JP2003077471A - Graphite material for lithium ion secondary battery negative electrode and its manufacturing method - Google Patents

Graphite material for lithium ion secondary battery negative electrode and its manufacturing method

Info

Publication number
JP2003077471A
JP2003077471A JP2001270170A JP2001270170A JP2003077471A JP 2003077471 A JP2003077471 A JP 2003077471A JP 2001270170 A JP2001270170 A JP 2001270170A JP 2001270170 A JP2001270170 A JP 2001270170A JP 2003077471 A JP2003077471 A JP 2003077471A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite material
secondary battery
graphite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270170A
Other languages
Japanese (ja)
Inventor
Norimune Yamazaki
典宗 山崎
Hisafumi Kawamura
寿文 河村
Toshio Tamaki
敏夫 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Nippon Mining Holdings Inc
Eneos Corp
PETOCA MATERIALS Ltd
Original Assignee
Kashima Oil Co Ltd
Japan Energy Corp
Nikko Materials Co Ltd
PETOCA MATERIALS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd, Japan Energy Corp, Nikko Materials Co Ltd, PETOCA MATERIALS Ltd filed Critical Kashima Oil Co Ltd
Priority to JP2001270170A priority Critical patent/JP2003077471A/en
Publication of JP2003077471A publication Critical patent/JP2003077471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Fibers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable to obtain stably a higher discharge capacity and charge and discharge efficiency compared with the graphite material that is graphitized under the presence of a boron compound. SOLUTION: (1), (A) This is a manufacturing method of a graphite material for a lithium ion secondary battery negative electrode in which a graphite material, that has a specific graphite structure obtained by graphitization of the carbon material under the presence of a boron compound and contains B4 C, is (B) heated at the temperature of 1,800 deg.C or more. (2), Further, (C) it is heated at the temperature of 500-900 deg.C in the presence of oxygen gas atmosphere, or (C)' heated at the temperature of 2,000 deg.C or more under reduced pressure. (3) As an alternative method, (i) the graphitization process is carried out in argon atmosphere, and (ii) the carbon material that is graphitized is a milled carbon fiber using the mesophase pitch as a base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素化合物(ホ
ウ素単体も含む)の存在下で黒鉛化処理して得られるリ
チウム二次電池負極材用黒鉛材の改良技術に関する。更
に、本発明は、ホウ素化合物の存在下に黒鉛化処理され
た従来の黒鉛材料に比べて、特定の後処理を施すことに
より高い放電容量と充放電効率が安定して得られるリチ
ウム二次電池負極材用黒鉛材の製造方法に特徴を有す
る。
TECHNICAL FIELD The present invention relates to an improved technique for a graphite material for a negative electrode material of a lithium secondary battery, which is obtained by a graphitization treatment in the presence of a boron compound (including a simple substance of boron). Furthermore, the present invention is a lithium secondary battery in which high discharge capacity and charge / discharge efficiency are stably obtained by performing a specific post-treatment as compared with a conventional graphite material graphitized in the presence of a boron compound. It is characterized by the method for producing the graphite material for the negative electrode material.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。従って、このような
非水電解液リチウム二次電池は、携帯用電子機器電源を
はじめとして、電気自動車、電力貯蔵用などの高性能電
池としての実用化が期待されている。このリチウム二次
電池の負極材として、炭素材或いは黒鉛材を利用するこ
とが検討されている。
2. Description of the Related Art Generally, a secondary battery using an alkali metal such as lithium as a negative electrode active material has a high energy density and a high electromotive force, and since it uses a non-aqueous electrolyte, it has a wide operating temperature range and a long operating time. It has many advantages such as excellent storage and light weight and small size. Therefore, such a non-aqueous electrolyte lithium secondary battery is expected to be put to practical use as a high-performance battery for power supplies for portable electronic devices, electric vehicles, and power storage. The use of a carbon material or a graphite material as the negative electrode material of this lithium secondary battery has been studied.

【0003】例えば、炭素材としては、石炭、コーク
ス、PAN系炭素繊維、等方性ピッチ系炭素繊維等が検
討されている。ところが、これら炭素材は黒鉛結晶子の
大きさが小さく結晶の配列も乱れているため、充放電容
量が不十分であり、充放電時の電流密度を高く設定する
と電解液の分解を生じ、サイクル寿命が低下するなど多
くの問題点を有していた。また、現在、天然黒鉛、上記
炭素材等を黒鉛化処理した人造黒鉛などの黒鉛材料がリ
チウムイオン二次電池負極材として注目され、検討され
ている。天然黒鉛にあっては、黒鉛化度が高い場合に、
単位重量当たりの充放電可能容量は相当に大きいが、無
理なく取出せる電流密度が小さく、また高電流密度での
充放電を行うと充放電効率が低下するという問題があっ
た。
For example, as the carbon material, coal, coke, PAN-based carbon fiber, isotropic pitch-based carbon fiber and the like have been studied. However, since the size of graphite crystallites of these carbon materials is small and the arrangement of crystals is disordered, the charge / discharge capacity is insufficient, and when the current density during charge / discharge is set high, decomposition of the electrolytic solution occurs and the cycle It had many problems such as a shortened life. At present, graphite materials such as natural graphite and artificial graphite obtained by subjecting the above carbon materials to graphitization are attracting attention and studied as negative electrode materials for lithium ion secondary batteries. With natural graphite, if the degree of graphitization is high,
Although the chargeable / dischargeable capacity per unit weight is considerably large, there is a problem that the current density that can be taken out reasonably is small, and that charging / discharging at a high current density lowers the charge / discharge efficiency.

【0004】また、従来の人造黒鉛を用いた負極では、
黒鉛化度を高めることにより、全体としての黒鉛層間の
容量が向上し、充放電容量も向上させることができる。
このような黒鉛材料として、なかでも、特開平6−16
8725号公報に開示されているように、メソフェーズ
ピッチを出発原料とした炭素繊維を黒鉛化処理したもの
が、諸電池特性の測定結果から良好であったことが指摘
されている。しかしながらこれらの人造黒鉛において
も、やはり充放電容量、充放電効率などにおいて十分満
足のゆく材料は得られていない。
Further, in the conventional negative electrode using artificial graphite,
By increasing the degree of graphitization, the capacity between the graphite layers as a whole can be improved, and the charge / discharge capacity can also be improved.
As such a graphite material, among others, JP-A-6-16
As disclosed in Japanese Patent No. 8725, it is pointed out that carbon fiber obtained by graphitizing carbon fiber using mesophase pitch as a starting material was favorable from measurement results of various battery characteristics. However, even with these artificial graphites, no material having satisfactory charge / discharge capacity and charge / discharge efficiency has been obtained.

【0005】また、ホウ素を使用する試みも行われてい
る。例えば、特開平3−245458号公報は、フルフ
リルアルコール−無水マレイン酸共重合体或いはポリア
ミド系繊維を1200℃程度の低温焼成して得られかつ
0.1〜2.0重量%のホウ素を含有する炭素材又は炭
素繊維をリチウム二次電池の負極材として使用すること
を提案している。この場合に、残留ホウ素の増加によっ
ても充放電容量の増加は十分でなく、特に電池電圧の点
では何の改善も示していない。特開平5−251080
号公報には、天然黒鉛にH3BO3等を添加し1000℃
で焼成した炭素材がリチウムイオンを取り込み易くな
り、負極材として電池性能を向上することから最大10
重量%までホウ素を添加することが開示されているが、
その機構については何等解明されていない。
Attempts have also been made to use boron. For example, JP-A-3-245458 discloses a furfuryl alcohol-maleic anhydride copolymer or a polyamide-based fiber obtained by low-temperature firing at about 1200 ° C. and containing 0.1 to 2.0% by weight of boron. It has been proposed to use a carbon material or carbon fiber as a negative electrode material for a lithium secondary battery. In this case, even if the residual boron is increased, the charging / discharging capacity is not sufficiently increased, and in particular, no improvement is shown in the battery voltage. JP-A-5-251080
The JP, was added H 3 BO 3 and the like natural graphite 1000 ° C.
Since the carbon material fired at 3 becomes easy to take in lithium ions and improves the battery performance as a negative electrode material, a maximum of 10
Although it is disclosed to add boron up to wt%,
The mechanism has not been elucidated at all.

