JPH10289718A - Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode - Google Patents

Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode

Info

Publication number
JPH10289718A
JPH10289718A JP9108359A JP10835997A JPH10289718A JP H10289718 A JPH10289718 A JP H10289718A JP 9108359 A JP9108359 A JP 9108359A JP 10835997 A JP10835997 A JP 10835997A JP H10289718 A JPH10289718 A JP H10289718A
Authority
JP
Japan
Prior art keywords
graphite
graphite material
fiber
negative electrode
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9108359A
Other languages
Japanese (ja)
Inventor
Toshio Tamaki
敏夫 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP9108359A priority Critical patent/JPH10289718A/en
Publication of JPH10289718A publication Critical patent/JPH10289718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably provide a high discharge capacity under the application of a graphite material as a lithium secondary battery negative electrode material by thermally treating the graphite materia under a vacuum condition at a temperature equal to or above a specific level for causing a metallic content to drop to a level below a specific range. SOLUTION: A graphite material is thermally treated under a vacuum condition at a temperature equal to or above 2,200 deg.C, and a metallic content is thereby made to drop to a level equal to or bellow 20 ppm. Mesophase pitch carbon fiber as milled, as well as graphitized is preferable particularly as a graphite material. The mesophase pitch carbon fiber has easily graphitized quality and high battery characteristic as the graphite material. Moreover, the mesophase pitch carbon fiber has small fiber length. In other words, the ratio of fiber cross section is made to increase via a milling process, thereby allowing lithium ions to easily enter and leave. Also, an advantage such as an increase in battery charging capacity is available. As a result, a trace metallic content in the graphite, boron nitride resulting from a graphitizing process in the presence of a boron compound or the like can be reduced efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量リチウム二
次電池負極用黒鉛材の改良技術に関する。詳細には、本
発明は、金属分を低減させることで、高い放電容量が安
定して得られるリチウム二次電池負極用黒鉛材の製造方
法に特徴を有する。更に、本発明は、ホウ素化合物を使
用し高度に黒鉛化させた黒鉛材の課題である表面に生じ
る窒化ホウ素、炭化ホウ素等の効率的な除去方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving a graphite material for a negative electrode of a high capacity lithium secondary battery. Specifically, the present invention is characterized by a method for producing a graphite material for a negative electrode of a lithium secondary battery in which a high discharge capacity can be stably obtained by reducing a metal component. Furthermore, the present invention relates to a method for efficiently removing boron nitride, boron carbide, and the like generated on the surface, which is a subject of a highly graphitized graphite material using a boron compound.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。従って、このような
非水電解液リチウム二次電池は、携帯用電子機器電源を
はじめとして、電気自動車、電力貯蔵用などの高性能電
池としての実用化が期待されている。
2. Description of the Related Art In general, a secondary battery using an alkali metal, for example, lithium as a negative electrode active material has a high energy density and a high electromotive force. It has many advantages such as excellent storage, light weight and small size. Therefore, such a nonaqueous electrolyte lithium secondary battery is expected to be put to practical use as a high-performance battery for a power source of a portable electronic device, an electric vehicle, a power storage device, and the like.

【0003】このリチウム二次電池の負極材として、黒
鉛材を利用することが検討されている。リチウムイオン
二次電池用負極材としては、天然黒鉛、有機物等を黒鉛
化処理した人造黒鉛などの黒鉛材料が、特に注目され検
討されている。天然黒鉛にあっては、黒鉛化度が高い場
合に、単位重量あたりの充放電可能容量は相当に大きい
が、無理なく取出せる電流密度が小さく、また高電流密
度での充放電を行うと充放電効率が低下するという問題
があり、また、このような材料は、大電流を取出す必要
があり、かつ充電時間を短縮するために、高電流密度で
充電を行うことが望ましい高負荷電源、例えば駆動モー
ター等を有する機器用電源の負極に用いるには、不適で
あった。
The use of graphite as a negative electrode material of this lithium secondary battery has been studied. As negative electrode materials for lithium ion secondary batteries, graphite materials such as artificial graphite, which is obtained by graphitizing natural graphite and organic substances, have been particularly noted and studied. In the case of natural graphite, when the degree of graphitization is high, the chargeable / dischargeable capacity per unit weight is considerably large, but the current density that can be taken out without difficulty is low, and charging and discharging at a high current density will result in charging. There is a problem that the discharge efficiency is reduced, and such a material is required to take out a large current, and in order to shorten the charging time, it is desirable to charge at a high current density, for example, a high-load power supply, for example, It was not suitable for use as a negative electrode of a power supply for equipment having a drive motor and the like.

【0004】一方、従来の人造黒鉛を用いた負極では、
黒鉛化度が高ければ、300mAh/gを越す充放電容
量を持つものも得られてきているが、黒鉛材の理論容量
値である370mAh/gには未だ程遠いものである。
また、これらの人造黒鉛材として、なかでも、特開平6
−168725号公報に開示されているように、メソフ
ェーズピッチを出発原料とした炭素繊維を黒鉛化処理し
たものが、諸電池特性の測定結果から優れることが指摘
されている。しかしながら、炭素繊維はその出発原料及
び製造条件等により結晶子の大きさ、形状、不純物の含
有程度等が多様であり、上記黒鉛繊維においても繊維内
部の組織構造がリチウムイオン二次電池用黒鉛材として
最適な構造に制御されているとはいい難く、現状、まだ
まだ改良の余地があると言える。
On the other hand, in a conventional negative electrode using artificial graphite,
If the degree of graphitization is high, one having a charge / discharge capacity exceeding 300 mAh / g has been obtained, but it is still far from the theoretical capacity value of graphite material of 370 mAh / g.
Further, as these artificial graphite materials, in particular,
As disclosed in JP-B-168725, it has been pointed out that a carbon fiber obtained by using a mesophase pitch as a starting material and subjected to graphitization is excellent from the measurement results of various battery characteristics. However, carbon fibers vary in crystallite size, shape, impurity content, etc., depending on the starting materials and production conditions, and the above-mentioned graphite fibers also have an internal structure of the graphite material for lithium ion secondary batteries. It is difficult to say that the structure is controlled to the optimal structure, and it can be said that there is still room for improvement at present.

【0005】本出願人は、特開平7−85862号及び
特願平8−99643号公報において、電池の負極材と
して、不純物の低減が重要であることを開示しており、
また、特開平8−100329号公報において、低金属
含有の炭素繊維ミルドの製造方法についても開示してい
る。しかしながら、これらの技術は、原料の調整及び製
造工程での不純物の低減が主体であり、黒鉛材自体の不
純物の低減処理については、ハロゲンガス雰囲気下での
熱処理について記載があるのみである。
The present applicant has disclosed in JP-A-7-85862 and Japanese Patent Application No. 8-99643 that it is important to reduce impurities as a negative electrode material of a battery.
Japanese Patent Application Laid-Open No. 8-100329 discloses a method for producing a carbon fiber mill containing low metal. However, these techniques mainly focus on the adjustment of raw materials and the reduction of impurities in the manufacturing process, and only the description of the heat treatment in a halogen gas atmosphere is given for the treatment of reducing the impurities of the graphite material itself.

【0006】他にも、特開平7−168725号公報で
は、低不純物の炭素繊維(特にPAN系)を電池用電極
として用いることが好ましいことが記載されているが、
不純物の低減については、炭素繊維の製造段階で純度を
高めることが開示されているのみである。また、その後
の研究の結果、ハロゲンガス雰囲気下での熱処理は、不
純物の低減効果は充分であるが、ハロゲンガスが黒鉛材
中の炭素とも一部反応して、黒鉛材の収率が低下するこ
と、及び処理コストが高いということが問題点として生
じてきている。
[0006] In addition, Japanese Patent Application Laid-Open No. 7-168725 describes that it is preferable to use low-impurity carbon fibers (particularly PAN-based) as battery electrodes.
As for the reduction of impurities, it is only disclosed that the purity is increased at the stage of producing carbon fibers. Further, as a result of subsequent research, heat treatment in a halogen gas atmosphere has a sufficient effect of reducing impurities, but the halogen gas partially reacts with carbon in the graphite material, and the yield of the graphite material decreases. And high processing costs have arisen as problems.

【0007】さらに、出願人は、特開平9−63584
号、63585号公報の発明において、ホウ素化合物の
存在下で黒鉛化処理して得られた、充放電容量が大き
く、高エネルギー密度を有し、充放電サイクル特性に優
れた特徴を持つリチウム系二次電池用黒鉛材を提案し
た。また、特開平8−31422号、306359号公
報にも、ホウ素化合物の存在下で黒鉛化処理することに
関する同様の技術が開示されている。
Further, the applicant has disclosed in Japanese Patent Application Laid-Open No. 9-63584.
In the invention of JP-A No. 63585/1994, a lithium-based secondary battery obtained by graphitization treatment in the presence of a boron compound, having a large charge / discharge capacity, a high energy density, and excellent charge / discharge cycle characteristics. A graphite material for secondary batteries was proposed. Japanese Patent Application Laid-Open Nos. 8-31422 and 306359 also disclose similar techniques relating to graphitization in the presence of a boron compound.

【0008】しかしながら、その後の研究の結果、ホウ
素化合物の存在下での黒鉛化処理は、窒素雰囲気下では
黒鉛材表面にホウ素が窒化ホウ素の形で取り込まれ、ま
た、窒素の存在しない雰囲気での黒鉛化処理においても
炭素とホウ素の化合物が黒鉛材表面に生じ、これら(窒
化ホウ素及び炭素とホウ素の化合物:以下窒化ホウ素等
という)の存在が、電池容量の向上を阻害させるという
ことが問題点として生じてきている。
However, as a result of the subsequent research, the graphitization treatment in the presence of a boron compound shows that in a nitrogen atmosphere, boron is incorporated into the surface of the graphite material in the form of boron nitride, and in a nitrogen-free atmosphere. Even in the graphitization treatment, a compound of carbon and boron is generated on the surface of the graphite material, and the presence of these compounds (boron nitride and a compound of carbon and boron: hereinafter referred to as boron nitride) hinders an improvement in battery capacity. It is emerging as.

【0009】[0009]

【発明が解決しようとする課題】本発明は、黒鉛材中の
不純物、特に金属分の含有量を低減させることにより、
電池の高容量化が得られることに着目し、黒鉛材から効
率的に金属分を低減させることを目的とする。さらに、
ホウ素を使用し高度に黒鉛化させた黒鉛材の課題である
表面に生じる窒化ホウ素等の効率的な除去方法にも関す
る。
DISCLOSURE OF THE INVENTION The present invention is to reduce the content of impurities, particularly metals, in a graphite material.
Focusing on obtaining a high capacity battery, an object of the present invention is to efficiently reduce the metal content of a graphite material. further,
The present invention also relates to a method for efficiently removing boron nitride and the like generated on the surface, which is a problem of a graphite material highly graphitized using boron.

【0010】[0010]

【課題を解決するための手段】本発明者は上記課題につ
いて種々検討した結果、黒鉛材中に存在する微量の金属
分や、ホウ素化合物の存在下の黒鉛化処理により生じる
黒鉛材表層の窒化ホウ素等を、減圧下高温で再熱処理す
ることにより、効率的にこれらを低減でき、且つ該処理
をした黒鉛材をリチウムイオン二次電池負極材として用
いた時に、高い放電容量を安定して供給できることを見
出し、本発明を完成するに至った。すなわち、本発明
は:
As a result of various studies on the above problems, the present inventor has found that a trace amount of metal present in the graphite material and boron nitride on the surface layer of the graphite material produced by the graphitization treatment in the presence of a boron compound. And the like can be efficiently reduced by reheating at a high temperature under reduced pressure, and a high discharge capacity can be stably supplied when the treated graphite material is used as a negative electrode material of a lithium ion secondary battery. And completed the present invention. That is, the present invention:

【0011】 黒鉛材を減圧下、2200℃以上の温
度で熱処理し、金属分の含有量を20ppm以下に低下
させる高容量リチウムイオン二次電池負極用黒鉛材の製
造方法を提供し、また 記載の黒鉛材がメソフェーズピッチを原料とした
炭素繊維をミルド化した後、黒鉛化処理された黒鉛繊維
ミルドであることにも特徴を有する。また、 記載の黒鉛材がメソフェーズピッチを原料とした
炭素繊維をミルド化した後、ホウ素化合物の存在下で黒
鉛化処理された黒鉛繊維ミルドである点にも特徴を有す
る。
A method for producing a graphite material for a negative electrode of a high-capacity lithium ion secondary battery, wherein the graphite material is heat-treated at a temperature of 2200 ° C. or more under reduced pressure to reduce the metal content to 20 ppm or less. It is also characterized in that the graphite material is a graphite fiber mill obtained by milling carbon fibers made of mesophase pitch as a raw material and then graphitizing. Further, the present invention is characterized in that the described graphite material is a graphite fiber mill obtained by milling a carbon fiber using mesophase pitch as a raw material, and then graphitizing the carbon fiber in the presence of a boron compound.

【0012】以下、本発明を詳細に説明する。 (1)黒鉛材について;本発明における黒鉛材は、下記
性状を満足するように、高度に黒鉛化構造が発達した炭
素系材料であれば特に限定はないが、メソフェーズピッ
チ系炭素繊維をミルド化し、黒鉛化処理したものが特に
好ましい。該メソフェーズピッチ系炭素繊維は、易黒鉛
化性であり、また黒鉛材としての電池特性が優れてお
り、さらに、繊維長を短く、すなわちミルド化すること
で、繊維断面の割合を大きくし、リチウムイオンの出入
りを行い易くすることができ、かつ、電池の充填密度も
高くできる等の利点がある。
Hereinafter, the present invention will be described in detail. (1) Graphite material: The graphite material of the present invention is not particularly limited as long as it is a carbon material having a highly graphitized structure so as to satisfy the following properties. And those subjected to graphitization are particularly preferred. The mesophase pitch-based carbon fiber is easily graphitizable and has excellent battery characteristics as a graphite material.Furthermore, by shortening the fiber length, that is, by milling, the ratio of the fiber cross section is increased, and lithium There are advantages such that ions can easily enter and exit, and the packing density of the battery can be increased.

【0013】本発明に使用する黒鉛材の構造としては、
X線回折による黒鉛層間距離(d002 )が0.338n
m以下、好ましくは0.337nm以下;C軸方向の結
晶子の大きさ(Lc)が35nm以上、好ましくは45
nm以上;a軸方向の結晶子の大きさ(La)が50n
m以上、好ましくは60nm以上;且つ(101)回折
ピークと(100)回折ピークのピーク比(P101 /P
100 )が1.0以上、好ましくは1.15以上であるこ
とが望ましい。これらの特性は、黒鉛材の黒鉛化の度合
いを表す指標であり、すべてを満足することが電池の性
能を向上させる上で要求される。以下に、黒鉛材の構造
を規定するのに用いた種々のX線パラメータを簡単に説
明する。
The structure of the graphite material used in the present invention includes:
Graphite interlayer distance (d 002 ) by X-ray diffraction is 0.338 n
m or less, preferably 0.337 nm or less; the crystallite size (Lc) in the C-axis direction is 35 nm or more, preferably 45 nm or less.
nm or more; crystallite size (La) in the a-axis direction is 50 n
m or more, preferably 60 nm or more; and a peak ratio between the (101) diffraction peak and the (100) diffraction peak (P 101 / P
100 ) is 1.0 or more, preferably 1.15 or more. These characteristics are indices indicating the degree of graphitization of the graphite material, and satisfying all of them is required to improve the performance of the battery. Hereinafter, various X-ray parameters used for defining the structure of the graphite material will be briefly described.

【0014】(i) X線回折法:X線回折法とは、Cu
kαをX線源、標準物質に高純度シリコンを使用し、炭
素繊維等に対し回折パターンを測定するものである。そ
して、その002回折パターンのピーク位置、半値幅か
ら、それぞれ黒鉛層間距離d(002) 、c軸方向の結晶子
の大きさLc(002) 、及び110回折パターンのピーク
位置、半値幅からa軸方向の結晶子の大きさLa(110)
を学振法に基づき算出する。 (ii) 101/100のピーク比:101/100のピ
ーク比の測定は、得られた回折線図にベースラインを引
き、このベースラインから101(2θ≒44.5)、
100(2θ≒42.5)の各ピークの高さを測定し、
101の回折ピーク高さを100回折ピーク高さで除し
て求める。
(I) X-ray diffraction method: X-ray diffraction method refers to Cu
kα is an X-ray source, high-purity silicon is used as a standard substance, and a diffraction pattern is measured on carbon fibers and the like. Then, the graphite interlayer distance d (002) , the crystallite size Lc (002) in the c-axis direction, and the 110-axis diffraction pattern peak position and half width from the 002 diffraction pattern peak position and half width Size of crystallite in direction La (110)
Is calculated based on the Gakushin method. (ii) Measurement of the peak ratio of 101/100: The peak ratio of 101/100 was measured by drawing a baseline on the obtained diffraction diagram, and 101 (2θ ≒ 44.5) from the baseline.
Measure the height of each peak of 100 (2θ ≒ 42.5),
It is determined by dividing the 101 diffraction peak height by the 100 diffraction peak height.

【0015】(2)黒鉛材の製造方法:本発明に用いる
好適な黒鉛材としての、黒鉛繊維ミルドの製造方法の例
を以下に説明する。 (i) 原料 炭素繊維製造用原料としては、任意の易黒鉛化質の炭化
水素を使用することができる。例えば、ナフタレン、フ
ェナントレン等の縮合多環炭化水素化合物や石油、石炭
系ピッチ等の縮合複素環化合物等を挙げることができ
る。特に、石油、石炭系ピッチの使用、好ましくは光学
的異方性ピッチ,すなわちメソフェーズピッチを用いる
ことが良い。このメソフェーズピッチとしてはメソフェ
ーズ含有量100%のものが好ましいが、紡糸可能なら
ば特に限定されるものでない。
(2) Method for producing graphite material: An example of a method for producing a graphite fiber mill as a preferred graphite material used in the present invention will be described below. (i) Raw Material As the raw material for producing carbon fiber, any easily graphitizable hydrocarbon can be used. Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum and coal-based pitch. In particular, it is preferable to use a petroleum or coal pitch, preferably an optically anisotropic pitch, that is, a mesophase pitch. The mesophase pitch preferably has a mesophase content of 100%, but is not particularly limited as long as spinning is possible.

【0016】(ii) 炭素繊維ミルドの製造 上記原料を、常法により紡糸、不融化し、さらにそのま
ま或いは軽度炭化処理した後にミルド化する。 (イ) 紡糸等 原料ピッチを溶融紡糸する方法としては、特に限定され
るものではなく、メルトスピニング、メルトブロー、遠
心紡糸、渦流紡糸等種々の方法を使用することが出来る
が、紡糸時の生産性や得られる繊維の品質の観点から、
メルトブロー法が好ましい。
(Ii) Production of milled carbon fiber The above-mentioned raw material is spun and infusibilized by a conventional method, and then milled as it is or after light carbonization. (B) Spinning etc. The method for melt-spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and vortex spinning can be used. From the viewpoint of the quality of the obtained fiber
Melt blowing is preferred.

【0017】メルトブロー時の紡糸孔の大きさは、0.
1mmφ以上0.5mmφ以下、好ましくは0.15m
mφ以上0.3mmφ以下である。紡糸孔の大きさが
0.5mmφを越えると、繊維径が25μm以上と大き
くなり易く、かつ繊維径がバラツキ易く品質管理上好ま
しくない。紡糸孔の大きさが0.1mmφ未満では、紡
糸時目詰まりが生じ易く、また紡糸ノズルの製作が困難
となり好ましくない。紡糸速度は、生産性の面から毎分
500m以上、好ましくは毎分1500m以上、さらに
好ましくは毎分2000m以上である。紡糸温度は、原
料ピッチにより幾分変化するが、原料ピッチの軟化点以
上でピッチが変質しない温度以下であれば良く、通常3
00℃以上400℃以下、好ましくは300℃以上38
0℃以下である。
The size of the spinning hole at the time of melt blowing is set to 0.1.
1 mmφ or more and 0.5 mmφ or less, preferably 0.15 m
It is not less than mφ and not more than 0.3 mmφ. If the size of the spinning hole exceeds 0.5 mmφ, the fiber diameter tends to be as large as 25 μm or more, and the fiber diameter tends to vary, which is not preferable in quality control. If the size of the spinning hole is less than 0.1 mmφ, clogging tends to occur at the time of spinning, and it is difficult to manufacture a spinning nozzle, which is not preferable. The spinning speed is 500 m / min or more, preferably 1500 m / min or more, more preferably 2000 m / min or more in terms of productivity. The spinning temperature varies somewhat depending on the raw material pitch, but may be any temperature above the softening point of the raw material pitch and below the temperature at which the pitch does not deteriorate.
00 ° C to 400 ° C, preferably 300 ° C to 38
0 ° C. or less.

【0018】また、メルトブロー法は、数十ポイズ以下
の低粘度で紡糸し、かつ高速冷却することにより、黒鉛
層面が繊維軸に平行に配列し易くなる利点もある。原料
ピッチの軟化点も特に限定されるものではないが、前記
紡糸温度との関係から、軟化点が低くまた不融化反応速
度の速いものが、製造コスト及び安定性の面で有利であ
る。これより、原料ピッチの軟化点は230℃以上35
0℃以下、好ましくは250℃以上310℃以下であ
る。
The melt blow method also has an advantage that the graphite layer surface can be easily arranged parallel to the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed. Although the softening point of the raw material pitch is not particularly limited, a material having a low softening point and a high infusibilization reaction rate is advantageous in terms of production cost and stability, in view of the spinning temperature. Accordingly, the softening point of the raw material pitch is 230 ° C. or higher and 35
0 ° C. or less, preferably 250 ° C. or more and 310 ° C. or less.

【0019】(ロ) 不融化等 紡糸後のピッチ繊維は、常法により不融化処理する。不
融化方法としては、例えば、二酸化窒素や酸素等の酸化
性ガス雰囲気中で加熱処理する方法や、硝酸やクロム酸
等の酸化性水溶液中で処理する方法、さらには、光やγ
線等により重合処理する方法等を使用することが可能で
ある。より簡便な不融化方法は、空気中で加熱処理する
方法であり、原料により若干異なるが平均昇温速度3℃
/分以上、好ましくは5℃/分以上で、350℃程度ま
で昇温させながら加熱処理する。
(B) Infusibilization and the like The pitch fiber after spinning is infusibilized by a conventional method. Examples of the infusibilization method include a method of performing heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide and oxygen, a method of performing treatment in an oxidizing aqueous solution such as nitric acid and chromic acid, and a method of treating light or γ.
It is possible to use a method of performing a polymerization treatment using a wire or the like. A simpler infusibilizing method is a method in which heat treatment is performed in the air.
Heat treatment at a rate of at least 350 ° C./min, preferably at least 5 ° C./min.

【0020】(ハ) 炭素繊維のミルド化等 通常、二次電池負極用黒鉛材は、リチウムの出入りを容
易にし、かつ充填密度を上げるために、粒径を小さくす
ることが望ましく、平均粒径が10〜50μmの範囲の
ものが要求されている。平均粒径が50μmを越える
と、充填密度を上げられなく、シートの塗布ムラを起こ
しやすく、また、短絡の原因となる大粒径の黒鉛材が混
入しやすくので好ましくない。平均粒径が10μm未満
では、活性な黒鉛層が露出し電解液と反応し易くなり好
ましくない。このため、本発明の黒鉛材も粒径がこの範
囲となるように、ミルド化(粉砕)することが要求され
る。上記平均粒径は、レーザー回折方式による粒度分布
から算出する。
(C) Milling of carbon fiber, etc. Normally, the graphite material for a negative electrode of a secondary battery desirably has a small particle size in order to facilitate the inflow and outflow of lithium and to increase the packing density. Is required in the range of 10 to 50 μm. If the average particle size is more than 50 μm, the packing density cannot be increased, coating unevenness of the sheet tends to occur, and a graphite material having a large particle size that causes a short circuit is apt to be mixed. If the average particle size is less than 10 μm, the active graphite layer is exposed and easily reacts with the electrolyte, which is not preferable. For this reason, the graphite material of the present invention is also required to be milled (pulverized) so that the particle size falls within this range. The average particle size is calculated from a particle size distribution by a laser diffraction method.

【0021】また、炭素繊維のアスペクト比(繊維の直
径に対する長さの比)は1以上30以下、好ましくは1
以上20以下であることが望ましい。アスペクト比が3
0を越えると、すなわち、繊維長の比較的長いミルド繊
維を用いると嵩密度が低くなり容積当りのエネルギー密
度が小さくなりかつ、正、負極の短絡の原因ともなり好
ましくない。また、アスペクト比が1未満になると、繊
維軸方向への縦割れを生じる繊維が多くなり好ましくな
い。上記アスペクト比は、得られたミルド繊維の抜き取
り個数100個の値の平均値で示す。上記平均粒径と、
アスペクト比の観点から、黒鉛材の直径としては4μm
以上25μm以下が好ましい。繊維のミルド化は、不融
化後、炭化後、黒鉛化後のいずれでも実施することが可
能であるが、後述のように特定の温度範囲で炭化した
後、ミルド化することが望ましい。
The aspect ratio (the ratio of the length to the diameter of the fiber) of the carbon fiber is 1 or more and 30 or less, preferably 1 or less.
It is desirable that the number is not less than 20 and not more than 20. Aspect ratio is 3
If it exceeds 0, that is, if a milled fiber having a relatively long fiber length is used, the bulk density becomes low, the energy density per volume becomes small, and the positive and negative electrodes may be short-circuited. On the other hand, if the aspect ratio is less than 1, the number of fibers that cause longitudinal cracks in the fiber axis direction increases, which is not preferable. The above-mentioned aspect ratio is shown by the average value of the values of 100 pieces of the milled fibers obtained. The average particle size,
From the viewpoint of the aspect ratio, the diameter of the graphite material is 4 μm.
It is preferably at least 25 μm. The milling of the fiber can be performed after infusibilization, carbonization, or graphitization. However, it is preferable to perform milling after carbonization in a specific temperature range as described later.

【0022】(ニ) 炭化等 通常、不融化された繊維は、不活性ガス雰囲気下、25
0℃以上2000℃以下で炭化処理されるが、本発明に
おいては、400℃以上1500℃以下、好ましくは5
00℃以上1000℃以下の温度で軽度に炭化すること
が、繊維のミルド化を好適に行うために要望される。こ
の範囲で炭化された炭素繊維をミルド化すると、繊維の
縦割れが比較的に防げることと、ミルド化時に新たに表
面に露出する黒鉛層面が生じても、その後のより高温で
の黒鉛化処理時に縮重合・環化反応が進み易くなる傾向
があり、表面の活性度が低下し、電解液の分解を阻止す
る効果がある点でも有利である。
(D) Carbonization etc. Usually, the infusibilized fiber is subjected to 25
The carbonization treatment is performed at 0 ° C or more and 2000 ° C or less, but in the present invention, it is 400 ° C or more and 1500 ° C or less, preferably 5 ° C or less.
Light carbonization at a temperature of 00 ° C or more and 1000 ° C or less is desired for suitably milling the fiber. Milling carbonized carbon fibers in this range can relatively prevent longitudinal cracking of the fiber, and even if a graphite layer surface newly exposed on the surface during milling occurs, it is then graphitized at a higher temperature. This is also advantageous in that the polycondensation / cyclization reaction sometimes tends to proceed, the surface activity is reduced, and the decomposition of the electrolytic solution is prevented.

【0023】一方、1500℃を越える温度での熱処理
(炭化或いは黒鉛化)後のミルド化は、繊維軸方向に発
達した黒鉛層面に沿って開裂が発生し易くなり、製造さ
れたミルド化された炭素繊維の全表面積中に占める破断
面表面積の割合が大きくなり、破断黒鉛層面における電
子の極在化による電解液の分解が起こり好ましくない。
また、不融化繊維、または400℃未満の温度での炭化
処理後のミルド化は繊維の強度が低く、粉砕時に必要以
上に微粉化し、収率が悪化するので好ましくない。
On the other hand, in the milling after heat treatment (carbonization or graphitization) at a temperature exceeding 1500 ° C., cracks are apt to occur along the graphite layer surface developed in the fiber axis direction, and the manufactured milled is obtained. The ratio of the fracture surface area to the total surface area of the carbon fibers increases, and the decomposition of the electrolyte due to the localization of electrons on the fractured graphite layer surface is not preferable.
Further, unfusible fibers or milling after carbonization at a temperature of less than 400 ° C. is not preferable because the strength of the fibers is low, the fibers are pulverized more than necessary at the time of pulverization, and the yield deteriorates.

【0024】(ホ) 炭素繊維のミルド化方法等 軽度に炭化した炭素繊維をミルド化するには、ビクトリ
ーミル、ジェットミル、ディスクミル、クロスフローミ
ル等を使用することが有効である。本発明に適したミル
ド化を効率良く実施するためには、上記各種方法に共通
することであるが、例えばプレートを取り付けたロータ
ーを高速に回転することにより、繊維軸に対し直角方向
に繊維を寸断する方法が適切である。ミルド化された繊
維の繊維長は、ローターの回転数、プレートの角度及び
ローターの周辺に取り付けられたフィルターの目の大き
さ等を調整することによりコントロールすることが可能
である。
(E) Milling method of carbon fiber In order to mill lightly carbonized carbon fiber, it is effective to use a victory mill, jet mill, disk mill, cross flow mill or the like. In order to efficiently carry out milling suitable for the present invention, it is common to the above-mentioned various methods that, for example, by rotating a rotor attached with a plate at a high speed, the fibers are perpendicular to the fiber axis. The shredding method is appropriate. The fiber length of the milled fibers can be controlled by adjusting the number of rotations of the rotor, the angle of the plate, the size of the mesh of a filter attached around the rotor, and the like.

【0025】ミルド化には、ヘンシェルミキサーやボー
ルミル、磨潰機等による方法もあるが、これらの方法に
よると繊維の直角方向への加圧力が働き、繊維軸方向へ
の縦割れの発生が多くなり好ましくない。また、この方
法はミルド化に長時間を要し、適切なミルド化方法とは
言い難い。
The milling may be performed by a method using a Henschel mixer, a ball mill, a grinding machine, or the like. However, according to these methods, pressure is applied in a direction perpendicular to the fiber, and longitudinal cracks are often generated in the direction of the fiber axis. It is not preferable. In addition, this method requires a long time for milling, and is not an appropriate milling method.

【0026】(iii)黒鉛化処理等 通常、黒鉛化は非酸化性雰囲気、例えば、窒素、アルゴ
ン等の不活性雰囲気下2000℃以上で行われる。ま
た、二次電池負極用黒鉛材料は、リチウムを受容する
量、すなわち電池容量が黒鉛化度とほぼ比例関係にある
ことから、出来るだけ黒鉛化度を高くすること、すなわ
ち黒鉛化の温度を高くすることが要求されており、現状
黒鉛化の温度としては、2600℃以上好ましくは、2
800℃以上が要求されている。更に、より黒鉛化を発
達させるために、黒鉛化に際し、ホウ素化合物を使用す
ることも可能である。黒鉛化方法は、前述の特開平8−
31422号、306359号、特開平9−63584
号、63585号公報等に記載の方法に準じ行えばよ
く、以下に炭素繊維ミルドの黒鉛化について概要を示
す。
(Iii) Graphitization etc. Graphitization is usually carried out at 2000 ° C. or higher in a non-oxidizing atmosphere, for example, an inert atmosphere such as nitrogen or argon. In addition, the graphite material for the secondary battery negative electrode is capable of accepting lithium, that is, the battery capacity is substantially proportional to the degree of graphitization. At present, the temperature of graphitization is 2600 ° C. or higher, preferably 2600 ° C.
800 ° C. or higher is required. Further, in order to further develop graphitization, it is possible to use a boron compound at the time of graphitization. The graphitization method is described in Japanese Patent Application Laid-Open No.
No. 31422, 306359, JP-A-9-63584
And the method described in JP-A-63-585, etc., and an outline of graphitization of a carbon fiber mill is shown below.

【0027】(イ) ホウ素化合物の種類、形状 黒鉛化時に用いられるホウ素化合物としては、ホウ素単
体の他に、炭化ホウ素(B4 C)、塩化ホウ素、ホウ
酸、酸化ホウ素、ホウ酸ナトリウム、ホウ酸カリウム、
ホウ酸銅、ホウ酸ニッケル及び三フッ化ホウ素−メタノ
ール錯体(BF3・CH3 OH)やボラン−ジメチルア
ミン錯体〔BH3 ・HN(CH3 2 〕等有機ホウ素化
合物等が挙げられ、これらを少なくとも一種用いればよ
い。これらホウ素化合物の添加は、通常、固形のホウ素
化合物を直接添加し必要に応じ均一に混合する方法が好
ましいが、ホウ素化合物を溶媒溶液とし浸漬する方法、
及び原料ピッチの段階でホウ素化合物を添加することも
十分可能である。 (ロ) ホウ素化合物の粒径 均質な黒鉛材を得るためには、黒鉛化時にホウ素化合物
と炭素繊維ミルドとを混合して用いることが好ましい。
このため固形のホウ素化合物の場合、炭素繊維ミルドと
均一に混合するためには、より微細のものが望ましく、
例えば平均粒径で100μm以下、好ましくは1.7〜
70μmとして用いることが望ましい。
(A) Types and shapes of boron compounds Boron compounds (B 4 C), boron chloride, boric acid, boron oxide, sodium borate, borate, etc. may be used in addition to boron alone in graphitization. Potassium acid,
Organic boron compounds such as copper borate, nickel borate, boron trifluoride-methanol complex (BF 3 .CH 3 OH) and borane-dimethylamine complex [BH 3 .HN (CH 3 ) 2 ]; May be used at least one. Usually, the addition of these boron compounds is preferably a method of directly adding a solid boron compound and uniformly mixing as necessary, but a method of dipping the boron compound in a solvent solution,
It is also possible to add a boron compound at the stage of raw material pitch. (B) Particle size of boron compound In order to obtain a homogeneous graphite material, it is preferable to use a mixture of a boron compound and a carbon fiber mill during graphitization.
For this reason, in the case of a solid boron compound, in order to uniformly mix with the carbon fiber mill, a finer one is desirable,
For example, the average particle size is 100 μm or less, preferably 1.7 to
It is desirable to use it as 70 μm.

【0028】(ハ) ホウ素化合物の添加量:ホウ素化合
物の添加量は、黒鉛化処理される材料に対しホウ素とし
て15重量%以下、好ましくは、1〜10重量%であ
る。1重量%以下では黒鉛化促進効果に差がなく本発明
の効果が低く、15重量%以上ではコストに対しての効
果が低下する。また、黒鉛化後の黒鉛繊維ミルド中にホ
ウ素の残存量が増加し黒鉛材同士が固着する等の問題を
生じ好ましくない。また、黒鉛繊維ミルド表面に生成す
る窒化ホウ素等が増加するので好ましくない。 (ニ) 黒鉛化温度:ホウ素化合物の黒鉛化作用の原理は
不明であるが、ホウ素化合物の融点(ホウ素の融点は2
080℃、炭化ホウ素の融点は2450℃)近辺の温度
から、黒鉛化の促進効果が得られており、また、ホウ素
化合物を使用することで黒鉛化がより促進されるため、
通常の黒鉛化の温度より低い温度でも、高容量な電池性
能が得られることより、黒鉛化温度としては、2200
℃以上、好ましくは、2400℃以上、より好ましくは
2600℃以上の温度が望ましい。
(C) Addition amount of boron compound: The addition amount of the boron compound is 15% by weight or less, preferably 1 to 10% by weight as boron based on the material to be graphitized. If it is 1% by weight or less, there is no difference in the graphitization promoting effect, and the effect of the present invention is low. If it is 15% by weight or more, the effect on cost is reduced. Further, the residual amount of boron increases in the graphite fiber mill after graphitization, which causes a problem that the graphite materials adhere to each other, which is not preferable. Further, it is not preferable because boron nitride and the like generated on the surface of the graphite fiber mill increase. (D) Graphitization temperature: The principle of graphitization of boron compounds is unknown, but the melting point of boron compounds (the melting point of boron is 2
080 ° C., the melting point of boron carbide is 2450 ° C.), the effect of promoting graphitization is obtained from the temperature, and graphitization is further promoted by using a boron compound.
Even at a temperature lower than the normal graphitization temperature, a high-capacity battery performance can be obtained.
C. or higher, preferably 2400 ° C. or higher, more preferably 2600 ° C. or higher.

【0029】(3)減圧下の熱処理;黒鉛材中の不純
物、特に金属分の含有量を低減させるために、及びホウ
素化合物の存在下で黒鉛化処理して得られる黒鉛材中、
特に表層部に生じる窒化ホウ素等を効率的に除去するた
めに減圧下熱処理する。 (i) 金属分 黒鉛材中には、出発原料や、製造方法等にもよるが、炭
素(C)元素以外に酸素(O)、水素(H)、窒素
(N)、硫黄(S)等有機元素を少量(0.05から2
%程度)含有する他に、数10ppmから数千ppmの
鉄(Fe)、シリカ(Si)、アルミニウム(Al)、
カルシウム(Ca)、クロム(Cr)、バナジウム
(V)、ニッケル(Ni)等の金属分を含有している。
本発明者の研究によると、詳細な理由は不明であるが、
上記金属分がリチウムイオンと反応し電池内部での不可
逆容量を増大させるためか、金属分の含有量が電池の容
量に大きく影響を与えており、上記7種の金属分の総含
有量を出来るだけ低減させることが電池容量の著しい向
上につながることが分かった。なお、金属分の含有量の
測定は、プラズマ発光分析法による。また、本発明の黒
鉛材中の金属分の含有量は、上記測定法により得られる
Fe、Si、Al、Ca、Ni、Cr、Vの7種の金属
元素の総合計量とする。
(3) heat treatment under reduced pressure; in order to reduce the content of impurities, particularly metals, in the graphite material, and in a graphite material obtained by graphitization treatment in the presence of a boron compound,
In particular, heat treatment is performed under reduced pressure in order to efficiently remove boron nitride and the like generated in the surface layer. (i) Metal content Graphite material contains oxygen (O), hydrogen (H), nitrogen (N), sulfur (S), etc. in addition to the carbon (C) element, depending on the starting material and the production method. Small amounts of organic elements (0.05 to 2
%), Iron (Fe), silica (Si), aluminum (Al),
Metals such as calcium (Ca), chromium (Cr), vanadium (V), and nickel (Ni) are contained.
According to the study of the inventor, the detailed reason is unknown,
Perhaps because the metal reacts with lithium ions to increase the irreversible capacity inside the battery, the content of the metal greatly influences the capacity of the battery, and the total content of the seven metals can be increased. It has been found that reducing only this leads to a remarkable improvement in battery capacity. The measurement of the metal content is performed by a plasma emission analysis method. Further, the content of the metal component in the graphite material of the present invention is defined as the total weight of seven types of metal elements of Fe, Si, Al, Ca, Ni, Cr and V obtained by the above-described measuring method.

【0030】(ii) 窒化ホウ素等 前述の通りホウ素化合物の存在下で黒鉛化処理された黒
鉛材は、窒素雰囲気下では表面にホウ素が窒化ホウ素の
形で取り込まれ、また、窒素の存在しない雰囲気での黒
鉛化処理においても炭素とホウ素の化合物が黒鉛材表面
に生じ、電池容量の向上を阻害させる要因となってい
る。なお、窒化ホウ素等の検出は、ESCA法、或いは
元素分析(ホウ素はプラズマ発光分析法、窒素は蒸留分
離中和滴定法を用いる)により行う。
(Ii) Boron nitride and the like As described above, the graphite material which has been graphitized in the presence of a boron compound has a surface in which boron is incorporated in the form of boron nitride in a nitrogen atmosphere and an atmosphere free of nitrogen. Also in the graphitization treatment, a compound of carbon and boron is formed on the surface of the graphite material, which is a factor that hinders an improvement in battery capacity. The detection of boron nitride or the like is performed by the ESCA method or elemental analysis (plasma emission analysis is used for boron, and distillation separation neutralization titration is used for nitrogen).

【0031】(iii)減圧下の熱処理 金属分や窒化ホウ素等は、融点が高く(特に窒化ホウ素
は3000℃を越える)、通常の熱処理では効率的に除
去することが困難であり、高純度化のためには、一般的
にハロゲンガス雰囲気下の熱処理が行われている。しか
しながら、この処理には、前述のような問題点があっ
た。 (イ) このため、本発明者は、他の方法について種々検討
した結果、減圧下の熱処理により、ハロゲンガス雰囲気
下の熱処理と同等の効果があり、かつ、ハロゲンガス処
理よりも低コストで、黒鉛材の収率低下が少なく、金属
分の含有量が低減した黒鉛材が得られることを見出し
た。 (ロ) 更に、ホウ素化合物の存在下で黒鉛化処理された
黒鉛化材においても、同様に金属分の含有量が低減する
とともに、黒鉛材の表層部に窒化ホウ素等を実質的に含
有しない黒鉛材が得られ、電池の性能が向上することを
見出した。
(Iii) Heat treatment under reduced pressure Metal components, boron nitride, etc. have a high melting point (especially, boron nitride exceeds 3000 ° C.), and it is difficult to efficiently remove it by ordinary heat treatment. For this purpose, heat treatment is generally performed in a halogen gas atmosphere. However, this process has the above-mentioned problems. (A) For this reason, as a result of various studies on other methods, the present inventor has found that heat treatment under reduced pressure has the same effect as heat treatment under a halogen gas atmosphere, and at a lower cost than halogen gas treatment. It has been found that a graphite material having a small decrease in the yield of the graphite material and a reduced metal content can be obtained. (B) Further, in the graphitized material which has been graphitized in the presence of a boron compound, the content of the metal component is similarly reduced, and the graphite material does not substantially contain boron nitride or the like in the surface layer portion of the graphite material. Material was obtained, and it was found that the performance of the battery was improved.

【0032】(ハ) 以下に、減圧下の熱処理方法につい
て詳述する。 減圧下での熱処理条件としては、1torr以下、好ましく
は0.1〜0.5torrの圧力下で、熱処理温度として
は、2200℃以上、好ましくは2400℃以上であ
る。この場合、圧力は低いほど、一方熱処理温度は高い
ほど、金属分や窒化ホウ素等が昇華により除去され易
く、1torrを越える圧力下や、2200℃未満の熱処理
温度では、金属分や窒化ホウ素等の昇華が起き憎く好ま
しくない。また、0.1torr未満の圧力は、コスト面及
び装置の安全性の面で好ましくない。熱処理温度の上限
は特に制限されないが、コスト面と黒鉛材の物性面か
ら、黒鉛化の熱処理温度以下を原則とし、通常2800
℃以下で充分である。また、熱処理時間は、減圧の程度
と熱処理温度等との関数であるので、一義的に決めるこ
とができないが、通常1時間程度、好ましくは30分〜
1時間程度保持することが望ましい。
(C) Hereinafter, the heat treatment method under reduced pressure will be described in detail. The conditions of the heat treatment under reduced pressure are 1 torr or less, preferably 0.1 to 0.5 torr, and the heat treatment temperature is 2200 ° C. or more, preferably 2400 ° C. or more. In this case, the lower the pressure and the higher the heat treatment temperature, the more easily the metal component and boron nitride are removed by sublimation. Under a pressure exceeding 1 torr or at a heat treatment temperature lower than 2200 ° C., the metal component and boron nitride are removed. Sublimation does not occur and is not preferred. Further, a pressure of less than 0.1 torr is not preferable in terms of cost and safety of the apparatus. The upper limit of the heat treatment temperature is not particularly limited. However, from the viewpoint of cost and physical properties of the graphite material, the upper limit of the heat treatment temperature is generally equal to or lower than the heat treatment temperature for graphitization.
C. or less is sufficient. The heat treatment time is a function of the degree of pressure reduction and the heat treatment temperature, and cannot be uniquely determined. However, it is usually about 1 hour, preferably 30 minutes to 30 minutes.
It is desirable to hold for about one hour.

【0033】(iv) 減圧下の熱処理後の黒鉛材の性状 減圧下の熱処理により、原料や製造方法にあまり左右さ
れず、黒鉛材中の7種の金属分の合計量は、20ppm
以下、好ましくは10ppm以下とすることが可能とな
る。また、黒鉛材表層部の窒化ホウ素等は、実質的に完
全に除去される。一方、減圧下の熱処理を、黒鉛化時の
温度より低い温度で行うことにより、黒鉛構造状の性状
は変化することはない。このように、黒鉛構造が同じで
あっても、本減圧下の熱処理により金属分が上記特定範
囲に低減した黒鉛材、及び特に、ホウ素化合物の存在下
で黒鉛化処理された黒鉛材においては、表層部の窒化ホ
ウ素等が実質的に完全に除去され、かつ、金属分も上記
特定範囲に低減した黒鉛材は、本処理前の黒鉛材と比較
し、明らかに電池容量の向上が見られ、本処理の効果が
うかがえた。
(Iv) Properties of graphite material after heat treatment under reduced pressure By heat treatment under reduced pressure, the total amount of the seven metals in the graphite material is 20 ppm, regardless of the raw material and the production method.
Or less, preferably 10 ppm or less. Further, boron nitride and the like in the surface layer of the graphite material are substantially completely removed. On the other hand, by performing the heat treatment under reduced pressure at a temperature lower than the temperature at the time of graphitization, the properties of the graphite structure do not change. Thus, even if the graphite structure is the same, the graphite material in which the metal content is reduced to the above specific range by the heat treatment under the reduced pressure, and particularly, in the graphite material graphitized in the presence of the boron compound, The graphite material in which boron nitride and the like in the surface layer are substantially completely removed, and the metal content is also reduced to the above-described specific range, is clearly improved in battery capacity as compared with the graphite material before this treatment, The effect of this treatment was confirmed.

【0034】(4)リチウムイオン二次電池負極材:本
発明により得られた黒鉛材は、ポリエチレンやポリフッ
化ビニリデンやポリテトラフルオロエチレン等のバイン
ダーを添加し、負極とするに好適な形状、例えばシート
又は板状に加圧ロール成形した後、対極にリチウム金属
を用いて還元処理を行うことによって容易に高性能な負
極とすることができる。このようにして作られた負極
は、単位体積当たりの容量が大きく、電池の小型化に好
適である。
(4) Negative electrode material for lithium ion secondary battery: The graphite material obtained according to the present invention is obtained by adding a binder such as polyethylene, polyvinylidene fluoride or polytetrafluoroethylene to a material suitable for forming a negative electrode, for example, After forming a pressure roll into a sheet or a plate, a high-performance negative electrode can be easily obtained by performing a reduction treatment using lithium metal as a counter electrode. The negative electrode thus produced has a large capacity per unit volume and is suitable for miniaturization of a battery.

【0035】また、本発明による黒鉛材を負極に用い、
リチウムイオン二次電池を作成する場合には、電解液と
してはリチウム塩を溶解し得るものであればよいが、特
に非プロトン性の誘電率が大きい有機溶媒が好ましい。
上記有機溶媒としては、例えば、プロピレンカーボネー
ト、エチレンカーボネート、テトラヒドロフラン、2−
メチルテトラヒドロフラン、ジオキソラン、4−メチル
−ジオキソラン、アセトニトリル、ジメチルカーボネー
ト、メチルエチルカーボネート、ジエチルカーボネート
等を挙げることができる。これらの溶媒を単独あるいは
適宜混合して用いることが可能である。
Further, the graphite material according to the present invention is used for a negative electrode,
When a lithium ion secondary battery is prepared, the electrolytic solution may be any as long as it can dissolve the lithium salt, and an organic solvent having a large aprotic dielectric constant is particularly preferable.
As the organic solvent, for example, propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-
Examples thereof include methyl tetrahydrofuran, dioxolan, 4-methyl-dioxolan, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. These solvents can be used alone or in a suitable mixture.

【0036】電解質としては、安定なアニオンを生成す
るリチウム塩、例えば、過塩素酸リチウム、ホウフッ化
リチウム、六塩化アンチモン酸リチウム、六フッ化リン
酸リチウム(LiPF6 )等が好適である。また、リチ
ウムイオン二次電池の正極としては、例えば、酸化クロ
ム、酸化チタン、酸化コバルト、五酸化バナジウム等の
金属酸化物や、リチウムマンガン酸化物(LiMn2
4 )、リチウムコバルト酸化物(LiCoO2 )、リチ
ウムニッケル酸化物(LiNiO2 )等のリチウム金属
酸化物;硫化チタン、硫化モリブデン等の遷移金属のカ
ルコゲン化合物;及びポリアセチレン、ポリパラフェニ
レン、ポリピロール等の導電性を有する共役系高分子物
質等を用いることが出来る。
As the electrolyte, a lithium salt that generates a stable anion, such as lithium perchlorate, lithium borofluoride, lithium antimonate hexachloride, and lithium hexafluorophosphate (LiPF 6 ) are preferable. Examples of the positive electrode of the lithium ion secondary battery include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, and lithium manganese oxide (LiMn 2 O).
4 ) lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ); chalcogen compounds of transition metals such as titanium sulfide and molybdenum sulfide; and polyacetylene, polyparaphenylene, polypyrrole and the like. A conjugated polymer substance having conductivity or the like can be used.

【0037】これらの正極と負極との間に合成繊維製又
はガラス繊維製の不織布、織布やポリオレフィン系多孔
質膜、ポリテトラフルオロエチレンの不織布等のセパレ
ータを設ける。また、従来の電池と同様に集電体を使用
することができる。負極集電体としては、電極、電解液
等に電気化学的に不活性な導体、例えば銅、ニッケル、
チタン、ステンレス鋼などの金属を板、箔、棒の形態で
使用できる。本発明の二次電池は、前記セパレータ、集
電体、ガスケット、封口板、ケース等の電池構成要素と
本発明の特定の負極を用い、常法に従って円筒型、角型
或いはボタン型等の形態のリチウムイオン二次電池に組
立てることができる。
A separator such as a nonwoven fabric made of synthetic fiber or glass fiber, a woven fabric, a polyolefin-based porous membrane, or a nonwoven fabric made of polytetrafluoroethylene is provided between the positive electrode and the negative electrode. In addition, a current collector can be used as in the case of a conventional battery. As the negative electrode current collector, an electrode, a conductor which is electrochemically inert to the electrolytic solution, for example, copper, nickel,
Metals such as titanium and stainless steel can be used in the form of plates, foils and bars. The secondary battery of the present invention uses the above-mentioned battery components such as the separator, current collector, gasket, sealing plate, and case and the specific negative electrode of the present invention, and has a form such as a cylindrical type, a square type, or a button type according to a conventional method. Can be assembled into a lithium ion secondary battery.

【0038】[0038]

【作用】本発明においては、黒鉛材中に存在する微量の
金属分や、ホウ素化合物の存在下での黒鉛化処理により
生じる黒鉛材表層の窒化ホウ素等を、減圧下高温で熱処
理することにより、効率的に低減でき、該処理をした黒
鉛材をリチウムイオン二次電池負極材として用いた時
に、高い放電容量を安定して供給できる。即ち、黒鉛構
造が同じであっても、本発明における減圧下の熱処理に
より金属分が低減した黒鉛材、及びホウ素化合物の存在
下で黒鉛化処理された黒鉛材においても、表層部の窒化
ホウ素等が実質的に完全に除去され、かつ、金属分も低
減した黒鉛材は、本発明の減圧下の熱処理前の黒鉛材と
比較し、明らかに電池容量の向上する効果が得られる。
In the present invention, a trace amount of metal present in the graphite material, boron nitride on the graphite material surface layer generated by the graphitization treatment in the presence of the boron compound, and the like are heat-treated under reduced pressure at a high temperature. It can be efficiently reduced, and a high discharge capacity can be stably supplied when the treated graphite material is used as a negative electrode material of a lithium ion secondary battery. That is, even if the graphite structure is the same, the graphite material in which the metal content is reduced by the heat treatment under reduced pressure in the present invention, and the graphite material which has been graphitized in the presence of the boron compound, such as boron nitride in the surface layer Is substantially completely removed and the metal content is also reduced. The graphite material before heat treatment under reduced pressure according to the present invention has an effect of clearly improving the battery capacity.

【0039】[0039]

【実施例】以下実施例により更に具体的に説明するが、
これらは本発明の範囲を制限するものではない。 (実施例1)光学的に異方性で比重1.25の石油系メ
ソフェーズピッチを原料として、幅3mmのスリットの
中に直径0.2mmφの紡糸孔を一列に500個有する
口金を用い、スリットから加熱空気を噴出させて、溶融
ピッチを牽引して平均直径13μmのピッチ繊維を製造
した。この時、紡糸温度は360℃、吐出量は0.8g
/H・分であった。紡出された繊維を、補修部分が20
メッシュのステンレス製金網で出来たベルトの背面から
吸引しつつベルト上に捕集した。
The present invention will be described more specifically with reference to the following examples.
They do not limit the scope of the invention. (Example 1) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a spinneret having a width of 3 mm and a spinning hole having 500 spinning holes of 0.2 mmφ in a line was used. , Heated air was blown out of the melt to pull the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C and the discharge amount was 0.8 g.
/ H · min. The spun fiber is repaired by 20
It was collected on the belt while sucking from the back of the belt made of mesh stainless steel wire mesh.

【0040】この捕集したマットを空気中、室温から3
00℃まで平均昇温速度6℃/分で昇温して不融化処理
を行った。引続き、この不融化糸を650℃で軽度に炭
化処理した後、クロスフローミルで粉砕し平均粒径18
μmの炭素繊維ミルドを得た。該炭素繊維ミルドを、窒
素雰囲気下で3000℃まで3℃/分の速度で昇温し、
その温度で1時間保持して黒鉛繊維ミルドを得た。
The collected mat is placed in air at room temperature for 3 hours.
The infusibilization treatment was performed by raising the temperature to 00 ° C. at an average rate of 6 ° C./min. Subsequently, the infusibilized yarn was slightly carbonized at 650 ° C., and then pulverized with a cross flow mill to obtain an average particle size of 18%.
A μm carbon fiber mill was obtained. The carbon fiber mill is heated at a rate of 3 ° C./min to 3000 ° C. under a nitrogen atmosphere,
The temperature was maintained for one hour to obtain a milled graphite fiber.

【0041】該黒鉛繊維ミルドの黒鉛化度をX線回折で
測定すると、黒鉛層間距離(d002)=0.3362n
m、C軸方向の結晶子の大きさ(Lc)=48nm、a
軸方向の結晶子の大きさ(La)=70nm、(10
1)回折ピークと(100)回折ピークのピーク比P
101 /P100 =1.19であった。また、金属分の含有
量を測定したところ、7種の金属分(Fe、Si、A
l、Ca、Ni、Cr、V)の合計で90ppmであっ
た。
When the degree of graphitization of the milled graphite fiber was measured by X-ray diffraction, the distance between graphite layers (d 002 ) = 0.3362 n
m, crystallite size in the C-axis direction (Lc) = 48 nm, a
Axial crystallite size (La) = 70 nm, (10
1) Peak ratio P of diffraction peak and (100) diffraction peak
It was 101 / P 100 = 1.19. Further, when the content of the metal component was measured, seven types of metal components (Fe, Si, A
1, Ca, Ni, Cr, and V) were 90 ppm in total.

【0042】該黒鉛繊維ミルドを減圧下(0.1torr)
、2700℃で1時間熱処理した。熱処理後の黒鉛化
度をX線回折で測定すると、d002=0.3362n
m、Lc=48nm、La=70nm、ピーク比P101
/P100=1.19となり、減圧熱処理前と比較して変
化していないことが分かった。一方、金属分の含有量を
測定したところ、7種の金属分の合計で5ppmと大幅
に低減していた。
The graphite fiber mill was removed under reduced pressure (0.1 torr).
Heat treatment was performed at 2700 ° C. for 1 hour. When the degree of graphitization after the heat treatment was measured by X-ray diffraction, d 002 = 0.3362 n
m, Lc = 48 nm, La = 70 nm, peak ratio P 101
/ P 100 = 1.19, indicating that there was no change compared to before the heat treatment under reduced pressure. On the other hand, when the content of the metal component was measured, the total content of the seven metal components was greatly reduced to 5 ppm.

【0043】また、減圧熱処理後の該黒鉛繊維ミルドに
ついて、充放電容量特性の測定を行った。測定は、陽極
及び参照電極に金属リチウムを用い、エチレンカーボネ
ート(EC)/ジメチルカーボネート(DMC)を体積
比で1/1に調整した混合炭酸エステル溶媒に、電解質
として過塩素酸リチウム(LiCl04 )を1モルの濃
度で溶解させた電解液中で実施し、充放電容量特性を測
定した。充放電容量特性の測定は、100mA/gの定
電流充放電下で行い、測定電位範囲は対参照電極(0〜
2V/Li/Li+ )で、10回繰返し測定とした。初
回の放電容量312mAh/g、充放電効率94%、2
回目の放電容量310mAh/g、充放電効率99.8
%といずれも高い値を示した。また3回目以降10回目
までにおいてもいずれも放電容量310mAh/g、充
放電効率100%と安定した値を示した。
Further, the charge / discharge capacity characteristics of the graphite fiber mill after the heat treatment under reduced pressure were measured. Measurement, the metal lithium used for the anode and the reference electrode, ethylene carbonate (EC) / dimethyl carbonate in a mixed carbonic ester solvent was adjusted to 1/1 volume ratio (DMC), lithium perchlorate as an electrolyte (LiCl0 4) Was carried out in an electrolytic solution having a concentration of 1 mol, and the charge / discharge capacity characteristics were measured. The measurement of the charge / discharge capacity characteristics was performed under a constant current charge / discharge of 100 mA / g, and the measured potential range was the reference electrode (0 to 0).
2V / Li / Li + ), and the measurement was repeated 10 times. Initial discharge capacity 312 mAh / g, charge / discharge efficiency 94%, 2
The third discharge capacity was 310 mAh / g, and the charge / discharge efficiency was 99.8.
%, All showed high values. In addition, the discharge capacity was 310 mAh / g and the charge / discharge efficiency was 100%, which were stable values from the third to the tenth.

【0044】(実施例2)実施例1で得られた炭素繊維
ミルドに平均粒径32μmの炭化ホウ素を5重量%添加
し、均一になるように撹拌混合した後、窒素雰囲気下で
3000℃まで3℃/分の速度で昇温し、その温度で1
時間保持し黒鉛繊維ミルドを得た。該黒鉛繊維の黒鉛化
度をX線回折で測定すると、黒鉛層間距離(d002 )=
0.3348nm、C軸方向の結晶子の大きさ(Lc)
=100nm以上、a軸方向の結晶子の大きさ(La)
=100nm以上、(101)回折ピークと(100)
回折ピークのピーク比P101 /P100 =2.19であっ
た。また、ESCA法により該黒鉛繊維ミルドの表面を
分析すると、B−1SピークとN−1Sピークが現れ、
表層部に窒化ホウ素等を形成していることが分かった。
また、金属分の含有量を測定したところ、7種の金属分
の合計で92ppmであった。
Example 2 5% by weight of boron carbide having an average particle size of 32 μm was added to the milled carbon fiber obtained in Example 1, and the mixture was stirred and mixed so as to be uniform. The temperature is raised at a rate of 3 ° C./min.
After holding for a time, a graphite fiber mill was obtained. When the degree of graphitization of the graphite fiber is measured by X-ray diffraction, the distance between graphite layers (d 002 ) =
0.3348 nm, crystallite size in the C-axis direction (Lc)
= 100 nm or more, crystallite size in the a-axis direction (La)
= 100 nm or more, (101) diffraction peak and (100)
The peak ratio P 101 / P 100 of the diffraction peaks was 2.19. When the surface of the graphite fiber mill is analyzed by the ESCA method, a B-1S peak and an N-1S peak appear,
It was found that boron nitride and the like were formed on the surface layer.
Further, when the content of the metal component was measured, the total content of the seven metal components was 92 ppm.

【0045】該黒鉛繊維ミルドを、実施例1と同様に減
圧下(0.1torr) 、2700℃で1時間熱処理した。
減圧熱処理後の該黒鉛繊維ミルドの黒鉛化度をX線回折
で測定すると、d002 =0.3348nm、Lc=10
0nm以上、La=100nm以上、ピーク比P101
100 =2.19となり、減圧熱処理前と比較して変化
していないことが分かった。一方、ESCA法により表
面を分析すると、B−1SピークとN−1Sピークが消
失し、表層部の窒化ホウ素が除去されていることが分か
った。また、金属分の含有量を測定したところ、7種の
金属分の合計で9ppmと大幅に低減していた。
The milled graphite fiber was heat-treated at 2700 ° C. for 1 hour under reduced pressure (0.1 torr) in the same manner as in Example 1.
When the degree of graphitization of the graphite fiber mill after the heat treatment under reduced pressure was measured by X-ray diffraction, d 002 = 0.3348 nm and Lc = 10
0 nm or more, La = 100 nm or more, peak ratio P 101 /
P 100 = 2.19, indicating that there was no change compared to before the heat treatment under reduced pressure. On the other hand, when the surface was analyzed by the ESCA method, it was found that the B-1S peak and the N-1S peak disappeared, and that the boron nitride in the surface portion was removed. Further, when the content of the metal component was measured, the total content of the seven metal components was greatly reduced to 9 ppm.

【0046】減圧熱処理後の該黒鉛繊維ミルドについ
て、実施例1と同様に充放電容量特性の測定を行ったと
ころ、初回の放電容量362mAh/g、充放電効率9
3%、2回目の放電容量360mAh/g、充放電効率
99.8%といずれも高い値を示した。また3回目以降
10回目までにおいてもいずれも放電容量360mAh
/g、充放電効率100%と安定した値を示した。
With respect to the graphite fiber mill after the heat treatment under reduced pressure, the charge / discharge capacity characteristics were measured in the same manner as in Example 1. The initial discharge capacity was 362 mAh / g, and the charge / discharge efficiency was 9%.
3%, the second discharge capacity was 360 mAh / g, and the charge / discharge efficiency was 99.8%, all of which were high values. In addition, the discharge capacity was 360 mAh from the third time to the tenth time.
/ G, and a stable value of 100% charge / discharge efficiency.

【0047】(実施例3)光学的に異方性で比重1.2
8の比較的に金属分を多く含有する石炭系メソフェーズ
ピッチを原料として、実施例1と同様に紡糸し、平均粒
径13μmのピッチ繊維を製造した。該ピッチ繊維を、
実施例1と同様に不融化処理、炭化処理、ミルド化処
理、黒鉛化処理を行い、平均粒径16μmの黒鉛繊維ミ
ルドを得た。該黒鉛繊維ミルドの黒鉛化度をX線回折で
測定すると、黒鉛層間距離(d002)=0.3361n
m、C軸方向の結晶子の大きさ(Lc)=50nm、a
軸方向の結晶子の大きさ(La)=75nm、(10
1)回折ピークと(100)回折ピークのピーク比P
101 /P100 =1.21であった。また、金属分の含有
量を測定したところ、7種の金属分(Fe、Si、A
l、Ca、Ni、Cr、V)の合計で160ppmであ
った。
Example 3 Optically anisotropic and specific gravity 1.2
Using a coal-based mesophase pitch containing a relatively large amount of metal as No. 8 as a raw material, spinning was performed in the same manner as in Example 1 to produce pitch fibers having an average particle diameter of 13 μm. The pitch fiber,
Infusibility treatment, carbonization treatment, milling treatment, and graphitization treatment were performed in the same manner as in Example 1 to obtain a graphite fiber mill having an average particle size of 16 μm. When the degree of graphitization of the graphite fiber mill was measured by X-ray diffraction, the distance between graphite layers (d 002 ) = 0.3361 n
m, crystallite size in the C-axis direction (Lc) = 50 nm, a
Axial crystallite size (La) = 75 nm, (10
1) Peak ratio P of diffraction peak and (100) diffraction peak
It was 101 / P 100 = 1.21. When the contents of the metal components were measured, seven types of metal components (Fe, Si, A
1, Ca, Ni, Cr, and V) were 160 ppm in total.

【0048】該黒鉛繊維ミルドを減圧下(0.1torr)
、2700℃で1時間熱処理した。熱処理後の黒鉛化
度をX線回折で測定すると、d002=0.3361n
m、Lc=50nm、La=75nm、ピーク比P101
/P100=1.21となり、減圧熱処理前と比較して変
化していないことが分かった。一方、金属分の含有量を
測定したところ、7種の金属分の合計で9ppmと大幅
に低減していた。
The graphite fiber mill was removed under reduced pressure (0.1 torr).
Heat treatment was performed at 2700 ° C. for 1 hour. When the degree of graphitization after the heat treatment was measured by X-ray diffraction, d 002 = 0.3361 n
m, Lc = 50 nm, La = 75 nm, peak ratio P 101
/ P 100 = 1.21, indicating that there was no change compared to before the heat treatment under reduced pressure. On the other hand, when the content of the metal component was measured, the total of the seven metal components was greatly reduced to 9 ppm.

【0049】また、減圧熱処理後の該黒鉛繊維ミルドに
ついて、実施例1と同様に充放電容量特性の測定を行っ
たところ、初回の放電容量312mAh/g、充放電効
率94%、2回目の放電容量310mAh/g、充放電
効率99.8%といずれも高い値を示した。また3回目
以降10回目までにおいてもいずれも放電容量310m
Ah/g、充放電効率100%と安定した値を示した。
When the graphite fiber mill after the heat treatment under reduced pressure was measured for charge / discharge capacity characteristics in the same manner as in Example 1, the initial discharge capacity was 312 mAh / g, the charge / discharge efficiency was 94%, and the second discharge was performed. The capacity was 310 mAh / g and the charge / discharge efficiency was 99.8%, all of which were high values. In addition, the discharge capacity is 310 m from the third time to the tenth time.
Ah / g and a charge / discharge efficiency of 100% showed stable values.

【0050】(比較例1)実施例1で得られた減圧下の
熱処理を行う前の黒鉛繊維ミルドを、実施例1と同様に
して、充放電容量特性の測定を行ったところ、初回の放
電容量302mAh/g、充放電効率91%、2回目の
放電容量300mAh/g、充放電効率99.8%を示
し、3回目以降10回目までにおいてはいずれも放電容
量300mAh/g、充放電効率100%を示した。同
様の黒鉛構造であっても実施例と比較し低い値であり、
金属分の低減が電池の容量の向上につながったと判断さ
れる。
(Comparative Example 1) The graphite fiber mill obtained in Example 1 before the heat treatment under reduced pressure was subjected to the measurement of the charge / discharge capacity characteristics in the same manner as in Example 1. It shows a capacity of 302 mAh / g, a charge / discharge efficiency of 91%, a second discharge capacity of 300 mAh / g, and a charge / discharge efficiency of 99.8%, and shows a discharge capacity of 300 mAh / g and a charge / discharge efficiency of 100 from the third to the tenth time. %showed that. Even with a similar graphite structure, it is a lower value compared to the example,
It is determined that the reduction in the metal content has led to an increase in the capacity of the battery.

【0051】(比較例2)実施例2で得られた減圧下の
熱処理を行う前の黒鉛繊維ミルドを、実施例1と同様に
して、充放電容量特性の測定を行ったところ、初回の放
電容量305mAh/g、充放電効率89%、2回目の
放電容量302mAh/g、充放電効率98%を示し、
3回目以降10回目までにおいてはいずれも放電容量3
02mAh/g、充放電効率100%を示した。同様の
黒鉛構造であっても実施例と比較し低い値であり、窒化
ホウ素等及び金属分の低減が電池の容量の向上につなが
ったと判断される。
(Comparative Example 2) The graphite fiber mill obtained in Example 2 before the heat treatment under reduced pressure was subjected to the measurement of the charge / discharge capacity characteristics in the same manner as in Example 1. Capacity 305 mAh / g, charge / discharge efficiency 89%, second discharge capacity 302 mAh / g, charge / discharge efficiency 98%,
From the third time to the tenth time, the discharge capacity is 3
02 mAh / g and a charge / discharge efficiency of 100% were shown. Even with the same graphite structure, the value is lower than that of the example, and it is judged that the reduction of boron nitride and the like and the metal content led to the improvement of the capacity of the battery.

【0052】(比較例3)実施例3で得られた減圧下の
熱処理を行う前の黒鉛繊維ミルドを、実施例1と同様に
して、充放電容量特性の測定を行ったところ、初回の放
電容量294mAh/g、充放電効率90%、2回目の
放電容量290mAh/g、充放電効率99.8%を示
し、3回目以降10回目までにおいてはいずれも放電容
量290mAh/g、充放電効率100%を示した。同
様の黒鉛構造であっても実施例と比較し低い値であり、
金属分の低減が電池の容量の向上につながったと判断さ
れる。実施例及び比較例の測定結果をまとめて表1及び
表2に示す。
(Comparative Example 3) When the graphite fiber mill obtained in Example 3 before the heat treatment under reduced pressure was subjected to measurement of the charge / discharge capacity characteristics in the same manner as in Example 1, the first discharge was performed. A capacity of 294 mAh / g, a charge / discharge efficiency of 90%, a second discharge capacity of 290 mAh / g, and a charge / discharge efficiency of 99.8% are shown. From the third time to the tenth time, the discharge capacity is 290 mAh / g and the charge / discharge efficiency is 100. %showed that. Even with a similar graphite structure, it is a lower value compared to the example,
It is determined that the reduction in the metal content has led to an increase in the capacity of the battery. Tables 1 and 2 show the measurement results of the examples and comparative examples.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】以上の通り、黒鉛材を本発明の減圧下高
温で熱処理する方法により、黒鉛材中に存在する微量の
金属分や、ホウ素化合物の存在下の黒鉛化処理により生
じる黒鉛材表層の窒化ホウ素等を効率的に低減でき、該
処理をした黒鉛材をリチウムイオン二次電池負極材とし
て用いた時に、高い放電容量を安定して供給できる効果
がある。
As described above, according to the method of heat-treating a graphite material under reduced pressure and high temperature according to the present invention, a trace amount of metal present in the graphite material and a surface layer of the graphite material generated by the graphitization treatment in the presence of a boron compound. Has an effect that a high discharge capacity can be stably supplied when the treated graphite material is used as a negative electrode material of a lithium ion secondary battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛材を、減圧下に2200℃以上の温
度で熱処理し、金属分の含有量を20ppm以下に低下
させることを特徴とする高容量リチウムイオン二次電池
負極用黒鉛材の製造方法。
1. A graphite material for a negative electrode of a high-capacity lithium ion secondary battery, wherein the graphite material is heat-treated at a temperature of 2200 ° C. or more under reduced pressure to reduce the metal content to 20 ppm or less. Method.
【請求項2】 黒鉛材がメソフェーズピッチを原料とし
た炭素繊維をミルド化した後、黒鉛化処理された黒鉛繊
維ミルドであることを特徴とする、請求項1記載のリチ
ウムイオン二次電池負極用黒鉛材の製造方法。
2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the graphite material is a graphite fiber mill obtained by milling a carbon fiber made of mesophase pitch as a raw material and then graphitizing the milled carbon fiber. Manufacturing method of graphite material.
【請求項3】 黒鉛材がメソフェーズピッチを原料とし
た炭素繊維をミルド化した後、ホウ素化合物の存在下で
黒鉛化処理された黒鉛繊維ミルドであることを特徴とす
る、請求項1記載のリチウムイオン二次電池負極用黒鉛
材の製造方法。
3. The lithium material according to claim 1, wherein the graphite material is a graphite fiber mill obtained by milling a carbon fiber made of mesophase pitch as a raw material and then graphitizing in the presence of a boron compound. A method for producing a graphite material for an anode of an ion secondary battery.
JP9108359A 1997-04-11 1997-04-11 Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode Pending JPH10289718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9108359A JPH10289718A (en) 1997-04-11 1997-04-11 Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9108359A JPH10289718A (en) 1997-04-11 1997-04-11 Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode

Publications (1)

Publication Number Publication Date
JPH10289718A true JPH10289718A (en) 1998-10-27

Family

ID=14482742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9108359A Pending JPH10289718A (en) 1997-04-11 1997-04-11 Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JPH10289718A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014466A (en) * 2000-08-18 2002-02-25 이영균 Graphitization process method
KR20020070842A (en) * 2001-02-28 2002-09-11 가부시키가이샤 페토카머티리얼즈 Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
WO2015146864A1 (en) * 2014-03-25 2015-10-01 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2015195171A (en) * 2014-03-25 2015-11-05 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method of manufacturing the same
JP2016110969A (en) * 2014-05-07 2016-06-20 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
CN107488876A (en) * 2017-09-25 2017-12-19 上海高强高模新材料科技有限公司 A kind of method that high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning
US10418629B2 (en) 2014-03-25 2019-09-17 Tosoh Corporation Composite active material for lithium ion secondary batteries and method for producing same
US10777805B2 (en) 2017-03-28 2020-09-15 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material containing graphite material and battery including negative electrode containing negative electrode active material
WO2021141460A1 (en) * 2020-01-10 2021-07-15 주식회사 엘지에너지솔루션 Artificial graphite, method for preparing artificial graphite, anode comprising same, and lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014466A (en) * 2000-08-18 2002-02-25 이영균 Graphitization process method
KR20020070842A (en) * 2001-02-28 2002-09-11 가부시키가이샤 페토카머티리얼즈 Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
WO2015146864A1 (en) * 2014-03-25 2015-10-01 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2015195171A (en) * 2014-03-25 2015-11-05 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method of manufacturing the same
US10418629B2 (en) 2014-03-25 2019-09-17 Tosoh Corporation Composite active material for lithium ion secondary batteries and method for producing same
JP2016110969A (en) * 2014-05-07 2016-06-20 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
US10777805B2 (en) 2017-03-28 2020-09-15 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material containing graphite material and battery including negative electrode containing negative electrode active material
CN107488876A (en) * 2017-09-25 2017-12-19 上海高强高模新材料科技有限公司 A kind of method that high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning
CN107488876B (en) * 2017-09-25 2019-11-26 上海高强高模新材料科技有限公司 A method of high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning
WO2021141460A1 (en) * 2020-01-10 2021-07-15 주식회사 엘지에너지솔루션 Artificial graphite, method for preparing artificial graphite, anode comprising same, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP3175801B2 (en) Negative electrode for secondary battery
JP3540478B2 (en) Anode material for lithium ion secondary battery
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
JP2000164215A (en) Graphite material for negative electrode of lithium ion secondary battery
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
EP0869566A2 (en) Graphite material for use in negative electrode of lithium-ion secondary battery and process for producing the same
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JPH10162829A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905