WO2018151150A1 - Device and method for measuring scattered body concentration - Google Patents

Device and method for measuring scattered body concentration Download PDF

Info

Publication number
WO2018151150A1
WO2018151150A1 PCT/JP2018/005072 JP2018005072W WO2018151150A1 WO 2018151150 A1 WO2018151150 A1 WO 2018151150A1 JP 2018005072 W JP2018005072 W JP 2018005072W WO 2018151150 A1 WO2018151150 A1 WO 2018151150A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
living body
irradiation
light intensity
wavelength
Prior art date
Application number
PCT/JP2018/005072
Other languages
French (fr)
Japanese (ja)
Inventor
一也 飯永
Original Assignee
メディカルフォトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メディカルフォトニクス株式会社 filed Critical メディカルフォトニクス株式会社
Priority to JP2018568564A priority Critical patent/JP6894088B2/en
Publication of WO2018151150A1 publication Critical patent/WO2018151150A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • a step of detecting the received light intensity of 2 a step of calculating an absorption coefficient from the second received light intensity, a step of calculating a light scattering coefficient in the living body based on the first received light intensity and the absorption coefficient, and And calculating a scatterer concentration in the living body based on the light scattering coefficient.
  • the scatterer concentration measurement apparatus 1 includes a first irradiation unit 21 and a second irradiation unit that irradiate light from a predetermined irradiation position A of the living body E toward the inside of the living body E. 22, a first light intensity detection unit 31 and a second light intensity detection unit that detect the light intensity at a predetermined detection position B of the living body E, and a third light that detects the light intensity at the predetermined detection position C.
  • the light intensity detected by the intensity detector 33 and the first light intensity detector 31 is corrected using the light intensity detected by the second light intensity detector 32 and the third light intensity detector 33.
  • a control unit 4 for calculating the corrected to calculate the scattering coefficient mu s of the light in the light intensity based vivo, scatterers in vivo based on the scattering coefficient of the calculated optical mu s (lipid) concentration.
  • the second light intensity detection unit 32, and the third light intensity detection unit 33 are formed by increasing the distance between the first irradiation unit 21 and the second irradiation unit 22 and the first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33. Since the optical path length becomes long, the number of collisions with lipids increases, and the detected light is greatly affected by scattering, so that it is easy to capture the influence of scattering that has been weak and difficult to detect.
  • the control unit 4 has an absorption coefficient calculated from the received light intensity detected by the first light intensity detector 31 and the received light intensity detected by the second light intensity detector 32 and the third light intensity detector 33. Based on the above, the light scattering coefficient ⁇ s in the living body is calculated. Note that the scattering coefficient ⁇ s in the embodiment is not limited to a numerical value obtained by quantifying the efficiency of a general scattering process, and is a value obtained by quantifying the influence of scattering under a certain condition in consideration of a scattering phenomenon. Is also included.
  • D is represents the diffusion coefficient
  • mu a is the absorption coefficient
  • the above equation (1) is expected to be applied to biological scatter measurement as a calculation formula that linearly approximates the measured light attenuation and derives the absorption coefficient from the intercept and the scattering coefficient from the slope.
  • Figure 6 shows the results of correction of absorption coefficient in phantom measurement. As a result of multiplying the correction coefficient due to water absorption at 950 nm, it was confirmed that the absorption coefficient could be calculated accurately.
  • the controller 4 causes the controller 4 to detect the light intensity of the first irradiation light detected by the first light intensity detector 31, the second light intensity detector 32, and Based on the absorption coefficient calculated from the received light intensity detected by the third light intensity detector 33, the light scattering coefficient ⁇ s in the living body is calculated.
  • the method for calculating the scattering coefficient ⁇ s has been described above.
  • the scatterer concentration can be calculated by acquiring the light intensity distribution emitted from the living body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To measure a scattering coefficient in an absorptive scattering composite with high accuracy. [Solution] The present invention is equipped with: a first irradiation unit that irradiates light of a first wavelength at a first irradiation intensity toward the inside of a living body from the outside of the living body; a second irradiation unit that irradiates light of a second wavelength at a second irradiation intensity toward the inside of the living body from the outside of the living body; a first light intensity detection unit that detects a first received light intensity of light of the first wavelength emitted from the living body at a first detection position a first distance from an irradiation position of light by the first irradiation unit; a second light intensity detection unit that detects a second received light intensity of light of the second wavelength emitted from the living body at a second detection position a second distance from the irradiation position of light by the second irradiation unit; and a control unit that calculates an absorption coefficient on the basis of the second received light intensity, calculates a scattering coefficient of light inside the living body on the basis of the first received light intensity and the absorption coefficient, and calculates a scattered body concentration inside the living body on the basis of the calculated scattering coefficient of light.

Description

散乱体濃度計測装置及びその方法Scatterer concentration measuring apparatus and method
  本発明は、散乱体濃度計測器及びその方法に関するものである。 The present invention relates to a scatterer concentration measuring instrument and method.
 食後高脂血症の診断は、食後6~8時間の血中の脂質濃度変化を観測する必要がある。つまり、食後の高脂血状態を計測するためには、被験者を6~8時間拘束し、複数回の採血が必要である。そのため、食後高脂血症の診断は臨床研究の域を出ず、食後高脂血症の診断を臨床現場で実施することは、現実的ではなかった。 To diagnose postprandial hyperlipidemia, it is necessary to observe changes in blood lipid levels 6 to 8 hours after meals. In other words, in order to measure the post-meal hyperlipidemia state, the subject must be restrained for 6 to 8 hours, and multiple blood collections are required. For this reason, diagnosis of postprandial hyperlipidemia has not gone out of clinical research, and it has not been realistic to diagnose postprandial hyperlipidemia in the clinical setting.
 このような課題を解決する手法が、特許文献1に開示されている。特許文献1の手法によれば、非侵襲脂質計測により、採血を無くすことができる。これにより医療機関のみならず家庭でも血中脂質を計測できるようになる。即時的なデータ取得を可能とすることで、時間的に連続した血中脂質を計測することが可能となる。 A technique for solving such a problem is disclosed in Patent Document 1. According to the method of Patent Document 1, blood collection can be eliminated by noninvasive lipid measurement. As a result, blood lipids can be measured not only at medical institutions but also at home. By enabling immediate data acquisition, it is possible to measure blood lipids continuous in time.
国際公開第2014/087825号公報International Publication No. 2014/087825
  特許文献1に記載された発明では、吸収係数および散乱係数の2変数が未知であっても、それぞれの値を正確に計測する。しかしながら、特許文献1の記載の計算式は、吸収係数と散乱係数が等しいか、散乱係数が吸収係数より大きいときに最大の効果を得ることができる。そのため、吸収散乱複合体のうち吸収が大きくなるような状態や箇所では、散乱係数を計測することが難しい場合もある。 発 明 In the invention described in Patent Document 1, even if the two variables of the absorption coefficient and the scattering coefficient are unknown, each value is accurately measured. However, the calculation formula described in Patent Document 1 can obtain the maximum effect when the absorption coefficient is equal to the scattering coefficient or when the scattering coefficient is larger than the absorption coefficient. Therefore, it may be difficult to measure the scattering coefficient in a state or a place where absorption is large in the absorption-scattering complex.
  本発明は、このような問題点を解決するためになされたものであって、吸収散乱複合体において、散乱係数を精度よく計測することを目的とする。 This invention is made in order to solve such a problem, and it aims at measuring a scattering coefficient accurately in an absorption-scattering complex.
 本発明の散乱体濃度計測装置は、生体外から生体内に向けて、第1の照射強度で第1の波長の光を照射する第1の照射部と、生体外から生体内に向けて第2の照射強度で第2の波長の光を照射する第2の照射部と、第1の照射部による光の照射位置から第1の距離をあけた第1の検出位置における、生体から放出された第1の波長の光の第1の受光強度を検出する第1の光強度検出部と、第2の照射部による光の照射位置から第2の距離をあけた第2の検出位置における、生体から放出された第2の波長の光の第2の受光強度を検出する第2の光強度検出部と、第2の受光強度に基づき吸収係数を算出し、第1の受光強度と吸収係数に基づき生体内における光の散乱係数を算出し、当該算出された光の散乱係数に基づき生体内における散乱体濃度を算出する制御部と、を有する。 The scatterer concentration measurement apparatus of the present invention includes a first irradiation unit that irradiates light of a first wavelength with a first irradiation intensity from outside the living body to the living body, and a first irradiation section that extends from outside the living body to the living body. A second irradiation unit that irradiates light of the second wavelength with an irradiation intensity of 2, and a first detection position spaced from the irradiation position of the light by the first irradiation unit from the living body. A first light intensity detection unit that detects a first received light intensity of light having a first wavelength, and a second detection position that is spaced a second distance from the light irradiation position by the second irradiation unit, A second light intensity detector that detects a second received light intensity of light of the second wavelength emitted from the living body; an absorption coefficient is calculated based on the second received light intensity; and the first received light intensity and the absorption coefficient Based on the above, the light scattering coefficient in the living body is calculated, and the light scattering coefficient in the living body is calculated based on the calculated light scattering coefficient. And a control unit for calculating the concentration.
 また、本発明の散乱体濃度計測方法は、生体外から生体内に向けて第1の照射強度で、第1の波長の光を照射する工程と、生体外から生体内に向けて第2の照射強度で、第2の波長の光を照射する工程と、第1の波長の光の照射位置から第1の距離をあけた第1の検出位置における、生体から放出された第1の波長の光の第1の受光強度を検出する工程と、第2の波長の光の照射位置から第2の距離をあけた第2の検出位置における、生体から放出された第2の波長の光の第2の受光強度を検出する工程と、第2の受光強度から吸収係数を算出する工程と、第1の受光強度と吸収係数に基づき生体内における光の散乱係数を算出する工程と、算出された光の散乱係数に基づき生体内における散乱体濃度を算出する工程とを有する。 The scatterer concentration measurement method of the present invention includes a step of irradiating light of the first wavelength at a first irradiation intensity from outside the living body to the inside of the living body, and a second step from outside the living body to the inside of the living body. The step of irradiating the light of the second wavelength with the irradiation intensity, and the first wavelength of the first wavelength emitted from the living body at the first detection position at a first distance from the irradiation position of the light of the first wavelength. Detecting the first received light intensity of the light, and second light of the second wavelength emitted from the living body at the second detection position at a second distance from the irradiation position of the light of the second wavelength. A step of detecting the received light intensity of 2, a step of calculating an absorption coefficient from the second received light intensity, a step of calculating a light scattering coefficient in the living body based on the first received light intensity and the absorption coefficient, and And calculating a scatterer concentration in the living body based on the light scattering coefficient.
 また、本発明の散乱体濃度計測装置は、生体外から生体内に向けて第1の照射強度で、第1の波長の光を照射する第1の照射部と、生体外から生体内に向けて第2の照射強度で、第2の波長の光を照射する第2の照射部と、第1の照射部による光の照射位置から第1の距離をあけた第1の検出位置における、生体から放出された第1の波長の光の第1の受光強度を検出する第1の光強度検出部と、第2の照射部による光の照射位置から第2の距離をあけた第2の検出位置における、生体から放出された第2の波長の光の第2の受光強度を検出する第2の光強度検出部と、を有するユーザー装置に、通信可能に接続される散乱体濃度計測装置であって、第2の受光強度から吸収係数を算出し、第1の受光強度と吸収係数に基づき生体内における光の散乱係数を算出し、算出された光の散乱係数に基づき生体内における散乱体濃度を算出する制御部を有する。 The scatterer concentration measuring device of the present invention includes a first irradiation unit that irradiates light of a first wavelength at a first irradiation intensity from outside the living body to the living body, and from outside the living body to the living body. A second irradiating unit that irradiates light of the second wavelength with a second irradiation intensity, and a living body at a first detection position spaced a first distance from the light irradiation position by the first irradiating unit. A first light intensity detection unit that detects a first received light intensity of light having a first wavelength emitted from the light source, and a second detection that is spaced from the light irradiation position by the second irradiation unit at a second distance. A scatterer concentration measuring device that is communicably connected to a user device having a second light intensity detector that detects a second received light intensity of light of a second wavelength emitted from a living body at a position Therefore, an absorption coefficient is calculated from the second received light intensity and placed in the living body based on the first received light intensity and the absorption coefficient. Calculating a scattering coefficient of light, having a control unit for calculating the scatterer concentration in vivo based on the scattering coefficient of the calculated light.
  本発明によれば、吸収散乱複合体において、散乱係数を精度よく計測することができる。 According to the present invention, the scattering coefficient can be accurately measured in the absorption-scattering composite.
実施形態の散乱体濃度計測装置を示す図である。It is a figure which shows the scatterer density | concentration measuring apparatus of embodiment. 血中脂質による光の散乱を示す図である。It is a figure which shows the scattering of the light by blood lipid. 実施形態の散乱体濃度計測装置のブロック図である。It is a block diagram of the scatterer density | concentration measuring apparatus of embodiment. モンテカルロシミュレーションの結果を示す図である。It is a figure which shows the result of a Monte Carlo simulation. 式(1)で求めた吸収係数と理論上の吸収係数の相関を示す図である。It is a figure which shows the correlation of the absorption coefficient calculated | required by Formula (1), and a theoretical absorption coefficient. 式(1)で求めた吸収係数と理論上の吸収係数の相関を示す図である。It is a figure which shows the correlation of the absorption coefficient calculated | required by Formula (1), and a theoretical absorption coefficient. 実施形態の散乱体濃度計測のフローチャートである。It is a flowchart of the scatterer density | concentration measurement of embodiment. 実施形態の散乱体濃度計測システムを示す図である。It is a figure which shows the scatterer density | concentration measuring system of embodiment. 実施形態の散乱体濃度計測装置のブロック図である。It is a block diagram of the scatterer density | concentration measuring apparatus of embodiment. 式(1)をプロットした図である。It is the figure which plotted Formula (1).
  以下、実施形態の散乱体濃度計測装置及びその方法について、図を参照して詳細に説明をする。また、本実施形態では、散乱体の例として、血中脂質を検出する場合について主に説明するが、これに限られず、散乱体一般についても適用可能である。 Hereinafter, the scatterer concentration measurement apparatus and method of the embodiment will be described in detail with reference to the drawings. In this embodiment, the case of detecting blood lipids is mainly described as an example of a scatterer. However, the present invention is not limited to this, and can be applied to general scatterers.
 図1は、実施形態の散乱体濃度計測装置の構成を示す図である。 FIG. 1 is a diagram illustrating a configuration of a scatterer concentration measuring apparatus according to an embodiment.
  図1に示すように、実施形態の散乱体濃度計測装置1は、生体Eの所定の照射位置Aから生体Eの内部に向けて光を照射する第1の照射部21及び第2の照射部22と、生体Eの所定の検出位置Bにおける光強度を検出する第1の光強度検出部31及び第2の光強度検出部と、所定の検出位置Cにおける光強度を検出する第3の光強度検出部33と、第1の光強度検出部31により検出された光強度を、第2の光強度検出部32及び第3の光強度検出部33により検出された光強度を用いて補正し、補正された光強度基づき生体内における光の散乱係数μを算出し、算出された光の散乱係数μに基づき生体内における散乱体(脂質)濃度を算出する制御部4とを有する。 As shown in FIG. 1, the scatterer concentration measurement apparatus 1 according to the embodiment includes a first irradiation unit 21 and a second irradiation unit that irradiate light from a predetermined irradiation position A of the living body E toward the inside of the living body E. 22, a first light intensity detection unit 31 and a second light intensity detection unit that detect the light intensity at a predetermined detection position B of the living body E, and a third light that detects the light intensity at the predetermined detection position C. The light intensity detected by the intensity detector 33 and the first light intensity detector 31 is corrected using the light intensity detected by the second light intensity detector 32 and the third light intensity detector 33. and a control unit 4 for calculating the corrected to calculate the scattering coefficient mu s of the light in the light intensity based vivo, scatterers in vivo based on the scattering coefficient of the calculated optical mu s (lipid) concentration.
  第1の照射部21及び第2の照射部22は、生体外から生体に向けて、所定の照射位置Aに光を照射する。第1の照射部21及び第2の照射部22は、相異なる波長の光を照射する。第1の照射部21及び第2の照射部22は、光を照射するための光源を有し、照射する光の波長を自在に調整することができる。実施形態では、第1の照射部21は散乱係数の計測を目的とし、第2の照射部22は吸収係数の計測を目的とする。 The first irradiation unit 21 and the second irradiation unit 22 irradiate a predetermined irradiation position A with light from outside the living body toward the living body. The 1st irradiation part 21 and the 2nd irradiation part 22 irradiate the light of a different wavelength. The 1st irradiation part 21 and the 2nd irradiation part 22 have a light source for irradiating light, and can adjust the wavelength of the light to irradiate freely. In the embodiment, the first irradiation unit 21 aims at measurement of the scattering coefficient, and the second irradiation unit 22 aims at measurement of the absorption coefficient.
 実施形態では、第1の照射部21及び第2の照射部22と、2つの照射部としているが、例えば、照射部に白色光を用い、光強度検出部側で可視光フィルターなどにより分光をすれば照射部を1つとするができる。また、照射部が白色LEDのような複数波長の発光体の複合体の場合には、その中で複数波長を交互点灯させるなどにより、照射部を1つとすることができる。 In the embodiment, the first irradiating unit 21 and the second irradiating unit 22 and two irradiating units are used. For example, white light is used for the irradiating unit, and the light intensity detecting unit performs spectroscopic analysis using a visible light filter or the like. If it carries out, it can be set as one irradiation part. In the case where the irradiating unit is a complex of a plurality of wavelengths of light emitters such as a white LED, the number of irradiating units can be made one by, for example, alternately lighting a plurality of wavelengths therein.
  第1の照射部21及び第2の照射部22は、後述する制御部4による散乱係数μの算出方法に応じて、光の連続的な照射や光のパルス状の照射等の光を照射する時間長さを任意に調整することができ、かつ照射する光の強度または光の位相を任意に変調することができる。 The first irradiating unit 21 and the second irradiating unit 22 irradiate light such as continuous irradiation of light or pulsed irradiation of light according to the calculation method of the scattering coefficient μ s by the control unit 4 described later. The length of time to be adjusted can be arbitrarily adjusted, and the intensity of light to be irradiated or the phase of light can be arbitrarily modulated.
  第1の照射部21及び第2の照射部22は、波長が固定された光源を用いてもよく、複数の波長の光を混合したものであってもよい。第1の照射部21及び第2の照射部22は白色光などの広範囲のスぺクトルを有する光源でもよく、その場合、受光部で特定波長を検出するようにしても良い。 The first irradiating unit 21 and the second irradiating unit 22 may use a light source with a fixed wavelength, or may be a mixture of light having a plurality of wavelengths. The first irradiating unit 21 and the second irradiating unit 22 may be light sources having a wide spectrum such as white light. In that case, the light receiving unit may detect a specific wavelength.
  第1の光強度検出部31、第2の光強度検出部32、及び第3の光強度検出部33は、光を受光してその受光強度を検出する。第1の光強度検出部31は、第1の照射部21が照射した光が血中脂質により散乱し、生体から生体外に放出される光を、検出位置Bで受光し、その受光強度を検出する。第2の光強度検出部32は、第2の照射部22が照射した光が血中脂質により散乱し、生体から生体外に放出される光を、検出位置Bで受光し、その受光強度を検出する。第3の光強度検出部33は、第2の照射部22が照射した光が血中脂質により散乱し、生体から生体外に放出される光を、検出位置Cで受光し、その受光強度を検出する。 The first light intensity detector 31, the second light intensity detector 32, and the third light intensity detector 33 receive light and detect the received light intensity. The first light intensity detection unit 31 receives light emitted from the living body to the outside of the living body at the detection position B, and the light received by the first irradiation unit 21 is scattered by the blood lipid, and the light receiving intensity is detected. To detect. The second light intensity detector 32 receives light emitted from the living body to the outside of the living body at the detection position B, and the light received by the second irradiating part 22 is scattered by blood lipids. To detect. The third light intensity detection unit 33 receives light emitted from the living body to the outside of the living body at the detection position C as the light irradiated by the second irradiation unit 22 is scattered by blood lipids, and the received light intensity is measured. To detect.
 実施形態では、図1に示すように、第1の照射部21から所定の間隔ρで同一面上でかつ直線状に第1の光強度検出部31が並べられている。また、第2の照射部22から所定の間隔ρ、ρで同一面上でかつ直線状に第2の光強度検出部32及び第3の光強度検出部33が順に並べられている。 In the embodiment, as shown in FIG. 1, the first light intensity detectors 31 are arranged in a straight line on the same plane at a predetermined interval ρ 1 from the first irradiation unit 21. In addition, the second light intensity detection unit 32 and the third light intensity detection unit 33 are arranged in order on the same plane and in a straight line at predetermined intervals ρ 1 and ρ 2 from the second irradiation unit 22.
  図1に示すように、第1の照射部21の照射位置Aから第1の光強度検出部311の検出位置Bまでの距離を第1の照射検出間距離ρとし、第2の照射部22の照射位置Aから第2の光強度検出部31までの距離を第2の照射検出間距離ρとし、第2の照射部22の照射位置Aから第3の光強度検出部33までの距離を第3の照射検出間距離ρとする。 As shown in FIG. 1, the distance from the irradiation position A of the first irradiation unit 21 to the detection position B of the first light intensity detection unit 311 is defined as a first irradiation detection distance ρ 1, and the second irradiation unit. The distance from the irradiation position A of 22 to the second light intensity detection unit 31 is the second irradiation detection distance ρ 1, and the distance from the irradiation position A of the second irradiation unit 22 to the third light intensity detection unit 33 is distance and third radiation detection distance [rho 2 of.
  このように、光を生体に照射する第1の照射部21及び第2の照射部22と、生体から放出される受光強度を検出する第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33との間に所定の距離を設けることにより、図2に示すように、照射した光が生体表面および表面近傍の散乱体Dにより反射して直接的に生体Eから放出される光の影響を抑制し、血液や脂質が存在する深さに達したのち、血中脂質によって光が反射することによる散乱を経て生体から放出される後方散乱光による受光強度を検出する。また、第1の照射部21及び第2の照射部22と第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33との距離を長くすることで、光路長は長くなるため、脂質との衝突回数が増え、検出される光は散乱の影響を多く受けることにより、これまでは弱く、検出しにくかった散乱の影響を捉えやすくしている。 As described above, the first irradiation unit 21 and the second irradiation unit 22 that irradiate the living body with light, the first light intensity detection unit 31 that detects the received light intensity emitted from the living body, and the second light intensity detection. By providing a predetermined distance between the unit 32 and the third light intensity detection unit 33, as shown in FIG. 2, the irradiated light is reflected directly by the surface of the living body and the scatterer D in the vicinity of the surface. Intensity of light received by backscattered light emitted from the living body after the influence of light emitted from the living body E is suppressed, and after reaching the depth where blood and lipid exist, the light is reflected by the lipid in the blood and then scattered. Is detected. Further, by increasing the distance between the first irradiation unit 21 and the second irradiation unit 22 and the first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33. Since the optical path length becomes long, the number of collisions with lipids increases, and the detected light is greatly affected by scattering, so that it is easy to capture the influence of scattering that has been weak and difficult to detect.
  複数の光強度検出部を設ける場合の配列は、第1の照射部21及び第2の照射部22を中心として各々異なる距離に配置されるのであれば直線状に限定されるものではなく、円状、波状、ジグザグ状などでもよい。また、第1及び第2の照射検出間距離ρや第3の照射検出間距離ρは、一定の間隔でなくともよい。また、実施形態では、また、第1の照射検出間距離と第2の照射検出間距離をρとしたが、異なっていてもよい。第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33は、フォトダイオードやCCDやCMOS等の受光素子であってもよい。 The arrangement in the case of providing a plurality of light intensity detection units is not limited to a straight line as long as they are arranged at different distances around the first irradiation unit 21 and the second irradiation unit 22, respectively. It may be a shape, a wave shape, a zigzag shape, or the like. The irradiation detection distance [rho 2 of the first and second radiation detection distance [rho 1 and 3 may not be a fixed interval. In the embodiment, the first irradiation detection distance and the second irradiation detection distance are set to ρ 1 , but may be different. The first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33 may be light receiving elements such as photodiodes, CCDs, and CMOSs.
 次に、散乱体濃度計測装置1の制御系の構成について説明する。図3は実施形態の散乱体濃度計測装置1のブロック図である。システムバス109を介して、CPU(Central Processing Unit)104、ROM(Read Only Memory)105、RAM(Random Access Memory)106、記憶部107、外部I/F(Interface)108、第1の照射部21、第2の照射部22、第1の光強度検出部31、第2の光強度検出部32、及び、第3の光強度検出部33が接続される。CPU104とROM105とRAM106とで制御部(コントローラー)4を構成する。 Next, the configuration of the control system of the scatterer concentration measuring apparatus 1 will be described. FIG. 3 is a block diagram of the scatterer concentration measuring apparatus 1 of the embodiment. Via a system bus 109, a CPU (Central Processing Unit) 104, a ROM (Read Only Memory) 105, a RAM (Random Access Memory) 106, a storage unit 107, an external I / F (Interface) 108, and a first irradiation unit 21 The second irradiation unit 22, the first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33 are connected. The CPU 104, the ROM 105, and the RAM 106 constitute a control unit (controller) 4.
 ROM105は、CPU104により実行されるプログラムや閾値を予め記憶する。 The ROM 105 stores a program executed by the CPU 104 and a threshold value in advance.
 RAM106は、CPU104が実行するプログラムを展開するエリアと、プログラムによるデータ処理の作業領域となるワークエリアなどの様々なメモリエリア等を有する。 The RAM 106 has various memory areas such as an area for expanding a program executed by the CPU 104 and a work area serving as a work area for data processing by the program.
 記憶部107は、予め用意された散乱係数μsと散乱体血中脂質濃度との統計データを記憶する。記憶部107は、HDD(Hard Disk Drive)や、フラッシュメモリや、SSD(Solid State Drive)等の、不揮発性に記憶する内部メモリーでよい。 The storage unit 107 stores statistical data of the scattering coefficient μs and scatterer blood lipid concentration prepared in advance. The storage unit 107 may be a non-volatile internal memory such as an HDD (Hard Disk Drive), a flash memory, or an SSD (Solid State Drive).
 外部I/F108は、例えばクライアント端末(PC)などの外部装置と通信するためのインターフェースである。外部I/F108は、外部装置とデータ通信を行うインターフェースであれば良く、たとえば、外部装置にローカルに接続する機器(USBメモリ等)であっても良いし、ネットワークを介して通信するためのネットワークインターフェイスであっても良い。 The external I / F 108 is an interface for communicating with an external device such as a client terminal (PC). The external I / F 108 may be an interface that performs data communication with an external device. For example, the external I / F 108 may be a device (such as a USB memory) locally connected to the external device, or a network for communicating via a network. It may be an interface.
 制御部4は、第2の光強度検出部32及び第3の光強度検出部33により検出された受光強度から、傾きを求め吸収係数を算出する。吸収係数の算出法は、以下の通りである。ここでは、例えば、下記式1を用いる場合について示す。 The control unit 4 obtains an inclination from the light reception intensity detected by the second light intensity detection unit 32 and the third light intensity detection unit 33 and calculates an absorption coefficient. The calculation method of the absorption coefficient is as follows. Here, for example, the case where the following formula 1 is used is shown.
 下記式1は、y = -ax + bと同義である。そこで、yはR(ρ)、ρ、及び、Sが分かれば算出でき、得られたyをρに対しプロットすれば、図10に示すプロットとなる。なお、R(ρ)は受光強度(光強度)であり、ρは入射?受光部間距離であり、Sは、入射光強度である。プロットの傾きが有効減衰係数μeffなので、有効減衰係数μeffを右の項に代入すると吸収係数μaが求まる。実施形態では、第2の光強度検出部32及び第3の光強度検出部33で得られた光強度を図10に示すようにプロットして一次関数に近似させ、当該一次関数の傾きからμeffを求め、これを式(1)に代入して吸収係数μaを求める。 The following formula 1 is synonymous with y = −ax + b. Therefore, y can be calculated if R (ρ), ρ, and S 0 are known, and if the obtained y is plotted against ρ, the plot shown in FIG. 10 is obtained. Here, R (ρ) is the received light intensity (light intensity), ρ is the incident / light receiving distance, and S 0 is the incident light intensity. Since the slope of the plot is the effective attenuation coefficient μ eff , the absorption coefficient μ a is obtained by substituting the effective attenuation coefficient μ eff into the right term. In the embodiment, the light intensities obtained by the second light intensity detection unit 32 and the third light intensity detection unit 33 are plotted as shown in FIG. 10 to approximate a linear function, and μeff is calculated from the slope of the linear function. Is substituted into the equation (1) to obtain the absorption coefficient μa.
 なお、実施形態では、第2の光強度検出部32及び第3の光強度検出部33により検出された受光強度から、吸収係数を算出しているが、例えば、吸収係数を事前に測定することにより図10に示す検量線等の吸収係数の統計データを取得し、当該吸収係数の統計データをROM105や記憶部107に等に格納しておき、当該検量線データと第2の光強度検出部32の受光強度から、吸収係数を算出することもできる。この場合には、光強度検出部を第2の光強度検出部32の1つとすることもできる。 In the embodiment, the absorption coefficient is calculated from the received light intensity detected by the second light intensity detection unit 32 and the third light intensity detection unit 33. For example, the absorption coefficient is measured in advance. 10 is obtained, and the statistical data of the absorption coefficient such as the calibration curve shown in FIG. 10 is acquired, the statistical data of the absorption coefficient is stored in the ROM 105 or the storage unit 107, and the calibration curve data and the second light intensity detection unit. An absorption coefficient can also be calculated from the 32 received light intensities. In this case, the light intensity detector can be one of the second light intensity detectors 32.
 制御部4は、第1の光強度検出部31により検出された受光強度と、第2の光強度検出部32及び第3の光強度検出部33により検出された受光強度から算出された吸収係数とに基づき生体内における光の散乱係数μを算出する。なお、実施形態における散乱係数μは、一般的な散乱過程の効率を数値化したものに限定されるものではなく、散乱現象を考慮して散乱の影響を一定の条件下で数値化したものも含むものである。 The control unit 4 has an absorption coefficient calculated from the received light intensity detected by the first light intensity detector 31 and the received light intensity detected by the second light intensity detector 32 and the third light intensity detector 33. Based on the above, the light scattering coefficient μ s in the living body is calculated. Note that the scattering coefficient μ s in the embodiment is not limited to a numerical value obtained by quantifying the efficiency of a general scattering process, and is a value obtained by quantifying the influence of scattering under a certain condition in consideration of a scattering phenomenon. Is also included.
  実施形態の制御部4は、第1の照射部21により連続光を照射するとともに、第1の光強度検出手段31により検出された受光強度R(ρ)と照射検出間距離ρとを、下記式(1)「数1」および式(2)「数2」に代入することで散乱係数μを算出する。 The control unit 4 of the embodiment irradiates the continuous light by the first irradiation unit 21, and sets the received light intensity R (ρ) detected by the first light intensity detection unit 31 and the irradiation detection distance ρ as follows: The scattering coefficient μ s is calculated by substituting into Equation (1) “Equation 1” and Equation (2) “Equation 2”.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
  ここで、μは吸収係数、μeffは有効減衰係数(Effective Attenuation Coefficient)、Sは照射部により照射された光の光強度である。 Here, μ a is an absorption coefficient, μ eff is an effective attenuation coefficient, and S 0 is the light intensity of light irradiated by the irradiation unit.
  なお、上記式(1)および式(2)は以下のように導き出される。 上 記 The above formulas (1) and (2) are derived as follows.
  まず、図1に示すように、生体外から生体内に向けて所定の光強度Sを有する光を連続光として照射するとともに、第1の照射部21の照射位置Aから第1の光強度検出部31の検出位置Bまでの距離を照射検出間距離ρとすると、その後方散乱光によって生体外に放射される光の分布は、以下の式(3)で表される。 First, as shown in FIG. 1, light having a predetermined light intensity S 0 is emitted from outside the living body into the living body as continuous light, and the first light intensity from the irradiation position A of the first irradiation unit 21. Assuming that the distance to the detection position B of the detection unit 31 is an irradiation detection distance ρ, the distribution of light emitted outside the living body by the backscattered light is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
  ここで、zは光源の深さ、つまり散乱が開始する深さであって、下記式(4)で表される。 Here, z 0 is the depth of the light source, that is, the depth at which scattering starts, and is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
  ここで、μは散乱係数を表している。 Here, μ s represents a scattering coefficient.
  また、μeffは有効減衰係数であり、下記式(5)で表される。 Further, μ eff is an effective attenuation coefficient and is represented by the following formula (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
  ここで、Dは拡散係数、μは吸収係数をそれぞれ表している。 Here, D is represents the diffusion coefficient, mu a is the absorption coefficient, respectively.
  また、皮膚表面や表面近傍の血管での散乱を想定すると、照射検出間距離ρと光源の深さzとの関係は下記式(6)のように近似する事ができる。 Assuming scattering on the skin surface and blood vessels near the surface, the relationship between the irradiation detection distance ρ and the light source depth z 0 can be approximated by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
  さらに、本実施形態における計測対象は、上述のとおり血中の脂質であり、血中脂質による散乱は吸収よりも大きいと考えられる。そのため、有効減衰係数μeffは下記式(7)のように近似する事ができる。 Furthermore, the measurement target in the present embodiment is blood lipid as described above, and scattering by blood lipid is considered to be larger than absorption. Therefore, the effective attenuation coefficient μ eff can be approximated as in the following formula (7).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
  以上の式(6)および式(7)を式(3)に代入すると、下記式(8)の近似式となる。 Substituting Equation (6) and Equation (7) above into Equation (3) yields an approximate expression of Equation (8) below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
  ここで、照射検出間距離ρと有効減衰係数μeffとに関して、下記式(9)のような関係を有する場合、式(8)は下記式(10)のように表される。ここでμeff=5.77mm(μ=1/mm、μ=0.01/mm)とする。 Here, when the relationship between the irradiation detection distance ρ and the effective attenuation coefficient μ eff has a relationship as shown in the following formula (9), the formula (8) is expressed as the following formula (10). Here, μ eff = 5.77 mm (μ s = 1 / mm, μ a = 0.01 / mm).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
  そして、上記式(10)を対数表示させると、上記式(1)が導き出される。 Then, when the above equation (10) is displayed in logarithm, the above equation (1) is derived.
  また、照射検出間距離ρと有効減衰係数μeffとに関して、下記式(11)のような関係を有する場合、式(8)は下記式(12)のように表される。 Further, in the case where the distance between irradiation detection ρ and the effective attenuation coefficient μ eff has a relationship as shown in the following formula (11), the formula (8) is expressed as the following formula (12).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
  そして、上記式(12)を対数表示させると、上記式(2)が導き出される。 と Then, when the above equation (12) is displayed logarithmically, the above equation (2) is derived.
  なお、制御部4における散乱係数算出は、本実施形態のように上記式(1)および式(2)によるものに限定されるものではなく、適宜選択されるものであり、例えば、検出された受光強度R(ρ)と散乱係数μとが単純に比例しているものとしてもよい。 Note that the calculation of the scattering coefficient in the control unit 4 is not limited to the above formula (1) and formula (2) as in the present embodiment, but is appropriately selected, for example, detected. The received light intensity R (ρ) and the scattering coefficient μ s may be simply proportional.
  また、制御部4における散乱係数算出は、第1の光強度検出部31の検出位置Aが一点のものに限定されるものではない。実際の計測に置いては、多くの計測ノイズが発生することが想定される。そのような場合は、検出位置を多数設置し、照射検出間距離ρに応じた連続的な受光強度から散乱係数を導くこともできる。つまり、制御部4における散乱係数算出において、計測点が少数である各計測データのノイズが相対的に大きくなる場合、検出位置を増やすことで、実測で想定されるノイズの影響を軽減させることが可能である。 In addition, the calculation of the scattering coefficient in the control unit 4 is not limited to the one in which the detection position A of the first light intensity detection unit 31 is one point. In actual measurement, it is assumed that a lot of measurement noise occurs. In such a case, a large number of detection positions can be installed, and the scattering coefficient can be derived from the continuous received light intensity according to the irradiation detection distance ρ. That is, in the calculation of the scattering coefficient in the control unit 4, when the noise of each measurement data having a small number of measurement points becomes relatively large, the influence of noise assumed in the actual measurement can be reduced by increasing the detection position. Is possible.
 上記式(1)においては、計測した光の減衰度を線形近似し、切片から吸収係数、傾きから散乱係数を導き出す計算式として、生体の散乱計測などに応用が期待されている。 The above equation (1) is expected to be applied to biological scatter measurement as a calculation formula that linearly approximates the measured light attenuation and derives the absorption coefficient from the intercept and the scattering coefficient from the slope.
 しかしながら、上記式(1)の導出においては、拡散方程式の展開の過程で、散乱係数μs’>>吸収係数μaという仮定を設定しているが、具体的な計算条件とはいいがたい。(なお、「>>」は、非常に大であることを示す記号である。) However, in the derivation of the above equation (1), the assumption that the scattering coefficient μs ′ >> the absorption coefficient μa is set in the process of developing the diffusion equation, but it is difficult to say the specific calculation conditions. (">>" is a symbol indicating that it is very large.)
 例えば、モンテカルロシミュレーションの結果では、図4に示した通り、吸収係数の増加に伴い式(1)で導かれた散乱係数は、増加するという傾向が得られた。また、式(1)で散乱係数を算出する工程で、理論値の吸収係数を代入した場合は、目標値である散乱係数1.5を導き出すことが分かった。 For example, in the result of the Monte Carlo simulation, as shown in FIG. 4, the scattering coefficient derived by the equation (1) tends to increase as the absorption coefficient increases. It was also found that when the theoretical absorption coefficient was substituted in the step of calculating the scattering coefficient using equation (1), the target scattering coefficient of 1.5 was derived.
 すなわち、上記式(1)においては、切片から吸収係数を算出する工程に改良の余地があると考えられる。 That is, in the above formula (1), it is considered that there is room for improvement in the process of calculating the absorption coefficient from the intercept.
 図5では、上記式(1)で求めた吸収係数と理論上の吸収係数の相関であるが、相関係数はr2=0.99以上であり、申し分のない相関であるが、傾きを持っていることがわかる。 In FIG. 5, the correlation between the absorption coefficient obtained by the above equation (1) and the theoretical absorption coefficient is shown. The correlation coefficient is r 2 = 0.99 or more, which is a perfect correlation, but with a slope. I understand that.
 一見すると、この傾きを代入することで補正が可能に見えるが、異なる散乱係数で同様の分析を行うと、傾きに違いがみられる。 At first glance, it can be corrected by substituting this slope, but if the same analysis is performed with different scattering coefficients, there is a difference in the slope.
 すなわち、散乱係数が既知でなければ、一定水準以上の吸収を持つ吸収散乱複合体の散乱係数を導出することは困難である。 That is, if the scattering coefficient is not known, it is difficult to derive the scattering coefficient of an absorption-scattering complex having absorption above a certain level.
 これらの課題は、上記式(1)の導出における、散乱係数μs’>>吸収係数μaという条件において、この関係の具体性が不明瞭であるため生じたものである。 These problems arise because the specificity of this relationship is unclear under the condition that the scattering coefficient μs ′ >> the absorption coefficient μa in the derivation of the above equation (1).
 ここで吸収係数μa>>散乱係数μs’という仮定を置くと、式(1)で計測される傾きの有効減衰係数μeffは、吸収係数μaに相当することとなる。すなわち以下の式である。 Here, assuming that the absorption coefficient μa >> the scattering coefficient μs ′, the effective attenuation coefficient μeff of the slope measured by the equation (1) corresponds to the absorption coefficient μa. That is, the following formula.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 つまり未知物質であっても、波長により散乱係数μs’>>吸収係数μaと、吸収係数μa>>散乱係数μs’が混在する吸収散乱複合体は、それぞれに特徴的な波長域を用いることができれば、1回の計測で、計算により2つの未知数すなわち、散乱係数と吸収係数の絶対値を精度良く導き出すことができる。 In other words, even if it is an unknown substance, the absorption / scattering complex in which the scattering coefficient μs ′ >> absorption coefficient μa and the absorption coefficient μa >> scattering coefficient μs ′ are mixed depending on the wavelength should use a characteristic wavelength range for each. If possible, it is possible to accurately derive the two unknowns, that is, the absolute values of the scattering coefficient and the absorption coefficient, by a single measurement.
 なお、生体における吸収散乱同時分析を行うためには、散乱係数μs’>>吸収係数μaの領域の照射光の波長は750nm以上1600nm以下が望ましく、吸収係数μa>>散乱係数μs’の領域の照射光の波長は、350nm以上750nm以下, 又は、1600nm以上2000nm以下が望ましい。 In order to perform simultaneous absorption and scattering analysis in a living body, the wavelength of irradiation light in the region of the scattering coefficient μs ′ >> absorption coefficient μa is preferably 750 nm to 1600 nm, and the region of the absorption coefficient μa >> scattering coefficient μs ′. The wavelength of the irradiation light is desirably 350 nm or more and 750 nm or less, or 1600 nm or more and 2000 nm or less.
 波長350nm以上750nm以下は、ヘモグロビンやタンパクなどの成分依存が多く、波長1600nm以上2000nm以下は水の吸収を対象としている。水の吸収を活用する場合は、900nm以上の波長でもよい。これは、水の吸収が広範囲に分布しているため、測定対象により計測精度向上のための散乱係数と吸収係数の強度バランスが異なるためである。 The wavelength range of 350 nm to 750 nm is highly dependent on components such as hemoglobin and protein, and the wavelength range of 1600 nm to 2000 nm is intended for water absorption. When water absorption is utilized, a wavelength of 900 nm or more may be used. This is because the absorption of water is distributed over a wide range, so that the intensity balance between the scattering coefficient and the absorption coefficient for improving measurement accuracy differs depending on the measurement object.
 精度向上のために、吸収係数は短波長領域と長波長領域の2種を用いてもよい。 In order to improve accuracy, two types of absorption coefficient, a short wavelength region and a long wavelength region, may be used.
 方法としては、まず吸収係数μa>>散乱係数μs’の領域の照射光の波長範囲にて吸収係数μaを求め、散乱係数μs’>>吸収係数μaの領域の照射光の波長範囲で、式(1)に実測の吸収係数μaを代入する。 As a method, first, the absorption coefficient μa is obtained in the wavelength range of the irradiation light in the region of the absorption coefficient μa >> scattering coefficient μs ′, and the equation is obtained in the wavelength range of the irradiation light in the region of the scattering coefficient μs ′ >> absorption coefficient μa. Substitute the actually measured absorption coefficient μa in (1).
 しかしながら、吸収係数μa>>散乱係数μs’の領域と、散乱係数μs’>>吸収係数μaの領域では波長が異なるため、実測の吸収係数μaをそのまま用いることはできない。 However, since the wavelength is different between the region of the absorption coefficient μa >> scattering coefficient μs ′ and the region of the scattering coefficient μs ′ >> absorption coefficient μa, the actually measured absorption coefficient μa cannot be used as it is.
 そこで、例えば、吸収係数μa800と吸収係数μa650の換算係数を用いることで、吸収係数μa>>散乱係数μs’の領域の吸収係数μaから、散乱係数μs’>>吸収係数μaの領域における吸収係数μaを求め、式(1)から散乱係数μs’を求めることが可能となる。また、有効減衰係数μeff650=2μa650となる。有効減衰係数μeff650の値から、散乱係数を計測するための吸収係数μaを以下のように計算式を選択することで、散乱係数の絶対値を算出することが可能となる。 Therefore, for example, by using the conversion coefficient of the absorption coefficient μa800 and the absorption coefficient μa650 , from the absorption coefficient μa in the area of the absorption coefficient μa >> scattering coefficient μs ′, The absorption coefficient μa is obtained, and the scattering coefficient μs ′ can be obtained from the equation (1). Also, the effective attenuation coefficient μ eff650 = 2 μa 650 . The absolute value of the scattering coefficient can be calculated by selecting an equation for calculating the absorption coefficient μ a for measuring the scattering coefficient from the value of the effective attenuation coefficient μ eff650 as follows.
 μa650>0.5のとき (計算式a) μa800 = A・μa650
 0.5≧μa650≧0.1のとき (計算式b) μa800 =B・μa650
 μa650<0.1のとき (計算式c) μa800 =C・μa650
 A,B,Cは、それぞれの補正係数である。また、それぞれの係数は、計算式であってもよく、対数やべき乗を含んでもよく、三角関数やπ、粒子の体積補正などを含んでもよい。換算係数は、ROM105や記憶部107に格納されればよい。
When μ a650 > 0.5 (Calculation formula a) μ a800 = A · μ a650
When 0.5 ≧ μ a650 ≧ 0.1 (Calculation formula b) μ a800 = B · μ a650
When μ a650 <0.1 (Calculation formula c) μ a800 = C ・ μ a650
A, B, and C are the respective correction coefficients. Each coefficient may be a calculation formula, may include a logarithm or a power, and may include a trigonometric function, π, particle volume correction, or the like. The conversion coefficient may be stored in the ROM 105 or the storage unit 107.
 図6に、ファントム計測における吸収係数の補正の結果を示す。950nmにおける水の吸収による補正係数を乗じた結果、吸収係数を正確に算出できることが確認できた。 Figure 6 shows the results of correction of absorption coefficient in phantom measurement. As a result of multiplying the correction coefficient due to water absorption at 950 nm, it was confirmed that the absorption coefficient could be calculated accurately.
  制御部4は、散乱係数μに基づいて血中脂質の濃度を算出する。散乱係数μと脂質濃度とは相関があり、散乱係数μの値に基づいて脂質濃度を算出することができる。実施形態では、散乱係数μと散乱体濃度との関係についてあらかじめ統計データを取り、ROM105や記憶部107に等に格納して、算出された散乱係数μと、格納された統計データとを比較することにより、実際の散乱体濃度を算出する。 The control unit 4 calculates the blood lipid concentration based on the scattering coefficient μ s . There is a correlation between the scattering coefficient μs and the lipid concentration, and the lipid concentration can be calculated based on the value of the scattering coefficient μs . In the embodiment, statistical data regarding the relationship between the scattering coefficient μ s and the scatterer concentration is taken in advance and stored in the ROM 105 or the storage unit 107, and the calculated scattering coefficient μ s and the stored statistical data are used. The actual scatterer concentration is calculated by comparison.
  例えば、特定の生体A氏の血中脂質濃度を計測対象とする場合は、A氏の血中脂質濃度を採血などの他の血中脂質濃度計測方法等により事前に計測した計測結果をROM105や記憶部107に格納して、この計測結果と算出された散乱係数μとを比較して、A氏個人の統計データを作成して、濃度を算出できるようにすることができる。 For example, when the blood lipid concentration of a specific living body Mr. A is to be measured, the measurement result obtained by measuring the blood lipid concentration of Mr. A in advance by another blood lipid concentration measuring method such as blood sampling is stored in the ROM 105 or It is possible to store the data in the storage unit 107 and compare the measurement result with the calculated scattering coefficient μ s to create individual A's statistical data so that the concentration can be calculated.
  若しくは、A氏の血中脂質の濃度を他の血中脂質の濃度の測定方法等により事前に測定した測定結果をROM105や記憶部107等に格納して、この測定結果と検出された光強度より得られた濃度の測定結果とを比較して、その比較により得られた濃度と、一般的な生体の場合の上記統計データにおける濃度との誤差を算出し、その誤差を修正するキャリブレーションすることで、A氏個人の統計データを作成してもよい。 Alternatively, the measurement result obtained by measuring the concentration of Mr. A's blood lipid in advance by another method for measuring the concentration of blood lipid or the like is stored in the ROM 105, the storage unit 107, etc., and this measurement result and the detected light intensity Compare the measurement result of the obtained concentration, calculate the error between the concentration obtained by the comparison and the concentration in the statistical data in the case of a general living body, and perform calibration to correct the error Thus, the statistical data of Mr. A may be created.
  なお、統計データの形式は特に限定されるものではなく、例えば、性別、身長、体重、BMI等で分類されていてもよく、表やグラフ、関数式等を用いて算出できるようにしてもよい。 Note that the format of the statistical data is not particularly limited, and may be classified by gender, height, weight, BMI, etc., and may be calculated using a table, a graph, a functional expression, or the like. .
  また、臨床現場において、濃度と濁度とは同義で使われることがあり、本発明における濃度には濁度の概念も含まれる。よって、脂質濃度算出手段は、その算出結果として、濃度のみならず単位量当たりの粒子数やホルマジン濁度とすることができる。 In clinical practice, concentration and turbidity are sometimes used interchangeably, and the concentration in the present invention includes the concept of turbidity. Therefore, the lipid concentration calculation means can calculate not only the concentration but also the number of particles per unit amount and formazine turbidity as the calculation result.
 次に、本実施形態の散乱体濃度計測方法について説明する。図7は、実施形態の散乱体濃度計測のフローチャートである。 Next, the scatterer concentration measurement method of this embodiment will be described. FIG. 7 is a flowchart of the scatterer concentration measurement of the embodiment.
 照射工程(S101)では、第1の照射部21及び第2の照射部22が、生体の照射位置に対して第1の波長の第1の照射光及び第2の波長の第2の照射光を照射する。 In the irradiation step (S101), the first irradiation unit 21 and the second irradiation unit 22 perform the first irradiation light with the first wavelength and the second irradiation light with the second wavelength with respect to the irradiation position of the living body. Irradiate.
 第1の波長は、750nm以上1600nm以下であってよく、第2の波長は、350nm以上750nm以下, 又は、1600nm以上2000nm以下であってよい。 The first wavelength may be from 750 nm to 1600 nm, and the second wavelength may be from 350 nm to 750 nm, or from 1600 nm to 2000 nm.
 光強度検出工程(S102)では、第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33が、生体から放出される相異なる波長の第1の照射光及び第2の照射光を各々受光して、各々光強度を検出する。光強度検出工程で検出された光強度は、吸収係数算出工程へと送られる。 In the light intensity detection step (S102), the first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33 perform the first irradiation with different wavelengths emitted from the living body. Each of the light and the second irradiation light is received and the light intensity is detected. The light intensity detected in the light intensity detection process is sent to the absorption coefficient calculation process.
 吸収係数算出工程(S103)では、制御部4は、第2の光強度検出部32及び第3の光強度検出部33により検出された受光強度から、傾きを求め、吸収係数を算出する。なお、光強度検出部を第2の光強度検出部32及び第3の光強度検出部33の2つとした場合の吸収係数の算出法、及び、光強度検出部を第2の光強度検出部32の1つとした場合の吸収係数の算出法については上述した。 In the absorption coefficient calculating step (S103), the control unit 4 calculates an absorption coefficient by obtaining an inclination from the received light intensity detected by the second light intensity detecting unit 32 and the third light intensity detecting unit 33. In addition, the calculation method of the absorption coefficient when the light intensity detection unit is the second light intensity detection unit 32 and the third light intensity detection unit 33, and the light intensity detection unit is the second light intensity detection unit. The method for calculating the absorption coefficient when one of 32 is used has been described above.
 散乱係数算出工程(S104)では、制御部4は、制御部4は、第1の光強度検出部31により検出された第1の照射光の光強度と、第2の光強度検出部32及び第3の光強度検出部33により検出された受光強度から算出された吸収係数と、に基づき生体内における光の散乱係数μsを算出する。散乱係数μの算出法については上述した。 In the scattering coefficient calculation step (S104), the controller 4 causes the controller 4 to detect the light intensity of the first irradiation light detected by the first light intensity detector 31, the second light intensity detector 32, and Based on the absorption coefficient calculated from the received light intensity detected by the third light intensity detector 33, the light scattering coefficient μs in the living body is calculated. The method for calculating the scattering coefficient μ s has been described above.
 散乱体濃度算出工程(S105)では、制御部4は、散乱係数μに基づいて、血中の散乱体濃度を算出する。なお、血中の散乱体濃度の算出法については、上述した。散乱体濃度算出工程では、散乱係数を算出した後、脂質濃度(散乱体濃度)を算出してもよい。 In the scatterer concentration calculation step (S105), the control unit 4 calculates the scatterer concentration in the blood based on the scattering coefficient μs . In addition, the calculation method of the scatterer density | concentration in blood was mentioned above. In the scatterer concentration calculation step, the lipid concentration (scatterer concentration) may be calculated after calculating the scattering coefficient.
 以上説明したように、本実施形態の散乱体濃度計測装置及び方法によれば、生体から放出される光強度分布を取得することで、散乱体濃度の算出が可能となる。 As described above, according to the scatterer concentration measuring apparatus and method of the present embodiment, the scatterer concentration can be calculated by acquiring the light intensity distribution emitted from the living body.
 次に、本発明の他の実施形態の散乱体濃度計測装置について説明をする。なお、本発明の他の実施形態の散乱体濃度計測装置の構成は、上記実施形態の散乱体濃度計測装置の構成と共通する部分もあるため、相違する部分を主に説明する。 Next, a scatterer concentration measuring apparatus according to another embodiment of the present invention will be described. In addition, since the structure of the scatterer density | concentration measuring apparatus of other embodiment of this invention has a part in common with the structure of the scatterer density | concentration measuring apparatus of the said embodiment, it mainly demonstrates a different part.
 上記実施形態では、第1の照射部21及び第2の照射部22と、第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33と、制御部4とを一体として構成した例を示したが、これに限られず、第1の照射部21及び第2の照射部22と、第1の光強度検出部31、第2の光強度検出部32及び第3の光強度検出部33をユーザー装置として構成し、制御部4を、ユーザー装置に接続したサーバー装置に設けたシステムとしてもよい。 In the said embodiment, the 1st irradiation part 21 and the 2nd irradiation part 22, the 1st light intensity detection part 31, the 2nd light intensity detection part 32, the 3rd light intensity detection part 33, and a control part However, the present invention is not limited to this, and the first irradiation unit 21 and the second irradiation unit 22, the first light intensity detection unit 31, and the second light intensity detection unit 32 are not limited thereto. The third light intensity detection unit 33 may be configured as a user device, and the control unit 4 may be provided in a server device connected to the user device.
 図8は、実施形態の散乱体濃度計測システムの構成を示す図である。システムは、散乱体濃度計測装置200と、アクセスポイント300と、ユーザー装置400とを有する。 FIG. 8 is a diagram illustrating a configuration of the scatterer concentration measurement system according to the embodiment. The system includes a scatterer concentration measurement device 200, an access point 300, and a user device 400.
 散乱体濃度計測装置200は、ユーザー装置400から送信された光強度に基づいて所定の処理を行い、散乱体濃度を算出するための装置であり、具体的には、パーソナルコンピュータや、装置の台数や送受信するデータ量によってはサーバー装置が適宜用いられる。 The scatterer concentration measuring device 200 is a device for performing predetermined processing based on the light intensity transmitted from the user device 400 and calculating the scatterer concentration. Specifically, the scatterer concentration measuring device 200 is a personal computer or the number of devices. Depending on the amount of data to be transmitted and received, a server device is used as appropriate.
 ユーザー装置400は、ユーザーが所持する装置であり、単独の装置である場合もあり、スマートフォン、携帯電話、腕時計等に搭載される場合もある。また、第1の照射部421と、第2の照射部422と、第1の光強度検出部431と、第2の光強度検出部432と、第3の光強度検出部433と、通信部404として、スマートフォンや携帯電話に備わるカメラや照明、通信機能等を使用してもよい。 The user device 400 is a device possessed by the user and may be a single device or may be mounted on a smartphone, a mobile phone, a wristwatch, or the like. Also, the first irradiation unit 421, the second irradiation unit 422, the first light intensity detection unit 431, the second light intensity detection unit 432, the third light intensity detection unit 433, and the communication unit As 404, a camera, illumination, a communication function, or the like included in a smartphone or a mobile phone may be used.
 ユーザー装置400は、光を照射する第1の照射部421と、第2の照射部422と、第1の光強度検出部431と、第2の光強度検出部432と、第3の光強度検出部433と、通信部404とを有する。通信部404は、第1の光強度検出部431、第2の光強度検出部432、及び、第3の光検出部433とで各々検出された光強度を送信する。第1の照射部421と、第2の照射部422と、第1の光強度検出部431と、第2の光強度検出部432と、第3の光強度検出部433の構成や機能・動作は、上述した第1の照射部21と、第2の照射部22と、第1の光強度検出部31と、第2の光強度検出部32と、第3の光強度検出部33と各々同様である。 The user apparatus 400 includes a first irradiation unit 421 that irradiates light, a second irradiation unit 422, a first light intensity detection unit 431, a second light intensity detection unit 432, and a third light intensity. A detection unit 433 and a communication unit 404 are included. The communication unit 404 transmits the light intensities detected by the first light intensity detection unit 431, the second light intensity detection unit 432, and the third light detection unit 433, respectively. Configuration, function, and operation of first irradiation unit 421, second irradiation unit 422, first light intensity detection unit 431, second light intensity detection unit 432, and third light intensity detection unit 433 Are the first irradiation unit 21, the second irradiation unit 22, the first light intensity detection unit 31, the second light intensity detection unit 32, and the third light intensity detection unit 33, respectively. It is the same.
 散乱体濃度計測装置200は、通信部204と制御部203とを有する。通信部204は、通信部404から送信された光強度をアクセスポイント300を介して受信し、制御部203へ送信する。 The scatterer concentration measuring apparatus 200 includes a communication unit 204 and a control unit 203. The communication unit 204 receives the light intensity transmitted from the communication unit 404 via the access point 300 and transmits it to the control unit 203.
 散乱体濃度計測装置200は、通信部204と制御部203とを有する。通信部204は、通信部404から送信された光強度をアクセスポイント300を介して受信し、制御部203へ送信する。制御部203の機能・動作は、上述した制御部103と同様である。 The scatterer concentration measuring apparatus 200 includes a communication unit 204 and a control unit 203. The communication unit 204 receives the light intensity transmitted from the communication unit 404 via the access point 300 and transmits it to the control unit 203. Functions and operations of the control unit 203 are the same as those of the control unit 103 described above.
 次に、散乱体濃度計測装置200の制御系の構成について説明する。図9は、実施形態の散乱体濃度計測装置200のブロック図である。システムバス209を介して、CPU(Central Processing Unit)204、ROM(Read Only Memory)205、RAM(Random Access Memory)206、記憶部207、及び、通信部(外部I/F(Interface))208が接続される。CPU204とROM205とRAM206とで制御部(コントローラー)203を構成する。 Next, the configuration of the control system of the scatterer concentration measuring apparatus 200 will be described. FIG. 9 is a block diagram of the scatterer concentration measuring apparatus 200 of the embodiment. A CPU (Central Processing Unit) 204, a ROM (Read Only Memory) 205, a RAM (Random Access Memory) 206, a storage unit 207, and a communication unit (external I / F (Interface)) 208 are connected via a system bus 209. Connected. The CPU 204, ROM 205, and RAM 206 constitute a control unit (controller) 203.
 ROM205は、CPU204により実行されるプログラムや閾値を予め記憶する。 The ROM 205 stores a program executed by the CPU 204 and a threshold value in advance.
 RAM206は、CPU204が実行するプログラムを展開するエリアと、プログラムによるデータ処理の作業領域となるワークエリアなどの様々なメモリエリア等を有する。 The RAM 206 has various memory areas such as an area for developing a program executed by the CPU 204 and a work area serving as a work area for data processing by the program.
 記憶部207は、予め用意された、静的パラメータ及び動的パラメータの適切な数値範囲のデータを記憶する。記憶部207は、HDD(Hard Disk Drive)や、フラッシュメモリや、SSD(Solid State Drive)等の、不揮発性に記憶する内部メモリーでよい。 The storage unit 207 stores data of appropriate numerical ranges of static parameters and dynamic parameters prepared in advance. The storage unit 207 may be an internal memory that stores data in a nonvolatile manner, such as an HDD (Hard Disk Drive), a flash memory, or an SSD (Solid State Drive).
 通信部(外部I/F)208は、例えばクライアント端末(PC)などの外部装置と通信するためのインターフェースである。外部I/F208は、外部装置とデータ通信を行うインターフェースであれば良く、たとえば、外部装置にローカルに接続する機器(USBメモリ等)であっても良いし、ネットワークを介して通信するためのネットワークインターフェイスであっても良い。 The communication unit (external I / F) 208 is an interface for communicating with an external device such as a client terminal (PC). The external I / F 208 may be an interface that performs data communication with an external device. For example, the external I / F 208 may be a device (such as a USB memory) locally connected to the external device, or a network for communicating via a network. It may be an interface.
 なお、本実施形態では、ユーザー装置400から散乱体計測装置200へ、アクセスポイント300を介して光強度を送信したが、これに限られず、ユーザー装置400と散乱体計測装置200とが、ネットワークNを介さずに直接接続し、有線通信や無線通信等の手段により光強度を送信してもよい。 In this embodiment, the light intensity is transmitted from the user apparatus 400 to the scatterer measurement apparatus 200 via the access point 300. However, the present invention is not limited to this, and the user apparatus 400 and the scatterer measurement apparatus 200 are connected to the network N. The optical intensity may be transmitted directly by means such as wired communication or wireless communication.

Claims (8)

  1.  生体外から生体内に向けて、第1の照射強度で第1の波長の光を照射する第1の照射部と、
     生体外から生体内に向けて、第2の照射強度で第2の波長の光を照射する第2の照射部と、
     前記第1の照射部による光の照射位置から第1の距離をあけた第1の検出位置における、前記生体から放出された前記第1の波長の光の第1の受光強度を検出する第1の光強度検出部と、
     前記第2の照射部による光の照射位置から第2の距離をあけた第2の検出位置における、前記生体から放出された前記第2の波長の光の第2の受光強度を検出する第2の光強度検出部と、
     前記第2の受光強度に基づき吸収係数を算出し、
     前記第1の受光強度と前記吸収係数に基づき生体内における光の散乱係数を算出し、
     当該算出された光の散乱係数に基づき生体内における散乱体濃度を算出する、制御部と、
      を有する散乱体濃度計測装置。
    A first irradiation unit configured to irradiate light of a first wavelength with a first irradiation intensity from outside the living body toward the living body;
    A second irradiation unit configured to irradiate light having a second wavelength with a second irradiation intensity from outside the living body toward the living body;
    First detecting the first light receiving intensity of the light of the first wavelength emitted from the living body at a first detection position at a first distance from the light irradiation position by the first irradiation unit. A light intensity detector of
    A second detection unit configured to detect a second light receiving intensity of the light having the second wavelength emitted from the living body at a second detection position at a second distance from a light irradiation position by the second irradiation unit; A light intensity detector of
    Calculating an absorption coefficient based on the second received light intensity;
    Calculating a light scattering coefficient in the living body based on the first received light intensity and the absorption coefficient;
    A controller that calculates a scatterer concentration in the living body based on the calculated light scattering coefficient;
    A scatterer concentration measuring device having:
  2.  前記第2の照射部による光の照射位置から第3の距離をあけた第3の検出位置における、前記生体から放出された前記第2の波長の光の第3の受光強度を検出する第3の光強度検出部をさらに備え、
     前記制御部は、前記第2の受光強度及び第3の受光強度に基づき前記吸収係数を算出する、ことを特徴とする請求項1に記載の散乱体濃度計測装置。
    A third detecting unit configured to detect a third light receiving intensity of the light having the second wavelength emitted from the living body at a third detection position at a third distance from a light irradiation position by the second irradiation unit; The light intensity detector of
    The scatterer concentration measuring apparatus according to claim 1, wherein the control unit calculates the absorption coefficient based on the second received light intensity and the third received light intensity.
  3.  前記第1の波長は、750nm以上1600nm以下であることを特徴とする請求項1または2に記載の散乱体濃度計測計測器。 The scatterer concentration measuring instrument according to claim 1 or 2, wherein the first wavelength is not less than 750 nm and not more than 1600 nm.
  4.  前記第2の波長は、350nm以上750nm以下, 又は、1600nm以上2000nm以下であることを特徴とする請求項1から3のいずれかに記載の散乱体濃度計測計測器。 4. The scatterer concentration measuring instrument according to claim 1, wherein the second wavelength is 350 nm or more and 750 nm or less, or 1600 nm or more and 2000 nm or less.
  5.   前記制御部は、前記第1の受光強度R(ρ)と前記第1の距離ρと前記吸収係数μaを、下記式(1)及び式(2)に代入して散乱係数μを算出する請求項1から4のいずれかに記載の散乱体濃度計測装置。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    The control unit calculates the scattering coefficient μ s by substituting the first received light intensity R (ρ), the first distance ρ, and the absorption coefficient μa into the following expressions (1) and (2). The scatterer density | concentration measuring apparatus in any one of Claim 1 to 4.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  6.  前記制御部は、前記第2の波長における吸収係数と前記第1の波長における吸収係数の換算係数により、前記第2の波長における吸収係数を、前記第1の波長における吸収係数に換算する、ことを特徴とする請求項1から5のいずれかに記載の散乱体濃度計測装置。 The control unit converts the absorption coefficient at the second wavelength into the absorption coefficient at the first wavelength by the conversion coefficient of the absorption coefficient at the second wavelength and the conversion coefficient of the absorption coefficient at the first wavelength. The scatterer concentration measuring apparatus according to claim 1, wherein:
  7.   生体外から生体内に向けて第1の照射強度で、第1の波長の光を照射する工程と、
     生体外から生体内に向けて第2の照射強度で、第2の波長の光を照射する工程と、
      前記第1の波長の光の照射位置から第1の距離をあけた第1の検出位置における、前記生体から放出された前記第1の波長の光の第1の受光強度を検出する工程と、
     前記第2の波長の光の照射位置から第2の距離をあけた第2の検出位置における、前記生体から放出された前記第2の波長の光の第2の受光強度を検出する工程と、
     前記第2の受光強度に基づき吸収係数を算出する工程と、
     前記第1の受光強度と前記吸収係数に基づき生体内における光の散乱係数を算出する工程と、
     当該算出された光の散乱係数に基づき生体内における散乱体濃度を算出する工程と、
      を有する散乱体濃度計測方法。
    Irradiating light of a first wavelength with a first irradiation intensity from outside the living body toward the living body;
    Irradiating light of a second wavelength with a second irradiation intensity from outside the living body toward the living body;
    Detecting a first received light intensity of the light of the first wavelength emitted from the living body at a first detection position spaced a first distance from the irradiation position of the light of the first wavelength;
    Detecting a second light receiving intensity of the light of the second wavelength emitted from the living body at a second detection position spaced a second distance from the irradiation position of the light of the second wavelength;
    Calculating an absorption coefficient based on the second received light intensity;
    Calculating a light scattering coefficient in the living body based on the first received light intensity and the absorption coefficient;
    Calculating a scatterer concentration in the living body based on the calculated light scattering coefficient;
    The scatterer density | concentration measuring method which has.
  8.   生体外から生体内に向けて第1の照射強度で、第1の波長の光を照射する第1の照射部と、生体外から生体内に向けて第2の照射強度で、第2の波長の光を照射する第2の照射部と、前記第1の照射部による光の照射位置から第1の距離をあけた第1の検出位置における、前記生体から放出された前記第1の波長の光の第1の受光強度を検出する第1の光強度検出部と、前記第2の照射部による光の照射位置から第2の距離をあけた第2の検出位置における、前記生体から放出された前記第2の波長の光の第2の受光強度を検出する第2の光強度検出部と、を有するユーザー装置に、通信可能に接続される散乱体濃度計測装置であって、
     前記第2の受光強度に基づき吸収係数を算出し、前記第1の受光強度と前記吸収係数に基づき生体内における光の散乱係数を算出し、当該算出された光の散乱係数に基づき生体内における散乱体濃度を算出する制御部を有する散乱体濃度計測装置。
     
    A first irradiating unit that emits light of a first wavelength at a first irradiation intensity from outside the living body to the living body; and a second wavelength at a second irradiation intensity that extends from outside the living body to the living body. Of the first wavelength emitted from the living body at a first detection position spaced a first distance from a light irradiation position by the first irradiation section A first light intensity detection unit that detects a first received light intensity of light, and a second detection position that is spaced a second distance from the light irradiation position by the second irradiation unit; A scatterer concentration measuring device that is communicably connected to a user device having a second light intensity detecting unit that detects a second received light intensity of the light of the second wavelength,
    An absorption coefficient is calculated based on the second received light intensity, a light scattering coefficient in the living body is calculated based on the first received light intensity and the absorption coefficient, and in the living body based on the calculated light scattering coefficient. A scatterer concentration measuring device having a control unit for calculating a scatterer concentration.
PCT/JP2018/005072 2017-02-14 2018-02-14 Device and method for measuring scattered body concentration WO2018151150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568564A JP6894088B2 (en) 2017-02-14 2018-02-14 Scatterer concentration measuring device and its method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025311 2017-02-14
JP2017-025311 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018151150A1 true WO2018151150A1 (en) 2018-08-23

Family

ID=63169349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005072 WO2018151150A1 (en) 2017-02-14 2018-02-14 Device and method for measuring scattered body concentration

Country Status (2)

Country Link
JP (1) JP6894088B2 (en)
WO (1) WO2018151150A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138225A1 (en) * 2018-12-26 2020-07-02 メディカルフォトニクス株式会社 Absorbed calorie measuring device, absorbed calorie measuring method, and absorbed calorie measuring program
WO2020246455A1 (en) * 2019-06-04 2020-12-10 メディカルフォトニクス株式会社 Non-invasive measuring device, method, and program
WO2022262221A1 (en) * 2021-06-18 2022-12-22 中国科学院深圳先进技术研究院 Method for measuring hematocrit, apparatus, terminal, and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517300A (en) * 2000-07-28 2004-06-10 アボット・ラボラトリーズ Non-invasive determination of analyte concentration by compensating for tissue hydration effects.
JP2013070822A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Concentration quantifying device, optical absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration quantifying method, program for calculating optical absorption coefficient, and program for calculating concentration
WO2014087825A1 (en) * 2012-12-06 2014-06-12 国立大学法人北海道大学 Non-invasive biolipid concentration meter, non-invasive biolipid metabolism measuring device, non-invasive method for measuring biolipid concentration, and non-invasive method for examining biolipid metabolism
WO2016041073A1 (en) * 2014-09-17 2016-03-24 2352409 Ontario Inc. Device and method for monitoring fat balance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595534B2 (en) * 2007-05-15 2014-09-24 キヤノン株式会社 Biological information imaging apparatus, biological information analysis method, and biological information imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517300A (en) * 2000-07-28 2004-06-10 アボット・ラボラトリーズ Non-invasive determination of analyte concentration by compensating for tissue hydration effects.
JP2013070822A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Concentration quantifying device, optical absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration quantifying method, program for calculating optical absorption coefficient, and program for calculating concentration
WO2014087825A1 (en) * 2012-12-06 2014-06-12 国立大学法人北海道大学 Non-invasive biolipid concentration meter, non-invasive biolipid metabolism measuring device, non-invasive method for measuring biolipid concentration, and non-invasive method for examining biolipid metabolism
WO2016041073A1 (en) * 2014-09-17 2016-03-24 2352409 Ontario Inc. Device and method for monitoring fat balance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138225A1 (en) * 2018-12-26 2020-07-02 メディカルフォトニクス株式会社 Absorbed calorie measuring device, absorbed calorie measuring method, and absorbed calorie measuring program
JP2020106318A (en) * 2018-12-26 2020-07-09 メディカルフォトニクス株式会社 Absorbed calorie measuring device, absorbed calorie measuring method, and absorbed calorie measuring program
WO2020246455A1 (en) * 2019-06-04 2020-12-10 メディカルフォトニクス株式会社 Non-invasive measuring device, method, and program
WO2022262221A1 (en) * 2021-06-18 2022-12-22 中国科学院深圳先进技术研究院 Method for measuring hematocrit, apparatus, terminal, and readable storage medium

Also Published As

Publication number Publication date
JP6894088B2 (en) 2021-06-30
JPWO2018151150A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
JP6108705B2 (en) Subject information acquisition apparatus and subject information acquisition method
WO2012153769A1 (en) Optical tomography device
WO2018151150A1 (en) Device and method for measuring scattered body concentration
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
US20210401334A1 (en) Device for measuring blood lipid concentration and method therefor
KR20130088777A (en) Object information acquiring apparatus
EP3797687A1 (en) Blood vessel detection device and method therefor
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
EP2732756B1 (en) Object information acquisition apparatus
WO2015174273A1 (en) Breast measurement method and measurement device
JP2008155011A (en) Density measuring apparatus and its method
JP2014140423A (en) Skin condition measuring apparatus
JP6894087B2 (en) Lipid measuring device and its method
US20210059575A1 (en) Lipid concentration measurement device and method therefor
WO2020246455A1 (en) Non-invasive measuring device, method, and program
JP5881058B2 (en) Method for measuring body fat in small animals
US20240099586A1 (en) Analysis device and analysis method
JP2022149431A (en) Device and method for measuring total protein concentration
JP2022100907A (en) Lipid concentration measurement device, program, and method
JP2014006063A (en) Light absorption coefficient calculation device, concentration determination device, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
TW200914814A (en) Method and apparatus for estimating the content of an analyte in a multi-layer medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754929

Country of ref document: EP

Kind code of ref document: A1