【0006】更に、特開平9−63584号公報、特開
平9−63585号公報において、ホウ素化合物の存在
下で黒鉛化処理して得られた、充放電容量が大きく、高
エネルギー密度を有し、充放電サイクル特性に優れた特
徴を持つリチウム系二次電池用黒鉛材が提案されてい
る。また、特開平8−31422号公報にも、ホウ素化
合物の存在下で黒鉛化処理することに関する同様の技術
が開示されている。しかしながら、ホウ素化合物の存在
下で黒鉛化処理を行った黒鉛材料は、充放電容量はある
程度向上するものの、黒鉛の理論容量(372mAh/
g)に対して十分高い値とは言えず、また充放電効率な
どの面において必ずしも期待されるほどの向上が見られ
ず、より一層の性能向上が望まれている。また、ホウ素
存在下での黒鉛化処理を窒素雰囲気下で行うと、黒鉛材
表面にホウ素が窒化ホウ素の形で取り込まれ、この窒化
ホウ素の存在が、電池容量の向上を阻害させるという問
題点も生じていた。
Further, in JP-A-9-63584 and JP-A-9-63585, the charge-discharge capacity is high and the energy density is high, which is obtained by graphitizing in the presence of a boron compound. Graphite materials for lithium-based secondary batteries, which have excellent charge / discharge cycle characteristics, have been proposed. Further, JP-A-8-31422 also discloses a similar technique relating to graphitization treatment in the presence of a boron compound. However, the graphite material that has been graphitized in the presence of a boron compound has some improvement in charge / discharge capacity, but the theoretical capacity of graphite (372 mAh /
It cannot be said that the value is sufficiently high with respect to g), and the expected improvement in terms of charge / discharge efficiency and the like is not necessarily observed, and further improvement in performance is desired. In addition, when the graphitization treatment in the presence of boron is performed in a nitrogen atmosphere, boron is taken into the surface of the graphite material in the form of boron nitride, and the presence of this boron nitride hinders improvement in battery capacity. It was happening.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記のような
従来の課題を解決し、ホウ素化合物の存在下で黒鉛化処
理して得られる黒鉛材料の性能の向上のため、黒鉛化度
を向上させて充放電容量を向上させるとともに、特定の
後処理を施すことにより充放電効率の面でも優れた特性
を示すリチウムイオン二次電池負極用黒鉛材料の製造方
法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and improves the graphitization degree for improving the performance of a graphite material obtained by graphitizing in the presence of a boron compound. An object of the present invention is to provide a method for producing a graphite material for a negative electrode of a lithium ion secondary battery, which exhibits excellent characteristics in terms of charge / discharge efficiency by performing a specific post-treatment while improving the charge / discharge capacity.

【0008】[0008]

【課題を解決するための手段】本発明者らは、炭素材を
ホウ素化合物の存在下で黒鉛化処理して得られる黒鉛材
料の黒鉛化度を更に向上させて充放電容量を従来にも増
して向上させると共に、優れた充放電効率を達成するた
めに鋭意検討を行った結果、黒鉛化処理後に再度特定の
後処理を施すことが有効であることを見出し、本発明を
完成するに至った。即ち、本発明は: (A) 炭素材をホウ素化合物の存在下で黒鉛化処理
して得られ、X線回折による黒鉛層間距離(d002)が
0.338nm以下、(101)回折ピークの強度と
(100)回折ピークの強度の比(P101/P100)が
2.0以上であって且つB4Cを含有する黒鉛材料を、
(B) 1,800℃以上の温度で熱処理する、リチウムイ
オン二次電池負極用黒鉛材料の製造方法を提供する。ま
た、 (C) 更に、酸素ガス存在雰囲気下で500℃以上9
00℃以下の温度で熱処理する点にも特徴を有する。ま
た、 (C) ’更に、減圧下で2,000℃以上の温度で熱
処理する点にも特徴を有する。また、
The present inventors have further improved the graphitization degree of a graphite material obtained by subjecting a carbon material to a graphitization treatment in the presence of a boron compound to increase the charge / discharge capacity as compared with the conventional case. As a result of intensive studies to achieve excellent charge-discharge efficiency, it was found that it is effective to perform a specific post-treatment again after the graphitization treatment, and the present invention has been completed. . That is, the present invention: (A) A carbon material is obtained by graphitizing in the presence of a boron compound, and the graphite interlayer distance (d 002 ) by X-ray diffraction is 0.338 nm or less, and the intensity of the (101) diffraction peak is: And a graphite material having a (100) diffraction peak intensity ratio (P 101 / P 100 ) of 2.0 or more and containing B 4 C,
(B) A method for producing a graphite material for a negative electrode of a lithium ion secondary battery, which comprises heat treatment at a temperature of 1,800 ° C. or higher. Further, (C) Furthermore, in an atmosphere in which oxygen gas is present, 500 ° C or higher 9
It is also characterized in that it is heat-treated at a temperature of 00 ° C or lower. Further, (C) 'is further characterized in that it is heat-treated at a temperature of 2,000 ° C or higher under reduced pressure. Also,

【0009】 炭素材のホウ素化合物存在下での黒鉛
化処理が、アルゴン雰囲気中で行う点にも特徴を有す
る。また、 (A) ホウ素化合物存在下で黒鉛化処理される炭素材
が、メソフェーズピッチを原料とし且つミルド化した炭
素繊維である点にも特徴を有する。また、 〜のいずれかに記載の方法で得られる、リチウ
ムイオン二次電池負極用黒鉛材料を提供する。また、 記載の黒鉛材料を含んでなる、リチウムイオン二
次電池負極を提供する。また、 記載の負極を含んでなる、リチウムイオン二次電
池を提供する。
It is also characterized in that the graphitization treatment of the carbon material in the presence of the boron compound is performed in an argon atmosphere. It is also characterized in that (A) the carbon material that is graphitized in the presence of the boron compound is a carbon fiber obtained by milling mesophase pitch as a raw material. Moreover, the graphite material for lithium ion secondary battery negative electrodes obtained by the method in any one of is provided. Also provided is a lithium ion secondary battery negative electrode comprising the graphite material described above. Also provided is a lithium ion secondary battery comprising the negative electrode described above.

【0010】以下、本発明を具体的に説明する。 (1) 黒鉛化処理される材料 本発明における、ホウ素化合物の存在下で黒鉛化処理さ
れる炭素材としては、熱処理により黒鉛構造が発達する
ものであれば特に限定されるものではなく、また、形状
も繊維状、ミルド繊維状、ペーパー状、及びフィルム状
の炭素材やメソカーボンマイクロビーズのような球状の
炭素材等種々の形状のものを使用することができる。特
に、本発明では、メソフェーズピッチを原料とし、常法
により紡糸、不融化し、さらにそのまま或いは1,50
0℃以下の温度で軽度に炭化した後にミルド化した炭素
繊維(本発明では、炭素繊維ミルドと称することがあ
る)が好ましく使用される。該メソフェーズピッチ系炭
素繊維は、易黒鉛化性であり、また黒鉛材料としての電
池特性が優れており、さらに繊維長を短く、即ちミルド
化することで繊維断面の割合を大きくし、リチウムイオ
ンの出入りを行い易くすることができ、かつ、電極の充
填密度も高くできるなどの利点がある。
The present invention will be described in detail below. (1) Material to be graphitized In the present invention, the carbon material to be graphitized in the presence of the boron compound is not particularly limited as long as the graphite structure is developed by heat treatment, Various shapes such as fibrous, milled fibrous, paper-like, and film-like carbon materials and spherical carbon materials such as mesocarbon microbeads can be used. In particular, in the present invention, mesophase pitch is used as a raw material, spun and infusibilized by a conventional method, and as it is or 1,50
Carbon fibers that have been mildly carbonized at a temperature of 0 ° C. or less and then milled (in the present invention, sometimes referred to as carbon fiber milled) are preferably used. The mesophase pitch-based carbon fiber is easily graphitizable and has excellent battery characteristics as a graphite material. Further, the fiber length is short, that is, by milling, the proportion of the fiber cross section is increased to increase the lithium ion content. There are advantages that it is possible to easily move in and out, and the packing density of the electrodes can be increased.

【0011】(2) 炭素繊維ミルドの製造 本発明に好ましく使用される炭素繊維ミルドの好適な製
造方法の例を以下に説明する。 (i) 原料 ・本発明に用いる炭素繊維用原料としては、任意の易黒
鉛化質の炭化水素を使用することができる。例えば、ナ
フタレン、フェナントレン等の縮合多環炭化水素化合物
や石油、石炭系ピッチ等の縮合複素環化合物等を挙げる
ことができる。特に、石油、石炭系ピッチの使用、好ま
しくは光学的異方性ピッチ,即ちメソフェーズピッチを
用いることが良い。このメソフェーズピッチとしてはメ
ソフェーズ含有量100%のものが好ましいが、紡糸可
能ならば特に限定されるものでない。 ・原料ピッチの軟化点も、特に限定されるものではない
が、前記紡糸温度との関係から、軟化点が低くまた不融
化反応速度の速いものが、製造コスト及び安定性の面で
有利である。このことにより、原料ピッチの軟化点は2
30℃以上350℃以下、好ましくは250℃以上31
0℃以下である。
(2) Production of Carbon Fiber Milled An example of a suitable production method of the carbon fiber milled material preferably used in the present invention will be described below. (i) Raw Material As the carbon fiber raw material used in the present invention, any easily graphitizable hydrocarbon can be used. Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum and coal pitch. In particular, it is preferable to use petroleum or coal pitch, preferably optically anisotropic pitch, that is, mesophase pitch. The mesophase pitch is preferably a mesophase content of 100%, but is not particularly limited as long as spinning is possible. The softening point of the raw material pitch is also not particularly limited, but one having a low softening point and a high infusibilization reaction rate is advantageous in terms of production cost and stability in view of the relationship with the spinning temperature. . As a result, the softening point of the raw material pitch is 2
30 ° C or higher and 350 ° C or lower, preferably 250 ° C or higher and 31
It is 0 ° C or lower.

【0012】(ii)炭素繊維ミルドの製造 上記原料を常法により紡糸、不融化し、さらにそのまま
或いは軽度炭化処理した後にミルド化する。 (イ) 紡糸等 ・炭素繊維用原料、特にピッチ原料を溶融紡糸する方法
としては、特に限定されるものではなく、メルトスピニ
ング、メルトブロー、遠心紡糸、過流紡糸等種々の方法
を使用することが出来るが、紡糸時の生産性や得られる
繊維の品質の観点から、メルトブロー法が好ましい。 ・メルトブロー時の紡糸孔の大きさは、0.1mmφ以
上0.5mmφ以下、好ましくは0.15mmφ以上
0.3mmφ以下である。紡糸孔の大きさが0.5mm
φを越えると、繊維径が25μm以上と大きくなり易
く、かつ繊維径がバラツキ易く品質管理上好ましくな
い。紡糸孔の大きさが0.1mmφ未満では、紡糸時目
詰まりが生じ易く、また紡糸ノズルの製作が困難となり
好ましくない。 ・紡糸速度は、生産性の面から毎分500m以上、好ま
しくは毎分1500m以上、さらに好ましくは毎分20
00m以上である。 ・紡糸温度は、原料ピッチにより幾分変化するが、原料
ピッチの軟化点以上でピッチが変質しない温度以下であ
れば良く、通常300℃以上400℃以下、好ましくは
300℃以上380℃以下である。 ・また、好ましい紡糸法であるメルトブロー法は、数十
ポイズ以下の低粘度で紡糸し、かつ高速冷却することに
より、黒鉛層面が繊維軸に平行に配列し易くなる利点も
ある。
(Ii) Manufacture of carbon fiber milled The above raw materials are spun and infusibilized by a conventional method, and as they are or after mild carbonization treatment, they are milled. (B) Spinning, etc.The method for melt spinning the carbon fiber raw material, particularly the pitch raw material, is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and overflow spinning may be used. However, the melt-blowing method is preferable from the viewpoint of the productivity during spinning and the quality of the obtained fiber. The size of the spinning holes during meltblowing is 0.1 mmφ or more and 0.5 mmφ or less, and preferably 0.15 mmφ or more and 0.3 mmφ or less. Spindle hole size is 0.5 mm
If φ is exceeded, the fiber diameter tends to increase to 25 μm or more, and the fiber diameter tends to fluctuate, which is not preferable in quality control. If the size of the spinning hole is less than 0.1 mmφ, clogging during spinning tends to occur, and it is difficult to manufacture a spinning nozzle, which is not preferable. From the viewpoint of productivity, the spinning speed is 500 m / min or more, preferably 1500 m / min or more, more preferably 20 m / min.
It is more than 00m. The spinning temperature is somewhat changed depending on the raw material pitch, but may be a temperature below the softening point of the raw material pitch and at which the pitch does not change, and is usually 300 ° C or higher and 400 ° C or lower, preferably 300 ° C or higher and 380 ° C or lower. . The melt-blowing method, which is a preferable spinning method, has an advantage that the graphite layer surface can be easily arranged parallel to the fiber axis by spinning at a low viscosity of several tens poise or less and cooling at high speed.

【0013】(ロ) 不融化等 紡糸後のピッチ繊維は常法により不融化処理する。不融
化方法としては、例えば、二酸化窒素や酸素等の酸化性
ガス雰囲気中で加熱処理する方法や、硝酸やクロム酸等
の酸化性水溶液中で処理する方法、さらには、光やγ線
等により重合処理する方法等を使用することが可能であ
る。より簡便な不融化方法は、空気中で加熱処理する方
法であり、原料により若干異なるが平均昇温速度3℃/
分以上、好ましくは5℃/分以上で、350℃程度まで
昇温させながら加熱処理する。
(B) Infusibilization, etc. The pitch fiber after spinning is infusibilized by a conventional method. As the infusibilizing method, for example, a method of heat treatment in an atmosphere of an oxidizing gas such as nitrogen dioxide or oxygen, a method of treating in an oxidizing aqueous solution such as nitric acid or chromic acid, and further by light or γ rays It is possible to use a method of polymerizing. A simpler infusibilizing method is a method of heat treatment in air, which is slightly different depending on the raw material, but has an average heating rate of 3 ° C /
Heat treatment is performed for at least 5 minutes, preferably at 5 ° C./minute or more, while raising the temperature to about 350 ° C.

【0014】(ハ) 繊維のミルド化方法 不融化処理した繊維を、次いでミルド化する。 ・この時、不融化処理した繊維を、1,500℃以下、
好ましくは250℃以上1,500℃以下、より好まし
くは500℃以上900℃以下の温度で、不活性ガス中
軽度に炭化した後、ミルド化することも可能である。従
って、このような温度で軽度に炭化しミルド化すると、
ミルド化後の繊維の縦割れが比較的に防げることと、ミ
ルド化時に新たに表面に露出した黒鉛層面がより高温で
の黒鉛化処理時に縮重合・環化反応が進み易くなる傾向
があり、その表面の活性度が低下し、電解液の分解を阻
止する効果があり有利である。1,500℃を越えた温
度での熱処理(炭化或いは黒鉛化)後のミルド化では、
繊維軸方向に発達した黒鉛層面に沿って開裂が発生し易
くなり、製造されたミルド化された炭素繊維の全表面積
中に占める破断面表面積の割合が大きくなり、破断黒鉛
層面における電子の極在化による電解液の分解が起こり
好ましくない。また、250℃未満の温度では炭化が殆
ど起こらず処理する効果がない。 ・不融化後または軽度な炭化後の繊維をミルド化するに
は、ビクトリーミル、ジェットミル、クロスフローミル
等を使用することが有効である。
(C) Milling Method of Fiber The infusibilized fiber is then milled. -At this time, the infusible treated fiber is 1,500 ° C or lower,
It is also possible to mildly carbonize in an inert gas at a temperature of preferably 250 ° C. or higher and 1,500 ° C. or lower, more preferably 500 ° C. or higher and 900 ° C. or lower, and then mill. Therefore, if mildly carbonized and milled at such temperatures,
Longitudinal cracking of the fiber after milling can be relatively prevented, and the graphite layer surface newly exposed on the surface during milling tends to facilitate the condensation polymerization / cyclization reaction during the graphitization treatment at a higher temperature, This is advantageous because the activity of the surface is lowered and the decomposition of the electrolytic solution is prevented. In the milling after heat treatment (carbonization or graphitization) at a temperature over 1,500 ° C,
Cleavage is likely to occur along the graphite layer surface developed in the fiber axis direction, the ratio of the fracture surface area to the total surface area of the manufactured milled carbon fiber is large, and the presence of electrons on the fracture graphite layer surface is high. It is not preferable because the electrolyte solution is decomposed due to oxidization. Further, at a temperature of less than 250 ° C., carbonization hardly occurs and there is no effect of treating. In order to mill the fibers after infusibilization or after slight carbonization, it is effective to use a Victory mill, a jet mill, a cross flow mill, or the like.

【0015】・本発明に適したミルド化を効率良く実施
するためには、上記各種方法に共通することであるが、
例えばプレートを取り付けたローターを高速に回転する
ことにより、繊維軸に対し直角方向に繊維を寸断する方
法が適切である。 ・ミルド化された繊維の繊維長は、ローターの回転数、
プレートの角度及びローターの周辺に取り付けられたフ
ィルターの目の大きさ等を調整することによりコントロ
ールすることが可能である。 ・該ミルド化には、ヘンシェルミキサー、ボールミル、
磨潰機等による方法もあるが、これらの方法によると繊
維の直角方向への加圧力が働き、繊維軸方向への縦割れ
の発生が多くなり好ましくない。また、これらの方法は
ミルド化に長時間を要し、適切なミルド化方法とは言い
難い。
In order to efficiently carry out the milling suitable for the present invention, it is common to the above various methods.
For example, it is suitable to cut the fibers in a direction perpendicular to the fiber axis by rotating the rotor having the plate attached thereto at a high speed. -The fiber length of the milled fiber is the number of rotations of the rotor,
It is possible to control by adjusting the angle of the plate and the size of the mesh of the filter attached around the rotor. -For the milling, a Henschel mixer, a ball mill,
Although there are methods using a grinder or the like, these methods are not preferable because a pressure force in the direction perpendicular to the fiber acts and vertical cracks occur in the axial direction of the fiber. Further, these methods require a long time for milling, and it is difficult to say that they are suitable milling methods.

【0016】(ニ)炭素繊維ミルドの粒径等 ・また、繊維をいたずらに微粉化すると、逆に活性な黒
鉛層が露出し電解液と反応するために容量低下等のデメ
リットが発生することに注意を要する。 ・このため、一般に、リチウム二次電池用電極材として
用いられる炭素繊維ミルドの平均粒径は10〜50μ
m、好ましくは12〜30μmの範囲である。平均粒径
が10μm未満の場合は、活性な表面がいたずらに多く
なり電解液の分解が激しくなり、初期充放電効率が小さ
く、サイクル劣化も激しくなる。一方、50μmより大
きい場合は、電極の嵩密度が低くなり容積当りのエネル
ギー密度が小さくなり好ましくない。また、短絡の観点
からも好ましくない。 ・上記平均粒径は、レーザー回折方式による粒度分布か
ら算出する。
(D) Particle diameter of carbon fiber milled, etc. Also, if the fibers are mischievously pulverized, on the contrary, the active graphite layer is exposed and reacts with the electrolytic solution, which causes disadvantages such as capacity reduction. Be careful. -For this reason, the average particle diameter of carbon fiber milled as an electrode material for lithium secondary batteries is generally 10 to 50 μm.
m, preferably 12 to 30 μm. When the average particle size is less than 10 μm, the number of active surfaces becomes unnecessarily large, the decomposition of the electrolytic solution becomes severe, the initial charge / discharge efficiency becomes small, and the cycle deterioration becomes severe. On the other hand, when it is larger than 50 μm, the bulk density of the electrode is low and the energy density per volume is low, which is not preferable. It is also not preferable from the viewpoint of short circuit. -The above average particle size is calculated from the particle size distribution by the laser diffraction method.

【0017】・また、本発明の炭素繊維ミルドのアスペ
クト比(炭素繊維ミルドの直径に対する長さの比)が1
以上30以下、好ましくは1以上20以下であることが
望ましい。アスペクト比が30を越えると、即ち、繊維
長の比較的長い炭素繊維ミルドを用いると嵩密度が低く
なり容積当りのエネルギー密度が小さくなり、且つ正、
負極の短絡の原因ともなり好ましくない。また、アスペ
クト比が1未満になると、繊維軸方向への縦割れを生じ
る繊維が多くなり好ましくない。 ・上記アスペクト比は、得られた炭素繊維ミルドを抜き
取り個数100個の値の平均値で示す。 ・上記平均粒径とアスペクト比の観点から、ミルド化前
の繊維径としては、ミルド化時、及び黒鉛化処理時の体
積減少も考慮し、4μm以上25μm以下、好ましくは
4μm以上18μm以下が望ましい。
The aspect ratio (ratio of length to diameter of carbon fiber mill) of the carbon fiber mill of the present invention is 1
It is desirable to be 30 or more and preferably 1 or more and 20 or less. If the aspect ratio exceeds 30, that is, if a carbon fiber milled with a relatively long fiber length is used, the bulk density becomes low, the energy density per volume becomes low, and
It is not preferable because it may cause a short circuit of the negative electrode. Further, if the aspect ratio is less than 1, many fibers are longitudinally cracked in the fiber axis direction, which is not preferable. -The above-mentioned aspect ratio shows the average value of the value of 100 pieces of the carbon fiber milled obtained. From the viewpoint of the average particle diameter and the aspect ratio, the fiber diameter before milling is preferably 4 μm or more and 25 μm or less, and more preferably 4 μm or more and 18 μm or less, in consideration of volume reduction during milling and graphitization. .

【0018】(3) 黒鉛化処理 本発明の黒鉛化は、ホウ素化合物の存在下で2200℃
以上の高温で黒鉛化処理することにより、高度な黒鉛構
造〔X線回折によるピーク強度比(P101/P1 00)が
2.0以上〕を生成させる点に大きな特長がある。前述
の方法により不融化後或いは1,500℃以下の温度で
軽度な炭化処理後にミルド化された炭素繊維ミルドに、
ホウ素化合物を添加し、黒鉛化処理する。 (イ)ホウ素化合物の添加 ・ホウ素化合物の添加は、通常、固形のホウ素化合物を
直接添加し必要に応じ均一に混合する方法及びホウ素化
合物を溶媒溶液とし浸漬する方法等が採用されるが、特
に制限されるものではない。また、原料ピッチの段階で
ホウ素化合物を添加することも十分可能である。 ・ホウ素化合物の添加量は、黒鉛化処理される材料に対
しホウ素として15重量%以下、好ましくは、2〜15
重量%であり、更に好ましくは3重量%〜10重量%で
ある。2重量%未満では所望する十分に高い黒鉛化度を
得られない場合があり好ましくない。また、15重量%
を越えるとコストに対しての効果が低下する。また、黒
鉛化後の黒鉛材中のホウ素残存量が増加し黒鉛材同士が
固着する等の問題を生じ好ましくない。
(3) Graphitization Treatment The graphitization of the present invention is conducted at 2200 ° C. in the presence of a boron compound.
By treatment graphitized at a temperature higher than, there is a great feature in that to produce a high graphite structure [peak intensity ratio by X-ray diffraction (P 101 / P 1 00) of 2.0 or more]. After infusibilization by the above method or after mild carbonization treatment at a temperature of 1,500 ° C. or less, to a carbon fiber milled,
A boron compound is added and graphitized. (A) Addition of boron compound-The addition of a boron compound is usually performed by a method of directly adding a solid boron compound and uniformly mixing when necessary, and a method of immersing the boron compound in a solvent solution, and the like. It is not limited. It is also possible to add the boron compound at the stage of the raw material pitch. The amount of the boron compound added is 15% by weight or less, preferably 2 to 15 as boron with respect to the material to be graphitized.
%, And more preferably 3% to 10% by weight. If it is less than 2% by weight, the desired sufficiently high graphitization degree may not be obtained, which is not preferable. Also, 15% by weight
If it exceeds, the effect on the cost decreases. In addition, the amount of residual boron in the graphite material after graphitization increases, and the graphite materials stick to each other, which is undesirable.

【0019】・ホウ素化合物としては、ホウ素単体の他
に、炭化ホウ素(B4C)、塩化ホウ素、ホウ酸、酸化
ホウ素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸
銅、ホウ酸ニッケル等が挙げられる。 ・溶媒溶液とするための溶媒としては、例えば水、メタ
ノール、グリセリン、アセトン等が挙げられ、使用する
ホウ素化合物に合わせて適宜選択すればよい。 ・また、固形で使用する際は、炭素繊維ミルド等と均一
に混合するために平均粒径を500μm以下、好ましく
は200μm以下、より好ましくは1.5μm以上15
0μm以下のホウ素化合物として使用するのがよい。
Examples of boron compounds include boron carbide (B 4 C), boron chloride, boric acid, boron oxide, sodium borate, potassium borate, copper borate, nickel borate, and the like, in addition to elemental boron. To be -The solvent for forming the solvent solution includes, for example, water, methanol, glycerin, acetone, etc., and may be appropriately selected according to the boron compound used. When it is used as a solid, it has an average particle size of 500 μm or less, preferably 200 μm or less, more preferably 1.5 μm or more 15 in order to uniformly mix with carbon fiber milled etc.
It is preferably used as a boron compound having a particle size of 0 μm or less.

【0020】(ロ)黒鉛化条件 ・本発明では、ミルド化された炭素繊維等を高度に黒鉛
化させることが重要であり、このためには、ホウ素化合
物の存在下で2,200℃以上、好ましくは2,400
℃以上の温度で黒鉛化処理をする必要がある。 ・ホウ素化合物の作用の原理は不明であるが、ホウ素化
合物の融点(ホウ素の融点は2,080℃、炭化ホウ素
の融点は2,450℃)近辺の温度から、黒鉛化をより
促進させる効果(即ち、黒鉛化触媒効果)、及び電池負
極材とした時の充放電容量を増加させる等の効果が得ら
れている。 ・黒鉛化処理は、通常行われる黒鉛化処理方法が用いら
れ、特には限定されない。例えば、大気雰囲気下で黒鉛
化処理を行う、いわゆるアチソンタイプ炉なども使用可
能である。 ・本発明においては、好ましくは窒素を含まない不活性
雰囲気、例えばアルゴンガス雰囲気下で黒鉛化処理する
ことが望ましい。アルゴンガス雰囲気下などで黒鉛化処
理することにより、処理後の黒鉛材料の表面に負極特性
に悪影響を与えるホウ素の窒素化合物を実質的に生成さ
せることなく、また、その窒素化合物による材料同士の
固着を防ぐことにより、ホウ素化合物を高添加して黒鉛
化処理を行うことができ、好ましい。
(B) Graphitizing conditions: In the present invention, it is important to highly graphitize the milled carbon fiber and the like. For this purpose, in the presence of a boron compound, at 2,200 ° C. or higher, Preferably 2,400
It is necessary to perform graphitization at a temperature of ℃ or more. Although the principle of action of the boron compound is unknown, the effect of further promoting graphitization from a temperature in the vicinity of the melting point of the boron compound (the melting point of boron is 2,080 ° C, the melting point of boron carbide is 2,450 ° C) ( That is, a graphitization catalyst effect) and an effect of increasing charge / discharge capacity when used as a battery negative electrode material are obtained. -For the graphitization treatment, a commonly used graphitization treatment method is used and is not particularly limited. For example, a so-called Acheson type furnace, which performs graphitization in an air atmosphere, can be used. -In the present invention, it is desirable to perform the graphitization treatment in an inert atmosphere preferably containing no nitrogen, for example, an argon gas atmosphere. By graphitizing in an argon gas atmosphere, etc., the nitrogen compound of boron, which has a negative effect on the negative electrode characteristics, is not substantially generated on the surface of the graphite material after the treatment, and the materials adhere to each other due to the nitrogen compound. By preventing the above, it is possible to add a high amount of a boron compound and perform graphitization treatment, which is preferable.

【0021】(4) 黒鉛材料の後処理 ・前記の方法により、(A) 炭素材をホウ素化合物の存在
下で黒鉛化処理することにより、X線回折による黒鉛層
間距離(d002)が0.338nm、(101)回折ピ
ークの強度と(100)回折ピークの強度の比(P101
/P100)が2.0以上である、高い黒鉛化度を有する
黒鉛材料が得られる。しかしながら、このようにして得
られた黒鉛材料は、黒鉛化度が高い割には、期待される
程の充放電容量を発現しないことが分かった。この原因
について検討した結果、該黒鉛材料は、黒鉛化処理後に
炭化ホウ素(B4C)を含有しており、この炭化ホウ素
が負極特性を阻害していることが考えられた。このた
め、黒鉛材料中から効率的に炭化ホウ素を取り除き、高
い黒鉛化度から期待される性能を発揮させる方法につき
種々検討した結果、(B) 更に1,800℃以上で熱処理
を行うか、必要なら、次いで(C) 酸化性ガス含有雰囲気
で特定の比較的低温で熱処理を行うか或いは、(C) ’減
圧下に2,000℃以上の温度で熱処理を行うことによ
り、負極の性能が向上することを見出した。
(4) Post-Treatment of Graphite Material By the above-mentioned method, the graphite material (A) is graphitized in the presence of a boron compound, whereby the graphite interlayer distance (d 002 ) by X-ray diffraction is 0. 338 nm, the ratio of the intensity of the (101) diffraction peak and the intensity of the (100) diffraction peak (P 101
/ P 100) is 2.0 or more, graphite material having a high degree of graphitization are obtained. However, it has been found that the graphite material thus obtained does not exhibit the expected charge / discharge capacity despite the high degree of graphitization. As a result of investigating the cause, it was considered that the graphite material contains boron carbide (B 4 C) after the graphitization treatment, and the boron carbide inhibits the negative electrode characteristics. Therefore, as a result of various studies on methods for efficiently removing boron carbide from the graphite material and exhibiting the performance expected from the high degree of graphitization, (B) further heat treatment at 1,800 ° C or higher is required. Then, the performance of the negative electrode is improved by performing (C) heat treatment at a specified relatively low temperature in an atmosphere containing oxidizing gas, or (C) 'heat treatment at a temperature of 2,000 ° C or higher under reduced pressure. I found that

【0022】次に、これらの処理条件について説明す
る。 (i) 熱処理(B) 上記のように黒鉛化処理された黒鉛材料に対して、窒素
ガス雰囲気下、或いはアルゴンガス雰囲気下で更に1,
800℃以上で熱処理を行う。また、いわゆるアチソン
タイプ炉による熱処理も可能である。 ・熱処理温度は、黒鉛材料中に残存した炭化ホウ素を除
去できる温度であれば特に限定されないが、通常は1,
800℃以上の温度で行い、好ましくは2,100℃以
上が望ましい。 ・また、窒素ガス含有雰囲気下で熱処理する場合は、熱
処理中に黒鉛材料の表面に窒化ホウ素が形成されて負極
特性を阻害するので、その後減圧処理をしない場合は窒
化ホウ素が揮散する温度である3000℃以上で行うこ
とが望ましい。 ・熱処理時間としては、黒鉛材料中に炭化ホウ素が残存
しなくなる時間であれば特に限定されないが、通常は3
0分以上、好ましくは60分以上行う。この熱処理を行
うことにより、黒鉛材料中の炭化ホウ素を殆ど取り除く
ことができる。
Next, these processing conditions will be described. (i) Heat treatment (B) The graphite material graphitized as described above is further subjected to a nitrogen gas atmosphere or an argon gas atmosphere for further 1,
Heat treatment is performed at 800 ° C. or higher. Further, heat treatment using a so-called Acheson type furnace is also possible. The heat treatment temperature is not particularly limited as long as it is a temperature at which the boron carbide remaining in the graphite material can be removed.
It is carried out at a temperature of 800 ° C. or higher, preferably 2,100 ° C. or higher. When the heat treatment is performed in a nitrogen gas-containing atmosphere, boron nitride is formed on the surface of the graphite material during the heat treatment to impair the negative electrode characteristics. It is desirable to carry out at 3000 ° C. or higher. The heat treatment time is not particularly limited as long as boron carbide does not remain in the graphite material, but is usually 3
It is carried out for 0 minutes or longer, preferably 60 minutes or longer. By performing this heat treatment, most of the boron carbide in the graphite material can be removed.

【0023】(ii) 低温熱処理(C) 上記の熱処理を行って得られた黒鉛材料に、次いで酸素
ガス存在雰囲気下に比較的低温で熱処理を行うことが良
い。酸素ガスが存在する雰囲気であれば、酸素の濃度な
どは特に限定されないが、通常酸素濃度は5容量%以
上、好ましくは10容量%以上である。より簡便な方法
としては、空気中で熱処理する方法が挙げられる。熱処
理温度としては、通常500℃以上900℃以下の温度
で行うことが好ましく、更に好ましくは600℃以上8
00℃以下で、20分〜5時間、好ましくは30分〜3
時間行う。500℃未満の温度では本発明の効果が得ら
れない場合があり好ましくない。900℃を超える温度
では、黒鉛材料の酸化減少が促進するため好ましくな
い。このような低温熱処理を行うことにより、黒鉛材料
の比表面積を増大させリチウムイオンの出入りを容易に
することができ、黒鉛材料の黒鉛化度から期待される高
い充放電容量を発現するとともに、充放電効率も高いも
のとなる。
(Ii) Low temperature heat treatment (C) It is preferable that the graphite material obtained by the above heat treatment is then heat treated at a relatively low temperature in an atmosphere containing oxygen gas. The oxygen concentration is not particularly limited as long as it is an atmosphere containing oxygen gas, but the oxygen concentration is usually 5% by volume or more, preferably 10% by volume or more. A simpler method is a method of heat treatment in air. The heat treatment temperature is preferably 500 ° C. or higher and 900 ° C. or lower, more preferably 600 ° C. or higher 8
20 minutes to 5 hours, preferably 30 minutes to 3 at 00 ° C or lower
Do on time. If the temperature is lower than 500 ° C, the effect of the present invention may not be obtained, which is not preferable. A temperature above 900 ° C. is not preferable because the oxidation reduction of the graphite material is promoted. By carrying out such low temperature heat treatment, it is possible to increase the specific surface area of the graphite material and facilitate the entry and exit of lithium ions, and to develop the high charge / discharge capacity expected from the graphitization degree of the graphite material, The discharge efficiency is also high.

【0024】(iii) 減圧熱処理(C) ’ 本発明におけるもう一つの方法としては、上記(i)の
熱処理の後に、次いで減圧下に比較的高温で熱処理を行
うことが良い。減圧下での熱処理条件としては、10t
orr以下、好ましくは1torr以下の減圧下で;
2,000℃以上、好ましくは2,200℃以上、より
好ましくは2,300℃以上2,500℃以下である。
熱処理時間は減圧の程度と熱処理温度等との関数である
ので、一義的に決めることができないが、通常30分以
上、好ましくは30分〜20時間程度保持することが望
ましい。この場合、減圧度は高いほど、熱処理温度は高
いほど黒鉛材料中に残留したホウ素化合物が昇華等によ
り除去され易く、10torrを越える圧力下や、20
00℃未満の熱処理温度では、ホウ素化合物の昇華等が
起き難く好ましくない。また、温度の上限は特に制限さ
れないが、コスト面と黒鉛材料の物性面から、黒鉛化の
熱処理温度以下とすることが好ましい。
(Iii) Heat treatment under reduced pressure (C) 'As another method in the present invention, after the heat treatment of the above (i), heat treatment at a relatively high temperature under reduced pressure is preferably performed. Heat treatment conditions under reduced pressure include 10t
under reduced pressure of not more than orr, preferably not more than 1 torr;
The temperature is 2,000 ° C or higher, preferably 2,200 ° C or higher, more preferably 2,300 ° C or higher and 2,500 ° C or lower.
Since the heat treatment time is a function of the degree of depressurization and the heat treatment temperature, it cannot be unambiguously determined, but it is desirable to hold it for usually 30 minutes or longer, preferably 30 minutes to 20 hours. In this case, the higher the degree of pressure reduction and the higher the heat treatment temperature, the more easily the boron compound remaining in the graphite material is removed by sublimation or the like, and the pressure is higher than 10 torr or 20
A heat treatment temperature of less than 00 ° C. is not preferable because sublimation of the boron compound hardly occurs. Further, the upper limit of the temperature is not particularly limited, but it is preferable that the temperature is not higher than the heat treatment temperature for graphitization in view of cost and physical properties of the graphite material.

【0025】(5) リチウムイオン二次電池用負極材料 ・本発明により得られた黒鉛材料は、ポリエチレンやポ
リフッ化ビニリデンやポリテトラフルオロエチレン等の
バインダーを添加し、負極とするに好適な形状、例えば
シート又は板状に加圧ロール成形して得られる。 ・このようにして作られた負極は、単位体積当たりの容
量が大きく、電池の小型化に好適である。 ・また、本発明による黒鉛材料を負極に用い、リチウム
イオン二次電池を作成する場合には、電解液としてはリ
チウム塩を溶解し得るものであればよいが、特に非プロ
トン性の誘電率が大きい有機溶媒が好ましい。 ・上記有機溶媒としては、例えば、プロピレンカーボネ
ート、エチレンカーボネート、テトラヒドロフラン、2
−メチルテトラヒドロフラン、ジオキソラン、4−メチ
ル−ジオキソラン、アセトニトリル、ジメチルカーボネ
ート、メチルエチルカーボネート、ジエチルカーボネー
ト等を挙げることができる。これらの溶媒を単独あるい
は適宜混合して用いることが可能である。
(5) Negative Electrode Material for Lithium Ion Secondary Battery The graphite material obtained by the present invention has a shape suitable for forming a negative electrode by adding a binder such as polyethylene, polyvinylidene fluoride or polytetrafluoroethylene, For example, it is obtained by pressure roll forming into a sheet or plate. The negative electrode thus produced has a large capacity per unit volume and is suitable for downsizing of batteries. Further, when the graphite material according to the present invention is used for the negative electrode to prepare a lithium ion secondary battery, the electrolytic solution may be any one capable of dissolving a lithium salt, but particularly has an aprotic dielectric constant. Large organic solvents are preferred. Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2
-Methyltetrahydrofuran, dioxolane, 4-methyl-dioxolane, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like can be mentioned. These solvents can be used alone or in an appropriate mixture.

【0026】・電解質としては、安定なアニオンを生成
するリチウム塩、例えば、過塩素酸リチウム、ホウフッ
化リチウム、六塩化アンチモン酸リチウム、六フッ化リ
ン酸リチウム(LiPF6)等が好適である。 ・また、リチウムイオン二次電池の正極としては、例え
ば、酸化クロム、酸化チタン、酸化コバルト、五酸化バ
ナジウム等の金属酸化物や、リチウムマンガン酸化物
(LiMn24)、リチウムコバルト酸化物(LiCo
2)、リチウムニッケル酸化物(LiNiO2)等のリ
チウム金属酸化物;硫化チタン、硫化モリブデン等の遷
移金属のカルコゲン化合物;及びポリアセチレン、ポリ
パラフェニレン、ポリピロール等の導電性を有する共役
系高分子物質等を用いることが出来る。
As the electrolyte, a lithium salt which produces a stable anion, for example, lithium perchlorate, lithium borofluoride, lithium hexamonate antimonate, lithium hexafluorophosphate (LiPF 6 ) or the like is suitable. Further, as the positive electrode of the lithium ion secondary battery, for example, metal oxides such as chromium oxide, titanium oxide, cobalt oxide, vanadium pentoxide, lithium manganese oxide (LiMn 2 O 4 ), lithium cobalt oxide ( LiCo
O 2 ), lithium metal oxides such as lithium nickel oxide (LiNiO 2 ), chalcogen compounds of transition metals such as titanium sulfide and molybdenum sulfide, and conjugated polymer having conductivity such as polyacetylene, polyparaphenylene, polypyrrole A substance or the like can be used.

【0027】・これらの正極と負極との間に合成繊維製
又はガラス繊維製の不織布、織布やポリオレフィン系多
孔質膜、ポリテトラフルオロエチレンの不織布等のセパ
レータを設ける。 ・また、従来の電池と同様に集電体を使用することがで
きる。負極集電体としては、電極、電解液等に電気化学
的に不活性な導体、例えば銅、ニッケル、チタン、ステ
ンレス鋼などの金属を板、箔、棒の形態で使用できる。 ・本発明の二次電池は、前記セパレータ、集電体、ガス
ケット、封口板、ケース等の電池構成要素と本発明の特
定の負極を用い、常法に従って円筒型、角型或いはボタ
ン型等の形態のリチウムイオン二次電池に組立てること
ができる。
A separator made of synthetic fiber or glass fiber non-woven fabric, woven fabric, polyolefin-based porous membrane, polytetrafluoroethylene non-woven fabric, or the like is provided between the positive electrode and the negative electrode. -Also, a current collector can be used like a conventional battery. As the negative electrode current collector, a conductor that is electrochemically inactive in the electrode, the electrolytic solution, or the like, for example, a metal such as copper, nickel, titanium, or stainless steel can be used in the form of a plate, foil, or rod. -The secondary battery of the present invention uses a battery component such as the separator, current collector, gasket, sealing plate, and case, and a specific negative electrode of the present invention, and has a cylindrical shape, a rectangular shape, a button shape, or the like according to a conventional method. It can be assembled into a form of lithium-ion secondary battery.

【0028】[0028]

【作用】本発明のリチウムイオン二次電池用黒鉛材は、
(A) 炭素繊維ミルド等の炭素材料をホウ素化合物の存在
下黒鉛化処理し、(B) 熱処理を行うことにより、また必
要ならい、更に(C) 酸素ガス雰囲気下で500℃以上9
00℃以下の温度で熱処理するか、または(C) ’減圧下
に2,000℃以上の温度で熱処理することにより、充
放電容量が大きく、充放電効率に優れたリチウム二次電
池負極用黒鉛材が得られ、リチウムイオン二次電池用と
しての性能をより向上できる。
The graphite material for lithium ion secondary battery of the present invention is
(A) A carbon material such as carbon fiber milled is graphitized in the presence of a boron compound, and (B) heat-treated, if necessary, and further (C) in an oxygen gas atmosphere at a temperature of 500 ° C or higher 9
Graphite for negative electrode of lithium secondary battery, which has a large charge / discharge capacity and excellent charge / discharge efficiency by heat treatment at a temperature of 00 ° C or lower or (C) 'heat treatment at a temperature of 2,000 ° C or higher under reduced pressure The material can be obtained, and the performance for a lithium ion secondary battery can be further improved.

【0029】[0029]

【実施例】以下実施例により更に具体的に説明するが、
これらは本発明の範囲を制限するものではない。 (実施例1) <炭素繊維ミルドの製造>光学的に異方性で比重1.2
5の石油系メソフェーズピッチを原料として、幅3mm
のスリットの中に直径0.2mmφの紡糸孔を一列に5
00個有する口金を用い、スリットから加熱空気を噴出
させて、溶融ピッチを牽引して平均直径13μmのピッ
チ繊維を製造した。この時、紡糸温度は360℃、吐出
量は0.8g/H・分であった。紡糸された繊維を、補
修部分が20メッシュのステンレス製金網で出来たベル
トの背面から吸引しつつベルト上に捕集した。この捕集
したマットを空気中、室温から300℃まで平均昇温速
度6℃/分で昇温して不融化処理を行った。引続き、こ
の不融化糸を650℃で軽度に炭化処理した後、クロス
フローミルで粉砕し平均粒径18μmの炭素繊維ミルド
を得た。
EXAMPLES The present invention will be described in more detail with reference to the following examples.
These do not limit the scope of the invention. (Example 1) <Production of carbon fiber milled> Optically anisotropic and specific gravity of 1.2
Width 3 mm, using the petroleum mesophase pitch of No. 5 as the raw material
5 rows of spinning holes with a diameter of 0.2 mm in the slit
Using a spinneret having 00 pieces, heated air was ejected from the slit to pull the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C., and the discharge rate was 0.8 g / H · minute. The spun fiber was collected on the belt while suctioning from the back surface of the belt made of a stainless steel wire mesh having a repaired portion of 20 mesh. The collected mat was heated in the air from room temperature to 300 ° C. at an average temperature rising rate of 6 ° C./min for infusibilization treatment. Subsequently, this infusible yarn was lightly carbonized at 650 ° C. and then pulverized with a cross flow mill to obtain a carbon fiber mill having an average particle diameter of 18 μm.

【0030】<黒鉛化処理>上記で得られた炭素繊維ミ
ルドに平均粒径10μmの炭化ホウ素を5重量%添加
し、均一になるように撹拌混合した後、アルゴン雰囲気
下で3,000℃まで3℃/分の速度で昇温し、その温
度で10時間保持した。黒鉛化後の黒鉛化度をX線回折
で測定すると、黒鉛層間距離(d002)=0.3355
nm、C軸方向の結晶子の大きさ(Lc)=100nm
以上、a軸方向の結晶子の大きさ(La)=100nm
以上、(101)回折ピークと(100)回折ピークの
ピーク比(P101/P100)=2.4であった。更に、こ
の材料のX線回折の測定結果から、材料中に炭化ホウ素
が残存していることが確認できた。
<Graphitization> 5% by weight of boron carbide having an average particle diameter of 10 μm was added to the carbon fiber mill obtained above, and the mixture was stirred and mixed so as to be uniform and then heated to 3,000 ° C. in an argon atmosphere. The temperature was raised at a rate of 3 ° C./min, and the temperature was maintained for 10 hours. When the degree of graphitization after graphitization is measured by X-ray diffraction, the graphite interlayer distance (d 002 ) = 0.3355
nm, crystallite size in the C-axis direction (Lc) = 100 nm
As described above, the crystallite size in the a-axis direction (La) = 100 nm
As described above, the peak ratio (P 101 / P 100 ) of the (101) diffraction peak and the (100) diffraction peak was 2.4. Furthermore, from the measurement result of X-ray diffraction of this material, it was confirmed that boron carbide remained in the material.

【0031】<後処理>得られた黒鉛化炭素繊維ミルド
を、更に窒素雰囲気下で3,000℃で1時間熱処理を
行った。次いでこの熱処理した黒鉛化炭素繊維ミルド
を、空気中で700℃、90分間熱処理を行った。後処
理後の黒鉛化度をX線回折で測定すると、黒鉛層間距離
(d002)=0.3355nm、C軸方向の結晶子の
大きさ(Lc)=100nm以上、a軸方向の結晶子の
大きさ(La)=100nm以上、(101)回折ピー
クと(100)回折ピークのピーク比(P101/P1
00)=2.4であった。また、材料のX線回折の測定
結果から、炭化ホウ素は認められなかった。
<Post-Treatment> The obtained graphitized carbon fiber mill was further heat-treated at 3,000 ° C. for 1 hour in a nitrogen atmosphere. Next, this heat-treated graphitized carbon fiber mill was heat-treated in air at 700 ° C. for 90 minutes. When the degree of graphitization after the post-treatment is measured by X-ray diffraction, the graphite interlayer distance (d002) = 0.3355 nm, the crystallite size in the C-axis direction (Lc) = 100 nm or more, and the crystallite size in the a-axis direction. (La) = 100 nm or more, the peak ratio of the (101) diffraction peak to the (100) diffraction peak (P101 / P1
00) = 2.4. In addition, boron carbide was not found from the measurement results of the X-ray diffraction of the material.

【0032】(充放電試験)上記の後処理により得られ
た黒鉛化炭素繊維ミルドを用いて負極を作成した。黒鉛
化炭素繊維ミルド93重量部に、ポリフッ化ビニリデン
のN−メチルピロリジノン溶液をポリフッ化ビニリデン
7重量部となるように加えてスラリーとし、厚さ18μ
mの銅箔に塗工し、負極とした。この負極を用い、3極
セルにより充放電試験を行った。即ち、対極及び参照極
に金属リチウムを用い、エチレンカーボネート(EC)
/ジエチルカーボネート(DEC)を体積比で1/1に
調製した混合炭酸エステル溶媒に、電解質として過塩素
酸リチウム(LiClO4)を1モル/lの濃度で溶解
させた電解液中で実施し、充放電容量特性を測定した。
充放電は、100mA/g−10mVの定電流−定電圧
で8時間充電し、放電は100mA/gの定電流(2.
0V/Li/Li+)の電位まで行い、10回繰り返し
測定した。その結果、初回の放電容量354mAh/
g、充放電効率92.8%といずれも優れた値を示し
た。
(Charge / Discharge Test) A negative electrode was prepared using the graphitized carbon fiber mill obtained by the above post-treatment. N-methylpyrrolidinone solution of polyvinylidene fluoride was added to 93 parts by weight of graphitized carbon fiber milled so as to be 7 parts by weight of polyvinylidene fluoride to form a slurry having a thickness of 18 μm.
It was applied to a copper foil of m to obtain a negative electrode. Using this negative electrode, a charge / discharge test was conducted using a 3-electrode cell. That is, using metallic lithium for the counter electrode and the reference electrode, ethylene carbonate (EC)
/ Diethyl carbonate (DEC) in a mixed carbonate ester solvent prepared in a volume ratio of 1/1, lithium perchlorate (LiClO 4 ) as an electrolyte was dissolved in a concentration of 1 mol / l The charge / discharge capacity characteristics were measured.
Charging / discharging was carried out at a constant current of 100 mA / g-10 mV-constant voltage for 8 hours, and discharging was performed at a constant current of 100 mA / g (2.
The electric potential was set to 0 V / Li / Li + ) and the measurement was repeated 10 times. As a result, the initial discharge capacity of 354 mAh /
g, charge and discharge efficiency was 92.8%, which were all excellent values.

【0033】(実施例2) <酸化熱処理>実施例1と同様にして黒鉛化処理し、更
に熱処理た後、次いで空気中で700℃で150分間熱
処理を行った。得られた黒鉛材料をX線回折測定を行っ
た結果、黒鉛層間距離(d002)=0.3355nm、
C軸方向の結晶子の大きさ(Lc)=100nm以上、
a軸方向の結晶子の大きさ(La)=100nm以上、
(101)回折ピークと(100)回折ピークのピーク
比(P101/P100)=2.4であった。また、充放電特
性を同様にして測定した結果、放電容量356mAh/
g、充放電効率93.0%であった。
(Example 2) <Oxidation heat treatment> Graphitization was carried out in the same manner as in Example 1 and, after further heat treatment, heat treatment was carried out in air at 700 ° C. for 150 minutes. The obtained graphite material was subjected to X-ray diffraction measurement. As a result, the graphite interlayer distance (d 002 ) = 0.3355 nm,
C-axis crystallite size (Lc) = 100 nm or more,
Crystallite size in the a-axis direction (La) = 100 nm or more,
The peak ratio of the (101) diffraction peak to the (100) diffraction peak was (P 101 / P 100 ) = 2.4. Also, as a result of similarly measuring the charge / discharge characteristics, the discharge capacity was 356 mAh /
g, and the charge / discharge efficiency was 93.0%.

【0034】(実施例3) <減圧下熱処理>実施例1と同様にして黒鉛化処理し、
更に熱処理を行って得られた黒鉛化炭素繊維ミルドを、
次いで窒素雰囲気中0.1torrの減圧下に2,30
0℃で、1時間熱処理を行った。得られた黒鉛材料をX
線回折測定した結果、黒鉛層間距離(d002)=0.3
355nm、C軸方向の結晶子の大きさ(Lc)=10
0nm、a軸方向の結晶子の大きさ(La)=100n
m以上、(101)回折ピークと(100)回折ピーク
のピーク比(P101/P100)=2.4であった。また、
X線回折の測定結果から、炭化ホウ素あ検出認められな
かった。同様に充放電特性を測定した結果、初回の放電
容量356mAh/g、充放電効率93.2%であっ
た。
(Example 3) <Heat treatment under reduced pressure> Graphitization was carried out in the same manner as in Example 1,
The graphitized carbon fiber milled obtained by further heat treatment,
Then, under a reduced pressure of 0.1 torr in a nitrogen atmosphere, 2,30
Heat treatment was performed at 0 ° C. for 1 hour. The obtained graphite material is X
As a result of line diffraction measurement, the graphite interlayer distance (d 002 ) = 0.3
355 nm, C-axis crystallite size (Lc) = 10
0 nm, crystallite size in the a-axis direction (La) = 100 n
The peak ratio (P 101 / P 100 ) = 2.4 of the (101) diffraction peak and the (100) diffraction peak was 2.4 or more. Also,
From the measurement results of X-ray diffraction, no boron carbide was detected. Similarly, as a result of measuring charge / discharge characteristics, the initial discharge capacity was 356 mAh / g and the charge / discharge efficiency was 93.2%.

【0035】(比較例1)実施例1で、黒鉛化処理のみ
を行って得られた黒鉛化繊維ミルドについて、充放電特
性を測定した結果、放電容量は342mAh/g、充放
電効率90.1%と比較的高い値を示したが、黒鉛化度
から期待されるほどの性能は発現していなかった。
(Comparative Example 1) With respect to the graphitized fiber mill obtained by performing only the graphitization treatment in Example 1, the charge and discharge characteristics were measured. As a result, the discharge capacity was 342 mAh / g and the charge and discharge efficiency was 90.1. %, A relatively high value was exhibited, but the performance expected from the graphitization degree was not exhibited.

【0036】[0036]

【発明の効果】本発明により、炭素材をホウ素化合物の
存在下で黒鉛化処理して黒鉛化を向上させた黒鉛材料
を、特定の後処理、即ち熱処理する(B) ことにより、必
要なら、更に酸素ガス含有雰囲気中で熱処理(C) 、また
は減圧下に熱処理(C) ’することにより、上述のように
電池の性能向上を阻害すると見られるホウ素化合物を実
質的に含有していない、高い放電容量が安定して得られ
るリチウムイオン二次電池用負極に適した黒鉛材を、提
供することを可能にした。
According to the present invention, a carbon material is graphitized in the presence of a boron compound to improve the graphitization, and a graphite material is subjected to a specific post-treatment, that is, a heat treatment (B). Further, by heat treatment (C) in an oxygen gas-containing atmosphere or heat treatment (C) 'under reduced pressure, as described above, the boron compound, which is considered to impede the performance improvement of the battery, is not substantially contained, and is high. (EN) It is possible to provide a graphite material suitable for a negative electrode for a lithium-ion secondary battery, which has a stable discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 301054313 株式会社ペトカマテリアルズ 東京都港区虎ノ門2丁目10番1号 (72)発明者 山崎 典宗 茨城県鹿島郡神栖町東和田4番地 鹿島石 油株式会社鹿島製油所内 (72)発明者 河村 寿文 茨城県鹿島郡神栖町東和田4番地 鹿島石 油株式会社鹿島製油所内 (72)発明者 玉木 敏夫 茨城県鹿島郡神栖町東和田4番地 鹿島石 油株式会社鹿島製油所内 Fターム(参考) 4G046 EA05 EB02 EB04 EC01 EC06 4L037 AT05 CS04 FA02 FA05 PA31 PC10 PF12 PF23 PG04 PP03 PP38 PS12 UA04 UA20 5H029 AJ02 AJ03 AK02 AK03 AK16 AL07 AM02 AM03 AM05 AM07 CJ02 CJ28 DJ16 DJ17 HJ13 HJ14 HJ15 5H050 AA02 AA08 BA17 CA02 CA08 CA09 CA11 CA20 CA21 CA22 CB08 FA17 FA19 GA02 HA13 HA14 HA15    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 301054313             Petka Materials Co., Ltd.             2-10-1 Toranomon, Minato-ku, Tokyo (72) Inventor Norimune Yamazaki             Kashima Stone, 4 Towada, Kamisu Town, Kashima District, Ibaraki Prefecture             Oil Kashima Refinery Co., Ltd. (72) Inventor Toshifumi Kawamura             Kashima Stone, 4 Towada, Kamisu Town, Kashima District, Ibaraki Prefecture             Oil Kashima Refinery Co., Ltd. (72) Inventor Toshio Tamaki             Kashima Stone, 4 Towada, Kamisu Town, Kashima District, Ibaraki Prefecture             Oil Kashima Refinery Co., Ltd. F term (reference) 4G046 EA05 EB02 EB04 EC01 EC06                 4L037 AT05 CS04 FA02 FA05 PA31                       PC10 PF12 PF23 PG04 PP03                       PP38 PS12 UA04 UA20                 5H029 AJ02 AJ03 AK02 AK03 AK16                       AL07 AM02 AM03 AM05 AM07                       CJ02 CJ28 DJ16 DJ17 HJ13                       HJ14 HJ15                 5H050 AA02 AA08 BA17 CA02 CA08                       CA09 CA11 CA20 CA21 CA22                       CB08 FA17 FA19 GA02 HA13                       HA14 HA15

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 (A) 炭素材をホウ素化合物の存在下で
黒鉛化処理して得られ、X線回折による黒鉛層間距離
(d002)が0.338nm以下、(101)回折ピー
クの強度と(100)回折ピークの強度の比(P101
100)が2.0以上であって且つB4Cを含有する黒鉛
材料を、(B) 1,800℃以上の温度で熱処理すること
を特徴とする、リチウムイオン二次電池負極用黒鉛材料
の製造方法。
1. A graphite material obtained by graphitizing a carbon material (A) in the presence of a boron compound, having an inter-graphite distance (d 002 ) of 0.338 nm or less by X-ray diffraction and an intensity of a (101) diffraction peak. Intensity ratio of (100) diffraction peak (P 101 /
A graphite material for a negative electrode of a lithium-ion secondary battery, characterized in that (B) a graphite material having P 100 ) of 2.0 or more and containing B 4 C is heat-treated at a temperature of 1,800 ° C. or more. Manufacturing method.
【請求項2】 (C) 更に、酸素ガス存在雰囲気下で50
0℃以上900℃以下の温度で熱処理することを特徴と
する、請求項1記載のリチウムイオン二次電池負極用黒
鉛材料の製造方法。
2. (C) Further, in an atmosphere in which oxygen gas is present, 50
The method for producing a graphite material for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the heat treatment is performed at a temperature of 0 ° C. or higher and 900 ° C. or lower.
【請求項3】 (C) ’更に、減圧下で2,000℃以上
の温度で熱処理することを特徴とする、請求項1記載の
リチウムイオン二次電池負極用黒鉛材料の製造方法。
3. The method for producing a graphite material for a negative electrode of a lithium ion secondary battery according to claim 1, wherein (C) ′ is further heat-treated at a temperature of 2,000 ° C. or higher under reduced pressure.
【請求項4】 炭素材のホウ素化合物存在下での黒鉛化
処理が、アルゴン雰囲気中で行うことを特徴とする、請
求項1〜3のいずれかに記載のリチウムイオン二次電池
負極用黒鉛材料の製造方法。
4. The graphite material for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the graphitization treatment of the carbon material in the presence of a boron compound is performed in an argon atmosphere. Manufacturing method.
【請求項5】 ホウ素化合物存在下で黒鉛化処理される
炭素材(A) が、メソフェーズピッチを原料とし且つミル
ド化した炭素繊維であることを特徴とする、請求項1〜
4のいずれかに記載のリチウムイオン二次電池負極用黒
鉛材の製造方法。
5. The carbon material (A) to be graphitized in the presence of a boron compound is a carbon fiber obtained by milling mesophase pitch as a raw material.
5. The method for producing a graphite material for a lithium ion secondary battery negative electrode according to any one of 4 above.
【請求項6】 請求項1〜5のいずれかに記載の方法で
得られることを特徴とする、リチウムイオン二次電池負
極用黒鉛材料。
6. A graphite material for a negative electrode of a lithium ion secondary battery, which is obtained by the method according to any one of claims 1 to 5.
【請求項7】 請求項6記載の黒鉛材料を含んでなるこ
とを特徴とする、リチウムイオン二次電池負極。
7. A lithium ion secondary battery negative electrode comprising the graphite material according to claim 6.
【請求項8】 請求項7記載の負極を含んでなることを
特徴とする、リチウムイオン二次電池。
8. A lithium-ion secondary battery comprising the negative electrode according to claim 7.
JP2001270170A 2001-09-06 2001-09-06 Graphite material for lithium ion secondary battery negative electrode and its manufacturing method Pending JP2003077471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270170A JP2003077471A (en) 2001-09-06 2001-09-06 Graphite material for lithium ion secondary battery negative electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270170A JP2003077471A (en) 2001-09-06 2001-09-06 Graphite material for lithium ion secondary battery negative electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003077471A true JP2003077471A (en) 2003-03-14

Family

ID=19095861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270170A Pending JP2003077471A (en) 2001-09-06 2001-09-06 Graphite material for lithium ion secondary battery negative electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003077471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164570A (en) * 2004-12-02 2006-06-22 Nippon Steel Chem Co Ltd Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery
CN109763209A (en) * 2019-01-31 2019-05-17 山东瑞城宇航碳材料有限公司 A method of manufacture high thermal conductivity asphalt base carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164570A (en) * 2004-12-02 2006-06-22 Nippon Steel Chem Co Ltd Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery
CN109763209A (en) * 2019-01-31 2019-05-17 山东瑞城宇航碳材料有限公司 A method of manufacture high thermal conductivity asphalt base carbon fiber

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP3540478B2 (en) Anode material for lithium ion secondary battery
US5556723A (en) Negative electrode for use in a secondary battery
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH10152311A (en) Surface graphitized carbon material, its production and lithium ion secondary battery using the same
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JP2003077471A (en) Graphite material for lithium ion secondary battery negative electrode and its manufacturing method
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery
JPH10162829A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof