JP5652599B2 - Concentration determination apparatus, concentration determination method and program - Google Patents

Concentration determination apparatus, concentration determination method and program Download PDF

Info

Publication number
JP5652599B2
JP5652599B2 JP2010158098A JP2010158098A JP5652599B2 JP 5652599 B2 JP5652599 B2 JP 5652599B2 JP 2010158098 A JP2010158098 A JP 2010158098A JP 2010158098 A JP2010158098 A JP 2010158098A JP 5652599 B2 JP5652599 B2 JP 5652599B2
Authority
JP
Japan
Prior art keywords
light
light receiving
path length
irradiation
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010158098A
Other languages
Japanese (ja)
Other versions
JP2012019833A (en
Inventor
天野 和彦
和彦 天野
孝一 清水
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Seiko Epson Corp
Original Assignee
Hokkaido University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Seiko Epson Corp filed Critical Hokkaido University NUC
Priority to JP2010158098A priority Critical patent/JP5652599B2/en
Priority to US13/176,422 priority patent/US9464983B2/en
Publication of JP2012019833A publication Critical patent/JP2012019833A/en
Application granted granted Critical
Publication of JP5652599B2 publication Critical patent/JP5652599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明のいくつかの様態は、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置、濃度定量方法及びプログラムに関する。   Some embodiments of the present invention relate to a concentration quantification apparatus, a concentration quantification method, and a program for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers.

従来、血糖値の測定は、指先などから採血を行い、血中のグルコースに対する酵素活性を測ることで行っていた。しかし、このような血糖値の測定方法は、指先などから血液を採取して測定しなければならず、採血に手間と痛みを伴うことや、血液を付着させる測定チップが必要なことから、採血を必要としない非侵襲型の血糖値の測定方法が望まれている。   Conventionally, the blood sugar level has been measured by collecting blood from a fingertip or the like and measuring the enzyme activity for glucose in the blood. However, such a blood glucose level measurement method requires blood sampling from a fingertip or the like, and is troublesome and painful in blood sampling, or requires a measurement chip to attach blood. There is a demand for a non-invasive blood glucose level measurement method that does not require a blood pressure.

そこで、皮膚に近赤外光を照射し、その光吸収量からグルコースの濃度を求める方法が検討されている(例えば、特許文献1を参照)。具体的には、予めグルコース濃度と照射する光の波長と光の吸収量との関係を示す検量線を作成しておき、モノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する吸収量を求め、当該波長及び吸収量と検量線とを比較することでグルコース濃度を算出する。   Then, the method of irradiating near infrared light to skin and calculating | requiring the density | concentration of glucose from the light absorption amount is examined (for example, refer patent document 1). Specifically, a calibration curve indicating the relationship between the glucose concentration, the wavelength of light to be irradiated, and the amount of light absorbed is prepared in advance, a certain wavelength range is scanned using a monochromator, etc. The amount of absorption with respect to the wavelength is obtained, and the glucose concentration is calculated by comparing the wavelength and the amount of absorption with a calibration curve.

特許第3931638号公報Japanese Patent No. 3931638

しかしながら、従来の非侵襲血糖値測定方法は、光の入出射間距離を定めることによって、真皮層の近赤外吸収スペクトルを測定するため、測定した吸収スペクトルに、真皮層の吸収スペクトルのみならず表皮層や皮下組織層の吸収スペクトルも含まれ、観測される吸収係数の変化には表皮層や皮下組織層によるノイズが含まれてしまうという問題があった。
本発明は上記の点に鑑みてなされたものであり、その目的は、目的の層以外の層によるノイズの影響を軽減する濃度定量装置、濃度定量方法及びプログラムを提供することにある。
However, since the conventional non-invasive blood glucose level measurement method measures the near-infrared absorption spectrum of the dermis layer by determining the distance between light input and output, the measured absorption spectrum includes not only the absorption spectrum of the dermis layer. The absorption spectrum of the epidermis layer and the subcutaneous tissue layer is also included, and there is a problem that the observed change in the absorption coefficient includes noise due to the epidermis layer and the subcutaneous tissue layer.
The present invention has been made in view of the above points, and an object thereof is to provide a concentration quantification apparatus, a concentration quantification method, and a program that reduce the influence of noise caused by layers other than the target layer.

本発明のいくつかの態様は上記の課題を解決するためになされたものであり、複数の層から形成される観測対象のうち、任意の層における目的成分である生体成分の濃度を定量する濃度定量装置であって、前記観測対象に光を照射する照射手段と、前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、前記特定された受光部が受光した光の強度を取得する光強度取得手段と、前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得する光路長取得手段と、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する濃度算出手段と、を備えることを特徴とする。
具体的には、複数の光散乱媒質の層から形成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する複数の受光部を有する受光手段と、前記複数の受光部のうち、前記短時間パルス光が前記任意の層によって後方散乱した光を受光する特定の受光部を選択する選択手段と、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記特定の受光手段が受光した光の強度を取得する光強度取得手段と、前記観測対象に対して照射する短時間パルス光の、前記照射手段から前記特定の受光部に至る光の伝搬経路上に配置された複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射し前記特定の受光部において受光する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段と、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と前記光強度モデル取得手段が取得した光強度モデルとに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、を備えることを特徴とする。
これにより、受光した光の時間分解波形から、任意の層の光吸収計数を選択的に算出することができる。そのため、算出した光吸収計数に基づいて目的成分の濃度を算出することにより、他の層によるノイズの影響を軽減し、精度の高い濃度の定量を行うことができる。
ここで、短時間パルス光とは、パルス幅が10psec程度かそれ以下のパルス光を意味する。短時間パルス光として0.1psecから10psecの範囲のパルス幅を持つパルス光を用いても良い。
Some aspects of the present invention have been made in order to solve the above-described problems. Among the observation targets formed from a plurality of layers, the concentration for quantifying the concentration of a biological component that is a target component in an arbitrary layer Among the plurality of light receiving units, the quantification device, the irradiation unit for irradiating the observation target with light, the light receiving unit having a plurality of light receiving units for receiving the light backscattered by the observation target, and the plurality of light receiving units A selecting unit that identifies and selects a light receiving unit that receives the light by an arbitrary layer, a light intensity obtaining unit that acquires an intensity of light received by the identified light receiving unit, and the specified from the irradiation unit An optical path length distribution storage unit for storing a propagation path length distribution model in the plurality of layers on the light propagation path to the light receiving unit, and a time-resolved waveform model of the light received by the specified light receiving unit are described. Time-resolved waveform storage means, optical path length acquisition means for acquiring optical path lengths of the plurality of layers at a predetermined time of the propagation optical path length distribution model from the optical path length distribution storage means, and the light intensity acquisition means The light absorption coefficient calculating means for calculating the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the optical path length acquiring means and the optical path length of the plurality of layers acquired by the optical path length acquiring means, and the light absorption coefficient calculating means And a concentration calculating means for calculating the concentration of the biological component in the arbitrary layer based on the light absorption coefficient calculated by.
Specifically, it is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets formed from a plurality of light scattering medium layers, and irradiates the observation target with short-time pulsed light. An irradiating means, a light receiving means having a plurality of light receiving parts for receiving the light back-scattered by the observation target, and the short time pulse light among the plurality of light receiving parts by the arbitrary layer A selection unit that selects a specific light receiving unit that receives backscattered light, and an intensity of light received by the specific light receiving unit at a predetermined time after the time when the irradiation unit irradiates pulse light for a short time. A light intensity acquisition unit, and a plurality of light scattering medium layers disposed on a propagation path of light from the irradiation unit to the specific light receiving unit of the short-time pulse light irradiated to the observation target. Layer Optical path length distribution storage means for storing a model of propagation optical path length distribution, and time-resolved waveform storage for storing a model of time-resolved waveform of short-time pulsed light irradiated on the observation target and received by the specific light receiving unit And an optical path length acquisition unit that acquires an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit; Light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage means; the light intensity acquired by the light intensity acquisition means and the optical path Based on the optical path length of each of the layers of the plurality of light scattering media acquired by the length acquisition unit and the light intensity model acquired by the light intensity model acquisition unit, the light absorption coefficient of the arbitrary layer is calculated. A light-absorbing coefficient calculating unit that emits light; and a concentration calculating unit that calculates the concentration of the target component in the arbitrary layer based on the light-absorbing coefficient calculated by the light-absorbing coefficient calculating unit. .
Thereby, the light absorption count of an arbitrary layer can be selectively calculated from the time-resolved waveform of the received light. Therefore, by calculating the concentration of the target component based on the calculated light absorption coefficient, it is possible to reduce the influence of noise due to other layers and perform highly accurate concentration quantification.
Here, short-time pulsed light means pulsed light having a pulse width of about 10 psec or less. As the short-time pulse light, pulse light having a pulse width in the range of 0.1 psec to 10 psec may be used.

また、本発明のいくつかの態様は、前記光強度取得手段は、前記観測対象の層の数n以上となる複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、下記式(1)に基づいて任意の層の光吸収係数を算出する、ことを特徴とする。 In some embodiments of the present invention, the light intensity acquisition unit acquires light intensities at a plurality of times t 1 to t m that are equal to or more than the number n of the observation target layers, and the light absorption coefficient calculation unit. Is characterized in that the light absorption coefficient of an arbitrary layer is calculated based on the following formula (1).

Figure 0005652599
Figure 0005652599

但し、ln(A)は、Aの自然対数を示し、I(t)は、前記受光手段が時刻tにおいて受光した光強度を示し、N(t)は、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示し、L(t)は、前記伝搬光路長分布のモデルの時刻tにおける第i層の光路長を示し、μは、第i層の光吸収係数を示す。 Where ln (A) represents the natural logarithm of A, I (t) represents the light intensity received by the light receiving means at time t, and N (t) represents the time-resolved waveform of the short-time pulsed light. L i (t) represents the optical path length of the i-th layer at time t of the model of the propagation optical path length distribution, and μ i represents the light absorption coefficient of the i-th layer. Show.

また、本発明のいくつかの態様は、前記照射手段は、複数の波長1〜qの光を照射し、前記光吸収係数算出手段は、前記任意の層における光吸収係数を前記照射手段が照射した複数の波長毎に算出し、前記濃度算出手段は、下記式(2)に基づいて前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。   In some embodiments of the present invention, the irradiating unit irradiates light having a plurality of wavelengths 1 to q, and the light absorption coefficient calculating unit irradiates the light absorption coefficient in the arbitrary layer. The concentration calculation means calculates the concentration of the target component in the arbitrary layer based on the following formula (2).

Figure 0005652599
Figure 0005652599

但し、μa(i)は、前記任意の層である第a層における波長iの光吸収係数を示し、gは、前記観測対象を形成する第j成分のモル濃度を示し、εj(i)は、第j成分の波長iに対する光吸収係数を示し、pは、前記観測対象を形成する主成分の個数を示し、qは、照射手段が照射する波長の種類数を示す。 Here, μ a (i) represents the light absorption coefficient of the wavelength i in the a-th layer which is the arbitrary layer, g j represents the molar concentration of the j-th component forming the observation target, and ε j ( i) represents the light absorption coefficient for the wavelength i of the j-th component, p represents the number of main components forming the observation object, and q represents the number of types of wavelengths irradiated by the irradiation means.

また、本発明のいくつかの態様は、前記照射手段から前記観測対象に短時間パルス光を照射する位置を照射位置、前記短時間パルス光が前記観測対象によって後方散乱した光が前記観測対象から前記受光部に向けて出射する位置を受光位置、前記照射位置と前記受光位置との間隔を照射受光間隔、としたときに、前記受光手段は、互いに照射受光間隔の異なる複数の受光部を有し、前記選択手段は、前記照射受光間隔に応じて定まる前記観測対象の内部への短時間パルス光の到達深さに基づいて、前記任意の層に短時間パルス光が伝搬可能な照射受光間隔を有する受光部を選択することを特徴とする。   Further, in some aspects of the present invention, a position at which the observation target is irradiated with the short-time pulse light from the irradiation unit is an irradiation position, and light in which the short-time pulse light is backscattered by the observation target is from the observation target. The light receiving means has a plurality of light receiving portions having different irradiation light receiving intervals, where the light exiting position is a light receiving position, and the interval between the irradiation position and the light receiving position is an irradiation light receiving interval. The selection means is configured to provide an irradiation / reception interval in which the short-time pulse light can propagate to the arbitrary layer based on a depth of arrival of the short-time pulse light into the observation target determined according to the irradiation / reception interval. The light receiving unit having the above is selected.

また、本発明のいくつかの態様は、前記照射手段は、短時間パルス光を前記観測対象の表面に伝送する照射用光ファイバーを有し、前記受光部は、前記観測対象によって後方散乱した光を伝送する受光用光ファイバーを有し、前記照射用光ファイバーと前記受光用光ファイバーは、両者の光ファイバーコアの中心間隔を所定の照射受光間隔だけ離間して固定するプローブ装置に装着されており、前記プローブ装置の先端部に露出した前記照射用光ファイバーの先端部と前記受光用光ファイバーの先端部とを前記観測対象の表面に接触させることによって、前記観測対象への短時間パルスの照射処理と、前記短時間パルス光が前記観測対象によって後方散乱した光の受光処理とを行うことを特徴とする。   Further, in some embodiments of the present invention, the irradiation unit includes an irradiation optical fiber that transmits short-time pulse light to the surface of the observation target, and the light receiving unit receives light backscattered by the observation target. A light receiving optical fiber for transmission, and the irradiation optical fiber and the light receiving optical fiber are mounted on a probe device that fixes a center interval between the optical fiber cores by a predetermined irradiation light receiving interval; The irradiation object is irradiated with a short time pulse by bringing the tip of the irradiation optical fiber and the tip of the light receiving optical fiber exposed at the tip of the light into contact with the surface of the observation object. The light receiving process of the light which pulsed light was backscattered by the said observation object is performed.

また、本発明のいくつかの態様は、前記受光部は、互いに等しい照射受光間隔で配置された複数の受光用光ファイバーを有することを特徴とする。   Further, according to some aspects of the present invention, the light receiving unit includes a plurality of light receiving optical fibers arranged at equal irradiation light receiving intervals.

また、本発明のいくつかの態様は、前記受光部は、互いに等しい照射受光間隔で配置された複数の受光用光ファイバーによって伝送された光を同一受光面上に集光する集光素子を有することを特徴とする。   Further, according to some aspects of the present invention, the light receiving unit includes a light condensing element that condenses light transmitted by a plurality of light receiving optical fibers arranged at equal irradiation light receiving intervals on the same light receiving surface. It is characterized by.

また、本発明のいくつかの態様は、前記照射用光ファイバーと前記受光用光ファイバーは、前記照射手段が照射する前記複数の波長1〜qの光の波長分散を補償する分散補償型シングルモード光ファイバーであることを特徴とする。   Further, according to some aspects of the present invention, the irradiation optical fiber and the light receiving optical fiber are dispersion-compensated single mode optical fibers that compensate for wavelength dispersion of the plurality of wavelengths 1 to q irradiated by the irradiation unit. It is characterized by being.

また、本発明のいくつかの態様は、前記照射用光ファイバーと前記受光用光ファイバーは、前記照射手段が照射する前記複数の波長1〜qの光の波長分散に伴う群遅延時間差が、前記複数の光散乱媒質層のうち最も表面側の層の伝搬光路長分布のピークに対応する伝搬時間よりも短いことを特徴とする。   Further, according to some aspects of the present invention, the irradiation optical fiber and the light receiving optical fiber have a group delay time difference associated with wavelength dispersion of the light of the plurality of wavelengths 1 to q irradiated by the irradiation unit. It is characterized by being shorter than the propagation time corresponding to the peak of the propagation optical path length distribution of the layer on the most surface side among the light scattering medium layers.

また、本発明のいくつかの態様は、複数の層から形成される観測対象に光を照射する照射手段と、前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分である生体成分の濃度を定量する濃度定量装置を用いた濃度定量方法であって、光強度取得手段は、前記特定された受光部が受光した光の強度を取得し、光路長取得手段は、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得し、光吸収係数算出手段は、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出し、濃度算出手段は、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する、ことを特徴とする。
具体的には、複数の光散乱媒質の層から形成される観測対象に対して短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する複数の受光部を有する受光手段と、前記複数の受光部のうち、前記短時間パルス光が前記任意の層によって後方散乱した光を受光する特定の受光部を選択する選択手段と、前記観測対象に対して照射する短時間パルス光の、前記照射手段から前記特定の受光部に至る光の伝搬経路上に配置された複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射し前記特定の受光部において受光する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を用いた濃度定量方法であって、光強度取得手段は、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記特定の受光部が受光した光の強度を取得し、光路長取得手段は、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得し、光強度モデル取得手段は、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得し、光吸収係数算出手段は、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と前記光強度モデル取得手段が取得した光強度モデルとに基づいて、前記任意の層の光吸収係数を算出し、濃度算出手段は、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する、ことを特徴とする。
Further, some aspects of the present invention include an irradiation unit that irradiates light to an observation target formed from a plurality of layers, and a light receiving unit that includes a plurality of light receiving units that receive the light backscattered by the observation target. And a selecting unit that identifies and selects a light receiving unit that receives the light by the arbitrary layer among the plurality of light receiving units, and a light propagation path from the irradiation unit to the specified light receiving unit. An optical path length distribution storage unit that stores a model of a propagation optical path length distribution in the plurality of layers, and a time-resolved waveform storage unit that stores a model of a time-resolved waveform of the light received by the specified light receiving unit, A concentration quantification method using a concentration quantification apparatus for quantifying a concentration of a biological component that is a target component in an arbitrary layer of the observation target, wherein the light intensity acquisition means receives the light received by the identified light receiving unit The optical path length acquisition unit acquires the optical path lengths of the plurality of layers at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit, and the light absorption coefficient calculation unit includes: Based on the light intensity acquired by the light intensity acquisition unit and the optical path lengths of the plurality of layers acquired by the optical path length acquisition unit, a light absorption coefficient of the arbitrary layer is calculated, and the concentration calculation unit includes the light The concentration of the biological component in the arbitrary layer is calculated based on the light absorption coefficient calculated by the absorption coefficient calculation means.
Specifically, an irradiating means for irradiating an observation target formed of a plurality of light scattering medium layers with a short-time pulse light, and a plurality of light receiving the light back-scattered by the observation target by the short-time pulse light A light receiving means having a plurality of light receiving parts, a selection means for selecting a specific light receiving part for receiving the light back-scattered by the arbitrary layer from the plurality of light receiving parts, and the observation target Stores a model of propagation optical path length distribution in each of a plurality of light scattering medium layers arranged on a light propagation path from the irradiating means to the specific light receiving portion of the short-time pulse light to be irradiated Optical path length distribution storage means, and time-resolved waveform storage means for storing a model of a time-resolved waveform of short-time pulsed light that is irradiated to the observation object and received by the specific light receiving unit. A concentration quantification method using a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer, wherein the light intensity acquisition means is a predetermined time after the time when the irradiation means irradiates pulse light for a short time. The light receiving unit obtains the intensity of light received by the specific light receiving unit, and the optical path length acquisition unit is configured to transmit, from the optical path length distribution storage unit, the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution. The light intensity model acquisition means acquires the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means, The light absorption coefficient calculating means acquires the light intensity acquired by the light intensity acquiring means, the optical path length of each layer of the plurality of light scattering media acquired by the optical path length acquiring means, and the light intensity model acquiring means. Light A light absorption coefficient of the arbitrary layer based on the degree model, and the concentration calculating means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means. Is calculated.

また、本発明のいくつかの態様は、複数の層から形成される観測対象に光を照射する照射手段と、前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分である生体成分の濃度を定量する濃度定量装置を、前記特定された受光部が受光した光の強度を取得する光強度取得手段、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得する光路長取得手段、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する濃度算出手段、として動作させるためのプログラムである。
具体的には、複数の光散乱媒質の層から形成される観測対象に対して短時間パルス光を照射する照射手段と、前記短時間パルス光が前記観測対象によって後方散乱した光を受光する複数の受光部を有する受光手段と、前記複数の受光部のうち、前記短時間パルス光が前記任意の層によって後方散乱した光を受光する特定の受光部を選択する選択手段と、前記観測対象に対して照射する短時間パルス光の、前記照射手段から前記特定の受光部に至る光の伝搬経路上に配置された複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射し前記特定の受光部において受光する短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分の濃度を定量する濃度定量装置を、前記照射手段が短時間パルス光を照射した時刻以降の所定の時刻において前記特定の受光部が受光した光の強度を取得する光強度取得手段、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の光散乱媒質の層の各々の層の光路長と前記光強度モデル取得手段が取得した光強度モデルとに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段、として動作させるためのプログラムである。
Further, some aspects of the present invention include an irradiation unit that irradiates light to an observation target formed from a plurality of layers, and a light receiving unit that includes a plurality of light receiving units that receive the light backscattered by the observation target. And a selecting unit that identifies and selects a light receiving unit that receives the light by the arbitrary layer among the plurality of light receiving units, and a light propagation path from the irradiation unit to the specified light receiving unit. An optical path length distribution storage unit that stores a model of a propagation optical path length distribution in the plurality of layers, and a time-resolved waveform storage unit that stores a model of a time-resolved waveform of the light received by the specified light receiving unit, A concentration quantification device that quantifies the concentration of a biological component that is a target component in an arbitrary layer of the observation target, a light intensity acquisition unit that acquires the intensity of light received by the specified light receiving unit, and the optical path length An optical path length acquisition unit that acquires optical path lengths of the plurality of layers at a predetermined time of the model of the propagation optical path length distribution, a light intensity acquired by the light intensity acquisition unit, and an optical path length acquisition unit acquired from a storage unit A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the optical path lengths of the plurality of layers, and the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means. This is a program for operating as a concentration calculating means for calculating the concentration of the biological component in FIG.
Specifically, an irradiating means for irradiating an observation target formed of a plurality of light scattering medium layers with a short-time pulse light, and a plurality of light receiving the light back-scattered by the observation target by the short-time pulse light A light receiving means having a plurality of light receiving parts, a selection means for selecting a specific light receiving part for receiving the light back-scattered by the arbitrary layer from the plurality of light receiving parts, and the observation target Stores a model of propagation optical path length distribution in each of a plurality of light scattering medium layers arranged on a light propagation path from the irradiating means to the specific light receiving portion of the short-time pulse light to be irradiated Optical path length distribution storage means, and time-resolved waveform storage means for storing a model of a time-resolved waveform of short-time pulsed light that is irradiated to the observation object and received by the specific light receiving unit. A light for acquiring the intensity of the light received by the specific light receiving unit at a predetermined time after the time when the irradiation means irradiates the pulsed light for a short time. Intensity acquisition means, optical path length acquisition means for acquiring the optical path length of each layer of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means, Light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage means, the light intensity acquired by the light intensity acquisition means and the optical path length The light absorption coefficient of the arbitrary layer is calculated based on the optical path length of each of the layers of the plurality of light scattering media acquired by the acquisition unit and the light intensity model acquired by the light intensity model acquisition unit. That the light absorption coefficient calculating means, based on the optical absorption coefficient which the light absorption coefficient calculating means is calculated, a program for operating the concentration calculation means for calculating the concentration of the target component in the arbitrary layer.

本発明による血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus by this invention. シミュレーション部が算出した各層の伝搬光路長分布を示すグラフである。It is a graph which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示すグラフである。It is a graph which shows the time-resolved waveform which the simulation part computed. 皮膚の主成分の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the main component of skin. 皮膚組織の断面図である。It is sectional drawing of skin tissue. プローブ装置の断面図である。It is sectional drawing of a probe apparatus. 血糖値測定装置が血糖値を測定する動作を示す第1のフローチャートである。It is a 1st flowchart which shows the operation | movement which a blood glucose level measuring apparatus measures a blood glucose level. 血糖値測定装置が血糖値を測定する動作を示す第2のフローチャートである。It is a 2nd flowchart which shows the operation | movement which a blood glucose level measuring apparatus measures a blood glucose level. 光路長取得部が取得する所定時間の光路長を示す図である。It is a figure which shows the optical path length of the predetermined time which an optical path length acquisition part acquires.

以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。図1は、本発明の第1の実施形態による血糖値測定装置の構成を示す概略ブロック図である。
血糖値測定装置100(濃度定量装置)は、シミュレーション部101、光路長分布記憶部102(光路長分布記憶手段)、時間分解波形記憶部103(時間分解波形記憶手段)、照射部104(照射手段)、受光部105(受光手段)、計測光強度取得部106(光強度取得手段)、光路長取得部107(光路長取得手段)、無吸収時光強度取得部108(光強度モデル取得手段)、光吸収係数算出部109(光吸収係数算出手段)、濃度算出部110(濃度算出手段)を備える。
血糖値測定装置100は、皮膚(観測対象)の真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を測定する。
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus according to the first embodiment of the present invention.
The blood glucose level measuring apparatus 100 (concentration determination apparatus) includes a simulation unit 101, an optical path length distribution storage unit 102 (optical path length distribution storage unit), a time-resolved waveform storage unit 103 (time-resolved waveform storage unit), and an irradiation unit 104 (irradiation unit). ), Light receiving unit 105 (light receiving unit), measurement light intensity acquisition unit 106 (light intensity acquisition unit), optical path length acquisition unit 107 (light path length acquisition unit), non-absorption light intensity acquisition unit 108 (light intensity model acquisition unit), A light absorption coefficient calculation unit 109 (light absorption coefficient calculation unit) and a concentration calculation unit 110 (concentration calculation unit) are provided.
The blood glucose level measuring apparatus 100 measures the concentration of glucose (target component) contained in the dermis layer (arbitrary layer) of the skin (observation target).

シミュレーション部101は、光吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。
光路長分布記憶部102は、光吸収係数がゼロの皮膚モデルの伝搬光路長分布を記憶する。
時間分解波形記憶部103は、光吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
照射部104は、皮膚に対して短時間パルス光を照射する。
受光部105は、短時間パルス光が皮膚によって後方散乱した光を受光する。
計測光強度取得部106は、受光部105が受光した光のある時刻における光強度を取得する。
光路長取得部107は、光路長分布記憶部102からある時刻における光路長を取得する。
無吸収時光強度取得部108は、時間分解波形記憶部103からある時刻における光強度を取得する。
光吸収係数算出部109は、短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
濃度算出部110は、真皮層に含まれるグルコースの濃度を算出する。
ここで、短時間パルス光とは、パルス幅が10psec程度かそれ以下のパルス光を意味する。短時間パルス光として0.1psecから10psecの範囲のパルス幅を持つパルス光を用いても良い。
The simulation part 101 performs the simulation which irradiates light with respect to the skin model whose light absorption coefficient is zero.
The optical path length distribution storage unit 102 stores a propagation optical path length distribution of a skin model having a light absorption coefficient of zero.
The time-resolved waveform storage unit 103 stores a time-resolved waveform of a skin model having a light absorption coefficient of zero.
The irradiation unit 104 irradiates the skin with short-time pulsed light.
The light receiving unit 105 receives light obtained by back-scattering the short-time pulsed light by the skin.
The measurement light intensity acquisition unit 106 acquires the light intensity at a certain time of the light received by the light receiving unit 105.
The optical path length acquisition unit 107 acquires the optical path length at a certain time from the optical path length distribution storage unit 102.
The non-absorption light intensity acquisition unit 108 acquires the light intensity at a certain time from the time-resolved waveform storage unit 103.
The light absorption coefficient calculation unit 109 calculates a light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light.
The concentration calculation unit 110 calculates the concentration of glucose contained in the dermis layer.
Here, short-time pulsed light means pulsed light having a pulse width of about 10 psec or less. As the short-time pulse light, pulse light having a pulse width in the range of 0.1 psec to 10 psec may be used.

そして、血糖値測定装置100において、照射部104は、皮膚に短時間パルス光を照射し、受光部105は、短時間パルス光が皮膚によって後方散乱した光を受光し、計測光強度取得部106は、時刻tにおいて受光部105が受光した光の強度を取得する。次に、光路長取得部107は、光路長分布記憶部102から、皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚の各層の光路長を取得し、無吸収時光強度取得部108は、時間分解波形記憶部103から、皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。   In the blood sugar level measuring apparatus 100, the irradiating unit 104 irradiates the skin with short-time pulsed light, and the light receiving unit 105 receives light back-scattered by the short-time pulsed light by the skin, and the measured light intensity acquiring unit 106 Obtains the intensity of light received by the light receiving unit 105 at time t. Next, the optical path length acquisition unit 107 acquires the optical path length of each layer of the skin at time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 102, and the non-absorption light intensity acquisition unit 108 The light intensity at time t of the time-resolved waveform of the short-time pulse light in the skin model is acquired from the waveform storage unit 103.

次に、光吸収係数算出部109は、計測光強度取得部106が取得した光強度と光路長取得部107が取得した皮膚の各層の光路長と無吸収時光強度取得部108が取得した光強度とに基づいて、皮膚の真皮層の光吸収係数を算出し、濃度算出部110は、光吸収係数算出部109が算出した光吸収係数に基づいて、真皮層におけるグルコースの濃度を算出する。
これにより、真皮層以外の層によるノイズの影響を軽減して、真皮層に含まれるグルコースの濃度を算出することができる。
Next, the light absorption coefficient calculation unit 109 obtains the light intensity acquired by the measurement light intensity acquisition unit 106, the optical path length of each layer of the skin acquired by the optical path length acquisition unit 107, and the light intensity acquired by the non-absorption light intensity acquisition unit 108. Based on the above, the light absorption coefficient of the dermis layer of the skin is calculated, and the concentration calculation unit 110 calculates the concentration of glucose in the dermis layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 109.
Thereby, the influence of noise by layers other than the dermis layer can be reduced, and the concentration of glucose contained in the dermis layer can be calculated.

次に、血糖値測定装置100の動作を説明する。
血糖値測定装置100は、血糖値を測定する前に、予め皮膚モデルの各層における伝搬光路長分布と時間分解波形とを算出しておく必要がある。
まず、皮膚モデルの伝搬光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部101は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、光吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないため、予めサンプルを取ることなどによって決定すると良い。なお、表皮層の厚みは略0.3mm、真皮層の厚みは略1.2mm、皮下組織層の厚みは略3.0mmである。
また、ここで用いる皮膚モデルの光吸収係数はゼロとする。これは、当該皮膚モデルを用いて光吸収量を算出するためである。
Next, the operation of the blood sugar level measuring apparatus 100 will be described.
The blood glucose level measuring apparatus 100 needs to calculate the propagation optical path length distribution and the time-resolved waveform in each layer of the skin model before measuring the blood glucose level.
First, a method for calculating the propagation optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 101 generates a skin model. The skin model is generated by determining the light scattering coefficient, light absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance. The thickness of the epidermis layer is approximately 0.3 mm, the thickness of the dermis layer is approximately 1.2 mm, and the thickness of the subcutaneous tissue layer is approximately 3.0 mm.
The light absorption coefficient of the skin model used here is zero. This is because the light absorption amount is calculated using the skin model.

シミュレーション部101は、皮膚モデルを生成すると、当該皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部104の位置と受光部105の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。
まず、シミュレーション部101は、照射する光のモデルを光子(光束)とし、当該光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数Rによって決定する。シミュレーション部101は、光子が次に進む点までの距離Lの計算を、式(3)によって行う。
When generating the skin model, the simulation unit 101 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 104 and the position of the light receiving unit 105. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.
First, the simulation unit 101 performs calculation for irradiating a skin model with a photon (light beam) as a model of light to be irradiated. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by the random number R. The simulation unit 101 calculates the distance L to the point where the photon advances next by Expression (3).

Figure 0005652599
Figure 0005652599

但し、ln(A)は、Aの自然対数を示す。また、μは、皮膚モデルの第s層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。
また、シミュレーション部101は、光子が次に進む点までの方向θの計算を、式(4)によって行う。
Here, ln (A) represents the natural logarithm of A. Further, μ s indicates a scattering coefficient of the s-th layer (any one of the epidermis layer, the dermis layer, and the subcutaneous tissue layer) of the skin model.
In addition, the simulation unit 101 calculates the direction θ up to the point where the photon advances next by Expression (4).

Figure 0005652599
Figure 0005652599

但し、gは、散乱角度の余弦(cos)の平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。
シミュレーション部101は、上記式(3)、式(4)の計算を単位時間毎に繰り返すことにより、照射部104から受光部105までの光子の移動経路を算出することができる。シミュレーション部101は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部101は、10個の光子について移動距離を算出する。
However, g shows the anisotropic parameter which is the average of the cosine (cos) of a scattering angle, and the anisotropic parameter of skin is about 0.9.
The simulation unit 101 can calculate the movement path of photons from the irradiation unit 104 to the light receiving unit 105 by repeating the calculations of the above formulas (3) and (4) every unit time. The simulation unit 101 calculates a movement distance for a plurality of photons. For example, the simulation unit 101 calculates the movement distance for 10 8 photons.

図2は、シミュレーション部が算出した各層の伝搬光路長分布を示すグラフである。
図2の横軸は光子の照射からの経過時間を示し、縦軸は光路長の対数表示を示している。シミュレーション部101は、受光部105に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部101は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図2に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 2 is a graph showing the propagation optical path length distribution of each layer calculated by the simulation unit.
The horizontal axis of FIG. 2 shows the elapsed time from photon irradiation, and the vertical axis shows the logarithmic display of the optical path length. The simulation unit 101 classifies each movement path of photons that reach the light receiving unit 105 for each layer through which the movement path passes. The simulation unit 101 calculates the propagation path length distribution of each layer of the skin as shown in FIG. 2 by calculating the average length of the movement path of the photons that arrived per unit time for each classified layer.

図3は、シミュレーション部が算出した時間分解波形を示すグラフである。
図3の横軸は光子の照射からの経過時間を示し、縦軸は受光部105が検出した光子数を示している。シミュレーション部101は、単位時間毎に受光部105に到達した光子の個数を算出することで、図3に示すような皮膚モデルの時間分解波形を算出する。
上述したような処理により、シミュレーション部101は、複数の波長に対して、皮膚モデルの伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部101は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 3 is a graph showing a time-resolved waveform calculated by the simulation unit.
The horizontal axis in FIG. 3 indicates the elapsed time from the photon irradiation, and the vertical axis indicates the number of photons detected by the light receiving unit 105. The simulation unit 101 calculates the number of photons reaching the light receiving unit 105 per unit time, thereby calculating a time-resolved waveform of the skin model as shown in FIG.
Through the processing described above, the simulation unit 101 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 101 may calculate the propagation optical path length distribution and the time-resolved waveform for a wavelength at which the difference in the absorption spectrum of the skin main components (water, protein, lipid, glucose, etc.) increases.

図4は、皮膚の主成分の吸収スペクトルを示すグラフである。
図4の横軸は照射する光の波長を示し、縦軸は吸収係数を示している。図4を参照すると、グルコースの吸収係数は、波長が1600nmのときに極大となり、水の吸収係数は、波長が1450nmのときに極大となる。そのため、シミュレーション部101は、例えば1400nm、1450nm、1500nm、1600nm、1680nm、1720nm、1740nmといった皮膚の主成分の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 4 is a graph showing the absorption spectrum of the main component of the skin.
The horizontal axis in FIG. 4 indicates the wavelength of light to be irradiated, and the vertical axis indicates the absorption coefficient. Referring to FIG. 4, the absorption coefficient of glucose becomes maximum when the wavelength is 1600 nm, and the absorption coefficient of water becomes maximum when the wavelength is 1450 nm. For this reason, the simulation unit 101 may calculate the propagation optical path length distribution and the time-resolved waveform for wavelengths that increase the difference in the absorption spectrum of the main component of the skin, such as 1400 nm, 1450 nm, 1500 nm, 1600 nm, 1680 nm, 1720 nm, and 1740 nm.

シミュレーション部101は、複数の波長に対する皮膚モデルの伝搬光路長分布及び時間分解波形を算出すると、伝搬光路長分布の情報を光路長分布記憶部102に記憶させ、時間分解波形の情報を時間分解波形記憶部103に記憶させる。   When the simulation unit 101 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths, the simulation unit 101 stores the information on the propagation optical path length distribution in the optical path length distribution storage unit 102 and the time-resolved waveform information as the time-resolved waveform. The data is stored in the storage unit 103.

ここで、図5に基づいて、観測対象である皮膚組織の構造を説明する。
図5に示すように、人間の皮膚組織は、表皮と、真皮と、皮下組織の3層によって形成されている。表皮は、最も外側にある厚さ0.2〜0.3mmの薄い層で、角質層、顆粒層、有棘層、底層等を含む。真皮は、表皮と皮下組織の間に存在する厚さ0.5〜2mmの層で、真皮内には神経、毛根、皮脂腺や汗腺、毛包、血管、リンパ管が存在する。皮下組織は、真皮の下にある厚さ1〜3mmの層で、大部分が皮下脂肪でできている。
Here, based on FIG. 5, the structure of the skin tissue to be observed will be described.
As shown in FIG. 5, human skin tissue is formed by three layers of epidermis, dermis, and subcutaneous tissue. The epidermis is an outermost thin layer having a thickness of 0.2 to 0.3 mm, and includes a stratum corneum, a granular layer, a spiny layer, a bottom layer and the like. The dermis is a 0.5 to 2 mm thick layer existing between the epidermis and the subcutaneous tissue, and nerves, hair roots, sebaceous glands, sweat glands, hair follicles, blood vessels, and lymph vessels are present in the dermis. The subcutaneous tissue is a 1 to 3 mm thick layer under the dermis and is mostly made of subcutaneous fat.

真皮内には毛細血管等が発達しており、血中グルコースに応じた物質移動が速やかに起こり、血中グルコース濃度(血糖値)に対して真皮中のグルコース濃度は追随して変化すると考えられている。そのため、血糖値測定装置100では、照射部104から皮膚組織の表面に光を照射し、皮膚組織内を透過、拡散して後方散乱された光を受光部105で検出することによって、真皮中のグルコース濃度を測定している。   Capillaries and the like have developed in the dermis, and mass transfer according to blood glucose occurs rapidly, and the glucose concentration in the dermis is thought to change following the blood glucose concentration (blood glucose level). ing. Therefore, the blood glucose level measuring apparatus 100 irradiates the surface of the skin tissue with light from the irradiation unit 104, detects the light scattered through the skin tissue, diffused, and back-scattered with the light receiving unit 105. The glucose concentration is measured.

照射部104は、光源104bと、光源104bから射出された光を表皮に向けて伝送する照射用光ファイバー104aとを含む。受光部105は、光電変換素子105bと、皮膚組織内を透過、拡散して表皮から出射した光を光電変換素子105bに向けて伝送する受光用光ファイバー105aとを含む。照射用光ファイバー104aと受光用光ファイバー105aは、光ファイバーコアの中心間隔が所定の照射受光間隔だけ離間した状態で、互いに光軸(コアの中心軸)が平行となるようにして図示略のプローブ装置に固定されている。   The irradiation unit 104 includes a light source 104b and an irradiation optical fiber 104a that transmits light emitted from the light source 104b toward the skin. The light receiving unit 105 includes a photoelectric conversion element 105b and a light receiving optical fiber 105a that transmits light diffused and diffused through the skin tissue and emitted from the epidermis toward the photoelectric conversion element 105b. The optical fiber for irradiation 104a and the optical fiber for light reception 105a are connected to a probe device (not shown) so that their optical axes (center axis of the core) are parallel to each other with the center interval of the optical fiber core being separated by a predetermined irradiation / reception interval. It is fixed.

受光用光ファイバー105aに到達する光の経路分布RはU字型の形状をしている。実際には、図示点線で示したような複数のU字型の経路が存在し、それぞれの経路における光の伝搬距離及び伝搬時間は互いに異なっている。皮膚組織におけるこのような経路分布の到達深さは、照射部104と受光部105との間隔、具体的には、照射用光ファイバー104aと受光用光ファイバー105aのコア中心間の距離である照射受光間隔Wによって変化する。したがって、照射部104と受光部105との照射受光間隔Wを適切に設定することにより、主として真皮を透過する光の吸収スペクトルを測定することができる。   The light path distribution R reaching the light receiving optical fiber 105a has a U-shape. Actually, there are a plurality of U-shaped paths as shown by dotted lines in the figure, and the propagation distance and propagation time of light in each path are different from each other. The reaching depth of such a path distribution in the skin tissue is an interval between the irradiation unit 104 and the light receiving unit 105, specifically, an irradiation / light receiving interval which is a distance between the core centers of the irradiation optical fiber 104a and the light receiving optical fiber 105a. It changes with W. Therefore, by appropriately setting the irradiation / light receiving interval W between the irradiation unit 104 and the light receiving unit 105, it is possible to measure an absorption spectrum of light mainly transmitted through the dermis.

図6(a)〜図6(c)は、照射用光ファイバー104aと受光用光ファイバー105aの光軸に垂直な面で切った断面図である。なお、図6(a)〜図6(c)において、符号Aで示した光ファイバーは照射用光ファイバー104aであり、符号B1〜B4で示した光ファイバーは受光用光ファイバー105aである。   6A to 6C are cross-sectional views taken along a plane perpendicular to the optical axes of the irradiation optical fiber 104a and the light receiving optical fiber 105a. In FIG. 6A to FIG. 6C, the optical fiber indicated by symbol A is the irradiation optical fiber 104a, and the optical fibers indicated by symbols B1 to B4 are the light receiving optical fiber 105a.

図6(a)のプローブ装置130は、左端に配置された1つの照射用光ファイバー104aと、その右側に等間隔で配置された複数の受光用光ファイバー105aとを含む。プローブ装置130では、照射用光ファイバー104a及び光源104b(図5参照)が本発明の照射手段に該当し、その周囲に配置された複数の受光用光ファイバー105a及び光電変換素子105b(図5参照)が本発明の受光手段に該当する。   The probe device 130 of FIG. 6A includes one irradiation optical fiber 104a arranged at the left end and a plurality of light receiving optical fibers 105a arranged at equal intervals on the right side thereof. In the probe device 130, the irradiation optical fiber 104a and the light source 104b (see FIG. 5) correspond to the irradiation means of the present invention, and a plurality of light receiving optical fibers 105a and photoelectric conversion elements 105b (see FIG. 5) arranged around the irradiation means. This corresponds to the light receiving means of the present invention.

照射用光ファイバー104aと受光用光ファイバー105aは、光軸に垂直な方向に一列に配置されている。プローブ装置130では、プローブ装置130の先端部に露出した照射用光ファイバー104aの先端部と受光用光ファイバー105aの先端部とを皮膚表面に接触させることによって、皮膚組織への短時間パルス光の照射処理と、短時間パルス光が皮膚組織によって後方散乱した光の受光処理とを行うようになっている。   The irradiation optical fiber 104a and the light receiving optical fiber 105a are arranged in a line in a direction perpendicular to the optical axis. In the probe device 130, irradiation processing of short-time pulsed light to the skin tissue is performed by bringing the tip of the irradiation optical fiber 104 a and the tip of the light receiving optical fiber 105 a exposed at the tip of the probe device 130 into contact with the skin surface. In addition, a light receiving process of light in which short-time pulse light is backscattered by skin tissue is performed.

複数の受光用光ファイバー105aには、照射用光ファイバー104aに対して第1の照射受光間隔で配置された第1の受光用光ファイバー105a(符号B1で示す)と、その右側に第1の照射受光間隔よりも大きい第2の照射受光間隔で配置された第2の受光用光ファイバー105a(符号B2で示す)と、その右側に第2の照射受光間隔よりも大きい第3の照射受光間隔で配置された第3の受光用光ファイバー105a(符号B3で示す)と、その右側に第3の照射受光間隔よりも大きい第4の照射受光間隔で配置された第4の受光用光ファイバー105a(符号B4で示す)と、が含まれる。   The plurality of light receiving optical fibers 105a include a first light receiving optical fiber 105a (indicated by reference numeral B1) disposed at a first irradiation light receiving interval with respect to the irradiation optical fiber 104a, and a first irradiation light receiving interval on the right side thereof. The second light receiving optical fiber 105a (indicated by reference numeral B2) disposed at a second irradiation / light receiving interval larger than the second irradiation / light receiving interval is disposed on the right side with a third irradiation / light receiving interval larger than the second irradiation / light receiving interval. A third light receiving optical fiber 105a (indicated by reference symbol B3) and a fourth light receiving optical fiber 105a (indicated by reference symbol B4) disposed on the right side thereof at a fourth irradiation light receiving interval larger than the third irradiation light receiving interval. And are included.

複数の受光用光ファイバー105aは、皮膚組織への到達深さに応じて、1つ又は複数の受光用光ファイバー105aが選択され使用される。例えば、表皮を透過する光のスペクトルを精度良く測定したい場合には、照射受光間隔が最も小さい第1の受光用光ファイバー105a(符号B1で示す)を選択し、真皮を透過する光のスペクトルを精度良く測定したい場合には、第2の照射受光間隔で配置される第2の受光用光ファイバー105a(符号B2で示す)と第3の照射受光間隔で配置される第3の受光用光ファイバー105a(符号B3で示す)とを選択するという方法が用いられる。また、皮膚組織の厚みは個人差があり、例えば大人と子供、男性と女性では、皮膚組織の厚みが異なる場合がある。そのため、同じく真皮の情報を得る場合であっても、表皮及び真皮の厚みが厚いと予想される被検体には、厚みが薄いと予想される被検体よりも照射受光間隔の大きい受光用光ファイバー105aを用いることも考えられる。   One or a plurality of light receiving optical fibers 105a are selected and used as the plurality of light receiving optical fibers 105a depending on the depth of the skin tissue. For example, when it is desired to accurately measure the spectrum of light transmitted through the epidermis, the first light receiving optical fiber 105a (indicated by reference numeral B1) having the smallest irradiation / reception interval is selected to accurately measure the spectrum of light transmitted through the dermis. When it is desired to measure well, a second light receiving optical fiber 105a (indicated by reference numeral B2) arranged at the second irradiation / light receiving interval and a third light receiving optical fiber 105a (reference numeral) arranged at the third irradiation / receiving interval. And a method of selecting (indicated by B3) is used. Further, the thickness of the skin tissue varies from person to person. For example, the thickness of the skin tissue may differ between adults and children, men and women. Therefore, even when information on the dermis is obtained, the optical fiber for receiving light 105a having a larger irradiation / reception interval than that of the subject expected to have a small thickness is used for a subject whose epidermis and dermis are expected to be thick. It is also possible to use.

図6(a)では、4本の受光用光ファイバー105aのみを示したが、受光用光ファイバー105aの数はこれに限らず、3本若しくは5本以上とすることも可能である。受光用光ファイバー105aの数を増やせば、皮膚組織への到達深さを多段階で制御することができる。   Although only four light receiving optical fibers 105a are shown in FIG. 6A, the number of the light receiving optical fibers 105a is not limited to this, and may be three or five or more. If the number of optical fibers 105a for light reception is increased, the depth to reach the skin tissue can be controlled in multiple stages.

図6(b)のプローブ装置131は、中央に配置された1つの照射用光ファイバー104aと、その両側に等間隔で配置された複数の受光用光ファイバー105aとを含む。プローブ装置131では、照射用光ファイバー104a及び光源104b(図5参照)が本発明の照射手段に該当し、その周囲に配置された複数の受光用光ファイバー105a及び光電変換素子105b(図5参照)が本発明の受光手段に該当する。   The probe device 131 in FIG. 6B includes one irradiation optical fiber 104a disposed in the center and a plurality of light receiving optical fibers 105a disposed at equal intervals on both sides thereof. In the probe device 131, the irradiation optical fiber 104a and the light source 104b (see FIG. 5) correspond to the irradiation means of the present invention, and a plurality of light receiving optical fibers 105a and photoelectric conversion elements 105b (see FIG. 5) arranged around the irradiation means. This corresponds to the light receiving means of the present invention.

照射用光ファイバー104aと受光用光ファイバー105aは、光軸に垂直な方向に一列に配置されている。プローブ装置131では、プローブ装置131の先端部に露出した照射用光ファイバー104aの先端部と受光用光ファイバー105aの先端部とを皮膚表面に接触させることによって、皮膚組織への短時間パルス光の照射処理と、短時間パルス光が皮膚組織によって後方散乱した光の受光処理とを行うようになっている。   The irradiation optical fiber 104a and the light receiving optical fiber 105a are arranged in a line in a direction perpendicular to the optical axis. In the probe device 131, the tip of the irradiation optical fiber 104a exposed at the tip of the probe device 131 and the tip of the light receiving optical fiber 105a are brought into contact with the skin surface, thereby irradiating the skin tissue with short-time pulsed light. In addition, a light receiving process of light in which short-time pulse light is backscattered by skin tissue is performed.

複数の受光用光ファイバー105aには、照射用光ファイバー104aの両側に第1の照射受光間隔で配置された2つの第1の受光用光ファイバー105a(符号B1で示す)と、その両側に第1の照射受光間隔よりも大きい第2の照射受光間隔で配置された2つの第2の受光用光ファイバー105a(符号B2で示す)と、が含まれる。   The plurality of light receiving optical fibers 105a include two first light receiving optical fibers 105a (indicated by reference numeral B1) disposed at both sides of the irradiation optical fiber 104a at a first irradiation light receiving interval, and first irradiation on both sides thereof. And two second light receiving optical fibers 105a (indicated by reference numeral B2) disposed at a second irradiation light receiving interval larger than the light receiving interval.

複数の受光用光ファイバー105aは、皮膚組織への到達深さに応じて、1つ又は複数の受光用光ファイバー105aが選択され使用される。例えば、表皮を透過する光のスペクトルを精度良く測定したい場合には、照射受光間隔が最も小さい第1の受光用光ファイバー105a(符号B1で示す)を選択し、真皮を透過する光のスペクトルを精度良く測定したい場合には、第1の照射受光間隔で配置される第1の受光用光ファイバー105a(符号B1で示す)と第2の照射受光間隔で配置される第2の受光用光ファイバー105a(符号B2で示す)とを選択するという方法が用いられる。図6(b)のプローブ装置131は、図6(a)のプローブ装置130に比べて、選択できる照射受光間隔が少ないが、1つの照射受光間隔に対して複数の受光用光ファイバー105aが設けられているので、受光強度は大きくなる。そのため、ノイズの少ない測定が可能となる。   One or a plurality of light receiving optical fibers 105a are selected and used as the plurality of light receiving optical fibers 105a depending on the depth of the skin tissue. For example, when it is desired to accurately measure the spectrum of light transmitted through the epidermis, the first light receiving optical fiber 105a (indicated by reference numeral B1) having the smallest irradiation / reception interval is selected to accurately measure the spectrum of light transmitted through the dermis. When it is desired to measure well, a first light receiving optical fiber 105a (indicated by reference numeral B1) arranged at the first irradiation / light receiving interval and a second light receiving optical fiber 105a (reference numeral) arranged at the second irradiation / receiving interval. And a method of selecting (indicated by B2) is used. The probe device 131 in FIG. 6B has fewer selectable irradiation and light receiving intervals than the probe device 130 in FIG. 6A, but a plurality of light receiving optical fibers 105a are provided for one irradiation and light receiving interval. As a result, the received light intensity increases. Therefore, measurement with less noise is possible.

図6(b)では、照射受光間隔の異なる2種類の受光用光ファイバー105aを示したが、照射受光間隔は2種類に限らず、3種類以上とすることもできる。例えば、3種類の照射受光間隔で測定を行う場合には、第2の受光用光ファイバー105aの両側に第2の照射受光間隔よりも大きい第3の照射受光間隔で配置された2つの第3の受光用光ファイバー105aを設ければよい。照射受光間隔を4種類以上とする場合も同様である。   In FIG. 6B, two types of light receiving optical fibers 105a having different irradiation / light receiving intervals are shown, but the number of irradiation / receiving intervals is not limited to two, and may be three or more types. For example, in the case of performing measurement at three types of irradiation / light-receiving intervals, two third light-receiving intervals arranged on both sides of the second light-receiving optical fiber 105a with a third irradiation / light-receiving interval larger than the second irradiation / light-receiving interval. A light receiving optical fiber 105a may be provided. The same applies when there are four or more irradiation / light-receiving intervals.

図6(c)のプローブ装置132は、中央に配置された1つの照射用光ファイバー104aと、その周囲に配置された複数の受光用光ファイバー105aとを含む。プローブ装置132では、照射用光ファイバー104a及び光源104b(図5参照)が本発明の照射手段に該当し、その周囲に配置された複数の受光用光ファイバー105a及び光電変換素子105b(図5参照)が本発明の受光手段に該当する。   The probe device 132 in FIG. 6C includes one irradiation optical fiber 104a disposed at the center and a plurality of light receiving optical fibers 105a disposed around the optical fiber 104a. In the probe device 132, the irradiation optical fiber 104a and the light source 104b (see FIG. 5) correspond to the irradiation means of the present invention, and a plurality of light receiving optical fibers 105a and photoelectric conversion elements 105b (see FIG. 5) arranged around the irradiation means. This corresponds to the light receiving means of the present invention.

照射用光ファイバー104aと受光用光ファイバー105aは、光軸に垂直な平面内で最密充填されるように配置されている。すなわち、受光用光ファイバー105aは、照射用光ファイバー104aを中心に60°の内角を持つように放射方向に並んで配置されている。プローブ装置132では、プローブ装置132の先端部に露出した照射用光ファイバー104aの先端部と受光用光ファイバー105aの先端部とを皮膚表面に接触させることによって、皮膚組織への短時間パルスの照射処理と、短時間パルス光が皮膚組織によって後方散乱した光の受光処理とを行うようになっている。   The irradiation optical fiber 104a and the light receiving optical fiber 105a are arranged so as to be packed most closely in a plane perpendicular to the optical axis. That is, the light receiving optical fibers 105a are arranged side by side in the radial direction so as to have an inner angle of 60 ° around the irradiation optical fiber 104a. In the probe device 132, a short-time pulse irradiation process is performed on the skin tissue by bringing the tip of the irradiation optical fiber 104a exposed at the tip of the probe device 132 and the tip of the light receiving optical fiber 105a into contact with the skin surface. In addition, light receiving processing is performed for light in which short-time pulse light is backscattered by skin tissue.

複数の受光用光ファイバー105aには、照射用光ファイバー104aの周囲に第1の照射受光間隔で配置された6つの第1の受光用光ファイバー105a(符号B1で示す)と、その周囲に第1の照射受光間隔よりも大きい第2の照射受光間隔で配置された6つの第2の受光用光ファイバー105a(符号B2で示す)及び第2の照射受光間隔よりも大きい第3の照射受光間隔で配置された6つの第3の受光用光ファイバー105a(符号B3で示す)と、が含まれる。   The plurality of light receiving optical fibers 105a include six first light receiving optical fibers 105a (indicated by reference numeral B1) disposed around the irradiation optical fiber 104a at the first irradiation light receiving interval, and the first irradiation around the first light receiving optical fibers 105a. Six second light receiving optical fibers 105a (indicated by reference numeral B2) arranged at a second irradiation light receiving interval larger than the light receiving interval, and a third irradiation light receiving interval larger than the second irradiation light receiving interval. And six third optical fibers 105a for light reception (indicated by reference numeral B3).

複数の受光用光ファイバー105aは、皮膚組織への到達深さに応じて、1つ又は複数の受光用光ファイバー105aが選択され使用される。図6(c)のプローブ装置132は、図6(b)のプローブ装置131に比べて、1つの照射受光間隔に対して設けられる受光用光ファイバー105aの数が多いため、よりノイズの少ない測定が可能となる。   One or a plurality of light receiving optical fibers 105a are selected and used as the plurality of light receiving optical fibers 105a depending on the depth of the skin tissue. The probe device 132 of FIG. 6C has a larger number of light receiving optical fibers 105a provided for one irradiation / light receiving interval than the probe device 131 of FIG. It becomes possible.

なお、図6(b)及び図6(c)では、1つの照射受光間隔に対して複数の受光用光ファイバー105aが設けられている。この場合、複数の受光用光ファイバー105aで伝送される光は、受光用光ファイバー毎に設けられた光電変換素子によって電気信号に変換しても良いし、同一照射受光間隔で配置された複数の受光用光ファイバー105aで伝送した光を集光素子によって同一光電変換素子の同一受光面上に集光し、これらを一括して電気信号に変換してもよい。後者の方法を用いれば、光電変換素子を複数の受光用光ファイバー105aに対して共通化することができるので、部材コストを低減することができる。   In FIG. 6B and FIG. 6C, a plurality of light receiving optical fibers 105a are provided for one irradiation light receiving interval. In this case, the light transmitted by the plurality of light receiving optical fibers 105a may be converted into an electrical signal by a photoelectric conversion element provided for each light receiving optical fiber, or a plurality of light receiving light arranged at the same irradiation light receiving interval. The light transmitted by the optical fiber 105a may be condensed on the same light receiving surface of the same photoelectric conversion element by the condensing element, and these may be collectively converted into an electric signal. If the latter method is used, the photoelectric conversion element can be made common to the plurality of light receiving optical fibers 105a, so that the member cost can be reduced.

受光用光ファイバー毎に1つの光電変換素子を設ける場合には、1つ受光用光ファイバーと1つの光電変換素子によって1つの受光部が構成される。複数の受光用光ファイバーに対して1つの光電変換素子が設けられる場合には、複数の受光用光ファイバーと1つの光電変換素子によって1つの受光部が構成される。   When one photoelectric conversion element is provided for each light receiving optical fiber, one light receiving unit is configured by one light receiving optical fiber and one photoelectric conversion element. When one photoelectric conversion element is provided for a plurality of light receiving optical fibers, one light receiving unit is configured by the plurality of light receiving optical fibers and one photoelectric conversion element.

照射用光ファイバー104aと受光用光ファイバー105aは、照射部104が照射する複数の波長1〜qの光の波長分散を補償する分散補償型シングルモード光ファイバーであることが望ましい。これにより、波長分散による測定誤差を低減することができる。   The irradiation optical fiber 104a and the light receiving optical fiber 105a are desirably dispersion-compensated single-mode optical fibers that compensate for the chromatic dispersion of light having a plurality of wavelengths 1 to q irradiated by the irradiation unit 104. Thereby, measurement errors due to chromatic dispersion can be reduced.

照射用光ファイバー104aと受光用光ファイバー105aは、分散補償型でないマルチモード光ファイバーを用いることもできる。マルチモード光ファイバーを用いることで、シングルモード光ファイバーを用いる場合に比べて受光面積(コア径)を大きくすることができ、ノイズの少ない測定を行うことが可能となる。ただし、波長分散による測定誤差が大きくなるため、照射用光ファイバー104aと受光用光ファイバー105aにおいては、照射部104が照射する複数の波長1〜qの光の波長分散に伴う群遅延時間差が、皮膚組織に含まれる複数の光散乱媒質層のうち最も表面側の層である表皮の伝搬光路長分布のピークに対応する伝搬時間よりも短くなるように、各々の光ファイバーの長さが設定されることが望ましい。   The irradiation optical fiber 104a and the light receiving optical fiber 105a may be non-dispersion-compensated multimode optical fibers. By using a multimode optical fiber, the light receiving area (core diameter) can be increased compared to the case of using a single mode optical fiber, and measurement with less noise can be performed. However, since a measurement error due to wavelength dispersion becomes large, in the irradiation optical fiber 104a and the light receiving optical fiber 105a, the group delay time difference due to the wavelength dispersion of the plurality of wavelengths 1 to q irradiated by the irradiation unit 104 is different from the skin tissue. The length of each optical fiber may be set to be shorter than the propagation time corresponding to the peak of the propagation optical path length distribution of the epidermis, which is the outermost surface layer among the plurality of light scattering medium layers included in desirable.

例えば、ステップインデックス型マルチモード光ファイバーを用いる場合を考える。ステップインデックス型マルチモード光ファイバの群遅延時間差は下記の式(5)で表せる。   For example, consider the case of using a step index type multimode optical fiber. The group delay time difference of the step index type multimode optical fiber can be expressed by the following equation (5).

Figure 0005652599
Figure 0005652599

但し、Toは光ファイバの光軸上を進む最も早い光の群遅延時間を示し、Δは光ファイバーのコアとクラッドとの比屈折率差(=1%)を示し、θcは臨界角、n1はコアの屈折率を示し、Lは光ファイバーの長さを示し、cは光速を示す。Toは図5で示した真皮を通る複数の経路のうち最も短い伝搬距離を有する経路、すなわち、短時間パルス光の到達深さが表皮と真皮の界面付近となる光の経路である。ΔTmが真皮伝搬光の最短到達時間より短くなる様なマルチモードファイバにすることでシングルモードファイバと比べて信号光の光強度を大きくできる。   Where To represents the fastest group delay time of light traveling on the optical axis of the optical fiber, Δ represents the relative refractive index difference (= 1%) between the core and the clad of the optical fiber, θc is the critical angle, and n1 is The refractive index of the core is indicated, L indicates the length of the optical fiber, and c indicates the speed of light. To is a path having the shortest propagation distance among a plurality of paths passing through the dermis shown in FIG. 5, that is, a light path in which the arrival depth of short-time pulsed light is near the interface between the epidermis and the dermis. By making the multimode fiber such that ΔTm is shorter than the shortest arrival time of the dermal propagation light, the light intensity of the signal light can be increased as compared with the single mode fiber.

例えば、群遅延時間差を1.0ps以内で、光の強度を受光するための受光用光ファイバー105aの長さは、コアの屈折率を1.5、光速を3×10m/sとして、式(5)より、20mmと算出される。 For example, the length of the light receiving optical fiber 105a for receiving the intensity of light within a group delay time difference of 1.0 ps or less is expressed by assuming that the refractive index of the core is 1.5 and the speed of light is 3 × 10 8 m / s. From (5), it is calculated as 20 mm.

マルチモードファイバ内での光の伝搬を幾何学的に説明すると、光軸に沿って(θ1=0)進む光がhだけ進む間に、光軸に対して角度θ1で進む光はd=h/(cosθ1)だけ進む。スネルの法則からcosθ1=n2/n1(但し、n2はクラッドの屈折率を示し、n1はコアの屈折率を示す)なので、d=h(n1/n2)になる。   Describing the propagation of light in a multimode fiber geometrically, light traveling at an angle θ1 with respect to the optical axis is d = h while light traveling along the optical axis (θ1 = 0) travels by h. Advance by / (cos θ1). From Snell's law, cos θ1 = n2 / n1 (where n2 represents the refractive index of the cladding and n1 represents the refractive index of the core), so d = h (n1 / n2).

ここで、比屈折率差Δ(=1−n2/n1)は1%なので、n1/n2=1.01である。よってd=1.01×hになる。h=20mmだからd=20.2mmである。つまり、hが20mmのときのhとdの伝搬経路差はd−h=0.2mmである。そして、屈折率nの物質中を進む光の速度v=空気中の光の速度/nなので、この場合v=3×10/1.5=2×10m/sとなる。よって、伝搬時間差t=伝搬経路差/光の速度という関係より伝搬経路差=伝搬時間差t×光の速度=20mmになる。 Here, since the relative refractive index difference Δ (= 1−n2 / n1) is 1%, n1 / n2 = 1.01. Therefore, d = 1.01 × h. Since h = 20 mm, d = 20.2 mm. That is, when h is 20 mm, the propagation path difference between h and d is dh = 0.2 mm. Then, since the speed of light traveling in the material having the refractive index n = the speed of light in the air / n, in this case, v = 3 × 10 8 /1.5=2×10 8 m / s. Therefore, propagation path difference = propagation time difference t × light speed = 20 mm from the relationship of propagation time difference t = propagation path difference / light speed.

次に、血糖値測定装置100が血糖値を測定する動作について説明する。
図7は、血糖値測定装置が血糖値を測定する動作を示す第1のフローチャートである。
まず、ユーザが血糖値測定装置100を皮膚にあてがい、測定開始スイッチ(図示せず)の押下等によって血糖値測定装置100を動作させると、照射部104は、皮膚に対して波長λの短時間パルス光を照射する(ステップS1)。ここで、波長λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
Next, the operation in which the blood sugar level measuring apparatus 100 measures the blood sugar level will be described.
FIG. 7 is a first flowchart showing an operation in which the blood sugar level measuring apparatus measures the blood sugar level.
First, when the user places the blood glucose level measuring device 100 on the skin and operates the blood glucose level measuring device 100 by pressing a measurement start switch (not shown) or the like, the irradiation unit 104 shortens the wavelength λ 1 with respect to the skin. Time pulse light is irradiated (step S1). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

照射部104が短時間パルス光を照射すると、受光部105は、照射部104から照射され、皮膚によって後方散乱した光を受光する(ステップS2)。このとき、受光部105は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。   When the irradiation unit 104 irradiates the pulsed light for a short time, the light receiving unit 105 receives the light irradiated from the irradiation unit 104 and back-scattered by the skin (step S2). At this time, the light receiving unit 105 registers the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.

ここで、対象となる受光部105は、受光手段に設けられた複数の受光部の中から選択された特定の受光部である。受光手段に設けられる複数の受光部105は、それぞれ受光量に応じた電気信号を受光強度として図示略の内部メモリに記憶している。しかし、それらの受光強度のデータが全て光吸収係数算出部109によって取得されるわけではなく、特定の受光部105の内部メモリに記憶された受光強度のデータが光吸収係数算出部109によって選択的に取得される。すなわち、光吸収係数算出部109が本発明の選択手段に該当する。光吸収係数算出部109は、ユーザーがメニュー画面に従って直接的又は間接的に選択した受光部を選択しても良いし、予めデフォルトで設定された受光部を選択しても良い。前者の例としては、直接ユーザーが「受光部1」「受光部2」などの表示ボタンを操作することにより選択するものや、ユーザーが被検体の年齢、性別などをメニュー画面で選択し、年齢、性別などに関連付けられた受光部を間接的に選択するものなどが挙げられる。   Here, the target light receiving unit 105 is a specific light receiving unit selected from a plurality of light receiving units provided in the light receiving unit. The plurality of light receiving sections 105 provided in the light receiving means each store an electrical signal corresponding to the amount of received light in a not-shown internal memory as the received light intensity. However, not all the light reception intensity data is acquired by the light absorption coefficient calculation unit 109, and the light reception intensity data stored in the internal memory of the specific light reception unit 105 is selectively selected by the light absorption coefficient calculation unit 109. To be acquired. That is, the light absorption coefficient calculation unit 109 corresponds to the selection unit of the present invention. The light absorption coefficient calculation unit 109 may select a light receiving unit selected directly or indirectly by a user according to a menu screen, or may select a light receiving unit set as a default in advance. As an example of the former, the user directly selects the display buttons such as “light receiving unit 1” and “light receiving unit 2”, or the user selects the age, sex, etc. of the subject on the menu screen. And a device that indirectly selects a light receiving unit associated with sex or the like.

受光部105が受光を完了すると、計測光強度取得部106は、光吸収係数算出部109によって選択される特定の受光部105の内部メモリに格納されている、異なる時刻tにおける受光強度I(t)を皮膚の層の数と同じ数だけ取得する(ステップS3)。すなわち、計測光強度取得部106は、3つの異なる時刻t〜tにおける受光強度I(t)〜I(t)を取得する。ここで、皮膚の層の数と同じ数だけ受光強度を取得する理由は、後述する処理において、皮膚の各層の吸収係数を連立方程式によって算出するためである。 When the light receiving unit 105 completes the light reception, the measurement light intensity acquisition unit 106 stores the received light intensity I (t at different times t stored in the internal memory of the specific light receiving unit 105 selected by the light absorption coefficient calculation unit 109. ) Is acquired in the same number as the number of skin layers (step S3). That is, the measurement light intensity acquisition unit 106 acquires the received light intensities I (t 1 ) to I (t 3 ) at three different times t 1 to t 3 . Here, the reason why the received light intensity is obtained in the same number as the number of skin layers is to calculate the absorption coefficient of each skin layer by simultaneous equations in the processing described later.

また、計測光強度取得部が光強度を取得する時刻t〜tは、皮膚の各層の伝搬光路長分布のピークとなる時刻であると良い。すなわち、照射部104が短時間パルス光を照射した時刻に、図2に示すグラフにおいて皮膚の各層の光路長が極大となる時間を加算した時刻の光強度をそれぞれ取得すると良い。 Also, the times t 1 to t 3 at which the measurement light intensity acquisition unit acquires the light intensity may be times when the propagation optical path length distribution of each layer of the skin becomes a peak. In other words, the light intensity at the time obtained by adding the time when the optical path length of each layer of the skin is maximized in the graph shown in FIG.

計測光強度取得部106が、受光強度I(t)〜I(t)を取得すると、光路長取得部107は、光路長分布記憶部102が記憶する波長λの伝搬光路長分布から、時刻t〜tにおける皮膚の各層の光路長L(t)〜L(t)、L(t)〜L(t)、L(t)〜L(t)を取得する(ステップS4)。
また、計測光強度取得部106が、受光強度I(t)〜I(t)を取得すると、無吸収時光強度取得部108は、時間分解波形記憶部103が記憶する波長λの時間分解波形から、時刻t〜tにおける無吸収時光強度N(t)〜N(t)を取得する(ステップS5)。
When the measurement light intensity acquisition unit 106 acquires the received light intensities I (t 1 ) to I (t 3 ), the optical path length acquisition unit 107 calculates from the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 102. , the optical path length of each layer of the skin at time t 1 ~t 3 L 1 (t 1) ~L 1 (t 3), L 2 (t 1) ~L 2 (t 3), L 3 (t 1) ~L 3 (t 3 ) is acquired (step S4).
Further, when the measurement light intensity acquisition unit 106 acquires the received light intensities I (t 1 ) to I (t 3 ), the non-absorption light intensity acquisition unit 108 stores the time of the wavelength λ 1 stored in the time-resolved waveform storage unit 103. from degradation waveform, the time t 1 when no absorption in ~t 3 light intensity N (t 1) ~N (t 3) to get (step S5).

光路長取得部107が皮膚の各層の光路長を取得し、無吸収時光強度取得部10が無吸収時光強度を取得すると、光吸収係数算出部109は、式(6)に基づいて、皮膚の各層の光吸収係数μ〜μを算出する(ステップS6)。ここで、光吸収係数μは、表皮層の光吸収係数を示し、光吸収係数μは、真皮層の光吸収係数を示し、光吸収係数μは、皮下組織層の光吸収係数を示す。 When the optical path length obtaining unit 107 obtains the optical path length of each layer of the skin, non-absorbing at the light intensity acquisition unit 108 acquires the non-absorbing at the light intensity, the light absorption coefficient calculation unit 109, based on the formula (6), the skin The light absorption coefficients μ 1 to μ 3 of the respective layers are calculated (step S6). Here, the light absorption coefficient μ 1 indicates the light absorption coefficient of the epidermis layer, the light absorption coefficient μ 2 indicates the light absorption coefficient of the dermis layer, and the light absorption coefficient μ 3 indicates the light absorption coefficient of the subcutaneous tissue layer. Show.

Figure 0005652599
Figure 0005652599

但し、ln(A)は、Aの自然対数を示す。また、Iinは、照射部104が照射した短時間パルス光の光強度を示す。また、Ninは、シミュレーション部101が照射のシミュレーションを行った光子の個数を示す。
光吸収係数算出部109が皮膚の各層の光吸収係数μ〜μを算出すると、光吸収係数算出部109は、求める成分の種類数αとして、xC2≧αを満足する波長の種類数(例えばα=3→x=3、α=4→x=4、α=5→x=4、)に対して光吸収係数μ〜μを算出したか否かを判定する(ステップS7)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部109は、4種類の波長λ〜λに対して光吸収係数μ〜μを算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。
Here, ln (A) represents the natural logarithm of A. I in indicates the light intensity of the short-time pulsed light irradiated by the irradiation unit 104. N in indicates the number of photons for which the simulation unit 101 has simulated irradiation.
When the light absorption coefficient calculation unit 109 calculates the light absorption coefficients μ 1 to μ 3 of each layer of the skin, the light absorption coefficient calculation unit 109 sets the number of types of wavelengths satisfying xC 2 ≧ α as the number of types of components α to be obtained ( For example, it is determined whether or not the light absorption coefficients μ 1 to μ 3 are calculated for α = 3 → x = 3, α = 4 → x = 4, α = 5 → x = 4) (step S7). . In this embodiment, since the blood sugar level is measured with four main components of skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 109 performs light for four wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ 1 to μ 3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部109が、光吸収係数μ〜μを算出していない波長λ〜λがあると判定した場合(ステップS7:NO)、ステップS1に戻り、まだ光吸収係数μ〜μを算出していない波長λ〜λの光吸収係数μ〜μの算出を行う。
他方、光吸収係数算出部109が、波長λ〜λの光吸収係数μ〜μを算出していると判定した場合(ステップS7:YES)、濃度算出部110は、式(7)に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS8)。
When the light absorption coefficient calculation unit 109 determines that there are wavelengths λ 1 to λ 4 for which the light absorption coefficients μ 1 to μ 3 are not calculated (step S7: NO), the process returns to step S1 and still has the light absorption coefficient μ. and calculates the light absorption coefficient μ 1 3 wavelengths lambda 1 to [lambda] 4, which is not calculated 1 ~μ 3.
On the other hand, when the light absorption coefficient calculation unit 109 determines that the light absorption coefficients μ 1 to μ 3 of the wavelengths λ 1 to λ 4 are calculated (step S7: YES), the concentration calculation unit 110 calculates the equation (7 ) To calculate the concentration of glucose contained in the dermis (step S8).

Figure 0005652599
Figure 0005652599

但し、μ2(1)〜μ2(4)は、真皮層における波長λ〜λの光吸収係数を示す。また、g〜gは、真皮層におけるそれぞれ皮膚の主成分である水、たんぱく質、脂質、グルコースのモル濃度を示す。また、ε1(1)〜ε1(4)は、波長λ〜λに対する水のモル吸光係数を示し、ε2(1)〜ε2(4)は、波長λ〜λに対するたんぱく質のモル吸光係数を示し、ε3(1)〜ε3(4)は、波長λ〜λに対する脂質のモル吸光係数を示し、ε4(1)〜ε4(4)は、波長λ〜λに対するグルコースのモル吸光係数を示す。
つまり、式(7)のgを算出することで、真皮質に含まれるグルコースのモル濃度を求めることができる。
However, μ 2 (1) ~μ 2 (4) shows the optical absorption coefficient of the wavelength lambda 1 to [lambda] 4 in the dermis layer. Further, g 1 to g 4 shows the water respectively in the dermal layer is the main component of skin, proteins, lipids, the molar concentration of glucose. Further, ε 1 (1) ~ε 1 (4) shows a molar extinction coefficient of water with respect to the wavelength λ 1 ~λ 4, ε 2 ( 1) ~ε 2 (4) is for the wavelength lambda 1 to [lambda] 4 Indicates the molar extinction coefficient of the protein, ε 3 (1) to ε 3 ( 4) indicate the molar extinction coefficient of the lipid for wavelengths λ 1 to λ 4 , and ε 4 (1) to ε 4 (4) indicate the wavelength The molar extinction coefficient of glucose with respect to λ 1 to λ 4 is shown.
That is, by calculating g 4 in equation (7), the molar concentration of glucose contained in the dermis can be obtained.

ここで、式(7)によってグルコースのモル濃度を求めることができる理由を説明する。皮膚の散乱係数の波長依存性は小さいため、無吸収時光強度N(t)及び光路長L(t)の波長に対する変化は無視することができる。また、ベア・ランベルト(Beer-Lambert)の法則により、吸光度=モル吸光係数×モル濃度で表すことができる。これにより、2波長で得られた時間分解計測より、無吸収時光強度N(t)を消去することで、真皮層において得られる吸収計数差と皮膚を形成する各成分のモル吸光係数との関係式を示す式(7)を導くことができる。 Here, the reason why the molar concentration of glucose can be obtained by the equation (7) will be described. Since the wavelength dependency of the scattering coefficient of the skin is small, the change of the non-absorption light intensity N (t) and the optical path length L n (t) with respect to the wavelength can be ignored. Further, it can be expressed as Absorbance = Molar extinction coefficient × Molar concentration according to the Beer-Lambert law. Thus, by eliminating the non-absorption light intensity N (t) from the time-resolved measurement obtained at two wavelengths, the relationship between the absorption count difference obtained in the dermis layer and the molar extinction coefficient of each component forming the skin Equation (7) representing the equation can be derived.

このように、本実施形態によれば、短時間パルス光を照射し、所定の時刻において受光した光の強度に基づいてグルコースの濃度を定量する。これにより、所定の時刻において受光した光の中から、真皮層の吸収計数を選択的に算出することができる。これにより、特定の皮膚の層のグルコースの濃度を算出することができ、他の層によるノイズの影響を軽減し、精度の高い血糖値を算出することが可能になる。   Thus, according to the present embodiment, the concentration of glucose is quantified based on the intensity of light received at a predetermined time by irradiating pulsed light for a short time. Thereby, the absorption count of the dermis layer can be selectively calculated from the light received at a predetermined time. Thereby, the glucose concentration of a specific skin layer can be calculated, the influence of noise by other layers can be reduced, and a highly accurate blood sugar level can be calculated.

なお、式(7)では、複数波長での光吸収係数の差分に基づいてグルコースのモル濃度を求めた。しかし、複数波長での光吸収係数の差分によらずに下式(8)、(9)に基づいて直接グルコースのモル濃度を求めることもできる。   In addition, in Formula (7), the molar concentration of glucose was calculated | required based on the difference of the light absorption coefficient in multiple wavelengths. However, the molar concentration of glucose can be directly determined based on the following equations (8) and (9) regardless of the difference in the light absorption coefficient at a plurality of wavelengths.

式(8)は、各層における光吸収係数μ〜μを示す式である。 Expression (8) is an expression showing the light absorption coefficients μ 1 to μ 3 in each layer.

Figure 0005652599
Figure 0005652599

式(8)において、μ1(i)(i=1〜4)は、表皮層における波長λ(i=1〜4)の光吸収係数を示し、μ2(i)(i=1〜4)は、真皮層における波長λ(i=1〜4)の光吸収係数を示し、μ3(i)(i=1〜4)は、皮下組織層における波長λ(i=1〜4)の光吸収係数を示す。ε1(i)は、波長λ(i=1〜4)に対する水のモル吸光係数を示し、ε2(i)は、波長λ(i=1〜4)に対するたんぱく質のモル吸光係数を示し、ε3(i)は、波長λ(i=1〜4)に対する脂質のモル吸光係数を示し、ε4(i)は、波長λ(i=1〜4)に対するグルコースのモル吸光係数を示す。g1j、g2j、g3j、g4j(j=1〜3)は、j層におけるそれぞれ皮膚の主成分である水、たんぱく質、脂質、グルコースのモル濃度を示す。ただし、j=1は表皮層、j=2は真皮層、j=3は皮下組織層をそれぞれ示す。 In Formula (8), μ 1 (i) (i = 1 to 4) represents a light absorption coefficient of the wavelength λ i (i = 1 to 4) in the skin layer, and μ 2 (i) (i = 1 to 4). 4) indicates the light absorption coefficient of the wavelength λ i (i = 1 to 4) in the dermis layer, and μ 3 (i) (i = 1 to 4) indicates the wavelength λ i (i = 1 to 1) in the subcutaneous tissue layer. The light absorption coefficient of 4) is shown. ε 1 (i) represents the molar extinction coefficient of water with respect to the wavelength λ i (i = 1 to 4), and ε 2 (i) represents the molar extinction coefficient of the protein with respect to the wavelength λ i (i = 1 to 4). Ε 3 (i) indicates the molar extinction coefficient of lipid for wavelength λ i (i = 1-4), and ε 4 (i) indicates the molar extinction of glucose for wavelength λ i (i = 1-4). Indicates the coefficient. g 1j , g 2j , g 3j , and g 4j (j = 1 to 3) indicate the molar concentrations of water, protein, lipid, and glucose, which are the main components of the skin in the j layer, respectively. However, j = 1 represents the epidermis layer, j = 2 represents the dermis layer, and j = 3 represents the subcutaneous tissue layer.

式(9)は、真皮層(j=2)における水、たんぱく質、脂質、グルコースのモル濃度g12、g22、g32、g42を求める式である。式(9)のg42を算出することで、真皮質に含まれるグルコースのモル濃度を求めることができる。 Equation (9) is an equation for obtaining water in the dermal layer (j = 2), protein, lipid, the molar concentration of glucose g 12, g 22, g 32 , g 42. By calculating the g 42 of formula (9) it is possible to find the molar concentration of glucose contained in the true cortex.

Figure 0005652599
Figure 0005652599

次に、本発明の第2の実施形態について詳しく説明する。
第2の実施形態は、第1の実施形態による血糖値測定装置100と同じ構成であり、計測光強度取得部106、光路長取得部107、無吸収時光強度取得部108、光吸収係数算出部109の動作が異なる。
Next, a second embodiment of the present invention will be described in detail.
The second embodiment has the same configuration as the blood glucose level measuring apparatus 100 according to the first embodiment, and includes a measurement light intensity acquisition unit 106, an optical path length acquisition unit 107, a non-absorption light intensity acquisition unit 108, and a light absorption coefficient calculation unit. 109 operations are different.

図8は、血糖値測定装置が血糖値を測定する動作を示す第2のフローチャートである。
まず、血糖値測定装置100を動作させると、照射部104は、皮膚に対して波長λの短時間パルス光を照射する(ステップS11)。ここで、波長λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中の1つである。
FIG. 8 is a second flowchart showing the operation of the blood sugar level measuring apparatus for measuring the blood sugar level.
First, when the blood sugar level measuring apparatus 100 is operated, the irradiating unit 104 irradiates the skin with short-time pulsed light having a wavelength λ 1 (step S11). Here, the wavelength λ 1 is one of a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

照射部104が短時間パルス光を照射すると、受光部105は、照射部104から照射され、皮膚によって後方散乱した光を受光する(ステップS12)。このとき、受光部105は、照射開始からの単位時間毎(例えば、1ピコ秒毎)の受光強度を内部メモリに登録しておく。
受光部105が受光を完了すると、計測光強度取得部106は、受光部105の内部メモリに格納されている受光強度から、ある時刻から時刻τまでの間の受光強度の時間分布を取得する(ステップS13)。時刻τまでの光強度の変化としては、例えば図9に示す時間が選択される。すなわち、表皮を透過する光のスペクトルを精度良く測定したい場合には、1ps〜10psの期間τ1を選択し、真皮を透過する光のスペクトルを精度良く測定したい場合には、2ps〜30psの期間τ2を選択し、皮下組織を透過する光のスペクトルを精度良く検出したい場合には、50ps〜70psの期間τ3を選択する。τ1、τ2、τ3は、互いに時間軸上では重ならず、皮膚組織の表面に近い層を透過する光のスペクトルを検出しようとするほど、測定開始時間及び測定終了時間は時間軸上で早い時期に設定される。
When the irradiation unit 104 emits the short-time pulse light, the light receiving unit 105 receives the light emitted from the irradiation unit 104 and backscattered by the skin (step S12). At this time, the light receiving unit 105 registers the received light intensity for each unit time (for example, every 1 picosecond) from the start of irradiation in the internal memory.
When the light receiving unit 105 completes the light reception, the measurement light intensity acquisition unit 106 acquires the time distribution of the light reception intensity from a certain time to the time τ from the light reception intensity stored in the internal memory of the light reception unit 105 ( Step S13). For example, the time shown in FIG. 9 is selected as the change in light intensity up to time τ. That is, when it is desired to accurately measure the spectrum of light transmitted through the epidermis, the period τ1 of 1 ps to 10 ps is selected. When it is desired to accurately measure the spectrum of light transmitted through the dermis, the period τ2 of 2 ps to 30 ps. Is selected, and a period τ3 of 50 ps to 70 ps is selected when it is desired to accurately detect the spectrum of light transmitted through the subcutaneous tissue. τ1, τ2, and τ3 do not overlap with each other on the time axis, and the measurement start time and the measurement end time are earlier on the time axis as the spectrum of light transmitted through the layer close to the surface of the skin tissue is detected. Set to

計測光強度取得部106が、時刻τまでの間の受光強度の時間分布を取得すると、光路長取得部107は、光路長分布記憶部102が記憶する波長λの伝搬光路長分布から、ある時刻から時刻τまでの間の皮膚の各層の光路長L〜Lを取得する(ステップS14)。
また、計測光強度取得部106が、時刻τまでの間の受光強度を取得すると、無吸収時光強度取得部108は、時間分解波形記憶部103が記憶する波長λの時間分解波形から、ある時刻から時刻τまでの間の無吸収時光強度を取得する(ステップS15)。
When the measurement light intensity acquisition unit 106 acquires the time distribution of the received light intensity until time τ, the optical path length acquisition unit 107 is based on the propagation optical path length distribution of the wavelength λ 1 stored in the optical path length distribution storage unit 102. Optical path lengths L 1 to L 3 of each layer of the skin from time to time τ are acquired (step S14).
Further, when the measurement light intensity acquisition unit 106 acquires the received light intensity until time τ, the non-absorption light intensity acquisition unit 108 is from the time-resolved waveform of the wavelength λ 1 stored in the time-resolved waveform storage unit 103. The non-absorbing light intensity between time and time τ is acquired (step S15).

光路長取得部107が皮膚の各層の光路長を取得し、無吸収時光強度取得部108が無吸収時光強度を取得すると、光吸収係数算出部109は、式(10)に基づいて、皮膚の各層の光吸収係数μ〜μを算出する(ステップS16)。ここで、光吸収係数μは、表皮層の光吸収係数を示し、光吸収係数μは、真皮層の光吸収係数を示し、光吸収係数μは、皮下組織層の光吸収係数を示す。 When the optical path length acquisition unit 107 acquires the optical path length of each layer of the skin, and the non-absorption light intensity acquisition unit 108 acquires the non-absorption light intensity, the light absorption coefficient calculation unit 109 calculates the skin absorption based on the equation (10). The light absorption coefficients μ 1 to μ 3 of each layer are calculated (step S16). Here, the light absorption coefficient μ 1 indicates the light absorption coefficient of the epidermis layer, the light absorption coefficient μ 2 indicates the light absorption coefficient of the dermis layer, and the light absorption coefficient μ 3 indicates the light absorption coefficient of the subcutaneous tissue layer. Show.

Figure 0005652599
Figure 0005652599

但し、ln(A)は、Aの自然対数を示す。また、I(t)は、時刻tにおける受光部105の受光強度を示し、Iinは、照射部104が照射した短時間パルス光の光強度を示す。また、N(t)は、時間分解波形の時刻tにおける無吸収時光強度を示し、Ninは、シミュレーション部101が照射のシミュレーションを行った光子の個数を示す。また、L(t)〜L(t)は、時刻tにおける皮膚の各層の光路長を示す。 Here, ln (A) represents the natural logarithm of A. Further, I (t) indicates the light reception intensity of the light receiving unit 105 at time t, and I in indicates the light intensity of the short-time pulsed light irradiated by the irradiation unit 104. N (t) represents the non-absorbing light intensity at time t of the time-resolved waveform, and N in represents the number of photons on which the simulation unit 101 has simulated the irradiation. L 1 (t) to L 3 (t) indicate the optical path length of each layer of the skin at time t.

光吸収係数算出部109は、皮膚の各層の光吸収係数μ〜μを算出すると、光吸収係数算出部109が、皮膚の主成分の種類数と同じ数の波長に対して光吸収係数μ〜μを算出したか否かを判定する(ステップS17)。本実施形態では、皮膚の主成分を水、たんぱく質、脂質、グルコースの4種類として血糖値の測定を行うため、光吸収係数算出部109は、4種類の波長λ〜λに対して光吸収係数μ〜μを算出したか否かを判定する。ここで、波長λ〜λは、シミュレーション部101が伝搬光路長分布及び時間分解波形を算出した複数の波長の中から選出する。 When the light absorption coefficient calculation unit 109 calculates the light absorption coefficients μ 1 to μ 3 of each layer of the skin, the light absorption coefficient calculation unit 109 calculates the light absorption coefficient with respect to the same number of wavelengths as the number of main components of the skin. It is determined whether or not μ 1 to μ 3 are calculated (step S17). In this embodiment, since the blood sugar level is measured with four main components of skin, water, protein, lipid, and glucose, the light absorption coefficient calculation unit 109 performs light for four wavelengths λ 1 to λ 4 . It is determined whether or not the absorption coefficients μ 1 to μ 3 are calculated. Here, the wavelengths λ 1 to λ 4 are selected from a plurality of wavelengths calculated by the simulation unit 101 for the propagation optical path length distribution and the time-resolved waveform.

光吸収係数算出部109が、光吸収係数μ〜μを算出していない波長λ〜λがあると判定した場合(ステップS17:NO)、ステップS1に戻り、まだ光吸収係数μ〜μを算出していない波長λ〜λの光吸収係数μ〜μの算出を行う。
他方、光吸収係数算出部109が、波長λ〜λの光吸収係数μ〜μを算出していると判定した場合(ステップS17:YES)、濃度算出部110は、上述した式(7)に基づいて真皮質に含まれるグルコースの濃度を算出する(ステップS18)。
When the light absorption coefficient calculation unit 109 determines that there are wavelengths λ 1 to λ 4 for which the light absorption coefficients μ 1 to μ 3 are not calculated (step S17: NO), the process returns to step S1 and still has the light absorption coefficient μ. and calculates the light absorption coefficient μ 1 3 wavelengths lambda 1 to [lambda] 4, which is not calculated 1 ~μ 3.
On the other hand, when the light absorption coefficient calculation unit 109 determines that the light absorption coefficients μ 1 to μ 3 of the wavelengths λ 1 to λ 4 are calculated (step S17: YES), the concentration calculation unit 110 uses the above-described formula. Based on (7), the concentration of glucose contained in the dermis is calculated (step S18).

このように、本実施形態によれば、吸収係数μ〜μを、時刻τまでの間の光路長の積分値によって算出する。これにより、計測した受光強度I(t)に含まれている誤差による吸収係数μ〜μの算出結果に対する影響を少なくすることができる。 As described above, according to the present embodiment, the absorption coefficients μ 1 to μ 3 are calculated by the integrated value of the optical path length until the time τ. Thus, it is possible to reduce the influence on the calculation result of the absorption coefficient μ 13 by the error contained in the measured received light intensity I (t).

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、実施形態では、濃度定量方法を血糖値測定装置100に実装し、皮膚の真皮層に含まれるグルコースの濃度を測定する場合を説明したが、これに限られず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いても良い。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in the embodiment, the case where the concentration quantification method is implemented in the blood glucose level measuring apparatus 100 and the concentration of glucose contained in the dermis layer of the skin is measured has been described. You may use for the other apparatus which quantifies the density | concentration of the target component in the arbitrary layers of the observation object formed from the layer of a light-scattering medium.

上述の血糖値測定装置100は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The blood sugar level measuring apparatus 100 described above has a computer system inside. The operation of each processing unit described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

100…血糖値測定装置、101…シミュレーション部、102…光路長分布記憶部、103…時間分解波形記憶部、104…照射部(照射手段)、104a…照射用光ファイバー、105…受光部、105a…受光用光ファイバー、106…計測光強度取得部、107…光路長取得部、108…無吸収時光強度取得部、109…光吸収係数算出部(選択手段)、110…濃度算出部 DESCRIPTION OF SYMBOLS 100 ... Blood glucose level measuring apparatus, 101 ... Simulation part, 102 ... Optical path length distribution storage part, 103 ... Time-resolved waveform storage part, 104 ... Irradiation part (irradiation means), 104a ... Optical fiber for irradiation, 105 ... Light receiving part, 105a ... Optical fiber for light reception, 106 ... Measurement light intensity acquisition unit, 107 ... Optical path length acquisition unit, 108 ... Non-absorption light intensity acquisition unit, 109 ... Light absorption coefficient calculation unit (selection means), 110 ... Concentration calculation unit

Claims (11)

複数の層から形成される観測対象のうち、任意の層における目的成分である生体成分の濃度を定量する濃度定量装置であって、
前記観測対象に光を照射する照射手段と、
前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、
前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、
前記特定された受光部が受光した光の強度を取得する光強度取得手段と、
前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得する光路長取得手段と、
前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する濃度算出手段と、
を備えることを特徴とする濃度定量装置。
A concentration quantification device that quantifies the concentration of a biological component that is a target component in an arbitrary layer among observation targets formed from a plurality of layers ,
Irradiating means for irradiating the observation object with light ;
Light receiving means having a plurality of light receiving portions, wherein the light backscattered is received by said observation target,
Among the plurality of light receiving portions, and selection it means for the light by the previous SL any layer selects identifies the light receiving portion to be received,
Light intensity acquisition means for acquiring the intensity of light received by the specified light receiving unit ;
The optical path length distribution storage means for storing the plurality of models of propagation optical path length distribution in the layer on the propagation path of light reaching the light receiving portion that is the specified from the irradiation unit,
A time-resolved waveform storage means for storing a model of the time-resolved waveform of the light received at the specified light receiving unit,
Optical path length acquisition means for acquiring optical path lengths of the plurality of layers at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means;
Based on the optical path length of said plurality of layers in which the optical path length acquisition means, the light intensity in which the light intensity acquisition unit has acquired is acquired, and the light absorption coefficient calculating means for calculating an optical absorption coefficient of the given layer,
Based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the biological component in the arbitrary layer;
A concentration determination apparatus comprising:
前記光強度取得手段は、前記観測対象の層の数n以上となる複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、
自然対数を示すln、前記受光手段が時刻tにおいて受光した光強度を示すI(t)、前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度を示すN(t)、前記伝搬光路長分布のモデルの時刻tにおける第i層の光路長を示すL(t)、第i層の光吸収係数を示すμを用いて、
Figure 0005652599
から任意の層の光吸収係数を算出する、
ことを特徴とする請求項1に記載の濃度定量装置。
The light intensity acquisition means acquires the light intensity at a plurality of times t 1 to t m that are equal to or greater than the number n of the observation target layers,
The light absorption coefficient calculating means includes
Ln indicating the natural logarithm, I (t) indicating the light intensity received by the light receiving means at time t, N (t) indicating the light intensity at time t of the time-resolved waveform model of the short-time pulsed light, and the propagation Using L i (t) indicating the optical path length of the i-th layer at time t in the model of the optical path length distribution and μ i indicating the light absorption coefficient of the i-th layer,
Figure 0005652599
Calculate the light absorption coefficient of any layer from
The concentration determination apparatus according to claim 1, wherein:
前記照射手段は、複数の波長1〜qの光を照射し、
前記光吸収係数算出手段は、前記任意の層における光吸収係数を前記照射手段が照射した複数の波長毎に算出し、
前記濃度算出手段は、
前記任意の層である第a層における波長iの光吸収係数を示すμa(i)、前記観測対象を形成する第j成分のモル濃度を示すg、第j成分の波長iに対する光吸収係数を示すεj(i)、前記観測対象を形成する主成分の個数を示すp、照射手段が照射する波長の種類数を示すqを用いて、
Figure 0005652599
から前記任意の層における前記目的成分の濃度を算出する、
ことを特徴とする請求項2に記載の濃度定量装置。
The irradiation means irradiates light having a plurality of wavelengths 1 to q,
The light absorption coefficient calculating means calculates a light absorption coefficient in the arbitrary layer for each of a plurality of wavelengths irradiated by the irradiation means,
The concentration calculating means includes
Μ a (i) indicating the light absorption coefficient of the wavelength i in the a-th layer which is the arbitrary layer, g j indicating the molar concentration of the j-th component forming the observation object, and light absorption of the j-th component with respect to the wavelength i Ε j (i) indicating a coefficient, p indicating the number of main components forming the observation object, q indicating the number of types of wavelengths irradiated by the irradiation unit,
Figure 0005652599
Calculate the concentration of the target component in the arbitrary layer from
The concentration determination apparatus according to claim 2, wherein
前記照射手段から前記観測対象に光を照射する位置を照射位置、前記光が前記観測対象によって後方散乱した光が前記観測対象から前記受光部に向けて出射する位置を受光位置、前記照射位置と前記受光位置との間隔を照射受光間隔、としたときに、前記受光手段は、互いに照射受光間隔の異なる複数の受光部を有し、前記選択手段は、前記照射受光間隔に応じて定まる前記観測対象の内部への光の到達深さに基づいて、前記任意の層に光が伝搬可能な照射受光間隔を有する受光部を選択することを特徴とする請求項3に記載の濃度定量装置。 The irradiation position where to irradiate light to the observation target from the illumination means, before Symbol light receiving position where to exit toward the light receiving portion of light backscattered from the observed object by the observation target, the irradiation position And the light receiving position as an irradiation light receiving interval, the light receiving means has a plurality of light receiving portions having different irradiation light receiving intervals, and the selecting means is determined according to the irradiation light receiving interval. 4. The concentration quantification apparatus according to claim 3, wherein a light receiving unit having an irradiation light receiving interval capable of propagating light to the arbitrary layer is selected based on an arrival depth of light into the observation target. 前記照射手段は、光を前記観測対象の表面に伝送する照射用光ファイバーを有し、前記受光部は、前記観測対象によって後方散乱した光を伝送する受光用光ファイバーを有し、前記照射用光ファイバーと前記受光用光ファイバーは、両者の光ファイバーコアの中心間隔を所定の照射受光間隔だけ離間して固定するプローブ装置に装着されており、前記プローブ装置の先端部に露出した前記照射用光ファイバーの先端部と前記受光用光ファイバーの先端部とを前記観測対象の表面に接触させることによって、前記観測対象へのの照射処理と、前記光が前記観測対象によって後方散乱した光の受光処理とを行うことを特徴とする請求項4に記載の濃度定量装置。 The irradiation means includes an irradiation optical fiber that transmits light to the surface of the observation target , and the light receiving unit includes a light reception optical fiber that transmits light backscattered by the observation target; The optical fiber for light reception is attached to a probe device that fixes the center interval between both optical fiber cores apart by a predetermined irradiation light reception interval, and the distal end portion of the irradiation optical fiber exposed at the distal end portion of the probe device; by contacting the front end portion of the light receiving optical fiber to the surface of the observation target, and light irradiation treatment to the observed object, that the previous SL light makes the light receiving processing of the light backscattered by the observed object The concentration determination apparatus according to claim 4, wherein: 前記受光部は、互いに等しい照射受光間隔で配置された複数の受光用光ファイバーを有することを特徴とする請求項5に記載の濃度定量装置。   6. The concentration quantification apparatus according to claim 5, wherein the light receiving unit includes a plurality of light receiving optical fibers arranged at equal irradiation light receiving intervals. 前記受光部は、互いに等しい照射受光間隔で配置された複数の受光用光ファイバーによって伝送された光を同一受光面上に集光する集光素子を有することを特徴とする請求項6に記載の濃度定量装置。   The density according to claim 6, wherein the light receiving unit includes a condensing element that condenses light transmitted by a plurality of light receiving optical fibers arranged at equal irradiation and light receiving intervals on the same light receiving surface. A quantitative device. 前記照射用光ファイバーと前記受光用光ファイバーは、前記照射手段が照射する前記複数の波長1〜qの光の波長分散を補償する分散補償型シングルモード光ファイバーであることを特徴とする請求項5〜7のいずれか1項に記載の濃度定量装置。   The optical fiber for irradiation and the optical fiber for light reception are dispersion-compensated single mode optical fibers that compensate for chromatic dispersion of the light of the plurality of wavelengths 1 to q irradiated by the irradiation unit. The concentration quantification apparatus according to any one of the above. 前記照射用光ファイバーと前記受光用光ファイバーは、前記照射手段が照射する前記複数の波長1〜qの光の波長分散に伴う群遅延時間差が、前記複数の光散乱媒質層のうち最も表面側の層の伝搬光路長分布のピークに対応する伝搬時間よりも短いことを特徴とする請求項5〜7のいずれか1項に記載の濃度定量装置。   The optical fiber for irradiating and the optical fiber for receiving light have a group delay time difference associated with wavelength dispersion of the light of the plurality of wavelengths 1 to q irradiated by the irradiating means, the layer on the most surface side among the plurality of light scattering medium layers The concentration quantification apparatus according to claim 5, wherein the concentration quantification apparatus is shorter than a propagation time corresponding to a peak of the propagation optical path length distribution. 複数の層から形成される観測対象に光を照射する照射手段と、前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分である生体成分の濃度を定量する濃度定量装置を用いた濃度定量方法であって、
光強度取得手段は、前記特定された受光部が受光した光の強度を取得し、
光路長取得手段は、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得し
光吸収係数算出手段は、前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出し、
濃度算出手段は、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する、
ことを特徴とする濃度定量方法。
Irradiating means for irradiating light to the observation target, which is formed from a plurality of layers, and the light receiving means having a plurality of light receiving portions, wherein the light backscattered is received by said observation target, among the plurality of light receiving portions, before selection means for said light is selected to identify the light-receiving portion which is received by the serial arbitrary layer, from the irradiation unit of the propagation path length distribution in the plurality of layers on the propagation path of light reaching the light receiving portion, which is the specific comprising an optical path length distribution storage means for storing a model, and a time-resolved waveform storage means for storing a model of the time-resolved waveform of the light received at the specified light receiving unit, the purpose of any layer of the observed object A concentration quantification method using a concentration quantification device for quantifying the concentration of a biological component as a component ,
Light intensity acquisition unit includes a light receiving unit that is pre-Symbol identified obtains the intensity of the received light,
The optical path length acquisition means acquires the optical path lengths of the plurality of layers at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means ,
Light absorption coefficient calculating means, based on the optical path length of the plurality of layers in which the light intensity obtaining unit light intensities acquired with the optical path length acquisition means has acquired, and calculates the light absorption coefficient of the given layer,
The concentration calculation means calculates the concentration of the biological component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation means.
Concentration determination method characterized by this.
複数の層から形成される観測対象に光を照射する照射手段と、前記観測対象によって後方散乱した前記光が受光される複数の受光部を有する受光手段と、前記複数の受光部のうち、前記任意の層によって前記光が受光される受光部を特定し選択する選択手段と、前記照射手段から前記特定された受光部に至る光の伝搬経路上の前記複数の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記特定された受光部において受光する前記光の時間分解波形のモデルを記憶する時間分解波形記憶手段とを備え、前記観測対象のうち任意の層における目的成分である生体成分の濃度を定量する濃度定量装置を、
前記特定された受光部が受光した光の強度を取得する光強度取得手段、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時間における、前記複数の層の光路長を取得する光路長取得手段
前記光強度取得手段が取得した光強度と前記光路長取得手段が取得した前記複数の層の光路長とに基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記生体成分の濃度を算出する濃度算出手段、
として動作させるためのプログラム。
Irradiating means for irradiating light to the observation target, which is formed from a plurality of layers, and the light receiving means having a plurality of light receiving portions, wherein the light backscattered is received by said observation target, among the plurality of light receiving portions, before selection means for said light is selected to identify the light-receiving portion which is received by the serial arbitrary layer, from the irradiation unit of the propagation path length distribution in the plurality of layers on the propagation path of light reaching the light receiving portion, which is the specific comprising an optical path length distribution storage means for storing a model, and a time-resolved waveform storage means for storing a model of the time-resolved waveform of the light received at the specified light receiving unit, the purpose of any layer of the observed object A concentration quantification device that quantifies the concentration of the biological component that is a component ,
Light intensity acquisition means for acquiring the intensity of light received by the specified light receiving unit;
Wherein the optical path length distribution storage means, wherein in the constant time at the propagation model of the optical path length distribution, the optical path length acquisition means for acquiring an optical path length of the plurality of layers,
Based on the optical path length of said plurality of layers in which the light intensity obtaining unit light intensities acquired with the optical path length acquisition means has acquired, the light absorption coefficient calculating means for calculating an optical absorption coefficient of the given layer,
Concentration calculating means for calculating the concentration of the biological component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means;
Program to operate as.
JP2010158098A 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method and program Expired - Fee Related JP5652599B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010158098A JP5652599B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method and program
US13/176,422 US9464983B2 (en) 2010-07-12 2011-07-05 Concentration determination apparatus, probe, concentration determination method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158098A JP5652599B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method and program

Publications (2)

Publication Number Publication Date
JP2012019833A JP2012019833A (en) 2012-02-02
JP5652599B2 true JP5652599B2 (en) 2015-01-14

Family

ID=45774636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158098A Expired - Fee Related JP5652599B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method and program

Country Status (1)

Country Link
JP (1) JP5652599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466765B2 (en) 2021-05-07 2024-04-12 三菱電機株式会社 Blower, air conditioner and refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838517B2 (en) 2011-06-21 2016-01-06 セイコーエプソン株式会社 Concentration determination device, concentration determination method
JP2014016235A (en) 2012-07-09 2014-01-30 Seiko Epson Corp Apparatus for estimating optical absorption coefficient distribution, apparatus for measuring concentration and method for controlling apparatus for estimating optical absorption coefficient distribution
JP6029128B1 (en) * 2016-05-18 2016-11-24 メディカルフォトニクス株式会社 Blood lipid concentration measuring device and operating method thereof
KR102531994B1 (en) * 2017-12-29 2023-05-15 삼성전자주식회사 Apparatus and method for measuring biological components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310782B2 (en) * 1994-07-14 2002-08-05 株式会社日立製作所 Imaging device for spatial distribution of absorption substance concentration
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
JP2003202287A (en) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk Scattering absorption member measuring method and device
JP2008237775A (en) * 2007-03-28 2008-10-09 Toshiba Corp Blood component measuring apparatus
JP5463545B2 (en) * 2009-03-31 2014-04-09 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466765B2 (en) 2021-05-07 2024-04-12 三菱電機株式会社 Blower, air conditioner and refrigeration cycle device

Also Published As

Publication number Publication date
JP2012019833A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US10912504B2 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
JP5186044B2 (en) Blood glucose level estimation device
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
JP2008237775A (en) Blood component measuring apparatus
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2016010717A (en) Concentration quantification apparatus
JP2004167080A (en) Oxygen saturation degree measuring instrument
JP5838517B2 (en) Concentration determination device, concentration determination method
JP2013088244A (en) Component concentration measuring apparatus and component concentration measuring method
JP2010005047A (en) Method for generating calibration model for optically measuring biological component and non-invasive apparatus for measuring blood glucose value
JP5924658B2 (en) Concentration determination apparatus, light absorption coefficient calculation method, equivalent scattering coefficient calculation method, concentration determination method, program for calculating light absorption coefficient, and program for calculating concentration
JP2013224838A (en) Component concentration measuring apparatus and component concentration measuring method
JPH09113439A (en) Method and apparatus for measuring organic component
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2010082246A (en) Method for processing measurement data of biological spectrum
JP3304559B2 (en) Optical measurement method and device
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP7253733B2 (en) How to calculate the amount of glucose
V Zharkikh et al. Sampling volume assessment for wearable multimodal optical diagnostic device
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2013140126A (en) Concentration assaying device, concentration assaying method and program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5652599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees