JPH10162829A - Negative electrode material for lithium ion secondary battery and manufacture thereof - Google Patents

Negative electrode material for lithium ion secondary battery and manufacture thereof

Info

Publication number
JPH10162829A
JPH10162829A JP8331410A JP33141096A JPH10162829A JP H10162829 A JPH10162829 A JP H10162829A JP 8331410 A JP8331410 A JP 8331410A JP 33141096 A JP33141096 A JP 33141096A JP H10162829 A JPH10162829 A JP H10162829A
Authority
JP
Japan
Prior art keywords
graphite
temperature
secondary battery
graphite material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8331410A
Other languages
Japanese (ja)
Inventor
Toshio Tamaki
敏夫 玉木
Takashi Maeda
崇志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP8331410A priority Critical patent/JPH10162829A/en
Publication of JPH10162829A publication Critical patent/JPH10162829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Fibers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery to stably supply high discharging capacity by forming a boron nitride uncontained graphite material by performing reheating treatment at a high temperature on a graphite material containing a boron nitride on which graphitization processing is performed, and using it as a negative electrode. SOLUTION: A boron compound is made to exist, and a graphitization processing is performed in a nitrogen atmosphere, and a graphite material on which an inter-graphite layer distance by X-ray diffraction is not more than 0.338nm and the size of a crystallite is not less than 35nm in the (c) axis direction and is not less than 50nm in the (a) axis direction and the ratio of a diffraction peak is not less than 1.0, is obtained. Heat treatment of a temperature not less than 2000 deg.C is also performed on this boron nitride containing graphite under prescribed reduced pressure or in a halogen gas containing atmosphere. Therefore, a baron nitride regarded as hindering the improvement of battery performance is removed, and when it is graphitized to a high degree and is used as a negative electrode, high discharge capacity is stably obtained, and performance of a lithium ion secondary battery can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素化合物(本
発明では、ホウ素単体も含む)の存在下で窒素雰囲気下
で黒鉛化処理して得られるリチウム二次電池負極材用黒
鉛材の改良技術に関する。更に、本発明は、通常の黒鉛
化よりも比較的に低温で高度に黒鉛化し、高い放電容量
が安定して得られるリチウム二次電池負極材用黒鉛材、
及びその製造方法に特徴を有する。
[0001] The present invention relates to an improved technique for a graphite material for a negative electrode material of a lithium secondary battery, which is obtained by graphitization in a nitrogen atmosphere in the presence of a boron compound (including boron alone in the present invention). About. Furthermore, the present invention is a graphite material for a lithium secondary battery negative electrode material, which is highly graphitized at a relatively low temperature than ordinary graphitization, and a high discharge capacity is stably obtained,
And its manufacturing method.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。従って、このような
非水電解液リチウム二次電池は、携帯用電子機器電源を
はじめとして、電気自動車、電力貯蔵用などの高性能電
池としての実用化が期待されている。
2. Description of the Related Art In general, a secondary battery using an alkali metal, for example, lithium as a negative electrode active material has a high energy density and a high electromotive force. It has many advantages such as excellent storage, light weight and small size. Therefore, such a nonaqueous electrolyte lithium secondary battery is expected to be put to practical use as a high-performance battery for a power source of a portable electronic device, an electric vehicle, a power storage device, and the like.

【0003】このリチウム二次電池の負極材として、炭
素材或いは黒鉛材を利用することが検討されている。例
えば、炭素材としては、石炭、コークス、PAN系炭素
繊維、等方性ピッチ系炭素繊維等が検討されている。
The use of a carbon material or a graphite material as a negative electrode material of this lithium secondary battery has been studied. For example, as the carbon material, coal, coke, PAN-based carbon fiber, isotropic pitch-based carbon fiber, and the like have been studied.

【0004】ところが、これら炭素材は黒鉛結晶子の大
きさが小さく結晶の配列も乱れているため、充放電容量
が不十分であり、充放電時の電流密度を高く設定すると
電解液の分解を生じ、サイクル寿命が低下するなど多く
の問題点を有していた。また、現在、天然黒鉛、上記炭
素材等を黒鉛化処理した人造黒鉛などの黒鉛材料がリチ
ウムイオン二次電池負極材として注目され、検討されて
いる。天然黒鉛にあっては、黒鉛化度が高い場合に、単
位重量あたりの充放電可能容量は相当に大きいが、無理
なく取出せる電流密度が小さく、また高電流密度での充
放電を行うと充放電効率が低下するという問題があっ
た。このような材料は、大電流を取出す必要があり、か
つ充電時間を短縮するために、高電流密度で充電を行う
ことが望ましい高負荷電源、例えば駆動モーター等を有
する機器用電源の負極に用いるには、不適であった。
However, since these carbon materials have a small graphite crystallite size and disordered crystal arrangement, the charge / discharge capacity is insufficient. If the current density at the time of charge / discharge is set high, decomposition of the electrolytic solution will occur. And many problems such as a reduction in cycle life. Currently, graphite materials such as natural graphite and artificial graphite obtained by graphitizing the above carbon materials and the like have been attracting attention and studied as negative electrode materials for lithium ion secondary batteries. In the case of natural graphite, when the degree of graphitization is high, the chargeable / dischargeable capacity per unit weight is considerably large, but the current density that can be taken out without difficulty is low, and charging and discharging at a high current density will result in charging. There is a problem that the discharge efficiency is reduced. Such a material is used for a negative electrode of a high-load power supply which needs to take out a large current and which is preferably charged at a high current density in order to shorten a charging time, for example, a power supply for a device having a drive motor or the like. Was unsuitable.

【0005】また、従来の人造黒鉛を用いた負極では、
黒鉛化度が高ければ、全体としての黒鉛層間の容量が充
分で、大きな充放電容量を得られるものの、やはり高電
流密度での充放電には適していなかった。なお、現在の
黒鉛材を含む負極を用いたリチウムイオン二次電池で
は、充電時の電流密度は20〜35mA/gが一般的で
あり、充電容量から見て10時間程度の充電時間を要す
る。ところが、高電流密度での充電が可能となれば、例
えば100mA/gで3時間程度、600mA/gで3
0分程度と充電時間の短縮が可能となるはずである。
In a conventional negative electrode using artificial graphite,
If the degree of graphitization is high, the capacity between the graphite layers as a whole is sufficient and a large charge / discharge capacity can be obtained, but it is still unsuitable for charge / discharge at a high current density. In addition, in the current lithium ion secondary battery using a negative electrode containing a graphite material, the current density during charging is generally 20 to 35 mA / g, and a charging time of about 10 hours is required in view of the charging capacity. However, if charging at a high current density becomes possible, for example, about 3 hours at 100 mA / g and 3 hours at 600 mA / g.
It should be possible to reduce the charging time to about 0 minutes.

【0006】また、これらの黒鉛材として、なかでも、
特開平6−168725号公報に開示されているよう
に、メソフェーズピッチを出発原料とした炭素繊維を黒
鉛化処理したものが、諸電池特性の測定結果から優れる
ことが指摘されている。ところが、炭素繊維はその出発
原料及び製造条件等により結晶子の大きさ、形状、不純
物の含有程度等多様であり、上記黒鉛繊維においても繊
維内部の組織構造がリチウムイオン二次電池用黒鉛材と
して最適な構造に制御されているとはいい難く、サイク
ル寿命、充放電容量の全てを満足するものは開発されて
いないのが現状である。
[0006] Among these graphite materials,
As disclosed in JP-A-6-168725, it has been pointed out that a carbon fiber obtained by using a mesophase pitch as a starting material is graphitized is excellent in measurement results of various battery characteristics. However, carbon fibers vary in crystallite size, shape, impurity content, etc., depending on the starting materials and production conditions, etc., and even in the above-mentioned graphite fibers, the internal structure of the fibers is a graphite material for lithium ion secondary batteries. It is difficult to say that the structure is controlled to an optimal structure, and at present, a structure that satisfies all of the cycle life and charge / discharge capacity has not been developed.

【0007】また、ホウ素を使用する例として、特開平
6−333601号公報、特開平7−73898号公報
には、黒鉛層を構成する炭素原子の一部をホウ素原子で
置換した炭素材をリチウム二次電池用炭素材として用い
たリチウムの充放電容量の大きいリチウム二次電池が記
載されているが、開示されている方法は、いずれも塩化
ホウ素(BCl3 )とベンゼン(C6 6 )を用いたC
VD法により合成する方法であり、また、このような黒
鉛層の結晶格子を構成する炭素原子自体を他の原子で置
換するには、特別の複雑な装置を要すると共に、その置
換度を制御するのにかなり高度の技術を要する欠点を有
している。
As examples of using boron, JP-A-6-333601 and JP-A-7-73898 disclose that a carbon material in which a part of carbon atoms constituting a graphite layer is substituted by boron atoms is lithium. A lithium secondary battery having a large charge / discharge capacity of lithium used as a carbon material for a secondary battery is described. However, any of the disclosed methods uses boron chloride (BCl 3 ) and benzene (C 6 H 6 ). C using
This is a method of synthesizing by the VD method. In addition, in order to replace the carbon atoms constituting the crystal lattice of the graphite layer with other atoms, a special complicated device is required and the degree of substitution is controlled. It has the disadvantage of requiring a fairly high degree of skill.

【0008】特開平3−245458号公報は、フルフ
リルアルコール−無水マレイン酸共重合体或いはポリア
ミド系繊維を1200℃程度の低温焼成して得られかつ
0.1〜2.0重量%のホウ素を含有する炭素材又は炭
素繊維をリチウム二次電池の負極材として使用すること
を提案している。この場合に、残留ホウ素の増加によっ
ても充放電容量の増加は十分でなく、特に電池電圧の点
では何の改善も示していない。特開平5−251080
号公報には、天然黒鉛にH3BO3等を添加し1000℃
で焼成した炭素材がリチウムイオンを取り込み易くな
り、負極材として電池性能を向上することから最大10
WT%までホウ素を添加することが開示されているが、そ
の機構については何等解明されていない。
Japanese Patent Application Laid-Open No. 3-245458 discloses that a furfuryl alcohol-maleic anhydride copolymer or polyamide fiber is fired at a low temperature of about 1200 ° C. and that boron of 0.1 to 2.0% by weight is obtained. It has been proposed to use the contained carbon material or carbon fiber as a negative electrode material of a lithium secondary battery. In this case, the increase in the charge / discharge capacity was not sufficient even with the increase in the residual boron, and no improvement was shown in the battery voltage in particular. JP-A-5-251080
The JP, was added H 3 BO 3 and the like natural graphite 1000 ° C.
The carbon material calcined in the above can easily take in lithium ions and improve the battery performance as a negative electrode material.
It is disclosed that boron is added up to WT%, but the mechanism is not elucidated at all.

【0009】先に、出願人は、特願平7−23207
1、232072号の発明(以下「先願発明」と記
す。)において、ホウ素化合物の存在下で黒鉛化処理し
て得られた、充放電容量が大きく、高エネルギー密度を
有し、充放電サイクル特性に優れた特徴を持つリチウム
系二次電池用黒鉛材を提案した。また、特開平8−31
422号公報にも、ホウ素化合物の存在下で黒鉛化処理
することに関する同様の技術が開示されている。
First, the applicant has filed Japanese Patent Application No. 7-23207.
In the invention of No. 1,232072 (hereinafter referred to as "the prior invention"), a charge / discharge capacity is large, a high energy density is obtained, and a charge / discharge cycle is obtained by graphitization treatment in the presence of a boron compound. A graphite material with excellent characteristics for lithium secondary batteries was proposed. Further, Japanese Patent Application Laid-Open No. 8-31
No. 422 also discloses a similar technique relating to graphitization in the presence of a boron compound.

【0010】しかしながら、その後の研究の結果、ホウ
素化合物の存在下での黒鉛化処理を、窒素雰囲気下で行
うと、黒鉛材表面にホウ素が窒化ホウ素の形で取り込ま
れ、この窒化ホウ素の存在が、電池容量の向上を阻害さ
せるということが問題点として生じてきた。
However, as a result of subsequent research, when the graphitization treatment in the presence of a boron compound is performed in a nitrogen atmosphere, boron is incorporated into the graphite material surface in the form of boron nitride, and the presence of this boron nitride In addition, there is a problem that the improvement of the battery capacity is hindered.

【0011】[0011]

【発明が解決しようとする課題】従って、本発明は、ホ
ウ素化合物の存在下で窒素雰囲気下で黒鉛化処理して得
られる黒鉛材の電池容量の向上のため、黒鉛材表面に存
在する窒化ホウ素を効率的に取り除くことを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention relates to a method for improving the battery capacity of a graphite material obtained by graphitization in a nitrogen atmosphere in the presence of a boron compound. The goal is to efficiently remove.

【0012】[0012]

【課題を解決するための手段】本発明者は、ホウ素化合
物の存在下で窒素雰囲気下で黒鉛化処理された窒化ホウ
素を含有する黒鉛材を更に特定の条件下で高温で再熱処
理することにより、窒化ホウ素を実質的に含有しない黒
鉛材が得られ、該黒鉛材をリチウムイオン二次電池負極
材として用いた時に、高い放電容量を安定供給できるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は:
Means for Solving the Problems The present inventors further re-heat-treated a graphite material containing boron nitride graphitized in a nitrogen atmosphere in the presence of a boron compound at a high temperature under specific conditions. A graphite material substantially free of boron nitride was obtained, and it was found that a high discharge capacity could be stably supplied when the graphite material was used as a negative electrode material of a lithium ion secondary battery, and the present invention was completed. That is, the present invention:

【0013】 ホウ素化合物の存在下で窒素雰囲気下
で黒鉛化処理され、更に減圧下、またはハロゲンガス雰
囲気下で再熱処理された黒鉛材であって、該黒鉛材がX
線回折による黒鉛層間距離(d002 )が0.338nm
以下、C軸方向の結晶子の大きさ(Lc)が35nm以
上、a軸方向の結晶子の大きさ(La)が50nm以
上、且つ(101)回折ピークと(100)回折ピーク
のピーク比(P101 /P100 )が1.0以上であり、窒
化ホウ素を実質的に含有していない、リチウムイオン二
次電池用黒鉛材を提供する。また、 メソフェーズピッチを原料とした炭素繊維をミルド
化した後、黒鉛化処理する点にも特徴を有する。また、
[0013] A graphite material which has been graphitized in a nitrogen atmosphere in the presence of a boron compound and further heat-treated under reduced pressure or a halogen gas atmosphere, wherein the graphite material is X
Graphite interlayer distance (d 002 ) by X-ray diffraction is 0.338 nm
Hereinafter, the crystallite size (Lc) in the C-axis direction is 35 nm or more, the crystallite size (La) in the a-axis direction is 50 nm or more, and the peak ratio between the (101) diffraction peak and the (100) diffraction peak ( (P 101 / P 100 ) is 1.0 or more, and a graphite material for lithium ion secondary batteries, substantially free of boron nitride is provided. It is also characterized in that carbon fibers made from mesophase pitch are milled and then graphitized. Also,

【0014】 メソフェーズピッチを原料とし、常法
により紡糸、不融化し、さらにそのまま或いは1, 50
0℃以下の温度で軽度に炭化処理した後にミルド化し、
しかる後にホウ素化合物を添加し、窒素雰囲気下で2,
200℃以上の温度で黒鉛化処理した後に、更に減圧下
で2, 000℃以上の温度で再熱処理する、記載のリ
チウムイオン二次電池用炭素材の製造方法を提供する。
また、 メソフェーズピッチを原料とし、常法により紡糸、
不融化し、さらにそのまま或いは1, 500℃以下の温
度で軽度に炭化処理した後にミルド化し、しかる後にホ
ウ素化合物を添加し、窒素雰囲気下で2, 200℃以上
の温度で黒鉛化処理した後に、更にハロゲンガス雰囲気
下で2, 000℃以上の温度で再熱処理する、記載の
リチウムイオン二次電池用黒鉛材の製造方法を提供す
る。
[0014] Using mesophase pitch as a raw material, spinning and infusibilization are carried out by a conventional method.
Milling after mild carbonization at a temperature of 0 ° C or less,
Thereafter, a boron compound is added, and under a nitrogen atmosphere,
The present invention provides a method for producing a carbon material for a lithium ion secondary battery as described above, wherein the carbon material is graphitized at a temperature of 200 ° C. or more, and further heat-treated at a temperature of 2,000 ° C. or more under reduced pressure.
Also, using mesophase pitch as a raw material, spinning and
Infusibilize, further milled as it is or after mild carbonization at a temperature of 1,500 ° C. or less, then add a boron compound and graphitize at a temperature of 2,200 ° C. or more under a nitrogen atmosphere, Further, the present invention provides the method for producing a graphite material for a lithium ion secondary battery described above, wherein the reheat treatment is performed at a temperature of 2,000 ° C. or more in a halogen gas atmosphere.

【0015】以下、本発明を具体的に説明する。 (1) 黒鉛材について; (i)黒鉛化処理される炭素材;本発明における、ホウ
素化合物の存在下で窒素雰囲気下で黒鉛化処理される炭
素材としては、熱処理により黒鉛構造が発達するもので
あれば特に限定されるものではなく、また、形状も繊維
状、ミルド繊維状、ペーパー状、及びフィルム状の炭素
材やメソカーボンマイクロビーズのような球状の炭素材
等種々の形状のものを使用することができるが、本発明
では、先願発明と同様に、ミルド化した炭素繊維(特に
メソフェーズピッチ系炭素繊維)が好ましく使用され
る。
Hereinafter, the present invention will be described specifically. (1) Graphite material; (i) Carbon material to be graphitized; The carbon material to be graphitized in a nitrogen atmosphere in the presence of a boron compound in the present invention is one that develops a graphite structure by heat treatment. It is not particularly limited as long as it has various shapes such as fibrous, milled fiber, paper, and film-like carbon materials and spherical carbon materials such as mesocarbon microbeads. In the present invention, milled carbon fibers (particularly, mesophase pitch-based carbon fibers) are preferably used in the present invention, as in the prior application invention.

【0016】(ii)黒鉛材の構造;本発明において、
ホウ素化合物の存在下で窒素雰囲気下で黒鉛化処理され
た黒鉛材の構造は、先願発明に開示されるように、X線
回折による黒鉛層間距離(d002)が0.338nm以
下、好ましくは0.336nm以下、C軸方向の結晶子
の大きさ(Lc)が35nm以上、好ましくは45nm
以上、a軸方向の結晶子の大きさ(La)が50nm以
上、好ましくは60nm以上且つ(101)回折ピーク
と(100)回折ピークのピーク比(P101 /P100
が1.0以上である。これらは、それぞれ黒鉛材の黒鉛
化の度合いを表す指標であり、すべてにおいて満足する
ことが電池の性能を向上させる上で要求される。以下
に、黒鉛材の構造を規定するのに用いた種々のX線パラ
メータを簡単に説明する。
(Ii) the structure of the graphite material;
As disclosed in the prior application, the structure of a graphite material which has been graphitized in a nitrogen atmosphere in the presence of a boron compound has a graphite interlayer distance (d 002 ) by X-ray diffraction of 0.338 nm or less, preferably 0.338 nm or less. 0.336 nm or less, crystallite size (Lc) in the C-axis direction is 35 nm or more, preferably 45 nm
As described above, the crystallite size (La) in the a-axis direction is 50 nm or more, preferably 60 nm or more, and the peak ratio between the (101) diffraction peak and the (100) diffraction peak (P 101 / P 100 ).
Is 1.0 or more. These are indices indicating the degree of graphitization of the graphite material, and it is required that all of them be satisfied in order to improve the performance of the battery. Hereinafter, various X-ray parameters used for defining the structure of the graphite material will be briefly described.

【0017】1)X線回折法とは、CukαをX線源、
標準物質に高純度シリコンを使用し、炭素繊維等に対し
回折パターンを測定するものである。そして、その00
2回折パターンのピーク位置、半値幅から、それぞれ黒
鉛層間距離d(002) 、c軸方向の結晶子の大きさLc
(002) 、及び110回折パターンのピーク位置、半値幅
からa軸方向の結晶子の大きさLa(110) を算出する。
算出方法は学振法に基づき算出する。 2)101/100のピーク比の測定は、得られた回折
線図にベースラインを引き、このベースラインから10
1(2θ≒44.5)、100(2θ≒42.5)の各
ピークの高さを測定し、101の回折ピーク高さを10
0回折ピーク高さで除して求める。
1) The X-ray diffraction method means that Cukα is an X-ray source,
It uses high-purity silicon as a standard substance and measures diffraction patterns of carbon fibers and the like. And that 00
From the peak position and half width of the two diffraction patterns, the graphite interlayer distance d (002) and the crystallite size Lc in the c-axis direction are respectively obtained.
The crystallite size La (110) in the a-axis direction is calculated from the (002) and the peak position and the half width of the 110 diffraction pattern.
The calculation method is based on the Gakushin method. 2) For the measurement of the peak ratio of 101/100, a baseline was drawn on the obtained diffraction diagram, and 10%
The height of each peak of 1 (2θ ≒ 44.5) and 100 (2θ ≒ 42.5) was measured, and the diffraction peak height of 101 was set to 10
It is determined by dividing by zero diffraction peak height.

【0018】なお、再熱処理は、コスト面から黒鉛化の
温度より低い温度を原則とし、再熱処理により黒鉛構造
自体は特に変化することはない。
The reheat treatment is performed at a temperature lower than the graphitization temperature in principle from the viewpoint of cost, and the graphite structure itself is not particularly changed by the reheat treatment.

【0019】(iii)ミルド化炭素繊維;本発明に用
いる炭素材としては、先願発明に開示されるように、ミ
ルド化した炭素繊維、特にメソフェーズピッチ系炭素繊
維をミルド化して用いることが好ましい。メソフェーズ
ピッチ系炭素繊維は、易黒鉛化であり、また黒鉛材とし
ての電池特性が優れており、さらに、繊維長を短く、す
なわちミルド化することで、繊維断面の割合を大きく
し、リチウムイオンの出入りを行いやすくすることがで
き、かつ、電池の充填密度も高くでき好ましい。
(Iii) Milled carbon fiber: As the carbon material used in the present invention, as disclosed in the prior application, it is preferable to use milled carbon fiber, particularly, mesophase pitch-based carbon fiber. . Mesophase pitch-based carbon fibers are easily graphitized and have excellent battery characteristics as a graphite material.Furthermore, by shortening the fiber length, that is, by milling, the proportion of the fiber cross section is increased, and lithium ion It is preferable because it is easy to access and the filling density of the battery can be increased.

【0020】しかしながら、繊維をいたずらに微粉化す
ると、逆に活性な黒鉛層が露出し電解液と反応するため
に容量低下等のデメリットが発生することに注意を要
す。このため、一般に、リチウム二次電池用電極材とし
て用いられるミルド化炭素繊維の平均粒径は、10〜5
0μm、好ましくは12〜30μmの範囲である。平均
粒径が、10μm未満の場合は、活性な表面がいたずら
に多くなり電解液の分解が激しくなり、初期充放電効率
が小さく、サイクル劣化も激しくなる。一方、50μm
より大きい場合は、電極の嵩密度が低くなり容積当りの
エネルギー密度が小さくなり好ましくない。また、短絡
の観点からも好ましくない。
However, it should be noted that if the fibers are unnecessarily pulverized, the active graphite layer is exposed and reacts with the electrolytic solution, resulting in disadvantages such as a decrease in capacity. Therefore, generally, the average particle size of the milled carbon fiber used as the electrode material for the lithium secondary battery is 10 to 5 mm.
0 μm, preferably in the range of 12 to 30 μm. If the average particle size is less than 10 μm, the number of active surfaces is unnecessarily increased, the decomposition of the electrolyte solution becomes severe, the initial charge / discharge efficiency is small, and the cycle deterioration is also severe. On the other hand, 50 μm
If it is larger, the bulk density of the electrode is reduced, and the energy density per volume is undesirably reduced. It is also not preferable from the viewpoint of short circuit.

【0021】・上記平均粒径は、レーザー回折方式によ
る粒度分布から算出する。また、本発明のミルド化炭素
繊維のアスペクト比(ミルド化炭素繊維の直径に対する
長さの比)が1以上30以下、好ましくは1以上20以
下であることが望ましい。アスペクト比が30を越える
と、すなわち、繊維長の比較的長いミルド繊維を用いる
と嵩密度が低くなり容積当りのエネルギー密度が小さく
なりかつ、正、負極の短絡の原因ともなり好ましくな
い。また、アスペクト比が1未満になると、繊維軸方向
への縦割れを生じる繊維が多くなり好ましくない。 ・上記アスペクト比は、得られたミルド繊維の抜き取り
個数100個の値の平均値で示す。上記平均粒径とアス
ペクト比の観点から、ミルド化前の繊維径としては、ミ
ルド化時、及び黒鉛化処理時の体積減少も考慮し、4μ
m以上25μm以下、好ましくは4μm以上18μm以
下が望ましい。
The average particle size is calculated from the particle size distribution by a laser diffraction method. The aspect ratio (the ratio of the length to the diameter of the milled carbon fiber) of the milled carbon fiber of the present invention is preferably 1 or more and 30 or less, and more preferably 1 or more and 20 or less. If the aspect ratio exceeds 30, that is, if a milled fiber having a relatively long fiber length is used, the bulk density becomes low, the energy density per volume becomes small, and the short circuit between the positive electrode and the negative electrode may occur, which is not preferable. On the other hand, if the aspect ratio is less than 1, the number of fibers that cause longitudinal cracks in the fiber axis direction increases, which is not preferable. -The above-mentioned aspect ratio is shown by the average value of the value of 100 pieces of milled fibers obtained. From the viewpoint of the average particle diameter and the aspect ratio, the fiber diameter before milling is 4 μm in consideration of the volume reduction during milling and graphitization.
m to 25 μm, preferably 4 μm to 18 μm.

【0022】(2) ミルド化炭素繊維の製造:本発明
に用いるのミルド化炭素繊維の好適な製造方法の例を以
下に説明する。 (i) 原料 本発明に用いる炭素繊維用原料としては、任意の易黒鉛
化質の炭化水素を使用することができる。例えばナフタ
レン、フェナントレン等の縮合多環炭化水素化合物や石
油、石炭系ピッチ等の縮合複素環化合物等を挙げること
ができる。特に石油、石炭系ピッチの使用、好ましくは
光学的異方性ピッチ,すなわちメソフェーズピッチを用
いることが良い。このメソフェーズピッチとしてはメソ
フェーズ含有量100%のものが好ましいが、紡糸可能
ならば特に限定されるものでない。
(2) Production of milled carbon fiber: An example of a preferred method for producing milled carbon fiber used in the present invention will be described below. (i) Raw Material As the raw material for carbon fiber used in the present invention, any easily graphitizable hydrocarbon can be used. Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum and coal pitch. In particular, it is preferable to use petroleum or coal pitch, preferably to use an optically anisotropic pitch, that is, a mesophase pitch. The mesophase pitch preferably has a mesophase content of 100%, but is not particularly limited as long as spinning is possible.

【0023】(ii)ミルド化炭素繊維の製造 上記原料を常法により紡糸、不融化し、さらにそのまま
或いは軽度炭化処理した後にミルド化する。 (イ) 紡糸等 原料ピッチを溶融紡糸する方法としては、特に限定され
るものではなく、メルトスピニング、メルトブロー、遠
心紡糸、過流紡糸等種々の方法を使用することが出来る
が、紡糸時の生産性や得られる繊維の品質の観点から、
メルトブロー法が好ましい。メルトブロー時の紡糸孔の
大きさは、0.1mmφ以上0.5mmφ以下、好まし
くは0.15mmφ以上0.3mmφ以下である。紡糸
孔の大きさが0.5mmφを越えると、繊維径が25μ
m以上と大きくなり易く、かつ繊維径がバラツキ易く品
質管理上好ましくない。紡糸孔の大きさが0.1mmφ
未満では、紡糸時目詰まりが生じ易く、また紡糸ノズル
の製作が困難となり好ましくない。
(Ii) Production of Milled Carbon Fiber The above-mentioned raw material is spun and infusibilized by a conventional method, and then milled as it is or after light carbonization. (B) Spinning, etc. The method for melt-spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and overflow spinning can be used. From the viewpoint of the properties and the quality of the obtained fiber,
Melt blowing is preferred. The size of the spinning hole at the time of melt blowing is from 0.1 mmφ to 0.5 mmφ, preferably from 0.15 mmφ to 0.3 mmφ. When the size of the spinning hole exceeds 0.5 mmφ, the fiber diameter becomes 25μ.
m or more, and the fiber diameter tends to vary, which is not preferable in quality control. Spinning hole size is 0.1mmφ
If it is less than 1, clogging tends to occur during spinning, and it is difficult to manufacture a spinning nozzle, which is not preferable.

【0024】紡糸速度は、生産性の面から毎分500m
以上、好ましくは毎分1500m以上、さらに好ましく
は毎分2000m以上である。紡糸温度は、原料ピッチ
により幾分変化するが、原料ピッチの軟化点以上でピッ
チが変質しない温度以下であれば良く、通常300℃以
上400℃以下、好ましくは300℃以上380℃以下
である。
The spinning speed is 500 m / min in terms of productivity.
Above, preferably 1500 m / min or more, more preferably 2000 m / min or more. The spinning temperature varies somewhat depending on the raw material pitch, but may be any temperature as long as it is higher than the softening point of the raw material pitch and lower than the temperature at which the pitch does not deteriorate, and is usually 300 to 400 ° C, preferably 300 to 380 ° C.

【0025】また、好ましい紡糸法であるメルトブロー
法は、数十ポイズ以下の低粘度で紡糸し、かつ高速冷却
することにより、黒鉛層面が繊維軸に平行に配列し易く
なる利点もある。原料ピッチの軟化点も、特に限定され
るものではないが、前記紡糸温度との関係から、軟化点
が低くまた不融化反応速度の速いものが、製造コスト及
び安定性の面で有利である。このことにより、原料ピッ
チの軟化点は230℃以上350℃以下、好ましくは2
50℃以上310℃以下である。
The melt-blowing method, which is a preferred spinning method, also has an advantage that the graphite layer surface can be easily arranged in parallel with the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed. Although the softening point of the raw material pitch is not particularly limited, those having a low softening point and a high infusibilization reaction rate are advantageous in terms of production cost and stability in view of the spinning temperature. As a result, the softening point of the raw material pitch is 230 ° C. or more and 350 ° C. or less, preferably 2 ° C. or less.
It is 50 ° C. or more and 310 ° C. or less.

【0026】(ロ) 不融化等 紡糸後のピッチ繊維は常法により不融化処理する。不融
化方法としては、例えば、二酸化窒素や酸素等の酸化性
ガス雰囲気中で加熱処理する方法や、硝酸やクロム酸等
の酸化性水溶液中で処理する方法、さらには、光やγ線
等により重合処理する方法等を使用することが可能であ
る。より簡便な不融化方法は、空気中で加熱処理する方
法であり、原料により若干異なるが平均昇温速度3℃/
分以上、好ましくは5℃/分以上で、350℃程度まで
昇温させながら加熱処理する。
(B) Infusibilization etc. The pitch fiber after spinning is infusibilized by a conventional method. As the infusibilization method, for example, a method of performing heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen, a method of performing treatment in an oxidizing aqueous solution such as nitric acid or chromic acid, and further, by light or γ-rays or the like It is possible to use a method of performing a polymerization treatment and the like. A simpler infusibilizing method is a method of performing a heat treatment in the air.
The heat treatment is performed at a rate of at least 5 minutes / minute, preferably at least 5 ° C./minute, to about 350 ° C.

【0027】(ハ) 繊維のミルド化方法等 不融化処理した繊維を次いで、ミルド化する。この時、
不融化処理した繊維を、1, 500℃以下、好ましくは
250℃以上1, 500℃以下、より好ましくは500
℃以上900℃以下の温度で、不活性ガス中軽度に炭化
した後、ミルド化することも可能である。従って、この
ような温度で軽度に炭化しミルド化すると、ミルド化後
の繊維の縦割れが比較的に防げることと、ミルド化時に
新たに表面に露出した黒鉛層面がより高温での黒鉛化処
理時に縮重合・環化反応が進み易くなる傾向があり、そ
の表面の活性度が低下し、電解液の分解を阻止する効果
があり有利である。
(C) Milling method of fiber and the like The infusibilized fiber is then milled. At this time,
The infusibilized fiber is heated to 1,500 ° C or less, preferably 250 ° C to 1,500 ° C, more preferably 500 ° C or less.
It is also possible to mildly carbonize in an inert gas at a temperature of not less than 900C and not more than 900C, followed by milling. Therefore, if it is mildly carbonized and milled at such a temperature, longitudinal cracking of the fiber after milling can be relatively prevented, and the graphite layer surface newly exposed to the surface during milling can be graphitized at a higher temperature. Occasionally, the condensation polymerization / cyclization reaction tends to proceed easily, the activity of the surface is reduced, and there is an effect of preventing the decomposition of the electrolytic solution, which is advantageous.

【0028】1, 500℃を越えた温度での熱処理(炭
化或いは黒鉛化)後のミルド化では、繊維軸方向に発達
した黒鉛層面に沿って開裂が発生し易くなり、製造され
たミルド化された炭素繊維の全表面積中に占める破断面
表面積の割合が大きくなり、破断黒鉛層面における電子
の極在化による電解液の分解が起こり好ましくない。ま
た、250℃未満の温度では炭化が殆ど起こらず処理す
る効果がない。
In the milling after the heat treatment (carbonization or graphitization) at a temperature exceeding 1,500 ° C., cracks are apt to occur along the graphite layer surface developed in the fiber axis direction, and the manufactured milled steel is formed. The ratio of the fracture surface area to the total surface area of the broken carbon fiber becomes large, and the decomposition of the electrolytic solution due to the localization of electrons on the fractured graphite layer surface is not preferable. If the temperature is lower than 250 ° C., carbonization hardly occurs and there is no effect of the treatment.

【0029】不融化後または軽度な炭化後の繊維をミル
ド化するには、ビクトリーミル、ジェットミル、クロス
フローミル等を使用することが有効である。本発明に適
したミルド化を効率良く実施するためには、上記各種方
法に共通することであるが、例えばプレートを取り付け
たローターを高速に回転することにより、繊維軸に対し
直角方向に繊維を寸断する方法が適切である。ミルド化
された繊維の繊維長は、ローターの回転数、プレートの
角度及びローターの周辺に取り付けられたフィルターの
目の大きさ等を調整することによりコントロールするこ
とが可能である。
In order to mill the fiber after infusibilization or after mild carbonization, it is effective to use a Victory mill, a jet mill, a cross flow mill or the like. In order to efficiently carry out milling suitable for the present invention, it is common to the above-mentioned various methods that, for example, by rotating a rotor attached with a plate at a high speed, the fibers are perpendicular to the fiber axis. The shredding method is appropriate. The fiber length of the milled fibers can be controlled by adjusting the number of rotations of the rotor, the angle of the plate, the size of the mesh of a filter attached around the rotor, and the like.

【0030】該ミルド化には、ヘンシェルミキサー、ボ
ールミル、磨潰機等による方法もあるが、これらの方法
によると繊維の直角方向への加圧力が働き、繊維軸方向
への縦割れの発生が多くなり好ましくない。また、これ
らの方法はミルド化に長時間を要し、適切なミルド化方
法とは言い難い。特に、高嵩密度の二次電池負極を製造
するためには、黒鉛化後のミルド繊維のアスペクト比が
1以上30以下、好ましくは1以上20以下となるよう
に製造条件を調整することが好ましい。
The milling may be performed by a method using a Henschel mixer, a ball mill, a grinding machine, or the like. However, according to these methods, a pressure is applied in a direction perpendicular to the fiber, and longitudinal cracks are generated in the fiber axis direction. It is not preferable because it increases. In addition, these methods require a long time for milling, and are not appropriate milling methods. In particular, in order to manufacture a secondary battery negative electrode having a high bulk density, it is preferable to adjust the manufacturing conditions so that the aspect ratio of the milled fiber after graphitization is 1 or more and 30 or less, preferably 1 or more and 20 or less. .

【0031】(3) 黒鉛化処理 本発明の黒鉛化は、ホウ素化合物の存在下で窒素雰囲気
下で2200℃以上の高温で黒鉛化処理することで、高
度な黒鉛構造(X線回折による黒鉛層間距離(d002 )
が0.338nm以下等)を生成させる点に大きな特長
がある。前述の方法により不融化後或いは1, 500℃
以下の温度で軽度な炭化処理後にミルド化された繊維に
ホウ素化合物を添加し、黒鉛化処理する。
(3) Graphitization The graphitization of the present invention is carried out at a high temperature of 2200 ° C. or more in a nitrogen atmosphere in the presence of a boron compound to obtain a highly graphitic structure (graphite interlayer by X-ray diffraction). Distance (d002)
Is 0.338 nm or less). After infusibilization by the above method or at 1,500 ° C
A boron compound is added to the milled fiber after mild carbonization at the following temperature, and the fiber is graphitized.

【0032】ホウ素化合物の添加は、通常、固形のホウ
素化合物を直接添加し必要に応じ均一に混合する方法及
びホウ素化合物を溶媒溶液とし浸漬する方法等が採用さ
れるが特に制限されるものではない。また、原料ピッチ
の段階でホウ素化合物を添加することも十分可能であ
る。ホウ素化合物の添加量は、黒鉛化処理される材料に
対しホウ素として15重量%以下、好ましくは、1〜1
0重量%である。1重量%未満では本発明の効果が薄
く、15重量%を越えるとコストに対しての効果が低下
する。また、黒鉛化後の黒鉛材中にホウ素の残存量が増
加し黒鉛材同士が固着する等の問題を生じ好ましくな
い。
The addition of the boron compound is usually carried out by a method in which a solid boron compound is directly added and uniformly mixed as necessary, or a method in which the boron compound is immersed in a solvent solution, but is not particularly limited. . Further, it is sufficiently possible to add a boron compound at the stage of the raw material pitch. The amount of the boron compound to be added is 15% by weight or less as boron based on the material to be graphitized, preferably 1 to 1%.
0% by weight. If the amount is less than 1% by weight, the effect of the present invention is small, and if it exceeds 15% by weight, the effect on cost is reduced. Further, the residual amount of boron in the graphite material after the graphitization increases, which causes a problem that the graphite materials adhere to each other, which is not preferable.

【0033】ホウ素化合物としては、ホウ素単体の他
に、炭化ホウ素(B4 C)、塩化ホウ素、ホウ酸、酸化
ホウ素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸
銅、ホウ酸ニッケル等が挙げられる。溶媒溶液とするた
めの溶媒としては、例えば水、メタノール、グリセリ
ン、アセトン等が挙げられ、使用するホウ素化合物に合
わせ適宜選択すればよい。また、固形で使用する際は、
ミルド等と均一に混合するために平均粒径を500μm
以下、好ましくは200μm以下、より好ましくは1.
5μm以上150μm以下のホウ素化合物として使用す
るのがよい。
Examples of the boron compound include, in addition to boron alone, boron carbide (B 4 C), boron chloride, boric acid, boron oxide, sodium borate, potassium borate, copper borate, nickel borate and the like. . Examples of the solvent for forming the solvent solution include water, methanol, glycerin, acetone and the like, and may be appropriately selected according to the boron compound to be used. Also, when used as a solid,
500μm average particle size for uniform mixing with milled etc.
Or less, preferably 200 μm or less, more preferably 1.
It is preferable to use a boron compound having a size of 5 μm or more and 150 μm or less.

【0034】本発明では、ミルド化された炭素繊維等を
高度に黒鉛化させることが重要であり、このためには、
ホウ素化合物の存在下で窒素雰囲気下で2, 200℃以
上、好ましくは2, 400℃以上、より好ましくは2,
400℃以上3,000℃以下の温度で黒鉛化処理をす
る必要がある。ホウ素化合物の作用の原理は不明である
が、ホウ素化合物の融点(ホウ素の融点は2, 080
℃、炭化ホウ素の融点は2, 450℃)近辺の温度か
ら、黒鉛化をより促進させる効果、及び電池負極材とし
た時の充放電容量を増加させる等の効果が得られてい
る。
In the present invention, it is important to highly graphitize the milled carbon fiber and the like.
2,200 ° C or higher, preferably 2,400 ° C or higher, more preferably 2,2 ° C or higher under a nitrogen atmosphere in the presence of a boron compound.
It is necessary to perform the graphitization treatment at a temperature of 400 ° C or more and 3000 ° C or less. Although the principle of action of the boron compound is unknown, the melting point of the boron compound (the melting point of boron is 2,080
° C, the melting point of boron carbide is around 2,450 ° C), an effect of further promoting graphitization and an effect of increasing the charge / discharge capacity when used as a battery negative electrode material are obtained.

【0035】一般的に、炭素質材料は、熱処理温度を高
くするほど黒鉛化が進行するが、メソフェーズピッチ系
炭素繊維を原料とした場合、本発明で規定される高度な
黒鉛構造の電池用黒鉛材を得ようとすると、ホウ素化合
物の存在下黒鉛化する場合は2200℃程度の温度でも
可能であるのに対し、ホウ素化合物を使用しない場合は
約700℃も高い2, 900℃以上の高温度を要する。
さらに、X線回折測定結果により示される構造がほぼ同
程度の黒鉛材においても、ホウ素化合物の存在下黒鉛化
された黒鉛材の方が、ホウ素化合物を使用しない場合の
黒鉛材より、放電容量、充放電効率等の電池の性能面で
優れた結果を示した。
In general, graphitization of a carbonaceous material proceeds as the heat treatment temperature is increased. However, when a mesophase pitch-based carbon fiber is used as a raw material, the graphite for a battery having a high graphite structure defined in the present invention is used. In order to obtain a material, it is possible to graphitize in the presence of a boron compound at a temperature of about 2200 ° C., whereas if no boron compound is used, a temperature as high as about 700 ° C. and a high temperature of 2,900 ° C. or more Cost.
Furthermore, even in the graphite material having a structure similar to that shown by the X-ray diffraction measurement result, the graphite material graphitized in the presence of the boron compound has a higher discharge capacity than the graphite material in the case where the boron compound is not used. Excellent results were shown in terms of battery performance such as charge and discharge efficiency.

【0036】このため、本発明で得られる黒鉛材と同程
度の電池性能を得ようとすると、ホウ素化合物を使用し
ない場合は、さらに高温度の3, 100℃程度が要求さ
れる。この3, 100℃というような高温度は、コスト
面もさることながら、現在の技術水準では、安定連続運
転が困難な状況にあり、また、炭素の昇華温度(3,3
70℃)により近づく点からも好ましくない。
Therefore, in order to obtain the same battery performance as that of the graphite material obtained in the present invention, a higher temperature of about 3,100 ° C. is required unless a boron compound is used. The high temperature of 3,100 ° C. is not only cost-effective, but also in the state of the art, stable continuous operation is difficult, and the sublimation temperature of carbon (3,3
(70 ° C.).

【0037】また、黒鉛化処理は、酸素の不存在下で行
うことが好ましい。これは、酸素が炭素材中の炭素と反
応し、二酸化炭素ガス等を生成し、黒鉛材の収率を低下
させる傾向があることによる。このためか、黒鉛化処理
時に添加するホウ素化合物においても、酸素を含む化合
物、例えば酸化ホウ素(B2 3 ;融点450℃以上、
沸点1, 500℃以上)等には、黒鉛化を促進する効果
が得られる反面、黒鉛材の収率が低下する傾向が見られ
る。
The graphitizing treatment is preferably performed in the absence of oxygen. This is because oxygen tends to react with carbon in the carbon material to generate carbon dioxide gas and the like, thereby decreasing the yield of the graphite material. For this reason, in the boron compound added during the graphitization treatment, a compound containing oxygen, for example, boron oxide (B 2 O 3 ; melting point of 450 ° C. or more,
(Boiling point 1,500 ° C. or higher), etc., the effect of promoting graphitization can be obtained, but the yield of the graphite material tends to decrease.

【0038】(4) 黒鉛材の特定の条件下での再熱処
理;本発明者は、先願発明において、ホウ素化合物の存
在下で黒鉛化処理して得られる黒鉛材が、充放電容量が
大きく、高エネルギー密度を有し、充放電サイクル特性
に優れた特徴を持つリチウム系二次電池用炭素材を提供
できることを示した。しかしながら、この黒鉛化処理
を、窒素雰囲気で行った黒鉛材は、リチウムイオン二次
電池用負極材として用いた場合、高い放電容量が安定し
て得ることが難しいことが分かった。その原因につい
て、鋭意検討を重ねた結果、黒鉛材の主に表層部等に窒
化ホウ素が形成されており、この窒化ホウ素がリチウム
イオンのインターカレーシヨンを阻害する要因となるこ
とが判明した。
(4) Re-heat treatment of graphite material under specific conditions; the present inventor has proposed that the graphite material obtained by graphitizing in the presence of a boron compound has a large charge / discharge capacity in the present invention. It has been shown that a carbon material for a lithium-based secondary battery having a high energy density and excellent characteristics of charge-discharge cycle characteristics can be provided. However, it has been found that it is difficult to stably obtain a high discharge capacity when the graphite material subjected to the graphitization treatment in a nitrogen atmosphere is used as a negative electrode material for a lithium ion secondary battery. As a result of intensive studies on the cause, it has been found that boron nitride is formed mainly in the surface layer portion of the graphite material, and this boron nitride is a factor inhibiting lithium ion intercalation.

【0039】窒化ホウ素は、融点が3, 000℃以上と
高く、通常の熱処理では、効率的に除去することが困難
であるが、本発明者は、窒化硼素を効率的に除去すべ
く、種々検討した結果、更に (イ) 減圧下または、 (ロ)
ハロゲンガス雰囲気下の特定の条件下で再熱処理する
ことで、黒鉛化の温度よりも低い再熱処理温度で、窒化
ホウ素を実質的に含有しない黒鉛材が得られ、かつ、電
池の性能が向上することを見出した。 ・上記窒化ホウ素の検出は、ESCA法、或いは元素分
析(ホウ素はプラズマ発光分析法、窒素は蒸留分離中和
滴定法を用いる。)により行うことができる。以下に、
上記特定の条件下での再熱処理方法について詳述する。
Although boron nitride has a high melting point of 3,000 ° C. or more, it is difficult to remove it efficiently by ordinary heat treatment. However, the present inventor has made various attempts to remove boron nitride efficiently. As a result of the examination, (a) under reduced pressure or (b)
By performing re-heat treatment under specific conditions under a halogen gas atmosphere, a graphite material substantially free of boron nitride is obtained at a re-heat treatment temperature lower than the graphitization temperature, and the performance of the battery is improved. I found that. The detection of boron nitride can be performed by ESCA method or elemental analysis (plasma emission analysis method for boron, and distillation separation neutralization titration method for nitrogen for nitrogen). less than,
The reheating method under the above specific conditions will be described in detail.

【0040】(イ) 減圧下での再熱処理;本発明の黒鉛
材は、そのままでは窒化ホウ素をその表層等に含有して
いるので、減圧下での熱処理を行う必要がある。減圧下
での熱処理条件としては、10torr以下、好ましくは
1.0〜0.5torrの減圧下で2, 000℃以上、好ま
しくは2, 300℃以上、より好ましくは2,300℃
以上2,500℃以下である。熱処理時間は減圧の程度
と熱処理温度等との関数であるので、一義的に決めるこ
とができないが、通常1時間程度、好ましくは30分〜
1時間程度保持することが望ましい。この場合、減圧は
大きいほど、熱処理温度は高いほど窒化ホウ素が昇華に
より除去され易く、10torrを越える圧力下や、200
0℃未満の熱処理温度では、窒化ホウ素の昇華が起き憎
く好ましくない。また、0.5torr未満の減圧は、コス
ト面及び装置の安全性の面で好ましくなく、また、再熱
処理の温度も上限は特に制限されないが、コスト面と黒
鉛材の物性面から、黒鉛化の熱処理温度以下とすること
が好ましい。
(A) Reheat treatment under reduced pressure: Since the graphite material of the present invention contains boron nitride in its surface layer as it is, it is necessary to perform heat treatment under reduced pressure. As the heat treatment conditions under reduced pressure, 2,000 ° C. or more, preferably 2,300 ° C. or more, more preferably 2,300 ° C. under a reduced pressure of 10 torr or less, preferably 1.0 to 0.5 torr.
Not less than 2,500 ° C. Since the heat treatment time is a function of the degree of pressure reduction and the heat treatment temperature and the like, it cannot be uniquely determined, but is usually about 1 hour, preferably 30 minutes to
It is desirable to hold for about one hour. In this case, the higher the pressure reduction and the higher the heat treatment temperature, the more easily boron nitride is removed by sublimation.
If the heat treatment temperature is lower than 0 ° C., sublimation of boron nitride occurs, which is not preferable. Further, a reduced pressure of less than 0.5 torr is not preferable in terms of cost and safety of the apparatus, and the upper limit of the temperature of the reheat treatment is not particularly limited. However, from the viewpoint of cost and physical properties of the graphite material, graphitization is difficult. It is preferable that the temperature is not higher than the heat treatment temperature.

【0041】(ロ) ハロゲンガス雰囲気下で再熱処理;
ハロゲンガス雰囲気下での再熱処理条件としては、窒
素、アルゴン等の不活性ガスとハロゲンガスを、ハロゲ
ンガス濃度が5vol %以上70vol %以下、好ましくは
10〜30vol %程度含有する混合気体の雰囲気下、
2, 000℃以上、好ましくは2, 300℃以上、より
好ましくは2, 300℃以上2, 500℃以下で、その
熱処理時間はハロゲンガスの濃度と熱処理温度等との関
数であるので、一義的に決めることができないが、通常
3時間程度、好ましくは2〜3時間程度保持することが
望ましい。また、ハロゲンガスの使用量としては、通常
再熱処理される黒鉛材中のホウ素の1.5倍、好ましく
は2〜20倍程度になるように調整し、熱処理炉へ投入
すれば良い。
(B) Re-heat treatment in a halogen gas atmosphere;
The conditions of the reheat treatment in the halogen gas atmosphere include a mixed gas containing an inert gas such as nitrogen or argon and a halogen gas having a halogen gas concentration of 5 vol% to 70 vol%, preferably about 10 to 30 vol%. ,
2,000 ° C. or higher, preferably 2,300 ° C. or higher, more preferably 2,300 ° C. or higher, and 2,500 ° C. or lower. Since the heat treatment time is a function of the concentration of the halogen gas and the heat treatment temperature, it is unique. However, it is usually desirable to hold for about 3 hours, preferably for about 2 to 3 hours. The amount of the halogen gas used may be adjusted so as to be 1.5 times, preferably about 2 to 20 times, the amount of boron in the graphite material to be reheated, and then charged into the heat treatment furnace.

【0042】このハロゲンガスの濃度は高いほど、熱処
理温度は高いほど窒化ホウ素がハロゲンガスとの反応に
より除去され易く、5vol %未満の濃度や、2000℃
未満の熱処理温度では、窒化ホウ素とハロゲンガスとの
反応が起き憎く好ましくない。ハロゲンガスの濃度が7
0 vol%を越えると、除去に要するハロゲンガスの使用
量が大幅に増加する傾向があり、コスト面から好ましく
ない。また、再熱処理の温度は、上記減圧下での再熱処
理の場合 (イ)と同様にコスト面と黒鉛材の物性面から、
黒鉛化の熱処理温度以下とすることが好ましい。また、
ハロゲンガスの種類としては、塩素、弗素、沃素等が挙
げられるが、塩素又は弗素の使用が、操作性、コスト面
及び入手の容易性から望ましい。
The higher the concentration of the halogen gas and the higher the heat treatment temperature, the more easily the boron nitride is removed by the reaction with the halogen gas.
If the heat treatment temperature is lower than the above, a reaction between boron nitride and a halogen gas occurs, which is not preferable. When the concentration of halogen gas is 7
If it exceeds 0 vol%, the amount of halogen gas used for removal tends to increase significantly, which is not preferable in terms of cost. Further, the temperature of the reheat treatment is the same as in the case of the reheat treatment under reduced pressure (a), from the viewpoint of cost and physical properties of the graphite material,
It is preferable that the temperature is not higher than the heat treatment temperature for graphitization. Also,
Examples of the type of halogen gas include chlorine, fluorine, and iodine. Use of chlorine or fluorine is desirable from the viewpoint of operability, cost, and availability.

【0043】(3) リチウムイオン二次電池用負極材:
本発明により得られた黒鉛材は、ポリエチレンやポリフ
ッ化ビニリデンやポリテトラフルオロエチレン等のバイ
ンダーを添加し、負極とするに好適な形状、例えばシー
ト又は板状に加圧ロール成形した後、対極にリチウム金
属を用いて還元処理を行うことによって容易に高性能な
負極とすることができる。このようにして作られた負極
は、単位体積当たりの容量が大きく、電池の小型化に好
適である。
(3) Anode material for lithium ion secondary battery:
The graphite material obtained according to the present invention is obtained by adding a binder such as polyethylene, polyvinylidene fluoride, or polytetrafluoroethylene, forming a pressure roll into a shape suitable for forming a negative electrode, for example, a sheet or plate, and then forming a counter electrode. By performing a reduction treatment using lithium metal, a high-performance negative electrode can be easily obtained. The negative electrode thus produced has a large capacity per unit volume and is suitable for miniaturization of a battery.

【0044】また、本発明による黒鉛材を負極に用い、
リチウムイオン二次電池を作成する場合には、電解液と
してはリチウム塩を溶解し得るものであればよいが、特
に非プロトン性の誘電率が大きい有機溶媒が好ましい。
上記有機溶媒としては、例えば、プロピレンカーボネー
ト、エチレンカーボネート、テトラヒドロフラン、2−
メチルテトラヒドロフラン、ジオキソラン、4−メチル
−ジオキソラン、アセトニトリル、ジメチルカーボネー
ト、メチルエチルカーボネート、ジエチルカーボネート
等を挙げることができる。これらの溶媒を単独あるいは
適宜混合して用いることが可能である。
Further, the graphite material according to the present invention is used for a negative electrode,
When a lithium ion secondary battery is prepared, the electrolytic solution may be any as long as it can dissolve the lithium salt, and an organic solvent having a large aprotic dielectric constant is particularly preferable.
As the organic solvent, for example, propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-
Examples thereof include methyl tetrahydrofuran, dioxolan, 4-methyl-dioxolan, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. These solvents can be used alone or in a suitable mixture.

【0045】電解質としては、安定なアニオンを生成す
るリチウム塩、例えば、過塩素酸リチウム、ホウフッ化
リチウム、六塩化アンチモン酸リチウム、六フッ化リン
酸リチウム(LiPF6 )等が好適である。また、リチ
ウムイオン二次電池の正極としては、例えば、酸化クロ
ム、酸化チタン、酸化コバルト、五酸化バナジウム等の
金属酸化物や、リチウムマンガン酸化物(LiMn2
4 )、リチウムコバルト酸化物(LiCoO2 )、リチ
ウムニッケル酸化物(LiNiO2 )等のリチウム金属
酸化物;硫化チタン、硫化モリブデン等の遷移金属のカ
ルコゲン化合物;及びポリアセチレン、ポリパラフェニ
レン、ポリピロール等の導電性を有する共役系高分子物
質等を用いることが出来る。
As the electrolyte, a lithium salt which generates a stable anion, such as lithium perchlorate, lithium borofluoride, lithium antimonate hexachloride, and lithium hexafluorophosphate (LiPF 6 ) are preferable. Examples of the positive electrode of the lithium ion secondary battery include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, and lithium manganese oxide (LiMn 2 O).
4 ) lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ); chalcogen compounds of transition metals such as titanium sulfide and molybdenum sulfide; and polyacetylene, polyparaphenylene, polypyrrole and the like. A conjugated polymer substance having conductivity or the like can be used.

【0046】これらの正極と負極との間に合成繊維製又
はガラス繊維製の不織布、織布やポリオレフィン系多孔
質膜、ポリテトラフルオロエチレンの不織布等のセパレ
ータを設ける。また、従来の電池と同様に集電体を使用
することができる。負極集電体としては、電極、電解液
等に電気化学的に不活性な導体、例えば銅、ニッケル、
チタン、ステンレス鋼などの金属を板、箔、棒の形態で
使用できる。本発明の二次電池は、前記セパレータ、集
電体、ガスケット、封口板、ケース等の電池構成要素と
本発明の特定の負極を用い、常法に従って円筒型、角型
或いはボタン型等の形態のリチウムイオン二次電池に組
立てることができる。
A separator such as a nonwoven fabric made of synthetic fiber or glass fiber, a woven fabric, a polyolefin-based porous membrane, or a nonwoven fabric made of polytetrafluoroethylene is provided between the positive electrode and the negative electrode. In addition, a current collector can be used as in the case of a conventional battery. As the negative electrode current collector, an electrode, a conductor which is electrochemically inert to the electrolytic solution, for example, copper, nickel,
Metals such as titanium and stainless steel can be used in the form of plates, foils and bars. The secondary battery of the present invention uses the above-mentioned battery components such as the separator, current collector, gasket, sealing plate, and case and the specific negative electrode of the present invention, and has a form such as a cylindrical type, a square type, or a button type according to a conventional method. Can be assembled into a lithium ion secondary battery.

【0047】[0047]

【作用】本発明のリチウムイオン二次電池用黒鉛材は、
(イ) ホウ素化合物を存在させながら、ミルド化した炭
素繊維等を窒素雰囲気下で黒鉛化処理することにより、
ホウ素化合物の作用原理は明らかではないが、高度に黒
鉛化が進み、充放電効率が大きく、かつ電圧効率が安定
化するし、更に、 (ロ) 上記黒鉛化後、特定の条件下、再熱処理すること
により、上述のように電池の性能向上を阻害すると見ら
れる窒化ホウ素を、黒鉛材が実質的に含有していないの
で、高い放電容量が安定して得られ、リチウムイオン二
次電池用としての性能をより向上できる。
The graphite material for a lithium ion secondary battery according to the present invention comprises:
(A) By subjecting the milled carbon fibers and the like to graphitization in a nitrogen atmosphere while the boron compound is present,
Although the principle of action of the boron compound is not clear, graphitization progresses to a high degree, charging and discharging efficiency is large, voltage efficiency is stabilized, and (b) after the above graphitization, re-heat treatment under specific conditions By doing so, boron nitride, which is considered to hinder the performance improvement of the battery as described above, since the graphite material is not substantially contained, a high discharge capacity can be obtained stably, and for lithium ion secondary batteries Performance can be further improved.

【0048】[0048]

【実施例】以下実施例により更に具体的に説明するが、
これらは本発明の範囲を制限するものではない。 (実施例1)<減圧下の再熱処理 (イ)> 光学的に異方性で比重1.25の石油系メソフェーズピ
ッチを原料として、幅3mmのスリットの中に直径0.
2mmφの紡糸孔を一列に500個有する口金を用い、
スリットから加熱空気を噴出させて、溶融ピッチを牽引
して平均直径13μmのピッチ繊維を製造した。この
時、紡糸温度は360℃、吐出量は0.8g/H・分で
あった。紡出された繊維を、補修部分が20メッシュの
ステンレス製金網で出来たベルトの背面から吸引しつつ
ベルト上に捕集した。
The present invention will be described more specifically with reference to the following examples.
They do not limit the scope of the invention. (Example 1) <Reheat treatment under reduced pressure (a)> A petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 was used as a raw material, and a diameter of 0.3 mm was formed in a slit having a width of 3 mm.
Using a spinneret with 500 2mmφ spinning holes in a row,
Hot air was blown out of the slit to pull the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C., and the discharge rate was 0.8 g / H · min. The spun fibers were collected on the belt while the repaired portion was suctioned from the back surface of the belt made of a stainless steel wire mesh of 20 mesh.

【0049】この捕集したマットを空気中、室温から3
00℃まで平均昇温速度6℃/分で昇温して不融化処理
を行った。引続き、この不融化糸を650℃で軽度に炭
化処理した後、クロスフローミルで粉砕し平均粒径18
μmの炭素繊維ミルドを得た。000前駆体ミルドに平
均粒径10μmの炭化ホウ素を5重量%添加し、均一に
なるように撹拌混合した後、窒素雰囲気下で2, 700
℃まで3℃/分の速度で昇温し、その温度で1時間保持
した。
The collected mat was placed in air at room temperature for 3 hours.
The infusibilization treatment was performed by raising the temperature to 00 ° C. at an average rate of 6 ° C./min. Subsequently, the infusibilized yarn was slightly carbonized at 650 ° C., and then pulverized with a cross flow mill to obtain an average particle size of 18%.
A μm carbon fiber mill was obtained. 5% by weight of boron carbide having an average particle diameter of 10 μm was added to the milled 000 precursor, and the mixture was stirred and mixed so as to be uniform.
The temperature was raised to 3 ° C. at a rate of 3 ° C./min, and kept at that temperature for 1 hour.

【0050】黒鉛化後の黒鉛化度をX線回折で測定する
と、黒鉛層間距離(d002 )=0.3355nm、C軸
方向の結晶子の大きさ(Lc)=74nm、a軸方向の
結晶子の大きさ(La)=100nm以上、(101)
回折ピークと(100)回折ピークのピーク比(P101
/P100 )=1.72であった。このミルド化黒鉛繊維
をESCA法により表面を分析すると、B−1Sピーク
とN−1Sピークが現れ、表層部に窒化ホウ素を形成し
ていることが分かった。
When the degree of graphitization after graphitization was measured by X-ray diffraction, the distance between graphite layers (d 002 ) = 0.3355 nm, the crystallite size in the C-axis direction (Lc) = 74 nm, and the crystallinity in the a-axis direction Child size (La) = 100 nm or more, (101)
Peak ratio of diffraction peak to (100) diffraction peak (P 101
/ P 100 ) = 1.72. When the surface of this milled graphite fiber was analyzed by the ESCA method, a B-1S peak and an N-1S peak appeared, and it was found that boron nitride was formed on the surface layer portion.

【0051】このミルド化黒鉛繊維を減圧下(1.0to
rr) 、2300℃で1時間熱処理した。熱処理後の黒鉛
化度をX線回折で測定すると、d002 =0.3355n
m、Lc=74nm、La=100nm以上、P101
100 =1.72となり、減圧熱処理前と比較して変化
していないことが分かった。該ミルド化黒鉛繊維をES
CA法により表面を分析すると、B−1SピークとN−
1Sピークが消失し、表層部の窒化ホウ素が除去されて
いることが分かった。
The milled graphite fiber was removed under reduced pressure (1.0 to
rr) and heat-treated at 2300 ° C. for 1 hour. When the degree of graphitization after the heat treatment was measured by X-ray diffraction, d 002 = 0.3355 n
m, Lc = 74 nm, La = 100 nm or more, P 101 /
P 100 = 1.72, indicating that there was no change compared to before the heat treatment under reduced pressure. The milled graphite fiber is ES
When the surface was analyzed by the CA method, the B-1S peak and the N-
The 1S peak disappeared, indicating that boron nitride in the surface layer had been removed.

【0052】更に、該ミルド化黒鉛繊維について、充放
電容量特性の測定を行った。即ち、陽極及び参照電極に
金属リチウムを用い、エチレンカーボネート(EC)/
ジメチルカーボネート(DMC)を体積比で1/1に調
整した混合炭酸エステル溶媒に、電解質として過塩素酸
リチウム(LiCl04 )を1モルの濃度で溶解させた
電解液中で実施し、充放電容量特性を測定した。充放電
容量特性の測定は、100mA/gの定電流充放電下で
行い、測定電位範囲は対参照電極(0〜2V/Li/L
+ )で、10回繰返し測定とした。初回の放電容量3
40mAh/g、充放電効率91%、2回目の放電容量
338mAh/g、充放電効率99. 8%といずれも高
い値を示した。また2回目以降10回目までにおいても
いずれも放電容量338mAh/g、充放電効率100
%と安定した値を示した。
Further, the charge and discharge capacity characteristics of the milled graphite fibers were measured. That is, metal lithium is used for the anode and the reference electrode, and ethylene carbonate (EC) /
Dimethyl carbonate (DMC) in a mixed carbonic ester solvent was adjusted to 1/1 by volume, lithium perchlorate (LiCl0 4) was performed in an electrolytic solution obtained by dissolving 1 molar concentration as the electrolyte, the charge-discharge capacity The properties were measured. The measurement of the charge / discharge capacity characteristic was performed under a constant current charge / discharge of 100 mA / g, and the potential range to be measured was from the reference electrode (0 to 2 V / Li / L).
i + ), the measurement was repeated 10 times. Initial discharge capacity 3
40 mAh / g, a charge / discharge efficiency of 91%, a second discharge capacity of 338 mAh / g, and a charge / discharge efficiency of 99.8% showed high values. In addition, the discharge capacity was 338 mAh / g and the charge / discharge efficiency was 100 from the second time to the tenth time.
% And a stable value.

【0053】(実施例2)<ハロゲンガス下での再熱処
理 (ロ)> 実施例1で得られた減圧下での熱処理を行う前のミルド
化黒鉛繊維100gに対し、窒素ガス中に塩素ガスを1
0vol %含有する混合ガスを20Lの割合で投入させた
雰囲気下、2, 300℃で2時間熱処理した。熱処理後
の黒鉛化度をX線回折で測定すると、d002 =0.33
55nm、Lc=74nm、La=100nm以上、P
101 /P100 =1.72となり、塩素ガス下の熱処理前
と比較して変化していないことが分かった。該ミルド化
黒鉛繊維をESCA法により表面を分析すると、B−1
SピークとN−1Sピークが消失し、表層部の窒化ホウ
素が除去されていることが分かった。更に、実施例1と
同様に該ミルド化黒鉛繊維を三極セルで充放電試験によ
り評価すると、339mAh/gの初期放電容量であっ
た。その他の電池特性も測定し表1に示した。
(Example 2) <Reheat treatment under halogen gas (b)> 100 g of the milled graphite fiber obtained in Example 1 before the heat treatment under reduced pressure was subjected to chlorine gas in nitrogen gas. 1
Heat treatment was performed at 2,300 ° C. for 2 hours in an atmosphere in which a mixed gas containing 0 vol% was introduced at a rate of 20 L. When the degree of graphitization after the heat treatment was measured by X-ray diffraction, d 002 = 0.33
55 nm, Lc = 74 nm, La = 100 nm or more, P
101 / P 100 = 1.72, indicating that there was no change compared to before the heat treatment under chlorine gas. When the surface of the milled graphite fiber was analyzed by the ESCA method, it was found that B-1
The S peak and the N-1S peak disappeared, and it was found that the boron nitride in the surface layer had been removed. Further, when the milled graphite fiber was evaluated by a charge / discharge test using a three-electrode cell in the same manner as in Example 1, the initial discharge capacity was 339 mAh / g. Other battery characteristics were also measured and are shown in Table 1.

【0054】(比較例1)実施例1で得られた減圧下で
の熱処理を行う前のミルド化黒鉛繊維を、実施例1と同
様にして、三極セルで充放電試験により評価すると、3
05mAh/gの初期放電容量であった。その他の電池
特性も測定し表1に示した。得られたミルド化黒鉛繊維
は、同様の黒鉛構造であっても実施例と比較し低い値で
あり、窒化ホウ素の存在が悪影響を与えると判断され
る。それらの結果を、下記表1にまとめる。
(Comparative Example 1) The milled graphite fiber obtained in Example 1 before the heat treatment under reduced pressure was evaluated by a charge / discharge test using a three-electrode cell in the same manner as in Example 1.
The initial discharge capacity was 05 mAh / g. Other battery characteristics were also measured and are shown in Table 1. The obtained milled graphite fiber has a lower value than that of the example even if it has a similar graphite structure, and it is determined that the presence of boron nitride has an adverse effect. The results are summarized in Table 1 below.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明により、 (イ) 炭素材をホウ素化
合物の存在下で、窒素雰囲気下で黒鉛化処理し、高度に
黒鉛化することで、充放電容量が大きく、且つ充放電サ
イクル特性に優れものとなり、更に、(ロ) 上記黒鉛化
した黒鉛材を特定の条件下で再熱処理することにより、
上述のように電池の性能向上を阻害すると見られる窒化
ホウ素を実質的に含有していない、高い放電容量が安定
して得られるリチウムイオン二次電池用負極に適した黒
鉛材を、提供することを可能にした。
According to the present invention, (a) a carbon material is graphitized in a nitrogen atmosphere in the presence of a boron compound, and is highly graphitized, so that the charge / discharge capacity is large and the charge / discharge cycle characteristics are high. In addition, (b) by re-heat treating the graphitized graphite material under specific conditions,
To provide a graphite material suitable for a negative electrode for a lithium ion secondary battery, which does not substantially contain boron nitride which is considered to hinder the performance improvement of the battery as described above and has a high discharge capacity stably obtained. Enabled.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素化合物の存在下で窒素雰囲気下で
黒鉛化処理され、更に減圧下、またはハロゲンガス雰囲
気下で再熱処理された黒鉛材であって、 該黒鉛材がX線回折による黒鉛層間距離(d002 )が
0.338nm以下、C軸方向の結晶子の大きさ(L
c)が35nm以上、a軸方向の結晶子の大きさ(L
a)が50nm以上、且つ(101)回折ピークと(1
00)回折ピークのピーク比(P101 /P100 )が1.
0以上であり、 且つ、窒化ホウ素を実質的に含有していない黒鉛材を使
用することを特徴とするリチウムイオン二次電池用負極
材。
1. A graphite material which has been graphitized in a nitrogen atmosphere in the presence of a boron compound and further reheated under reduced pressure or a halogen gas atmosphere, wherein the graphite material is a graphite interlayer by X-ray diffraction. When the distance (d 002 ) is 0.338 nm or less, the crystallite size (L
c) is 35 nm or more, and the crystallite size (L
a) is 50 nm or more, and (101) diffraction peak and (1)
00) The peak ratio of diffraction peaks (P 101 / P 100 ) is 1.
A negative electrode material for a lithium ion secondary battery, characterized by using a graphite material that is 0 or more and does not substantially contain boron nitride.
【請求項2】 メソフェーズピッチを原料とした炭素繊
維をミルド化した後、黒鉛化処理することを特徴とする
請求項1記載のリチウムイオン二次電池用負極材。
2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the carbon fibers made from the mesophase pitch are milled and then graphitized.
【請求項3】 メソフェーズピッチを原料とし、常法に
より紡糸、不融化し、さらにそのまま或いは1, 500
℃以下の温度で軽度に炭化処理した後にミルド化し、し
かる後にホウ素化合物を添加し、窒素雰囲気下で2, 2
00℃以上の温度で黒鉛化処理した後に、更に減圧下で
2, 000℃以上の温度で再熱処理することを特徴とす
る、請求項1記載のリチウム二次電池用黒鉛材の製造方
法。
3. Using mesophase pitch as a raw material, spinning and infusibilization by a conventional method, and further as it is or 1,500
Mildizing after mild carbonization at a temperature of not more than 2 ° C., then adding a boron compound and adding 2,2
The method for producing a graphite material for a lithium secondary battery according to claim 1, wherein after the graphitization treatment at a temperature of 00 ° C or higher, the heat treatment is further performed at a temperature of 2,000 ° C or higher under reduced pressure.
【請求項4】 メソフェーズピッチを原料とし、常法に
より紡糸、不融化し、さらにそのまま或いは1, 500
℃以下の温度で軽度に炭化処理した後にミルド化し、し
かる後にホウ素化合物を添加し、窒素雰囲気下で2, 2
00℃以上の温度で黒鉛化処理した後に、更にハロゲン
ガス雰囲気下で2, 000℃以上の温度で再熱処理する
ことを特徴とする、請求項1記載のリチウム二次電池用
黒鉛材の製造方法。
4. Using mesophase pitch as a raw material, spinning and infusibilizing by a conventional method, and further as it is or 1,500
Mildizing after mild carbonization at a temperature of not more than 2 ° C., then adding a boron compound and adding 2,2
2. The method for producing a graphite material for a lithium secondary battery according to claim 1, wherein after the graphitization treatment is performed at a temperature of at least 00 ° C., the heat treatment is further performed at a temperature of at least 2,000 ° C. in a halogen gas atmosphere. .
JP8331410A 1996-11-28 1996-11-28 Negative electrode material for lithium ion secondary battery and manufacture thereof Pending JPH10162829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8331410A JPH10162829A (en) 1996-11-28 1996-11-28 Negative electrode material for lithium ion secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8331410A JPH10162829A (en) 1996-11-28 1996-11-28 Negative electrode material for lithium ion secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10162829A true JPH10162829A (en) 1998-06-19

Family

ID=18243381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8331410A Pending JPH10162829A (en) 1996-11-28 1996-11-28 Negative electrode material for lithium ion secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10162829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029721A (en) * 2000-07-13 2002-01-29 Sec Corp Device and method for producing graphite
JP2010144299A (en) * 2008-12-19 2010-07-01 Polymatech Co Ltd Graphitized fiber, and method for producing the same
CN112117455A (en) * 2020-09-21 2020-12-22 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029721A (en) * 2000-07-13 2002-01-29 Sec Corp Device and method for producing graphite
JP2010144299A (en) * 2008-12-19 2010-07-01 Polymatech Co Ltd Graphitized fiber, and method for producing the same
CN112117455A (en) * 2020-09-21 2020-12-22 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP3540478B2 (en) Anode material for lithium ion secondary battery
JP3175801B2 (en) Negative electrode for secondary battery
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
JPH05325967A (en) Lithium secondary battery negative electrode material and manufacture thereof
JP2000164215A (en) Graphite material for negative electrode of lithium ion secondary battery
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP4204720B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JP2002100359A (en) Graphite material for negative electrode of lithium secondary battery, and its manufacturing method
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JPH10162829A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery