JP5834704B2 - Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration - Google Patents

Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration Download PDF

Info

Publication number
JP5834704B2
JP5834704B2 JP2011211688A JP2011211688A JP5834704B2 JP 5834704 B2 JP5834704 B2 JP 5834704B2 JP 2011211688 A JP2011211688 A JP 2011211688A JP 2011211688 A JP2011211688 A JP 2011211688A JP 5834704 B2 JP5834704 B2 JP 5834704B2
Authority
JP
Japan
Prior art keywords
light
absorption coefficient
time
layer
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211688A
Other languages
Japanese (ja)
Other versions
JP2013072736A (en
Inventor
西田 和弘
和弘 西田
孝一 清水
孝一 清水
祐次 加藤
祐次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011211688A priority Critical patent/JP5834704B2/en
Publication of JP2013072736A publication Critical patent/JP2013072736A/en
Application granted granted Critical
Publication of JP5834704B2 publication Critical patent/JP5834704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明のいくつかの様態は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置、光吸収係数算出方法、濃度定量方法、光吸収係数の算出を行うプログラム及び濃度の算出を行うプログラムに関する。   Some aspects of the present invention include a concentration quantification apparatus, a light absorption coefficient calculation method, a concentration quantification method, and a concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers. The present invention relates to a program for calculating a light absorption coefficient and a program for calculating a concentration.

従来、血糖値の測定は、指先などから採血を行い、血中のグルコースに対する酵素活性を測ることで行っていた。しかし、このような血糖値の測定方法は、指先などから血液を採取して測定しなければならず、採血に手間と痛みを伴うことや、血液を付着させる測定チップが必要なことから、採血を必要としない非侵襲型の血糖値の測定方法が望まれている。   Conventionally, the blood sugar level has been measured by collecting blood from a fingertip or the like and measuring the enzyme activity for glucose in the blood. However, such a blood glucose level measurement method requires blood sampling from a fingertip or the like, and is troublesome and painful in blood sampling, or requires a measurement chip to attach blood. There is a demand for a non-invasive blood glucose level measurement method that does not require a blood pressure.

そこで、皮膚に近赤外光を照射し、その光吸収量からグルコースの濃度を求める方法が検討されている(例えば、特許文献1を参照)。具体的には、予めグルコース濃度と照射する光の波長と光の吸収量との関係を示す検量線を作成しておき、モノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する吸収量を求め、当該波長及び吸収量と検量線とを比較することでグルコース濃度を算出する。   Then, the method of irradiating near infrared light to skin and calculating | requiring the density | concentration of glucose from the light absorption amount is examined (for example, refer patent document 1). Specifically, a calibration curve indicating the relationship between the glucose concentration, the wavelength of light to be irradiated, and the amount of light absorbed is prepared in advance, a certain wavelength range is scanned using a monochromator, etc. The amount of absorption with respect to the wavelength is obtained, and the glucose concentration is calculated by comparing the wavelength and the amount of absorption with a calibration curve.

特許第3931638号公報Japanese Patent No. 3931638

しかしながら、従来の非侵襲血糖値測定方法は、光の入出射間距離を定めることによって、真皮層の近赤外スペクトルを測定するため、測定したスペクトルに、真皮層のスペクトルのみならず表皮層や皮下組織層のスペクトルも含まれ、観測される光吸収係数の変化には表皮層や皮下組織層によるノイズが含まれてしまうという問題があった。   However, since the conventional non-invasive blood sugar level measurement method measures the near-infrared spectrum of the dermis layer by determining the distance between the light input and output, the measured spectrum includes not only the spectrum of the dermis layer but also the epidermis layer. The spectrum of the subcutaneous tissue layer was also included, and there was a problem that the observed change in the light absorption coefficient included noise due to the epidermis layer or the subcutaneous tissue layer.

本発明は上記の点に鑑みてなされたものであり、その目的は、目的の層以外の層によるノイズの影響を軽減する濃度定量装置、光吸収係数算出方法、濃度定量方法、光吸収係数の算出を行うプログラム及び濃度の算出を行うプログラムを提供することにある。   The present invention has been made in view of the above points, and its purpose is to reduce the influence of noise caused by layers other than the target layer, a concentration determination device, a light absorption coefficient calculation method, a concentration determination method, and a light absorption coefficient. To provide a program for calculating and a program for calculating concentration.

本発明にかかるひとつの態様は、コンピュータを、複数の光散乱媒質の層から形成される観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキを記憶する光路長バラツキ記憶手段と、前記観測対象に短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する受光手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記受光手段が受光した光の強度を取得する光強度取得手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、前記光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記光路長バラツキ記憶手段に記憶された前記複数の光散乱媒質の層の各々の層の光路長バラツキと、に基づいて、前記観測対象のうち任意の層の光吸収係数を算出する光吸収係数算出手段と、として機能させるための光吸収係数の算出を行うプログラムである。
本発明のいくつかの態様は上記の課題を解決するためになされたものであり、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキを記憶する光路長バラツキ記憶手段と、前記観測対象に短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する受光手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記受光手段が受光した光の強度を取得する光強度取得手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、前記光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記光路長バラツキ記憶手段に記憶された前記複数の光散乱媒質の層の各々の層の光路長バラツキと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を含むことを特徴とする。
According to one aspect of the present invention, propagation of a short-time pulsed light that irradiates a computer to an observation target formed of a plurality of light scattering medium layers in each of the plurality of light scattering medium layers. Optical path length distribution storage means for storing a model of optical path length distribution, time-resolved waveform storage means for storing a model of time-resolved waveform of short-time pulse light irradiated to the observation object, and irradiation to the observation object Optical path length variation storage means for storing variation in optical path length in each of the layers of the plurality of light scattering media, and irradiation means for irradiating the observation target with short-time pulse light, A light receiving unit that receives light back-scattered by the observation target with short-time pulsed light, and the light-receiving unit receives light at a predetermined time after the time when the irradiation unit irradiates short-time pulsed light. An optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical intensity acquisition means for acquiring the intensity of the obtained light and the optical path length distribution storage means An optical path length acquisition means for acquiring the light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means, and the light intensity The light intensity acquired by the acquisition means, the optical path length of each layer of the plurality of light scattering media acquired by the optical path length acquisition means, the light intensity model acquired by the light intensity model acquisition means, and the optical path Light absorption coefficient calculation means for calculating a light absorption coefficient of an arbitrary layer among the observation targets based on the optical path length variation of each of the layers of the plurality of light scattering media stored in the long variation storage means And A program for calculating the optical absorption coefficient for functioning.
Some aspects of the present invention have been made in order to solve the above-described problem, and a concentration for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers. An optical path length distribution storage means for storing a model of a propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object; A time-resolved waveform storage means for storing a model of a time-resolved waveform of short-time pulse light irradiated to the observation target; and a plurality of layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation target. Optical path length variation storage means for storing optical path length variation in each layer, irradiation means for irradiating the observation object with short-time pulse light, and light obtained by backscattering the short-time pulse light by the observation object From the light receiving means for receiving light, the light intensity acquisition means for acquiring the intensity of light received by the light receiving means at a predetermined time after the time when the irradiation means irradiated the short-time pulse light, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of light; the light intensity acquired by the light intensity acquisition means; and the plurality of lights acquired by the optical path length acquisition means Each of the layers of the plurality of light scattering media stored in the optical path length variation storage unit and the optical path length of each layer of the scattering medium, the light intensity model acquired by the light intensity model acquisition unit A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on an optical path length variation, and the object in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means. And a concentration calculating means for calculating the concentration of the component.

この構成によれば、受光手段が受光した光の光強度と、伝搬光路長分布のモデルの所定の時刻における各層の光路長と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度と、各層の光路長バラツキと、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、各層の光路長バラツキが加味されるので、その算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this configuration, the light intensity of the light received by the light receiving means, the optical path length of each layer at a predetermined time of the propagation path length distribution model, and the light at the predetermined time of the time-resolved waveform model of the short-time pulsed light The light absorption coefficient of an arbitrary layer can be selectively calculated based on the intensity of the light and the optical path length variation of each layer. When calculating the light absorption coefficient, the optical path length variation of each layer is taken into account, so that the calculation result is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、前記光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), the light intensity acquisition means calculates the light intensity at a plurality of times t 1 to t m . The light absorption coefficient calculating means obtains an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1), substitutes the approximate solution for the left side of the following equation (2), and The primary correction value of the light absorption coefficient of the layer is calculated, and the primary correction value is the left side of the following equation (2) By substituting and calculating the second-order correction value of the light absorption coefficient of any layer until it converges to the true value of the light absorption coefficient of any layer, the light absorption coefficient of any layer is calculated. It is characterized by that.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

この構成によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(2)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。   According to this configuration, when calculating the light absorption coefficient, iterative calculation using the above equations (1) and (2) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、前記光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記光吸収係数算出手段は、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), the light intensity acquisition means has at least a predetermined time τ 1 to τ 2 from a predetermined time. The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1) or its integral equation, and the approximate solution is 3) Substituting into the left side of equation, calculate the primary correction value of the light absorption coefficient of any layer Substituting the primary correction value into the left side of the following equation (3) to calculate the secondary correction value of the light absorption coefficient of an arbitrary layer is repeated until the true value of the optical absorption coefficient of the arbitrary layer is converged. Thus, the light absorption coefficient of an arbitrary layer is calculated.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

この構成によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(3)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。さらに、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   According to this configuration, when calculating the light absorption coefficient, iterative calculation using the above expressions (1) and (3) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy. Furthermore, since the light absorption coefficient is calculated by the integrated value of the optical path length between the times τ1 and τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity can be reduced.

また、本発明のいくつかの態様は、前記濃度算出手段は、前記任意の層における前記光吸収係数に基づいて、多変量解析を用いて特性が既知であるものを測定した値から検量線作成をして、未知測定対象の測定値を検量線に照合することで前記任意の層における前記目的成分の濃度を算出することを特徴とする。   Further, according to some aspects of the present invention, the concentration calculation unit generates a calibration curve from values obtained by measuring a characteristic whose characteristics are known using multivariate analysis based on the light absorption coefficient in the arbitrary layer. Then, the concentration of the target component in the arbitrary layer is calculated by collating the measurement value of the unknown measurement target with a calibration curve.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

この構成によれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this configuration, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, it is possible to reduce the influence of noise caused by other layers and to determine the glucose concentration with high accuracy. Can do.

また、本発明のいくつかの態様は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における光吸収係数を算出する光吸収係数算出方法であって、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデル、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデル、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキ、照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記短時間パルス光が前記観測対象によって後方散乱した光の強度、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する第1の工程と、前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、光強度モデル、前記複数の光散乱媒質の層の各々の層の光路長バラツキ、に基づいて、前記任意の層の光吸収係数を算出する第2の工程と、を有することを特徴とする。   Further, some aspects of the present invention provide a light absorption coefficient calculation method for calculating a light absorption coefficient in an arbitrary layer among observation targets formed from a plurality of layers of light scattering media, wherein the observation target includes A model of a propagation optical path length distribution in each of the layers of the plurality of light scattering media, a model of a time-resolved waveform of the short-time pulse light irradiated to the observation target, Variations in the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light applied to the observation target, and the short time at a predetermined time after the time when the irradiation means irradiates the short-time pulse light. The intensity of light back-scattered by the observation object by the time pulse light, the optical path length of each layer of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution, the short-time pulse A first step of acquiring the light intensity at the predetermined time of the time-resolved waveform model, the light intensity acquired in the first step, and the optical path length of each of the layers of the plurality of light scattering media A second step of calculating a light absorption coefficient of the arbitrary layer based on a light intensity model and an optical path length variation of each of the layers of the plurality of light scattering media. .

この方法によれば、第1の工程で取得した光強度と、伝搬光路長分布のモデルの所定の時刻における各層の光路長と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度と、各層の光路長バラツキと、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、各層の光路長バラツキが加味されるので、その算出結果は高精度となる。   According to this method, the light intensity obtained in the first step, the optical path length of each layer at a predetermined time of the propagation path length distribution model, and the light at the predetermined time of the time-resolved waveform model of the short-time pulsed light The light absorption coefficient of an arbitrary layer can be selectively calculated based on the intensity of the light and the optical path length variation of each layer. When calculating the light absorption coefficient, the optical path length variation of each layer is taken into account, so that the calculation result is highly accurate.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、前記第7の工程において、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), the light intensity acquisition means acquires the light intensity at a plurality of times t 1 to t m . In the seventh step, an approximate solution of the light absorption coefficient of an arbitrary layer is calculated from the following equation (1), and the approximate solution is substituted into the left side of the following equation (2) to Calculate the primary correction value of the light absorption coefficient, and substitute the primary correction value into the left side of the following equation (2). Calculating the second-order correction value of the light absorption coefficient of an arbitrary layer until it converges to the true value of the light absorption coefficient of the arbitrary layer, thereby calculating the light absorption coefficient of the arbitrary layer. Features.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

この方法によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(2)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。   According to this method, when calculating the light absorption coefficient, iterative calculation using the above equations (1) and (2) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、前記第1の工程において、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記第2の工程において、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), in the first step, at least a predetermined time τ 1 to τ 2 from a predetermined time. In the second step, an approximate solution of the light absorption coefficient of an arbitrary layer is calculated from the following equation (1) or its integral equation, and the approximate solution is calculated as (3 ) To calculate the first correction value of the light absorption coefficient of any layer Substituting the primary correction value into the left side of the following equation (3) to calculate the secondary correction value of the light absorption coefficient of an arbitrary layer is repeated until the true value of the optical absorption coefficient of the arbitrary layer is converged. Thus, the light absorption coefficient of an arbitrary layer is calculated.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

この方法によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(3)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。さらに、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   According to this method, when calculating the light absorption coefficient, iterative calculation using the above expressions (1) and (3) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy. Furthermore, since the light absorption coefficient is calculated by the integrated value of the optical path length between the times τ1 and τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity can be reduced.

また、本発明のいくつかの態様は、前記第2の工程で算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出することを特徴とする。   In some embodiments of the present invention, the concentration of the target component in the arbitrary layer is calculated based on the light absorption coefficient calculated in the second step.

この方法によれば、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this method, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする。   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

この方法によれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this method, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, it is possible to reduce the influence of noise caused by other layers and to accurately determine the concentration of glucose. Can do.

また、本発明のいくつかの態様は、複数の光散乱媒質の層から形成される観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキを記憶する光路長バラツキ記憶手段と、を含み、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を、前記観測対象に短時間パルス光を照射する照射手段、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する受光手段、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記受光手段が受光した光の強度を取得する光強度取得手段、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段、前記光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記光路長バラツキ記憶手段に記憶された前記複数の光散乱媒質の層の各々の層の光路長バラツキと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段、として動作させるための光吸収係数の算出を行うプログラムである。   Further, according to some aspects of the present invention, a propagation optical path in each layer of the plurality of light scattering medium layers of the short-time pulse light irradiated to the observation target formed from the plurality of light scattering medium layers Optical path length distribution storage means for storing a model of long distribution, time-resolved waveform storage means for storing a model of time-resolved waveform of short-time pulse light irradiated to the observation object, and irradiation to the observation object Optical path length variation storage means for storing variation in optical path length in each of the layers of the plurality of light scattering media of short-time pulse light, and the concentration of the target component in any layer of the observation target A concentration quantification apparatus for quantifying comprises: an irradiating means for irradiating the observation object with a short-time pulsed light; a light receiving means for receiving the light backscattered by the observation object with the short-time pulsed light; and the irradiating means for a short time From the light intensity acquisition means for acquiring the intensity of light received by the light receiving means at a predetermined time after the light irradiation time, the optical path length distribution storage means from the optical path length distribution model at the predetermined time Light at a predetermined time of a model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage means, the optical path length acquisition means for acquiring the optical path length of each of the layers of the plurality of light scattering media A light intensity model acquisition means for acquiring the light intensity, a light intensity acquired by the light intensity acquisition means, an optical path length of each of the layers of the plurality of light scattering media acquired by the optical path length acquisition means, and the light Based on the light intensity model acquired by the intensity model acquisition unit and the optical path length variation of each of the layers of the plurality of light scattering media stored in the optical path length variation storage unit, the light of the arbitrary layer Light absorption coefficient calculating means for calculating the yield factor, is a program to calculate the optical absorption coefficient for operating as.

このプログラムによれば、受光手段が受光した光の光強度と、伝搬光路長分布のモデルの所定の時刻における各層の光路長と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度と、各層の光路長バラツキと、に基づいて、任意の層の光吸収係数を選択的に算出することができる。光吸収係数を算出する際に、各層の光路長バラツキが加味されるので、その算出結果は高精度となる。   According to this program, the light intensity of the light received by the light receiving means, the optical path length of each layer at a predetermined time of the propagation path length distribution model, and the light at the predetermined time of the time-resolved waveform model of the short-time pulsed light The light absorption coefficient of an arbitrary layer can be selectively calculated based on the intensity of the light and the optical path length variation of each layer. When calculating the light absorption coefficient, the optical path length variation of each layer is taken into account, so that the calculation result is highly accurate.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、前記光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), the light intensity acquisition means calculates the light intensity at a plurality of times t 1 to t m . The light absorption coefficient calculating means obtains an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1), substitutes the approximate solution for the left side of the following equation (2), and The primary correction value of the light absorption coefficient of the layer is calculated, and the primary correction value is the left side of the following equation (2) By substituting and calculating the second-order correction value of the light absorption coefficient of any layer until it converges to the true value of the light absorption coefficient of any layer, the light absorption coefficient of any layer is calculated. It is characterized by that.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

このプログラムによれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(2)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。   According to this program, when calculating the light absorption coefficient, iterative calculation using the above equations (1) and (2) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy.

また、本発明のいくつかの態様は、前記観測対象がn層以上の積層構造からなり、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、前記光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、前記光吸収係数算出手段は、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、ことを特徴とする。 Further, according to some aspects of the present invention, the observation target has a laminated structure of n layers or more, the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), and the light receiving unit The light intensity received at time t is I (t), the light absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), When the number of photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t), the light intensity acquisition means has at least a predetermined time τ 1 to τ 2 from a predetermined time. The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1) or its integral equation, and the approximate solution is 3) Substituting into the left side of equation, calculate the primary correction value of the light absorption coefficient of any layer Substituting the primary correction value into the left side of the following equation (3) to calculate the secondary correction value of the light absorption coefficient of an arbitrary layer is repeated until the true value of the optical absorption coefficient of the arbitrary layer is converged. Thus, the light absorption coefficient of an arbitrary layer is calculated.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

このプログラムによれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(3)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。さらに、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   According to this program, when calculating the light absorption coefficient, iterative calculation using the above expressions (1) and (3) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy. Furthermore, since the light absorption coefficient is calculated by the integrated value of the optical path length between the times τ1 and τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity can be reduced.

また、本発明のいくつかの態様は、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段として動作させるための濃度の算出を行うプログラムである。   Further, according to some aspects of the present invention, a concentration for operating as a concentration calculating unit that calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating unit. This is a program that performs calculation.

このプログラムによれば、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   According to this program, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本発明のいくつかの態様は、前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする。   In some embodiments of the present invention, when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.

このプログラムによれば、算出した光吸収係数に基づいて真皮層に含まれるグルコースの濃度を算出することにより、他の層によるノイズの影響を低減し、グルコースの濃度の定量を高精度で行うことができる。   According to this program, by calculating the concentration of glucose contained in the dermis layer based on the calculated light absorption coefficient, the influence of noise by other layers can be reduced, and the concentration of glucose can be determined with high accuracy. Can do.

本発明による血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus by this invention. シミュレーション部が算出した各層の伝搬光路長分布を示すグラフである。It is a graph which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示すグラフである。It is a graph which shows the time-resolved waveform which the simulation part computed. 皮膚の主成分の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the main component of skin. 血糖値測定装置が血糖値を測定する動作を示す第1のフローチャートである。It is a 1st flowchart which shows the operation | movement which a blood glucose level measuring apparatus measures a blood glucose level. 血糖値測定装置が血糖値を測定する動作を示す第2のフローチャートである。It is a 2nd flowchart which shows the operation | movement which a blood glucose level measuring apparatus measures a blood glucose level.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態による血糖値測定装置の構成を示す概略ブロック図である。
血糖値測定装置100(濃度定量装置)は、シミュレーション部101、光路長分布記憶部102(光路長分布記憶手段)、時間分解波形記憶部103(時間分解波形記憶手段)、光路長バラツキ記憶部104(光路長バラツキ記憶手段)、照射部105(照射手段)、受光部106(受光手段)、計測光強度取得部107(光強度取得手段)、計測光強度記憶部108、光路長取得部109(光路長取得手段)、無吸収時光強度取得部110(光強度モデル取得手段)、光吸収係数算出部111(光吸収係数算出手段)、成分吸収情報記憶部112、濃度算出部113(濃度算出手段)、濃度単位変換部114、濃度表示部115、を備える。
(First embodiment)
FIG. 1 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the first embodiment of the present invention.
The blood glucose level measuring device 100 (concentration determination device) includes a simulation unit 101, an optical path length distribution storage unit 102 (optical path length distribution storage unit), a time-resolved waveform storage unit 103 (time-resolved waveform storage unit), and an optical path length variation storage unit 104. (Optical path length variation storage means), irradiating section 105 (irradiating means), light receiving section 106 (light receiving means), measured light intensity acquisition section 107 (light intensity acquisition means), measured light intensity storage section 108, optical path length acquisition section 109 ( Optical path length acquisition unit), non-absorption light intensity acquisition unit 110 (light intensity model acquisition unit), light absorption coefficient calculation unit 111 (light absorption coefficient calculation unit), component absorption information storage unit 112, concentration calculation unit 113 (concentration calculation unit) ), A density unit conversion unit 114, and a density display unit 115.

血糖値測定装置100は、皮膚(観測対象)の真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を測定する。   The blood glucose level measuring apparatus 100 measures the concentration of glucose (target component) contained in the dermis layer (arbitrary layer) of the skin (observation target).

シミュレーション部101は、光吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。シミュレーションは、例えばモンテカルロ法を用いて行われる。
光路長分布記憶部102は、光吸収係数がゼロの皮膚モデルの伝搬光路長分布を記憶する。
時間分解波形記憶部103は、光吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
光路長バラツキ記憶部104は、光吸収係数がゼロの皮膚モデルの光路長バラツキを記憶する。ここで、「光路長バラツキ」とは、所定の時刻に検出される全光子の真皮層を伝搬した距離の1光子当たりの平均値と前記所定の時刻に検出される1光子の真皮層を伝搬した距離との差である。
The simulation part 101 performs the simulation which irradiates light with respect to the skin model whose light absorption coefficient is zero. The simulation is performed using, for example, a Monte Carlo method.
The optical path length distribution storage unit 102 stores a propagation optical path length distribution of a skin model having a light absorption coefficient of zero.
The time-resolved waveform storage unit 103 stores a time-resolved waveform of a skin model having a light absorption coefficient of zero.
The optical path length variation storage unit 104 stores the optical path length variation of the skin model whose light absorption coefficient is zero. Here, “optical path length variation” means the average value per one photon of the distance propagated through the dermis layer of all photons detected at a predetermined time and the dermis layer of one photon detected at the predetermined time. It is the difference with the distance.

照射部105は、皮膚に対して短時間パルス光を照射する。この照射部105が照射する複数の短時間パルス光は、皮膚を構成する主成分の各々の成分の吸収スペクトル分布の直交性が高くなる波長の光、すなわち、皮膚を構成する主成分の各々の成分のうち、ある主成分における特定成分の吸収スペクトルの極大値が他の成分の吸収スペクトルの極大値と大きく異なる波長の光を含んでいる。   The irradiation unit 105 irradiates the skin with short-time pulsed light. The plurality of short-time pulse lights emitted by the irradiating unit 105 is light having a wavelength that increases the orthogonality of the absorption spectrum distribution of each component of the main components constituting the skin, that is, each of the main components constituting the skin. Among the components, the maximum value of the absorption spectrum of a specific component in a certain main component includes light having a wavelength that is significantly different from the maximum value of the absorption spectrum of another component.

受光部106は、短時間パルス光が皮膚によって後方散乱した光を受光する。
計測光強度取得部107は、受光部106が受光した光のある時刻における光強度を取得する。
計測光強度記憶部108は、計測光強度取得部107が取得したある時刻における光強度を記憶する。
The light receiving unit 106 receives light obtained by backscattering the short-time pulsed light by the skin.
The measurement light intensity acquisition unit 107 acquires the light intensity at a certain time of the light received by the light receiving unit 106.
The measurement light intensity storage unit 108 stores the light intensity at a certain time acquired by the measurement light intensity acquisition unit 107.

光路長取得部109は、光路長分布記憶部102からある時刻における光路長を取得する。
無吸収時光強度取得部110は、時間分解波形記憶部103からある時刻における光強度を取得する。
The optical path length acquisition unit 109 acquires the optical path length at a certain time from the optical path length distribution storage unit 102.
The non-absorption light intensity acquisition unit 110 acquires the light intensity at a certain time from the time-resolved waveform storage unit 103.

光吸収係数算出部111は、短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
成分吸収情報記憶部112は、皮膚の主成分の光吸収係数、またはモル吸光係数を予め記憶する。
The light absorption coefficient calculation unit 111 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light.
The component absorption information storage unit 112 stores in advance the light absorption coefficient or molar absorption coefficient of the main component of the skin.

濃度算出部113は、真皮層に含まれるグルコースの濃度を算出する。
濃度単位変換部114は、グルコースの濃度の単位を所望の単位に変換する。
濃度表示部115は、グルコースの濃度を表示する。
The concentration calculation unit 113 calculates the concentration of glucose contained in the dermis layer.
The concentration unit converter 114 converts the glucose concentration unit into a desired unit.
The concentration display unit 115 displays the glucose concentration.

本実施形態の血糖値測定装置100においては、照射部105は皮膚に短時間パルス光を照射し、受光部106は短時間パルス光が皮膚によって後方散乱した光を受光し、計測光強度取得部107は時刻tにおいて受光部106が受光した光の強度を取得する。次に、光路長取得部109は光路長分布記憶部102から皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚の各層の光路長を取得し、無吸収時光強度取得部110は時間分解波形記憶部103から皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。   In the blood glucose level measuring apparatus 100 of the present embodiment, the irradiation unit 105 irradiates the skin with a short-time pulse light, the light-receiving unit 106 receives the light back-scattered by the short-time pulse light by the skin, and the measurement light intensity acquisition unit 107 acquires the intensity of light received by the light receiving unit 106 at time t. Next, the optical path length acquisition unit 109 acquires the optical path length of each layer of the skin at the time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 102, and the non-absorbing light intensity acquisition unit 110 stores the time-resolved waveform storage unit From 103, the light intensity at time t of the time-resolved waveform of the short-time pulsed light in the skin model is acquired.

次に、光吸収係数算出部111は、計測光強度記憶部108に記憶された光強度と、光路長取得部109が取得した皮膚の各層の光路長と、無吸収時光強度取得部110が取得した光強度と、光路長バラツキ記憶部104に記憶された光路長バラツキと、に基づいて、皮膚の真皮層の光吸収係数を算出する。そして、濃度算出部113は、光吸収係数算出部111が算出した光吸収係数に基づいて、真皮層におけるグルコースの濃度を算出する。   Next, the light absorption coefficient calculation unit 111 acquires the light intensity stored in the measured light intensity storage unit 108, the optical path length of each skin layer acquired by the optical path length acquisition unit 109, and the non-absorption light intensity acquisition unit 110. Based on the measured light intensity and the optical path length variation stored in the optical path length variation storage unit 104, the light absorption coefficient of the dermis layer of the skin is calculated. Then, the concentration calculation unit 113 calculates the glucose concentration in the dermis layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 111.

これにより、真皮層以外の層によるノイズの影響を軽減して、真皮層に含まれるグルコースの濃度を算出することができる。なお、濃度算出部113が算出したグルコースの濃度は、濃度単位変換部114により所望の単位に変換され、濃度表示部115に表示される。   Thereby, the influence of noise by layers other than the dermis layer can be reduced, and the concentration of glucose contained in the dermis layer can be calculated. The glucose concentration calculated by the concentration calculation unit 113 is converted into a desired unit by the concentration unit conversion unit 114 and displayed on the concentration display unit 115.

次に、血糖値測定装置100の動作を説明する。
血糖値測定装置100は、血糖値を測定する前に、予め皮膚モデルの各層における伝搬光路長分布と時間分解波形と光路長バラツキとを算出する。
まず、皮膚モデルの伝搬光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部101は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、光吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないため、予めサンプルを取ることなどによって決定すると良い。なお、表皮層の厚みは略0.3mm、真皮層の厚みは略1.2mm、皮下組織層の厚みは略3.0mmである。
また、ここで用いる皮膚モデルの光吸収係数はゼロとする。これは、当該皮膚モデルを用いて光吸収量を算出するためである。
Next, the operation of the blood sugar level measuring apparatus 100 will be described.
The blood glucose level measuring apparatus 100 calculates the propagation optical path length distribution, the time-resolved waveform, and the optical path length variation in each layer of the skin model before measuring the blood glucose level.
First, a method for calculating the propagation optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 101 generates a skin model. The skin model is generated by determining the light scattering coefficient, light absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance. The thickness of the epidermis layer is approximately 0.3 mm, the thickness of the dermis layer is approximately 1.2 mm, and the thickness of the subcutaneous tissue layer is approximately 3.0 mm.
The light absorption coefficient of the skin model used here is zero. This is because the light absorption amount is calculated using the skin model.

シミュレーション部101は、皮膚モデルを生成すると、当該皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部105の位置と受光部106の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。
まず、シミュレーション部101は、照射する光のモデルを光子(光束)とし、当該光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数R(0≦R≦1)によって決定する。シミュレーション部101は、光子が次に進む点までの距離Lの計算を、(10)式によって行う。
When generating the skin model, the simulation unit 101 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 105 and the position of the light receiving unit 106. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.
First, the simulation unit 101 performs calculation for irradiating a skin model with a photon (light beam) as a model of light to be irradiated. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by a random number R (0 ≦ R ≦ 1). The simulation unit 101 calculates the distance L to the point where the photon advances next by the equation (10).

Figure 0005834704
Figure 0005834704

但し、ln(A)は、Aの自然対数を示す。また、μsmは、皮膚モデルの第m層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。
また、シミュレーション部101は、光子が次に進む点までの方向θの計算を、(11)式によって行う。
Here, ln (A) represents the natural logarithm of A. Μ sm represents the scattering coefficient of the mth layer (any of the epidermis layer, dermis layer, and subcutaneous tissue layer) of the skin model.
In addition, the simulation unit 101 calculates the direction θ up to the point where the photon advances to the next point according to the equation (11).

Figure 0005834704
Figure 0005834704

但し、gは、散乱角度のコサインの平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。
シミュレーション部101は、上記(10)式、(11)式の計算を単位時間毎に繰り返すことにより、照射部105から受光部106までの光子の移動経路を算出することができる。シミュレーション部101は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部101は、10個の光子について移動距離を算出する。
However, g shows the anisotropic parameter which is the average of the cosine of a scattering angle, and the anisotropic parameter of skin is about 0.9.
The simulation unit 101 can calculate the movement path of photons from the irradiation unit 105 to the light receiving unit 106 by repeating the calculations of the above equations (10) and (11) every unit time. The simulation unit 101 calculates a movement distance for a plurality of photons. For example, the simulation unit 101 calculates the movement distance for 10 8 photons.

図2は、シミュレーション部が算出した各層(表皮層、真皮層、皮下組織層)の伝搬光路長分布を示すグラフである。
図2の横軸は光子の照射からの経過時間を示し、縦軸は光路長の対数表示を示している。シミュレーション部101は、受光部106に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部101は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図2に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 2 is a graph showing the propagation optical path length distribution of each layer (skin layer, dermis layer, subcutaneous tissue layer) calculated by the simulation unit.
The horizontal axis of FIG. 2 shows the elapsed time from photon irradiation, and the vertical axis shows the logarithmic display of the optical path length. The simulation unit 101 classifies each movement path of photons that have reached the light receiving unit 106 for each layer through which the movement path passes. The simulation unit 101 calculates the propagation path length distribution of each layer of the skin as shown in FIG. 2 by calculating the average length of the movement path of the photons that arrived per unit time for each classified layer.

図3は、シミュレーション部が算出した時間分解波形を示すグラフである。
図3の横軸は光子の照射からの経過時間を示し、縦軸は受光部106が検出した光子数を示している。シミュレーション部101は、単位時間毎に受光部106に到達した光子の個数を算出することで、図3に示すような皮膚モデルの時間分解波形を算出する。
上述したような処理により、シミュレーション部101は、複数の波長に対して、皮膚モデルの伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部101は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの直交性が高くなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 3 is a graph showing a time-resolved waveform calculated by the simulation unit.
The horizontal axis in FIG. 3 indicates the elapsed time from the photon irradiation, and the vertical axis indicates the number of photons detected by the light receiving unit 106. The simulation unit 101 calculates the time-resolved waveform of the skin model as shown in FIG. 3 by calculating the number of photons reaching the light receiving unit 106 per unit time.
Through the processing described above, the simulation unit 101 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 101 may calculate the propagation optical path length distribution and the time-resolved waveform with respect to the wavelength at which the orthogonality of the absorption spectrum of the skin main components (water, protein, lipid, glucose, etc.) becomes high.

図4は、皮膚の主成分の吸収スペクトルを示すグラフである。
図4の横軸は照射する光の波長を示し、縦軸は光吸収係数を示している。図4を参照すると、グルコースの光吸収係数は、波長が1600nmのときに極大となり、水の光吸収係数は、波長が1450nmのときに極大となる。そのため、シミュレーション部101は、例えば1450nm、1600nmといった皮膚の主成分の吸収スペクトルの直交性が高くなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 4 is a graph showing the absorption spectrum of the main component of the skin.
The horizontal axis in FIG. 4 indicates the wavelength of light to be irradiated, and the vertical axis indicates the light absorption coefficient. Referring to FIG. 4, the light absorption coefficient of glucose becomes maximum when the wavelength is 1600 nm, and the light absorption coefficient of water becomes maximum when the wavelength is 1450 nm. For this reason, the simulation unit 101 may calculate the propagation optical path length distribution and the time-resolved waveform with respect to a wavelength at which the orthogonality of the absorption spectrum of the main component of skin, such as 1450 nm and 1600 nm, becomes high.

次に、皮膚モデルの光路長バラツキを説明する。
シミュレーション部101が算出した複数の光子について移動距離を算出した後、当該算出結果に基づいて、皮膚モデルの光路長バラツキを算出する。例えば、各光子の各層の移動距離lkm(t)をそれぞれ記憶しておく。光路長バラツキδkm(t)は、シミュレーションの終了後に、下記の(12)式、(13)式に基づいて算出される。
Next, the optical path length variation of the skin model will be described.
After calculating the movement distance for the plurality of photons calculated by the simulation unit 101, the optical path length variation of the skin model is calculated based on the calculation result. For example, the moving distance l km (t) of each layer of each photon is stored. The optical path length variation δ km (t) is calculated based on the following equations (12) and (13) after the simulation is completed.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

シミュレーション部101は、複数の波長に対する皮膚モデルの伝搬光路長分布、時間分解波形及び光路長バラツキを算出すると、伝搬光路長分布の情報を光路長分布記憶部102に記憶させ、時間分解波形の情報を時間分解波形記憶部103に記憶させ、光路長バラツキの情報を光路長バラツキ記憶部104に記憶させる。   When the simulation unit 101 calculates the propagation optical path length distribution, time-resolved waveform, and optical path length variation of the skin model for a plurality of wavelengths, the information on the propagation optical path length distribution is stored in the optical path length distribution storage unit 102, and the time-resolved waveform information is stored. Is stored in the time-resolved waveform storage unit 103, and information on optical path length variation is stored in the optical path length variation storage unit 104.

次に、血糖値測定装置100が血糖値を測定する動作について説明する。
図5は、血糖値測定装置が血糖値を測定する動作を示す第1のフローチャートである。
まず、ユーザが血糖値測定装置100を皮膚にあてがい、測定開始スイッチ(図示せず)の押下等によって血糖値測定装置100を動作させると、照射部105は、皮膚に対して波長λの短時間パルス光を照射する(ステップS1)。ここで、波長λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
Next, the operation in which the blood sugar level measuring apparatus 100 measures the blood sugar level will be described.
FIG. 5 is a first flowchart showing an operation in which the blood sugar level measuring apparatus measures the blood sugar level.
First, when the user places the blood glucose level measuring device 100 on the skin and operates the blood glucose level measuring device 100 by pressing a measurement start switch (not shown) or the like, the irradiation unit 105 shortens the wavelength λ 1 with respect to the skin. Time pulse light is irradiated (step S1). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

照射部105が短時間パルス光を照射すると、受光部106は、照射部105から照射され、皮膚によって後方散乱した光を受光する(ステップS2)。このとき、受光部106は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。   When the irradiating unit 105 irradiates the pulsed light for a short time, the light receiving unit 106 receives the light irradiated from the irradiating unit 105 and backscattered by the skin (step S2). At this time, the light receiving unit 106 registers the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.

受光部106が受光を完了すると、計測光強度取得部107は、受光部106の内部メモリに格納されている、異なる時刻tにおける受光強度I(t)を皮膚の層の数と同じ数だけ取得する(ステップS3)。すなわち、計測光強度取得部107は、3つの異なる時刻t〜tにおける受光強度I(t)〜I(t)を取得する。ここで、皮膚の層の数と同じ数だけ受光強度を取得する理由は、後述する処理において、皮膚の各層の光吸収係数を連立方程式によって算出するためである。計測光強度取得部107が取得した受光強度は、計測光強度記憶部108に記憶される。 When the light receiving unit 106 completes the light reception, the measurement light intensity acquisition unit 107 acquires the same number of received light intensity I (t) at different times t stored in the internal memory of the light receiving unit 106 as the number of skin layers. (Step S3). That is, the measurement light intensity acquisition unit 107 acquires the received light intensity I (t 1 ) to I (t 3 ) at three different times t 1 to t 3 . Here, the reason why the received light intensity is obtained by the same number as the number of skin layers is to calculate the light absorption coefficient of each skin layer by simultaneous equations in the processing described later. The received light intensity acquired by the measurement light intensity acquisition unit 107 is stored in the measurement light intensity storage unit 108.

また、計測光強度取得部が光強度を取得する時刻t〜tは、皮膚の各層の伝搬光路長分布のピークとなる時刻であると良い。すなわち、照射部105が短時間パルス光を照射した時刻に、図2に示すグラフにおいて皮膚の各層の光路長が極大となる時間を加算した時刻の光強度をそれぞれ取得すると良い。 Also, the times t 1 to t 3 at which the measurement light intensity acquisition unit acquires the light intensity may be times when the propagation optical path length distribution of each layer of the skin becomes a peak. In other words, the light intensity at the time obtained by adding the time when the optical path length of each layer of the skin is maximized in the graph shown in FIG.

計測光強度取得部107が、受光強度I(t)〜I(t)を取得すると、光路長取得部109は、光路長分布記憶部102が記憶する波長λの伝搬光路長分布から、時刻t〜tにおける皮膚の各層の光路長L(t)〜L(t)、L(t)〜L(t)、L(t)〜L(t)を取得する(ステップS4)。 When the measurement light intensity acquisition unit 107 acquires the received light intensities I (t 1 ) to I (t 3 ), the optical path length acquisition unit 109 calculates from the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 102. , the optical path length of each layer of the skin at time t 1 ~t 3 L 1 (t 1) ~L 1 (t 3), L 2 (t 1) ~L 2 (t 3), L 3 (t 1) ~L 3 (t 3 ) is acquired (step S4).

また、計測光強度取得部107が、受光強度I(t)〜I(t)を取得すると、無吸収時光強度取得部110は、時間分解波形記憶部103が記憶する波長λの時間分解波形から、時刻t〜tにおける検出光子数N(t)〜N(t)を取得する(ステップS5)。 When the measurement light intensity acquisition unit 107 acquires the received light intensities I (t 1 ) to I (t 3 ), the non-absorption light intensity acquisition unit 110 stores the time of the wavelength λ 1 stored in the time-resolved waveform storage unit 103. from degradation waveform, time t 1 detected in ~t 3 photon number N (t 1) ~N (t 3) to get (step S5).

本実施形態において、光吸収係数算出部111は、先ず下記の(1)式から任意の層の光吸収係数の近似解を算出する。次いで、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出する。そして、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行う。これにより、任意の層の光吸収係数を算出する。但し、自然対数をln(・)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)とする。 In the present embodiment, the light absorption coefficient calculation unit 111 first calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1). Then, the approximate solution is substituted into the left side of the following equation (2) to calculate the primary correction value of the light absorption coefficient of an arbitrary layer. Then, substituting the primary correction value into the left side of the following equation (2) to calculate the secondary correction value of the light absorption coefficient of an arbitrary layer until convergence to the true value of the light absorption coefficient of the arbitrary layer Repeat. Thereby, the light absorption coefficient of an arbitrary layer is calculated. However, the natural logarithm is ln (•), the light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), and the light intensity received by the light receiving means at time t is I (t), The optical absorption coefficient of the m-th layer is μ am , the optical path length of the m-th layer at time t in the model of the propagation optical path length distribution is L m (t), the number of incident photons is N in , the incident light intensity is I in , The optical path length variation of the m layer is assumed to be δ km (t).

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

ここで、(1)式及び(2)式の導出過程について説明する。
短時間パルス光が皮膚に入射することで得られる後方散乱光の時間分解波形において、相対的に早い時刻に受光される光ほど皮膚の表面から浅い部分のみを通る。逆に、相対的に遅い時間に受光される光ほど皮膚の表面から深い領域まで到達する。このように異なる時刻における受光強度は、異なる経路分布を経て伝播された光成分に対応する。つまり、ある時刻の光強度には、その時刻に応じた光経路分布中の吸光情報が含まれている。したがって、時間分解波形の検出時刻ごとの光経路をシミュレーションや実測により予め求めておけば、逆問題解法により、光吸収係数の空間分布を推定することができる。本発明は、この原理に基づき、散乱体からの後方散乱光の時間分解波形を基に内部吸収分布を再構成し、その吸収分布から物質濃度を求めるものである。
Here, the derivation process of the equations (1) and (2) will be described.
In the time-resolved waveform of backscattered light obtained by the incidence of short-time pulsed light on the skin, the light received at a relatively early time passes only through the shallower part from the skin surface. Conversely, the light received at a relatively late time reaches a deeper region from the surface of the skin. Thus, the received light intensity at different times corresponds to the light components propagated through different path distributions. That is, the light intensity at a certain time includes light absorption information in the light path distribution corresponding to the time. Therefore, if the optical path for each detection time of the time-resolved waveform is obtained in advance by simulation or actual measurement, the spatial distribution of the light absorption coefficient can be estimated by the inverse problem solving method. Based on this principle, the present invention reconstructs the internal absorption distribution based on the time-resolved waveform of the backscattered light from the scatterer, and obtains the substance concentration from the absorption distribution.

照射部から生体内に入射した光は、散乱過程を繰り返しながら伝搬し、受光部で受光される。受光部に到達した光は、その検出時刻によって、生体内の局所部位(ここでは各層)を選択的に通過してくると考えることができる。本発明では、生体内の光子の伝搬経路は散乱係数により特徴づけられ、光路に沿った光強度変化は光吸収係数によって特徴づけられるとする。ここで時刻tに検出される光強度I(t)は、入射光強度Iinで規格化すると、時間分解波形の時刻tに検出された光子のうちk番目のものの入射時の強度を1としたときの光強度をi(t)、入射光子数をNin、時刻tに検出される光子数をN(t)としたとき、下記の(14)式のように表される。 Light incident on the living body from the irradiation unit propagates while repeating the scattering process, and is received by the light receiving unit. It can be considered that the light that has reached the light receiving section selectively passes through a local site (here, each layer) in the living body depending on the detection time. In the present invention, it is assumed that the propagation path of photons in a living body is characterized by a scattering coefficient, and the change in light intensity along the optical path is characterized by a light absorption coefficient. Here, when the light intensity I (t) detected at time t is normalized by the incident light intensity I in , the intensity at the time of incidence of the kth photon detected at time t of the time-resolved waveform is 1. When the light intensity is i k (t), the number of incident photons is N in , and the number of photons detected at time t is N (t), the following equation (14) is obtained.

Figure 0005834704
Figure 0005834704

なお、光子とは、単独の量子力学的な光子ではなく、連続に減衰するエネルギーを持つ光子束を指すものとする。   Note that a photon is not a single quantum mechanical photon but a photon bundle having continuously decaying energy.

また、i(t)は微視的ベア・ランベルト(Beer-Lambert)則の総和として下記の(15)式のように表される。 Further, i k (t) is expressed as the following formula (15) as the sum of microscopic Beer-Lambert rules.

Figure 0005834704
Figure 0005834704

ここで、lは生体内の光子の移動距離、cは生体内での光速である。 Here, l is the moving distance, c s of photons in vivo is the velocity of light in vivo.

次に、生体内の光吸収係数が各層で異なっている場合を考える。全層数をnとし、第m層目における光吸収係数をμam、k番目の光子が各層を通過した距離をlkmとすると、上記の(15)式は下記の(16)式となる。 Next, consider a case where the light absorption coefficient in the living body is different in each layer. When the total number of layers is n, the light absorption coefficient in the m-th layer is μ am , and the distance that the k-th photon has passed through each layer is 1 km , the above equation (15) becomes the following equation (16): .

Figure 0005834704
Figure 0005834704

よって、上記の(14)式、(16)式より下記の(17)式となる。   Therefore, the following equation (17) is obtained from the above equations (14) and (16).

Figure 0005834704
Figure 0005834704

ここで、検出された光子毎の伝搬経路のバラツキを考慮する。その場合、検出光強度時間波形I(t)は、時刻tに検出される全光子の第m層を伝搬した距離の1光子当たりの平均値L’(t)と時刻tに検出されるk番目の光子の第m層を伝搬した距離lkm(t)との差δkm(t)を導入することにより、下記の(18)式のように表される。 Here, the variation in the propagation path for each detected photon is considered. In that case, the detected light intensity time waveform I (t) is detected at an average value L m ′ (t) per one photon of the distance propagated through the m-th layer of all photons detected at time t and at time t. By introducing the difference δ km (t) from the distance l km (t) propagated through the m-th layer of the k-th photon, the following equation (18) is obtained.

Figure 0005834704
Figure 0005834704

上記の(18)式を変形すると、下記の(19)式が得られる。   When the above equation (18) is modified, the following equation (19) is obtained.

Figure 0005834704
Figure 0005834704

また、L’(t)を、第m層を伝搬した距離の検出光子数N(t)の総和(=光路長分布)L(t)を用いて表すと下記の(13)式となる。 Further, when L m ′ (t) is expressed by using the total (= optical path length distribution) L m (t) of the detected photon number N (t) of the distance propagated through the m-th layer, the following equation (13) Become.

Figure 0005834704
Figure 0005834704

よって、上記の(19)式は、L(t)を用いて表すと下記の(2)式となる。 Therefore, the above expression (19) becomes the following expression (2) when expressed using L m (t).

Figure 0005834704
Figure 0005834704

このようにして、(2)式が導出される。   In this way, equation (2) is derived.

なお、上記の(2)式は一般式である。(2)式を、本実施形態における三層構造に適用するよう変形すると下記の(20)式となる。   The above formula (2) is a general formula. When the equation (2) is modified to be applied to the three-layer structure in the present embodiment, the following equation (20) is obtained.

Figure 0005834704
Figure 0005834704

上記の(18)式について、下記の(21)式のテーラー展開の公式から、下記の(22)式の通りexp関数についてテーラー展開を行うと、(18)式は下記の(23)式となる。   As for the above equation (18), when the Taylor expansion is performed for the exp function according to the following equation (22) from the formula for the Taylor expansion of the following equation (21), the equation (18) is expressed as the following equation (23): Become.

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

上記の(23)式を整理すると、下記の(24)式となる。   When the above equation (23) is arranged, the following equation (24) is obtained.

Figure 0005834704
Figure 0005834704

ここで、δkm(t)は全光子に対する積算が0になるので、(24)式の一次項は下記の(25)式の通り0となる。 Here, since δ km (t) is zero for all photons, the primary term of equation (24) is 0 as shown in equation (25) below.

Figure 0005834704
Figure 0005834704

また、上記の(25)式の二次以上の項は十分小さいとして近似すると、下記の(26)式が得られる。   Further, if the second-order or higher term of the above equation (25) is approximated as sufficiently small, the following equation (26) is obtained.

Figure 0005834704
Figure 0005834704

上記の(26)式を整理し、さらに上記の(13)式を用いてL(t)を用いた表記にすると下記の(1)式となる。 If the above equation (26) is rearranged and further expressed using L m (t) using the above equation (13), the following equation (1) is obtained.

Figure 0005834704
Figure 0005834704

このようにして、(1)式が導出される。   In this way, equation (1) is derived.

なお、上記の(1)式は一般式である。(1)式を、本実施形態における三層構造に適用するように変形すると下記の(27)式となる。   The above formula (1) is a general formula. When the equation (1) is modified so as to be applied to the three-layer structure in the present embodiment, the following equation (27) is obtained.

Figure 0005834704
Figure 0005834704

図5に戻り、光路長取得部109が皮膚の各層の光路長を取得し、無吸収時光強度取得部110が検出光子数を取得すると、光吸収係数算出部111は、(1)式を本実施形態の三層構造に適用した(27)式に基づいて(ステップS6)、皮膚の各層の光吸収係数μ〜μの初期値を算出する(ステップS7)。ここで、光吸収係数μa1は表皮層の光吸収係数を示し、光吸収係数μa2は真皮層の光吸収係数を示し、光吸収係数μa3は、皮下組織層の光吸収係数を示す。 Returning to FIG. 5, when the optical path length acquisition unit 109 acquires the optical path length of each layer of the skin and the non-absorption light intensity acquisition unit 110 acquires the number of detected photons, the light absorption coefficient calculation unit 111 calculates the equation (1). Based on the equation (27) applied to the three-layer structure of the embodiment (step S6), the initial values of the light absorption coefficients μ 1 to μ 3 of each layer of the skin are calculated (step S7). Here, the light absorption coefficient μ a1 represents the light absorption coefficient of the epidermis layer, the light absorption coefficient μ a2 represents the light absorption coefficient of the dermis layer, and the light absorption coefficient μ a3 represents the light absorption coefficient of the subcutaneous tissue layer.

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部105が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部101が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulse light emitted by the irradiation unit 105. N in indicates the number of photons for which the simulation unit 101 has simulated irradiation.

光吸収係数算出部111が皮膚の各層の光吸収係数μa1〜μa3の初期値を算出すると、光吸収係数算出部111は、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μa1〜μa3の初期値を算出したか否かを判定する(ステップS8)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部111は、4種類の波長λ〜λに対して光吸収係数μ〜μを算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 111 calculates the initial values of the light absorption coefficients μ a1 to μ a3 of each layer of the skin, the light absorption coefficient calculation unit 111 emits light for the same number of wavelengths as the number of types of main components of the skin. It is determined whether or not the initial values of the absorption coefficients μ a1 to μ a3 have been calculated (step S8). In the present embodiment, since the blood sugar level is measured with four types of main components of the skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 111 performs light for four wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ 1 to μ 3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部111が、光吸収係数μa1〜μa3の初期値を算出していない波長λ〜λがあると判定した場合(ステップS8:NO)、ステップS1に戻り、まだ光吸収係数μa1〜μa3の初期値を算出していない波長λ〜λの光吸収係数μa1〜μa3の初期値の算出を行う。 When the light absorption coefficient calculating unit 111 determines that there are wavelengths λ 1 to λ 4 for which the initial values of the light absorption coefficients μ a1 to μ a3 are not calculated (step S8: NO), the process returns to step S1 and still light The initial values of the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 for which the initial values of the absorption coefficients μ a1 to μ a3 are not calculated are calculated.

他方、光吸収係数算出部111が、波長λ〜λの光吸収係数μa1〜μa3の初期値を算出していると判定した場合(ステップS8:YES)、光吸収係数算出部111は、(2)式を本実施形態の三層構造に適用した(20)式に基づいて(ステップS10)、皮膚の各層の光吸収係数μa1〜μa3の補正値を算出する(ステップS11)。 On the other hand, when the light absorption coefficient calculation unit 111 determines that the initial values of the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 are calculated (step S8: YES), the light absorption coefficient calculation unit 111 Calculates the correction values of the light absorption coefficients μ a1 to μ a3 of each layer of the skin based on the expression (20) obtained by applying the expression (2) to the three-layer structure of the present embodiment (step S10) (step S11). ).

ここで、補正値の算出は繰り返し行われる。具体的には、皮膚の各層の光吸収係数μ〜μの初期値、つまり近似解を上記の(20)式の左辺に代入して皮膚の各層の光吸収係数μa1〜μa3の一次補正値を算出した後、当該一次補正値を上記の(20)式の左辺に代入して皮膚の各層の光吸収係数μa1〜μa3の二次補正値を算出する。この補正値の算出は、光吸収係数の真値に収束するまで繰り返し行われる。 Here, the calculation of the correction value is repeated. Specifically, the initial value of the light absorption coefficient μ 1 to μ 3 of each layer of skin, that is, the approximate solution is substituted into the left side of the above equation (20), and the light absorption coefficients μ a1 to μ a3 of each layer of the skin After calculating the primary correction value, the primary correction value is substituted into the left side of the above equation (20) to calculate the secondary correction values of the light absorption coefficients μ a1 to μ a3 of each layer of the skin. The calculation of the correction value is repeatedly performed until it converges to the true value of the light absorption coefficient.

なお、繰り返し回数は、前回の算出値(例えば一次補正値)と今回の算出値(例えば二次補正値)との変化量がある一定量以下になるまで繰り返し行ってもよい。また、繰り返し回数を予め設定しておいてもよい。   Note that the number of repetitions may be repeated until the amount of change between the previous calculated value (for example, the primary correction value) and the current calculated value (for example, the secondary correction value) falls below a certain amount. Further, the number of repetitions may be set in advance.

ここで、上記の(20)式を用いて、繰り返し計算をする際の打ち切り判断について説明する。例として、血糖値測定を挙げる。打ち切り判断は以下の前提から見積もる。
モデルを単純化してグルコース水溶液について考える。医療現場で血糖値測定に求められる精度は±10mg/dlとされる。グルコースの吸収スペクトルの吸収ピーク付近の1600nmの光を測定に用いる。1600nmにおける水の光吸収係数を0.7/mm、グルコースの光吸収係数を1.3/mmとする。10mg/dlのグルコース水溶液の体積分率は6.2×10−5とする。グルコース水溶液の光吸収係数はμは下記の(28)式で表される。
Here, using the above equation (20), a description will be given of the abort determination when performing repeated calculations. An example is blood glucose measurement. Judgment is made based on the following assumptions.
Simplify the model and consider an aqueous glucose solution. The accuracy required for blood glucose level measurement at a medical site is ± 10 mg / dl. Light of 1600 nm near the absorption peak of the glucose absorption spectrum is used for the measurement. The light absorption coefficient of water at 1600 nm is 0.7 / mm, and the light absorption coefficient of glucose is 1.3 / mm. The volume fraction of the 10 mg / dl glucose aqueous solution is set to 6.2 × 10 −5 . Light absorption coefficient of glucose aqueous solution mu a is expressed by (28) below.

Figure 0005834704
Figure 0005834704

ここで、μagはグルコースの光吸収係数、μawは水の光吸収係数、cvgはグルコースの体積分率(体積濃度)、cvwは水の体積分率(体積濃度)である。 Here, μ ag is the light absorption coefficient of glucose, μ aw is the light absorption coefficient of water, c vg is the volume fraction (volume concentration) of glucose, and cv w is the volume fraction of water (volume concentration).

上記の条件で計算すると、グルコース10mg/dlの変動で生じるグルコース水溶液の光吸収係数は約0.000037となる。つまり、グルコース濃度±10mg/dlの定量のためには光吸収係数±0.000037が判別できなければならない。したがって、繰り返し計算をする際の打ち切り判断については、計算結果の小数点以下5桁目の数字が数回から10回程度の計算にわたって変動しないようであれば、収束したとみなしてもよいことになる。   When calculated under the above conditions, the light absorption coefficient of the glucose aqueous solution produced by the fluctuation of glucose 10 mg / dl is about 0.000037. That is, in order to determine the glucose concentration ± 10 mg / dl, the light absorption coefficient ± 0.000037 must be discriminated. Therefore, regarding the abortion determination when performing repeated calculations, if the number of the fifth decimal place in the calculation result does not fluctuate over several to about 10 calculations, it may be regarded as converged. .

図5に戻り、光吸収係数μa1〜μa3の真値に収束していないと判定した場合(ステップS12:NO)、ステップS10に戻り、光吸収係数μ〜μの補正値の算出を行う。 Returning to FIG. 5, when it is determined that the light absorption coefficients μ a1 to μ a3 have not converged to the true values (step S12: NO), the process returns to step S10 and the correction values of the light absorption coefficients μ 1 to μ 3 are calculated. I do.

他方、光吸収係数μa1〜μa3の真値に収束したと判定した場合(ステップS12:YES)、光吸収係数算出部111が、皮膚の各層の光吸収係数μa1〜μa3を取得する(ステップS13)。光吸収係数μa1〜μa3は前記波長λ〜λについて取得する必要があるので、同じ手順を各波長について行う(ステップS14)。前記波長λ〜λについて光吸収係数μa1〜μa3が取得できると、濃度算出部113は、式(29)に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS15)。 On the other hand, when it is determined that the light absorption coefficients μ a1 to μ a3 have converged to the true values (step S12: YES), the light absorption coefficient calculation unit 111 acquires the light absorption coefficients μ a1 to μ a3 of each layer of the skin. (Step S13). Since the light absorption coefficients μ a1 to μ a3 need to be acquired for the wavelengths λ 1 to λ 4 , the same procedure is performed for each wavelength (step S14). When the light absorption coefficients μ a1 to μ a3 can be acquired for the wavelengths λ 1 to λ 4 , the concentration calculation unit 113 calculates the concentration of glucose contained in the dermis based on the equation (29) (step S15).

Figure 0005834704
Figure 0005834704

但し、第m層における光吸収係数をμam、皮膚を形成する第i成分の光吸収係数をμai、皮膚を形成する第i成分の体積濃度をcviとする。
なお、上記の(29)式は一般式である。(29)式を、本実施形態における4つの波長に適用するよう変形すると下記の(30)式となる。
Here, the light absorption coefficient in the m-th layer is μ am , the light absorption coefficient of the i-th component forming the skin is μ ai , and the volume concentration of the i-th component forming the skin is c vi .
The above formula (29) is a general formula. When the equation (29) is modified to apply to the four wavelengths in the present embodiment, the following equation (30) is obtained.

Figure 0005834704
Figure 0005834704

但し、μa2(λ)は真皮層における波長λ〜λの光吸収係数、μaw(λ)は真皮層における波長λ〜λの水の光吸収係数、μap(λ)は真皮層における波長λ〜λのたんぱく質の光吸収係数、μal(λ)は真皮層における波長λ〜λの脂質の光吸収係数、μag(λ)は真皮層における波長λ〜λのグルコースの光吸収係数を示す。また、cvwは水の体積濃度(体積分率)、cvpはたんぱく質の体積濃度(体積分率)、cvlは脂質の体積濃度(体積分率)、cvgはグルコースの体積濃度(体積分率)を示す。 However, μ a2 (λ) is the optical absorption coefficient of the wavelength lambda 1 to [lambda] 4 in the dermis layer, μ aw (λ) is the optical absorption coefficient of water in the wavelength lambda 1 to [lambda] 4 in the dermis layer, μ ap (λ) is The light absorption coefficient of the protein with wavelengths λ 1 to λ 4 in the dermis layer, μ al (λ) is the light absorption coefficient of the lipid with wavelengths λ 1 to λ 4 in the dermis layer, and μ ag (λ) is the wavelength λ 1 in the dermis layer. The light absorption coefficient of glucose of ˜λ 4 is shown. C vw is the volume concentration of water (volume fraction), c vp is the volume concentration of protein (volume fraction), c vl is the volume concentration of lipid (volume fraction), and c vg is the volume concentration of volume (volume). Fraction).

濃度算出部113は、成分吸収情報記憶部112に記憶されている測定対象中の主成分の光吸収係数と、上記の(30)式により算出された真皮層における光吸収係数μa2とからグルコースの濃度を算出する。 The concentration calculation unit 113 calculates glucose from the light absorption coefficient of the main component in the measurement target stored in the component absorption information storage unit 112 and the light absorption coefficient μ a2 in the dermis layer calculated by the above equation (30). The concentration of is calculated.

なお、上記の(29)式に替えて下記の(31)式を用いてグルコースの濃度を算出してもよい。   Note that the glucose concentration may be calculated using the following equation (31) instead of the above equation (29).

Figure 0005834704
Figure 0005834704

但し、第m層における光吸収係数をμam、皮膚を形成する第i成分のモル吸光係数をε、皮膚を形成する第i成分のモル濃度をcとする。
なお、上記の(31)式は一般式である。(31)式を、本実施形態における三層構造に適用するよう変形すると下記の(32)式となる。
However, the light absorption coefficient in the m-th layer is μ am , the molar extinction coefficient of the i-th component forming the skin is ε i , and the molar concentration of the i-th component forming the skin is c i .
The above formula (31) is a general formula. When the equation (31) is modified to be applied to the three-layer structure in the present embodiment, the following equation (32) is obtained.

Figure 0005834704
Figure 0005834704

但し、ε(λ)は真皮層における波長λ〜λの水のモル吸光係数、ε(λ)は真皮層における波長λ〜λのたんぱく質のモル吸光係数、ε(λ)は真皮層における波長λ〜λの脂質のモル吸光係数、ε(λ)は真皮層における波長λ〜λのグルコースのモル吸光係数を示す。また、cは水のモル濃度、cはたんぱく質のモル濃度、cは脂質のモル濃度、cはグルコースのモル濃度を示す。 Where ε w (λ) is the molar extinction coefficient of water of wavelengths λ 1 to λ 4 in the dermis layer, ε p (λ) is the molar extinction coefficient of protein of wavelengths λ 1 to λ 4 in the dermis layer, and ε l (λ ) Represents the molar extinction coefficient of lipids with wavelengths λ 1 to λ 4 in the dermis layer, and ε g (λ) represents the molar extinction coefficient of glucose with wavelengths λ 1 to λ 4 in the dermis layer. Further, c w represents molar concentration of water, c p is the molar concentration of the protein, c l is the molar concentration of the lipid, c g is the molar concentration of glucose.

濃度算出部113は、成分吸収情報記憶部112に記憶されている測定対象中の主成分のモル吸光係数と、上記の(32)式により算出された真皮層におけるモル吸光係数εとからグルコースの濃度を算出する。   The concentration calculation unit 113 calculates the glucose concentration from the molar extinction coefficient of the main component in the measurement target stored in the component absorption information storage unit 112 and the molar extinction coefficient ε in the dermis layer calculated by the above equation (32). Calculate the concentration.

濃度単位変換部114は、濃度算出部113で算出したグルコースの濃度の単位を所望の単位に変換する。濃度表示部115は、グルコースの濃度を表示する。   The concentration unit converter 114 converts the unit of glucose concentration calculated by the concentration calculator 113 into a desired unit. The concentration display unit 115 displays the glucose concentration.

このように、本実施形態によれば、皮膚に短時間パルス光を照射し、所定の時刻において受光した光の強度と、伝搬光路長分布のモデルの所定の時刻における各層の光路長と、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度と、各層の光路長バラツキと、に基づいて、真皮層の光吸収係数を選択的に算出することができる。仮に、光吸収係数を算出する際に、各層の光路長バラツキが加味されないとすると、得られる結果は近似解となり、目的成分の含有量が少ない場合など高精度な検出結果が求められる場合に対応が困難となる。これに対して、本実施形態においては、各層の光路長バラツキが加味されるので、その算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   As described above, according to this embodiment, the skin is irradiated with pulsed light for a short time, the intensity of the light received at a predetermined time, the optical path length of each layer at the predetermined time of the model of the propagation optical path length distribution, and the short The light absorption coefficient of the dermis layer can be selectively calculated based on the light intensity at a predetermined time of the time-resolved waveform model of the time pulse light and the optical path length variation of each layer. If the optical path length variation of each layer is not taken into account when calculating the light absorption coefficient, the obtained result is an approximate solution, and it corresponds to the case where a highly accurate detection result is required such as when the content of the target component is low It becomes difficult. On the other hand, in this embodiment, since the optical path length variation of each layer is taken into consideration, the calculation result is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本実施形態によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(2)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。   In addition, according to the present embodiment, when calculating the light absorption coefficient, iterative calculation using the above formulas (1) and (2) is performed until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy.

(第2実施形態)
次に、本発明の第2の実施形態について詳しく説明する。
第2の実施形態は、第1の実施形態による血糖値測定装置100と同じ構成であり、計測光強度取得部107、光路長取得部109、無吸収時光強度取得部110、光吸収係数算出部111の動作が異なる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail.
The second embodiment has the same configuration as the blood glucose level measuring apparatus 100 according to the first embodiment, and includes a measurement light intensity acquisition unit 107, an optical path length acquisition unit 109, a non-absorption light intensity acquisition unit 110, and a light absorption coefficient calculation unit. 111 operations are different.

図6は、血糖値測定装置が血糖値を測定する動作を示す第2のフローチャートである。
まず、血糖値測定装置100を動作させると、照射部105は、皮膚に対して波長λの短時間パルス光を照射する(ステップS21)。ここで、波長λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
FIG. 6 is a second flowchart showing an operation in which the blood sugar level measuring apparatus measures the blood sugar level.
First, when the blood sugar level measuring apparatus 100 is operated, the irradiating unit 105 irradiates the skin with short-time pulsed light having a wavelength λ 1 (step S21). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

照射部105が短時間パルス光を照射すると、受光部106は、照射部105から照射され、皮膚によって後方散乱した光を受光する(ステップS22)。このとき、受光部106は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。
受光部106が受光を完了すると、計測光強度取得部107は、受光部106の内部メモリに格納されている受光強度から、ある時間τ1〜τ2の間の受光強度の時間分布を取得する(ステップS23)。
When the irradiation unit 105 irradiates the pulsed light for a short time, the light receiving unit 106 receives the light irradiated from the irradiation unit 105 and back-scattered by the skin (step S22). At this time, the light receiving unit 106 registers the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.
When the light receiving unit 106 completes the light reception, the measurement light intensity acquisition unit 107 acquires a time distribution of the light reception intensity during a certain time τ1 to τ2 from the light reception intensity stored in the internal memory of the light reception unit 106 (step) S23).

計測光強度取得部107が、時間τ1〜τ2の間の受光強度の時間分布を取得すると、光路長取得部109は、光路長分布記憶部102が記憶する波長λの伝搬光路長分布から、ある時間τ1〜τ2の間の皮膚の各層の光路長L〜Lを取得する(ステップS24)。
また、計測光強度取得部107が、時間τ1〜τ2の間の受光強度を取得すると、無吸収時光強度取得部110は、時間分解波形記憶部103が記憶する波長λの時間分解波形から、ある時間τ1〜τ2の間の検出光子数を取得する(ステップS25)。
When the measurement light intensity acquisition unit 107 acquires the time distribution of the received light intensity during the time τ1 to τ2, the optical path length acquisition unit 109 calculates from the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 102. The optical path lengths L 1 to L 3 of each layer of the skin during a certain time τ 1 to τ 2 are acquired (step S 24).
Further, when the measurement light intensity acquisition unit 107 acquires the received light intensity during the time τ1 to τ2, the non-absorption light intensity acquisition unit 110 calculates the time-resolved waveform of the wavelength λ 1 stored in the time-resolved waveform storage unit 103 from The number of detected photons between a certain time τ1 and τ2 is acquired (step S25).

本実施形態において、光吸収係数算出部111は、先ず下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出する。次いで、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出する。そして、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行う。これにより、任意の層の光吸収係数を算出する。但し、自然対数をln(・)、短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、受光部106が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)とする。 In the present embodiment, the light absorption coefficient calculation unit 111 first calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1) or its integral equation. Next, the approximate solution is substituted into the left side of the following equation (3) to calculate a primary correction value of the light absorption coefficient of an arbitrary layer. Then, substituting the primary correction value into the left side of the following equation (3) to calculate the secondary correction value of the light absorption coefficient of an arbitrary layer until convergence to the true value of the light absorption coefficient of the arbitrary layer Repeat. Thereby, the light absorption coefficient of an arbitrary layer is calculated. However, the natural logarithm is ln (·), the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light is N (t), the light intensity received by the light receiving unit 106 at time t is I (t), The light absorption coefficient of the m layer is μ am , the optical path length of the m-th layer at time t in the propagation optical path length distribution model is L m (t), the number of incident photons is N in , the incident light intensity is I in , and the m-th layer Is represented by δ km (t).

Figure 0005834704
Figure 0005834704
Figure 0005834704
Figure 0005834704

なお、上記の(1)式は一般式である。(1)式を、本実施形態における三層構造に適用するように変形すると下記の(27)式となる。   The above formula (1) is a general formula. When the equation (1) is modified so as to be applied to the three-layer structure in the present embodiment, the following equation (27) is obtained.

Figure 0005834704
Figure 0005834704

また、上記の(3)式は、第1実施形態で用いた(2)式を積分型に発展させた式である。上記の(3)式は一般式である。(3)式を、本実施形態における三層構造に適用するように変形すると下記の(33)式となる。   Further, the above expression (3) is an expression obtained by developing the expression (2) used in the first embodiment into an integral type. The above formula (3) is a general formula. When the equation (3) is modified so as to be applied to the three-layer structure in the present embodiment, the following equation (33) is obtained.

Figure 0005834704
Figure 0005834704

図5に戻り、光路長取得部109が皮膚の各層の光路長を取得し、無吸収時光強度取得部110が検出光子数を取得すると、光吸収係数算出部111は、(1)式を本実施形態の三層構造に適用した上記の(27)式に基づいて(ステップS26)、皮膚の各層の光吸収係数μa1〜μa3の初期値を算出する(ステップS27)。ここで、光吸収係数μa1は表皮層の光吸収係数を示し、光吸収係数μa2は真皮層の光吸収係数を示し、光吸収係数μa3は、皮下組織層の光吸収係数を示す。 Returning to FIG. 5, when the optical path length acquisition unit 109 acquires the optical path length of each layer of the skin and the non-absorption light intensity acquisition unit 110 acquires the number of detected photons, the light absorption coefficient calculation unit 111 calculates the equation (1). Based on the above equation (27) applied to the three-layer structure of the embodiment (step S26), the initial values of the light absorption coefficients μ a1 to μ a3 of the skin layers are calculated (step S27). Here, the light absorption coefficient μ a1 represents the light absorption coefficient of the epidermis layer, the light absorption coefficient μ a2 represents the light absorption coefficient of the dermis layer, and the light absorption coefficient μ a3 represents the light absorption coefficient of the subcutaneous tissue layer.

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部105が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部101が照射のシミュレーションを行った光子の個数を示す。 Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulse light emitted by the irradiation unit 105. N in indicates the number of photons for which the simulation unit 101 has simulated irradiation.

光吸収係数算出部111が皮膚の各層の光吸収係数μa1〜μa3の初期値を算出すると、光吸収係数算出部111は、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μa1〜μa3の初期値を算出したか否かを判定する(ステップS28)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部111は、4種類の波長λ〜λに対して光吸収係数μa1〜μa3の初期値を算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 111 calculates the initial values of the light absorption coefficients μ a1 to μ a3 of each layer of the skin, the light absorption coefficient calculation unit 111 emits light for the same number of wavelengths as the number of types of main components of the skin. It is determined whether or not the initial values of the absorption coefficients μ a1 to μ a3 have been calculated (step S28). In the present embodiment, since the blood sugar level is measured with four types of main components of the skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 111 performs light for four wavelengths λ 1 to λ 4 . It is determined whether or not the initial values of the absorption coefficients μ a1 to μ a3 have been calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部111が、光吸収係数μa1〜μa3の初期値を算出していない波長λ〜λがあると判定した場合(ステップS28:NO)、ステップS1に戻り、まだ光吸収係数μa1〜μa3の初期値を算出していない波長λ〜λの光吸収係数μa1〜μa3の初期値の算出を行う。 If the light absorption coefficient calculation unit 111 determines that there are wavelengths λ 1 to λ 4 for which the initial values of the light absorption coefficients μ a1 to μ a3 are not calculated (step S28: NO), the process returns to step S1 and still light The initial values of the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 for which the initial values of the absorption coefficients μ a1 to μ a3 are not calculated are calculated.

他方、光吸収係数算出部111が、波長λ〜λの光吸収係数μa1〜μa3の初期値を算出していると判定した場合(ステップS28:YES)、光吸収係数算出部111は、(3)式を本実施形態の三層構造に適用した上記の(33)式に基づいて(ステップS30)、皮膚の各層の光吸収係数μa1〜μa3の補正値を算出する(ステップS31)。 On the other hand, when the light absorption coefficient calculation unit 111 determines that the initial values of the light absorption coefficients μ a1 to μ a3 of the wavelengths λ 1 to λ 4 are calculated (step S28: YES), the light absorption coefficient calculation unit 111 Calculates the correction value of the light absorption coefficient μ a1 to μ a3 of each layer of the skin based on the above equation (33) in which the equation (3) is applied to the three-layer structure of the present embodiment (step S30) ( Step S31).

ここで、補正値の算出は繰り返し行われる。具体的には、皮膚の各層の光吸収係数μa1〜μa3の初期値、つまり近似解を上記の(33)式の左辺に代入して皮膚の各層の光吸収係数μa1〜μa3の一次補正値を算出した後、当該一次補正値を上記の(33)式の左辺に代入して皮膚の各層の光吸収係数μa1〜μa3の二次補正値を算出する。この補正値の算出は、光吸収係数の真値に収束するまで繰り返し行われる。 Here, the calculation of the correction value is repeated. Specifically, the initial value of the light absorption coefficient μ a1 to μ a3 of each layer of skin, that is, the approximate solution is substituted into the left side of the above equation (33), and the light absorption coefficient μ a1 to μ a3 of each layer of the skin After calculating the primary correction value, the secondary correction value of the light absorption coefficients μ a1 to μ a3 of each layer of the skin is calculated by substituting the primary correction value into the left side of the above equation (33). The calculation of the correction value is repeatedly performed until it converges to the true value of the light absorption coefficient.

なお、繰り返し回数は、前回の算出値(例えば一次補正値)と今回の算出値(例えば二次補正値)との変化量がある一定量以下になるまで繰り返し行ってもよい。また、繰り返し回数を予め設定しておいてもよい。   Note that the number of repetitions may be repeated until the amount of change between the previous calculated value (for example, the primary correction value) and the current calculated value (for example, the secondary correction value) falls below a certain amount. Further, the number of repetitions may be set in advance.

光吸収係数μa1〜μa3の真値に収束していない判定した場合(ステップS32:NO)、ステップS30に戻り、光吸収係数μa1〜μa3の補正値の算出を行う。 When it is determined that the light absorption coefficients μ a1 to μ a3 have not converged to the true values (step S32: NO), the process returns to step S30, and correction values of the light absorption coefficients μ a1 to μ a3 are calculated.

他方、光吸収係数μa1〜μa3の真値に収束したと判定した場合(ステップS32:YES)、光吸収係数算出部111が、皮膚の各層の光吸収係数μa1〜μa3を取得する(ステップS33)。光吸収係数μa1〜μa3は前記波長λ〜λについて取得する必要があるので、同じ手順を各波長について行う(ステップS34)。前記波長λ〜λについて光吸収係数μa1〜μa3が取得できると、濃度算出部113は、上記の式(29)を本実施形態における4つの波長に適用した上記の(30)式に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS35)。 On the other hand, when it is determined that the light absorption coefficients μ a1 to μ a3 have converged to the true values (step S32: YES), the light absorption coefficient calculation unit 111 acquires the light absorption coefficients μ a1 to μ a3 of each layer of the skin. (Step S33). Since the light absorption coefficients μ a1 to μ a3 need to be acquired for the wavelengths λ 1 to λ 4 , the same procedure is performed for each wavelength (step S34). When the light absorption coefficients μ a1 to μ a3 can be acquired for the wavelengths λ 1 to λ 4 , the concentration calculation unit 113 applies the above formula (29) to the above four wavelengths in the present embodiment (30). Based on the above, the concentration of glucose contained in the dermis is calculated (step S35).

濃度算出部113は、成分吸収情報記憶部112に記憶されている測定対象中の主成分の光吸収係数と、上記の(30)式により算出された真皮層における光吸収係数μa2とからグルコースの濃度を算出する。 The concentration calculation unit 113 calculates glucose from the light absorption coefficient of the main component in the measurement target stored in the component absorption information storage unit 112 and the light absorption coefficient μ a2 in the dermis layer calculated by the above equation (30). The concentration of is calculated.

なお、濃度算出部113は、成分吸収情報記憶部112に記憶されている測定対象中の主成分のモル吸光係数と、上記の(32)式により算出された真皮層におけるモル吸光係数εとからグルコースの濃度を算出してもよい。   The concentration calculation unit 113 uses the molar extinction coefficient of the main component in the measurement target stored in the component absorption information storage unit 112 and the molar extinction coefficient ε in the dermis layer calculated by the above equation (32). The concentration of glucose may be calculated.

濃度単位変換部114は、濃度算出部113で算出したグルコースの濃度の単位を所望の単位に変換する。濃度表示部115は、グルコースの濃度を表示する。   The concentration unit converter 114 converts the unit of glucose concentration calculated by the concentration calculator 113 into a desired unit. The concentration display unit 115 displays the glucose concentration.

このように、本実施形態においても、各層の光路長バラツキが加味されるので、真皮層の光吸収係数の算出結果は高精度となる。そのため、算出した光吸収係数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を低減し、精度の高い濃度の定量を行うことができる。   Thus, also in this embodiment, since the optical path length variation of each layer is taken into consideration, the calculation result of the light absorption coefficient of the dermis layer is highly accurate. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.

また、本実施形態によれば、光吸収係数を算出する際、光吸収係数が真値に収束するまで上記の(1)式、(3)式を用いた繰り返し演算が行われる。よって、任意の層の光吸収係数を高精度に算出することができる。さらに、光吸収係数が時間τ1〜τ2の間の光路長の積分値によって算出されるため、計測した受光強度に含まれる誤差による光吸収係数の算出結果に対する影響を少なくすることができる。   Further, according to the present embodiment, when calculating the light absorption coefficient, iterative calculation is performed using the above expressions (1) and (3) until the light absorption coefficient converges to a true value. Therefore, the light absorption coefficient of an arbitrary layer can be calculated with high accuracy. Furthermore, since the light absorption coefficient is calculated by the integrated value of the optical path length between the times τ1 and τ2, the influence on the calculation result of the light absorption coefficient due to the error included in the measured light reception intensity can be reduced.

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、第1実施形態及び第2実施形態では、濃度定量方法を血糖値測定装置100に実装し、皮膚の真皮層に含まれるグルコースの濃度を測定する場合を説明したが、これに限られず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いても良い。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in the first embodiment and the second embodiment, the case where the concentration determination method is implemented in the blood glucose level measurement device 100 and the concentration of glucose contained in the dermis layer of the skin is measured has been described. The concentration determination method may be used for another apparatus for determining the concentration of a target component in an arbitrary observation target layer formed from a plurality of light scattering medium layers.

上述の血糖値測定装置100は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The blood sugar level measuring apparatus 100 described above has a computer system inside. The operation of each processing unit described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

また、上記実施形態においては、観測対象を層構成で説明したが、格子状(メッシュ構成)で構成される対象にも適用できる。   In the above embodiment, the observation target has been described with a layer configuration, but the present invention can also be applied to a target configured with a lattice (mesh configuration).

100…血糖値測定装置(濃度定量装置)、101…シミュレーション部、102…光路長分布記憶部(光路長分布記憶手段)、103…時間分解波形記憶部(時間分解波形記憶手段)、104…光路長バラツキ記憶部(光路長バラツキ記憶手段)、105…照射部(照射手段)、106…受光部(受光手段)、106…計測光強度取得部(光強度取得手段)、109…光路長取得部(光路長取得手段)、110…無吸収時光強度取得部(光強度モデル取得手段)、111…光吸収係数算出部(光吸収係数算出手段)、113…濃度算出部(濃度算出手段) DESCRIPTION OF SYMBOLS 100 ... Blood glucose level measuring apparatus (concentration determination apparatus), 101 ... Simulation part, 102 ... Optical path length distribution storage part (optical path length distribution storage means), 103 ... Time-resolved waveform storage part (time-resolved waveform storage means), 104 ... Optical path Long variation storage unit (optical path length variation storage unit), 105 ... Irradiation unit (irradiation unit), 106 ... Light receiving unit (light reception unit), 106 ... Measurement light intensity acquisition unit (light intensity acquisition unit), 109 ... Optical path length acquisition unit (Optical path length acquisition means), 110 ... non-absorption light intensity acquisition section (light intensity model acquisition means), 111 ... light absorption coefficient calculation section (light absorption coefficient calculation means), 113 ... concentration calculation section (concentration calculation means)

Claims (15)

複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキを記憶する光路長バラツキ記憶手段と、
前記観測対象に短時間パルス光を照射する照射手段と、
前記短時間パルス光が前記観測対象によって後方散乱した光を受光する受光手段と、
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記受光手段が受光した光の強度を取得する光強度取得手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、
前記光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記光路長バラツキ記憶手段に記憶された前記複数の光散乱媒質の層の各々の層の光路長バラツキと、に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、
を含むことを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers,
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of a time-resolved waveform of short-time pulsed light irradiated to the observation object;
Optical path length variation storage means for storing variation in optical path length in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Irradiating means for irradiating the observation object with short-time pulsed light;
A light receiving means for receiving the light back-scattered by the observation object by the short-time pulsed light;
A light intensity acquisition means for acquiring the intensity of the light received by the light receiving means at a predetermined time after the time when the irradiation means irradiated the short-time pulse light;
An optical path length acquisition means for acquiring an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means;
A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquired by the light intensity acquisition means, the optical path length of each of the layers of the light scattering medium acquired by the optical path length acquisition means, and the light intensity model acquired by the light intensity model acquisition means; A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the optical path length variation of each of the layers of the plurality of light scattering media stored in the optical path length variation storage means; ,
Based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the target component in the arbitrary layer;
Concentration determination apparatus characterized by including.
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項1に記載の濃度定量装置。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am , the m-th layer of the optical path length L m at time t of the model of the propagation optical path length distribution (t), the number of incident photons N in, the incident light intensity I in, the m-th layer of the optical path length variation [delta] miles ( t),
The light intensity acquisition means acquires light intensity at a plurality of times t 1 to t m ,
The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1), and substitutes the approximate solution into the left side of the following equation (2) to calculate the light of the arbitrary layer. The primary correction value of the absorption coefficient is calculated, and the primary correction value is substituted into the left side of the following equation (2) to calculate the secondary correction value of the optical absorption coefficient of the arbitrary layer. Calculate the light absorption coefficient of any layer by repeating until it converges to the true value of the coefficient,
The concentration determination apparatus according to claim 1, wherein:
Figure 0005834704
Figure 0005834704
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記光吸収係数算出手段は、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項1に記載の濃度定量装置。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am , the m-th layer of the optical path length L m at time t of the model of the propagation optical path length distribution (t), the number of incident photons N in, the incident light intensity I in, the m-th layer of the optical path length variation [delta] miles ( t),
The light intensity acquisition means acquires the light intensity between a predetermined time and at least a predetermined time τ1 to τ2,
The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following expression (1) or its integral expression, and substitutes the approximate solution for the left side of the following expression (3). Calculating a primary correction value of the light absorption coefficient of an arbitrary layer and substituting the primary correction value into the left side of the following equation (3) to calculate a secondary correction value of the optical absorption coefficient of the arbitrary layer. Calculate the light absorption coefficient of any layer by repeating until it converges to the true value of the light absorption coefficient of any layer,
The concentration determination apparatus according to claim 1, wherein:
Figure 0005834704
Figure 0005834704
前記濃度算出手段は、前記任意の層における前記光吸収係数に基づいて、多変量解析を用いて特性が既知であるものを測定した値から検量線作成をして、未知測定対象の測定値を検量線に照合することで前記任意の層における前記目的成分の濃度を算出することを特徴とする請求項1から3のいずれか一項に記載の濃度定量装置。   Based on the light absorption coefficient in the arbitrary layer, the concentration calculation means creates a calibration curve from a value obtained by measuring a characteristic whose characteristics are known using multivariate analysis, and obtains a measurement value of an unknown measurement target. The concentration determination apparatus according to claim 1, wherein the concentration of the target component in the arbitrary layer is calculated by collating with a calibration curve. 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項1から4のいずれか一項に記載の濃度定量装置。   5. The concentration of glucose contained in the dermis layer is quantified when the observation target is skin and the arbitrary layer is a dermis layer. 6. Concentration determination device. 複数の光散乱媒質の層から形成される観測対象のうち、任意の層における光吸収係数を算出する光吸収係数算出方法であって、
前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデル、前記観測対象に対して照射する短時間パルス光の時間分解波形のモデル、前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキ、照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記短時間パルス光が前記観測対象によって後方散乱した光の強度、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する第1の工程と、
前記第1の工程で取得した光強度、前記複数の光散乱媒質の層の各々の層の光路長、光強度モデル、前記複数の光散乱媒質の層の各々の層の光路長バラツキ、に基づいて、前記任意の層の光吸収係数を算出する第2の工程と、
を有することを特徴とする光吸収係数算出方法。
A light absorption coefficient calculation method for calculating a light absorption coefficient in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers,
A model of propagation path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation target, time-resolved waveform of the short-time pulse light irradiated to the observation target Model, variation in optical path length in each of the layers of the plurality of light scattering media, and a predetermined time after the time when the irradiation means irradiates the pulse light for a short time. Intensity of light back-scattered by the observation target at the time, the optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution, A first step of acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulsed light;
Based on the light intensity acquired in the first step, the optical path length of each layer of the plurality of light scattering media, the light intensity model, and the optical path length variation of each layer of the plurality of light scattering media. A second step of calculating a light absorption coefficient of the arbitrary layer;
The light absorption coefficient calculation method characterized by having.
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記第1の工程において、複数の時刻t〜tにおける光強度を取得し、
前記第2の工程において、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項6に記載の光吸収係数算出方法。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulse light is N (t) , the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am . In the propagation optical path length distribution model, the optical path length of the m-th layer at time t is L m (t), the number of incident photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t )
In the first step, the light intensity at a plurality of times t 1 to t m is acquired,
In the second step, an approximate solution of the light absorption coefficient of an arbitrary layer is calculated from the following equation (1), and the approximate solution is substituted into the left side of the following equation (2) to absorb the light of the arbitrary layer. Calculating the primary correction value of the coefficient, substituting the primary correction value into the left side of the following equation (2), and calculating the secondary correction value of the optical absorption coefficient of the arbitrary layer. By repeating until it converges to the true value of, calculate the light absorption coefficient of any layer,
The light absorption coefficient calculation method according to claim 6.
Figure 0005834704
Figure 0005834704
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記第1の工程において、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記第2の工程において、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項6に記載の光吸収係数算出方法。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulse light is N (t) , the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am . In the propagation optical path length distribution model, the optical path length of the m-th layer at time t is L m (t), the number of incident photons is N in , the incident light intensity is I in , and the optical path length variation of the m-th layer is δ km (t )
In the first step, a light intensity between a predetermined time and at least a predetermined time τ1 to τ2 is acquired,
In the second step, an approximate solution of a light absorption coefficient of an arbitrary layer is calculated from the following equation (1) or its integral equation, and the approximate solution is substituted into the left side of the following equation (3). It is optional to calculate a primary correction value of a light absorption coefficient of an arbitrary layer, and to calculate a secondary correction value of the light absorption coefficient of an arbitrary layer by substituting the primary correction value into the left side of the following equation (3) By repeating until it converges to the true value of the light absorption coefficient of the layer, calculate the light absorption coefficient of any layer,
The light absorption coefficient calculation method according to claim 6.
Figure 0005834704
Figure 0005834704
請求項6から8のいずれか一項に記載の第2の工程で算出した光吸収係数に基づいて、前記任意の層における目的成分の濃度を算出することを特徴とする濃度定量方法。 A concentration determination method, wherein the concentration of a target component in the arbitrary layer is calculated based on the light absorption coefficient calculated in the second step according to any one of claims 6 to 8. 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項9に記載の濃度定量方法。   10. The concentration quantification method according to claim 9, wherein when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified. コンピュータを、複数の光散乱媒質の層から形成される観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記観測対象に対して照射する短時間パルス光の、前記複数の光散乱媒質の層の各々の層における光路長のバラツキを記憶する光路長バラツキ記憶手段と、
前記観測対象に短時間パルス光を照射する照射手段
前記短時間パルス光が前記観測対象によって後方散乱した光を受光する受光手段
前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記受光手段が受光した光の強度を取得する光強度取得手段
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段
前記光強度取得手段が取得した光強度と、前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と、前記光強度モデル取得手段が取得した光強度モデルと、前記光路長バラツキ記憶手段に記憶された前記複数の光散乱媒質の層の各々の層の光路長バラツキと、に基づいて、前記観測対象のうち任意の層の光吸収係数を算出する光吸収係数算出手段
として機能させるための光吸収係数の算出を行うプログラム。
An optical path for storing a model of a propagation path length distribution in each layer of the plurality of light scattering medium layers of short-time pulsed light that irradiates a computer with an observation target formed from the plurality of light scattering medium layers A long distribution storage means;
Time-resolved waveform storage means for storing a model of a time-resolved waveform of short-time pulsed light irradiated to the observation object;
Optical path length variation storage means for storing variation in optical path length in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Irradiating means for irradiating a short pulse light to the observation target,
Light receiving means for receiving light the short pulsed light is backscattered by the observed object,
And the light intensity acquisition means the light receiving unit obtains the intensity of the received light at predetermined time after the time of the irradiation unit irradiates the short pulse light,
From the optical path length distribution storage means, in the predetermined time in the model of the propagation optical path length distribution, the optical path length acquisition means for acquiring an optical path length of each layer of the layer of the plurality of light scattering medium,
From the time-resolved waveform storage means, and the light intensity model acquiring means for acquiring the intensity of the light in the predetermined time in the model of the time-resolved waveform of the short pulse light,
The light intensity acquired by the light intensity acquisition means, the optical path length of each of the layers of the light scattering medium acquired by the optical path length acquisition means, and the light intensity model acquired by the light intensity model acquisition means; A light absorption for calculating a light absorption coefficient of an arbitrary layer among the observation objects based on the optical path length variation of each of the layers of the plurality of light scattering media stored in the optical path length variation storage means and the coefficient calculation means,
A program that calculates the light absorption coefficient to function as
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記光強度取得手段は、複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、下記の(1)式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(2)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(2)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項11に記載の光吸収係数の算出を行うプログラム。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am , the m-th layer of the optical path length L m at time t of the model of the propagation optical path length distribution (t), the number of incident photons N in, the incident light intensity I in, the m-th layer of the optical path length variation [delta] miles ( t),
The light intensity acquisition means acquires light intensity at a plurality of times t 1 to t m ,
The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following equation (1), and substitutes the approximate solution into the left side of the following equation (2) to calculate the light of the arbitrary layer. The primary correction value of the absorption coefficient is calculated, and the primary correction value is substituted into the left side of the following equation (2) to calculate the secondary correction value of the optical absorption coefficient of the arbitrary layer. Calculate the light absorption coefficient of any layer by repeating until it converges to the true value of the coefficient,
The program for calculating the light absorption coefficient according to claim 11.
Figure 0005834704
Figure 0005834704
前記観測対象がn層以上の積層構造からなり、
前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度をN(t)、前記受光手段が時刻tにおいて受光した光強度をI(t)、第m層の光吸収係数をμam、前記伝搬光路長分布のモデルの時刻tにおける第m層の光路長をL(t)、入射光子数をNin、入射光強度をIin、第m層の光路長バラツキをδkm(t)としたときに、
前記光強度取得手段は、所定の時刻から少なくとも所定の時間τ1〜τ2の間の光強度を取得し、
前記光吸収係数算出手段は、下記の(1)式またはその積分型の式から任意の層の光吸収係数の近似解を算出し、当該近似解を下記の(3)式の左辺に代入して任意の層の光吸収係数の一次補正値を算出し、当該一次補正値を下記の(3)式の左辺に代入して任意の層の光吸収係数の二次補正値を算出することを任意の層の光吸収係数の真値に収束するまで繰り返し行うことにより、任意の層の光吸収係数を算出する、
ことを特徴とする請求項11に記載の光吸収係数の算出を行うプログラム。
Figure 0005834704
Figure 0005834704
The observation object consists of a laminated structure of n layers or more,
The light intensity at time t of the time-resolved waveform model of the short-time pulsed light is N (t), the light intensity received by the light receiving means at time t is I (t), and the light absorption coefficient of the m-th layer is μ am , the m-th layer of the optical path length L m at time t of the model of the propagation optical path length distribution (t), the number of incident photons N in, the incident light intensity I in, the m-th layer of the optical path length variation [delta] miles ( t),
The light intensity acquisition means acquires the light intensity between a predetermined time and at least a predetermined time τ1 to τ2,
The light absorption coefficient calculating means calculates an approximate solution of the light absorption coefficient of an arbitrary layer from the following expression (1) or its integral expression, and substitutes the approximate solution for the left side of the following expression (3). Calculating a primary correction value of the light absorption coefficient of an arbitrary layer and substituting the primary correction value into the left side of the following equation (3) to calculate a secondary correction value of the optical absorption coefficient of the arbitrary layer. Calculate the light absorption coefficient of any layer by repeating until it converges to the true value of the light absorption coefficient of any layer,
The program for calculating the light absorption coefficient according to claim 11.
Figure 0005834704
Figure 0005834704
請求項11から13のいずれか一項に記載の光吸収係数算出手段が算出した光吸収係数に基づいて、コンピュータを、前記任意の層における目的成分の濃度を算出する濃度算出手段として機能させるための濃度の算出を行うプログラム。 To cause a computer to function as a concentration calculation unit that calculates the concentration of a target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit according to any one of claims 11 to 13. Program to calculate the concentration of the 前記観測対象が皮膚であり、前記任意の層が真皮層であるときに、当該真皮層に含まれるグルコースの濃度を定量することを特徴とする請求項14に記載の濃度の算出を行うプログラム。   The program for calculating a concentration according to claim 14, wherein when the observation target is skin and the arbitrary layer is a dermis layer, the concentration of glucose contained in the dermis layer is quantified.
JP2011211688A 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration Expired - Fee Related JP5834704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211688A JP5834704B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211688A JP5834704B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Publications (2)

Publication Number Publication Date
JP2013072736A JP2013072736A (en) 2013-04-22
JP5834704B2 true JP5834704B2 (en) 2015-12-24

Family

ID=48477360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211688A Expired - Fee Related JP5834704B2 (en) 2011-09-27 2011-09-27 Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration

Country Status (1)

Country Link
JP (1) JP5834704B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889883B2 (en) * 1998-07-21 2007-03-07 浜松ホトニクス株式会社 Method and apparatus for measuring internal information of scattering medium
JP2000136997A (en) * 1998-11-02 2000-05-16 Fuji Photo Film Co Ltd Optical measuring device
NO325061B1 (en) * 2001-03-06 2008-01-28 Photosense As Method and arrangement for determining the optical property of a multilayer tissue
EP2034294B1 (en) * 2006-05-31 2011-09-14 National University Corporation Shizuoka University Optical measuring device, optical measuring method, and storage medium storing optical measurement program
JP5463545B2 (en) * 2009-03-31 2014-04-09 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program
JP2011087907A (en) * 2009-09-25 2011-05-06 Shiseido Co Ltd System and method for evaluating skin

Also Published As

Publication number Publication date
JP2013072736A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
JP4739363B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
CN102908164B (en) Apparatus and method for acquiring information on subject
JP5773578B2 (en) SUBJECT INFORMATION ACQUISITION DEVICE, CONTROL METHOD AND PROGRAM FOR SUBJECT INFORMATION ACQUISITION DEVICE
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
CN104958075A (en) Non-invasive measurement method of skin thickness and blood sugar concentration using Raman spectrum, and calibration method
JP2009018153A (en) Biological information imaging apparatus
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP6461288B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JP2016010717A (en) Concentration quantification apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP6598528B2 (en) Subject information acquisition apparatus and subject information acquisition method
JP5834704B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2014006063A (en) Light absorption coefficient calculation device, concentration determination device, light absorption coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2014102087A (en) Optical measurement method
JP6949210B2 (en) Photoacoustic method involving measurement light with a predefined wavelength range to determine the properties of a heterogeneous sample
JP2013043062A (en) Concentration determination apparatus, concentration determination method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees