JPH09283145A - Carbon material for lithium secondary battery and manufacture thereof - Google Patents

Carbon material for lithium secondary battery and manufacture thereof

Info

Publication number
JPH09283145A
JPH09283145A JP8115254A JP11525496A JPH09283145A JP H09283145 A JPH09283145 A JP H09283145A JP 8115254 A JP8115254 A JP 8115254A JP 11525496 A JP11525496 A JP 11525496A JP H09283145 A JPH09283145 A JP H09283145A
Authority
JP
Japan
Prior art keywords
less
fiber
fibers
pitch
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8115254A
Other languages
Japanese (ja)
Inventor
Kasuke Nishimura
嘉介 西村
Tetsuji Takemura
哲治 竹村
Hideyuki Nakajima
秀行 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP8115254A priority Critical patent/JPH09283145A/en
Publication of JPH09283145A publication Critical patent/JPH09283145A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the doping amount of lithium, enhance charging/ discharging efficiency, and make high rate charging/discharging possible by forming the specified material into fibers, milling the fibers, then graphitizing the milled fibers, under the specified condition. SOLUTION: Graphite fibers, produced from meso-phase pitch, for a lithium secondary battery negative electrode material has a thermal conductivity of 400W/m.K or more, a specific resistance in the temperature range of 6-300K of 2×10<-4> ωcm or less. Milled graphite fibers are produced y forming infusible fibers from meso-phase pitch, carbonizing the infusible fibers at 40-1200 deg.C, forming into milled fibers having a mean partical size of 5-50μm, then graphitizing at 2000 deg.C or hither. Alternatively hydrocarbon having an aromatic carbon ratio of of 0.6 or more and a number average molecular weight of 100-350 is polymerized under the existence of a catalyst to form meso-phase pitch having a softening point of 250 deg.C or higher, and 100% meso-phase pitch is used as the raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム系非水二次
電池用負極材料に適した黒鉛繊維及びその製造法に関す
る。更に詳しくは、本発明によって得られた負極材用黒
鉛繊維を用いたリチウム系非水二次電池は、充放電容量
が大きく、高エネルギー密度を有し、且つ充放電サイク
ル特性に優れている特徴を有する。
TECHNICAL FIELD The present invention relates to a graphite fiber suitable for a negative electrode material for a lithium-based non-aqueous secondary battery and a method for producing the same. More specifically, the lithium-based non-aqueous secondary battery using the graphite fiber for negative electrode material obtained by the present invention has a large charge / discharge capacity, a high energy density, and excellent charge / discharge cycle characteristics. Have.

【0002】[0002]

【従来の技術】近年、電子機器は小型・軽量・高性能化
を目指して急速な技術発展を遂げ、それによりセルラ
ー、PHS、カムコーダー、パソコンに代表される携帯
用電子機器の普及が一段と進んだ。この新しい機器の発
展に伴い、新たな二次電池として登場したのがニッケル
水素電池やリチウム系非水二次電池である。特に、リチ
ウム系非水二次電池は、高エネルギー密度及び高起電力
である他、非水電解液を用いるために作動温度範囲が広
く、長期保存に優れ、さらに軽量小型である等の多くの
利点を有している。従って、このようなリチウム系非水
二次電池は、携帯用電子機器電源をはじめとして、電気
自動車、電力貯蔵用などの高性能電池としての実用化が
期待されている。
2. Description of the Related Art In recent years, electronic devices have undergone rapid technological development aiming at miniaturization, light weight, and high performance, and as a result, portable electronic devices such as cellular phones, PHSs, camcorders, and personal computers have become more popular. . With the development of this new equipment, nickel-hydrogen batteries and lithium-based non-aqueous secondary batteries have emerged as new secondary batteries. In particular, the lithium-based non-aqueous secondary battery has high energy density and high electromotive force, and since it uses a non-aqueous electrolyte, it has a wide operating temperature range, is excellent in long-term storage, and is lightweight and compact. Have advantages. Therefore, such a lithium-based non-aqueous secondary battery is expected to be put to practical use as a high-performance battery for power supplies for portable electronic devices, electric vehicles, and power storage.

【0003】リチウム系非水二次電池の性能と安全性の
向上は、負極に金属リチウムに代わって炭素系の材料を
用いることによって実現した。すなわち、炭素系の材料
を負極に用いた場合、リチウムイオンは炭素構造中に取
り込まれるためリチウムデンドライトは形成されない。
これによりデンドライト析出による問題が解決し、安全
性が飛躍的に高められた。この負極に用いられる炭素系
材料としては2つの系統があり、フルフリルアルコール
の焼成物のような低結晶性炭素材料(以下単に「炭素
材」と称す)とメソカーボンマイクロビーズ(MCM
B)の黒鉛化処理品や天然黒鉛等の黒鉛化材料(以下単
に「黒鉛材」と称す)が実用化されてきている。
Improvement of the performance and safety of the lithium-based non-aqueous secondary battery has been realized by using a carbon-based material instead of metallic lithium for the negative electrode. That is, when a carbon-based material is used for the negative electrode, lithium dendrites are not formed because lithium ions are incorporated into the carbon structure.
This solved the problem caused by dendrite precipitation and dramatically improved safety. There are two types of carbon materials used for this negative electrode, a low crystalline carbon material (hereinafter simply referred to as "carbon material") such as a fired product of furfuryl alcohol, and mesocarbon microbeads (MCM).
Graphitized products of B) and graphitized materials such as natural graphite (hereinafter simply referred to as "graphite material") have been put to practical use.

【0004】炭素材は、重量当たりのリチウムの取り入
れ量、すわわち重量当たりの容量が大きいことが特長的
である。黒鉛系の理論容量と言われるC6 Liの容量に
当たる372mAh/gを遥かに超える放電容量を示す
炭素材が種々報告されている。しかし、これらの炭素材
は、初回充放電効率(初回放電容量/初回充電容量)が
低く、またサイクル特性が悪い、或いは炭素材そのもの
の密度が小さい等の問題があり、小型の二次電池のよう
な場合には種々解決しなければならない問題がある。
The carbon material is characterized by a large amount of lithium taken in per weight, that is, a large capacity per weight. Various carbon materials have been reported which have a discharge capacity far exceeding 372 mAh / g, which is the theoretical capacity of graphite-based C 6 Li. However, these carbon materials have problems such as low initial charge / discharge efficiency (initial discharge capacity / initial charge capacity), poor cycle characteristics, or low density of the carbon material itself, and thus they are not suitable for small secondary batteries. In such cases, there are various problems to be solved.

【0005】一方、黒鉛材の場合は、反応機構がリチウ
ムの黒鉛層間へのインタカレーション・デインタカレー
ションという単純な反応から成り立っていること、それ
に伴って初回充放電効率が比較的高いこと、黒鉛材その
ものの密度が高いこと等から容積当たり高エネルギーが
得られることから期待が高まっている。しかし、黒鉛化
処理したMCMBを用いた場合には、充放電の繰り返し
による黒鉛材の膨張・収縮の繰り返しが原因と考えられ
る導電性不良が発生し、長期間の使用に耐え難いもので
ある。
On the other hand, in the case of a graphite material, the reaction mechanism consists of a simple reaction of intercalation / deintercalation of lithium between graphite layers, and the first charge / discharge efficiency is relatively high accordingly. Expectations are rising because high energy per volume can be obtained due to the high density of the graphite material itself. However, when the graphitized MCMB is used, it is difficult to withstand long-term use due to poor conductivity, which is considered to be caused by repeated expansion and contraction of the graphite material due to repeated charging and discharging.

【0006】また、天然黒鉛にあっては、黒鉛化度が高
い場合に、単位重量あたりの充放電可能容量は相当に大
きいが、無理なく取り出せる電流密度が小さく、また高
電流密度での充放電を行うと充放電効率が低下するとい
う問題がある。このような材料は大電流を取り出す必要
があり、かつ充電時間を短縮するために、高電流密度で
充電を行うことが望ましい高負荷電源、例えば駆動モー
ター等を有する機器用電源の負極に用いるには不適であ
る。
Further, in the case of natural graphite, when the degree of graphitization is high, the chargeable / dischargeable capacity per unit weight is considerably large, but the current density that can be naturally taken out is small, and the charge / discharge at high current density is also large. However, there is a problem that the charging / discharging efficiency decreases. It is necessary to extract a large current from such a material, and it is desirable to use it for the negative electrode of a high-load power supply, such as a power supply for equipment having a drive motor, for which it is desirable to charge at a high current density in order to shorten the charging time. Is not suitable.

【0007】このような黒鉛材の一つとして、特開平5
−325967号公報に開示されているように、メソフ
ェーズの体積含有率が70%以上のピッチを原料とした
炭素繊維の黒鉛化処理したものが、諸電池特性の測定結
果から優れることが指摘されている。この公報によると
原料とするメソフェーズピッチは易黒鉛化質の高いもの
であれば特に原料に制限されるものではなく、また、紡
糸条件、不融化条件等何ら規定されているものではな
い。しかし、より高性能な負極材を求められている現状
では、特定の原料を特定の製造条件で製造しなければ、
品質の安定した高性能な負極材を製造することが出来な
い。
As one of such graphite materials, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 325967, it has been pointed out that a carbon fiber obtained by graphitizing carbon fibers using a pitch having a mesophase volume content of 70% or more is excellent from the measurement results of various battery characteristics. There is. According to this publication, the mesophase pitch used as the raw material is not particularly limited to the raw material as long as it has a high graphitizable property, and the spinning conditions and the infusibilization conditions are not specified. However, in the current situation where a higher performance negative electrode material is required, unless a specific raw material is manufactured under specific manufacturing conditions,
It is not possible to manufacture a high-performance negative electrode material with stable quality.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のリチ
ウム系非水二次電池が未だ充放電容量が小さく、初期の
充放電効率が低く、充放電速度が遅く、さらにサイクル
寿命が短いと言う課題を解決する負極材の製造方法を提
供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, when the conventional lithium non-aqueous secondary battery has a small charge / discharge capacity, a low initial charge / discharge efficiency, a low charge / discharge rate, and a short cycle life. It is an object of the present invention to provide a method for manufacturing a negative electrode material that solves the problem.

【0009】[0009]

【課題を解決するための手段】本発明者は、メソフェー
ズピッチ系炭素繊維の製造に関し、原料から紡糸、不融
化、炭化の各工程を詳細に検討した結果、特定の原料を
用い特定の製造条件とすることで、優れた性能を有する
リチウム系非水二次電池の負極材用炭素繊維の製造が可
能なことを見出し、本発明を完成するに至った。すなわ
ち、本発明は: 1) 熱伝導率が400W/m・K以上で、且つ6K以上
300K以下の温度域において比抵抗率が2×10-4Ω
・cm以下であるリチウム系非水二次電池負極材用メソ
フェーズピッチ系黒鉛繊維を提供する。 2) メソフェーズピッチ系不融化繊維を400℃以上1
200℃以下の温度範囲で炭化し、次いで平均粒径が5
μm以上50μm以下となるようにミルド化した後、2
200℃以上で黒鉛化した、熱伝導率が400W/m・
K以上で、且つ6K以上300K以下の温度域において
比抵抗率が2×10-4Ω・cm以下であるリチウム系非
水二次電池負極材用メソフェーズピッチ系黒鉛繊維ミル
ドを提供する。また
Means for Solving the Problems The present inventor has made detailed investigations on the steps of spinning, infusibilizing, and carbonizing from raw materials in relation to the production of mesophase pitch carbon fibers, and as a result, uses specific raw materials and specific production conditions. Based on the above, it was found that it is possible to produce carbon fibers for a negative electrode material of a lithium-based non-aqueous secondary battery having excellent performance, and the present invention has been completed. That is, the present invention is as follows: 1) The specific resistance is 2 × 10 −4 Ω in the temperature range of 400 W / m · K or more and 6 K or more and 300 K or less.
Provide a mesophase pitch-based graphite fiber for a negative electrode material of a lithium-based non-aqueous secondary battery, which has a size of cm or less. 2) Mesophase pitch infusibilized fiber 400 ℃ or more 1
Carbonized in a temperature range of 200 ° C or less, and then an average particle size of 5
After milling so that the thickness is from μm to 50 μm, 2
Graphitized at 200 ℃ or higher, thermal conductivity is 400W / m ・
Provided is a mesophase pitch-based graphite fiber mill for a lithium-based non-aqueous secondary battery negative electrode material, which has a specific resistance of 2 × 10 −4 Ω · cm or less in a temperature range of K or higher and 6K or higher and 300K or lower. Also

【0010】3) 芳香族炭素比率faが0.6以上で、
且つ数平均分子量が100以上350以下の炭化水素を
触媒の存在下で重合させた、軟化点が250℃以上、且
つメソフェーズ成分が実質的に100%のメソフェーズ
ピッチを原料とする黒鉛繊維ミルドを提供する。さらに
は、 4) 芳香族炭素比率faが0.6以上で、且つ数平均分
子量が100以上350以下の炭化水素をフッ化水素と
フッ化硼素の存在下で重合させた軟化点が250℃以上
のメソフェーズ成分が実質的に100%のメフェーズピ
ッチを原料とし、 紡糸粘度が5ポイズ以上100ポイズ以下の粘度範
囲で紡糸し、 次いで、150℃から350℃の温度範囲におい
て、酸素含有率が4wt%以上10wt%以下となるよ
うに不融化し、 次いで、不活性ガス中で400℃以上1200℃以
下の温度範囲で炭化し、 次いで、平均粒径が5μm以上50μm以下となる
ようにミルド化し、 次いで、2200℃以上の温度で黒鉛化処理を行う
ことを特徴とする黒鉛繊維ミルドの製造方法も提供す
る。
3) When the aromatic carbon ratio fa is 0.6 or more,
Provided is a graphite fiber milled from a mesophase pitch having a softening point of 250 ° C. or higher and a mesophase component of substantially 100%, which is obtained by polymerizing a hydrocarbon having a number average molecular weight of 100 to 350 in the presence of a catalyst. To do. Furthermore, 4) a softening point of 250 ° C. or higher obtained by polymerizing a hydrocarbon having an aromatic carbon ratio fa of 0.6 or more and a number average molecular weight of 100 or more and 350 or less in the presence of hydrogen fluoride and boron fluoride. Of mesophase component of which the mesophase component is substantially 100% as a raw material, spinning is carried out in a viscosity range of 5 poise or more and 100 poise or less, and then the oxygen content is 4 wt% in the temperature range of 150 ° C to 350 ° C. % To 10 wt% or less, then carbonized in an inert gas in the temperature range of 400 ° C. to 1200 ° C., and then milled so that the average particle size is 5 μm to 50 μm, Next, there is also provided a method for producing a graphite fiber mill, which comprises performing graphitization at a temperature of 2200 ° C. or higher.

【0011】以下、本発明を具体的に説明する。 (1)原料ピッチについて なお、本発明において2000℃以上で熱処理(黒鉛
化)された炭素繊維を特に黒鉛繊維と称し、更に後述の
ようにミルド化(粉砕)されたものを黒鉛繊維ミルドと
称す。 <ピッチ原料>高性能なリチウム系非水二次電池の負極
材用黒鉛繊維を製造するためには、ピッチの原料となる
炭化水素源を選択することが重要である。出発原料の選
択を誤ると、以後の製造方法で如何に工夫を行っても限
界があり、最終的に目的とする高性能な負極用炭素材と
することが出来ない。ピッチ製造のための原料として
は、芳香族炭素比率faが0.6以上であることが必須
である。好ましくは、0.7以上である。
The present invention will be specifically described below. (1) Raw material pitch In the present invention, carbon fibers heat-treated (graphitized) at 2000 ° C. or higher are referred to as graphite fibers, and those milled (ground) as described below are referred to as graphite fiber milled. . <Pitch raw material> In order to produce a graphite fiber for a negative electrode material of a high performance lithium-based non-aqueous secondary battery, it is important to select a hydrocarbon source as a raw material of pitch. If the starting raw material is selected incorrectly, there is a limit to how devised in the subsequent manufacturing method, and the final desired high performance carbon material for negative electrode cannot be obtained. As a raw material for pitch production, it is essential that the aromatic carbon ratio fa is 0.6 or more. It is preferably 0.7 or more.

【0012】芳香族炭素比率とは全炭素原子に対する芳
香環構造の炭素原子の比率であり、ナフタリンのような
芳香族炭素が全ての場合はfa=1となる。faが0.
6未満の場合は、メソフェーズを構成する芳香族分子の
平面構造性が低く、このようなピッチを原料として得ら
れる黒鉛繊維は、黒鉛化が進み難く、負極としての容量
が大きくならない。さらに、ピッチ製造のための原料と
しては、数平均分子量で示すならば100以上350未
満、好ましくは120以上330未満であることも必須
である。
The aromatic carbon ratio is a ratio of carbon atoms of an aromatic ring structure to all carbon atoms, and fa = 1 in all cases of aromatic carbon such as naphthalene. fa is 0.
When it is less than 6, the planar structure of the aromatic molecules constituting the mesophase is low, and the graphite fiber obtained using such a pitch as a raw material is difficult to graphitize and the capacity as a negative electrode does not increase. Further, as a raw material for pitch production, it is essential that the number average molecular weight is 100 or more and less than 350, preferably 120 or more and less than 330.

【0013】数平均分子量が100以下の場合は、得ら
れるピッチ収率が極端に低くなり好ましくない。一方3
50以上の場合は、原料炭化水素の分子種がいたずらに
多くなり、様々な反応が進行し生成するピッチの均一性
が損なわれ、ひいては最終製品の品質のバラツキが大き
くなり好ましくない。
When the number average molecular weight is 100 or less, the pitch yield obtained is extremely low, which is not preferable. 3
When it is 50 or more, the number of molecular species of the raw material hydrocarbon is unnecessarily increased, various reactions proceed, the uniformity of the pitch produced is impaired, and the quality of the final product varies greatly, which is not preferable.

【0014】<ピッチ製造>高分子量の炭化水素は、不
活性ガス中で300℃以上の温度で熱処理することによ
り脱水素熱縮重合反応により次第に高分子化し、ピッチ
となる。一方、低分子量の炭化水素を原料とするピッチ
化反応としては、特開昭61−83317号公報におい
て塩化アルミニウム等のルイス酸触媒存在下で熱処理す
る方法が開示されている。また、特開昭63−1469
20号公報においては、縮合多環炭化水素を含有する物
質をフッ化水素・三フッ化硼素の存在下で重合させる方
法が開示されている。
<Production of Pitch> High molecular weight hydrocarbons are gradually polymerized by dehydrothermal polycondensation reaction by heat treatment in an inert gas at a temperature of 300 ° C. or higher to form pitch. On the other hand, as a pitching reaction using a low molecular weight hydrocarbon as a raw material, JP-A-61-83317 discloses a method of heat treatment in the presence of a Lewis acid catalyst such as aluminum chloride. Also, JP-A-63-1469
Japanese Patent Publication No. 20 discloses a method of polymerizing a substance containing a condensed polycyclic hydrocarbon in the presence of hydrogen fluoride / boron trifluoride.

【0015】本発明によると、芳香族炭素比率および数
平均分子量の性状、すなわちfaが0.6以上で且つ数
平均分子量が100以上350以下の炭化水素を原料と
し、この炭化水素1モルに対してフッ化水素を0.1モ
ル〜20モル、三フッ化硼素を0.05モル〜1モルの
比率で添加熱重合するピッチ製造が好ましい。この時の
反応温度は250℃〜350℃である。フッ化水素及び
三フッ化硼素の量がそれぞれ20モル、1モルを超えて
多く使用しても反応速度の増加が見られず有利でない。
一方、フッ化水素及び三フッ化硼素の量がそれぞれ0.
1モル、0.05モル未満では、実質的に100%のメ
ソフェーズピッチが得られない。
According to the present invention, a hydrocarbon having an aromatic carbon ratio and a number average molecular weight, that is, having a fa of 0.6 or more and a number average molecular weight of 100 or more and 350 or less is used as a raw material, and 1 mol of this hydrocarbon is used. Pitch production in which 0.1 mol to 20 mol of hydrogen fluoride and boron trifluoride are added at a ratio of 0.05 mol to 1 mol to perform thermal polymerization is preferable. The reaction temperature at this time is 250 ° C to 350 ° C. Even if the amounts of hydrogen fluoride and boron trifluoride are used in excess of 20 mol and 1 mol, respectively, the reaction rate is not increased and it is not advantageous.
On the other hand, the amounts of hydrogen fluoride and boron trifluoride were each 0.
When it is less than 1 mol and 0.05 mol, substantially 100% of mesophase pitch cannot be obtained.

【0016】また、反応温度が250℃以下の場合も反
応速度が著しく遅くなり好ましくない。一方、反応温度
が350℃を超えて高くなると、反応速度が暴走的にな
り均一なピッチが得難く好ましくない。製造されたピッ
チの軟化点としては250℃以上、好ましくは260℃
以上である。軟化点が250℃未満では、不融化工程に
おいて酸化ガスとの反応性が乏しく不融化反応時間が長
くかかるとともに繊維内部にまで酸素が拡散し黒鉛層面
の配向を乱し、結果として黒鉛化が進行しにくくなり好
ましくない。また、いたずらに軟化点が高くなると紡糸
が困難になり好ましくない。好ましくは、310℃以
下、更に好ましくは300℃以下である。ここでいう軟
化点はいわゆるメトラー軟化点である。
Also, when the reaction temperature is 250 ° C. or lower, the reaction rate becomes remarkably slow, which is not preferable. On the other hand, when the reaction temperature is higher than 350 ° C., the reaction rate becomes runaway and it is difficult to obtain a uniform pitch, which is not preferable. The softening point of the pitch produced is 250 ° C. or higher, preferably 260 ° C.
That is all. If the softening point is less than 250 ° C., the reactivity with the oxidizing gas is poor in the infusibilization process, and the infusibilization reaction time is long, and oxygen diffuses into the fibers to disturb the orientation of the graphite layer surface, resulting in the progress of graphitization. This is difficult to do and is not preferable. Further, if the softening point is unnecessarily high, spinning becomes difficult, which is not preferable. The temperature is preferably 310 ° C or lower, more preferably 300 ° C or lower. The softening point here is a so-called METTLER softening point.

【0017】さらに、原料ピッチの必須の条件としてピ
ッチが実質的に100%メソフェーズであることであ
る。光学的に等方性成分が含まれるとその部分の黒鉛化
が進行し難く好ましくない。メソフェーズの含有量は偏
光顕微鏡観察により求めることが出来る。
Further, an essential condition for the raw material pitch is that the pitch is substantially 100% mesophase. When an optically isotropic component is contained, graphitization of that portion is difficult to proceed, which is not preferable. The mesophase content can be determined by observing with a polarization microscope.

【0018】(2)紡糸について 原料ピッチを紡糸する際の必須条件は、紡糸粘度が5ポ
イズ以上100ポイズ以下であることである。この紡糸
粘度は、予め求めておいた原料ピッチの粘度−温度チャ
ートと紡糸時のノズル温度とから設定することが可能で
ある。紡糸粘度が5ポイズ未満では、紡糸時のショット
の発生が極端に多くなり、糸径のバラツキも大きく、ま
た、ノズルの汚れも激しく安定製造の観点からも好まし
くない。糸径の極端なバラツキは、個々の繊維の黒鉛化
度に差が生じることになり好ましくない。紡糸において
は、ノズルの各紡糸ホールの吐出量を等しくさせること
が、糸径並びに糸品質を一定にする上でも必要である
が、紡糸粘度を5ポイズ未満にすると、紡糸ノズルの背
圧が低くなり外部要因の影響を受け易いので、その結果
として各ホールの圧力に不揃いが生じる。
(2) Spinning The essential condition for spinning the raw material pitch is that the spinning viscosity is 5 poises or more and 100 poises or less. This spinning viscosity can be set from the viscosity-temperature chart of the raw material pitch and the nozzle temperature at the time of spinning which have been obtained in advance. If the spinning viscosity is less than 5 poise, shots during spinning will be extremely generated, the yarn diameter will be greatly varied, and the nozzle will be heavily soiled, which is not preferable from the viewpoint of stable production. Extreme variations in yarn diameter cause a difference in the degree of graphitization of individual fibers, which is not preferable. In spinning, it is necessary to equalize the discharge amount of each spinning hole of the nozzle in order to keep the yarn diameter and yarn quality constant, but if the spinning viscosity is less than 5 poise, the back pressure of the spinning nozzle will be low. Since it is easily affected by external factors, the pressure in each hole becomes uneven as a result.

【0019】すなわち、各ホールからのピッチの吐出量
が変動することになり糸径のバラツキ等が生じることと
なる。糸径のバラツキは変動係数で20以下となるよう
に条件を調整することが望ましい。また、紡糸粘度を低
下させるためには、紡糸温度を高くしなければならず、
紡糸粘度をいたずらに低下させることは、ピッチの熱変
質が起こりやすい温度範囲となり好ましくない。
That is, the discharge amount of the pitch from each hole varies, and the yarn diameter varies. It is desirable to adjust the conditions so that the variation in yarn diameter is 20 or less in terms of the coefficient of variation. Further, in order to reduce the spinning viscosity, the spinning temperature must be increased,
It is not preferable to unnecessarily reduce the spinning viscosity because the temperature range is likely to cause thermal deterioration of the pitch.

【0020】紡糸粘度が100ポイズを越えるような高
粘度の場合は、原料ピッチ中に含まれるメソフェーズの
運動の自由度が小さいため、紡糸ホールを通過する際や
ホール通過後の延伸工程でのせん断応力においても、繊
維軸方向への配向が充分に行われず、最終黒鉛化焼成後
においても黒鉛層の配向が劣り、同じ黒鉛化温度におけ
る黒鉛化の発達が100ポイズ以下で紡糸したものに比
べ劣り好ましくない。
When the spinning viscosity is high such that it exceeds 100 poise, the degree of freedom of movement of the mesophase contained in the raw material pitch is small, and therefore, the shearing occurs during the drawing process when passing through the spinning hole and after the hole. Even under stress, the orientation in the fiber axis direction was not sufficiently performed, the orientation of the graphite layer was inferior even after the final graphitization firing, and the graphitization development at the same graphitization temperature was inferior to that of spinning at 100 poise or less. Not preferable.

【0021】紡糸方法としては特に限定されるものでは
なく、メルトスピニング、メルトブロー、遠心紡糸、過
流紡糸等種々の方法を使用することが出来るが、5〜1
00ポイズの低粘度紡糸、紡糸時の生産性及び得られる
繊維の品質の観点から、メルトブロー法が好ましい。こ
の時の紡糸孔の大きさは、0.1mmφ以上0.5mm
φ以下、好ましくは0.15mmφ以上0.3mmφ以
下である。また、紡糸速度は毎分1000m以上、好ま
しくは毎分1500m以上、さらに好ましくは毎分20
00m以上である。
The spinning method is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and vortex spinning can be used.
From the viewpoint of low viscosity spinning of 00 poise, productivity during spinning and quality of the obtained fiber, the melt blow method is preferable. At this time, the size of the spinning hole is 0.1 mmφ or more and 0.5 mm.
φ or less, preferably 0.15 mmφ or more and 0.3 mmφ or less. The spinning speed is 1000 m / min or more, preferably 1500 m / min or more, more preferably 20 min / min.
It is more than 00m.

【0022】紡糸温度は原料ピッチにより幾分変化する
が、原料ピッチの軟化点以上でピッチが変質しない温度
以下であれば良く、通常300℃以上400℃以下、好
ましくは380℃以下である。また、糸径に関しては特
に限定されるものではなく、メルトブロー法において
は、1μm程度の直径の繊維から数十μmの糸径まで紡
糸可能である。繊維の直径が極端に太くなると、単位重
量当たりの繊維の表面積が相対的に小さくなるため、次
工程の不融化時に時間がかかると共に、繊維の脆さが原
因となって電極シート作製時繊維割れが生じ好ましくな
い。
Although the spinning temperature varies somewhat depending on the raw material pitch, it may be at a temperature not lower than the softening point of the raw material pitch and not deteriorating the pitch, and usually 300 ° C. or higher and 400 ° C. or lower, preferably 380 ° C. or lower. Further, the yarn diameter is not particularly limited, and in the melt-blowing method, fibers having a diameter of about 1 μm to yarn diameters of several tens μm can be spun. When the diameter of the fiber becomes extremely thick, the surface area of the fiber per unit weight becomes relatively small, so it takes time to infusibilize in the next step, and the brittleness of the fiber causes fiber cracking during electrode sheet production. Is not preferred.

【0023】一方、あまりに繊維径が細いと不融化時に
酸素が繊維の内部にまで浸透しその結果黒鉛化度が上が
りにくくなり好ましくない。従って、繊維の直径として
は3μmから30μm程度が好ましい。さらに好ましく
は5μmから20μmである。さらに、紡出後の繊維の
冷却速度も重要な因子となる。すなわち、所定の黒鉛配
向となるように制御されノズルから出た繊維は、その構
造を保持したままの状態で冷却固化する必要がある。い
たずらに、冷却速度が遅いと紡糸時に配向制御された繊
維内部の構造が緩和され、繊維軸方向に揃った配向に乱
れが生じ最終の黒鉛化処理を施しても黒鉛化度が抑えら
れる。
On the other hand, if the fiber diameter is too small, oxygen permeates into the inside of the fiber during infusibilization, and as a result, the degree of graphitization is difficult to increase, which is not preferable. Therefore, the diameter of the fiber is preferably about 3 μm to 30 μm. More preferably, it is 5 μm to 20 μm. Further, the cooling rate of the fiber after spinning is also an important factor. That is, it is necessary to cool and solidify the fibers which have been controlled so as to have a predetermined graphite orientation and which have come out of the nozzle, while maintaining their structure. Unnecessarily, if the cooling rate is slow, the internal structure of the fiber whose orientation is controlled during spinning is relaxed, and the orientation aligned in the fiber axis direction is disturbed, and the degree of graphitization is suppressed even when the final graphitizing treatment is performed.

【0024】好ましい平均冷却速度は1×104 ℃/秒
以上、好ましくは1×105 ℃/秒以上である。このよ
うに、繊維内部における黒鉛層面の配向状態は、紡糸工
程でほぼ決定される。従って、紡糸条件の制御が、原料
ピッチの選定とともに、繊維の黒鉛化度の決定に重要な
因子となる。上記の特定の原料ピッチを用い、特定の紡
糸条件で紡糸したものを黒鉛化処理することによって、
基本的に黒鉛層面が繊維表面に開放した繊維構造を有す
るメソフェーズ系炭素繊維の骨格を形成することが可能
となる。
The preferred average cooling rate is 1 × 10 4 ° C / sec or more, preferably 1 × 10 5 ° C / sec or more. As described above, the orientation state of the graphite layer surface inside the fiber is substantially determined in the spinning process. Therefore, control of the spinning conditions is an important factor in determining the graphitization degree of the fiber as well as the selection of the raw material pitch. Using the above specific raw material pitch, by graphitizing the spun under specific spinning conditions,
Basically, it becomes possible to form a skeleton of mesophase-based carbon fiber having a fiber structure in which the graphite layer surface is open on the fiber surface.

【0025】(3)不融化について 不融化方法としては、二酸化窒素や酸素等の酸化性ガス
雰囲気中で加熱処理する方法や、硝酸やクロム酸等の酸
化性水溶液中で処理する方法、さらには、光やγ線等に
よる重合処理方法も可能であるが、より簡便な不融化方
法は、空気中で加熱処理する方法である。不融化工程
は、炭化水素と酸素との反応により酸化縮重合させるこ
とにより、熱可塑性のピッチを溶融しない状態まで高分
子化する工程である。
(3) Insolubilization As the infusibilization method, a method of heat treatment in an atmosphere of an oxidizing gas such as nitrogen dioxide or oxygen, a method of treating in an oxidizing aqueous solution of nitric acid or chromic acid, and further A polymerization treatment method using light, γ-rays or the like is also possible, but a simpler infusibilizing method is a method of heat treatment in air. The infusibilizing step is a step of polymerizing the thermoplastic pitch to a non-melting state by oxidative polycondensation by the reaction of hydrocarbon and oxygen.

【0026】この不融化工程における酸化反応が不足す
ると、次工程である炭化工程で繊維が溶融し繊維同士が
融着したり、或いは繊維形態を保持出来なくなり好まし
くない。この不融化工程における酸素とピッチ中の芳香
族炭化水素との反応は、芳香族化合物の二重結合を開烈
する反応も進行させる。この反応は、紡糸工程で形成さ
せた繊維軸方向に秩序だって配向した黒鉛層の配向の乱
れを促進することになり、結果として、黒鉛化の進行を
阻害することとなる。すなわち、酸化反応が進みすぎる
と黒鉛化が進み難くなり好ましくない。
If the oxidation reaction in the infusibilizing step is insufficient, the fibers are melted in the subsequent carbonizing step and the fibers are fused to each other, or the fiber form cannot be maintained, which is not preferable. The reaction between oxygen and the aromatic hydrocarbons in the pitch in this infusibilization step also promotes the reaction for opening the double bond of the aromatic compound. This reaction promotes the disorder of the orientation of the graphite layer formed in the spinning process and oriented regularly in the fiber axis direction, and as a result, inhibits the progress of graphitization. That is, if the oxidation reaction proceeds too much, graphitization becomes difficult to proceed, which is not preferable.

【0027】したがって、適度な不融化条件が存在する
ことになる。不融化糸における酸素含有率で示すならば
4wt%以上10wt%以下、好ましくは5wt%以上
8wt%以下である。4wt%未満の場合は、炭化工程
で繊維内部の黒鉛化層の再溶融に伴う配向の乱れが生
じ、黒鉛化が進み難い。一方、10wt%を越える場合
は、繊維内部にまで酸素が進入し、紡糸工程で生成した
繊維軸方向に秩序だって配向した黒鉛層の乱れが生じ、
この場合も黒鉛化の発達が困難となる。
Therefore, an appropriate infusibilizing condition exists. The oxygen content in the infusibilized yarn is 4 wt% or more and 10 wt% or less, preferably 5 wt% or more and 8 wt% or less. If it is less than 4 wt%, the orientation of the graphitized layer in the fiber is re-melted in the carbonization step and the orientation is disturbed, and graphitization is difficult to proceed. On the other hand, when it exceeds 10 wt%, oxygen penetrates into the inside of the fiber, causing disorder of the graphite layer that is regularly oriented in the fiber axis direction generated in the spinning process,
Also in this case, development of graphitization becomes difficult.

【0028】このような不融化条件に合致するより具体
的な製造条件を示すならば、空気雰囲気中での不融化の
温度範囲としては、150℃から350℃の温度範囲を
徐々に加熱昇温することが有効である。最高処理温度を
350℃以上にすると酸素との熱反応が過激になり、酸
化重量減少が起こり好ましくない。また、150℃以下
ではいたずらに不融化に時間がかかることになり好まし
くない。より好ましくは、170℃から300℃の温度
範囲を平均昇温速度4℃〜10℃、さらに好ましくは5
℃〜8℃とすることである。
If more specific manufacturing conditions that meet such infusibilizing conditions are shown, the infusibilizing temperature range in the air atmosphere is gradually raised by heating from 150 ° C to 350 ° C. It is effective to do. When the maximum treatment temperature is set to 350 ° C. or higher, the thermal reaction with oxygen becomes extreme, resulting in a decrease in oxidized weight, which is not preferable. Further, if the temperature is 150 ° C. or lower, it will be unnecessarily time-consuming for infusibilization, which is not preferable. More preferably, a temperature range of 170 ° C. to 300 ° C. is average heating rate 4 ° C. to 10 ° C., and further preferably 5
It is to be 8 ° C to 8 ° C.

【0029】(4)炭化、ミルド化、黒鉛化について (i) 炭化 不融化処理を施した繊維は、不活性ガス雰囲気下で加熱
処理することにより炭素繊維(及び黒鉛繊維)とするこ
とができる。この時の昇温速度や保持時間は特に限定さ
れるものでない。黒鉛化度の進行程度は、最高処理温度
に最も依存し、次に処理時間に関係する。
(4) Carbonization, milling and graphitization (i) Carbonization The infusibilized fiber can be converted into carbon fiber (and graphite fiber) by heat treatment in an inert gas atmosphere. . The heating rate and the holding time at this time are not particularly limited. The degree of progress of the degree of graphitization depends most on the maximum processing temperature and then on the processing time.

【0030】(ii)ミルド化 現行の負極の一般的な製造方法は、粉体形状の炭素系材
料をバインダーや各種添加材とともに溶媒を用いスラリ
ー状にし、銅箔上に塗工する方法が用いられている。こ
の場合、炭素系材料を特定の範囲の粒径に粉砕する必要
が生じる。なお、本発明では、繊維を特定の範囲の粒径
に粉砕することを「ミルド化」と称す。一般的に、繊維
のミルド化とは繊維長を1mm以下に粉砕することをい
い、ピッチ系炭素繊維のミルド化の場合、平均繊維長が
200μm以下で、かつアスペクト比が100以下とな
る。また、電池の性能面から見て、ミルド化された繊維
の粒径が小さいほうが、繊維体積(もしくは重量)当た
りの繊維断面積が大きくなり好ましい反面、いたずらに
微粉砕すると活性な黒鉛層の露出も増加し、電解液と反
応し容量が低下する等の欠点も生じる。
(Ii) Milling As a general method for manufacturing the current negative electrode, a method is used in which a powdery carbonaceous material is slurried with a binder and various additives together with a solvent and coated on a copper foil. Has been. In this case, it becomes necessary to grind the carbon-based material into a particle size within a specific range. In the present invention, pulverizing the fibers to have a particle size within a specific range is referred to as "milling". Generally, fiber milling means pulverizing the fiber length to 1 mm or less. In the case of pitch carbon fiber milling, the average fiber length is 200 μm or less and the aspect ratio is 100 or less. Also, from the viewpoint of battery performance, it is preferable that the particle size of the milled fiber is smaller, because the fiber cross-sectional area per fiber volume (or weight) is larger, but on the other hand, if it is finely pulverized, the active graphite layer is exposed. Also increases, and there is a drawback that the capacity is reduced by reacting with the electrolytic solution.

【0031】このため、本発明においては、繊維の平均
粒径が5〜50μm、好ましくは10〜30μmとなる
ようにミルド化することが必須条件である。なお、繊維
の粒径の測定はレーザー回折粒度測定装置による。本発
明のメソフェースピッチ系炭素繊維をミルド化する際に
は、或る一定の温度履歴を受けた時点でミルド化するこ
とが必須条件である。すなわち、不融化処理後のミルド
化前の適度な炭化処理温度としては、400℃以上12
00℃以下、好ましくは500℃以上1000℃以下、
さらに好ましくは600℃以上800℃以下である。
Therefore, in the present invention, it is an essential condition to mill the fibers so that the average particle diameter of the fibers is 5 to 50 μm, preferably 10 to 30 μm. The particle size of the fiber is measured by a laser diffraction particle size measuring device. When milling the mesophase pitch-based carbon fiber of the present invention, it is an essential condition to mill the mesophase pitch carbon fiber at the time when it receives a certain temperature history. That is, an appropriate carbonization treatment temperature after infusibilization treatment and before milling is 400 ° C. or higher and 12
00 ° C or lower, preferably 500 ° C or higher and 1000 ° C or lower,
More preferably, it is 600 ° C. or higher and 800 ° C. or lower.

【0032】1200℃以上でミルド化すると、繊維軸
方向への開裂が多くなるので活性な表面が多くなり電解
液の分解の観点で負極として好ましくないばかりでな
く、繊維の硬度が高くなり粉砕装置の炭素繊維との接触
部の磨耗が多くなり好ましくない。また、400℃以下
では繊維の構造形成が不十分であるため、繊維の機械物
性の発達が未熟であり、粉砕時の衝撃により繊維形状を
なくすまで微粉化し、初期充放電効率の低い負極材とな
り好ましくない。
When milled at 1200 ° C. or higher, the number of active surfaces increases, so that the number of active surfaces increases, which is not preferable as a negative electrode from the viewpoint of decomposition of the electrolytic solution, and the hardness of the fibers increases and the crushing device increases. The wear of the contact portion with the carbon fiber is increased, which is not preferable. Further, since the structure formation of the fiber is insufficient at 400 ° C or lower, the mechanical properties of the fiber are not sufficiently developed, and the powder is pulverized by the impact during crushing until the fiber shape is lost, resulting in a negative electrode material with low initial charge / discharge efficiency. Not preferable.

【0033】炭素繊維をミルド化する方法としては、ビ
クトリーミル、ジェットミル、クロスフローミル、ター
ボミル等でミルド化することが有効である。炭素繊維の
ミルド化を効率良く行うためには、例えばプレートを取
り付けたローターを高速に回転することにより、繊維軸
に対し直角方向に炭素繊維を寸断する方法が適切であ
る。ミルド化繊維の繊維長(粒径)は、ローターの回転
数、プレートの角度及びローターの周辺に取り付けられ
たフィルターの目の大きさ等を調整することによりコン
トロールすることが可能である。
As a method for milling the carbon fiber, it is effective to mill it with a Victory mill, a jet mill, a cross flow mill, a turbo mill or the like. In order to efficiently carry out milling of the carbon fibers, it is appropriate to cut the carbon fibers in a direction perpendicular to the fiber axis by, for example, rotating a rotor equipped with a plate at a high speed. The fiber length (particle diameter) of the milled fiber can be controlled by adjusting the number of rotations of the rotor, the angle of the plate, the size of the mesh of the filter attached around the rotor, and the like.

【0034】(iii)黒鉛化 黒鉛繊維ミルドの製造は、上記の温度範囲で軽度炭化し
た後ミルド化処理を実施し、その後黒鉛化処理すること
が必須である。このような二段処理することにより、
ミルド化時の繊維の縦割れが防げると共に、ミルド化時
に新たに表面に露出した黒鉛層面がより高温の二次熱処
理時に縮重合・環化反応して、その表面の活性度が低下
することも、電解液の分解を阻止する上で効果がある。
(Iii) Graphitization In the production of a graphite fiber mill, it is essential to carry out mild carbonization in the above temperature range, then carry out milling, and then perform graphitization. By processing such two stage heat,
In addition to preventing vertical cracking of the fiber during milling, the graphite layer surface newly exposed on the surface during milling may undergo polycondensation / cyclization reaction during the secondary heat treatment at a higher temperature, resulting in a decrease in surface activity. , Effective in preventing decomposition of the electrolytic solution.

【0035】黒鉛化するための温度としては、2500
℃以上、好ましくは2700℃以上、さらに好ましくは
2800℃以上である。ただし、炭化ホウ素や酸化ホウ
素などのホウ素化合物を添加後黒鉛化する場合は、黒鉛
化温度としては2200℃以上あれば十分な黒鉛化度が
得られる。この時のホウ素化合物の添加量は被処理物に
対して有効ホウ素量として2wt%以上7wt%以下で
ある。添加量が2wt%以下ではホウ素化合物の添加効
果が少なく、また7wt%以上ではそれ以上添加しても
効果はあまり上がらなくなり、コストからも何らプラス
とはならない。
The temperature for graphitization is 2500
C. or higher, preferably 2700.degree. C. or higher, more preferably 2800.degree. C. or higher. However, when graphitizing after adding a boron compound such as boron carbide or boron oxide, a sufficient graphitization degree can be obtained if the graphitizing temperature is 2200 ° C. or higher. The amount of the boron compound added at this time is 2 wt% or more and 7 wt% or less as the effective boron amount with respect to the object to be treated. When the addition amount is 2 wt% or less, the addition effect of the boron compound is small, and when the addition amount is 7 wt% or more, the effect does not increase so much even if it is added more, and the cost is not positive at all.

【0036】(iv)黒鉛繊維ミルドの特徴 このようにして本発明による特定の原料を用い、特定の
条件で製造された黒鉛繊維ミルドは黒鉛結晶構造の発達
した非水系二次電池に最適な黒鉛化材料となる。本発明
の黒鉛繊維ミルドは、X線回折法による結晶子パラメー
ターで示すと、格子面間隔(d002 )は0.34nm以
下,さらに好ましくは0.338nm以下、C軸方向の
結晶子の大きさ(Lc)は20nm以上、好ましくは3
0nm以上である。しかし、この程度の黒鉛化が発達し
た領域になるともはやX線回折データのみで黒鉛材の微
妙な差を表すことは困難となる。
(Iv) Characteristics of Graphite Fiber Milled In this way, the graphite fiber milled using the specific raw material according to the present invention under the specific conditions is the most suitable graphite for the non-aqueous secondary battery having the developed graphite crystal structure. It becomes a chemical material. The graphite fiber milled product of the present invention has a lattice spacing (d 002 ) of 0.34 nm or less, more preferably 0.338 nm or less, and a crystallite size in the C-axis direction, as shown by crystallite parameters by X-ray diffraction. (Lc) is 20 nm or more, preferably 3
0 nm or more. However, in the region where graphitization is developed to this extent, it is no longer possible to express a subtle difference in the graphite material only by the X-ray diffraction data.

【0037】本発明者によると、リチウム系非水二次電
池用負極材に適した黒鉛繊維ミルドに必須の条件の一つ
として、2200℃以上の温度で黒鉛化処理した時の繊
維軸方向の熱伝導率が400W/m・K以上であり、且
つ6K以上300K以下の温度域において、比抵抗率が
2×10-4Ω・cm以下となるように原料ピッチと製造
方法を選択することである。なお、本発明では、黒鉛繊
維ミルドの場合、熱伝導率及び比抵抗の測定が困難なた
め、これらの測定は、ミルド化する前の測定に適した長
さの炭素繊維を使用し、黒鉛繊維ミルドを同じ温度条件
で黒鉛化処理したものの測定結果をもって測定値とし
た。
According to the present inventor, one of the essential conditions for a graphite fiber mill suitable for a negative electrode material for a lithium-based non-aqueous secondary battery is the direction of the fiber axis when graphitized at a temperature of 2200 ° C. or higher. By selecting the raw material pitch and the manufacturing method so that the specific resistance is 2 × 10 −4 Ω · cm or less in the temperature range of 400 W / m · K or more and 6 K or more and 300 K or less. is there. In the present invention, in the case of a graphite fiber milled, since it is difficult to measure the thermal conductivity and the specific resistance, these measurements use a carbon fiber having a length suitable for the measurement before milling, and the graphite fiber The measurement result was taken as the measurement value of the milled product that was graphitized under the same temperature condition.

【0038】熱伝導率が400W/m・K以下、あるい
は6K以上300K以下の温度域において比抵抗率が2
×10-4Ω・cm以上である場合は、たとえX線回折デ
ータが上記範囲を満たしていても黒鉛化が進行しておら
ず容量の少ない負極材となり好ましくない。なお、本発
明において、熱伝導率はモノフィラメントを用い光交流
法により測定した。また、比抵抗率の測定はJISR7
601に準拠して測定した。
In the temperature range where the thermal conductivity is 400 W / m · K or less, or 6 K or more and 300 K or less, the specific resistance is 2
When it is not less than × 10 −4 Ω · cm, even if the X-ray diffraction data satisfies the above range, graphitization does not proceed and the capacity of the negative electrode becomes small, which is not preferable. In addition, in the present invention, the thermal conductivity was measured by an optical alternating current method using a monofilament. In addition, the measurement of the resistivity is JISR7.
It measured based on 601.

【0039】(5)電池について 本発明による炭素材を負極に用い、リチウムイオン二次
電池を作成する場合には、電解液としてはリチウム塩を
溶解し得るものであればよいが、特に非プロトン性の誘
電率が大きい有機溶媒が好ましい。また、このようにし
て作られた炭素材からの負極は、単位体積当たりの容量
が大きく、電池の小型化に好適である。
(5) Battery When the carbon material according to the present invention is used for the negative electrode to prepare a lithium ion secondary battery, the electrolyte may be any one capable of dissolving a lithium salt, but especially an aprotic acid. Organic solvents having a high dielectric constant are preferred. Further, the negative electrode made of the carbon material thus produced has a large capacity per unit volume and is suitable for downsizing of a battery.

【0040】上記有機溶媒としては、例えば、プロピレ
ンカーボネート、エチレンカーボネート、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、ジオキソラ
ン、4−メチル−ジオキソラン、アセトニトリル、ジメ
チルカーボネート、メチルエチルカーボネート、ジエチ
ルカーボネート等を挙げることができる。これらの溶媒
を単独あるいは適宜混合して用いることが可能である。
電解質としては、安定なアニオンを生成するリチウム
塩、例えば、過塩素酸リチウム、ホウフッ化リチウム、
六塩化アンチモン酸リチウム、六フッ化アンチモン酸リ
チウム(LiPF6 )等が好適である。
Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyl-dioxolane, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like. These solvents can be used alone or in a suitable mixture.
As the electrolyte, a lithium salt that produces a stable anion, for example, lithium perchlorate, lithium borofluoride,
Lithium hexachloroantimonate, lithium hexafluoroantimonate (LiPF 6 ) and the like are preferable.

【0041】また、リチウムイオン二次電池の正極とし
ては、例えば、酸化クロム、酸化チタン、酸化コバル
ト、五酸化バナジウム等の金属酸化物、リチウムマンガ
ン酸化物(LiMn2 4 )、リチウムコバルト酸化物
(LiCoO2 )、リチウムニッケル酸化物(LiNi
2 )等のリチウム金属酸化物;硫化チタン、硫化モリ
ブデン等の遷移金属のカルコゲン化合物及びポリアセチ
レン、ポリパラフェニレン、ポリピロール等の導電性を
有する共役系高分子物質等を用いることが出来る。
Examples of the positive electrode of the lithium ion secondary battery include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, vanadium pentoxide, lithium manganese oxide (LiMn 2 O 4 ), lithium cobalt oxide. (LiCoO 2 ), lithium nickel oxide (LiNi
Lithium metal oxides such as O 2 ); chalcogen compounds of transition metals such as titanium sulfide and molybdenum sulfide, and conjugated polymer substances having conductivity such as polyacetylene, polyparaphenylene, and polypyrrole.

【0042】これらの正極と負極との間に合成繊維製又
はガラス繊維製の不織布、織布やポリオレフィン系多孔
質膜、ポリテトラフルオロエチレンの不織布等のセパレ
ータを設ける。本発明の二次電池は、前記セパレータ、
集電体、ガスケット、封口板、ケース等の電池構成要素
と本発明の特定の負極を用い、常法に従って円筒型、角
型或いはボタン型等の形態のリチウムイオン二次電池に
組み立てることができる。
A separator made of synthetic fiber or glass fiber non-woven fabric, woven fabric, polyolefin-based porous membrane, polytetrafluoroethylene non-woven fabric, or the like is provided between the positive electrode and the negative electrode. The secondary battery of the present invention, the separator,
By using the battery constituent elements such as the current collector, the gasket, the sealing plate, and the case, and the specific negative electrode of the present invention, a lithium ion secondary battery of a cylindrical type, a square type, a button type or the like can be assembled according to a conventional method. .

【0043】[0043]

【作用】本発明による非水二次電池用負極材として用い
られる黒鉛繊維は、ある特定の炭化水素化合物を原料と
し、特定の条件で原料ピッチを製造し、さらに特定の紡
糸、不融化、炭化・黒鉛化を行うことで、これまでにな
く高容量、高充放電効率を得ることができる。この黒鉛
繊維を負極に用いると、これまでになく電気容量が大き
く、充放電効率、特に初期充放電効率が高く、さらにサ
イクル特性に優れた負極の製造が可能となる。特に、特
筆すべきは、本発明による黒鉛繊維を用いた場合、充放
電速度をこれまでのものに比べ数倍早くすることが可能
となる。
The graphite fiber used as the negative electrode material for a non-aqueous secondary battery according to the present invention is produced by using a specific hydrocarbon compound as a raw material to produce a raw material pitch under specific conditions, and further by performing specific spinning, infusibilization, and carbonization. -By graphitizing, higher capacity and higher charge / discharge efficiency can be obtained. When this graphite fiber is used for the negative electrode, it is possible to manufacture a negative electrode having a larger electric capacity than ever before, high charge / discharge efficiency, particularly high initial charge / discharge efficiency, and further excellent cycle characteristics. Particularly noteworthy is that when the graphite fiber according to the present invention is used, the charge / discharge speed can be increased several times faster than the conventional ones.

【0044】[0044]

【実施例】以下実施例により更に具体的に説明するが、
これらは本発明の範囲を制限するものではない。 (実施例1)数平均分子量=280、fa=0.68の
石油系接触分解油を原料とし、このもの1モルに対して
フッ化水素を5モルオートクレーブに仕込み、攪拌下、
フッ化硼素を0.5モル供給した後、300℃で3時間
熱処理を行った。得られたピッチは、偏光顕微鏡観察に
より100%のメソフェーズ成分を有するピッチであ
り、メトラー軟化点は286℃であった。また、原料炭
化水素に対するピッチ収率は69%であった。このメソ
フェーズピッチを原料として、幅1.5mmのスリット
の中に直径0.2mmφの紡糸孔を一列に400個有す
る口金を用い、スリットから加熱空気を噴出させて、溶
融ピッチ牽引して平均直径13μmのピッチ繊維を製造
した。この時、紡糸ノズルの温度は355℃、吐出量は
0.6g/ホール・分であった。予めハーケ社のロドビ
スコ粘度計により測定していた原料ピッチの粘度−温度
からこの時の紡糸粘度は12ポイズと求められた。
The present invention will be described more specifically with reference to the following examples.
They do not limit the scope of the invention. (Example 1) A petroleum-based catalytically cracked oil having a number average molecular weight of 280 and fa of 0.68 was used as a raw material, and hydrogen fluoride was added to an autoclave in an amount of 5 mol per mol of the petroleum-based catalytic cracked oil.
After supplying 0.5 mol of boron fluoride, heat treatment was performed at 300 ° C. for 3 hours. The obtained pitch was a pitch having a 100% mesophase component as observed by a polarization microscope, and the Mettler softening point was 286 ° C. The pitch yield based on the raw material hydrocarbon was 69%. Using this mesophase pitch as a raw material, a spinneret having 400 spinning holes with a diameter of 0.2 mmφ in a row in a slit with a width of 1.5 mm was used, heated air was ejected from the slit, and the melt pitch was pulled to obtain an average diameter of 13 μm. Pitch fibers were produced. At this time, the temperature of the spinning nozzle was 355 ° C., and the discharge amount was 0.6 g / hole · minute. The spinning viscosity at this time was determined to be 12 poise from the viscosity-temperature of the raw material pitch, which was previously measured with a Rhodovisco viscometer manufactured by Haake.

【0045】紡出された繊維を、捕集部分が15メッシ
ュのステンレス製金網で出来たベルトの背面から吸引し
つつベルト上に捕集し、引き続き、空気中、170℃か
ら300℃まで平均昇温速度7℃/分で昇温して不融化
処理を行った。元素分析の結果、得られた不融化糸の酸
素含有率は6.2wt%であり、この不融化糸を、70
0℃で一次炭化後ミルド化し平均粒度21μm(レーザ
ー回折式による)の炭素繊維ミルドを得た。このものを
アルゴンガス中、3000℃まで3℃/分の速度で昇温
し、さらに3000℃で1時間保持し、黒鉛繊維ミルド
を得た。
The spun fiber was collected on the belt while sucking it from the back surface of the belt made of a stainless steel wire mesh having a 15 mesh collecting portion, and then continuously raised in air from 170 ° C to 300 ° C on average. The infusibilizing treatment was performed by raising the temperature at a temperature rate of 7 ° C / min. As a result of elemental analysis, the oxygen content of the obtained infusible yarn was 6.2 wt%.
After primary carbonization at 0 ° C., it was milled to obtain a carbon fiber mill having an average particle size of 21 μm (according to a laser diffraction formula). This was heated in argon gas to 3000 ° C. at a rate of 3 ° C./min, and further held at 3000 ° C. for 1 hour to obtain a graphite fiber mill.

【0046】同様にして得られた一次炭化糸をミルド化
することなく上記と同様にして黒鉛化処理を行った繊維
長の長い黒鉛繊維の熱伝導率は1060W/m・Kであ
り、この黒鉛繊維ミルドの熱伝導率も同様の値が得られ
ているものと考えられた。また、同様にして比抵抗率の
測定を繊維長の長い繊維を用い測定した結果を図1に示
す。6Kから300Kの全温度域においてほぼ1. 6×
10-4Ω・cmと一定したものであった。この黒鉛繊維
ミルドのX線回折測定の結果d002 =0.3367、L
002 =59nmであった。
The graphite fiber having a long fiber length obtained by subjecting the primary carbonized yarn obtained in the same manner to the graphitization treatment in the same manner as above without milling it has a thermal conductivity of 1060 W / mK. It was considered that similar values were obtained for the thermal conductivity of the fiber mill. In addition, FIG. 1 shows the result of the measurement of the specific resistance similarly performed using a fiber having a long fiber length. Approximately 1.6 × over the entire temperature range from 6K to 300K
It was a constant value of 10 −4 Ω · cm. Results of X-ray diffraction measurement of this graphite fiber milled d 002 = 0.3367, L
c 002 = 59 nm.

【0047】この黒鉛繊維ミルド5gにポリテトラフル
オロエチレン粉末0.15gを加え混練し、負極シート
とし3極セルで充放電試験を行った。試験は、陽極に金
属リチウムを用い、エチレンカーボネート(EC)/ジ
メチルカーボネート(DMC)を1/1に調整した混合
炭酸エステル溶媒に、電解質として過塩素酸リチウム
(LiCl04 )を1モルの濃度で溶解させた電解液中
で実施し、充放電容量特性を測定した。充放電容量特性
の測定は100mAh/gの定電流放電下で行い、放電
容量は電池電圧が2Vに低下するまでの容量とした。初
回の放電容量は310mAh/g、充放電効率が92
%、2回目の放電容量305mAh/g、充放電効率約
100%と高い値を示した。
To 5 g of this graphite fiber mill, 0.15 g of polytetrafluoroethylene powder was added and kneaded to prepare a negative electrode sheet, and a charge / discharge test was conducted in a 3-electrode cell. The test was carried out by using metallic lithium as the anode, mixed carbonate solvent prepared by adjusting ethylene carbonate (EC) / dimethyl carbonate (DMC) to 1/1, and lithium perchlorate (LiCl0 4 ) as an electrolyte at a concentration of 1 mol. It carried out in the dissolved electrolyte and measured the charge / discharge capacity characteristic. The charge / discharge capacity characteristics were measured under constant current discharge of 100 mAh / g, and the discharge capacity was defined as the capacity until the battery voltage dropped to 2V. The first discharge capacity is 310 mAh / g, and the charge / discharge efficiency is 92.
%, The second discharge capacity was 305 mAh / g, and the charge / discharge efficiency was about 100%, which were high values.

【0048】(実施例2)実施例1と黒鉛化時に300
0℃で10時間保持した以外同様にして黒鉛繊維ミルド
を得た。得られた黒鉛繊維ミルドを用い、実施例1と同
様にして、物性の測定及び電極評価を行ったところ、d
002 =0.3364、Lc002 =65nmの結晶性を示
し、熱伝導率は1250W/m・Kで、比抵抗率は図1
に示すように1.3×10-4Ω・cmとほぼ一定した値
であった。また、初回の放電容量が315mAh/g
で、充放電効率が93%と高い値を示した。
(Embodiment 2) 300 times during Embodiment 1 and graphitization
A graphite fiber milled product was obtained in the same manner except that it was held at 0 ° C for 10 hours. Using the obtained graphite fiber mill, the physical properties were measured and the electrodes were evaluated in the same manner as in Example 1. d
002 = 0.3364, Lc 002 = 65 nm, showing a crystallinity, a thermal conductivity of 1250 W / mK, and a specific resistivity of Fig. 1.
As shown in FIG. 3, the value was 1.3 × 10 −4 Ω · cm, which was a substantially constant value. In addition, the initial discharge capacity is 315 mAh / g
The charging / discharging efficiency showed a high value of 93%.

【0049】(実施例3)実施例1と同様にして得たメ
ソフェーズピッチ系繊維を大気中平均速度5℃で昇温し
不融化処理を行った。得られた不融化糸の酸素含有率は
8.7wt%で、この不融化糸を450℃で軽度炭化を
行った後ミルド化し、次いで、炭化ホウ素を軽度炭化し
た繊維ミルドに対して5wt%添加し、2200℃で1
時間保持し黒鉛化処理を行い黒鉛繊維ミルドを得た。得
られた黒鉛繊維ミルドを用い、実施例1と同様にして物
性の測定及び電極評価を行ったところ、d002 =0.3
366、Lc002 =45nmの結晶性を示し、熱伝導率
は550W/m・Kで、比抵抗率は図1に示すように
1.9×10-4Ω・cmとほぼ一定した値であった。ま
た、初回の放電容量が305mAh/gで、充放電効率
が91%と高い値を示した。
(Example 3) The mesophase pitch fiber obtained in the same manner as in Example 1 was heated in the air at an average speed of 5 ° C to be infusibilized. The oxygen content of the obtained infusible yarn was 8.7% by weight, and this infusible yarn was mildly carbonized at 450 ° C. and then milled, and then 5% by weight was added to the fiber milled mildly carbonized with boron carbide. And 1 at 2200 ℃
Graphite treatment was carried out by holding for a time to obtain a graphite fiber mill. Using the obtained graphite fiber mill, the physical properties were measured and the electrodes were evaluated in the same manner as in Example 1. As a result, d 002 = 0.3
366, Lc 002 = 45 nm, the thermal conductivity was 550 W / m · K, and the specific resistance was 1.9 × 10 −4 Ω · cm, which was a substantially constant value as shown in FIG. It was The initial discharge capacity was 305 mAh / g, and the charge / discharge efficiency was 91%, which was a high value.

【0050】(比較例1)市販のソーネルP100とソ
ーネルP120の2種のメソフェーズピッチ系炭素繊維
を用い、実施例1と同様にして、物性の測定及び電極評
価を行った。各繊維の物性は、ソーネルP100がd
002 =0.3389、Lc002 =29nmの結晶性を示
し、熱伝導率は580W/m・Kである。ソーネルP1
20がd002 =0.3376、Lc002 =32nmの結
晶性を示し、熱伝導率は720W/m・Kであった。比
抵抗率は図1に示すように6Kから300Kにおける温
度の上昇と共にどちらも下がる傾向を示し、最も低い値
でも2×10-4Ω・cmを上回っていた。また、3極セ
ル評価の結果は、ソーネルP100が放電容量が258
mAh/g、初回充放電効率が82%であり、ソーネル
P120が放電容量が275mAh/g、初回充放電効
率が83%とどちらも低い値であった。なお、実施例
1、2、3と比較例1の測定結果を表1にまとめて示
す。
(Comparative Example 1) Physical properties were measured and electrodes were evaluated in the same manner as in Example 1 by using two kinds of mesophase pitch carbon fibers commercially available, Sonel P100 and Sonel P120. As for the physical properties of each fiber, Sonel P100 is d
002 = 0.3389, shows a crystalline Lc 002 = 29 nm, the thermal conductivity of 580W / m · K. Sonel P1
20 showed crystallinity of d 002 = 0.3376 and Lc 002 = 32 nm, and the thermal conductivity was 720 W / m · K. As shown in FIG. 1, the specific resistivities tended to decrease as the temperature increased from 6 K to 300 K, and even the lowest value exceeded 2 × 10 −4 Ω · cm. In addition, as a result of the three-electrode cell evaluation, the discharge capacity of the Sonel P100 is 258.
mAh / g, the initial charge / discharge efficiency was 82%, the discharge capacity of Sonel P120 was 275 mAh / g, and the initial charge / discharge efficiency was 83%, which were both low values. The measurement results of Examples 1, 2, and 3 and Comparative Example 1 are summarized in Table 1.

【0051】(実施例4)実施例1で得られたメソフェ
ーズピッチを用い、紡糸温度=334℃、吐出量=0.
4g/ホール・分、紡糸粘度=45ポイズで紡糸を行っ
た。この繊維を用い実施例1と同様にして不融化、炭
化、ミルド化及び黒鉛化処理を行い黒鉛繊維ミルドを得
た。実施例1と同様に、物性の測定及び負極特性評価を
実施したところ、熱伝導率が802W/m・Kで、比抵
抗率が(6K〜300Kにおいて)1.7×10-4Ω・
cmとほぼ一定した値であった。また、初回放電容量=
300mAh/g、初回充放電効率=91%であった。
Example 4 Using the mesophase pitch obtained in Example 1, spinning temperature = 334 ° C., discharge rate = 0.
Spinning was carried out at 4 g / hole · minute and spinning viscosity = 45 poise. Using this fiber, infusibilization, carbonization, milling and graphitization were carried out in the same manner as in Example 1 to obtain a graphite fiber milled. When physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1, the thermal conductivity was 802 W / m · K and the specific resistance (at 6K to 300K) was 1.7 × 10 −4 Ω ·.
The value was almost constant as cm. The initial discharge capacity =
It was 300 mAh / g and the initial charge / discharge efficiency was 91%.

【0052】(比較例2)紡糸粘度を110ポイズ(紡
糸温度=318℃)に変えて紡糸を行った以外、実施例
4と同様に黒鉛化処理まで行い、実施例1と同様に物性
の測定及び負極特性評価を実施したところ、熱伝導率が
380W/m・Kで、初回放電容量も275mAh/g
と低い値を示した。
(Comparative Example 2) The physical properties were measured in the same manner as in Example 1 except that the spinning viscosity was changed to 110 poise (spinning temperature = 318 ° C.), and the spinning was carried out in the same manner as in Example 4. When the negative electrode characteristics were evaluated, the thermal conductivity was 380 W / mK and the initial discharge capacity was 275 mAh / g.
And showed a low value.

【0053】(比較例3)実施例4のメソフェーズピッ
チを原料として、紡糸粘度=3ポイズ(紡糸温度=37
0℃)で紡糸を行ったところ、紡糸開始後わずか10分
でノズルがピッチで汚れ紡糸不能となった。
Comparative Example 3 Using the mesophase pitch of Example 4 as a raw material, spinning viscosity = 3 poise (spinning temperature = 37).
When spinning was performed at 0 ° C., the nozzle was soiled due to the pitch and spinning became impossible 10 minutes after the spinning was started.

【0054】(比較例4)実施例1と同様にして得たメ
ソフェーズピッチ系繊維を、大気中170℃から260
℃まで平均速度7℃/分で昇温し不融化処理を行った。
得られた不融化繊維の酸素含有率は3.7wt%であ
り、また繊維間に融着が見られ、柔軟性に劣るものであ
った。この不融化繊維を実施例1と同様に炭化、ミルド
化、黒鉛化し黒鉛繊維ミルドを得た。実施例1と同様
に、物性の測定及び負極特性評価を実施したところ、熱
伝導率は、1100W/m・Kであり、比抵抗率は、
(6Kから300Kにおいて)1.6×10-4Ω・cm
とほぼ一定した値であり、初回の放電量も310mAh
/gであったが、初回充放電効率が82%と低く、しか
も10回目の放電容量が、270mAh/gと低下し
た。
(Comparative Example 4) A mesophase pitch fiber obtained in the same manner as in Example 1 was heated in the air from 170 ° C to 260 ° C.
The infusibilizing treatment was carried out by raising the temperature to 7 ° C at an average rate of 7 ° C / min.
The oxygen content of the obtained infusible fiber was 3.7 wt%, and fusion was observed between the fibers, resulting in poor flexibility. This infusible fiber was carbonized, milled and graphitized in the same manner as in Example 1 to obtain a graphite fiber milled. When physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1, the thermal conductivity was 1100 W / m · K, and the specific resistivity was
1.6 × 10 -4 Ω · cm (from 6K to 300K)
The value is almost constant and the initial discharge amount is 310 mAh.
However, the initial charge / discharge efficiency was as low as 82%, and the discharge capacity at the 10th time was 270 mAh / g.

【0055】(比較例5)実施例1と同様にして得たメ
ソフェーズピッチ系繊維を大気中170℃から300℃
まで平均速度1℃/分で昇温し不融化処理を行った。得
られた不融化繊維の酸素含有率は11.0wt%で、こ
の不融化繊維を実施例1と同様に炭化、ミルド化、黒鉛
化し黒鉛繊維ミルドを得た。実施例1と同様に、物性の
測定及び負極特性評価を実施したところ、熱伝導率は、
320W/m・Kであり、初回放電量は260mAh/
gで、初回充放電効率効率も86%と低くかった。
(Comparative Example 5) Mesophase pitch fibers obtained in the same manner as in Example 1 were heated in the air at 170 ° C to 300 ° C.
And an infusibilizing treatment was performed at an average rate of 1 ° C./min. The oxygen content of the obtained infusible fiber was 11.0 wt%, and this infusible fiber was carbonized, milled and graphitized in the same manner as in Example 1 to obtain a graphite fiber milled. When physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1, the thermal conductivity was
320 W / mK, the initial discharge amount is 260 mAh /
The initial charge / discharge efficiency was also as low as 86% in g.

【0056】(実施例5)工業用ナフタレン(数平均分
子量=132、fa=0.97)1モルに対し、0.5
モルのフッ化水素及び0.2モルのフッ化硼素をオート
クレーブに仕込み、280℃で3時間反応した。得られ
たピッチは収率72%であり、メトラー軟化点260
℃、100%メソフェーズ成分であった。この原料ピッ
チを実施例1と同様にして紡糸し、ピッチ繊維を得た。
この時の紡糸粘度は35ポイズであった。この繊維を酸
素含有率4.5wt%となるように不融化を行った後、
600℃で炭化した後ミルド化し、さらに、アルゴンガ
ス中2800℃で黒鉛化処理を行い黒鉛繊維ミルドを得
た。実施例1と同様に、物性の測定及び負極特性評価を
実施したところ、熱伝導率が420W/m・Kで、比抵
抗率が(6K〜300Kにおいて)1.9×10-4Ω・
cmとほぼ一定した値であった。また、初回放電容量=
302mAh/g、初回充放電効率=90%であった。
(Example 5) 0.5 mol per 1 mol of industrial naphthalene (number average molecular weight = 132, fa = 0.97)
Molar hydrogen fluoride and 0.2 mol of boron fluoride were charged into an autoclave and reacted at 280 ° C for 3 hours. The obtained pitch has a yield of 72% and has a METTLER softening point of 260.
It was a 100 ° C., 100% mesophase component. This raw material pitch was spun in the same manner as in Example 1 to obtain pitch fibers.
The spinning viscosity at this time was 35 poise. After infusibilizing this fiber to an oxygen content of 4.5 wt%,
It was carbonized at 600 ° C., milled, and then graphitized in argon gas at 2800 ° C. to obtain a graphite fiber milled. When physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1, the thermal conductivity was 420 W / m · K and the specific resistance (at 6K to 300K) was 1.9 × 10 −4 Ω.
The value was almost constant as cm. The initial discharge capacity =
It was 302 mAh / g, and the initial charge / discharge efficiency was 90%.

【0057】(比較例6)数平均分子量=380、fa
=0.72の石油留分を原料とし、実施例1と同様にし
てフッ化水素、フッ化硼素存在下熱処理を行った。得ら
れたピッチは偏光顕微鏡観察により100%のメソフェ
ーズ成分を有するピッチで、メトラー軟化点は295℃
とであった。この原料ピッチを実施例1と同様にして、
紡糸粘度35ポイズとなる紡糸温度で紡糸した後、酸素
含有率8.5wt%となるように不融化を行った。この
不融化繊維を実施例1と同様に炭化、ミルド化し、30
00℃で黒鉛化処理し黒鉛繊維ミルドを得た。実施例1
と同様に、物性の測定及び負極特性評価を実施したとこ
ろ、熱伝導率が410W/m・Kであり、比抵抗率は
(6K〜300Kにおいて)2.0×10-4Ω・cmで
あったが、初回放電容量が280mAh/gと低い値を
示した。
(Comparative Example 6) Number average molecular weight = 380, fa
Using a petroleum fraction of 0.72 as a raw material, heat treatment was performed in the presence of hydrogen fluoride and boron fluoride in the same manner as in Example 1. The obtained pitch is a pitch having a mesophase component of 100% by observation with a polarization microscope, and the Mettler softening point is 295 ° C.
And Using this raw material pitch as in Example 1,
After spinning at a spinning temperature such that the spinning viscosity was 35 poise, infusibilization was carried out so that the oxygen content was 8.5 wt%. This infusible fiber was carbonized and milled in the same manner as in Example 1 to give 30
Graphitization treatment was carried out at 00 ° C to obtain a graphite fiber mill. Example 1
Similarly to the above, when the physical properties were measured and the negative electrode characteristics were evaluated, the thermal conductivity was 410 W / m · K, and the specific resistance (at 6K to 300K) was 2.0 × 10 −4 Ω · cm. However, the initial discharge capacity was as low as 280 mAh / g.

【0058】(比較例7)数平均分子量=120、fa
=0.52の石油留分を原料とし、実施例1と同様にし
てフッ化水素、フッ化硼素存在下熱処理を行った。得ら
れたピッチは、偏光顕微鏡観察により100%のメソフ
ェーズ成分を有するピッチで、メトラー軟化点は273
℃とであった。この原料ピッチを実施例1と同様にし
て、紡糸粘度40ポイズとなる紡糸温度で紡糸した後、
酸素含有率6.9wt%となるように不融化を行った。
この不融化繊維を実施例1と同様に炭化、ミルド化し、
3000℃で黒鉛化処理し黒鉛繊維ミルドを得た。実施
例1と同様に、物性の測定及び負極特性評価を実施した
ところ、熱伝導率は440W/m・Kで、比抵抗率は
(6K〜300Kにおいて)2.0×10-4Ω・cmで
あったが、初回放電容量=262mAh/gと低い値を
示した。
(Comparative Example 7) Number average molecular weight = 120, fa
Heat treatment was performed in the presence of hydrogen fluoride and boron fluoride in the same manner as in Example 1 using a petroleum fraction of 0.52 as a raw material. The obtained pitch is a pitch having a mesophase component of 100% by observation with a polarization microscope and has a Mettler softening point of 273.
It was ℃. After spinning this raw material pitch in the same manner as in Example 1 at a spinning temperature at which the spinning viscosity is 40 poise,
Infusibilization was performed so that the oxygen content rate was 6.9 wt%.
This infusible fiber was carbonized and milled in the same manner as in Example 1,
Graphitization treatment was performed at 3000 ° C. to obtain a graphite fiber mill. Physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1. The thermal conductivity was 440 W / m · K and the specific resistance was 2.0 × 10 −4 Ω · cm (at 6K to 300K). However, the initial discharge capacity was 262 mAh / g, which was a low value.

【0059】(比較例8)実施例1と300℃での熱処
理時間を2.5時間とした以外同様にして、メソフェー
ズ含有量98%の軟化点277℃のピッチを製造した。
このピッチを実施例1と同様にして紡糸粘度40ポイズ
で紡糸した後、実施例1と同様にして、黒鉛繊維ミルド
を得た。実施例1と同様に、物性の測定及び負極特性評
価を実施したところ、熱伝導率が340W/m・Kで、
比抵抗率(6K〜300Kにおいて)も2.2×10-4
Ω・cmであり、また、初回放電容量も275mAh/
gと低い値を示した。
Comparative Example 8 A pitch having a mesophase content of 98% and a softening point of 277 ° C. was produced in the same manner as in Example 1 except that the heat treatment time at 300 ° C. was 2.5 hours.
This pitch was spun at a spinning viscosity of 40 poise in the same manner as in Example 1, and then a graphite fiber milled was obtained in the same manner as in Example 1. When physical properties were measured and negative electrode characteristics were evaluated in the same manner as in Example 1, the thermal conductivity was 340 W / m · K,
The specific resistance (at 6K to 300K) is also 2.2 × 10 −4
Ω · cm, and the initial discharge capacity is 275 mAh /
The value was as low as g.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】本発明によるリチウム系非水二次電池用
黒鉛繊維ミルドは、特定の原料を特定の条件で繊維化、
ミルド化、黒鉛化したものであり、リチウムに対するド
ープ容量が大きく、充放電効率も高く、且つ、高速での
充放電が可能である。本発明による炭素繊維を負極に用
いると、これまでになく容量、サイクル特性に優れ、リ
チウムデンドライトの生成の少ないリチウム系非水二次
電池を製造することが可能となる。
EFFECT OF THE INVENTION The graphite fiber mill for lithium-based non-aqueous secondary battery according to the present invention is made by forming a specific raw material into fiber under specific conditions,
It is formed into a milled or graphitized form, has a large doping capacity for lithium, has a high charge / discharge efficiency, and is capable of high-speed charge / discharge. When the carbon fiber according to the present invention is used for the negative electrode, it is possible to manufacture a lithium-based non-aqueous secondary battery which has excellent capacity and cycle characteristics and produces less lithium dendrite than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例で得られた黒鉛繊維の熱伝導
率と比抵抗率との関係を表すグラフである。
FIG. 1 is a graph showing the relationship between thermal conductivity and specific resistance of graphite fibers obtained in Examples and Comparative Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率が400W/m・K以上で、且
つ6K以上300K以下の温度域において比抵抗率が2
×10-4Ω・cm以下であることを特徴とするリチウム
系非水二次電池負極材用メソフェーズピッチ系黒鉛繊
維。
1. The specific resistance is 2 in the temperature range of 400 W / m · K or more and 6 K or more and 300 K or less.
A mesophase pitch-based graphite fiber for a negative electrode material of a lithium-based non-aqueous secondary battery, which is characterized by having a density of × 10 -4 Ω · cm or less.
【請求項2】 メソフェーズピッチを原料とし、常法に
よって得られた不融化繊維を400℃以上1200℃以
下の温度範囲で炭化し、次いで平均粒径が5μm以上5
0μm以下となるようにミルド化した後、2200℃以
上で黒鉛化した、熱伝導率が400W/m・K以上で、
且つ6K以上300K以下の温度域において比抵抗率が
2×10-4Ω・cm以下であることを特徴とするリチウ
ム系非水二次電池負極材用メソフェーズピッチ系黒鉛繊
維ミルド。
2. An infusible fiber obtained by a conventional method using mesophase pitch as a raw material is carbonized in a temperature range of 400 ° C. to 1200 ° C., and then has an average particle size of 5 μm to 5 μm.
After being milled to 0 μm or less, graphitized at 2200 ° C. or higher, the thermal conductivity is 400 W / m · K or higher,
A mesophase pitch-based graphite fiber mill for a lithium-based non-aqueous secondary battery negative electrode material, which has a specific resistance of 2 × 10 −4 Ω · cm or less in a temperature range of 6 K or more and 300 K or less.
【請求項3】 芳香族炭素比率faが0.6以上で、且
つ数平均分子量が100以上350以下の炭化水素を触
媒の存在下で重合させた、軟化点が250℃以上で、且
つメソフェーズ成分が実質的に100%のメソフェーズ
ピッチを原料とすることを特徴とする請求項2記載の黒
鉛繊維ミルド。
3. A mesophase component having a softening point of 250 ° C. or higher obtained by polymerizing a hydrocarbon having an aromatic carbon ratio fa of 0.6 or more and a number average molecular weight of 100 or more and 350 or less in the presence of a catalyst. 3. The graphite fiber milled product according to claim 2, wherein the raw material is substantially 100% mesophase pitch.
【請求項4】 芳香族炭素比率faが0.6以上で、且
つ数平均分子量が100以上350以下の炭化水素をフ
ッ化水素とフッ化硼素の存在下で重合させた軟化点が2
50℃以上のメソフェーズ成分が実質的に100%のメ
フェーズピッチを原料とし、 紡糸粘度が5ポイズ以上100ポイズ以下の粘度範
囲で紡糸し、 次いで、150℃から350℃の温度範囲におい
て、酸素含有率が4wt%以上10wt%以下となるよ
うに不融化し、 次いで、不活性ガス中で400℃以上1200℃以
下の温度範囲で炭化し、 次いで、平均粒径が5μm以上50μm以下となる
ようにミルド化し、 次いで、2200℃以上の温度で黒鉛化処理を行う
ことを特徴とする請求項2記載のリチウム系二次電池用
黒鉛繊維ミルドの製造方法。
4. The softening point obtained by polymerizing a hydrocarbon having an aromatic carbon ratio fa of 0.6 or more and a number average molecular weight of 100 or more and 350 or less in the presence of hydrogen fluoride and boron fluoride.
The mesophase component having a mesophase component of 50 ° C or higher is substantially 100% as a raw material, spinning is performed in a viscosity range of 5 poises to 100 poises, and then oxygen content is contained in a temperature range of 150 ° C to 350 ° C. So that the rate is 4 wt% or more and 10 wt% or less, then carbonized in an inert gas in the temperature range of 400 ° C. or more and 1200 ° C. or less, and then so that the average particle size is 5 μm or more and 50 μm or less. The method for producing a graphite fiber milled product for a lithium-based secondary battery according to claim 2, characterized in that it is made into a mild form and then graphitized at a temperature of 2200 ° C or higher.
JP8115254A 1996-04-15 1996-04-15 Carbon material for lithium secondary battery and manufacture thereof Pending JPH09283145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8115254A JPH09283145A (en) 1996-04-15 1996-04-15 Carbon material for lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8115254A JPH09283145A (en) 1996-04-15 1996-04-15 Carbon material for lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09283145A true JPH09283145A (en) 1997-10-31

Family

ID=14658142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8115254A Pending JPH09283145A (en) 1996-04-15 1996-04-15 Carbon material for lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09283145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186689A1 (en) * 2000-09-12 2002-03-13 Polymatech Co., Ltd. Thermally conductive polymer composition and thermally conductive molded article
EP1199328A1 (en) * 2000-10-19 2002-04-24 Polymatech Co., Ltd. Thermally conductive polymer sheet
EP1265281A3 (en) * 2001-06-06 2004-05-12 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
KR101286343B1 (en) * 2008-12-26 2013-07-15 가부시끼가이샤 구레하 Method for producing negative electrode carbon material
KR101418634B1 (en) * 2009-01-21 2014-07-14 가부시끼가이샤 구레하 Method for producing negative electrode material for nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186689A1 (en) * 2000-09-12 2002-03-13 Polymatech Co., Ltd. Thermally conductive polymer composition and thermally conductive molded article
US6730731B2 (en) 2000-09-12 2004-05-04 Polymatech Co., Ltd Thermally conductive polymer composition and thermally conductive molded article
EP1199328A1 (en) * 2000-10-19 2002-04-24 Polymatech Co., Ltd. Thermally conductive polymer sheet
US6652958B2 (en) 2000-10-19 2003-11-25 Polymatech Co., Ltd. Thermally conductive polymer sheet
EP1265281A3 (en) * 2001-06-06 2004-05-12 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US7264869B2 (en) 2001-06-06 2007-09-04 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
KR101286343B1 (en) * 2008-12-26 2013-07-15 가부시끼가이샤 구레하 Method for producing negative electrode carbon material
KR101418634B1 (en) * 2009-01-21 2014-07-14 가부시끼가이샤 구레하 Method for producing negative electrode material for nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP3540478B2 (en) Anode material for lithium ion secondary battery
US5622793A (en) Method for preparing negative electrode material for a lithium secondary cell
JP3175801B2 (en) Negative electrode for secondary battery
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode
JPH10312809A (en) Graphite material for high capacity nonaqueous secondary battery negative electrode and manufacture therefor
JPH10162829A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
JP2000208145A (en) Production of graphite material for high-capacity lithium ion secondary battery negative electrode
JPH11329434A (en) Carbon material for lithium ion secondary battery negative electrode and its manufacture
JP2003077471A (en) Graphite material for lithium ion secondary battery negative electrode and its manufacturing method
JPH09306476A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material