JP5674093B2 - Concentration determination apparatus, concentration determination method, and program - Google Patents

Concentration determination apparatus, concentration determination method, and program Download PDF

Info

Publication number
JP5674093B2
JP5674093B2 JP2010158097A JP2010158097A JP5674093B2 JP 5674093 B2 JP5674093 B2 JP 5674093B2 JP 2010158097 A JP2010158097 A JP 2010158097A JP 2010158097 A JP2010158097 A JP 2010158097A JP 5674093 B2 JP5674093 B2 JP 5674093B2
Authority
JP
Japan
Prior art keywords
light
time
layer
absorption coefficient
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010158097A
Other languages
Japanese (ja)
Other versions
JP2012021811A (en
Inventor
天野 和彦
和彦 天野
孝一 清水
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Seiko Epson Corp
Original Assignee
Hokkaido University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Seiko Epson Corp filed Critical Hokkaido University NUC
Priority to JP2010158097A priority Critical patent/JP5674093B2/en
Priority to US13/176,422 priority patent/US9464983B2/en
Publication of JP2012021811A publication Critical patent/JP2012021811A/en
Application granted granted Critical
Publication of JP5674093B2 publication Critical patent/JP5674093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を、非侵襲的に定量する濃度定量装置及び濃度定量方法並びにプログラムに関するものである。   The present invention relates to a concentration quantification apparatus, a concentration quantification method, and a program for non-invasively quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers.

近年、我が国は飽食の時代にあって、糖尿病の患者が毎年増加し続けている。そのために、糖尿病性腎炎の患者も毎年増加し続けることとなり、その結果、慢性腎不全の患者も毎年1万人もの増加を続け、患者数は28万人を超えるようになってきている。
一方、高齢化社会の到来により、予防医学に対する要求の高まりを受けて、個人における代謝量管理の重要性が急速に増大している。中でも、血糖値計測は、糖尿病のごく初期段階での糖代謝の反応を評価することができ、糖尿病の早期診断に基づく早期治療を可能にしている。
In recent years, Japan is in the age of satiety, and the number of diabetic patients continues to increase every year. For this reason, the number of patients with diabetic nephritis will continue to increase every year. As a result, the number of patients with chronic renal failure continues to increase by 10,000 each year, and the number of patients exceeds 280,000.
On the other hand, with the arrival of an aging society, the importance of metabolic rate management in individuals is rapidly increasing in response to increasing demand for preventive medicine. Among them, the blood glucose level measurement can evaluate the reaction of glucose metabolism at the very early stage of diabetes, and enables early treatment based on early diagnosis of diabetes.

従来、血糖値の測定は、腕あるいは指先等の静脈から採血を行い、この血液中のグルコースに対する酵素活性を測定することで行っている。しかし、このような血糖値の測定方法では、採血が煩雑であり、しかも採血に痛みを伴い、さらには感染症の危険性を伴う等の様々な問題がある。
また、血糖値を連続的に測定する方法としては、静脈に注射針を刺した状態で連続的に血糖値相応のグルコースの定量を行う機器が米国にて開発されており、現在臨床試験中である。しかし、静脈に注射針を刺したままにしているために、血糖値の測定中に針が抜ける危険性や感染症の危険性がある。
そこで、採血無しに頻繁に血糖値を測定することができ、しかも感染症の危険性が無い血糖値の測定装置の開発が求められている。さらには、簡単にかつ常時装着可能であり、小型化可能な血糖値の測定装置の開発が求められている。
Conventionally, the blood sugar level is measured by collecting blood from a vein such as an arm or a fingertip and measuring the enzyme activity for glucose in the blood. However, such a blood glucose level measurement method has various problems such as complicated blood collection, pain associated with blood collection, and risk of infection.
In addition, as a method for continuously measuring blood glucose level, an instrument that continuously measures glucose corresponding to blood glucose level with a needle inserted into a vein has been developed in the United States. is there. However, since the injection needle is left pierced in the vein, there is a risk that the needle may come off during the measurement of the blood glucose level and a risk of infection.
Therefore, development of a blood glucose level measuring apparatus that can measure blood glucose level frequently without blood collection and that is free from the risk of infectious diseases is demanded. Furthermore, there is a demand for the development of a blood glucose level measuring device that can be easily and always worn and can be miniaturized.

そこで、血糖値の測定装置に分子吸光の原理を用いた分光分析装置を適用することにより、非侵襲的に血糖値を測定する装置が提案されている(例えば、特許文献1参照)。
この装置は、皮膚に近赤外の連続光を照射し、その光吸収量からグルコースの濃度を算出する装置である。具体的には、予めグルコース濃度と照射する近赤外光の波長と光の吸収量との関係を示す検量線を作成しておき、皮膚に近赤外の連続光を照射し、この皮膚からの戻り光をモノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する光の吸収量を求め、この各波長における光の吸収量と検量線とを比較することで、血液中のグルコース濃度、すなわち血糖値を算出している。
In view of this, an apparatus that non-invasively measures blood glucose levels has been proposed by applying a spectroscopic analyzer that uses the principle of molecular absorption to a blood glucose level measuring apparatus (see, for example, Patent Document 1).
This device irradiates the skin with near-infrared continuous light and calculates the glucose concentration from the amount of light absorption. Specifically, a calibration curve showing the relationship between the glucose concentration, the wavelength of the near infrared light to be irradiated and the amount of light absorbed is prepared in advance, and the skin is irradiated with continuous light of the near infrared, By scanning a certain wavelength region using a monochromator or the like, the amount of light absorbed for each wavelength in the wavelength region is obtained, and the amount of light absorbed at each wavelength is compared with a calibration curve to obtain blood. The glucose concentration in the blood, that is, the blood glucose level is calculated.

一般に、水溶液や含水率の高い試料の近赤外分光分析を行う場合、それらのスペクトルは、水のスペクトルと同様、温度変化に伴うスペクトルのシフト等の変動が大きい。したがって、近赤外分光を用いて定量分析をする場合、水溶液や試料の温度の影響を無視することができない。
そこで、生体表面近傍の組織中のグルコース濃度を近赤外領域における光の吸収を利用して測定する場合に、近赤外光送受用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度を、ヒータ及び表面温度検知手段を用いて一定にする装置も提案されている(特許文献2参照)。
In general, when near-infrared spectroscopic analysis of an aqueous solution or a sample having a high water content is performed, the spectrum has a large fluctuation such as a shift of the spectrum accompanying a temperature change, like the spectrum of water. Therefore, when quantitative analysis is performed using near-infrared spectroscopy, the influence of the temperature of the aqueous solution or sample cannot be ignored.
Therefore, when measuring the glucose concentration in the tissue near the living body surface using light absorption in the near infrared region, the measurement surface of the probe tip of the optical fiber bundle for near infrared light transmission and reception and the living body There has also been proposed an apparatus for making the temperature of the contact portion with the tissue near the surface constant by using a heater and a surface temperature detecting means (see Patent Document 2).

特許第3931638号公報Japanese Patent No. 3931638 特開2001−299727号公報JP 2001-299727 A

しかしながら、従来の近赤外光の吸収量から血液中あるいは生体の表面近傍組織のグルコース濃度を測定する方法においては、血液中あるいは生体中に含まれる水の近赤外光に対する吸収係数の温度変化率が大きく、血液中あるいは生体中のグルコース濃度を精度よく測定することが難しいという問題点があった。
例えば、近赤外光送受用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度を、ヒータ及び表面温度検知手段を用いて一定にすれば、確かに、接触部分の温度は一定になるが、生体自体の温度が変化した場合、この生体の表面近傍組織の温度も変化して近赤外光に対する吸収係数が変化してしまい、やはり、生体中のグルコース濃度を精度よく測定することは難しい。
However, in the conventional method of measuring glucose concentration in blood or tissue near the surface of a living body from the amount of absorption of near-infrared light, the temperature change of the absorption coefficient with respect to the near-infrared light of water contained in the blood or living body There is a problem that the rate is high and it is difficult to accurately measure the glucose concentration in blood or in the living body.
For example, if the temperature of the contact portion between the measurement surface of the probe tip of the optical fiber bundle for near-infrared light transmission and reception and the tissue in the vicinity of the surface of the living body is made constant using a heater and surface temperature detection means, The temperature of the contact part is constant, but if the temperature of the living body itself changes, the temperature of the tissue near the surface of the living body also changes and the absorption coefficient for near infrared light changes. It is difficult to accurately measure the glucose concentration.

本発明は、上記の課題を解決するためになされたものであって、皮膚等の被測定物である観測対象自体の温度が変化した場合においても、この観測対象に含まれる水の近赤外光に対する吸収係数の温度変化率を小さくすることで、この観測対象に含まれる目的成分の濃度を、非侵襲的に精度良く測定することが可能な濃度定量装置及び濃度定量方法並びにプログラムを提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and even when the temperature of the observation target itself, which is an object to be measured such as skin, changes, the near-infrared water contained in the observation target. Provided are a concentration quantification apparatus, a concentration quantification method, and a program capable of noninvasively measuring the concentration of a target component contained in an observation target by reducing the temperature change rate of the absorption coefficient with respect to light. For the purpose.

上記の課題を解決するために、本発明は以下の濃度定量装置及び濃度定量方法並びにプログラムを採用した。
すなわち、本発明の濃度定量装置は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記受光手段が受光した光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を備えてなることを特徴とする。
In order to solve the above problems, the present invention employs the following concentration determination apparatus, concentration determination method, and program.
That is, the concentration quantification device of the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers, Irradiation means for irradiating light of a specific wavelength with a small temperature change of the water absorption coefficient in an arbitrary layer, and from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light Light scattering medium layer selection means for selecting emitted backscattered light, light receiving means for receiving backscattered light emitted from the arbitrary layer, and light intensity acquisition for obtaining the intensity of light received by the light receiving means A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquiring means, and a light absorption coefficient calculated by the light absorption coefficient calculating means. ,Previous And concentration calculation means for calculating the concentration of the target component in any layer, it is characterized in that it comprises a.

本発明の濃度定量装置では、照射手段により、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射し、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択し、受光手段により、前記任意の層から放射される後方散乱光を受光する。
このように、観測対象に照射される光を、水の吸収係数の温度変化が小さい特定波長の光とすることで、任意の層から放射される後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度においても、水の影響を小さくすることができる。したがって、目的成分の濃度における水の影響を低減することができ、目的成分の濃度を、非侵襲的に精度良く測定することができる。
In the concentration determination apparatus of the present invention, the irradiation object is irradiated with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer by the irradiation unit, and the light is scattered by the light scattering medium layer selection unit. The backscattered light emitted from the arbitrary layer is selected from a plurality of types of backscattered light emitted from the observation object by irradiation, and the backscattered light emitted from the arbitrary layer is received by the light receiving means. To do.
In this way, the influence of water on the backscattered light emitted from any layer can be reduced by making the light irradiated to the observation object light of a specific wavelength with a small temperature change of the water absorption coefficient. In addition, the influence of water can be reduced even in the concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light. Therefore, the influence of water on the concentration of the target component can be reduced, and the concentration of the target component can be accurately measured noninvasively.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、前記任意の層の複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)

Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of light,
The light intensity acquisition means acquires the light intensity at a plurality of times t 1 to t m of the arbitrary layer,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following formula (1):
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity (The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, and μ i is the light absorption coefficient of the i-th layer)
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、任意の層の複数の時刻t〜tにおける光強度を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(1)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における水の影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires the light intensity at a plurality of times t 1 to t m of an arbitrary layer, and the light absorption coefficient calculation unit calculates the light absorption coefficient of the arbitrary layer as described above. Is calculated from the equation (1).
Thus, by measuring the time-resolved backscattered light, it is possible to reduce backscattered light from a layer other than an arbitrary layer as noise, and to reduce the influence of water on the concentration of the target component. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記光強度取得手段が光強度を取得する複数の時刻は、前記複数の光散乱媒質の各々の層の伝搬光路長分布のピーク時間を含むことを特徴とする。   In the concentration quantification device according to the present invention, the plurality of times when the light intensity acquisition unit acquires the light intensity includes a peak time of a propagation optical path length distribution of each layer of the plurality of light scattering media.

本発明の濃度定量装置では、光強度取得手段が光強度を取得する複数の時刻が、複数の光散乱媒質の各々の層の伝搬光路長分布のピーク時間を含むことにより、観測対象中の複数の層から任意の層を効率的に選択することができる。したがって、任意の層における目的成分の濃度をさらに精度良く測定することができる。   In the concentration quantification apparatus of the present invention, the plurality of times when the light intensity acquisition means acquires the light intensity includes the peak time of the propagation optical path length distribution of each layer of the plurality of light scattering media, so Any layer can be efficiently selected from these layers. Therefore, the concentration of the target component in any layer can be measured with higher accuracy.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、所定の時刻から少なくとも所定の時刻τの間の光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)

Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of light,
The light intensity acquisition means acquires light intensity between a predetermined time and at least a predetermined time τ,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following equation (2):
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. )
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、所定の時刻から少なくとも所定の時刻τの間の光強度の時間変化を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(2)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における水の影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition means acquires a temporal change in light intensity between a predetermined time and at least a predetermined time τ, and the light absorption coefficient calculation means calculates the light absorption coefficient of an arbitrary layer. , Calculated from the above equation (2).
Thus, by measuring the time-resolved backscattered light, it is possible to reduce backscattered light from a layer other than an arbitrary layer as noise, and to reduce the influence of water on the concentration of the target component. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)

Figure 0005674093
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記特定波長の種類数である)
から算出することを特徴とする。 In the concentration quantification apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following equation (3):
Figure 0005674093
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. (The number of constituent main components, q is the number of types of the specific wavelength)
It is characterized by calculating from.

本発明の濃度定量装置では、濃度算出手段が、任意の層における目的成分の濃度を、上記の式(3)から算出する。
このように、時間分解計測した後方散乱光を用いて任意の層における目的成分の濃度を算出することで、目的成分の濃度における水の影響を低減することができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in an arbitrary layer from the above equation (3).
Thus, the influence of water on the concentration of the target component can be reduced by calculating the concentration of the target component in an arbitrary layer using the backscattered light that is time-resolved and measured. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量方法は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、
照射手段により、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射し、次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択し、次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、次いで、光強度取得手段により、前記受光手段が受光した光の強度を取得し、次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。
The concentration quantification method of the present invention is a concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers,
Irradiation means irradiates the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer, and then the light scattering medium layer selection means irradiates the light with the observation. The backscattered light emitted from the arbitrary layer is selected from a plurality of types of backscattered light emitted from the object, and then the backscattered light emitted from the arbitrary layer is received by the light receiving means, and then The light intensity acquisition means acquires the intensity of the light received by the light receiving means, and then the light absorption coefficient calculation means calculates the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means. Then, the concentration calculation means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation means.

本発明の濃度定量方法では、照射手段により、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射し、次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択し、次いで、受光手段により、前記任意の層から放射された後方散乱光を受光する。
このように、観測対象に照射される光を、任意の層における水の吸収係数の温度変化が小さい特定波長の光とすることで、任意の層から放射された後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出された観測対象の任意の層における目的成分の濃度においても、水の影響を小さくすることができる。したがって、目的成分の濃度における水の影響を低減することができ、目的成分の濃度を、非侵襲的に精度良くかつ効率良く測定することができる。
In the concentration quantification method of the present invention, the observation object is irradiated with light having a specific wavelength at which the temperature change of the water absorption coefficient in the arbitrary layer is small, and then the light scattering medium layer selection means is used to irradiate the observation target. Back-scattered light emitted from the arbitrary layer is selected from a plurality of types of back-scattered light emitted from the observation target by irradiating light, and then the back-radiated from the arbitrary layer by the light receiving means Receives scattered light.
In this way, by irradiating the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in an arbitrary layer, the influence of water on the backscattered light emitted from the arbitrary layer can be reduced. The influence of water can be reduced even in the concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light. Therefore, the influence of water on the concentration of the target component can be reduced, and the concentration of the target component can be measured noninvasively with high accuracy and efficiency.

本発明のプログラムは、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手順、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手順、前記任意の層から放射される後方散乱光を受光する受光手順、前記受光手段が受光した光の強度を取得する光強度取得手順、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、を実行させることを特徴とする。   The program of the present invention includes a computer for a concentration quantification apparatus that quantifies the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers, Irradiation procedure for irradiating light of a specific wavelength with a small temperature change in water absorption coefficient, backscattering radiated from the arbitrary layer from multiple types of backscattered light radiated from the observation object by irradiating the light Light scattering medium layer selection procedure for selecting light, light reception procedure for receiving backscattered light emitted from the arbitrary layer, light intensity acquisition procedure for acquiring the intensity of light received by the light receiving means, and the light intensity acquisition means The light absorption coefficient calculation procedure for calculating the light absorption coefficient of the arbitrary layer based on the obtained light intensity, and the light absorption coefficient calculated by the light absorption coefficient calculation means in the arbitrary layer. Density calculation step of calculating the concentration of the target component that, characterized in that for the execution.

本発明のプログラムでは、濃度定量装置のコンピュータに、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手順、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手順、前記任意の層から放射された後方散乱光を受光する受光手順、を順次実行させる。
このように、任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手順を実行することで、任意の層から放射された後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出された観測対象の任意の層における目的成分の濃度においても、水の影響を小さくすることができる。したがって、目的成分の濃度における水の影響を低減することができ、目的成分の濃度を、非侵襲的に精度良くかつ効率良く測定することができる。
In the program of the present invention, the computer of the concentration quantification apparatus irradiates the observation object with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer, Light scattering medium layer selection procedure for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target, and a light receiving procedure for receiving the backscattered light emitted from the arbitrary layer Are sequentially executed.
In this way, by performing an irradiation procedure that irradiates light of a specific wavelength with a small temperature change in the absorption coefficient of water in an arbitrary layer, the influence of water on backscattered light emitted from the arbitrary layer is reduced. The influence of water can be reduced even in the concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light. Therefore, the influence of water on the concentration of the target component can be reduced, and the concentration of the target component can be measured noninvasively with high accuracy and efficiency.

本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 皮膚の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of skin. シミュレーション部が算出した各層の伝搬光路長分布を示す図である。It is a figure which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示す図である。It is a figure which shows the time-resolved waveform which the simulation part computed. 水による光吸収波長特性を示す図である。It is a figure which shows the light absorption wavelength characteristic by water. 皮膚の主成分の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the main component of skin. 皮膚の皮下組織、真皮層及び表皮層各々に照射される光の波長と吸収係数との関係を示す図である。It is a figure which shows the relationship between the wavelength of the light irradiated to each of the subcutaneous tissue of skin, a dermis layer, and an epidermis layer, and an absorption coefficient. 水の吸光度スペクトルの温度依存性を示す図である。It is a figure which shows the temperature dependence of the absorbance spectrum of water. 水の吸光度スペクトルの差の温度依存性を示す図である。It is a figure which shows the temperature dependence of the difference of the absorption spectrum of water. グルコース水溶液の吸光度スペクトルの一例を示す図である。It is a figure which shows an example of the absorbance spectrum of glucose aqueous solution. 本発明の第1の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 1st Embodiment of this invention. 本発明の第2の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 2nd Embodiment of this invention.

本発明の濃度定量装置及び濃度定量方法並びにプログラムを実施するための形態について説明する。
本発明では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ例に取り説明する。
An embodiment for carrying out a concentration determination apparatus, a concentration determination method, and a program according to the present invention will be described.
In the present invention, a blood glucose level measuring device will be described as an example of a concentration determination device, the skin of a human palm as an observation target, glucose as a target component, and short-time pulsed light of a specific wavelength as light of a specific wavelength will be described as examples. .

[第1の実施形態]
図1は、本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。
この血糖値測定装置1は、手のひら等の皮膚(観測対象)を構成する複数層のうちの真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を非侵襲にて定量する装置であり、シミュレーション部2と、光路長分布記憶部(光路長分布記憶手段)3と、時間分解波形記憶部(時間分解波形記憶手段)4と、照射部(照射手段)5と、導光部6と、光散乱媒質層選択部(光散乱媒質層選択手段)7と、受光部(受光手段)8と、光強度取得部(光強度取得手段)9と、光路長取得部(光路長取得手段)10と、無吸収時光強度取得部(光強度モデル取得手段)11と、光吸収係数算出部(光吸収係数算出手段)12と、濃度算出部(濃度算出手段)13とを備えている。
[First Embodiment]
FIG. 1 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the first embodiment of the present invention.
This blood glucose level measuring device 1 is a device that non-invasively quantifies the concentration of glucose (target component) contained in a dermis layer (arbitrary layer) of a plurality of layers constituting skin (observation target) such as a palm. Yes, a simulation unit 2, an optical path length distribution storage unit (optical path length distribution storage unit) 3, a time-resolved waveform storage unit (time-resolved waveform storage unit) 4, an irradiation unit (irradiation unit) 5, and a light guide unit 6 A light scattering medium layer selection unit (light scattering medium layer selection unit) 7, a light receiving unit (light receiving unit) 8, a light intensity acquisition unit (light intensity acquisition unit) 9, and an optical path length acquisition unit (optical path length acquisition unit). ) 10, a non-absorption light intensity acquisition unit (light intensity model acquisition unit) 11, a light absorption coefficient calculation unit (light absorption coefficient calculation unit) 12, and a concentration calculation unit (concentration calculation unit) 13.

シミュレーション部2は、光吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。
光路長分布記憶部3は、皮膚に対して照射する短時間パルス光の、この皮膚を構成する各々の層における伝搬光路長分布のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの伝搬光路長分布を記憶する。
時間分解波形記憶部4は、皮膚に対して照射する短時間パルス光の時間分解波形のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
照射部5は、皮膚に、この皮膚を構成する真皮層における水の吸収係数の温度変化が小さい特定波長λk(λ、λ…)の短時間パルス光を皮膚に対して照射する。ここで、短時間パルス光とは、パルス幅が100psec程度かそれ以下のパルス光を意味する。なお、短時間パルス光として0.1psecから数psecの範囲のパルス幅を持つパルス光を用いても良い。
The simulation unit 2 performs a simulation of irradiating light to a skin model having a light absorption coefficient of zero.
The optical path length distribution storage unit 3 stores a model of a propagation optical path length distribution in each layer constituting the skin of short-time pulse light irradiated to the skin. Here, the propagation optical path length distribution of the skin model having zero light absorption coefficient is stored.
The time-resolved waveform storage unit 4 stores a model of a time-resolved waveform of short-time pulse light that is applied to the skin. Here, the time-resolved waveform of the skin model having zero light absorption coefficient is stored.
The irradiation unit 5 irradiates the skin with short-time pulsed light having a specific wavelength λk (λ 1 , λ 2 ...) With a small temperature change of the water absorption coefficient in the dermis layer constituting the skin. Here, the short-time pulsed light means pulsed light having a pulse width of about 100 psec or less. Note that pulse light having a pulse width in the range of 0.1 psec to several psec may be used as the short-time pulse light.

導光部6は、この特定波長λkの短時間パルス光を皮膚に照射することにより、この皮膚から放射される複数種の後方散乱光を集光し、光散乱媒質層選択部7へ導光する。
光散乱媒質層選択部7は、導光部6により集光されかつ導光された皮膚から放射される複数種の後方散乱光から、真皮層により放射される後方散乱光を入出射間距離と生体内の深さ方向の到達距離との関係により選択する。
受光部8は、短時間パルス光が皮膚によって後方散乱した光を受光する。
The light guide unit 6 collects a plurality of types of backscattered light emitted from the skin by irradiating the skin with the short-time pulsed light having the specific wavelength λk, and guides the light to the light scattering medium layer selecting unit 7. To do.
The light scattering medium layer selection unit 7 converts the backscattered light radiated by the dermis layer from the multiple types of backscattered light emitted from the skin condensed and guided by the light guide unit 6, as the distance between the input and output. The selection is made according to the relationship with the reach in the depth direction in the living body.
The light receiving unit 8 receives light obtained by backscattering the short-time pulsed light by the skin.

光強度取得部9は、受光部8が受光した真皮層から放射される後方散乱光の異なる複数の時刻の受光強度を取得する。
ここで、この複数の時刻は、皮膚(観測対象)を構成する各々の層の伝搬光路長分布のピーク時間を含むことが好ましい。
このように、各々の層の伝搬光路長分布のピーク時間を含むことで、皮膚の複数の層から任意の層、例えば真皮層を効率的に選択することができる。
The light intensity acquisition unit 9 acquires the light reception intensities at different times of the backscattered light emitted from the dermis layer received by the light receiving unit 8.
Here, it is preferable that the plurality of times include the peak time of the propagation optical path length distribution of each layer constituting the skin (observation target).
As described above, by including the peak time of the propagation optical path length distribution of each layer, an arbitrary layer, for example, the dermis layer can be efficiently selected from a plurality of skin layers.

光路長取得部10は、光路長分布記憶部3から、伝搬光路長分布のモデルの所定の時刻における、皮膚の各々の層の光路長を取得する。ここでは、光路長分布記憶部3からある時刻における光路長を取得する。
無吸収時光強度取得部11は、時間分解波形記憶部4から、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度を取得する。ここでは、時間分解波形記憶部4からある時刻における光強度を取得する。
光吸収係数算出部12は、特定波長λkの短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The optical path length acquisition unit 10 acquires from the optical path length distribution storage unit 3 the optical path length of each layer of the skin at a predetermined time of the model of the propagation optical path length distribution. Here, the optical path length at a certain time is acquired from the optical path length distribution storage unit 3.
The non-absorption light intensity acquisition unit 11 acquires the light intensity at a predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage unit 4. Here, the light intensity at a certain time is acquired from the time-resolved waveform storage unit 4.
The light absorption coefficient calculation unit 12 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light with the specific wavelength λk.

この光吸収係数算出部12では、皮膚における任意の層の光吸収係数を、下記の式(4)

Figure 0005674093
(但し、I(t)は受光部8が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In the light absorption coefficient calculation unit 12, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (4).
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving unit 8 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t of the model of the propagation optical path length distribution in each layer of the skin, and μ i is the light absorption coefficient of the i-th layer)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

濃度算出部13は、真皮層における光吸収係数から、真皮層に含まれるグルコースの濃度を算出する。
この濃度算出部13では、皮膚の任意の層におけるグルコースの濃度を、下記の式(5)

Figure 0005674093
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは特定波長λkの種類数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 The concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer from the light absorption coefficient in the dermis layer.
In the concentration calculation unit 13, the glucose concentration in an arbitrary layer of the skin is expressed by the following equation (5).
Figure 0005674093
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of specific wavelength λk)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

この血糖値測定装置1では、照射部5は、皮膚21に、この皮膚21を構成する真皮層23における水の吸収係数の温度変化が小さい特定波長λk、例えば、λ=1445nm、λ=1782nmの波長の短時間パルス光を照射する。導光部6は、皮膚21から放射される複数種の後方散乱光を集光する。光散乱媒質層選択部7は、皮膚21から放射される複数種の後方散乱光から、真皮層23により放射される後方散乱光を入出射間距離と生体内の深さ方向の到達距離との関係により選択する。受光部8は、真皮層23から放射される後方散乱光をより多く含む信号光を受光する。 In this blood sugar level measuring apparatus 1, the irradiation unit 5 has a specific wavelength λk, for example, λ 1 = 1445 nm, λ 2 =, where the temperature change of the water absorption coefficient in the dermis layer 23 constituting the skin 21 is small. Irradiation with short-time pulsed light having a wavelength of 1782 nm is performed. The light guide 6 collects multiple types of backscattered light emitted from the skin 21. The light scattering medium layer selection unit 7 converts the backscattered light radiated by the dermis layer 23 from the multiple types of backscattered light radiated from the skin 21, and the distance between the entrance and exit and the reach in the depth direction in the living body. Select by relationship. The light receiving unit 8 receives signal light including more backscattered light emitted from the dermis layer 23.

さらに、光強度取得部9は、時刻tにおいて受光部8が受光した真皮層23から放射される後方散乱光の光強度を取得する。
一方、光路長取得部10は、光路長分布記憶部3から、皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚の各層の光路長を取得し、無吸収時光強度取得部11は、時間分解波形記憶部4から、皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。
Furthermore, the light intensity acquisition unit 9 acquires the light intensity of the backscattered light emitted from the dermis layer 23 received by the light receiving unit 8 at time t.
On the other hand, the optical path length acquisition unit 10 acquires the optical path length of each layer of the skin at the time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 3, and the non-absorbing light intensity acquisition unit 11 has a time-resolved waveform. The intensity of light at time t of the time-resolved waveform of the short-time pulsed light in the skin model is acquired from the storage unit 4.

次いで、光吸収係数算出部12は、光強度取得部9が取得した光強度と、光路長取得部10が取得した皮膚の各層の光路長と、無吸収時光強度取得部11が取得した光強度とに基づいて、皮膚の真皮層の光吸収係数を算出する。次いで、濃度算出部13は、光吸収係数算出部12が算出した光吸収係数に基づいて、真皮層23に含まれるグルコースの濃度を、上記の式(5)に基づき算出する。
これにより、真皮層以外の層によるノイズの影響を軽減して、真皮層に含まれるグルコースの濃度を算出することができる。
Next, the light absorption coefficient calculation unit 12 includes the light intensity acquired by the light intensity acquisition unit 9, the optical path length of each layer of the skin acquired by the optical path length acquisition unit 10, and the light intensity acquired by the non-absorption light intensity acquisition unit 11. Based on the above, the light absorption coefficient of the dermis layer of the skin is calculated. Next, the concentration calculator 13 calculates the concentration of glucose contained in the dermis layer 23 based on the above equation (5) based on the light absorption coefficient calculated by the light absorption coefficient calculator 12.
Thereby, the influence of noise by layers other than the dermis layer can be reduced, and the concentration of glucose contained in the dermis layer can be calculated.

以上により、真皮層23から放射される後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出される真皮層23に含まれるグルコースの濃度についても、水の影響を小さくすることができる。したがって、グルコース濃度における水の影響を低減することができ、真皮層23に含まれるグルコース濃度を、非侵襲的に精度良く測定することができる。   As described above, the influence of water in the backscattered light radiated from the dermis layer 23 can be reduced, and the concentration of glucose contained in the dermis layer 23 calculated based on this backscattered light is also affected by water. Can be small. Therefore, the influence of water on the glucose concentration can be reduced, and the glucose concentration contained in the dermis layer 23 can be accurately measured noninvasively.

次に、血糖値測定装置1の動作を説明する。
血糖値測定装置1は、血糖値を測定する前に、予め皮膚モデルの各層における伝搬光路長分布と時間分解波形とを算出しておく必要がある。
図2は、人の皮膚組織の断面を示す模式図であり、皮膚21は、概ね水を20%程度含み、残部が蛋白質からなる厚み0.3mm程度の表皮層22と、表皮層22下に形成され、概ね水を60%程度、蛋白質、脂質及びグルコースを含有する厚み1.2mm程度の真皮層(任意の層)23と、真皮層23下に形成され、概ね脂質を90%以上含み、残部が水からなる厚み3.0mm程度の皮下組織24とにより構成されている。
Next, the operation of the blood sugar level measuring apparatus 1 will be described.
The blood glucose level measuring apparatus 1 needs to calculate the propagation optical path length distribution and the time-resolved waveform in each layer of the skin model before measuring the blood glucose level.
FIG. 2 is a schematic diagram showing a cross-section of human skin tissue. The skin 21 includes approximately 20% of water and the rest of the skin layer 22 is approximately 0.3 mm thick and is below the skin layer 22. A dermis layer (arbitrary layer) 23 having a thickness of about 1.2 mm containing about 60% water and containing protein, lipid and glucose, and formed under the dermis layer 23, and generally containing 90% or more of lipid, The remaining part is composed of water and a subcutaneous tissue 24 having a thickness of about 3.0 mm.

ここで、皮膚モデルの伝搬光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部2は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、光吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないので、予めサンプルを取ることなどによって決定すると良い。
また、ここで用いる皮膚モデルの光吸収係数はゼロとする。その理由は、この皮膚モデルを用いて光吸収量を算出するからである。
Here, a method of calculating the propagation optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 2 generates a skin model. The skin model is generated by determining the light scattering coefficient, light absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance.
The light absorption coefficient of the skin model used here is zero. The reason is that the amount of light absorption is calculated using this skin model.

シミュレーション部2は、皮膚モデルを生成すると、この皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部5の位置と受光部8の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。   When the simulation unit 2 generates a skin model, the simulation unit 2 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 5 and the position of the light receiving unit 8. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.

まず、シミュレーション部2は、照射する光のモデルを光子(光束)とし、この光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数Rによって決定する。シミュレーション部2は、光子が次に進む点までの距離Lの計算を、式(6)により行う。

Figure 0005674093
ただし、μsは、皮膚モデルの第s層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。 First, the simulation unit 2 performs calculation for irradiating the skin model with a photon (light beam) as a model of light to be irradiated. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by the random number R. The simulation unit 2 calculates the distance L to the point at which the photon advances next using Equation (6).
Figure 0005674093
Here, μs represents the scattering coefficient of the s-th layer (any one of the epidermis layer, dermis layer, and subcutaneous tissue layer) of the skin model.

また、シミュレーション部2は、光子が次に進む点までの方向θの計算を、式(7)により行う。

Figure 0005674093
ただし、gは、散乱角度の余弦(cos)の平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。 In addition, the simulation unit 2 calculates the direction θ up to the point where the photon advances next by Expression (7).
Figure 0005674093
However, g shows the anisotropic parameter which is the average of the cosine (cos) of a scattering angle, and the anisotropic parameter of skin is about 0.9.

シミュレーション部2は、上記式(6)及び式(7)の計算を単位時間毎に繰り返すことにより、照射部5から受光部8までの光子の移動経路を算出することができる。シミュレーション部2は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部2は、10個の光子について移動距離を算出する。 The simulation unit 2 can calculate the movement path of photons from the irradiation unit 5 to the light receiving unit 8 by repeating the calculations of the above formulas (6) and (7) every unit time. The simulation unit 2 calculates the movement distance for a plurality of photons. For example, the simulation unit 2 calculates the movement distance for 10 8 photons.

図3は、シミュレーション部が算出した各層の伝搬光路長分布を示す図である。
図3では、横軸を光子の照射からの経過時間とし、縦軸を光路長の対数表示としている。
シミュレーション部2は、受光部8に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部2は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図3に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 3 is a diagram illustrating the propagation optical path length distribution of each layer calculated by the simulation unit.
In FIG. 3, the horizontal axis is the elapsed time from photon irradiation, and the vertical axis is a logarithmic display of the optical path length.
The simulation unit 2 classifies each movement path of the photons that have reached the light receiving unit 8 for each layer through which the movement path passes. And the simulation part 2 calculates the propagation | transmission optical path length distribution of each layer of skin as shown in FIG. 3 by calculating the average length of the movement path | route of the photon which arrived for every unit time for every classified layer.

図4は、シミュレーション部が算出した時間分解波形を示す図である。
図4では、横軸を光子の照射からの経過時間とし、縦軸を受光部8が検出した光子数としている。
シミュレーション部2は、単位時間毎に受光部8に到達した光子の個数を算出することで、図4に示すような皮膚モデルの時間分解波形を算出する。
上述したような処理により、シミュレーション部2は、複数の波長に対して、皮膚モデルの伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部2は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの差が大きい波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 4 is a diagram illustrating a time-resolved waveform calculated by the simulation unit.
In FIG. 4, the horizontal axis represents the elapsed time from photon irradiation, and the vertical axis represents the number of photons detected by the light receiving unit 8.
The simulation unit 2 calculates a time-resolved waveform of the skin model as shown in FIG. 4 by calculating the number of photons that reach the light receiving unit 8 per unit time.
Through the processing described above, the simulation unit 2 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 2 may calculate a propagation optical path length distribution and a time-resolved waveform for a wavelength having a large difference in absorption spectrum of skin main components (water, protein, lipid, glucose, etc.).

図5は、水による光吸収波長特性を示す図である(久保宇市著、「医用レーザ入門」、第1版、オーム社、昭和60年6月25日発行、第70頁、ISBN4−274−03065−2)。
図5では、横軸を照射する光の波長(μm)とし、縦軸を照射する光の皮膚への浸透深さ(cm)とし、水に向かって光を入射した場合、入射時の光強度が1/10に減少するまでに進む浸透深さを赤外域の各波長の光に対して示している。
例えば、3.0μm付近の波長帯域の光では、浸透深さが2×10−3cm程度と浅く、水に吸収され易いことが分かる。
FIG. 5 is a diagram showing the light absorption wavelength characteristics of water (by Kubo U. City, “Introduction to Medical Lasers”, 1st edition, Ohmsha, published on June 25, 1985, page 70, ISBN4-274). -03065-2).
In FIG. 5, the horizontal axis represents the wavelength of light (μm), the vertical axis represents the penetration depth (cm) of the light into the skin, and the light intensity at the time of incidence when entering the water. Shows the penetration depth that advances until it decreases to 1/10 for light of each wavelength in the infrared region.
For example, it can be seen that light having a wavelength band near 3.0 μm has a penetration depth as shallow as about 2 × 10 −3 cm and is easily absorbed by water.

図6は、皮膚の主成分の吸収スペクトルを示すグラフである。この図6では、横軸を照射する光の波長とし、縦軸を吸収係数としている。
図6によれば、グルコースの吸収係数は波長が1600nmのときに極大となり、水の吸収係数は波長が1450nmのときに極大となることがわかる。
したがって、シミュレーション部2は、例えば1400nm、1450nm、1500nm、1600nm、1680nm、1720nm、1740nmというように皮膚の主成分の吸収スペクトルの差が大きい波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 6 is a graph showing the absorption spectrum of the main component of the skin. In FIG. 6, the horizontal axis represents the wavelength of light to be irradiated, and the vertical axis represents the absorption coefficient.
According to FIG. 6, it can be seen that the absorption coefficient of glucose is maximized when the wavelength is 1600 nm, and the absorption coefficient of water is maximized when the wavelength is 1450 nm.
Therefore, the simulation unit 2 may calculate the propagation optical path length distribution and the time-resolved waveform for wavelengths having a large difference in the absorption spectrum of the main component of the skin, such as 1400 nm, 1450 nm, 1500 nm, 1600 nm, 1680 nm, 1720 nm, and 1740 nm.

シミュレーション部2は、複数の波長に対する皮膚モデルの伝搬光路長分布及び時間分解波形を算出すると、伝搬光路長分布の情報を光路長分布記憶部3に記憶させ、時間分解波形の情報を時間分解波形記憶部4に記憶させる。   When the simulation unit 2 calculates the propagation optical path length distribution and the time-resolved waveform of the skin model for a plurality of wavelengths, the simulation unit 2 stores the information on the propagation optical path length distribution in the optical path length distribution storage unit 3 and the time-resolved waveform information as the time-resolved waveform. Store in the storage unit 4.

図7は、皮膚21の表皮層22、真皮層23及び皮下組織24各々に照射される光の波長と吸収係数との関係を示す図であり、図中、Aは表皮層22の吸収係数を、Bは真皮層23の吸収係数を、Cは皮下組織24の吸収係数を、それぞれ示している。
この図によれば、真皮層23の吸収スペクトルには、波長1450nm付近に極大値があり、その吸収係数値は水の吸収係数の60%程度の値なので、真皮層23の吸収の60%は水分によるものと考えられる。また、表皮層22の吸収スペクトルにおいても、波長1450nm付近に真皮層23の1/3程度の大きさの極大値があり、その吸収係数値は水の吸収係数の20%程度の値なので、表皮層22の吸収の20%は水分によるものと考えられる。一方、皮下組織24の吸収スペクトルでは、波長1450nm付近に真皮層23の1/10程度の大きさの極大値しかなく、その吸収係数値は水の吸収係数の数%程度の値なので、皮下組織24の吸収の数%程度が水分によるものと考えられる。
FIG. 7 is a diagram showing the relationship between the wavelength of light applied to each of the epidermis layer 22, the dermis layer 23, and the subcutaneous tissue 24 of the skin 21, and the absorption coefficient, where A represents the absorption coefficient of the epidermis layer 22. , B indicate the absorption coefficient of the dermal layer 23, and C indicates the absorption coefficient of the subcutaneous tissue 24, respectively.
According to this figure, the absorption spectrum of the dermis layer 23 has a maximum value near the wavelength of 1450 nm, and its absorption coefficient value is about 60% of the absorption coefficient of water, so that 60% of the absorption of the dermis layer 23 is It is thought to be due to moisture. Also in the absorption spectrum of the skin layer 22, there is a maximum value of about 1/3 of the dermal layer 23 in the vicinity of the wavelength of 1450 nm, and the absorption coefficient value is about 20% of the water absorption coefficient. It is believed that 20% of the absorption of layer 22 is due to moisture. On the other hand, in the absorption spectrum of the subcutaneous tissue 24, there is only a maximum value of about 1/10 the size of the dermis layer 23 near the wavelength of 1450 nm, and the absorption coefficient value is about several percent of the absorption coefficient of water. It is considered that about several percent of the absorption of 24 is due to moisture.

以上により、真皮層23の吸収の60%は水分によるものと考えられ、また、表皮層22の吸収の20%は水分によるものと考えられるが、皮下組織24では、その吸収の数%程度が水分によるものと考えられる。したがって、皮膚から血糖値を非侵襲的に測定するには、測定対象としてグルコースを含んでいる真皮層23を選択し、この真皮層23に含まれるグルコース量を測定すればよいことが分かる。   From the above, 60% of the absorption of the dermis layer 23 is considered to be due to moisture, and 20% of the absorption of the epidermis layer 22 is considered to be due to moisture. It is thought to be due to moisture. Therefore, it can be understood that in order to non-invasively measure the blood glucose level from the skin, it is only necessary to select the dermis layer 23 containing glucose as a measurement target and measure the amount of glucose contained in the dermis layer 23.

ところで、水の吸収係数には温度依存性があることが知られている。
図8は、水の吸光度スペクトルの温度依存性を示す図であり、図中、Aは41℃における水の吸光度スペクトル、Bは21℃における水の吸光度スペクトルである。
ここでは、セル長が0.5mmの光学セルを用い、光学セルホルダとして温調ユニットタイプのものを用い、恒温循環槽を用いて±0.1℃の範囲で温度調節を行い、紫外可視近赤外分光光度計 Lambda 900S(パーキンエルマー社製)を用いて41℃及び21℃各々における水の吸光度スペクトルを測定した。
図8によれば、水の吸光度スペクトルの極大値は、21℃では波長1450nm付近にあり、温度が21℃より高くなるにしたがって、極大値が1450nmより短波長側にシフトすることが分かる。
Incidentally, it is known that the absorption coefficient of water has temperature dependency.
FIG. 8 is a diagram showing the temperature dependence of the water absorbance spectrum, in which A is the water absorbance spectrum at 41 ° C. and B is the water absorbance spectrum at 21 ° C.
Here, an optical cell with a cell length of 0.5 mm is used, a temperature control unit type optical cell holder is used, and the temperature is adjusted within a range of ± 0.1 ° C. using a thermostatic circulation tank, and ultraviolet, visible and near infrared are used. Absorbance spectra of water at 41 ° C. and 21 ° C. were measured using a spectrophotometer Lambda 900S (Perkin Elmer).
According to FIG. 8, the maximum value of the absorbance spectrum of water is near the wavelength of 1450 nm at 21 ° C., and the maximum value shifts to the shorter wavelength side from 1450 nm as the temperature becomes higher than 21 ° C.

そこで、21℃における水の吸光度スペクトルを基準として、21℃以外の温度における水の吸光度スペクトルの基準との差を求め、この差が「0」となる点の波長を求めれば、この波長が温度変化の影響を受けない波長となる。
図9は、水の吸光度スペクトルの差の温度依存性を示す図であり、図中、Aは25℃における水の吸光度スペクトルと21℃における水の吸光度スペクトルとの差を、Bは31℃における水の吸光度スペクトルと21℃における水の吸光度スペクトルとの差を、Cは37℃における水の吸光度スペクトルと21℃における水の吸光度スペクトルとの差を、Dは41℃における水の吸光度スペクトルと21℃における水の吸光度スペクトルとの差を、それぞれ示している。
Therefore, if the difference from the standard of the absorbance spectrum of water at a temperature other than 21 ° C. is obtained on the basis of the absorbance spectrum of water at 21 ° C., and the wavelength at the point where this difference is “0” is obtained, this wavelength becomes the temperature. The wavelength is not affected by the change.
FIG. 9 is a diagram showing the temperature dependence of the difference in the absorbance spectrum of water, in which A is the difference between the water absorbance spectrum at 25 ° C. and the water absorbance spectrum at 21 ° C., and B is at 31 ° C. The difference between the absorbance spectrum of water and the absorbance spectrum of water at 21 ° C., C is the difference between the absorbance spectrum of water at 37 ° C. and the absorbance spectrum of water at 21 ° C., and D is the absorbance spectrum of water at 41 ° C. The difference from the absorbance spectrum of water at ° C. is shown respectively.

図9によれば、各温度差における水の吸光度スペクトルの差の極大値は、温度差が大きくなるにしたがって短波長側にシフトし、また、差の極小値は、温度差が大きくなるにしたがって長波長側にシフトしているが、水の吸光度スペクトルの差が「0」となる点P及びQでは、温度差の大小にかかわらず波長が一定であることが分かる。この場合の点Pにおける波長は1445nmであり、点Qにおける波長は1782nmである。したがって、1445nm、1782nmのいずれかの波長を特定波長λkとした光を用いて試料の吸光度スペクトルを測定すれば、得られた吸光度スペクトルには温度変化の影響が無いことになる。   According to FIG. 9, the maximum value of the difference in the absorbance spectrum of water at each temperature difference shifts to the shorter wavelength side as the temperature difference increases, and the minimum value of the difference increases as the temperature difference increases. Although it is shifted to the long wavelength side, it can be seen that the wavelength is constant regardless of the temperature difference at the points P and Q where the difference in the absorbance spectrum of water is “0”. In this case, the wavelength at the point P is 1445 nm, and the wavelength at the point Q is 1782 nm. Therefore, if the absorbance spectrum of the sample is measured using light having a specific wavelength λk of either 1445 nm or 1782 nm, the obtained absorbance spectrum is not affected by temperature changes.

一例として、1445nm、1782nmの2種類の波長について、血糖値を100mg/dl、測定精度を±5%としたときの温度変化に対して安定とみなせる吸光度及び吸収係数の範囲を実験により求めたところ、1445nmの波長では1.35±0.0000175、±0.00004/mm、1782nmの波長では0.39±0.0000175、±0.00004/mmであった。したがって、これらの吸光度及び吸収係数の範囲から波長の範囲を求めると、1445±0.025nm、1782±0.1nmとなった。
その結果、血糖値を100mg/dl、測定精度を±5%としたときの温度変化に対して安定とみなせる波長範囲は、1445±0.025nm、1782±0.1nmであることが分かった。
As an example, for two types of wavelengths of 1445 nm and 1782 nm, the range of absorbance and absorption coefficient that can be regarded as stable with respect to temperature change when the blood glucose level is 100 mg / dl and the measurement accuracy is ± 5% is experimentally determined. In the wavelength of 1445 nm, they were 1.35 ± 0.0000175 and ± 0.00004 / mm, and in the wavelength of 1782 nm, they were 0.39 ± 0.0000175 and ± 0.00004 / mm. Therefore, when the wavelength range was determined from the ranges of the absorbance and the absorption coefficient, they were 1445 ± 0.025 nm and 1782 ± 0.1 nm.
As a result, it was found that the wavelength ranges that can be regarded as stable with respect to temperature changes when the blood glucose level was 100 mg / dl and the measurement accuracy was ± 5% were 1445 ± 0.025 nm and 1782 ± 0.1 nm.

以上により、真皮層における水の吸収係数の温度変化が小さい特定波長λkの短時間パルス光を用いて真皮層13に含まれるグルコース量を測定すれば、皮膚から血糖値を非侵襲的にて測定することができる。   As described above, if the amount of glucose contained in the dermis layer 13 is measured using short-time pulsed light having a specific wavelength λk in which the temperature change of the water absorption coefficient in the dermis layer is small, the blood glucose level can be measured non-invasively from the skin. can do.

図10は、グルコース水溶液の吸光度スペクトルの一例を示す図であり、図中、Aは参照側を蒸留水(21.5℃)として測定した9.4g/dlの高濃度のグルコース水溶液の吸光度スペクトルの測定値を、Bは同グルコース水溶液の吸光度スペクトルの測定値を温度補正及び体積補正した補正値を、それぞれ示している。   FIG. 10 is a diagram showing an example of the absorbance spectrum of an aqueous glucose solution. In the figure, A is the absorbance spectrum of a high-concentration glucose aqueous solution of 9.4 g / dl measured using the reference side as distilled water (21.5 ° C.). B represents a correction value obtained by temperature correction and volume correction of the measurement value of the absorbance spectrum of the glucose aqueous solution.

このグルコース水溶液では、グルコース濃度を正常値の約100倍である9.4g/dlとしたので、このときの体積増加は約6%である。
また、この濃度では、グルコースと水の体積比率が6:100と大きく、無視できない。このように、試料側の水の体積が参照側の水の体積と比べて減少しているので、水の吸光度の大きい1400〜1500nm付近と1900nm以上の波長領域では、吸光度スペクトル差が大きく負になっている。この体積減少は、セル長1mmに対して0.057mmの減少に相当している。そこで、グルコース水溶液の吸光度スペクトルの測定値に、この体積減少及び温度の補正を行うと、図10中、Bに示す補正値となり、固体のグルコースの吸光度スペクトルに近似したものとなる。
このように、グルコース水溶液の吸光度スペクトルの測定値を温度補正及び体積補正することにより、グルコース単体の吸光度スペクトルに近いものが得られる。
In this glucose aqueous solution, since the glucose concentration was 9.4 g / dl, which is about 100 times the normal value, the volume increase at this time is about 6%.
At this concentration, the volume ratio of glucose and water is as large as 6: 100 and cannot be ignored. Thus, since the volume of water on the sample side is reduced compared to the volume of water on the reference side, the absorbance spectrum difference is greatly negative in the vicinity of 1400-1500 nm where the absorbance of water is large and in the wavelength region of 1900 nm or more. It has become. This volume reduction corresponds to a reduction of 0.057 mm for a cell length of 1 mm. Therefore, when this volume reduction and temperature correction are performed on the measured value of the absorbance spectrum of the glucose aqueous solution, the correction value shown in FIG. 10B is obtained, which approximates the absorbance spectrum of solid glucose.
In this way, by performing temperature correction and volume correction on the measured value of the absorbance spectrum of the glucose aqueous solution, a value close to the absorbance spectrum of glucose alone can be obtained.

次に、この血糖値測定装置1を用いて血糖値を測定する手順について、図11に基づき説明する。
まず、被測定者が血糖値測定装置1を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置1を動作させる。
ここでは、照射部5が、皮膚21に対して、この皮膚21を構成する真皮層23における水の吸収係数の温度変化が小さい特定波長λkの短時間パルス光を照射する(ステップS1)。
この特定波長λkとしては、例えば、図9にて得られた1445nm、1782nmのいずれか、または双方の波長を用いることが好ましい。
Next, a procedure for measuring a blood sugar level using the blood sugar level measuring apparatus 1 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 1 to the skin such as the wrist, and operates the blood sugar level measuring device 1 by pressing a measurement start switch (not shown) or the like.
Here, the irradiation unit 5 irradiates the skin 21 with short-time pulsed light having a specific wavelength λk in which the temperature change of the water absorption coefficient in the dermis layer 23 constituting the skin 21 is small (step S1).
As this specific wavelength λk, for example, it is preferable to use one of 1445 nm and 1782 nm obtained in FIG. 9 or both wavelengths.

次いで、導光部6により、皮膚21から放射される複数種の後方散乱光、すなわち皮下組織22、真皮層23及び表皮層24各々から放射される後方散乱光を集光し、光散乱媒質層選択部7へ導光する。
光散乱媒質層選択部7では、導光部6により集光されかつ導光された皮下組織22、真皮層23及び表皮層24各々から放射される後方散乱光から、真皮層23により放射される後方散乱光をより多く含む信号光を選択する(ステップS2)。
Next, the light guide unit 6 collects a plurality of types of backscattered light emitted from the skin 21, that is, backscattered light emitted from each of the subcutaneous tissue 22, the dermis layer 23, and the epidermis layer 24, and a light scattering medium layer. The light is guided to the selection unit 7.
In the light scattering medium layer selection unit 7, the dermis layer 23 emits the backscattered light emitted from each of the subcutaneous tissue 22, the dermis layer 23, and the epidermis layer 24 collected and guided by the light guide unit 6. A signal light containing more backscattered light is selected (step S2).

次いで、受光部8により、真皮層23から放射される単位時間毎の後方散乱光を受光する(ステップS3)。このとき、受光部8では、照射開始からの単位時間毎(例えば、1ピコ秒毎の時刻t〜t)の受光強度を内部メモリに記録しておく。 Next, the light receiving unit 8 receives backscattered light per unit time emitted from the dermis layer 23 (step S3). At this time, the light receiving unit 8 records the received light intensity for each unit time from the start of irradiation (for example, times t 1 to t m every 1 picosecond) in the internal memory.

この受光部8が受光を完了したことを光強度取得部9に知らせると、この光強度取得部9では、真皮層23から放射される後方散乱光の異なる時刻の受光強度を取得する(ステップS4)。すなわち、複数の時刻t〜t各々における後方散乱光の光強度を取得する。
ここで、光強度取得部9が光強度を取得する時刻t〜tは、真皮層23から放射される後方散乱光のピークとなる時刻を含むことが好ましい。すなわち、照射部5が特定波長λ1の短時間パルス光を照射した時刻に、真皮層23の光路長が極大となる時間を加算した時刻とすることが好ましい。
When the light intensity acquisition unit 9 notifies the light intensity acquisition unit 9 that the light reception has been completed, the light intensity acquisition unit 9 acquires the light reception intensity at different times of the backscattered light emitted from the dermis layer 23 (step S4). ). That is, the light intensity of the backscattered light at each of the plurality of times t 1 to t m is acquired.
Here, it is preferable that the times t 1 to t m at which the light intensity acquisition unit 9 acquires the light intensity include the time at which the peak of the backscattered light emitted from the dermis layer 23 is obtained. That is, it is preferable that the time when the light path length of the dermis layer 23 is maximized is added to the time when the irradiation unit 5 emits the short-time pulsed light with the specific wavelength λ1.

次いで、光吸収係数算出部12では、光強度取得部9にて取得した真皮層23から放射される後方散乱光の異なる時刻の受光強度、すなわち、複数の時刻t〜t各々における後方散乱光の光強度を基に、真皮層23の光吸収係数を、下記の式(8)

Figure 0005674093
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する(ステップS5)。
ここでは、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 Next, in the light absorption coefficient calculation unit 12, the received light intensity at different times of the backscattered light emitted from the dermis layer 23 acquired by the light intensity acquisition unit 9, that is, backscattering at each of a plurality of times t 1 to t m. Based on the light intensity of light, the light absorption coefficient of the dermis layer 23 is expressed by the following equation (8).
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t of the model of the propagation optical path length distribution in each layer of the skin, and μ i is the light absorption coefficient of the i-th layer)
(Step S5).
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次いで、特定波長λkの種類数と同じ数の特定波長λkに対して光吸収係数を算出したか否かを判定し、算出したならば、次の手順に進み、算出していなかったならば、特定波長λkの短時間パルス光を照射する(ステップS1)以降の手順を再度行う(ステップS6)。   Next, it is determined whether or not the light absorption coefficient is calculated for the same number of specific wavelengths λk as the number of types of specific wavelengths λk. If calculated, the process proceeds to the next procedure, and if not calculated, The procedure after the irradiation with the short-time pulse light with the specific wavelength λk (step S1) is performed again (step S6).

ここで、特定波長λkの種類数と同じ数の特定波長λkに対して光吸収係数を算出したならば、濃度算出部13では、光吸収係数算出部12が算出した真皮層23の光吸収係数μを基に、真皮層23に含まれるグルコースの濃度を算出する。
ここでは、例えば、単一波長での主要成分の光吸収係数と、各層の光吸収係数との関係から、グルコースの濃度を算出する場合について説明する。
下記の式(9)は、皮膚の光吸収係数が、水、グルコース、蛋白質、脂質及びその他の成分各々の波長に関する関数とその係数との積の和であることを示している。

Figure 0005674093
Here, if the light absorption coefficient is calculated for the same number of specific wavelengths λk as the number of types of the specific wavelength λk, the concentration calculation unit 13 calculates the light absorption coefficient of the dermis layer 23 calculated by the light absorption coefficient calculation unit 12. Based on μ, the concentration of glucose contained in the dermis layer 23 is calculated.
Here, for example, a case where the concentration of glucose is calculated from the relationship between the light absorption coefficient of the main component at a single wavelength and the light absorption coefficient of each layer will be described.
Equation (9) below shows that the light absorption coefficient of the skin is the sum of the product of the function and the coefficient relating to the wavelength of each of water, glucose, protein, lipid and other components.
Figure 0005674093

式(10)は、式(9)で示した皮膚の光吸収係数より、皮膚の表皮、真皮、皮下組織の各層の光吸収係数は、水、グルコース、蛋白質、脂質及びその他の成分各々の波長に関する光吸収係数と濃度との積の和であることを示している。

Figure 0005674093
Equation (10) shows the light absorption coefficient of each layer of the skin epidermis, dermis, and subcutaneous tissue from the light absorption coefficient of the skin shown in Equation (9), and the wavelength of water, glucose, protein, lipid and other components. This is the sum of the product of the light absorption coefficient and the concentration.
Figure 0005674093

式(11)は、上記の式(10)を行列で表した式であり、式(11)中、「C」は、皮膚の表皮、真皮、皮下組織の各層毎の水、グルコース、蛋白質、脂質及びその他の成分各々の濃度を示す係数行列である。

Figure 0005674093
Formula (11) is a formula representing the above formula (10) as a matrix, and in formula (11), “C” represents water, glucose, protein for each layer of the skin epidermis, dermis, and subcutaneous tissue, It is a coefficient matrix which shows the density | concentration of each of a lipid and another component.
Figure 0005674093

この式(11)を変形することにより、「C」を解く連立一次方程式である式(12)が導き出せる。

Figure 0005674093
By transforming Equation (11), Equation (12), which is a simultaneous linear equation for solving “C”, can be derived.
Figure 0005674093

この式(12)を行列で表した式が、式(13)である。

Figure 0005674093
Expression (13) is an expression in which Expression (12) is expressed as a matrix.
Figure 0005674093

ここでは、真皮(L2)の光吸収係数について、複数の波長(λ)における皮膚の主成分吸収係数とその濃度の関係について、式(14)で示される一次連立方程式を立てる。

Figure 0005674093
Here, with respect to the light absorption coefficient of the dermis (L2), a linear simultaneous equation represented by Expression (14) is established for the relationship between the skin principal component absorption coefficient and its concentration at a plurality of wavelengths (λ).
Figure 0005674093

この式(14)は、式(15)と変形することができる。

Figure 0005674093
This equation (14) can be transformed to the equation (15).
Figure 0005674093

この式(15)を変形することにより、「C」を解く連立一次方程式である式(16)を導くことができる。
式(16)中、εは水の光吸収係数、εはグルコースの光吸収係数、εは蛋白質の光吸収係数、εは脂質の光吸収係数、μL1は表皮の光吸収係数、μL2は真皮の光吸収係数、μL3は皮下組織の光吸収係数である。なお、皮膚主成分の光吸収係数、皮膚の層はさらに追加されても良い。

Figure 0005674093
このように、真皮(L2)に係わる係数行列「C」は、式(16)から算出することができる。 By transforming Equation (15), Equation (16) that is a simultaneous linear equation for solving “C” can be derived.
In equation (16), ε W is the light absorption coefficient of water, ε G is the light absorption coefficient of glucose, ε P is the light absorption coefficient of the protein, ε L is the light absorption coefficient of the lipid, and μ L1 is the light absorption coefficient of the epidermis. , mu L2 light absorption coefficient of the dermis, the mu L3 is a light absorption coefficient of the subcutaneous tissue. The light absorption coefficient of the skin main component and the skin layer may be further added.
Figure 0005674093
Thus, the coefficient matrix “C” related to the dermis (L2) can be calculated from the equation (16).

さらに、ここでは、複数波長での差分での説明を行う。
ここでは、真皮層23に含まれるグルコースの濃度を下記の式(17)

Figure 0005674093
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは短時間パルス光の種類数である)
から算出する(ステップS7)。 Furthermore, here, the explanation is based on the difference at a plurality of wavelengths.
Here, the concentration of glucose contained in the dermis layer 23 is expressed by the following equation (17).
Figure 0005674093
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of short-time pulsed light)
(Step S7).

上述の血糖値測定装置1は、コンピュータシステムを内蔵しており、上述した各ステップの処理動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されている。そこで、このプログラムをコンピュータが読み出して実行することにより、上記の処理動作を行うことができる。
ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。
また、このコンピュータプログラムを通信回線によりコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
The blood glucose level measuring apparatus 1 described above has a built-in computer system, and the processing operation of each step described above is stored in a computer-readable recording medium in the form of a program. Therefore, the above-described processing operation can be performed by the computer reading and executing this program.
Here, examples of the computer-readable recording medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory.
Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、上記の各ステップの一部を実現するためのものであってもよい。
さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the above steps.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

以上説明したように、本実施形態によれば、皮膚に照射される短時間パルス光を、水の吸収係数の温度変化が小さい特定波長の短時間パルス光とすることで、真皮層から放射される後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出される皮膚の真皮層におけるグルコースの濃度においても、水の影響を小さくすることができる。したがって、グルコースの濃度における水の影響を低減することができ、真皮層に含まれるグルコースの濃度を、非侵襲的に精度良く測定することができる。   As described above, according to the present embodiment, the short-time pulse light applied to the skin is emitted from the dermis layer by making the short-time pulse light having a specific wavelength with a small temperature change in the water absorption coefficient. The influence of water in the backscattered light can be reduced, and the influence of water can also be reduced in the glucose concentration in the dermis layer of the skin calculated based on the backscattered light. Therefore, the influence of water on the glucose concentration can be reduced, and the glucose concentration contained in the dermis layer can be accurately measured noninvasively.

[第2の実施形態]
図12は、本発明の第2の実施形態の血糖値測定装置の構成を示す概略ブロック図であり、本実施形態の血糖値測定装置31が第1の実施形態の血糖値測定装置1と異なる点は、光強度取得部9及び光吸収係数算出部12を、これらとは異なる機能を有する光強度取得部(光強度取得手段)32及び光吸収係数算出部(光吸収係数算出手段)33に替えた点である。
[Second Embodiment]
FIG. 12 is a schematic block diagram showing the configuration of the blood sugar level measuring device according to the second embodiment of the present invention, and the blood sugar level measuring device 31 of the present embodiment is different from the blood sugar level measuring device 1 of the first embodiment. The point is that the light intensity acquisition unit 9 and the light absorption coefficient calculation unit 12 are changed to a light intensity acquisition unit (light intensity acquisition unit) 32 and a light absorption coefficient calculation unit (light absorption coefficient calculation unit) 33 having functions different from these. It is a changed point.

光強度取得部32は、受光部8が受光した真皮層から放射される後方散乱光の所定の時刻から少なくとも所定の時刻τの間の光強度の時間変化を取得する。
光吸収係数算出部33は、特定波長λkの短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The light intensity acquisition unit 32 acquires a temporal change in light intensity between a predetermined time and at least a predetermined time τ of backscattered light emitted from the dermis layer received by the light receiving unit 8.
The light absorption coefficient calculation unit 33 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light with the specific wavelength λk.

この光吸収係数算出部33では、皮膚における任意の層の光吸収係数を、下記の式(18)

Figure 0005674093
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In this light absorption coefficient calculation unit 33, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (18).
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次に、この血糖値測定装置31を用いて血糖値を測定する手順について、図13に基づき説明する。
この手順では、光散乱媒質層選択部7が皮下組織22、真皮層23及び表皮層24各々から放射される後方散乱光から、真皮層23により放射される後方散乱光を選択する(ステップS2)手順までが図11に示す手順と同一であるから、説明を省略する。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 31 will be described with reference to FIG.
In this procedure, the light scattering medium layer selection unit 7 selects the backscattered light emitted from the dermis layer 23 from the backscattered light emitted from the subcutaneous tissue 22, the dermis layer 23, and the epidermis layer 24 (step S2). The procedure up to and including the procedure shown in FIG. 11 is omitted.

この後方散乱光を選択した後、受光部8により、真皮層23から放射される所定の時刻τの間の後方散乱光を受光する(ステップS11)。このとき、受光部8では、照射開始から少なくとも所定の時刻τの間の受光強度の時間変化を内部メモリに記録しておく。
次いで、この受光部8が受光を完了したことを光強度取得部32に知らせると、この光強度取得部32では、真皮層23から放射される後方散乱光の照射開始から少なくとも所定の時刻τの間の受光強度の時間変化を取得する(ステップS12)。
After selecting the backscattered light, the light receiving unit 8 receives the backscattered light for a predetermined time τ emitted from the dermis layer 23 (step S11). At this time, the light receiving unit 8 records the temporal change in the received light intensity at least during a predetermined time τ from the start of irradiation in the internal memory.
Next, when the light intensity acquisition unit 32 notifies the light intensity acquisition unit 32 that the light reception has been completed, the light intensity acquisition unit 32 at least at a predetermined time τ from the start of irradiation of the backscattered light emitted from the dermis layer 23. A change in the received light intensity over time is acquired (step S12).

次いで、光吸収係数算出部33では、光強度取得部32にて取得した真皮層23から放射される後方散乱光の照射開始から少なくとも所定の時刻τの間の受光強度の時間変化を基に、真皮層23の光吸収係数を、下記の式(19)

Figure 0005674093
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する(ステップS13)。 Next, in the light absorption coefficient calculation unit 33, based on the temporal change in the received light intensity at least during a predetermined time τ from the start of irradiation of the backscattered light emitted from the dermis layer 23 acquired by the light intensity acquisition unit 32, The light absorption coefficient of the dermis layer 23 is expressed by the following equation (19).
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer)
(Step S13).

次いで、特定波長λkの種類数と同じ数の特定波長λkに対して光吸収係数を算出したか否かを判定し、算出したならば、次の手順に進み、算出していなかったならば、特定波長λkの短時間パルス光を照射する(ステップS1)以降の手順を再度行う(ステップS14)。   Next, it is determined whether or not the light absorption coefficient is calculated for the same number of specific wavelengths λk as the number of types of specific wavelengths λk. If calculated, the process proceeds to the next procedure, and if not calculated, The procedure after the irradiation with the short-time pulsed light with the specific wavelength λk (step S1) is performed again (step S14).

ここで、特定波長λkの種類数と同じ数の特定波長λkに対して光吸収係数を算出したならば、濃度算出部13では、光吸収係数算出部33が算出した真皮層23の光吸収係数μを基に、真皮層23に含まれるグルコースの濃度を、下記の式(20)

Figure 0005674093
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは特定波長λkの種類数である)
から算出する(ステップS15)。 Here, if the light absorption coefficient is calculated for the same number of specific wavelengths λk as the number of types of the specific wavelength λk, the concentration calculation unit 13 calculates the light absorption coefficient of the dermis layer 23 calculated by the light absorption coefficient calculation unit 33. Based on μ, the concentration of glucose contained in the dermis layer 23 is expressed by the following equation (20).
Figure 0005674093
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of specific wavelength λk)
(Step S15).

本実施形態においても、第1の実施形態と同様に、真皮層から放射される後方散乱光における水の影響を小さくすることができ、この後方散乱光を基に算出される皮膚の真皮層におけるグルコースの濃度においても、水の影響を小さくすることができる。したがって、グルコースの濃度における水の影響を低減することができ、真皮層に含まれるグルコースの濃度を、非侵襲的に精度良く測定することができる。   Also in the present embodiment, as in the first embodiment, the influence of water in the backscattered light radiated from the dermis layer can be reduced, and in the dermis layer of the skin calculated based on this backscattered light. Even in the concentration of glucose, the influence of water can be reduced. Therefore, the influence of water on the glucose concentration can be reduced, and the glucose concentration contained in the dermis layer can be accurately measured noninvasively.

以上、本発明の各実施形態について、図面を参照して説明してきたが、具体的な構成は上述のものに限られることはなく、本発明の要旨を逸脱しない範囲内において様々な設計変更等が可能である。
例えば、上記の各実施形態では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ取ることで、皮膚の真皮層に含まれるグルコースの濃度を測定する場合について説明したが、これに限らず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いてもよく、特定波長の短時間パルス光を、特定波長の連続光に替えてもよい。
例えば、携帯型の皮膚主成分の濃度測定装置に適用した場合、皮膚疾患の検査や診断や治療に有効利用することが可能である。
As described above, each embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to the above-described one, and various design changes and the like can be made without departing from the scope of the present invention. Is possible.
For example, in each of the above embodiments, the blood glucose level measuring device as the concentration quantification device, the skin of a human palm as the observation target, glucose as the target component, short-time pulsed light of a specific wavelength as light of a specific wavelength, Although the case where the concentration of glucose contained in the dermis layer of the skin is measured has been described, the present invention is not limited to this, and the concentration determination method is not limited to any layer to be observed formed from a plurality of light scattering medium layers. It may be used for other devices for quantifying the concentration of the target component in, and the short-time pulsed light with a specific wavelength may be replaced with continuous light with a specific wavelength.
For example, when it is applied to a portable skin main component concentration measuring apparatus, it can be effectively used for examination, diagnosis and treatment of skin diseases.

1…血糖値測定装置(濃度定量装置)、3…光路長分布記憶部(光路長分布記憶手段)、4…時間分解波形記憶部(時間分解波形記憶手段)、5…照射部(照射手段)、7…光散乱媒質層選択部(光散乱媒質層選択手段)、8…受光部(受光手段)、10…光路長取得部(光路長取得手段)、11…無吸収時光強度取得部(光強度モデル取得手段)、12…光吸収係数算出部(光吸収係数算出手段)、13…濃度算出部(濃度算出手段)、21…皮膚(観測対象)、23…真皮層(任意の層)、31…血糖値測定装置(濃度定量装置)、32…光強度取得部(光強度取得手段)、33…光吸収係数算出部(光吸収係数算出手段)、S1〜S6、S11〜S14 ステップ DESCRIPTION OF SYMBOLS 1 ... Blood glucose level measuring apparatus (concentration determination apparatus), 3 ... Optical path length distribution storage part (optical path length distribution storage means), 4 ... Time-resolved waveform storage part (time-resolved waveform storage means), 5 ... Irradiation part (irradiation means) , 7... Light scattering medium layer selection section (light scattering medium layer selection means), 8. Light receiving section (light receiving means), 10... Optical path length acquisition section (light path length acquisition means), 11. Intensity model acquisition means), 12 ... light absorption coefficient calculation section (light absorption coefficient calculation means), 13 ... concentration calculation section (concentration calculation means), 21 ... skin (observation target), 23 ... dermis layer (arbitrary layer), 31 ... Blood glucose level measuring device (concentration determination device), 32 ... Light intensity acquisition unit (light intensity acquisition unit), 33 ... Light absorption coefficient calculation unit (light absorption coefficient calculation unit), S1 to S6, S11 to S14

Claims (8)

複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手段と、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手段と、
前記任意の層から放射される後方散乱光を受光する受光手段と、
前記受光手段が受光した光の強度を取得する光強度取得手段と、
前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を備え
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、前記任意の層の複数の時刻t 〜t における光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)
Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)から算出することを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of light scattering medium layers,
Irradiation means for irradiating the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer;
A light scattering medium layer selection means for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light; and
A light receiving means for receiving backscattered light emitted from the arbitrary layer;
Light intensity acquisition means for acquiring the intensity of light received by the light receiving means;
A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquiring means;
Concentration calculating means for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means ,
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path length acquisition unit that acquires an optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit;
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity obtaining unit obtains the light intensity at a plurality of times t 1 ~t m of the optional layer,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following formula (1):
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity A concentration quantifying apparatus, which is calculated from an optical path length of the i-th layer at a time t of a model of a propagation optical path length distribution in each layer of a plurality of light scattering media, and μi is a light absorption coefficient of the i-th layer) .
前記光強度取得手段が光強度を取得する複数の時刻は、前記複数の光散乱媒質の各々の層の伝搬光路長分布のピーク時間を含むことを特徴とする請求項記載の濃度定量装置。 A plurality of time the light intensity obtaining unit obtains the light intensity, the concentration quantification device according to claim 1, characterized in that it comprises a plurality of peak time of the propagation path length distribution of each layer of the light-scattering medium. 複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手段と、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手段と、
前記任意の層から放射される後方散乱光を受光する受光手段と、
前記受光手段が受光した光の強度を取得する光強度取得手段と、
前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を備え、
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、所定の時刻から少なくとも所定の時間τの間の光強度の時間変化を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)
Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)から算出することを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of light scattering medium layers,
Irradiation means for irradiating the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer;
A light scattering medium layer selection means for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light; and
A light receiving means for receiving backscattered light emitted from the arbitrary layer;
Light intensity acquisition means for acquiring the intensity of light received by the light receiving means;
A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquiring means;
Concentration calculating means for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means,
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
From the optical path length distribution storage unit, at a constant time at the model of the propagation optical path length distribution, the optical path length acquisition means for acquiring an optical path length of each layer of the layer of the plurality of light scattering medium,
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquisition means acquires a temporal change in light intensity between a predetermined time and at least a predetermined time τ,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following equation (2):
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. ) can be calculated from the concentration quantification device you characterized.
前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)
Figure 0005674093
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記特定波長の種類数である)から算出することを特徴とする請求項1ないしのいずれか1項記載の濃度定量装置。
The concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following formula (3)
Figure 0005674093
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. the number of principal components constituting, q is the concentration quantification device according to any one of claims 1 to 3, characterized in that calculated from the a) the number of types of the specific wavelength.
複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、
照射手段により、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射し、
次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択し、
次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、
次いで、光強度取得手段により、前記受光手段が受光した光の強度を取得し、
次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、
次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、ことを含み、
前記光を短時間パルス光とし、さらに、
光路長分布記憶手段により、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶し、
時間分解波形記憶手段により、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶し、
光路長取得手段により、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得し、
光強度モデル取得手段により、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得しており、
前記光強度取得手段は、前記任意の層の複数の時刻t 〜t における光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)
Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)から算出することを特徴とする濃度定量方法。
A concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of layers of a plurality of light scattering media,
By irradiating means, the observation object is irradiated with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer,
Next, the light scattering medium layer selection means selects time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light. ,
Next, the light receiving means receives backscattered light emitted from the arbitrary layer,
Next, the light intensity acquisition means acquires the intensity of the light received by the light receiving means,
Next, the light absorption coefficient calculation means calculates the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means,
Then, the concentration calculating means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means ,
The light is a short-time pulsed light, and
The optical path length distribution storage means stores a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation target,
The time-resolved waveform storage means stores a model of the time-resolved waveform of the short-time pulsed light that is irradiated to the observation target,
The optical path length acquisition unit acquires the optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit,
The light intensity model acquisition means acquires the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means,
The light intensity obtaining unit obtains the light intensity at a plurality of times t 1 ~t m of the optional layer,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following formula (1):
Figure 0005674093
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity A concentration quantification method comprising: calculating from the optical path length of the i-th layer at time t of the propagation optical path length distribution model in each layer of the plurality of light scattering media, and μi being a light absorption coefficient of the i-th layer) .
複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、  A concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of layers of a plurality of light scattering media,
照射手段により、前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射し、  By irradiating means, the observation object is irradiated with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer,
次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択し、  Next, the light scattering medium layer selection means selects time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light. ,
次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、  Next, the light receiving means receives backscattered light emitted from the arbitrary layer,
次いで、光強度取得手段により、前記受光手段が受光した光の強度を取得し、  Next, the light intensity acquisition means acquires the intensity of the light received by the light receiving means,
次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、  Next, the light absorption coefficient calculation means calculates the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means,
次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、ことを含み、  Then, the concentration calculating means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means,
前記光を短時間パルス光とし、さらに、  The light is a short-time pulsed light, and
光路長分布記憶手段により、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶し、  The optical path length distribution storage means stores a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation target,
時間分解波形記憶手段により、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶し、  The time-resolved waveform storage means stores a model of the time-resolved waveform of the short-time pulsed light that is irradiated to the observation target,
光路長取得手段により、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得し、  The optical path length acquisition unit acquires the optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit,
光強度モデル取得手段により、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得しており、  The light intensity model acquisition means acquires the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means,
前記光強度取得手段は、所定の時刻から少なくとも所定の時間τの間の光強度の時間変化を取得し、  The light intensity acquisition means acquires a temporal change in light intensity between a predetermined time and at least a predetermined time τ,
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)  The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following equation (2):
Figure 0005674093
Figure 0005674093
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)から算出することを特徴とする濃度定量方法。(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. The concentration quantification method characterized by calculating from this.
複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、
前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手順、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手順、
前記任意の層から放射される後方散乱光を受光する受光手順、
前記受光手順にて受光した光の強度を取得する光強度取得手順、
前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、
前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、を実行させ
前記光は短時間パルス光であり、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手順、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手順、
前記光路長分布記憶手順で記憶した前記伝搬光路長分布のモデルから、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手順、
前記時間分解波形記憶手順で記憶した前記短時間パルス光の時間分解波形のモデルから、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手順、を実行させ、
前記光強度取得手順では、前記任意の層の複数の時刻t 〜t における光強度を取得し、
前記光吸収係数算出手順では、前記任意の層の光吸収係数を、下記の式(1)
Figure 0005674093
(但し、I(t)は前記受光手順において時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)から算出することを特徴とするプログラム。
In the computer of the concentration quantification device that quantifies the concentration of the target component in any layer among the observation objects composed of multiple layers of light scattering media,
Irradiation procedure for irradiating the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer,
A light scattering medium layer selection procedure for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light;
A light receiving procedure for receiving backscattered light emitted from the arbitrary layer;
Light intensity acquisition step of acquiring the intensity of the light received by the light receiving procedure,
Based on the light intensity obtained by the light intensity acquisition procedure, the light absorption coefficient calculating step of calculating the light absorption coefficient of the given layer,
On the basis of the light absorption coefficient calculated in the light absorption coefficient calculation procedure, the concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer, allowed to run,
The light is short-time pulsed light;
An optical path length distribution storing procedure for storing a model of a propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
A time-resolved waveform storage procedure for storing a model of a time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path for acquiring the optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the propagation optical path length distribution model from the propagation optical path length distribution model stored in the optical path length distribution storing procedure Long acquisition procedure,
Light intensity model acquisition procedure for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulse light from the model of the time-resolved waveform of the short-time pulse light stored in the time-resolved waveform storage procedure , Execute
In the light intensity obtaining step to obtain a light intensity at a plurality of times t 1 ~t m of the optional layer,
In the light absorption coefficient calculation procedure, the light absorption coefficient of the arbitrary layer is expressed by the following equation (1).
Figure 0005674093
(Where I (t) is the light intensity received at time t in the light receiving procedure, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulsed light, and Li (t) is the above-mentioned A program calculated from a model of a propagation optical path length distribution in each layer of a plurality of light scattering media from an optical path length of the i-th layer at time t, and μi is a light absorption coefficient of the i-th layer) .
複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、  In the computer of the concentration quantification device that quantifies the concentration of the target component in any layer among the observation objects composed of multiple layers of light scattering media,
前記観測対象に、前記任意の層における水の吸収係数の温度変化が小さい特定波長の光を照射する照射手順、  Irradiation procedure for irradiating the observation target with light having a specific wavelength with a small temperature change in the absorption coefficient of water in the arbitrary layer,
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手順、  A light scattering medium layer selection procedure for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light;
前記任意の層から放射される後方散乱光を受光する受光手順、  A light receiving procedure for receiving backscattered light emitted from the arbitrary layer;
前記受光手順にて受光した光の強度を取得する光強度取得手順、  A light intensity acquisition procedure for acquiring the intensity of light received in the light reception procedure;
前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、  A light absorption coefficient calculation procedure for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired in the light intensity acquisition procedure;
前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、を実行させ、  Based on the light absorption coefficient calculated in the light absorption coefficient calculation procedure, execute a concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer,
前記光は短時間パルス光であり、さらに、  The light is short-time pulsed light;
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手順、  An optical path length distribution storing procedure for storing a model of a propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手順、  A time-resolved waveform storage procedure for storing a model of a time-resolved waveform of the short-time pulsed light irradiated to the observation object;
前記光路長分布記憶手順で記憶した前記伝搬光路長分布のモデルから、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手順、  An optical path for acquiring the optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the propagation optical path length distribution model from the propagation optical path length distribution model stored in the optical path length distribution storing procedure Long acquisition procedure,
前記時間分解波形記憶手順で記憶した前記短時間パルス光の時間分解波形のモデルから、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手順、を実行させ、  Light intensity model acquisition procedure for acquiring the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulse light from the model of the time-resolved waveform of the short-time pulse light stored in the time-resolved waveform storage procedure , Execute
前記光強度取得手順では、所定の時刻から少なくとも所定の時間τの間の光強度の時間変化を取得し、  In the light intensity acquisition procedure, a time change in light intensity between a predetermined time and at least a predetermined time τ is acquired,
前記光吸収係数算出手順では、前記任意の層の光吸収係数を、下記の式(2)  In the light absorption coefficient calculation procedure, the light absorption coefficient of the arbitrary layer is expressed by the following equation (2).
Figure 0005674093
Figure 0005674093
(但し、I(t)は前記受光手順において時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)から算出することを特徴とするプログラム。(Where I (t) is the light intensity received at time t in the light receiving procedure, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulsed light, and Li (t) is the above-mentioned The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. ) Is calculated from the program.
JP2010158097A 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program Expired - Fee Related JP5674093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010158097A JP5674093B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program
US13/176,422 US9464983B2 (en) 2010-07-12 2011-07-05 Concentration determination apparatus, probe, concentration determination method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158097A JP5674093B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program

Publications (2)

Publication Number Publication Date
JP2012021811A JP2012021811A (en) 2012-02-02
JP5674093B2 true JP5674093B2 (en) 2015-02-25

Family

ID=45776218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158097A Expired - Fee Related JP5674093B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program

Country Status (1)

Country Link
JP (1) JP5674093B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464983B2 (en) 2010-07-12 2016-10-11 Seiko Epson Corporation Concentration determination apparatus, probe, concentration determination method, and program
JP5838517B2 (en) 2011-06-21 2016-01-06 セイコーエプソン株式会社 Concentration determination device, concentration determination method
JP5770684B2 (en) * 2012-06-29 2015-08-26 富士フイルム株式会社 Optical simulation apparatus and method, and program
JP6116956B2 (en) * 2013-03-22 2017-04-19 パナソニックヘルスケアホールディングス株式会社 Quantitative determination method and apparatus for glucose concentration
WO2016035881A1 (en) 2014-09-05 2016-03-10 パナソニックヘルスケアホールディングス株式会社 Method for quantifying glucose concentration and glucose concentration measurement device
JP7438774B2 (en) * 2020-02-05 2024-02-27 アズビル株式会社 measuring device
CN113509178B (en) * 2021-06-02 2022-07-08 圣点世纪科技股份有限公司 Non-invasive blood glucose detection method and device based on differential temperature state monitoring
CN114397253B (en) * 2022-03-22 2022-06-24 中国海洋大学 Water absorption coefficient measuring device based on natural light
CN115963068B (en) * 2023-03-16 2023-05-05 北京心联光电科技有限公司 Method and device for measuring content of skin tissue components

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304559B2 (en) * 1993-10-25 2002-07-22 株式会社日立製作所 Optical measurement method and device
JPH07284490A (en) * 1994-02-22 1995-10-31 Minolta Co Ltd Glucose concentration measuring apparatus
JPH08289882A (en) * 1995-04-24 1996-11-05 Hitachi Ltd Instrument for measuring non-invasive blood component
JP3521662B2 (en) * 1996-12-04 2004-04-19 松下電器産業株式会社 Blood glucose meter
TW352335B (en) * 1997-03-25 1999-02-11 Matsushita Electric Works Ltd Method of determining a glucose concentration in a target by using near-infrared spectroscopy
JP4362936B2 (en) * 2000-04-25 2009-11-11 パナソニック電工株式会社 Measuring device for glucose concentration in living body
JP2003202287A (en) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk Scattering absorption member measuring method and device
JP5463545B2 (en) * 2009-03-31 2014-04-09 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program

Also Published As

Publication number Publication date
JP2012021811A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US9464983B2 (en) Concentration determination apparatus, probe, concentration determination method, and program
US10912504B2 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
JP3566277B1 (en) Blood glucose meter
JP4872536B2 (en) Biological component concentration measurement method
JP5750750B2 (en) Concentration meter
JP2005095317A (en) Optical measurement apparatus and blood sugar level measurement apparatus using it
JP4697000B2 (en) Body component measuring device
JP2013103094A (en) Measurement device, measurement method, program, and recording medium
JP2016010717A (en) Concentration quantification apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP4586680B2 (en) Method for preparing calibration curve for quantitative analysis of in-vivo components, and quantitative analyzer using the calibration curve
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP7253733B2 (en) How to calculate the amount of glucose
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
JP2011220993A (en) Near-infrared spectroscopic analysis apparatus
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program
US7565249B2 (en) Method for the determination of a light transport parameter in a biological matrix
JP2013043062A (en) Concentration determination apparatus, concentration determination method, and program
JP2012200277A (en) Concentration measurement method and concentration measurement device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees