルス光が前記観測対象によって後方散乱した光の強度、第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数、任意の時刻における前記等価散乱係数に基づいて生成された前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデル、任意の時刻における前記等価散乱係数に基づいて生成された前記短時間パルス光の時間分解波形のモデル、前記伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度、を取得する第1の工程と、
前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、光強度モデル、に基づいて、前記任意の層の光吸収係数を算出する第2の工程と、
を有することを特徴とする光吸収係数算出方法。
A light absorption coefficient calculation method for calculating a light absorption coefficient in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers,
Intensity of the light back-scattered by the observation target at the predetermined time after the time when the irradiation means irradiates the short-time pulse light, the propagation optical path of the light received by the first light-receiving means or the second light-receiving means Based on the equivalent scattering coefficient, a model of the propagation optical path length distribution in each layer of the plurality of light scattering medium layers generated based on the equivalent scattering coefficient at an arbitrary time, and the equivalent scattering coefficient at an arbitrary time A model of the time-resolved waveform of the generated short-time pulsed light, an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution, A first step of obtaining a light intensity at the predetermined time of the model of the time-resolved waveform;
A second step of calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired in the first step, the optical path length of each of the layers of the plurality of light scattering media, and the light intensity model . When,
The light absorption coefficient calculation method characterized by having.
第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ 時刻tにおいて取得した光強度をR(ρ,t)時刻tにおいて取得した光強度をR(ρ,t)としたときに、
前記第1の工程において、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、
ことを特徴とする請求項11に記載の光吸収係数算出方法。
Figure 0005924658
The equivalent scattering coefficient of the propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the speed of light in the scatterer is c, and the observation target is irradiated with the short-time pulsed light. Ρ 1 , the distance from the irradiated position to the position where the first light receiving means receives the light backscattered by the observation target, and the light received by the second light receiving means backscattered by the observation target from the irradiation position When the distance to the position is ρ 2 , the light intensity acquired at time t is R (ρ 1 , t) , and the light intensity acquired at time t is R (ρ 2 , t),
In the first step, an equivalent scattering coefficient of a propagation optical path of light received by the first light receiving means or the second light receiving means is calculated from the following equation (1):
The light absorption coefficient calculation method according to claim 11.
Figure 0005924658
前記第1の工程において、前記複数の光散乱媒質の層の各々の層の光路長、前記光強度モデル、に基づいて、前記任意の層の等価散乱係数を取得し、
前記第2の工程において、前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、前記光強度モデル、前記任意の層の前記等価散乱係数、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする請求項11または12に記載の光吸収係数算出方法。
In the first step, an equivalent scattering coefficient of the arbitrary layer is obtained based on the optical path length of each of the layers of the plurality of light scattering media, the light intensity model,
In the second step, the light intensity acquired in the first step, the optical path length of each of the layers of the plurality of light scattering media, the light intensity model, and the equivalent scattering coefficient of the arbitrary layer 13. The light absorption coefficient calculation method according to claim 11, wherein the light absorption coefficient of the arbitrary layer is calculated based on the calculation result.
前記観測対象がn層以上の積層構造からなり、
前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、
前記第1の工程において、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、
ことを特徴とする請求項13に記載の光吸収係数算出方法。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The equivalent scattering coefficient of the propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the equivalent scattering coefficient of the m th layer is μ sm ′, and the average of the m th layer at time t. The optical path length is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), and the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t). sometimes,
In the first step, obtaining a light intensity at least for a predetermined time τ1 to τ2,
The approximate solution of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media is calculated from the following equation (2), and the model of the propagation optical path length distribution generated from the approximate solution of the equivalent scattering coefficient is calculated. A correction value of the optical path length of each of the layers of the plurality of light scattering media at a predetermined time, and a correction value of the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light. Obtaining and substituting the correction value of the optical path length and the correction value of the light intensity model into the following equation (2), the correction value of the equivalent scattering coefficient of each layer of the plurality of light scattering media is obtained. Calculating the equivalent scattering coefficient of the arbitrary layer by repeatedly calculating until it converges to the true value of the equivalent scattering coefficient of each layer of the plurality of light scattering media,
The light absorption coefficient calculation method according to claim 13.
Figure 0005924658
観測対象がn層以上の積層構造からなり、
第1受光手段若しくは第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、
少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
下記の(2)式から複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記時刻tにおける前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出することを特徴とする等価散乱係数算出方法。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The equivalent scattering coefficient of the propagation light path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the equivalent scattering coefficient of the m th layer is μ sm ′, and the average optical path length of the m th layer at time t. Is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), and the light intensity at time t of the time-resolved waveform model of short-time pulsed light is N (t),
Obtaining the light intensity at least for a predetermined time τ1 to τ2,
An approximate solution of the equivalent scattering coefficient of each of the layers of the light scattering medium is calculated from the following equation (2), and the time of the model of the propagation optical path length distribution generated from the approximate solution of the equivalent scattering coefficient is calculated. a correction value of the optical path length of each of the layers of the light scattering medium at t and a correction value of the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulse light. Then, by substituting the correction value of the optical path length and the correction value of the light intensity model into the following equation (2), the correction value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media is calculated. The equivalent scattering coefficient calculation method is characterized in that the equivalent scattering coefficient of the arbitrary layer is calculated by repeatedly performing until the true value of the equivalent scattering coefficient of each layer of the plurality of light scattering media converges. .
Figure 0005924658
請求項11から14のいずれか一項に記載の第2の工程で算出した光吸収係数に基づいて、前記任意の層における目的成分の濃度を算出することを特徴とする濃度定量方法。 A concentration quantification method, wherein the concentration of a target component in the arbitrary layer is calculated based on the light absorption coefficient calculated in the second step according to any one of claims 11 to 14. 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項16に記載の濃度定量方法。   The concentration quantification method according to claim 16, wherein when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified. コンピュータを、複数の光散乱媒質の層から形成される観測対象短時間パルス光を照射する照射手段
前記短時間パルス光が前記観測対象によって後方散乱した光を受光する第1受光手段
前記短時間パルス光が前記観測対象によって後方散乱した光を受光するとともに、前記観測対象に前記短時間パルス光が照射される照射位置から前記観測対象によって後方散乱した光を受光する位置までの距離が前記第1受光手段と異なるように配置された第2受光手段
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第1受光手段が受光した光の強度を取得する第1光強度取得手段
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記第2受光手段が受光した光の強度を取得する第2光強度取得手段
前記第1光強度取得手段が取得した光強度と前記第2光強度取得手段が取得した光強度とに基づいて、前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する第1等価散乱係数算出手段
前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段
前記第1等価散乱係数算出手段が算出した任意の時刻における等価散乱係数に基づいて生成された、前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第1光強度取得及び前記第2光強度取得手段とは異なる第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、任意の層の光吸収係数を算出する光吸収係数算出手段
として機能させるための光吸収係数の算出を行うプログラム。
Computer, irradiating means for irradiating a short pulsed light observation object formed from multiple layers of light scattering medium,
A first receiving means for receiving light the short pulsed light is backscattered by the observed object,
The distance from the irradiation position at which the short-time pulsed light is back-scattered by the observation target and the position at which the short-time pulsed light is irradiated to the observation target to the position at which the back-scattered light is received by the observation target a second light receiving means but arranged to be different from the first light receiving means,
A first light intensity acquisition means for acquiring the intensity of the light the first light receiving means has received the predetermined time after the time of the irradiation unit irradiates the short pulse light,
A second light intensity acquisition means for acquiring the intensity of the second light received by the light receiving section at a predetermined time after the time of the irradiation unit irradiates the short pulse light,
Based on the light intensity acquired by the first light intensity acquisition means and the light intensity acquired by the second light intensity acquisition means, the equivalent of the propagation optical path of the light received by the first light receiving means or the second light receiving means a first scattering coefficient calculation means for calculating a scattering coefficient,
An optical path length distribution storing a propagation optical path length distribution model in each of the layers of the plurality of light scattering media generated based on the equivalent scattering coefficient at an arbitrary time calculated by the first equivalent scattering coefficient calculating means. a storage means,
Wherein the first scattering coefficient calculation means is generated based on the scattering coefficient at any time calculated, the time-resolved waveform storage means for storing a model of the time-resolved waveform of the short pulse light,
From the optical path length distribution storage means, in the predetermined time in the model of the propagation optical path length distribution, the optical path length acquisition means for acquiring an optical path length of each layer of the layer of the plurality of light scattering medium,
From the time-resolved waveform storage means, and the light intensity model acquiring means for acquiring the intensity of the light in the predetermined time in the model of the time-resolved waveform of the short pulse light,
The light intensity acquired by the first light intensity acquisition means, the second light intensity acquisition means, or a third light intensity acquisition means different from the first light intensity acquisition and the second light intensity acquisition means, and the optical path length A light absorption coefficient of an arbitrary layer is calculated based on the optical path length of each layer of the plurality of light scattering media acquired by the acquisition unit and the light intensity model acquired by the light intensity model acquisition unit. a light absorption coefficient calculating means,
A program that calculates the light absorption coefficient to function as
前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、散乱体中での光の速度をc、前記観測対象に前記短時間パルス光が照射される照射位置から前記第1受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記照射位置から前記第2受光手段が前記観測対象によって後方散乱した光を受光する位置までの距離をρ、前記第1光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)、前記第2光強度取得手段が時刻tにおいて取得した光強度をR(ρ,t)としたときに、
前記第1等価散乱係数算出手段は、下記の(1)式から前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数を算出する、
ことを特徴とする請求項18に記載の光吸収係数の算出を行うプログラム。
Figure 0005924658
The equivalent scattering coefficient of the light propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the speed of light in the scatterer is c, and the short-time pulse light is applied to the observation target. Is a distance from the irradiation position where the first light receiving means receives the light backscattered by the observation target to ρ 1 , and the light from the irradiation position back scattered by the observation target from the second light receiving means Ρ 2 , the light intensity acquired by the first light intensity acquisition unit at time t is R (ρ 1 , t), and the light intensity acquired by the second light intensity acquisition unit at time t. Is R (ρ 2 , t),
The first equivalent scattering coefficient calculating means calculates an equivalent scattering coefficient of a propagation optical path of light received by the first light receiving means or the second light receiving means from the following equation (1):
The program for calculating the light absorption coefficient according to claim 18.
Figure 0005924658
コンピュータを、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、に基づいて、前記任意の層の等価散乱係数を算出する第2等価散乱係数算出手段、
として機能させ、
前記光吸収係数算出手段は、前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記第2等価散乱係数算出手段が算出した前記任意の層の等価散乱係数と、に基づいて、前記任意の層の光吸収係数を算出することを特徴とする請求項18または19に記載の光吸収係数の算出を行うプログラム。
Based on the optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition means and the light intensity model acquired by the light intensity model acquisition means, Second equivalent scattering coefficient calculating means for calculating the equivalent scattering coefficient of
Function as
The light absorption coefficient calculating means includes the light intensity obtained by the first light intensity obtaining means, the second light intensity obtaining means, or the third light intensity obtaining means, and the plurality of light path length obtaining means obtained by the plurality of light intensity acquisition means. The optical path length of each layer of the light scattering medium, the light intensity model acquired by the light intensity model acquisition means, and the equivalent scattering coefficient of the arbitrary layer calculated by the second equivalent scattering coefficient calculation means 20. The program for calculating a light absorption coefficient according to claim 18, wherein the light absorption coefficient of the arbitrary layer is calculated based on the program.
前記観測対象がn層以上の積層構造からなり、
前記第1受光手段若しくは前記第2受光手段が受光した光の伝搬光路の等価散乱係数をμ’(t)、第m層の等価散乱係数をμsm’、時刻tにおける第m層の平均光路長をL’(t)、時刻tにおける第m層の光路長をL(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)としたときに、
前記第1光強度取得手段または前記第2光強度取得手段、若しくは前記第3光強度取得手段は、少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記第2等価散乱係数算出手段は、下記の(2)式から前記複数の光散乱媒質の層の各々の層の等価散乱係数の近似解を算出し、当該等価散乱係数の近似解から生成された、伝搬光路長分布のモデルの前記所定の時刻における前記複数の光散乱媒質の層の各々の層の光路長の補正値と、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度の補正値と、を取得し、当該光路長の補正値と当該光強度モデルの補正値とを下記の(2)式に代入して、前記複数の光散乱媒質の層の各々の層の等価散乱係数の補正値を算出することを前記複数の光散乱媒質の層の各々の層の等価散乱係数の真値に収束するまで繰り返し行うことにより、前記任意の層の等価散乱係数を算出する、
ことを特徴とする請求項20に記載の光吸収係数の算出を行うプログラム。
Figure 0005924658
The observation object consists of a laminated structure of n layers or more,
The equivalent scattering coefficient of the propagation path of the light received by the first light receiving means or the second light receiving means is μ s ′ (t), the equivalent scattering coefficient of the m th layer is μ sm ′, and the average of the m th layer at time t. The optical path length is L m ′ (t), the optical path length of the m-th layer at time t is L m (t), and the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t). sometimes,
The first light intensity acquisition unit, the second light intensity acquisition unit, or the third light intensity acquisition unit acquires a light intensity at least for a predetermined time τ1 to τ2,
The second equivalent scattering coefficient calculating means calculates an approximate solution of an equivalent scattering coefficient of each of the plurality of light scattering medium layers from the following equation (2), and is generated from the approximate solution of the equivalent scattering coefficient. Further, a correction value of the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution and the predetermined time of the model of the time-resolved waveform of the short-time pulsed light Each of the plurality of layers of the light scattering medium by substituting the correction value of the light path length and the correction value of the light intensity model into the following equation (2): The calculation of the correction value of the equivalent scattering coefficient of each layer of the plurality of light scattering media is repeated until it converges to the true value of the equivalent scattering coefficient of each of the layers of the plurality of light scattering media. To calculate,
The program for calculating the light absorption coefficient according to claim 20 .
Figure 0005924658
請求項18から21のいずれか一項に記載の光吸収係数算出手段が算出した光吸収係数に基づいて、コンピュータを、前記任意の層における目的成分の濃度を算出する濃度算出手段として機能させるための濃度の算出を行うプログラム。 A computer is caused to function as a concentration calculation unit that calculates a concentration of a target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit according to any one of claims 18 to 21. Program to calculate the concentration of the 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項22に記載の濃度の算出を行うプログラム。   23. The program for calculating a concentration according to claim 22, wherein when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.
JP2011211687A 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration Expired - Fee Related JP5924658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211687A JP5924658B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211687A JP5924658B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Publications (2)

Publication Number Publication Date
JP2013070822A JP2013070822A (en) 2013-04-22
JP5924658B2 true JP5924658B2 (en) 2016-05-25

Family

ID=48475818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211687A Expired - Fee Related JP5924658B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Country Status (1)

Country Link
JP (1) JP5924658B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6723510B2 (en) * 2015-06-15 2020-07-15 株式会社リコー Optical model selection method, detected light amount distribution correction method, optical model correction method, and optical inspection apparatus
KR102002589B1 (en) * 2016-07-21 2019-07-22 주식회사 올리브헬스케어 Frequency domian based multi-wavelength bio-signal analysing apparatus and method thereof
WO2018151150A1 (en) * 2017-02-14 2018-08-23 メディカルフォトニクス株式会社 Device and method for measuring scattered body concentration
US20210059575A1 (en) * 2018-04-26 2021-03-04 Medical Photonics Co., Ltd. Lipid concentration measurement device and method therefor
CN116519622B (en) * 2023-02-03 2023-10-10 湖北工业大学 Complex mixed gas detection device and method based on optical path adjustable spectrum detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425674B2 (en) * 1993-07-30 2003-07-14 アークレイ株式会社 Component concentration measuring apparatus and method
JP3310782B2 (en) * 1994-07-14 2002-08-05 株式会社日立製作所 Imaging device for spatial distribution of absorption substance concentration
JP3433534B2 (en) * 1994-11-07 2003-08-04 浜松ホトニクス株式会社 Method and apparatus for measuring scattering and absorption characteristics in scattering medium
JP4914330B2 (en) * 2007-12-03 2012-04-11 日本電信電話株式会社 Component concentration measuring device
JP2010082246A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Method for processing measurement data of biological spectrum
JP5463545B2 (en) * 2009-03-31 2014-04-09 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program
JP2011167257A (en) * 2010-02-16 2011-09-01 Seiko Epson Corp Chiral material detector and method of detecting chiral material

Also Published As

Publication number Publication date
JP2013070822A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
JP5837115B2 (en) Subject information acquisition device
JP4469903B2 (en) Biological information imaging device
CN104958075A (en) Non-invasive measurement method of skin thickness and blood sugar concentration using Raman spectrum, and calibration method
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2011092780A (en) Biological information imaging apparatus, biological information analyzing method, and biological information imaging method
JP2012237595A (en) Optical tomography device
JP2013052227A (en) Apparatus and method for acquiring information on subject
JP6461288B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JP2016010717A (en) Concentration quantification apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP6358573B2 (en) Operation method of breast measurement apparatus and breast measurement apparatus
JP5834704B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2014102087A (en) Optical measurement method
JP2017006541A (en) Subject information acquisition apparatus and subject information acquisition method
JP2014006063A (en) Light absorption coefficient calculation device, concentration determination device, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
JP6949210B2 (en) Photoacoustic method involving measurement light with a predefined wavelength range to determine the properties of a heterogeneous sample
JP2013043062A (en) Concentration determination apparatus, concentration determination method, and program
JP2017060640A (en) Determination method and determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5924658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees