JP2001110415A - Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery - Google Patents

Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery

Info

Publication number
JP2001110415A
JP2001110415A JP28410499A JP28410499A JP2001110415A JP 2001110415 A JP2001110415 A JP 2001110415A JP 28410499 A JP28410499 A JP 28410499A JP 28410499 A JP28410499 A JP 28410499A JP 2001110415 A JP2001110415 A JP 2001110415A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite material
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28410499A
Other languages
Japanese (ja)
Inventor
Norimune Yamazaki
崎 典 宗 山
Hisafumi Kawamura
村 寿 文 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petoca Ltd
Original Assignee
Petoca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petoca Ltd filed Critical Petoca Ltd
Priority to JP28410499A priority Critical patent/JP2001110415A/en
Publication of JP2001110415A publication Critical patent/JP2001110415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphite material for the negative electrode of a lithium ion secondary battery, there a strength ratio I101/I100 of a plane 101 to a plane 100 is not less than 1.2 in X-ray diffraction measurement, and initial charging/ discharging efficiency and initial charging/discharging capacity, when soaked in electrolyte solution then charged at 30 to 50 degrees centigrade, are higher than those when soaked in electrolyte solution then charged at 25 degrees centigrade. SOLUTION: By using a graphite material for a negative electrode which contains a high ratio of graphite and has specific charging/discharging characteristic at high temperatures, a lithium ion secondary battery which shows high charging/discharging efficiency and has high discharging capacity after being charged or discharged especially at high temperatures can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、非水系リチウムイオン二
次電池に使用される負極の材料として好適な黒鉛材、そ
の黒鉛材の製造方法、およびそれを用いたリチウムイオ
ン二次電池用負極およびリチウムイオン二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a graphite material suitable as a material for a negative electrode used in a non-aqueous lithium ion secondary battery, a method for producing the graphite material, a negative electrode for a lithium ion secondary battery using the same, and It relates to a lithium ion secondary battery.

【0002】[0002]

【発明の技術的背景】一般にアルカリ金属を負極活物質
に用いた電池は、高エネルギー密度、高起電力、非水電
解液を用いるため作動温度範囲が広い、長期保存性に優
れる、さらには軽量小型である等、多くの特長を持って
いるため携帯用電子機器電源をはじめとして、電気自動
車や電力貯蔵用などの高性能電池としての実用化が期待
されている。
BACKGROUND OF THE INVENTION Generally, a battery using an alkali metal as a negative electrode active material has a wide operating temperature range because it uses a high energy density, a high electromotive force, and a non-aqueous electrolyte, has excellent long-term storage properties, and is lightweight. Due to its many features, such as its small size, it is expected to be put to practical use as a high-performance battery for powering portable electronic devices, electric vehicles and power storage.

【0003】しかし、現状の試作電池はリチウム二次電
池が本来有する特性を充分に発現しておらず、サイクル
寿命、充放電容量、エネルギー密度とも不完全なもので
ある。その大きな理由の一つは、用いられる負極にあ
る。例えば、金属リチウムを負極に用いた場合、充電時
に析出するリチウムが針状のデンドライトを形成し、正
・負極間の短絡を起こし易くなり、サイクル寿命、安全
性の観点で問題がある。
However, current prototype batteries do not sufficiently exhibit the characteristics inherent in lithium secondary batteries, and have incomplete cycle life, charge / discharge capacity, and energy density. One of the major reasons is the negative electrode used. For example, when metallic lithium is used for the negative electrode, lithium precipitated during charging forms needle-like dendrites, which tends to cause a short circuit between the positive electrode and the negative electrode, which is problematic in terms of cycle life and safety.

【0004】また、リチウムの反応性が非常に高いため
に、負極表面が電解液の分解反応により変成されるた
め、反復使用によって電池容量の低下が起こる問題もあ
る。これらリチウムの二次電池における問題点を解決す
るために、種々の負極材の検討がなされている。例え
ば、リチウムを含む合金として、リチウム−アルミ、ウ
ッド合金等を負極に用いることが検討されている。しか
し、作動温度や充放電条件の違いにより結晶構造が変化
するなど問題点を有していた。
Further, since the reactivity of lithium is very high, the surface of the negative electrode is denatured by the decomposition reaction of the electrolyte, and there is a problem that the battery capacity is reduced by repeated use. In order to solve these problems in lithium secondary batteries, various negative electrode materials have been studied. For example, the use of lithium-aluminum, wood alloy, or the like for the negative electrode as an alloy containing lithium has been studied. However, there are problems such as a change in the crystal structure due to a difference in operating temperature or charge / discharge conditions.

【0005】最近の開発動向は、専ら炭素系材料(黒鉛
化の度合いで、炭素材と黒鉛材と区別される)を負極活
物質に用いる検討が主流である。すなわち、充電時に生
成するリチウムイオンを黒鉛層間に取り込み(インター
カレーション)いわゆる層間化合物を形成することによ
りデンドライトの生成を阻止しようとする試みである。
In recent development trends, the mainstream study has been to use exclusively carbon-based materials (which are distinguished from carbon materials and graphite materials by the degree of graphitization) as the negative electrode active material. That is, it is an attempt to prevent the generation of dendrite by taking in (intercalating) lithium ions generated during charging between graphite layers to form a so-called interlayer compound.

【0006】炭素材としては、比較的に低温(一般的に
2000℃以下)で熱処理された、石炭、コークス、P
AN系炭素繊維、ピッチ系炭素繊維等が検討されてい
る。ところが、これら炭素材は黒鉛結晶子の大きさが小
さく結晶の配列も乱れているため、充放電容量が不十分
であり、充放電時の電流密度を高く設定すると電解液の
分解を生じ、サイクル寿命が低下するなど多くの問題点
を有していた。
The carbon materials include coal, coke, and P which are heat-treated at a relatively low temperature (generally, 2000 ° C. or lower).
AN-based carbon fibers, pitch-based carbon fibers, and the like have been studied. However, these carbon materials have a small graphite crystallite size and disordered crystal arrangement, so their charge / discharge capacity is inadequate. There were many problems such as a shortened life.

【0007】一方、現在、天然黒鉛、人造黒鉛などの黒
鉛材がリチウムイオン二次電池負極用の炭素系材料の一
つとして最も注目され、検討されている。天然黒鉛にあ
っては、黒鉛化度が高い場合に、単位重量あたりの充放
電可能容量は相当に大きいが、無理なく取り出せる電流
密度が小さく、また高電流密度での充放電を行うと充放
電効率が低下するという問題があった。
On the other hand, at present, graphite materials such as natural graphite and artificial graphite have received the most attention and are being studied as one of the carbon-based materials for the negative electrode of a lithium ion secondary battery. In the case of natural graphite, when the degree of graphitization is high, the chargeable / dischargeable capacity per unit weight is considerably large, but the current density that can be taken out without difficulty is low. There is a problem that the efficiency is reduced.

【0008】この黒鉛材としての人造黒鉛は、比較的に
高温(一般的に2000℃以上)で熱処理されたもの
で、なかでも、特開平6−168725号公報では、メ
ソフェーズピッチを紡糸して得たピッチ繊維を不融化
し、更に炭化および黒鉛化して得たメソフェーズピッチ
系黒鉛繊維が、諸電池特性の測定結果からリチウムイオ
ン二次電池用の負極材料として優れていることが指摘さ
れている。
The artificial graphite as the graphite material has been heat-treated at a relatively high temperature (generally 2,000 ° C. or higher). In particular, JP-A-6-168725 discloses that the artificial graphite is obtained by spinning a mesophase pitch. It has been pointed out from the measurement results of various battery characteristics that the mesophase pitch-based graphite fiber obtained by infusing the melted pitch fiber and further carbonizing and graphitizing it is excellent as a negative electrode material for a lithium ion secondary battery.

【0009】ところで、黒鉛材の黒鉛化度が、これを負
極材に用いたリチウムイオン二次電池の充放電容量と密
接な関係があることが知られている。したがって、如何
に黒鉛化度を高めるかは、負極用黒鉛材を製造する上で
重要な課題となっている。メソフェーズピッチ系黒鉛繊
維では、例えばピッチ繊維の不融化の程度を低くし、次
いで得られた不融化繊維を炭化および黒鉛化して、得ら
れる黒鉛材の黒鉛化度を向上させる方法が知られてい
る。
It is known that the degree of graphitization of a graphite material is closely related to the charge / discharge capacity of a lithium ion secondary battery using the same as a negative electrode material. Therefore, how to increase the degree of graphitization is an important issue in manufacturing graphite materials for negative electrodes. For mesophase pitch-based graphite fibers, for example, a method of reducing the degree of infusibilization of pitch fibers, then carbonizing and graphitizing the obtained infusibilized fibers, and improving the degree of graphitization of the obtained graphite material is known. .

【0010】しかしながら、このようにして得た黒鉛繊
維では、これを負極材として用いたリチウムイオン二次
電池の充放電容量が、黒鉛化度から期待されるほど大き
くなく、初期充放電効率も低いという問題があった。ま
た、ホウ素は黒鉛化を促進する元素として古くから知ら
れており、特開平8−31422号公報および特開平8
−306359号公報には、炭素粉末あるいはピッチ系
炭素繊維粉末にホウ素を添加して2500℃以上で黒鉛
化処理することにより黒鉛化度を高め、充放電容量を改
善する方法が開示されている。
However, in the graphite fiber thus obtained, the charge / discharge capacity of a lithium ion secondary battery using the same as a negative electrode material is not so large as expected from the degree of graphitization, and the initial charge / discharge efficiency is low. There was a problem. Boron has long been known as an element for promoting graphitization, and is disclosed in Japanese Patent Application Laid-Open Nos.
JP-A-306359 discloses a method in which boron is added to carbon powder or pitch-based carbon fiber powder and graphitized at 2500 ° C. or higher to increase the degree of graphitization and improve the charge / discharge capacity.

【0011】しかしながら、このような方法において
は、窒化ホウ素等のホウ素化合物が黒鉛材の表面に生成
し、これらの化合物が、リチウムイオンのインターカレ
ーションを阻害し、しかも導電性に劣るため、やはり期
待するほど充放電容量の改善がなされないという問題を
有していた。本発明者等は、このような高黒鉛化度の黒
鉛材に伴う従来技術の問題点を解決すべく種々研究・検
討した結果、特定の不融化の程度の不融化ピッチ繊維、
特に特定のIR分析特性および特定の酸素/炭素原子数比
を有する不融化ピッチ繊維を用いて得た黒鉛繊維は、高
黒鉛化度を有し、かつこれを電解液に浸漬して、30〜
50℃で充電または充放電すると、25℃で充電または
充放電したときより初期充放電効率および充放電容量が
高いという新規かつ特異な特性を有し、さらには一度こ
のような高温で充電または充放電させれば、その後は通
常の温度条件、例えば20〜25℃程度で充放電を行っ
てもその高い充放電容量を維持できることを見出し、本
発明を完成させた。
However, in such a method, boron compounds such as boron nitride are formed on the surface of the graphite material, and these compounds inhibit lithium ion intercalation and have poor conductivity. There was a problem that the charge / discharge capacity was not improved as much as expected. The present inventors have conducted various studies and studies to solve the problems of the prior art associated with such a graphite material having a high degree of graphitization, and as a result, an infusible pitch fiber having a specific degree of infusibility,
In particular, graphite fibers obtained using infusible pitch fibers having specific IR analysis characteristics and a specific oxygen / carbon atom ratio have a high degree of graphitization, and are immersed in an electrolyte to obtain
Charging or charging / discharging at 50 ° C has a new and unique characteristic of higher initial charging / discharging efficiency and charging / discharging capacity than charging / discharging at 25 ° C, and once charging or charging at such a high temperature. It has been found that the discharge and discharge can maintain the high charge and discharge capacity even when the charge and discharge are performed under normal temperature conditions, for example, about 20 to 25 ° C., and the present invention has been completed.

【0012】[0012]

【発明の目的】本発明は、前記のような従来技術に伴う
問題点を解決するためになされたものであり、リチウム
イオン二次電池の負極材料として用いた場合に、初期充
放電効率が高く、放電容量が大きな二次電池を提供でき
る、高黒鉛化度の負極用黒鉛材、その黒鉛材の製造方
法、およびそれを用いたリチウムイオン二次電池用負極
およびリチウムイオン二次電池を提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems associated with the prior art as described above, and when used as a negative electrode material of a lithium ion secondary battery, the initial charge / discharge efficiency is high. Provided is a graphite material for a negative electrode having a high degree of graphitization, a method for producing the graphite material, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same, which can provide a secondary battery having a large discharge capacity. It is intended to be.

【0013】[0013]

【発明の概要】本発明に係るリチウムイオン二次電池の
負極用黒鉛材は、X線回折測定における101面と10
0面の強度比I101/I100が1.2以上であり、電解液
に浸漬し、25℃にて充電した場合の初期充放電効率お
よび初期放電容量に比べ、30〜50℃にて充電した場
合の初期充放電効率および初期放電容量の方が高いこと
を特徴としている。
SUMMARY OF THE INVENTION Graphite material for a negative electrode of a lithium ion secondary battery according to the present invention has 101 surfaces and 10 surfaces in X-ray diffraction measurement.
The zero surface intensity ratio I 101 / I 100 is 1.2 or more, and the battery is charged at 30 to 50 ° C. as compared with the initial charge / discharge efficiency and initial discharge capacity when immersed in an electrolytic solution and charged at 25 ° C. In this case, the initial charge / discharge efficiency and the initial discharge capacity are higher.

【0014】また、本発明に係るリチウムイオン二次電
池の負極用黒鉛材は、25℃で充電および放電した場合
の初期充放電効率および初期放電容量に比べ、30〜5
0℃にて充電および放電した場合の初期充放電効率およ
び初期放電容量の方が高い。本発明に係るリチウムイオ
ン二次電池の負極用黒鉛材の製造方法は、FT−IR
(フーリエ変換赤外)分光測定において、1670cm
-1以上1830cm-1以下に現れるカルボニル基につい
てのピーク面積:S(CO)の、1530cm-1以上167
0cm-1未満に現れるエチレン結合についてのピーク面
積:S(C=C)に対する比S(CO)/S(C=C)が0.40〜0.5
8であり、元素分析において酸素の炭素に対する原子数
比O/Cが0.045〜0.060であるメソフェーズピ
ッチ系不融化繊維を炭化し、次いで黒鉛化することを特
徴としている。
The graphite material for a negative electrode of the lithium ion secondary battery according to the present invention has an initial charge / discharge efficiency and an initial discharge capacity of 30 to 5 times when charged and discharged at 25 ° C.
The initial charge / discharge efficiency and the initial discharge capacity when charged and discharged at 0 ° C. are higher. The method for producing a graphite material for a negative electrode of a lithium ion secondary battery according to the present invention comprises an FT-IR
(Fourier transform infrared) 1670 cm
Peak area of the carbonyl group appears at -1 to 1830 cm -1 or less: S of (CO), 1530 cm -1 167
Peak area for ethylene bond appearing below 0 cm -1 : ratio of S (CO) / S (C = C) to S (C = C) is 0.40 to 0.5
8, characterized in that in the elemental analysis, the mesophase pitch-based infusible fiber having an atomic ratio of oxygen to carbon O / C of 0.045 to 0.060 is carbonized and then graphitized.

【0015】本発明に係る負極用黒鉛材の製造方法で
は、前記炭化工程で得られた炭素繊維をミルド化し、次
いで黒鉛化することが望ましい。また、ミルド化で得ら
れたミルド化炭素繊維を、ホウ素化合物と混合した後、
黒鉛化して黒鉛化度を向上させてもよい。このようにし
て得られた高黒鉛化度の黒鉛材は、上記のX線回折特性
を有するとともに、上記高温での充放電特性を有してい
る。
In the method for producing a graphite material for a negative electrode according to the present invention, it is desirable that the carbon fiber obtained in the carbonization step be milled and then graphitized. Also, after mixing the milled carbon fiber obtained by milling with a boron compound,
The degree of graphitization may be improved by graphitization. The graphite material having a high degree of graphitization obtained in this way has the above-mentioned X-ray diffraction characteristics and the above-mentioned high-temperature charge / discharge characteristics.

【0016】さらに、本発明に係る負極用黒鉛材の製造
方法では、前記黒鉛化工程で得られた黒鉛材に、電解液
中、30〜50℃にて充電または充放電させる処理を施
してもよい。このような高温での処理を施すことによ
り、その後は通常の温度条件、例えば25℃程度で充放電
を行っても高い充放電容量を維持できる。本発明に係る
リチウムイオン二次電池用負極は、上記黒鉛材または上
記負極用黒鉛材の製造方法で得られた黒鉛材を含むこと
を特徴としている。
Further, in the method for producing a graphite material for a negative electrode according to the present invention, the graphite material obtained in the graphitization step may be subjected to a treatment of charging or discharging at 30 to 50 ° C. in an electrolytic solution. Good. By performing the treatment at such a high temperature, a high charge / discharge capacity can be maintained even after the charge / discharge is performed under normal temperature conditions, for example, about 25 ° C. The negative electrode for a lithium ion secondary battery according to the present invention is characterized by containing the graphite material or the graphite material obtained by the method for producing the graphite material for a negative electrode.

【0017】本発明に係るリチウムイオン二次電池は、
このような負極を備えることを特徴としている。
The lithium ion secondary battery according to the present invention comprises:
It is characterized by having such a negative electrode.

【0018】[0018]

【発明の具体的説明】本発明に係るリチウムイオン二次
電池の負極用黒鉛材は、高黒鉛化度であり、特に、X線
回折における101面回折ピークと100面回折ピーク
の強度比I10 1/I100が1.2以上、好ましくは1.2
〜3.0、更に好ましくは1.5〜2.5である。
DETAILED DESCRIPTION OF THE INVENTION The graphite material for a negative electrode of a lithium ion secondary battery according to the present invention has a high degree of graphitization, and in particular, the intensity ratio I 10 between the 101 plane diffraction peak and the 100 plane diffraction peak in X-ray diffraction. 1 / I 100 is 1.2 or more, preferably 1.2
To 3.0, more preferably 1.5 to 2.5.

【0019】ピーク強度比I101/I100は、黒鉛材の黒
鉛化の度合いを表す指標であり、このような範囲のピー
ク強度比I101/I100を有する黒鉛材を用いることによ
り、高い初期充放電効率および充放電容量、特に高温で
の高効率および高容量を実現できる負極材を得ることが
できる。また、本発明の負極用黒鉛材は、X線回折から
測定される黒鉛層間距離(d00 2)が0.3380nm以
下、好ましくは0.3360nm以下、C軸方向の結晶
子の大きさ(Lc)が35nm以上、好ましくは48n
m以上、a軸方向の結晶子の大きさ(La)が50nm
以上、好ましくは60nm以上であることが望ましい。
The peak intensity ratio I 101 / I 100 is an index indicating the degree of graphitization of the graphite material. By using a graphite material having a peak intensity ratio I 101 / I 100 in such a range, a high initial intensity can be obtained. A negative electrode material capable of realizing charge / discharge efficiency and charge / discharge capacity, particularly high efficiency and high capacity at a high temperature, can be obtained. The graphite material for a negative electrode of the present invention has a graphite interlayer distance (d 00 2 ) of 0.3380 nm or less, preferably 0.3360 nm or less, as measured from X-ray diffraction, and a crystallite size (Lc) in the C-axis direction. ) Is 35 nm or more, preferably 48 n
m or more, and the size (La) of the crystallite in the a-axis direction is 50 nm.
Above, preferably 60 nm or more.

【0020】これらも黒鉛材の黒鉛化の度合いを表す指
標であり、黒鉛材は、これら指標をも満足させることが
電池の性能を向上させる上で望ましい。ここで、本明細
書において黒鉛材の構造を規定するのに用いる種々のX
線パラメータを簡単に説明する。X線回折法とは、Cu
kαをX線源、標準物質に高純度シリコンを使用し、炭
素繊維等に対し回折パターンを測定するものである。そ
して、その002面回折パターンのピーク位置、半値幅
から、黒鉛層間距離d(002)、c軸方向の結晶子の大き
さLc(002)を、及び110面回折パターンの半値幅か
らa軸方向の結晶子の大きさLa(110)をそれぞれ算出
する。算出方法は学振法に基づいている。ピーク強度比
101/I100の測定は、得られた回折線図にベースライ
ンを引き、このベースラインから101面(2θ≒4
4.5)および100面(2θ≒42.5)の各ピークの
高さを測定し、101の回折ピーク高さを100回折ピ
ーク高さで除して求める。
These are also indexes indicating the degree of graphitization of the graphite material, and it is desirable that the graphite material also satisfies these indexes in order to improve the performance of the battery. Here, various Xs used to define the structure of the graphite material in this specification are used.
The line parameters will be briefly described. X-ray diffraction method refers to Cu
kα is an X-ray source, high-purity silicon is used as a standard substance, and a diffraction pattern is measured on carbon fibers and the like. Then, the graphite interlayer distance d (002) , the crystallite size Lc (002) in the c-axis direction from the peak position and half width of the 002 plane diffraction pattern, and the a-axis direction from the half width of the 110 plane diffraction pattern Are calculated, respectively, of the crystallite size La (110) . The calculation method is based on the Gakushin method. For the measurement of the peak intensity ratio I 101 / I 100 , a base line is drawn on the obtained diffraction chart, and the 101 plane (2θ ≒ 4) is drawn from the base line.
The height of each peak of 4.5) and 100 planes (2θ ≒ 42.5) is measured, and the height of 101 diffraction peak is divided by the height of 100 diffraction peak.

【0021】本発明に係るリチウムイオン二次電池の負
極用黒鉛材は、このようなX線回折における特性を有す
るとともに、電解液に浸漬し、充電または充放電した場
合に、高温で優れた充放電特性を発現するという新規か
つ特異な特性を有している。なお、本明細書において、
初期充放電効率とは、初回の充放電における充電容量に
対する放電容量の比であり、初期放電容量とは、初回の
充放電における放電容量を言う。これら充放電特性は、
例えば黒鉛材をそのまま、または人造・天然黒鉛などの
助材を加え、PVDF(ポリフッ化ビニリデン)のN-メ
チルピロリドン溶液に混練した後銅箔に塗工して負極と
し、対極及び参照極には金属リチウム薄を用いた三極セ
ルで評価することができる。
The graphite material for a negative electrode of a lithium ion secondary battery according to the present invention has such characteristics in X-ray diffraction and, when immersed in an electrolytic solution and charged or charged / discharged, has excellent chargeability at high temperatures. It has a new and unique characteristic of exhibiting discharge characteristics. In this specification,
The initial charge / discharge efficiency is the ratio of the discharge capacity to the charge capacity in the first charge / discharge, and the initial discharge capacity refers to the discharge capacity in the first charge / discharge. These charge and discharge characteristics
For example, graphite material as it is or an auxiliary material such as artificial or natural graphite is added, kneaded in an N-methylpyrrolidone solution of PVDF (polyvinylidene fluoride), and then coated on a copper foil to form a negative electrode. It can be evaluated by a three-electrode cell using lithium metal thin film.

【0022】このような三極セルに用いる電解液として
は、有機溶媒、特に好ましくはエチレンカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、ジ
エチルカーボネート等を単独あるいは適宜混合したもの
に、ホウフッ化リチウム、六フッ化リン酸リチウム、過
塩素酸リチウム等の電解質を溶解した有機系電解液を用
いることが望ましい。
As an electrolytic solution used in such a triode cell, an organic solvent, particularly preferably ethylene carbonate,
It is desirable to use an organic electrolytic solution in which an electrolyte such as lithium borofluoride, lithium hexafluorophosphate, or lithium perchlorate is dissolved in dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, or the like, alone or in a suitable mixture.

【0023】上記充放電特性の測定は、例えば、三極セ
ルの電解液を所定の温度に設定し、先ず、定電流密度、
具体的には100〜600mA/gの範囲内、特に10
0mA/gの定電流密度および定電圧、具体的には0.
02〜0.001Vの範囲内、特に0.01Vの定電圧
で充電し、次いで必要に応じて電解液の温度を変更し、
定電流密度、具体的には100〜600mA/gの範囲
内、特に100mA/gの定電流密度で1.5V(v
s.Li/Li+)まで放電することにより行うことが
できる。
The charge / discharge characteristics are measured, for example, by setting the electrolyte of the triode cell to a predetermined temperature,
Specifically, in the range of 100 to 600 mA / g,
0 mA / g constant current density and constant voltage,
Charging at a constant voltage in the range of 02 to 0.001 V, particularly 0.01 V, and then changing the temperature of the electrolyte as needed,
At a constant current density, specifically in the range of 100 to 600 mA / g, especially at a constant current density of 100 mA / g, 1.5 V (v
s. Li / Li + ).

【0024】そして、本発明に係る負極用黒鉛材は、こ
のような充放電特性試験において、25℃の常温にて充
電した場合の初期充放電効率および初期放電容量に比
べ、30〜50℃の任意の温度、特に40℃の高温にて
充電した場合の初期充放電効率および初期放電容量の方
が高い。より具体的には、本発明に係る負極用黒鉛材
は、常温での初期充放電効率を100として、これに対
する高温で充電したときの初期充放電効率の比が、例え
ば102/100〜130/100、特に103/10
0〜120/100と高い。また、本発明に係る負極用
黒鉛材では、常温での初期放電容量を100として、こ
れに対する高温での充電後における放電容量の比が、例
えば101/100〜125/100、特に102/1
00〜120/100と高い。
In the charge / discharge characteristic test, the graphite material for a negative electrode according to the present invention has an initial charge / discharge efficiency and an initial discharge capacity of 30 to 50 ° C. when charged at room temperature of 25 ° C. The initial charge / discharge efficiency and the initial discharge capacity when charged at an arbitrary temperature, particularly at a high temperature of 40 ° C., are higher. More specifically, the graphite material for a negative electrode according to the present invention has an initial charge / discharge efficiency at room temperature of 100 and a ratio of the initial charge / discharge efficiency at high temperature to 102/100 to 130/100. 100, especially 103/10
It is as high as 0 to 120/100. In the graphite material for a negative electrode according to the present invention, the ratio of the discharge capacity after charging at a high temperature to the initial discharge capacity at normal temperature is 100, for example, 101/100 to 125/100, particularly 102/1.
It is as high as 00 to 120/100.

【0025】なお、このような本発明に係る負極用黒鉛
材の充放電特性の測定において、放電時の温度条件は、
常温充電の場合および高温充電の場合で相互に同一であ
ればよく、特に限定されない。例えば、特に本発明に係
る負極用黒鉛材は、25℃の常温で充電および放電を行
ったときの初期充放電効率および初期放電容量と、30
〜50℃の任意の温度、特に40℃の高温で充電および
放電を行ったときの初期充放電効率および初期放電容量
とを比較した場合も、上述した場合と同様に後者の方が
高くなる。
In the measurement of the charge / discharge characteristics of the graphite material for a negative electrode according to the present invention, the temperature condition at the time of discharge is as follows:
There is no particular limitation as long as it is the same for the case of normal temperature charging and the case of high temperature charging. For example, in particular, the graphite material for a negative electrode according to the present invention has an initial charge / discharge efficiency and an initial discharge capacity when charged and discharged at a normal temperature of 25 ° C., and 30%.
When comparing the initial charge / discharge efficiency and the initial discharge capacity when charging and discharging are performed at an arbitrary temperature of up to 50 ° C., particularly at a high temperature of 40 ° C., the latter is higher as in the case described above.

【0026】そして、このような本発明に係る負極用黒
鉛材では、上述したような条件での高温充電または充放
電後に、常温での充放電を繰り返しても、高い充放電効
率および放電容量が維持される。より具体的には、本発
明に係る負極用黒鉛材は、初回に常温充放電を行った後
の常温充放電での初期充放電効率を100として、これ
に対する初回に高温で充電または充放電を行った後の常
温充放電での初期充放電効率の比が、例えば102/1
00〜130/100、特に103/100〜120/
100と高くなる。また、本発明に係る負極用黒鉛材で
は、初回に常温で充放電を行った後の常温充放電での放
電容量を100として、これに対する初回に高温で充電
または充放電を行った後の常温充放電での放電容量の比
が、例えば101/100〜125/100、特に10
2/100〜120/100と高くなる。
In the graphite material for a negative electrode according to the present invention, high charge / discharge efficiency and discharge capacity can be obtained even if charge / discharge at room temperature is repeated after high temperature charge or charge / discharge under the above-described conditions. Will be maintained. More specifically, the graphite material for a negative electrode according to the present invention, the initial charge and discharge efficiency at normal temperature charge and discharge after performing the normal temperature charge and discharge for the first time as 100, the charge or charge and discharge at a high temperature for the first time to this. The ratio of the initial charge / discharge efficiency in the normal temperature charge / discharge after the execution is, for example, 102/1.
00 to 130/100, especially 103/100 to 120 /
It will be as high as 100. Further, in the graphite material for a negative electrode according to the present invention, the discharge capacity in normal temperature charge / discharge after the first charge / discharge at room temperature is set to 100, and the normal temperature after charge / charge / discharge at the first high temperature for this. The ratio of the discharge capacity in charge / discharge is, for example, 101/100 to 125/100, particularly 10
2/100 to 120/100.

【0027】本発明に係る負極用黒鉛材のこのような特
異な充放電特性は、明確ではないが、初回充電時に負極
となる黒鉛材の表面(もしくは黒鉛材・電解液界面)に
電解液の分解に伴って形成される保護被膜が関与してい
ると考えられる。すなわち、黒鉛材をリチウムイオン二
次電池の負極とし、プロピオンカーボネート(PC)系
電解液を用いて充電を行うと、黒鉛材表面でPCの分解
が起こりリチウムイオンの黒鉛材へのインターカレーシ
ョンを阻害することが知られている。そこで、このよう
な黒鉛材表面での分解が起こりにくい電解液、例えばエ
チレンカーボネート(EC)系電解液が開発された。
Although the specific charge / discharge characteristics of the graphite material for a negative electrode according to the present invention are not clear, the surface of the graphite material serving as the negative electrode during the first charge (or the interface between the graphite material and the electrolyte) is not clear. It is considered that the protective film formed by the decomposition is involved. That is, when a graphite material is used as a negative electrode of a lithium ion secondary battery and charged using a propion carbonate (PC) electrolyte, PC is decomposed on the surface of the graphite material and lithium ions are intercalated into the graphite material. It is known to inhibit. Therefore, an electrolytic solution that is unlikely to decompose on the graphite material surface, for example, an ethylene carbonate (EC) -based electrolytic solution has been developed.

【0028】しかしながら、EC系電解液を用いた場合
でも、初回の充放電では、充電時に電気化学的にインタ
ーカレーションしたリチウムイオン量の方が、放電時に
取り出せたリチウムイオン量より多くなることが観察さ
れている。これは、リチウムインターカレーションの際
に、電解液中のリチウムイオンと電解液の溶媒成分が還
元分解された化合物が被膜として黒鉛材料表面に析出
し、この反応が非可逆反応であるためである。この保護
被膜は、SEM観察でも確認されており、SEI(Soli
d Electrolyte Interphase)被膜と呼ばれている。
However, even when an EC-based electrolyte is used, the amount of lithium ions electrochemically intercalated at the time of charging may be larger than the amount of lithium ions taken out at the time of charging in the first charge / discharge. Has been observed. This is because at the time of lithium intercalation, a compound in which the lithium ion in the electrolyte and the solvent component of the electrolyte are reductively decomposed precipitates as a coating on the surface of the graphite material, and this reaction is an irreversible reaction. . This protective film was confirmed by SEM observation, and SEI (Soli
d Electrolyte Interphase) The coating is called.

【0029】SEI被膜は、数回の充放電サイクル、特
に初回の充放電で形成され、リチウムイオン透過性であ
り、溶媒成分の更なる還元分解を阻害する。したがっ
て、SEI皮膜形成後は、この皮膜を介して安定したリ
チウムインターカレーションおよびデインターカレーシ
ョンが行われるようになり、充電容量と放電容量とが等
しくなる。
The SEI coating is formed in several charge / discharge cycles, especially in the first charge / discharge, is permeable to lithium ions, and inhibits further reductive decomposition of the solvent component. Therefore, after the SEI film is formed, stable lithium intercalation and de-intercalation are performed through this film, and the charge capacity and the discharge capacity become equal.

【0030】従来の負極用黒鉛材では、高黒鉛化度であ
っても、充電時に安定したSEI皮膜を形成することが
できず、したがって期待するほど初期充放電効率および
初期放電容量が上がらないと考えられている。これに反
し、本発明に係る負極用黒鉛材では、常温での充放電に
おける初期充放電効率および初期放電容量は従来の黒鉛
材と同様に低いが、30〜50℃の高温での充電におけ
るSEI被膜の形成が良好であり、従って初期充放電効
率および初期放電容量は高いという特異な充放電特性を
有するものと考えられている。
The conventional graphite material for a negative electrode cannot form a stable SEI film during charging even with a high degree of graphitization, so that the initial charge / discharge efficiency and initial discharge capacity do not increase as expected. It is considered. On the contrary, in the graphite material for a negative electrode according to the present invention, the initial charge / discharge efficiency and the initial discharge capacity in charge / discharge at room temperature are as low as those of the conventional graphite material, but the SEI in charge at a high temperature of 30 to 50 ° C. It is considered that the film has a unique charge / discharge characteristic in that the film is formed well and the initial charge / discharge efficiency and the initial discharge capacity are high.

【0031】また、本発明の負極用黒鉛材が、高温での
充電の後には、常温での充放電を行っても高い充放電効
率および放電容量を維持することは、一旦SEI被膜が
形成された後は、安定したリチウムイオンインターカレ
ーションおよびデインターカレーションが行い得るとい
うことから説明できる。このような充放電特性、あるい
はSEI被膜形成特性を有する高黒鉛化度の負極用黒鉛
材は今だ発表されていない。
Further, the graphite material for a negative electrode of the present invention maintains high charge / discharge efficiency and discharge capacity even after charging / discharging at room temperature after charging at a high temperature. After that, it can be explained from the fact that stable lithium ion intercalation and deintercalation can be performed. A graphite material for a negative electrode having such a charge / discharge characteristic or a SEI film forming characteristic and having a high degree of graphitization has not yet been announced.

【0032】本発明に係る負極用黒鉛材は、例えば以下
に説明する方法、即ち本発明に係るリチウムイオン二次
電池の負極用黒鉛材の製造方法によって製造することが
可能である。本発明に係る負極用黒鉛材の製造方法は、
特定の赤外線分光特性および酸素/炭素原子数比を有す
るメソフェーズピッチ系不融化繊維を炭化し、次いで黒
鉛化することで製造することができる。
The graphite material for a negative electrode according to the present invention can be manufactured, for example, by the method described below, that is, the method for manufacturing a graphite material for a negative electrode of a lithium ion secondary battery according to the present invention. The method for producing a graphite material for a negative electrode according to the present invention,
It can be produced by carbonizing a mesophase pitch-based infusibilized fiber having specific infrared spectral characteristics and an oxygen / carbon atom ratio, and then graphitizing it.

【0033】本発明の方法で用いられるメソフェーズピ
ッチ系不融化繊維は、メソフェーズピッチ原料を紡糸
し、次いで得られたピッチ繊維を不融化することで製造
することができる。紡糸に用いられるメソフェーズピッ
チ原料は、石油系、石炭系および合成系ピッチのいずれ
であってもよいが、メソフェーズ含有量100%のピッ
チが好ましい。
The mesophase pitch-based infusible fiber used in the method of the present invention can be produced by spinning a mesophase pitch raw material and then infusifying the obtained pitch fiber. The mesophase pitch raw material used for spinning may be any of a petroleum-based, coal-based and synthetic pitch, but a pitch having a mesophase content of 100% is preferred.

【0034】また、メソフェーズピッチ原料は、紡糸可
能であれば特にその粘度を限定されないが、軟化点が低
いものが、製造コスト及び安定性の面で有利であり、例
えば230℃〜350℃、好ましくは250℃〜310
℃の軟化点を有することが望ましい。このようなピッチ
原料を紡糸する方法は、特に限定されないが、例えばメ
ルトスピニング法、メルトブロー法、遠心紡糸法、渦流
紡糸法等種々の方法を適用することができる。この内、
特にメルトブロー法が好ましい。
The viscosity of the mesophase pitch raw material is not particularly limited as long as it can be spun, but a material having a low softening point is advantageous in terms of production cost and stability. For example, 230 ° C to 350 ° C, preferably Is 250 ° C. to 310
It is desirable to have a softening point of ° C. The method of spinning such a pitch raw material is not particularly limited, but various methods such as a melt spinning method, a melt blow method, a centrifugal spinning method, and a vortex spinning method can be applied. Of these,
Particularly, a melt blow method is preferable.

【0035】メルトブロー法によれば、ピッチ原料が、
数十ポイズ以下の低粘度で高速で吹き切りながら紡糸さ
れかつ高速冷却されるため、ピッチ繊維の生産性が高い
他、ピッチ繊維に、特に所望のアスペクト比を有するミ
ルド化繊維が得られる繊維形状を与える。また、メルト
ブロー法でメソフェーズピッチを紡糸すると、黒鉛化処
理によって、黒鉛層面が繊維軸に平行に配列し、リチウ
ムイオンが吸蔵されやすい表面を形成できるという点で
も有利である。
According to the melt blow method, the pitch raw material is
Spinning and cooling at high speed with low viscosity of tens of poise or less at high speed, high pitch fiber productivity, and pitch fiber, in particular, fiber shape that can provide milled fiber with desired aspect ratio give. Further, when the mesophase pitch is spun by the melt blow method, the graphitization treatment is advantageous in that the graphite layer surface is arranged in parallel to the fiber axis and a surface where lithium ions can be easily absorbed can be formed.

【0036】このようなメルトブロー法において、紡糸
孔は、通常0.1mmФ〜0.5mmФ、好ましくは0.
15mmФ〜0.3mmФである。紡糸速度は、毎分5
00m以上、好ましくは毎分1500m以上、さらに好
ましくは毎分2000m以上であることが望ましい。ま
た、紡糸温度は、原料ピッチにより幾分変化するが、通
常300℃〜400℃、好ましくは300℃〜380℃
である。
In such a melt blow method, the spinning hole is usually 0.1 mmФ to 0.5 mmФ, preferably 0.1 mmФ.
15 mmФ to 0.3 mmФ. Spinning speed is 5 per minute
It is desirably at least 00 m, preferably at least 1500 m / min, more preferably at least 2000 m / min. The spinning temperature varies somewhat depending on the raw material pitch, but is usually 300 ° C to 400 ° C, preferably 300 ° C to 380 ° C.
It is.

【0037】本発明に係る負極用黒鉛材の製造方法で
は、このようにして得られたピッチ繊維を不融化して得
た特定の赤外線分光特性および酸素/炭素原子数比を有
するメソフェーズピッチ系不融化繊維を用いている。即
ち、本発明の製造方法で用いる不融化繊維は、FT−I
R(フーリエ解析赤外線吸収)測定において、1670
cm-1以上1830cm-1以下に現れるピークの面積:
S(CO)の、1530cm-1以上1670cm-1未満に現
れるピークの面積:S(C=C)に対する比(以下カルボニル
強度比と略記することがある)S(CO)/S(C=C)が0.40
〜0.58、好ましくは0.42〜0.56である。
In the method for producing a graphite material for a negative electrode according to the present invention, a mesophase pitch system having specific infrared spectral characteristics and an oxygen / carbon atomic ratio obtained by infusibilizing the pitch fibers thus obtained. Uses fused fiber. That is, the infusible fiber used in the production method of the present invention is FT-I
In R (Fourier analysis infrared absorption) measurement, 1670
area of the peak appearing in cm -1 or 1830 cm -1 or less:
S of (CO), the area of the peak appearing below 1530 cm -1 or 1670 cm -1: (sometimes abbreviated as follows carbonyl intensity ratio) S (C = C) for the ratio S (CO) / S (C = C ) Is 0.40
0.50.58, preferably 0.42 to 0.56.

【0038】このカルボニル強度比S(CO)/S(C=C)が0.
40未満であると、不融化が不十分なため、後の炭化時
に繊維同士の融着等の不具合が発生する。また、0.5
8を超えると、黒鉛化処理後に所望の黒鉛化度が得られ
ない。また、本発明に係る負極用黒鉛材の製造方法に用
いるメソフェーズピッチ系不融化繊維は、元素分析にお
いて酸素の炭素に対する原子数比O/Cが、0.045〜
0.060、好ましくは0.047〜0.057であ
る。
When the carbonyl intensity ratio S (CO) / S (C = C) is 0.
When it is less than 40, infusibilization is insufficient, so that problems such as fusion of fibers during carbonization later occur. Also, 0.5
If it exceeds 8, the desired degree of graphitization cannot be obtained after the graphitization treatment. The mesophase pitch-based infusible fiber used in the method for producing a graphite material for a negative electrode according to the present invention has an atomic ratio O / C of oxygen to carbon in elemental analysis of 0.045 to 0.045.
0.060, preferably 0.047 to 0.057.

【0039】この酸素・炭素原子数比O/Cが0.045
未満であると、不融化が不十分なため、後の炭化時に、
繊維同士の融着等の不具合が発生する。また、0.06
0を超えると、黒鉛化処理後に所望の黒鉛化度が得られ
ない。本発明に係る製造方法では、このような不融化繊
維の製造方法は特に限定されない。ピッチ繊維の不融化
は、例えば、二酸化窒素や酸素等の酸化性ガス雰囲気中
で加熱処理する方法や、硝酸やクロム酸等の酸化性水溶
液中で処理する方法等によって行うことができる。
This oxygen / carbon atom ratio O / C is 0.045
If less than, infusibilization is insufficient, during the subsequent carbonization,
Problems such as fusion between fibers occur. Also, 0.06
If it exceeds 0, a desired degree of graphitization cannot be obtained after the graphitization treatment. In the production method according to the present invention, the method for producing such infusible fibers is not particularly limited. The infusibilization of the pitch fibers can be performed by, for example, a method of performing heat treatment in an atmosphere of an oxidizing gas such as nitrogen dioxide or oxygen, or a method of performing treatment in an oxidizing aqueous solution such as nitric acid or chromic acid.

【0040】より簡便な不融化方法としては、空気中で
加熱処理する方法であり、特に昇温速度を2段階に分割
することが好ましい。即ち、ピッチ繊維の不融化は、原
料により若干異なるが、空気中、平均昇温速度4〜12
℃/分、好ましくは5〜10℃/分で、190〜260
℃、特に200〜250℃まで昇温させ、次いで平均昇
温速度10〜22℃/分、好ましくは15〜20℃/分
で、280〜350℃、特に300〜330℃まで昇温
させて行うことが、上述の物性の不融化繊維を得る上で
望ましい。
A simpler infusibilizing method is a method of performing a heat treatment in air, and it is particularly preferable to divide the heating rate into two stages. That is, the infusibilization of the pitch fibers slightly varies depending on the raw material, but in the air, the average heating rate is 4 to 12.
° C / min, preferably 5-10 ° C / min, 190-260
C., especially 200 to 250.degree. C., and then at an average heating rate of 10 to 22.degree. C./min, preferably 15 to 20.degree. C./min, to 280 to 350.degree. C., especially 300 to 330.degree. Is desirable for obtaining the infusible fiber having the above-mentioned physical properties.

【0041】本発明では、このような不融化ピッチ繊維
を、炭化した後に黒鉛化している。不融化ピッチ繊維の
炭化は、例えば、不活性ガス雰囲気下、400℃〜15
00℃、好ましくは500℃〜1000℃の温度で行う
ことが望ましい。なお、ピッチ系炭素繊維をミルド化す
る場合には、炭化処理温度を、500℃〜900℃とす
ると、ミルド化後の繊維の縦割れ防止により有利であ
る。
In the present invention, such infusible pitch fibers are graphitized after being carbonized. The carbonization of the infusible pitch fiber is performed, for example, under an inert gas atmosphere at 400 ° C. to 15 ° C.
It is desirable to carry out at a temperature of 00C, preferably 500C to 1000C. When the pitch-based carbon fiber is milled, setting the carbonization temperature to 500 ° C. to 900 ° C. is advantageous for preventing longitudinal cracking of the milled fiber.

【0042】このようにして得られたピッチ系炭素繊維
は、これをそのまま後述の黒鉛化処理に用いてもよい
が、この処理に先立ってミルド化することが好ましい。
本発明に適したミルド化炭素繊維を効率良く生産するた
めには、例えばプレートを取り付けたローターを高速に
回転させ、これで繊維軸に対し直角方向に繊維を寸断す
る装置、例えばビクトリーミル、クロスフローミル等の
高速回転ミルやジェットミルを使用することが有効であ
る。
The pitch-based carbon fiber thus obtained may be used as it is in a graphitization treatment described below, but is preferably milled prior to this treatment.
In order to efficiently produce milled carbon fiber suitable for the present invention, for example, a rotor equipped with a plate is rotated at high speed, and a device that cuts the fiber in a direction perpendicular to the fiber axis, for example, a Victory mill, a cloth It is effective to use a high-speed rotation mill such as a flow mill or a jet mill.

【0043】ミルド化された繊維の繊維長は、ローター
の回転数、プレートの角度及びローターの周辺に取り付
けられたフィルターの目の大きさ等を調整することによ
りコントロールすることが可能である。ピッチ系炭素繊
維のミルド化には、ヘンシェルミキサーやボールミル、
磨潰機等による方法もあるが、これらの方法によると繊
維の直角方向への加圧力が働き、繊維軸方向への縦割れ
の発生が多くなり好ましくない。また、この方法はミル
ド化に長時間を要し、適切なミルド化方法とは言い難
い。
The fiber length of the milled fibers can be controlled by adjusting the number of rotations of the rotor, the angle of the plate, the size of the mesh of a filter attached around the rotor, and the like. For milling pitch-based carbon fiber, use a Henschel mixer, ball mill,
Although there are methods using a grinder or the like, these methods are not preferable because a pressing force acts on the fiber in a direction perpendicular to the fiber and longitudinal cracks increase in the fiber axis direction. In addition, this method requires a long time for milling, and is not an appropriate milling method.

【0044】このようにして得られたミルド化ピッチ系
炭素繊維は、平均粒径が10〜50μm、アスペクト比
が1〜30、特に1〜20以下であることが望ましい。
これら平均粒径およびアスベクト比は、最終製品である
黒鉛繊維となっても有意な変化がない。本発明の製造方
法では、以上説明したピッチ系炭素繊維を、黒鉛化して
いる。この黒鉛化処理は、例えば、好ましくは2200
℃以上、さらに好ましくは2500℃以上、特に280
0℃以上3300℃以下の温度で行うことができる。
The milled pitch-based carbon fiber thus obtained preferably has an average particle size of 10 to 50 μm and an aspect ratio of 1 to 30, especially 1 to 20 or less.
The average particle size and the aspect ratio do not change significantly even if the final product is a graphite fiber. In the manufacturing method of the present invention, the pitch-based carbon fibers described above are graphitized. This graphitization treatment is, for example, preferably 2200
C. or more, more preferably 2500 C. or more, especially 280
It can be performed at a temperature of 0 ° C. or more and 3300 ° C. or less.

【0045】本発明の黒鉛材の製造方法では、このよう
な黒鉛化処理時に、ホウ素化合物を共存させてもよい。
このようなホウ素化合物としては、ホウ素単体の他に、
炭化ホウ素(B4C)、塩化ホウ素、ホウ酸、酸化ホウ
素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸銅、ホ
ウ酸ニッケル等が挙げられる。このようなホウ素化合物
の添加は、通常、固形のホウ素化合物を直接添加し必要
に応じ均一に混合する方法及びホウ素化合物を溶液と
し、これに原料を浸漬する方法等が取られるが特に制限
されるものではない。
In the method for producing a graphite material of the present invention, a boron compound may coexist during such a graphitization treatment.
As such a boron compound, in addition to boron alone,
Examples include boron carbide (B 4 C), boron chloride, boric acid, boron oxide, sodium borate, potassium borate, copper borate, and nickel borate. The addition of such a boron compound is usually limited by a method in which a solid boron compound is directly added and uniformly mixed as necessary, and a method in which the boron compound is made into a solution and the raw material is immersed in the solution. Not something.

【0046】ホウ素化合物を固体として使用する際は、
ミルド化炭素繊維と均一に混合するために、平均粒径5
00μm以下、好ましくは200μm以下に粉砕して使
用することが望ましい。ホウ素化合物溶液を調製するた
めの溶媒としては、例えば水、メタノール、グリセリ
ン、アセトン等が挙げられ、使用するホウ素化合物の種
類に合わせ適宜選択すればよい。また原料ピッチの段階
でホウ素化合物を添加することも十分可能である。
When the boron compound is used as a solid,
In order to mix uniformly with milled carbon fiber, the average particle size is 5
It is desirable to use the powder after pulverizing it to not more than 00 μm, preferably not more than 200 μm. Examples of the solvent for preparing the boron compound solution include water, methanol, glycerin, acetone, and the like, and may be appropriately selected according to the type of the boron compound to be used. It is also possible to add a boron compound at the stage of the raw material pitch.

【0047】このようなホウ素化合物は、上記材料に、
得られる炭素材のホウ素含有量が1000ppm以上30
000ppm以下となる量で添加される。このようなホウ
素化合物を共存させた場合には、黒鉛化処理は、比較的
低い温度、例えば、好ましくは2,200℃以上、さら
に好ましくは2,400℃以上、特に2,400℃以上
3,100℃以下の温度で行なうことができる。
Such a boron compound is added to the above-mentioned material,
The obtained carbon material has a boron content of 1000 ppm or more and 30 or more.
It is added in an amount of 000 ppm or less. When such a boron compound is allowed to coexist, the graphitization treatment is performed at a relatively low temperature, for example, preferably 2,200 ° C. or more, more preferably 2,400 ° C. or more, and particularly 2,400 ° C. or more, It can be performed at a temperature of 100 ° C. or less.

【0048】このような黒鉛化処理は、酸素の不存在
下、例えば窒素ガス等の不活性ガス雰囲気下で行うこと
が好ましい。これは、酸素が炭素材中の炭素と反応し、
二酸化炭素ガス等を生成し、炭素材の収率を低下させる
傾向があることによる。このような黒鉛化処理におい
て、炭素材原料中に含まれる窒素、酸素、硫黄、金属分
等の不純物は、大部分が黒鉛化処理時に系外に排出され
る。しかしながら、さらに純度の高い炭素材を得るため
には、炭素化或いは黒鉛化処理時に塩素等ハロゲン元素
(ガス)を導入して炭素材中の不純物と反応させ、不純
物をハロゲン化物として系外に取り除く方法、即ち高純
度化処理を行ってもよい。
Such a graphitization treatment is preferably carried out in the absence of oxygen, for example, in an atmosphere of an inert gas such as nitrogen gas. This is because oxygen reacts with carbon in carbon material,
This is because carbon dioxide gas and the like tend to be generated and the yield of carbon material tends to be reduced. In such a graphitization treatment, most of impurities such as nitrogen, oxygen, sulfur, and metal contained in the carbon material raw material are discharged out of the system during the graphitization treatment. However, in order to obtain a carbon material having a higher purity, a halogen element (gas) such as chlorine is introduced during the carbonization or graphitization treatment to react with the impurities in the carbon material, and the impurities are removed out of the system as halides. A method, that is, a purification treatment may be performed.

【0049】本発明に係る負極は、以上説明した本発明
に係る負極用黒鉛材または以上説明した方法で調製され
た負極用黒鉛材を用い、通常の手法により製造すること
が可能である。また、本発明に係る負極は、銅、ニッケ
ル等の金属板または金属箔からなる集電体を有していて
もよい。
The negative electrode according to the present invention can be manufactured by a usual method using the graphite material for a negative electrode according to the present invention described above or the graphite material for a negative electrode prepared by the method described above. Further, the negative electrode according to the present invention may have a current collector made of a metal plate or a metal foil of copper, nickel, or the like.

【0050】このような負極は、例えば、以下の方法で
製造することができる。 (1) 黒鉛材をポリエチレン、ポリテトラフルオロエチレ
ンおよびポリフッ化ビニリデン、SBR(スチレンブタ
ジエンラバー)等の適量のバインダーと混合し、プレス
ローラーにより厚さ10〜100μm程度のシートと
し、次いで厚さ10〜50μm程度の銅、ニッケル等か
らなる金属箔上の片面または両面に圧着し、厚さ50〜
200μm程度のシート状物とする。 (2) 黒鉛材をポリエチレン、ポリテトラフルオロエチレ
ンおよびポリフッ化ビニリデン等の適量のバインダーと
混合し、有機溶媒あるいは水性溶媒を用いてスラリーと
し、上記金属箔の片面または両面に塗布・乾燥し、厚さ
50〜200μm程度のシート状物とする。
Such a negative electrode can be produced, for example, by the following method. (1) A graphite material is mixed with an appropriate amount of a binder such as polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, SBR (styrene butadiene rubber), and formed into a sheet having a thickness of about 10 to 100 μm by a press roller. Pressure bonding to one or both sides of a metal foil made of copper, nickel, etc. of about 50 μm, and a thickness of 50 to 50 μm
The sheet is about 200 μm. (2) A graphite material is mixed with an appropriate amount of a binder such as polyethylene, polytetrafluoroethylene, and polyvinylidene fluoride, and is slurried using an organic solvent or an aqueous solvent. The sheet is about 50 to 200 μm thick.

【0051】本発明に係るリチウムイオン二次電池は、
以上説明した負極を備えており、この負極と、公知の固
体電解質または電解液、および正極と組み合わせて製造
できる。この内、電解質を非プロトン性の誘電率が高い
有機溶媒に溶解した有機電解液が特に好ましい。このよ
うな有機溶媒としては、例えば、プロピレンカーボネー
ト、エチレンカーボネート、テトラヒドロフラン、2-メ
チルテトラヒドロフラン、ジオキソラン、4-メチル-ジ
オキソラン、アセトニトリル、ジメチルカーボネート、
メチルエチルカーボネート、ジエチルカーボネート等を
挙げることができる。これらの溶媒は単独で用いても適
宜混合して用いてもよい。
The lithium ion secondary battery according to the present invention
The negative electrode described above is provided, and the negative electrode can be manufactured in combination with a known solid electrolyte or electrolyte and a positive electrode. Among these, an organic electrolyte in which an electrolyte is dissolved in an aprotic organic solvent having a high dielectric constant is particularly preferable. Examples of such an organic solvent include, for example, propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyl-dioxolan, acetonitrile, dimethyl carbonate,
Methyl ethyl carbonate, diethyl carbonate and the like can be mentioned. These solvents may be used singly or in a suitable mixture.

【0052】また、電解質としては、安定なアニオンを
生成するリチウム塩、例えば、過塩素酸リチウム、ホウ
フッ化リチウム、六塩化アンチモン酸リチウム、六フッ
化アンチモン酸リチウム、六フッ化リン酸リチウム等が
好適であり、これらの電解質は単独で用いても、適宜混
合して用いてもよい。正極材としては例えば、酸化クロ
ム、酸化チタン、酸化コバルト、五酸化バナジウム等の
金属酸化物や、リチウムマンガン酸化物(LiMn
24)、リチウムコバルト酸化物(LiCoO2)、リ
チウムニッケル酸化物(LiNiO2)等のリチウム金
属酸化物等が挙げられる。
Examples of the electrolyte include lithium salts that generate stable anions, such as lithium perchlorate, lithium borofluoride, lithium antimonate hexachloride, lithium antimonate hexafluoride, and lithium hexafluorophosphate. These electrolytes are suitable, and these electrolytes may be used alone or in an appropriate mixture. Examples of the positive electrode material include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, and lithium manganese oxide (LiMn oxide).
Lithium oxide such as 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and lithium nickel oxide (LiNiO 2 ).

【0053】これらの負極と正極の間にはセパレーター
として、合成繊維製またはガラス繊維製の不織布、織布
やポリオレフィン系多孔質膜、ポリテトラフルオロエチ
レンの不織布等を設ける。前記正極、電解液、セパレー
ター、集電体、ガスケット、封口板、ケース等の構成要
素と本発明により得た負極とを用い、通常の方法に従っ
て円筒形、角形或いはボタン型等の形態のリチウムイオ
ン二次電池に組み立てることができる。
A non-woven fabric made of synthetic fiber or glass fiber, a woven fabric, a polyolefin-based porous membrane, a non-woven fabric of polytetrafluoroethylene, or the like is provided between the negative electrode and the positive electrode as a separator. Using the positive electrode, the electrolyte, the separator, the current collector, the gasket, the sealing plate, the components such as the case and the negative electrode obtained according to the present invention, a lithium ion in a form of a cylinder, a square, or a button according to a usual method, Can be assembled into a secondary battery.

【0054】[0054]

【発明の効果】本発明に係るリチウムイオン二次電池の
負極用黒鉛材によれば、高黒鉛化度であり、かつ特異な
高温での充放電特性を有しているため、特に高温での充
電後の充放電効率および放電容量が大きな二次電池を提
供できる。本発明に係るリチウムイオン二次電池の負極
用黒鉛材の製造方法では、高黒鉛化度であり、かつ特異
な高温での充放電特性を有する負極用黒鉛材を効率よく
製造することができる。
According to the graphite material for a negative electrode of a lithium ion secondary battery according to the present invention, it has a high degree of graphitization and has a unique charge / discharge characteristic at a high temperature. A secondary battery having high charge / discharge efficiency and discharge capacity after charging can be provided. In the method for producing a graphite material for a negative electrode of a lithium ion secondary battery according to the present invention, a graphite material for a negative electrode having a high degree of graphitization and having unique high-temperature charge / discharge characteristics can be efficiently produced.

【0055】また、本発明に係るリチウムイオン二次電
池用負極およびリチウムイオン二次電池によれば、上記
負極用黒鉛材を用いているため、特に高温での充電また
は充放電後の充放電効率および放電容量が大きな二次電
池を提供できる。
Further, according to the negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to the present invention, since the graphite material for a negative electrode is used, the charge / discharge efficiency particularly after charging or charging / discharging at a high temperature. In addition, a secondary battery having a large discharge capacity can be provided.

【0056】[0056]

【実施例】以下実施例及び比較例に基づいて、本発明を
更に具体的に説明するが、これらは本発明の範囲を限定
するものではない。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, which do not limit the scope of the present invention.

【0057】[0057]

【実施例1】(イ)紡糸 光学的に異方性で比重1.25の石油系メソフェーズピ
ッチ(メソフェーズ100%)を原料として、幅3mmの
スリットの中に直径0.2mmφの紡糸孔を一列に500
個有する口金を用い、スリットから加熱空気を噴出させ
て、溶融ピッチを牽引・紡糸して平均直径13μmのピ
ッチ繊維を製造した。この時、紡糸温度は360℃、吐
出量は0.8g/H・分であった。
Example 1 (a) Spinning Using a petroleum-based mesophase pitch (mesophase 100%) having an optical anisotropy and a specific gravity of 1.25 as a raw material, a row of spinning holes having a diameter of 0.2 mmφ is arranged in a slit having a width of 3 mm. 500
Using a die having individual pieces, heated air was blown out from a slit to draw and spin a molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C., and the discharge rate was 0.8 g / H · min.

【0058】得られたピッチ繊維を、捕集部分が20メ
ッシュのステンレス製金網からなるベルト上に、このベ
ルトの背面から吸引しながら捕集した。 (ロ)不融化 このようにベルト上に捕集され、マット状となったピッ
チ繊維を、空気中、室温から240℃まで平均昇温速度
8℃/分で昇温し、続いて320℃まで平均昇温速度1
7℃/分で昇温して不融化処理を行った。
The obtained pitch fibers were collected on a belt made of a stainless steel wire mesh having a collecting portion of 20 mesh while sucking from the back of the belt. (B) Infusibilization In this manner, the pitch fibers collected on the belt and formed into a mat are heated in the air from room temperature to 240 ° C. at an average heating rate of 8 ° C./min, and subsequently to 320 ° C. Average heating rate 1
The temperature was raised at a rate of 7 ° C./min to perform the infusibilization treatment.

【0059】得られた不融化繊維を用い、FT−IR測
定でのカルボニル強度比S(CO)/S(C=C)および元素分析に
よる酸素・炭素原子数比O/Cを求めたところ、各々0.
54および0.052であった。 (ハ)炭化・黒鉛化 この不融化繊維を、窒素雰囲気下、650℃で炭化処理
した後、クロスフローミルで粉砕し平均粒径18μmの
ミルド化炭素繊維を得た。
Using the obtained infusibilized fiber, the carbonyl intensity ratio S (CO) / S (C = C) by FT-IR measurement and the oxygen / carbon atomic ratio O / C by elemental analysis were determined. Each 0.
54 and 0.052. (C) Carbonization / graphitization The infusible fiber was carbonized at 650 ° C. in a nitrogen atmosphere, and then pulverized with a cross flow mill to obtain a milled carbon fiber having an average particle size of 18 μm.

【0060】得られたミルド化炭素繊維を、窒素雰囲気
下、3000℃まで3℃/分の速度で昇温し、さらに同
温度で1時間保持して黒鉛化した。得られた黒鉛繊維を
用い、X線回折法によって、結晶パラメータを測定した
ところ、101面回折ピークと100面回折ピークの強
度比I101/I100が1.9であり、黒鉛層間距離(d
002)が0.3357nmであり、C軸方向の結晶子の大
きさ(Lc)が100nmであった。 (ニ)電極シート 得られたミルド化黒鉛繊維51.9gを、ポリフッ化ビ
ニリデン4.1gのN-メチルピロリドン45.0g溶液
(バインダー溶液)に加えて混練し、塗液とした。次い
でこの塗液を厚さ18μmの銅箔に電極目付100g/
2となるように塗工し、乾燥後ロールプレスして電極
密度1.4g/cm3の電極シートを作製した。 (ホ)充放電試験 前記電極シートから試験極(縦20mm、横20mm)を打
ち抜き作用極とし、金属リチウムを対極、参照極とした
三極セルを組み、これを充放電試験機に接続し、試験を
行った。なお、電解液はエチレンカーボネート(EC)
およびジメチルカーボネート(DMC)を体積比1/1
で混合した炭酸エステル溶媒に過塩素酸リチウム(Li
ClO4)を1モル濃度で加えたものを使用した。
The obtained milled carbon fiber was graphitized by raising the temperature to 3000 ° C. at a rate of 3 ° C./min in a nitrogen atmosphere, and further maintaining the same temperature for 1 hour. The obtained graphite fibers were used to measure crystal parameters by an X-ray diffraction method. As a result, the intensity ratio I 101 / I 100 of the 101 plane diffraction peak and the 100 plane diffraction peak was 1.9, and the graphite interlayer distance (d
002 ) was 0.3357 nm, and the crystallite size (Lc) in the C-axis direction was 100 nm. (D) Electrode sheet 51.9 g of the obtained milled graphite fiber was added to a solution (binder solution) of 4.1 g of polyvinylidene fluoride in 45.0 g of N-methylpyrrolidone and kneaded to obtain a coating liquid. Next, this coating solution was applied to a copper foil having a thickness of 18 μm with an electrode weight of 100 g /
m 2 , dried and roll-pressed to produce an electrode sheet having an electrode density of 1.4 g / cm 3 . (E) Charge / discharge test A triode cell having a test electrode (length 20 mm, width 20 mm) punched out from the electrode sheet as a working electrode, metallic lithium as a counter electrode and a reference electrode was assembled, and this was connected to a charge / discharge tester. The test was performed. The electrolyte is ethylene carbonate (EC)
And dimethyl carbonate (DMC) in a volume ratio of 1/1
Lithium perchlorate (Li
ClO 4 ) at 1 molar concentration was used.

【0061】充放電試験では(a)25℃および(b)
40℃での充放電における初回の充放電効率、放電容量
および10サイクル目の放電容量、また(c)初回に4
0℃で充電後、25℃で放電し、以後25℃で充放電を
繰り返した10サイクル目の放電容量を測定し、結果を
表1に示す。この際の充放電条件は(a)と(b)で
は、定電流−定電圧充電(100mA/g−10mV)
8時間、休止10分、定電流放電(100mA/g)で
カットオフ電圧1.5V(vs.Li/Li+)にて行
った。また、(b)では休止120分とした以外は
(a)と同様にして行った。
In the charge / discharge test, (a) 25 ° C. and (b)
Initial charge / discharge efficiency, charge capacity and discharge capacity at the 10th cycle in charge / discharge at 40 ° C., and (c) 4
After charging at 0 ° C., discharging at 25 ° C., and thereafter discharging and charging at 25 ° C. were repeated. The discharge capacity at the 10th cycle was measured, and the results are shown in Table 1. The charge / discharge conditions at this time are constant current-constant voltage charge (100 mA / g-10 mV) in (a) and (b).
The test was performed at a cut-off voltage of 1.5 V (vs. Li / Li + ) with a constant current discharge (100 mA / g) for 8 hours, a pause of 10 minutes, and the like. Moreover, in (b), it carried out similarly to (a) except having set 120 minutes of pause.

【0062】得られた結果を表1に示す。Table 1 shows the obtained results.

【0063】[0063]

【実施例2】マット状ピッチ繊維を、空気中、室温から
220℃まで平均昇温速度6℃/分で昇温し、その温度
で5分間保持後、320℃まで平均昇温速度17℃/分
で昇温して不融化処理を行った以外は、実施例1と同様
にして、不融化ピッチ繊維を製造した。
Example 2 A mat-shaped pitch fiber was heated in the air from room temperature to 220 ° C. at an average heating rate of 6 ° C./min, kept at that temperature for 5 minutes, and then heated to 320 ° C. at an average heating rate of 17 ° C./min. An infusibilized pitch fiber was manufactured in the same manner as in Example 1 except that the infusibilizing treatment was performed by raising the temperature in minutes.

【0064】得られた不融化繊維を用い、FT−IR測
定でのカルボニル強度比S(CO)/S(C=C)および元素分析に
よる酸素・炭素原子数比O/Cを求めたところ、各々、
0.55および0.055であった。この不融化繊維を
用いて、実施例1と同様にして黒鉛繊維を製造した。得
られた黒鉛繊維を用い、X線回折法によって、結晶パラ
メータを測定したところ、101面回折ピークと100
面回折ピークの強度比I101/I100が1.7であり、黒
鉛層間距離(d002)が0.3358nmであり、C軸方
向の結晶子の大きさ(Lc)が90nmであった。
Using the obtained infusible fiber, the carbonyl intensity ratio S (CO) / S (C = C) in FT-IR measurement and the oxygen / carbon atom number ratio O / C by elemental analysis were determined. Each,
0.55 and 0.055. Using this infusibilized fiber, a graphite fiber was produced in the same manner as in Example 1. The obtained graphite fibers were used to measure crystal parameters by an X-ray diffraction method.
The intensity ratio I 101 / I 100 of the plane diffraction peak was 1.7, the graphite interlayer distance (d 002 ) was 0.3358 nm, and the crystallite size (Lc) in the C-axis direction was 90 nm.

【0065】この黒鉛繊維を用い、実施例1と同様にし
て、負極を製造しかつこれを用いて充放電試験を行っ
た。得られた結果を表1に示す。
Using this graphite fiber, a negative electrode was manufactured in the same manner as in Example 1, and a charge / discharge test was performed using the negative electrode. Table 1 shows the obtained results.

【0066】[0066]

【実施例3】マット状ピッチ繊維を、空気中、室温から
240℃まで平均昇温速度6℃/分で昇温し、続いて3
20℃まで平均昇温速度15℃/分で昇温して不融化処
理を行った以外は、実施例1と同様にして、不融化ピッ
チ繊維を製造した。得られた不融化繊維を用い、FT−
IR測定でのカルボニル強度比S(CO)/S(C=C)および元素
分析による酸素・炭素原子数比O/Cを求めたところ、各
々、0.57および0.058であった。
Example 3 A mat-like pitch fiber was heated in air from room temperature to 240 ° C. at an average rate of 6 ° C./min.
An infusibilized pitch fiber was produced in the same manner as in Example 1 except that the infusibilizing treatment was performed by increasing the temperature to 20 ° C at an average temperature increasing rate of 15 ° C / min. Using the obtained infusibilized fiber, FT-
The carbonyl intensity ratio S (CO) / S (C = C) by IR measurement and the oxygen / carbon atom number ratio O / C by elemental analysis were determined to be 0.57 and 0.058, respectively.

【0067】この不融化繊維を用いて、実施例1と同様
にして黒鉛繊維を製造した。得られた黒鉛繊維を用い、
X線回折法によって、結晶パラメータを測定したとこ
ろ、101面回折ピークと100面回折ピークの強度比
101/I100が1.6であり、黒鉛層間距離(d002
が0.3358nmであり、C軸方向の結晶子の大きさ
(Lc)が90nmであった。
Using this infusible fiber, a graphite fiber was produced in the same manner as in Example 1. Using the obtained graphite fiber,
When the crystal parameters were measured by the X-ray diffraction method, the intensity ratio I 101 / I 100 between the 101 plane diffraction peak and the 100 plane diffraction peak was 1.6, and the graphite interlayer distance (d 002 )
Was 0.3358 nm, and the crystallite size (Lc) in the C-axis direction was 90 nm.

【0068】この黒鉛繊維を用い、実施例1と同様にし
て、負極を製造しかつこれを用いて充放電試験を行っ
た。得られた結果を表1に示す。
Using this graphite fiber, a negative electrode was manufactured in the same manner as in Example 1, and a charge / discharge test was performed using the negative electrode. Table 1 shows the obtained results.

【0069】[0069]

【実施例4】ミルド化炭素繊維に2重量%の平均粒径1
0μmの炭化ホウ素を加えて均一に混合した後黒鉛化す
る以外は、実施例1と同様にして黒鉛繊維を製造した。
得られた黒鉛繊維を用い、X線回折法によって結晶パラ
メータを測定したところ101面回折ピークと100面
回折ピークの強度比I101/I100が2.1であり、黒鉛
層間距離(d002)が0.3355nmであり、C軸方向
の結晶子の大きさ(Lc)が100nmであった。
Example 4 Milled carbon fiber had an average particle size of 2% by weight.
Graphite fibers were produced in the same manner as in Example 1 except that 0 μm of boron carbide was added, mixed uniformly, and then graphitized.
Using the obtained graphite fiber, the crystal parameter was measured by an X-ray diffraction method. As a result, the intensity ratio I 101 / I 100 of the 101 plane diffraction peak and the 100 plane diffraction peak was 2.1, and the graphite interlayer distance (d 002 ) Was 0.3355 nm, and the crystallite size (Lc) in the C-axis direction was 100 nm.

【0070】この黒鉛繊維を用い、実施例1と同様にし
て、負極を製造しかつこれを用いて充放電試験を行っ
た。得られた結果を表1に示す。
Using this graphite fiber, a negative electrode was manufactured in the same manner as in Example 1, and a charge / discharge test was performed using the negative electrode. Table 1 shows the obtained results.

【0071】[0071]

【比較例1】マット状ピッチ繊維を、空気中、室温から
300℃まで平均昇温速度6℃/分で昇温しして不融化
処理を行った以外は、実施例1と同様にして、不融化ピ
ッチ繊維を製造した。得られた不融化繊維を用い、FT
−IR測定でのカルボニル強度比S(CO)/S(C=C)および元
素分析による酸素・炭素原子数比O/Cを求めたところ、
各々、0.63および0.073であった。
Comparative Example 1 The procedure of Example 1 was repeated, except that the mat-shaped pitch fiber was heated in the air from room temperature to 300 ° C. at an average heating rate of 6 ° C./min to perform infusibility treatment. Infusible pitch fibers were produced. Using the obtained infusibilized fiber, FT
When the carbonyl intensity ratio S (CO) / S (C = C) in the IR measurement and the oxygen / carbon atom ratio O / C by elemental analysis were determined,
They were 0.63 and 0.073, respectively.

【0072】この不融化繊維を用いて、実施例1と同様
にして黒鉛繊維を製造した。得られた黒鉛繊維を用い、
X線回折法によって、結晶パラメータを測定したとこ
ろ、101面回折ピークと100面回折ピークの強度比
101/I100が1.1であり、黒鉛層間距離(d002
が0.3365nmであり、C軸方向の結晶子の大きさ
(Lc)が40nmであった。
Using this infusible fiber, a graphite fiber was produced in the same manner as in Example 1. Using the obtained graphite fiber,
When the crystal parameters were measured by the X-ray diffraction method, the intensity ratio I 101 / I 100 between the 101 plane diffraction peak and the 100 plane diffraction peak was 1.1, and the graphite interlayer distance (d 002 )
Was 0.3365 nm, and the crystallite size (Lc) in the C-axis direction was 40 nm.

【0073】この黒鉛繊維を用い、実施例1と同様にし
て、負極を製造しかつこれを用いて充放電試験を行っ
た。得られた結果を表1に示す。
Using this graphite fiber, a negative electrode was manufactured in the same manner as in Example 1, and a charge / discharge test was performed using the negative electrode. Table 1 shows the obtained results.

【0074】[0074]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 CA00 CA07 CB01 CB09 5H003 AA02 BA01 BA03 BA04 BB02 BC02 BC05 BD01 BD03 BD05 5H014 AA02 BB01 BB04 BB06 BB11 EE08 HH01 HH04 HH06 HH08 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 CJ01 CJ04 CJ08 CJ16 DJ17 EJ04 HJ00 HJ01 HJ04 HJ07 HJ13 HJ14 HJ16 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G046 CA00 CA07 CB01 CB09 5H003 AA02 BA01 BA03 BA04 BB02 BC02 BC05 BD01 BD03 BD05 5H014 AA02 BB01 BB04 BB06 BB11 EE08 HH01 HH04 HH06 HH08 5H029 AJ02 AM03 A03 AM07 AM16 BJ04 BJ12 CJ01 CJ04 CJ08 CJ16 DJ17 EJ04 HJ00 HJ01 HJ04 HJ07 HJ13 HJ14 HJ16 HJ19

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 X線回折測定における101面と100
面の強度比I101/I100が1.2以上であり、電解液に
浸漬し、25℃にて充電した場合の初期充放電効率およ
び初期放電容量に比べ、30〜50℃にて充電した場合
の初期充放電効率および初期放電容量の方が高いことを
特徴とするリチウムイオン二次電池の負極用黒鉛材。
1. 101 planes and 100 planes in X-ray diffraction measurement
The surface intensity ratio I 101 / I 100 was 1.2 or more, and the battery was charged at 30 to 50 ° C. as compared with the initial charge / discharge efficiency and initial discharge capacity when immersed in an electrolytic solution and charged at 25 ° C. A graphite material for a negative electrode of a lithium ion secondary battery, wherein the graphite material has higher initial charge / discharge efficiency and initial discharge capacity in such a case.
【請求項2】 25℃において充放電した場合の初期充
放電効率および初期放電容量に比べ、30〜50℃にて
充放電した場合の初期充放電効率および初期放電容量の
方が高い請求項1記載のリチウムイオン二次電池の負極
用黒鉛材。
2. The initial charge / discharge efficiency and the initial discharge capacity when charged and discharged at 30 to 50 ° C. are higher than the initial charge and discharge efficiency and the initial discharge capacity when charged and discharged at 25 ° C. The graphite material for a negative electrode of the lithium ion secondary battery according to the above.
【請求項3】 FT−IR分光測定において、1670
cm-1以上1830cm-1以下に現れるカルボニル基に
ついてのピーク面積:S(CO)の、1530cm-1以上1
670cm-1未満に現れるエチレン結合についてのピー
ク面積:S(C=C)に対する比S(CO)/S(C=C)が0.40〜
0.58であり、元素分析において酸素の炭素に対する
原子数比O/Cが0.045〜0.060であるメソフェ
ーズピッチ系不融化繊維を炭化し、次いで黒鉛化するこ
とを特徴とするリチウムイオン二次電池の負極用黒鉛材
の製造方法。
3. In an FT-IR spectroscopic measurement, 1670
cm -1 or 1830 cm -1 peak area for the carbonyl groups appearing in the following: S in (CO), 1530cm -1 or 1
Peak area for ethylene bond appearing below 670 cm -1 : ratio of S (CO) / S (C = C) to S (C = C) is 0.40
Lithium ion characterized by carbonizing a mesophase pitch-based infusible fiber having an atomic ratio O / C of oxygen to carbon of 0.045 to 0.060 in elemental analysis and then graphitizing the lithium ion. A method for producing a graphite material for a negative electrode of a secondary battery.
【請求項4】 前記炭化工程で得られた炭素繊維をミル
ド化し、次いで黒鉛化する請求項3記載の製造方法。
4. The method according to claim 3, wherein the carbon fiber obtained in the carbonization step is milled and then graphitized.
【請求項5】 前記炭化工程で得られた炭素繊維をミル
ド化し、得られたミルド化炭素繊維を、ホウ素化合物と
混合した後、黒鉛化する請求項3記載の製造方法。
5. The production method according to claim 3, wherein the carbon fibers obtained in the carbonization step are milled, and the obtained milled carbon fibers are mixed with a boron compound and then graphitized.
【請求項6】 前記黒鉛化工程で得られた黒鉛材に、電
解液中、30〜50℃にて充電または充放電させる処理
を施す請求項3〜5の何れか1項に記載の製造方法。
6. The production method according to claim 3, wherein the graphite material obtained in the graphitization step is subjected to a treatment of charging or discharging at 30 to 50 ° C. in an electrolytic solution. .
【請求項7】 請求項1または2記載の黒鉛材、または
請求項3〜6の何れか1項に記載の製造方法で得られた
黒鉛材を含むことを特徴とするリチウムイオン二次電池
用負極。
7. A lithium ion secondary battery comprising the graphite material according to claim 1 or 2, or the graphite material obtained by the method according to any one of claims 3 to 6. Negative electrode.
【請求項8】 請求項7記載の負極を備えたリチウムイ
オン二次電池。
8. A lithium ion secondary battery comprising the negative electrode according to claim 7.
JP28410499A 1999-10-05 1999-10-05 Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery Pending JP2001110415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28410499A JP2001110415A (en) 1999-10-05 1999-10-05 Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28410499A JP2001110415A (en) 1999-10-05 1999-10-05 Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2001110415A true JP2001110415A (en) 2001-04-20

Family

ID=17674264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28410499A Pending JP2001110415A (en) 1999-10-05 1999-10-05 Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2001110415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2008159277A (en) * 2006-12-20 2008-07-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium-ion secondary battery
CN102593446A (en) * 2012-02-22 2012-07-18 清华大学 Method for preparing active electrode material of lithium ion battery
KR101501435B1 (en) * 2012-05-31 2015-03-11 주식회사 엘지화학 Middle or Large-Sized Battery Pack of Excellent High Temperature Performance
WO2023184080A1 (en) * 2022-03-28 2023-10-05 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2008159277A (en) * 2006-12-20 2008-07-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium-ion secondary battery
CN102593446A (en) * 2012-02-22 2012-07-18 清华大学 Method for preparing active electrode material of lithium ion battery
KR101501435B1 (en) * 2012-05-31 2015-03-11 주식회사 엘지화학 Middle or Large-Sized Battery Pack of Excellent High Temperature Performance
WO2023184080A1 (en) * 2022-03-28 2023-10-05 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
JP3540478B2 (en) Anode material for lithium ion secondary battery
JPH08315820A (en) Carbon fiber for secondary battery negative electrode material and manufacture thereof
US5556723A (en) Negative electrode for use in a secondary battery
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP2002329494A (en) Graphite material for negative electrode of lithium ion secondary battery and production process thereof
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH10152311A (en) Surface graphitized carbon material, its production and lithium ion secondary battery using the same
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JP2004063456A (en) Manufacturing method of carbon material for electrode
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2002063902A (en) Carbon material manufacturing method and lithium ion secondary battery
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode