WO2024229743A1 - 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置 - Google Patents

钙钛矿太阳能电池、光伏组件、光伏系统和用电装置 Download PDF

Info

Publication number
WO2024229743A1
WO2024229743A1 PCT/CN2023/093224 CN2023093224W WO2024229743A1 WO 2024229743 A1 WO2024229743 A1 WO 2024229743A1 CN 2023093224 W CN2023093224 W CN 2023093224W WO 2024229743 A1 WO2024229743 A1 WO 2024229743A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
perovskite
perovskite solar
cell according
Prior art date
Application number
PCT/CN2023/093224
Other languages
English (en)
French (fr)
Inventor
梁伟风
黄志涵
史若璇
郭文明
栾博
郭永胜
陈国栋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2023/093224 priority Critical patent/WO2024229743A1/zh
Priority to CN202380068049.8A priority patent/CN119908189A/zh
Publication of WO2024229743A1 publication Critical patent/WO2024229743A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of solar cells, and in particular to a perovskite solar cell, a photovoltaic module, a photovoltaic system and an electrical device.
  • PSCs Perovskite solar cells
  • the present application is made in view of the above-mentioned problems, and one of its purposes is to provide a perovskite solar cell with good stability.
  • the first aspect of the present application provides a perovskite solar cell, comprising:
  • a perovskite layer disposed on the surface of the transparent electrode layer
  • an insertion layer disposed on a surface of the perovskite layer away from the transparent electrode layer, the insertion layer comprising an organic material, the molecular structure of the organic material containing a benzoheterocycle;
  • the metal electrode is arranged on the surface of the insertion layer away from the perovskite layer.
  • the above-mentioned perovskite solar cell has an insertion layer between the perovskite layer and the metal electrode.
  • the insertion layer is made of an organic material containing a benzoheterocyclic ring in its molecular structure.
  • the heterocyclic ring in the benzoheterocyclic ring can be bound to the metal electrode through chemical adsorption and coordination, which plays a protective role on the metal electrode and inhibits the calcium
  • the halogens in the titanium ore layer react with the metal electrode; the benzene ring can increase the hydrophobicity of the molecules in the insertion layer material to prevent the influence of moisture on the device; the benzoheterocyclic structure has good coplanarity and closer molecular spacing, which can delay the migration of halogen ions in the perovskite layer; the perovskite solar cell has good stability.
  • the benzo heterocycle includes any one of a benzo five-membered heterocycle and a benzo six-membered heterocycle. In this way, the migration of halogen ions in the perovskite layer can be further delayed, and the reaction of halogen ions with the metal electrode can be further delayed, thereby further improving the stability of the device.
  • the heteroatom in the benzoheterocycle includes one or more of a nitrogen atom, an oxygen atom and a sulfur atom.
  • the heterocyclic ring in the benzoheterocyclic ring forms a conjugated structure with the benzene ring. In this way, the migration of halogen ions in the perovskite layer can be better delayed, thereby further improving the stability of the device. It is also more conducive to the transmission of electrons, thereby improving the photoelectric conversion efficiency of the device.
  • the heteroatom in the benzoheterocycle forms a conjugated structure with the benzene ring, thereby further improving the stability of the device.
  • At least one substituent R 1 is connected to the benzene ring of the benzoheterocycle, and the substituent R 1 independently includes any one of phenyl, -N(R 2 ) 2 , -NHR 2 , -NH 2 , trimethylamino, triethylamino, tripropylamino, pyridyl, alkyl, halogen, alkoxy, hydroxyl, carboxyl, naphthyl, -NHCOR 2 and -OCOR 2 ; wherein R 2 represents a C 1 to C 5 alkyl.
  • the first substituent on the benzene ring can reduce the distance between molecules, make the material of the insertion layer more compact, further improve the effect of blocking the reaction between the metal electrode and the perovskite layer, and further improve the effect of blocking moisture and oxygen, thereby further improving the stability of the device.
  • At least one substituent R 3 is connected to the heterocyclic ring of the benzoheterocyclic ring, and the substituent R 3 includes any one of phenyl, -N(R 4 ) 2 , -NHR 4 , -NH 2 , trimethylamino, triethylamino, tripropylamino, pyridyl, alkyl, halogen, alkoxy, hydroxyl, carboxyl, naphthyl, -NHCOR 4 and -OCOR 4 ; wherein R 4 represents a C 1 to C 5 alkyl group. In this way, the stability of the device can be further improved.
  • the organic material comprises one or more compounds having the following general structural formula:
  • a on each ring in the above general formula independently includes any one of C, N, O and S, and at least one A on a ring is any one of N, O and S;
  • R 5 to R 12 independently include any one of a benzene ring, hydrogen, -N(R 13 ) 2 , -NHR 13 , -NH 2 , trimethylamino, triethylamino, tripropylamino, pyridyl, alkyl, halogen, hydroxyl, carboxyl, naphthyl, -NHCOR 13 and -OCOR 13 , and R 13 is a C 1 to C 5 alkyl group.
  • the organic material includes one or more of the following compounds:
  • the thickness of the insertion layer is 0.5 nm to 50 nm. To improve the stability of perovskite solar cells.
  • the thickness of the insertion layer is 5 nm to 20 nm. In this way, the perovskite solar cell can obtain better stability and further improve the photoelectric conversion efficiency of the perovskite solar cell.
  • it further comprises: an electron transport layer, wherein the electron transport layer is disposed between the perovskite layer and the insertion layer, or between the insertion layer and the metal electrode.
  • the electron transport layer can effectively extract and transport the electrons generated by the perovskite layer, thereby improving the photoelectric conversion efficiency of the perovskite solar cell.
  • the material of the electron transport layer includes one or more of [6,6]-phenyl C 61 butyric acid methyl ester, [6,6]-phenyl C 71 butyric acid methyl ester, fullerene C60, fullerene C70, tin dioxide and zinc oxide.
  • the method further comprises: a hole transport layer, wherein the hole transport layer is disposed between the perovskite layer and the transparent electrode layer.
  • the hole transport layer is disposed between the perovskite layer and the transparent electrode layer.
  • the material of the hole transport layer includes one or more of NiOx, PTAA, PEDOT:PSS and phosphonic acid carbazole compounds; wherein x represents the number of oxygen atoms.
  • the device further comprises: a passivation layer, wherein the passivation layer is disposed between the perovskite layer and the hole transport layer.
  • the passivation layer is disposed between the perovskite layer and the hole transport layer.
  • the material of the transparent electrode layer includes one or more of FTO, ITO, AZO, BZO and IZO.
  • the perovskite layer includes at least one of a material having a chemical formula of ABX 3 and a material having a chemical formula of A 2 CDX 6 ;
  • A includes one or more of methyl amidine, methylamine and Cs + ;
  • B includes one or more of Pb 2+ and Sn 2+ ;
  • C includes Ag + ;
  • D includes one or more of Bi 3+ , Sb 3+ and In 3+ ;
  • X includes one or more of Br - and I - .
  • the band gap of the perovskite layer is 1.20 eV to 2.30 eV, and the thickness of the perovskite layer is 200 nm to 1000 nm.
  • the material of the metal electrode includes Ag, Cu, Au and Al. One or more of.
  • the second aspect of the present application provides a photovoltaic module, comprising the perovskite solar cell of the first aspect of the present application.
  • the photovoltaic module of the present application has good stability by adopting the perovskite solar cell of the first aspect of the present application.
  • a third aspect of the present application provides a photovoltaic system, comprising the photovoltaic assembly of the second aspect of the present application.
  • a fourth aspect of the present application provides an electrical device, comprising the perovskite solar cell of the first aspect of the present application.
  • the perovskite solar cell of the present application is provided with an insertion layer between the perovskite layer and the metal electrode, and the insertion layer adopts an organic material containing a benzoheterocycle in the molecular structure.
  • the insertion layer can effectively inhibit the halogen in the perovskite layer from reacting with the metal electrode, and can prevent moisture and oxygen from entering the battery and affecting the perovskite layer, thereby making the perovskite solar cell have good stability.
  • FIG1 is a schematic structural diagram of a perovskite solar cell according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a perovskite solar cell according to another embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of an electric device according to an embodiment of the present application.
  • Perovskite solar cell 11. Transparent electrode layer; 12. Perovskite layer; 13. Insertion layer; 14. Metal electrode; 15. Electron transport layer; 16. Hole transport layer; 17. Passivation layer; 2. Electrical device.
  • range disclosed in the present application is defined in the form of a lower limit and an upper limit, and a given range is defined by selecting a lower limit and an upper limit, and the selected lower limit and upper limit define the boundaries of the particular range.
  • the range defined in this way can be inclusive or exclusive of the end values, and can be arbitrarily combined, that is, any lower limit can be combined with any upper limit to form a range. For example, if a range of 60 to 120 and 80 to 110 is listed for a particular parameter, it is understood that a range of 60 to 110 and 80 to 120 is also expected.
  • the numerical range "a to b" represents an abbreviation of any real number combination between a and b, where a and b are both real numbers.
  • the numerical range "0-5" means that all real numbers between "0-5" are listed in this document, and "0-5" is just an abbreviation of these numerical combinations.
  • a parameter is expressed as an integer ⁇ 2, it is equivalent to disclosing that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • the method may further include step (c), which means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c), or may include steps (a), (c) and (b), or may include steps (c), (a) and (b), etc.
  • the terms “include” and “comprising” mentioned in this application may be open-ended or closed-ended.
  • the terms “include” and “comprising” may also include Or include other components not listed, or only include or contain the listed components.
  • the term "or” is inclusive.
  • the phrase “A or B” means “A, B, or both A and B”. More specifically, any of the following conditions satisfies the condition "A or B”: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists); or both A and B are true (or exist).
  • A (such as B) means that B is a non-limiting example of A, and it can be understood that A is not limited to B.
  • first”, “second”, “third”, “fourth”, etc. in “the first aspect”, “the second aspect”, “the third aspect”, “the fourth aspect”, etc. are used only for descriptive purposes and cannot be understood as indicating or implying relative importance or quantity, nor can they be understood as implicitly indicating the importance or quantity of the indicated technical features.
  • first”, “second”, “third”, “fourth”, etc. only serve the purpose of non-exhaustive enumeration and description, and it should be understood that they do not constitute a closed limitation on quantity.
  • room temperature generally refers to 4°C to 35°C, and may refer to 20°C ⁇ 5°C. In some embodiments of the present application, room temperature refers to 20°C to 30°C.
  • the weight of the relevant components mentioned in the embodiment description of the present application can not only refer to the content of each component, but also represent the proportional relationship between the weights of the components. Therefore, as long as the content of the relevant components is proportionally enlarged or reduced according to the embodiment description of the present application, it is within the scope disclosed in the embodiment description of the present application. Furthermore, the weight described in the embodiment description of the present application can be a mass unit known in the chemical industry such as ⁇ g, mg, g, kg, etc.
  • alkyl refers to a monovalent residue formed by a saturated hydrocarbon containing a primary (normal) carbon atom, a secondary carbon atom, a tertiary carbon atom, a quaternary carbon atom, or a combination thereof losing a hydrogen atom.
  • a phrase containing this term, for example, "C 1-9 alkyl” refers to an alkyl containing 1 to 9 carbon atoms, and each occurrence may be independently C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl, C 6 alkyl, C 7 alkyl, C 8 alkyl or C 9 alkyl.
  • Suitable examples include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), 1-propyl (n-Pr, n-propyl, -CH 2 CH 2 CH 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ) , 1-pentyl (n-pentyl, -CH 2 CH 2 CH 2 CH 3 ), 2-pentyl (-CH( CH3
  • heteroalkyl means that at least one carbon atom in an alkyl group is replaced by a non-carbon atom, and the non-carbon atom may be an N atom, an O atom, an S atom, a P atom, etc. O, N, and S are used as examples for explanation.
  • the resulting heteroalkyl group is an alkoxy group (e.g., -OCH 3 , etc.), an amino group (e.g., -NHCH 3 , -N(CH 3 ) 2 , etc.) or a thioalkyl group (e.g., -SCH 3 ).
  • the resulting heteroalkyl group is an alkoxyalkyl group (e.g., -CH2CH2 - O - CH3 , etc.), an alkylaminoalkyl group (e.g., -CH2NHCH3 , -CH2N ( CH3 ) 2 , etc.) or an alkylthioalkyl group (e.g., -CH2 -S- CH3 ).
  • the resulting heteroalkyl group may be a hydroxyalkyl group (e.g., -CH2CH2 - OH), an aminoalkyl group (e.g., -CH2NH2 ) or a mercaptoamino group (e.g., -CH2CH2 - SH ).
  • heteroalkyl for example, "C 1 -C 9 heteroalkyl” or “C 1 - 9 heteroalkyl”, refer to heteroalkyl groups containing 1 to 9 carbon atoms, and each occurrence can be independently C 1 heteroalkyl, C 2 heteroalkyl, C 3 heteroalkyl, C 4 heteroalkyl , C 5 heteroalkyl, C 6 heteroalkyl, C 7 heteroalkyl, C 8 heteroalkyl or C 9 heteroalkyl.
  • cycloalkyl has the same meaning as “non-aromatic cycloalkyl”, and refers to a monovalent residue formed by a non-aromatic hydrocarbon (saturated hydrocarbon or unsaturated hydrocarbon) containing ring carbon atoms losing a hydrogen atom on the ring, that is, a monovalent attachment site is formed directly on the ring.
  • Cycloalkyl derived from non-aromatic saturated hydrocarbons can be recorded as saturated cycloalkyl
  • cycloalkyl derived from non-aromatic unsaturated hydrocarbons can be recorded as unsaturated cycloalkyl.
  • Cycloalkyl can be a monocyclic alkyl, or a spirocyclic alkyl, or a bridged cycloalkyl.
  • Phrases containing this term, for example, "C 3 ⁇ C 9 cycloalkyl” or “C 3-9 cycloalkyl” refer to cycloalkyl groups containing 3 to 9 carbon atoms, and each occurrence can be independently C 3 cycloalkyl, C 4 cycloalkyl, C 5 cycloalkyl, C 6 cycloalkyl, C 7 cycloalkyl, C 8 cycloalkyl or C 9 cycloalkyl.
  • Suitable examples include, but are not limited to: cyclopropyl Cyclobutyl Cyclopentyl Cyclohexyl
  • cycloalkyl may also contain one or more double bonds, and representative examples of cycloalkyl containing double bonds include cyclopentenyl (including but not limited to ), cyclohexenyl (including but not limited to ), cyclohexadiene (including but not limited to ) yl, cyclopentadienyl (including but not limited to ) and cyclobutadienyl (including but not limited to ).
  • heterocycloalkyl means that at least one carbon atom on the basis of a cycloalkyl group is replaced by a non-carbon atom, and the non-carbon atom may be a N atom, an O atom, an S atom, etc., and may be a saturated ring or a partially unsaturated ring.
  • C 4 ⁇ C 9 heterocyclyl means a heterocyclyl group containing 4 to 9 carbon atoms, and each occurrence may be independently C 4 heteroalkyl, C 5 heteroalkyl, C 6 heteroalkyl, C 7 heteroalkyl, C 8 heteroalkyl or C 9 heteroalkyl.
  • Suitable examples include, but are not limited to, dihydropyridyl, tetrahydropyridyl (piperidyl), tetrahydrothiophene, sulfur oxide
  • the tetrahydrothienyl, tetrahydrofuranyl, tetrahydroquinolyl, tetrahydroisoquinolyl and dihydroindolinyl groups can be selected from the group consisting of tetrahydrothiophenyl, tetrahydrofuranyl, tetrahydroquinolyl and dihydroindolinyl.
  • aryl refers to an aromatic hydrocarbon group derived from an aromatic hydrocarbon compound by losing a hydrogen atom, that is, a monovalent attachment site formed directly on the ring, which may be a monocyclic aromatic group, a condensed aromatic group, or a polycyclic aromatic group.
  • a monocyclic aromatic group a monocyclic aromatic group, a condensed aromatic group, or a polycyclic aromatic group.
  • polycyclic rings at least one is an aromatic ring system.
  • C 6 ⁇ C 10 aryl refers to an aromatic group containing 6 to 10 carbon atoms, and each occurrence may be independently a C 6 aryl, a C 8 aryl, a C 9 aryl, or a C 10 aryl.
  • C6 - C20 aryl refers to an aryl group containing 6 to 20 carbon atoms, and each occurrence can be independently but not limited to C6 aryl aryl (such as phenyl), C6 aryl aryl (such as benzocyclobutenyl), C8 aryl (such as phenylpropylcyclobutenyl), C9 aryl (such as indenyl), C10 aryl (such as naphthyl), C12 aryl (such as acenaphthenyl, biphenyl), C13 aryl (such as fluorenyl), C14 aryl (such as anthracenyl, phenanthryl), C18 aryl (such as triphenylene) or C20 aryl (such as perylene).
  • C6 aryl aryl such as phenyl
  • C6 aryl aryl such as benzocyclobutenyl
  • C8 aryl such as
  • aromatic cyclic hydrocarbon compounds include, but are not limited to, benzene, phenylpropylcyclobutene, biphenyl, indene, naphthalene , acenaphthene, fluorene, anthracene, phenanthrene, triphenylene, perylene and derivatives thereof.
  • heteroaryl is a heterocyclic group with aromaticity, which may be a monovalent group formed by replacing at least one carbon atom of an aryl group with a non-carbon atom, or a monovalent group formed by replacing at least one carbon atom of a cyclopentadienyl group with a non-carbon atom, and the non-carbon atom may be, but is not limited to, an N atom, an O atom, an S atom, etc.
  • C1 - C10 heteroaryl refers to a heteroaryl group containing 1 to 10 carbon atoms, and each time it appears, it can be independently a C1 heteroaryl group (such as tetrazolyl, etc.), a C2 heteroaryl group (such as triazolyl, oxadiazolyl, etc.), a C3 heteroaryl group (such as imidazolyl, etc.), a C4 heteroaryl group (such as furanyl, etc.), a C5 heteroaryl group (such as pyridyl, etc.), a C6 heteroaryl group, a C7 heteroaryl group (such as benzimidazole, etc.), a C8 heteroaryl group (such as indolyl, etc.), a C9 heteroaryl group (such as quinolyl, etc.) or a C10 heteroaryl group (such as pyrrolobipyridyl).
  • a C1 heteroaryl group such as tetrazol
  • C 3 -C 20 heteroaryl refers to a heteroaryl group containing 3 to 20 carbon atoms, and each occurrence can be independently selected from but not limited to C 2 heteroaryl, C 3 heteroaryl, C 4 heteroaryl , C 5 heteroaryl, C 6 heteroaryl, C 8 heteroaryl, C 9 heteroaryl, C 10 heteroaryl, C 12 heteroaryl, C 13 heteroaryl, C 14 heteroaryl , C 18 heteroaryl or C 20 heteroaryl.
  • Suitable examples include, but are not limited to, heteroaryl groups derived from the following heteroaromatic rings (with the number of carbon atoms indicated in parentheses): furan (C 4 ), benzofuran (C 8 ), thiophene (C 4 ), benzothiophene (C 8 ), pyrrole (C 4 ), pyrazole (C 3 ), triazole (C 2 ), imidazole (C 3 ), oxazole (C 3 ), oxadiazole (C 2 ), thiazole (C 3 ), tetrazole (C 1 ), indole (C 8 ), carbazole (C 12 ), pyrroloimidazole (C 5 ), pyrrolopyrrole (C 6 ), thienopyrrole (C 6 ), thienothiophene (C 6 ), furopyrrole (C 6 ), furanofuran (C 6 ), thienofuran (C 6 ), thi
  • alkylene refers to a hydrocarbon group derived from an alkane by removing two hydrogen atoms (or derived from an alkyl group by losing another hydrogen atom), which has two monovalent radical centers, and may be a saturated branched alkyl group or a saturated straight-chain alkyl group.
  • C 1 -C 9 alkylene means that the alkyl part contains 1 to 9 carbon atoms, and each occurrence may be independently C 1 alkylene, C 2 alkylene, C 3 alkylene, C 4 alkylene, C 5 alkylene, C 6 alkylene, C 7 alkylene, C 8 alkylene or C 9 alkylene.
  • Suitable examples include, but are not limited to, methylene (—CH 2 —), 1,1-ethyl (—CH(CH 3 )—), 1,2-ethyl (—CH 2 CH 2 —), 1,1-propyl (—CH(CH 2 CH 3 )—), 1,2-propyl (—CH 2 CH(CH 3 )—), 1,3-propyl (—CH 2 CH 2 CH 2 —), and 1,4-butyl (—CH 2 CH 2 CH 2 CH 2 —).
  • halogen or halo refers to F, Cl, Br or I unless otherwise specified.
  • an “amino group” may be a primary amino group (-NH 2 ), a secondary amino group (>NH), a tertiary amino group (>N-) or a quaternary amino group (>N + ⁇ ).
  • a hydroxyl group is -OH
  • a carboxyl group is -COOH
  • a cyano group is -CN
  • a hydrazine group is -NHNH 2
  • a boric acid group is (*-)B(OH) 2 .
  • the * in the phosphinic acid group indicates that it is connected to a carbon atom or H and at least one of them is connected to a carbon atom
  • the * in the phosphonic acid group indicates that it is connected to a carbon atom
  • the * in the boric acid group indicates that it is connected to a carbon atom.
  • perovskite solar cells generally have the problem of poor device stability, which limits the large-scale commercial application of perovskite solar cells. Therefore, how to improve the device stability of perovskite solar cells is one of the important directions of technical research in this field.
  • the present application provides a perovskite solar cell, which can effectively improve the stability of the device by providing an insertion layer with special materials between the perovskite layer and the metal electrode of the perovskite solar cell.
  • the first aspect of the present application provides a perovskite solar cell 1, which comprises a transparent electrode layer 11, a perovskite layer 12, an insertion layer 13 and a metal electrode 14.
  • the perovskite layer 12 is disposed on the surface of the transparent electrode layer 11;
  • the insertion layer 13 is disposed on the surface of the perovskite layer 12 away from the transparent electrode layer 11, and the insertion layer 13 comprises an organic material, and the molecular structure of the organic material contains a benzoheterocycle; and the metal electrode 14 is disposed on the surface of the insertion layer 13 away from the perovskite layer 12.
  • the halogen in the perovskite layer 12 of the perovskite solar cell 1 is easily ion-migrated and reacts with the metal electrode 14 , resulting in damage to the metal electrode 14 and decomposition of the components of the perovskite layer 12 , thereby causing poor device stability of the perovskite solar cell 1 .
  • the above-mentioned perovskite solar cell 1 of the present application is provided with an insertion layer 13 between the perovskite layer 12 and the metal electrode 14 of the perovskite solar cell 1, and the insertion layer 13 uses an organic material containing a benzoheterocyclic ring in the molecular structure.
  • the heterocyclic ring in the benzoheterocyclic ring matrix can be combined with the metal electrode 14 through chemical adsorption and coordination, and the metal electrode 14 is protected, thereby inhibiting the halogen in the perovskite layer 12 from reacting with the metal electrode 14, and improving the stability of the device;
  • the benzene ring in the benzoheterocyclic ring matrix can increase the hydrophobicity of the material molecules of the insertion layer 13, prevent the influence of moisture on the device (especially the perovskite layer 12), and improve the stability of the device;
  • the benzoheterocyclic ring structure has good coplanarity, and the molecular distance is closer during the material molecule stacking process, and the smaller vacancies between molecules can delay the migration of halogen ions in the perovskite layer 12, and the high concentration of halogen on the side of the insertion layer 13 close to the perovskite layer 12 will also inhibit the migration of halogen, thereby improving the stability of the device.
  • the intermolecular distance of the benzoheterocyclic ring is relatively close, it is also conducive to the transmission of electrons.
  • the electron transmission is smoother, and holes can be blocked to prevent the holes from recombining with electrons through the metal electrode 14 side, thereby improving the photoelectric conversion efficiency of the perovskite solar cell 1.
  • the organic material's molecular structure contains a benzoheterocycle, which means that the organic material's molecular structure contains at least one benzene ring and one heterocycle fused together. Furthermore, there may be multiple benzene rings and heterocycles fused together.
  • the benzo heterocycle includes any one of a benzo five-membered heterocycle and a benzo six-membered heterocycle.
  • the structures of the benzo five-membered heterocycle and the benzo six-membered heterocycle are relatively stable, and the coplanarity of the five-membered heterocycle and the six-membered heterocycle with the benzene ring is good, which can further delay the halogen ions in the perovskite layer 12.
  • the migration of halogen ions can be further delayed to further delay the reaction between the halogen ions and the metal electrode 14, thereby further improving the stability of the device.
  • the heteroatoms in the benzoheterocycle include one or more of nitrogen atoms, oxygen atoms, and sulfur atoms.
  • the heteroatoms in the benzoheterocycle may be nitrogen atoms, oxygen atoms, sulfur atoms, or may contain two or more of the above heteroatoms at the same time; the number of heteroatoms in the benzoheterocycle may be one or more; when the number of heteroatoms in the benzoheterocycle is more than one, the types of the multiple heteroatoms may be the same or different.
  • the heterocyclic ring in the benzoheterocyclic ring forms a conjugated structure with the benzene ring. That is, the heterocyclic ring and the benzene ring form a large conjugated system.
  • the coplanarity of the molecular structure of the insertion layer 13 material can be further improved, the distance and vacancies between molecules can be further reduced, and the migration of halogen ions in the perovskite layer 12 can be better delayed, thereby further improving the stability of the device. It is also more conducive to the transmission of electrons, thereby improving the photoelectric conversion efficiency of the device.
  • the heteroatom in the benzoheterocycle forms a conjugated structure with the benzene ring, that is, the lone pair of electrons on the heteroatom in the heterocycle can be conjugated with the benzene ring.
  • At least one substituent R 1 is connected to the benzene ring of the benzoheterocycle, and each substituent R 1 independently includes any one of phenyl, amino, alkyl, halogen, alkoxy, hydroxyl, carboxyl, naphthyl, -NHCOR 2 and -OCOR 2 ; wherein R 2 represents a C 1 to C 5 alkyl group.
  • the substituent R 1 on the benzene ring can reduce the distance between molecules, make the material of the insertion layer 13 more compact, further improve the effect of blocking the reaction between the metal electrode 14 and the perovskite layer 12, and further improve the effect of blocking moisture and oxygen, thereby further improving the stability of the device.
  • At least one substituent R 3 is connected to the heterocyclic ring of the benzoheterocyclic ring, and each substituent R 3 independently includes any one of phenyl, amino, alkyl, halogen, alkoxy, hydroxyl, carboxyl, naphthyl, -NHCOR 4 and -OCOR 4 ; wherein R 4 represents a C 1 to C 5 alkyl group.
  • the substituent R 3 on the heterocyclic ring can further reduce the distance between molecules, make the material of the insertion layer 13 more compact, further improve the effect of blocking the reaction between the metal electrode 14 and the perovskite layer 12, and further improve the effect of blocking moisture and oxygen, thereby further improving the stability of the device.
  • the material of the insertion layer 13 has the following molecular structure:
  • the A position on each ring can be a C, N, O or S atom, and at least one A position on a ring can be a N, O or S atom;
  • R 5 to R 12 can be independently any one of a benzene ring, hydrogen, -N(R 13 ) 2 , -NHR 13 , -NH 2 , trimethylamino, triethylamino, tripropylamino, pyridyl, alkyl, halogen, hydroxyl, carboxyl, naphthyl, -NHCOR 13 and -OCOR 13.
  • R 13 is a C 1 to C 5 alkyl group.
  • the material of the insertion layer 13 may be 4,7-dimethoxy-1,10-phenanthroline.
  • 4,7-Diphenyl-1,10-phenanthroline 5,6-Diamino-1,10-phenanthroline (1,10-Phenanthroline)(trifluoromethyl)copper(I) 3,8-(Bis-2-thienyl)-1,10-phenanthroline 3,8-Bis([1,1'-biphenyl]-4-yl)-1,10-phenanthroline 1,10-Phenanthroline- 4-Formic acid 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline 4-(2,3-Dihydro-1H-indol-3-yl)butan-2-amine 2,3-Dihydro-1-benzothiophene-2-carboxylic acid Dibenzothiopyran 2,3-Dihydrobenzofuran-5-carboxylic acid One or more of .
  • the thickness of the insertion layer 13 is 0.5 nm to 50 nm.
  • the thickness of the insertion layer 13 is within the range of 0.5 nm to 50 nm, which can improve the stability of the perovskite solar cell 1.
  • the thickness of the insertion layer 13 can be, but is not limited to, 0.5 nm, 1 nm, 3 nm, 5 nm, 7 nm, 9 nm, 11 nm, 13 nm, 15 nm, 17 nm, 19 nm, 21 nm, 23 nm, 25 nm, 27 nm, 29 nm, 31 nm, 33 nm, 35 nm, 37 nm, 39 nm, 41 nm, 43 nm, 45 nm, 47 nm, 49 nm, 50 nm.
  • the thickness of the insertion layer 13 is 5 nm to 20 nm. In this way, the perovskite solar cell can obtain better stability and further improve the photoelectric conversion efficiency of the perovskite solar cell.
  • the perovskite solar cell 1 further includes an electron transport layer 15 , which is disposed between the perovskite layer 12 and the insertion layer 13 .
  • the perovskite solar cell 1 further includes an electron transport layer 15 .
  • the electron transport layer 15 is disposed between the insertion layer 13 and the metal electrode 14 .
  • the insertion layer 13 can effectively inhibit the reaction between the halogen in the perovskite layer 12 and the metal electrode 14, thereby effectively improving the device.
  • the electron transport layer 15 can effectively extract and transport the electrons generated by the perovskite layer 12 , thereby improving the photoelectric conversion efficiency of the perovskite solar cell 1 .
  • the perovskite solar cell 1 in which the electron transport layer 15 is disposed between the insertion layer 13 and the metal electrode 14 can obtain a higher photoelectric conversion efficiency.
  • the material of the electron transport layer 15 includes one or more of [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM), [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM), fullerene C60, fullerene C70, tin dioxide and zinc oxide. Derivatives of the above materials or materials obtained by doping or passivation of the above materials may also be used.
  • the perovskite solar cell 1 further includes a hole transport layer 16, which is disposed between the perovskite layer 12 and the transparent electrode layer 11.
  • the hole transport layer 16 is disposed between the perovskite layer 12 and the transparent electrode layer 11 to increase the hole extraction and transport capabilities and improve the photoelectric conversion efficiency of the perovskite solar cell 1.
  • the material of the hole transport layer 16 includes one or more of nickel oxide (NiOx, x represents the number of oxygen atoms), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), poly-3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS) and phosphonic acid carbazole compounds.
  • NiOx nickel oxide
  • x represents the number of oxygen atoms
  • PTAA poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
  • PEDOT:PSS polystyrene sulfonate
  • phosphonic acid carbazole compounds phosphonic acid carbazole compounds
  • the preparation method of the hole transport layer 16 of nickel oxide material includes but is not limited to sol method, sputtering method, spin coating of nickel oxide nanoparticles method, blade coating method and slit coating method, etc.; the preparation method of the hole transport layer 16 of organic material includes but is not limited to spin coating, blade coating method and slit coating method, etc.
  • the perovskite solar cell 1 further includes a passivation layer 17, which is disposed between the perovskite layer 12 and the hole transport layer 16.
  • a passivation layer 17 which is disposed between the perovskite layer 12 and the hole transport layer 16.
  • the material of the transparent electrode layer 11 includes one or more of fluorine-doped tin oxide (FTO), indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and indium-doped zinc oxide (IZO).
  • FTO fluorine-doped tin oxide
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • BZO boron-doped zinc oxide
  • IZO indium-doped zinc oxide
  • the perovskite layer 12 includes a material with a chemical formula of ABX 3 or A 2 CDX 6 ; wherein A includes one or more of methylamino (FA), methylamine (MA) and Cs + ; B includes one or more of Pb 2+ and Sn 2+ ; C includes Ag + ; D includes one or more of Bi 3+ , Sb 3+ and In 3+ ; and X includes one or more of Br - and I - .
  • A includes one or more of methylamino (FA), methylamine (MA) and Cs +
  • B includes one or more of Pb 2+ and Sn 2+
  • C includes Ag +
  • D includes one or more of Bi 3+ , Sb 3+ and In 3+
  • X includes one or more of Br - and I - .
  • the band gap of the perovskite layer 12 is 1.20 eV to 2.30 eV, and the thickness of the perovskite layer 12 is 200 nm to 1000 nm. It is understood that the band gap of the perovskite layer 12 may be, but is not limited to, 1.20 eV, 1.3 eV, 1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV, 2.30 eV; the thickness of the perovskite layer 12 may be, but is not limited to, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm.
  • the material of the metal electrode 14 includes one or more of Ag, Cu, Au, and Al.
  • the method for preparing the perovskite solar cell 1 as shown in FIG. 1 comprises the following steps:
  • the transparent conductive glass substrate is etched and cleaned, and blown dry to form a transparent electrode layer 11; a hole transport layer 16 is prepared on the transparent electrode layer 11; a passivation layer 17 is prepared on the hole transport layer 16; a perovskite layer 12 is prepared on the passivation layer 17; an electron transport layer 15 is prepared on the perovskite layer 12; an insertion layer 13 is prepared on the electron transport layer 15; the edges are cleaned, and a metal electrode 14 is prepared on the insertion layer 13 to obtain a perovskite solar cell 1.
  • the method for preparing the perovskite solar cell 1 as shown in FIG. 2 comprises the following steps:
  • a transparent conductive glass substrate is etched and cleaned, and blown dry to form a transparent electrode layer 11; a hole transport layer 16 is prepared on the transparent electrode layer 11; a passivation layer 17 is prepared on the hole transport layer 16; a perovskite layer 12 is prepared on the passivation layer 17; an insertion layer 13 is prepared on the perovskite layer 12; an electron transport layer 15 is prepared on the insertion layer 13; a metal electrode 14 is prepared on the electron transport layer 15 to obtain a perovskite solar cell 1.
  • the second aspect of the present application provides a photovoltaic module, which includes the perovskite solar cell 1 of the first aspect of the present application.
  • the photovoltaic module of the present application has good stability by adopting the perovskite solar cell 1 of the first aspect of the present application.
  • the above-mentioned photovoltaic module includes one or more perovskite solar cells 1, which can be selected according to the specific application scenario; further, the above-mentioned photovoltaic module includes multiple perovskite solar cells 1, and the multiple perovskite solar cells 1 are connected in series or in parallel to form a battery cell.
  • the photovoltaic module further includes a photovoltaic glass layer, a bonding layer and a back sheet.
  • the two surfaces of the battery cell are respectively provided with adhesive layers, and one of the adhesive layers is away from the battery cell.
  • a back sheet is provided on the surface of the adhesive layer, and a photovoltaic glass layer is provided on the surface away from the solar cell in another adhesive layer.
  • the photovoltaic glass layer and the back panel are used to protect the perovskite solar cell 1, and have the functions of sealing, insulation and waterproofing; the bonding layer plays the role of bonding the photovoltaic glass layer and the battery cell, and bonding the back panel and the battery cell.
  • the photovoltaic glass layer is made of tempered glass
  • the back panel is made of TPT (polyvinyl fluoride) or TPE (thermoplastic elastomer)
  • the adhesive layer is made of EVA (polyethylene-polyvinyl acetate copolymer).
  • the above photovoltaic assembly also includes a junction box and an outer frame.
  • the junction box is used to protect the power generation system of the entire photovoltaic module. It is equivalent to a current transfer station. When a battery cell short-circuits, the junction box will automatically disconnect the short-circuited battery string.
  • the outer frame can support and protect the entire photovoltaic module.
  • the frame can be made of aluminum alloy, which has excellent strength and corrosion resistance.
  • connection between the frame and other parts of the photovoltaic module is bonded and sealed by silicone.
  • the photovoltaic module can convert solar energy into electrical energy, or send it to a battery for storage, or drive a load to work.
  • the photovoltaic component is a solar panel.
  • a third aspect of the present application provides a photovoltaic system, comprising the above-mentioned photovoltaic assembly.
  • the photovoltaic system utilizes the perovskite solar cell 1 in the above photovoltaic module to directly convert solar radiation energy into electrical energy with high efficiency and good stability; further, the above photovoltaic system is a photovoltaic power generation system.
  • Photovoltaic modules are the core part of photovoltaic power generation systems.
  • the above photovoltaic system includes one or more photovoltaic modules, which can be selected according to specific application scenarios; further, when the above photovoltaic system includes multiple photovoltaic modules, the multiple photovoltaic modules form a photovoltaic array.
  • the above photovoltaic system can be an independent photovoltaic power generation system or a grid-connected photovoltaic power generation system.
  • An independent photovoltaic power generation system includes a photovoltaic array, a battery pack, a charging controller, a power electronic converter (inverter), a load, etc. Its working principle is that the solar radiation energy is first converted into electrical energy through the photovoltaic array, and then converted by the power electronic converter to supply power to the load. At the same time, the excess electrical energy is stored in the energy storage device in the form of chemical energy after passing through the charging controller. In this way, when the sunshine is insufficient, the energy stored in the battery can be boosted by the power electronic inverter, filter and power frequency transformer. It is converted into AC 220V, 50Hz electric energy for use by AC loads.
  • the grid-connected photovoltaic power generation system includes a photovoltaic array, a high-frequency DC/DC boost circuit, a power electronic converter (inverter) and system monitoring. Its working principle is that the solar radiation energy is converted by the photovoltaic array, and then converted into high-voltage DC power by high-frequency DC conversion, and then inverted by the power electronic inverter to output a sinusoidal AC current with the same frequency as the grid voltage to the grid.
  • the above two photovoltaic power generation systems have their own characteristics and can be selected according to specific application scenarios.
  • a fourth aspect of the present application provides an electrical device, comprising the perovskite solar cell 1 of the first aspect of the present application.
  • the power-consuming device is a common device including the solar cell of the present application, such as the communication field, transportation field, industrial and agricultural field, lighting field, etc.
  • the power-consuming device may include, for example, satellites, communication equipment, traffic lights, lighthouses, wireless telephone booths, monitoring equipment in the oil drilling field, power supply systems, camping lights, electric vehicles, electronic equipment chargers, building curtain walls, etc.
  • FIG3 is a schematic diagram of the structure of an electric vehicle as a specific example of the power-consuming device 2.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the volume is 1 mL; stirring for 3 hours, filtering with a 0.22 ⁇ m organic filter membrane to obtain a perovskite precursor solution; spin coating the perovskite precursor solution on the obtained self-assembled molecular layer at a rate of 3000 rpm, annealing at 100°C for 30 minutes, and cooling to room temperature to obtain a perovskite layer; wherein the active substance of the perovskite layer is an ABX 3 type compound of the CsFAMA system;
  • the wafer after the insertion layer is prepared is placed in a vapor deposition machine to vapor deposit the metal electrode Ag to obtain a perovskite solar cell.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 4,7-diphenyl-1,10-phenanthroline (CAS No.: 1662-01-7).
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment is basically the same as the embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 5,6-diamino-1,10-phenanthroline (CAS No.: 168646-54-6).
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is (1,10-phenanthroline)(trifluoromethyl)copper(I) (CAS No.: 1300746-79-5).
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 3,8-(bis-2-thienyl)-1,10-phenanthroline (CAS No.: 753491-32-6).
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment is basically the same as the embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 3,8-di([1,1'-biphenyl]-4-yl)-1,10-phenanthroline (CAS No.: 1363543-83-2).
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 1,10-phenanthroline-4-carboxylic acid (CAS No.: 31301-27-6).
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment is basically the same as the embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (CAS No.: 1745-07-9).
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 4-(2,3-dihydro-1H-indol-3-yl)butan-2-amine (CAS No.: 2089257-12-3).
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • This embodiment is basically the same as the embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 2,3-dihydro-1-benzothiophene-2-carboxylic acid. (CAS No.: 27916-82-1).
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • This embodiment is basically the same as the embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is dibenzothiopyran. (CAS No.: 261-31-4).
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the material of the insertion layer in this embodiment is 2,3-dihydrobenzofuran-5-carboxylic acid (CAS No.: 76429-73-7).
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • Embodiment 2 This embodiment is basically the same as Embodiment 1, and the only difference is that the insertion layer is arranged at a different position.
  • the insertion layer is arranged between the electron transport layer and the perovskite layer.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • This embodiment is basically the same as embodiment 2, except that the thickness of the insertion layer and the preparation process are different.
  • the concentration of the insertion layer material in the spin coating solution containing the insertion layer material is 0.1 mg/mL
  • the spin coating rate is 5000 rpm/s
  • the thickness of the formed insertion layer is 1 nm.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • This embodiment is basically the same as embodiment 2, except that the thickness and preparation process of the insertion layer are different.
  • the concentration of the insertion layer material in the spin coating solution containing the insertion layer material is 1 mg/mL
  • the spin coating rate is 5000 rpm/s
  • the thickness of the formed insertion layer is 10 nm.
  • Embodiment 16 is a diagrammatic representation of Embodiment 16:
  • This embodiment is basically the same as embodiment 2, except that the thickness of the insertion layer and the preparation process are different.
  • the concentration of the insertion layer material in the spin coating solution containing the insertion layer material is 5 mg/mL
  • the spin coating rate is 3000 rpm/s
  • the thickness of the formed insertion layer is 20 nm.
  • Embodiment 17 is a diagrammatic representation of Embodiment 17:
  • This embodiment is basically the same as embodiment 2, except that the thickness of the insertion layer and the preparation process are different.
  • the concentration of the insertion layer material in the spin coating solution containing the insertion layer material is 10 mg/mL
  • the spin coating rate is 2500 rpm/s
  • the thickness of the formed insertion layer is 50 nm.
  • This embodiment is basically the same as Embodiment 1, with the only difference being that no insertion layer is provided.
  • This embodiment is basically the same as embodiment 1, except that the material of the insertion layer is different.
  • the insertion layer is made of 3-phenyl-pyrrolidine (CAS No.: 936-44-7).
  • the photoelectric conversion efficiency test (IV test) of perovskite solar cells uses the solar The sunlight simulator is tested in accordance with the national standard IEC61215.
  • the crystalline silicon solar cell is used to calibrate the light intensity to reach the intensity of one sun, AM 1.5.
  • the cell is connected to a digital source meter and its photoelectric conversion efficiency is measured under illumination. Specifically, the photoelectric conversion efficiency of the perovskite solar cell is tested again on the 3rd and 30th day after the preparation to examine the stability of the photoelectric conversion efficiency of the cell.
  • the present application sets an insertion layer between the perovskite layer and the metal electrode of the perovskite solar cell, and the insertion layer includes an organic material containing a benzoheterocycle in the molecular structure, which can effectively improve the stability of the photoelectric conversion efficiency of the perovskite solar cell.
  • the 3rd day efficiency and the 30th day efficiency of the perovskite solar cell of each embodiment of the present application remain basically stable; while the battery without an insertion layer in Comparative Example 1 and the battery using 3-phenyl-pyrrolidine as the insertion layer material in Comparative Example 2 have a 30th day efficiency that is significantly lower than the 3rd day efficiency, indicating that its stability is poor.
  • the thickness of the insertion layer in Example 2 is 5nm to 20nm, the thickness of the insertion layer in Example 14 and Example 17 is 1nm and 50nm respectively, and other conditions are the same; the photoelectric conversion efficiency of the perovskite solar cell in Example 2, Example 15 and Example 16 is The efficiency is higher than that of Example 14 and Example 17. This indicates that setting the thickness of the insertion layer to 5 nm to 20 nm is beneficial to further improve the photoelectric conversion efficiency of the perovskite solar cell while obtaining better stability.
  • Example 1 Comparing Example 1 with Example 13, it can be seen that in Example 1, the electron transport layer is arranged between the perovskite layer and the insertion layer (that is, the insertion layer is arranged between the electron transport layer and the metal electrode), and in Example 13, the electron transport layer is arranged between the insertion layer and the metal electrode (that is, the insertion layer is arranged between the electron transport layer and the perovskite layer), both of which can make the perovskite solar cell obtain better stability. But relatively speaking, in Example 1, the electron transport layer is arranged between the perovskite layer and the insertion layer, which can further improve the photoelectric conversion efficiency of the perovskite solar cell.

Landscapes

  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本申请提供了一种钙钛矿太阳能电池,包括透明电极层;钙钛矿层,设于透明电极层的表面;插入层,设于钙钛矿层背离透明电极层的表面,插入层包括有机材料,有机材料的分子结构中含有苯并杂环;金属电极,设于插入层背离钙钛矿层的表面;并涉及光伏组件、光伏系统和用电装置。本申请的钙钛矿太阳能电池具有良好的稳定性。

Description

钙钛矿太阳能电池、光伏组件、光伏系统和用电装置 技术领域
本申请涉及太阳能电池技术领域,特别是涉及一种钙钛矿太阳能电池、光伏组件、光伏系统和用电装置。
背景技术
随着新能源领域的快速发展,太阳能电池已广泛应用于工业、商业、农业和通信等众多领域。
钙钛矿太阳能电池(perovskite solar cells,PSCs)是利用钙钛矿型晶体材料的光电转换机制将太阳能转换为电能的装置,是目前的第三代太阳能电池,其具有光电转换效率高、制作工艺简单、生产成本低等多种优势,近年来被大量研究。
尽管如此,距离钙钛矿太阳能电池的商业化大规模应用仍有一定的距离。其中,如何提高钙钛矿太阳能电池的稳定性是亟待解决的关键问题之一。
发明内容
本申请是鉴于上述课题而进行的,其目的之一在于,提供一种钙钛矿太阳能电池,其具有较好的稳定性。
为了达到上述目的,本申请的第一方面提供了一种钙钛矿太阳能电池,包括:
透明电极层;
钙钛矿层,设于所述透明电极层的表面;
插入层,设于所述钙钛矿层背离所述透明电极层的表面,所述插入层包括有机材料,所述有机材料的分子结构中含有苯并杂环;以及
金属电极,设于所述插入层背离所述钙钛矿层的表面。
上述的钙钛矿太阳能电池,在钙钛矿层与金属电极之间设置插入层,插入层采用分子结构中含有苯并杂环的有机材料。苯并杂环中的杂环可通过化学吸附和配位作用结合在金属电极上,对金属电极起到保护作用,抑制钙 钛矿层中的卤素与金属电极发生反应;苯环可增加插入层材料分子的疏水性,防止水分对器件的影响;苯并杂环结构具有较好的共平面性,分子间距更近,可延缓钙钛矿层中卤素离子的迁移;该钙钛矿太阳能电池具有良好的稳定性。
在任意的实施方式中,所述苯并杂环包括苯并五元杂环和苯并六元杂环中的任意一种。如此,可以进一步延缓钙钛矿层中卤素离子的迁移,进一步延缓卤素离子与金属电极发生反应,从而进一步提高器件的稳定性。
在任意的实施方式中,所述苯并杂环中的杂原子包括氮原子、氧原子和硫原子中的一种或多种。
在任意的实施方式中,所述苯并杂环中的杂环与苯环形成共轭结构。如此,可以更好地延缓钙钛矿层中的卤素离子的迁移,从而进一步提高器件的稳定性。并且也更有利于电子的传输,从而提高器件的光电转换效率。
在任意的实施方式中,所述苯并杂环中的杂原子与苯环形成共轭结构。如此,可以进一步提高器件的稳定性。
在任意的实施方式中,所述苯并杂环的苯环上连接有至少一个取代基R1,所述取代基R1各自独立地包括苯基、-N(R2)2、-NHR2、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR2和-OCOR2中的任意一种;其中R2表示C1~C5的烷基。如此,苯环上的第一取代基可以减小分子间的距离,使插入层的材料更加致密,进一步提高阻挡金属电极与钙钛矿层反应的效果,并进一步提高阻隔水分和氧的效果,从而进一步提高器件的稳定性。
在任意的实施方式中,所述苯并杂环的杂环上连接有至少一个取代基R3,所述取代基R3包括苯基、-N(R4)2、-NHR4、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR4和-OCOR4中的任意一种;其中R4表示C1~C5的烷基。如此,可以进一步提高器件的稳定性。
在任意的实施方式中,所述有机材料包括具有如下结构通式化合物中的一种或多种:
其中,以上通式中的各个环上的A各自独立地包括C、N、O和S中的任意一种,且一个环上至少有一个A为N、O和S中的任意一种;R5~R12分别独立地包括苯环、氢、-N(R13)2、-NHR13、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、羟基、羧基、萘基、-NHCOR13和-OCOR13中的任意一种,R13为C1~C5的烷基。
在任意的实施方式中,所述有机材料包括如下化合物中的一种或多种:
在任意的实施方式中,所述插入层的厚度为0.5nm~50nm。如此,可 以提高钙钛矿太阳能电池的稳定性。
在任意的实施方式中,所述插入层的厚度为5nm~20nm。如此,可使钙钛矿太阳能电池获得较好的稳定性的同时,进一步提高钙钛矿太阳能电池的光电转换效率。
在任意的实施方式中,还包括:电子传输层,所述电子传输层设于所述钙钛矿层与所述插入层之间,或者设于所述插入层与所述金属电极之间。如此,电子传输层可以对钙钛矿层产生的电子进行有效地提取和传输,提高钙钛矿太阳能电池的光电转换效率。
在任意的实施方式中,所述电子传输层的材料包括[6,6]-苯基C61丁酸甲酯、[6,6]-苯基C71丁酸甲酯、富勒烯C60、富勒烯C70、二氧化锡和氧化锌中的一种或多种。
在任意的实施方式中,还包括:空穴传输层,所述空穴传输层设于所述钙钛矿层与所述透明电极层之间。如此,可以增加钙钛矿太阳能电池的空穴提取和传输能力,提高钙钛矿太阳能电池的光电转换效率。
在任意的实施方式中,所述空穴传输层的材料包括NiOx、PTAA、PEDOT:PSS和膦酸咔唑类化合物中的一种或多种;其中,x表示氧原子数。
在任意的实施方式中,还包括:钝化层,所述钝化层设于所述钙钛矿层与所述空穴传输层之间。如此,可以对钙钛矿层进行钝化,进一步提高器件的光电转换效率。
在任意的实施方式中,所述透明电极层的材料包括FTO、ITO、AZO、BZO和IZO中的一种或多种。
在任意的实施方式中,所述钙钛矿层包括化学式为ABX3和化学式为A2CDX6的材料中的至少一种;
其中,A包括甲脒基、甲胺基和Cs+中的一种或多种;B包括Pb2+和Sn2+中的一种或多种;C包括Ag+;D包括Bi3+、Sb3+和In3+中的一种或多种;X包括Br-和I-中的一种或多种。
在任意的实施方式中,所述钙钛矿层的带隙为1.20eV~2.30eV,所述钙钛矿层的厚度为200nm~1000nm。
在任意的实施方式中,所述金属电极的材料包括Ag、Cu、Au和Al中 的一种或多种。
本申请第二方面提供了一种光伏组件,包括本申请第一方面的钙钛矿太阳能电池。本申请的光伏组件通过采用本申请第一方面的钙钛矿太阳能电池,具有良好的稳定性。
本申请第三方面提供了一种光伏系统,包括本申请第二方面的光伏组件。
本申请第四方面提供了一种用电装置,包括本申请第一方面的钙钛矿太阳能电池。
本申请的钙钛矿太阳能电池通过在钙钛矿层与金属电极之间设置插入层,插入层采用分子结构中含有苯并杂环的有机材料。该插入层可以有效地抑制钙钛矿层中的卤素与金属电极发生反应,并可阻挡水分和氧进入电池内而对钙钛矿层造成影响,从而使钙钛矿太阳能电池具有良好的稳定性。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一实施方式的钙钛矿太阳能电池的结构示意图;
图2为本申请另一实施方式的钙钛矿太阳能电池的结构示意图;
图3为本申请一实施方式的用电装置的结构示意图。
附图标记说明:
1、钙钛矿太阳能电池;11、透明电极层;12、钙钛矿层;13、插入层;
14、金属电极;15、电子传输层;16、空穴传输层;17、钝化层;2、用电装置。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的钙钛矿太阳能电 池、光伏组件、光伏系统和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4和2~5。在本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括 或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在本申请中,如无其他说明,A(如B),表示B为A中的一种非限制性示例,可以理解A不限于为B。
本申请中涉及“多个”、“多种”等,如无特别限定,指在数量上大于2或等于2。例如,“一种或多种”表示一种或大于等于两种。
本文中所使用的“其组合”、“其任意组合”、“其任意组合方式”等中包括所列项目中任两个或任两个以上项目的所有合适的组合方式。
本文中,“合适的组合方式”、“合适的方式”、“任意合适的方式”等中所述“合适”,以能够实施本申请的技术方案为准。
本文中,“优选”、“更好”、“更佳”、“为宜”仅为描述效果更好的实施方式或实施例,应当理解,并不构成对本申请保护范围的限制。如果一个技术方案中出现多处“优选”,如无特别说明,且无矛盾之处或相互制约关系,则每项“优选”各自独立。
本申请中,“进一步”、“更进一步”、“特别”等用于描述目的,表示内容上的差异,但并不应理解为对本申请保护范围的限制。
本申请中,“第一方面”、“第二方面”、“第三方面”、“第四方面”等中,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,不能理解为指示或暗示相对重要性或数量,也不能理解为隐含指明所指示的技术特征的重要性或数量。而且“第一”、“第二”、“第三”、“第四”等仅起到非穷举式的列举描述目的,应当理解并不构成对数量的封闭式限定。
本申请中,术语“室温”一般指4℃~35℃,可以指20℃±5℃。在本申请的一些实施例中,室温是指20℃~30℃。
在本申请中,涉及数据范围的单位,如果仅在右端点后带有单位,则表示左端点和右端点的单位是相同的。比如,3h~5h或3h~5h均表示左端点 “3”和右端点“5”的单位都是h(小时)。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。进一步地,本申请实施例说明书中所述的重量可以是μg、mg、g、kg等化工领域公知的质量单位。
本文中,如无其他说明,“烷基”是指包含伯(正)碳原子、或仲碳原子、或叔碳原子、或季碳原子、或其组合的饱和烃失去一个氢原子生成的一价残基。包含该术语的短语,例如,“C19烷基”是指包含1至9个碳原子的烷基,每次出现时,可以互相独立地为C1烷基、C2烷基、C3烷基、C4烷基、C5烷基、C6烷基、C7烷基、C8烷基或C9烷基。合适的实例包括但不限于:甲基(Me、-CH3)、乙基(Et、-CH2CH3)、1-丙基(n-Pr、n-丙基、-CH2CH2CH3)、2-丙基(i-Pr、i-丙基、-CH(CH3)2)、1-丁基(n-Bu、n-丁基、-CH2CH2CH2CH3)、2-甲基-1-丙基(i-Bu、i-丁基、-CH2CH(CH3)2)、2-丁基(s-Bu、s-丁基、-CH(CH3)CH2CH3)、2-甲基-2-丙基(t-Bu、t-丁基、-C(CH3)3)、1-戊基(n-戊基、-CH2CH2CH2CH2CH3)、2-戊基(-CH(CH3)CH2CH2CH3)、3-戊基(-CH(CH2CH3)2)、2-甲基-2-丁基(-C(CH3)2CH2CH3)、3-甲基-2-丁基(-CH(CH3)CH(CH3)2)、3-甲基-1-丁基(-CH2CH2CH(CH3)2)、2-甲基-1-丁基(-CH2CH(CH3)CH2CH3)、1-己基(-CH2CH2CH2CH2CH2CH3)、2-己基(-CH(CH3)CH2CH2CH2CH3)、3-己基(-CH(CH2CH3)(CH2CH2CH3))、2-甲基-2-戊基(-C(CH3)2CH2CH2CH3)、3-甲基-2-戊基(-CH(CH3)CH(CH3)CH2CH3)、4-甲基-2-戊基(-CH(CH3)CH2CH(CH3)2)、3-甲基-3-戊基(-C(CH3)(CH2CH3)2)、2-甲基-3-戊基(-CH(CH2CH3)CH(CH3)2)、2,3-二甲基-2-丁基(-C(CH3)2CH(CH3)2)、3,3-二甲基-2-丁基(-CH(CH3)C(CH3)3和辛基(-(CH2)7CH3)。
本文中,如无其他说明,“杂烷基”是指在烷基的基础上至少一个碳原子被非碳原子所替代,非碳原子可以为N原子、O原子、S原子、P原子等。以下以O、N、S为例进行说明。例如,如果烷基中连接至相邻基团的碳原子被非碳原子O、N、S代替,所得到的杂烷基分别是烷氧基(例如,-OCH3等)、氨基(例如,-NHCH3、-N(CH3)2等)或硫代烷基(例如,-SCH3)。 如果烷基中不与相邻基团直接相连的碳原子被非碳原子O、N、S代替,所得到的杂烷基分别是烷氧基烷基(例如,-CH2CH2-O-CH3等)、烷氨基烷基(例如,-CH2NHCH3、-CH2N(CH3)2等)或烷硫基烷基(例如、-CH2-S-CH3)。如果烷基的末端碳原子被非碳原子代替,所得到的杂烷基可以是羟基烷基(例如,-CH2CH2-OH)、氨基烷基(例如,-CH2NH2)或巯基氨基(例如,-CH2CH2-SH)。包含该术语“杂烷基”的短语,例如,“C1~C9杂烷基”或“C1-9杂烷基”是指包含1至9个碳原子的杂烷基,每次出现时,可以互相独立地为C1杂烷基、C2杂烷基、C3杂烷基、C4杂烷基、C5杂烷基、C6杂烷基、C7杂烷基、C8杂烷基或C9杂烷基。
本文中,如无其他说明,“环烷基”与“非芳香族环烃基”具有相同含义,是指包含环碳原子的非芳香族烃(饱和烃或非饱和烃)失去一个环上的氢原子生成的一价残基,也即直接在环上形成单价的连接位点。非芳香族饱和烃衍生得到的环烷基可记为饱和环烷基,非芳香族不饱和烃衍生得到的环烷基可记为不饱和环烷基。环烷基可以为单环烷基、或螺环烷基、或桥环烷基。包含该术语的短语,例如,“C3~C9环烷基”或C3-9环烷基”是指包含3至9个碳原子的环烷基,每次出现时,可以互相独立地为C3环烷基、C4环烷基、C5环烷基、C6环烷基、C7环烷基、C8环烷基或C9环烷基。合适的实例包括但不限于:环丙基环丁基环戊基环己基和环庚基。另外,“环烷基”还可含有一个或多个双键,含有双键的环烷基的代表性实例包括环戊烯基(包括但不限于)、环己烯基(包括但不限于)、环己二烯(包括但不限于 )基、环戊二烯基(包括但不限于)和环丁二烯基(包括但不限于)。
本文中,如无其他说明,“杂环烷基”是指在环烷基的基础上至少一个碳原子被非碳原子所替代,非碳原子可以为N原子、O原子、S原子等,可以为饱和环或部分不饱和环。包含该术语的短语,例如,“C4~C9杂环基”是指包含4至9个碳原子的杂环基,每次出现时,可以互相独立地为C4杂烷基、C5杂烷基、C6杂烷基、C7杂烷基、C8杂烷基或C9杂烷基。合适的实例包括但不限于:二氢吡啶基、四氢吡啶基(哌啶基)、四氢噻吩基、硫氧化 的四氢噻吩基、四氢呋喃基、四氢喹啉基、四氢异喹啉基、二氢吲哚基。
本文中,如无其他说明,“芳基”是指在芳香环烃化合物的基础上失去一个氢原子衍生的芳族烃基,也即直接在环上形成单价的连接位点,可以为单环芳基、或稠环芳基、或多环芳基,对于多环的环种,至少一个是芳族环系。例如,“C6~C10芳基”是指包含6至10个碳原子的芳基,每次出现时,可以互相独立地为C6芳基C8芳基、C9芳基或C10芳基。还例如,“C6~C20芳基”是指包含6~20个碳原子的芳基,每次出现时,可以互相独立地为但不限于C6芳基芳基(如苯基)、C6芳基芳基(如苯并环丁烯基)、C8芳基(如苯丙环丁烯基)、C9芳基(如茚基)、C10芳基(如萘基)、C12芳基(如苊基、联苯基)、C13芳基(如芴基)、C14芳基(如蒽基、菲基)、C18芳基(如三亚苯基)或C20芳基(如二萘嵌苯基)。合适的芳香环烃化合物的实例包括但不限于:苯、苯丙环丁烯、联苯、茚、萘、苊、芴、蒽、菲、三亚苯、二萘嵌苯及其衍生物。
本文中,如无其他说明,“杂芳基”是具有芳香性的杂环基,可以是在芳基的基础上至少一个碳原子被非碳原子所替代形成的一价基团,也可以是在环戊二烯基的基础上至少一个碳原子被非碳原子所替代形成的一价基团,非碳原子可以为但不限于N原子、O原子、S原子等。例如,“C1~C10杂芳基”是指包含1至10个碳原子的杂芳基,每次出现时,可以互相独立地为C1杂芳基(如四唑基等)、C2杂芳基(如三唑基、噁二唑基等)、C3杂芳基(如咪唑基等)、C4杂芳基(如呋喃基等)、C5杂芳基(如吡啶基等)、C6杂芳基、C7杂芳基(如苯并咪唑等)、C8杂芳基(如吲哚基等)、C9杂芳基(如喹啉基等)或C10杂芳基(如吡咯并二吡啶基)。还例如,“C3~C20杂芳基”是指包含3至20个碳原子的杂芳基,每次出现时,可以互相独立地为但不限于C2杂芳基、C3杂芳基、C4杂芳基、C5杂芳基、C6杂芳基、C8杂芳基、C9杂芳基、C10杂芳基、C12杂芳基、C13杂芳基、C14杂芳基、C18杂芳基或C20杂芳基。合适的实例包括但不限于衍生自下述杂芳环的杂芳基(括号中标记碳原子数):呋喃(C4)、苯并呋喃(C8)、噻吩(C4)、苯并噻吩(C8)、吡咯(C4)、吡唑(C3)、三唑(C2)、咪唑(C3)、噁唑(C3)、噁二唑(C2)、噻唑(C3)、四唑(C1)、吲哚(C8)、咔唑 (C12)、吡咯并咪唑(C5)、吡咯并吡咯(C6)、噻吩并吡咯(C6)、噻吩并噻吩(C6)、呋喃并吡咯(C6)、呋喃并呋喃(C6)、噻吩并呋喃(C6)、噻吩并吡啶(C7)、呋喃并吡啶(C7)、苯并噁唑(C7)、苯并异噁唑(C7)、苯并噻唑(C7)、苯并异噻唑(C7)、苯并咪唑(C7)、吡啶(C5)、吡嗪(C4)、哒嗪(C4)、嘧啶(C4)、三嗪(C3)、喹啉(C9)、异喹啉(C9)、二氮萘(C8,如邻二氮萘)、喹喔啉(C8)、菲啶(C13)、伯啶(C11)、喹唑啉(C8)和喹唑啉酮(C8)。
本文中,如无其他说明,“亚烷基”是指在烷烃基础上除去两个氢原子衍生形成的(或者在烷基的基础上再失去一个氢原子衍生形成的)具有两个单价基团中心的烃基,其可以是饱和的支链烷基或饱和的直链烷基。例如,“C1~C9亚烷基”是指烷基部分包含1至9个碳原子,每次出现时,可以互相独立地为C1亚烷基、C2亚烷基、C3亚烷基、C4亚烷基、C5亚烷基、C6亚烷基、C7亚烷基、C8亚烷基或C9亚烷基。合适的实例包括但不限于:亚甲基(-CH2-)、1,1-乙基(-CH(CH3)-)、1,2-乙基(-CH2CH2-)、1,1-丙基(-CH(CH2CH3)-)、1,2-丙基(-CH2CH(CH3)-)、1,3-丙基(-CH2CH2CH2-)和1,4-丁基(-CH2CH2CH2CH2-)
本文中,如无其他说明,“卤素”或“卤基”是指F、Cl、Br或I。
本文中,如无其他说明,“氨基”可以为伯氨基(-NH2)、仲氨基(>NH)、叔氨基(>N-)或季氨基(>N+<)。
本文中,如无其他说明,羟基为-OH,羧基为-COOH,氰基为-CN,肼基为-NHNH2,亚磺酸基为-S(=O)OH,次膦酸基为(*-)2P(=O)OH,磺酸基为-S(=O)2OH,磷酸基为(*-)P(=O)(OH)2,硼酸基为(*-)B(OH)2。其中,次膦酸基中的*表示连接至碳原子或H且至少一个连接至碳原子,膦酸基中的*表示连接至碳原子,硼酸基中的*表示连接至碳原子。
目前,钙钛矿太阳能电池普遍存在器件稳定性较差的问题,限制了钙钛矿太阳能电池的商业化大规模应用。因此,如何提高钙钛矿太阳能电池的器件稳定性是本领域技术研究的重要方向之一。对此,本申请提供了一种钙钛矿太阳能电池,其通过在钙钛矿太阳能电池的钙钛矿层和金属电极之间设置一层具有特殊材料的插入层,能够有效地提高器件的稳定性。
请参阅图1和图2,本申请的第一方面提供了一种钙钛矿太阳能电池1,该钙钛矿太阳能电池1包括透明电极层11、钙钛矿层12、插入层13和金属电极14。其中,钙钛矿层12设于透明电极层11的表面上;插入层13设于钙钛矿层12背离透明电极层11的表面上,该插入层13包括有机材料,有机材料的分子结构中含有苯并杂环;金属电极14设于插入层13背离钙钛矿层12的表面上。
钙钛矿太阳能电池1的钙钛矿层12中的卤素很容易发生离子迁移而与金属电极14发生反应,导致金属电极14发生损坏以及钙钛矿层12成分的分解,从而导致钙钛矿太阳能电池1的器件稳定性不佳。
本申请上述的钙钛矿太阳能电池1,在钙钛矿太阳能电池1的钙钛矿层12与金属电极14之间设置插入层13,该插入层13采用分子结构中含有苯并杂环的有机材料。苯并杂环母体中的杂环可以通过化学吸附和配位作用结合在金属电极14上,对金属电极14起到保护作用,从而抑制钙钛矿层12中的卤素与金属电极14发生反应,提高器件稳定性;苯并杂环母体中的苯环可以增加插入层13材料分子的疏水性,防止水分对器件(尤其是对钙钛矿层12)的影响,提高器件的稳定性;苯并杂环结构具有较好的共平面性,在材料分子堆积过程中分子间距更近,分子间更小的空位可以延缓钙钛矿层12中的卤素离子的迁移,插入层13靠近钙钛矿层12一侧高浓度的卤素也会抑制卤素的迁移,从而提高器件稳定性。
另外,由于苯并杂环的分子间距离较近,也有利于电子的传输,在载流子的提取过程中,使电子传输地更加顺畅,并且可以对空穴进行阻挡,防止空穴通过金属电极14一侧与电子复合,从而可以提高钙钛矿太阳能电池1的光电转换效率。
可以理解,有机材料的分子结构中含有苯并杂环,是指有机材料的分子结构中至少含有相互稠合的一个苯环和一个杂环。进一步地,相互稠合的苯环、杂环也可以为多个。
在一些实施方式中,苯并杂环包括苯并五元杂环和苯并六元杂环中的任意一种。苯并五元杂环和苯并六元杂环的结构比较稳定,且五元杂环和六元杂环与苯环的共平面性较好,可以进一步延缓钙钛矿层12中的卤素离子 的迁移,进一步延缓卤素离子与金属电极14发生反应,从而可以进一步提高器件的稳定性。
在一些实施方式中,苯并杂环中的杂原子包括氮原子、氧原子和硫原子中的一种或多种。换句话说,苯并杂环中的杂原子可以为氮原子,可以为氧原子,也可以为硫原子,还可以同时含有两种以上的上述杂原子;苯并杂环中的杂原子的数量可以为一个,也可以为多个;当苯并杂环中的杂原子的数量为多个时,多个杂原子的种类可以相同,也可以不相同。
在一些实施方式中,苯并杂环中的杂环与苯环形成共轭结构。即杂环与苯环形成一个大的共轭体系。如此,可以进一步提高插入层13材料分子结构的共平面性,进一步减小分子间的间距和空位,可以更好地延缓钙钛矿层12中的卤素离子的迁移,从而进一步提高器件的稳定性。并且也更有利于电子的传输,从而提高器件的光电转换效率。
在一些实施方式中,苯并杂环中的杂原子与苯环形成共轭结构。即杂环中的杂原子上的孤对电子可以与苯环共轭。
在一些实施方式中,苯并杂环的苯环上连接有至少一个取代基R1,各个取代基R1各自独立地包括苯基、氨基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR2和-OCOR2中的任意一种;其中R2表示C1~C5的烷基。如此,苯环上的取代基R1可以减小分子间的距离,使插入层13的材料更加致密,进一步提高阻挡金属电极14与钙钛矿层12反应的效果,并可进一步提高阻隔水分和氧的效果,从而进一步提高器件的稳定性。
在一些实施方式中,苯并杂环的杂环上连接有至少一个取代基R3,各个取代基R3各自独立地包括苯基、氨基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR4和-OCOR4中的任意一种;其中R4表示C1~C5的烷基。如此,杂环上的取代基R3可以进一步减小分子间的距离,使插入层13的材料更加致密,进一步提高阻挡金属电极14与钙钛矿层12反应的效果,并可进一步提高阻隔水分和氧的效果,从而进一步提高器件的稳定性。
在一些实施方式中,插入层13的材料具有如下的分子结构:
上述的分子结构中,各个环上的A位置可以为C、N、O或S原子,且一个环上至少有一个A位置为N、O或S原子;R5~R12可以分别独立的为苯环、氢、-N(R13)2、-NHR13、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、羟基、羧基、萘基、-NHCOR13和-OCOR13中的任意一种。R13为C1~C5的烷基。
在一些实施方式中,插入层13的材料可以为4,7-二甲氧基-1,10-菲咯啉4,7-二苯基-1,10-菲罗啉5,6-二氨基-1,10-邻菲罗啉(1,10-二氮杂菲)(三氟甲基)铜(I)3,8-(双-2-噻吩基)-1,10-菲咯啉3,8-二([1,1'-联苯]-4-基)-1,10-菲咯啉1,10-菲咯啉- 4-甲酸6,7-二甲氧基-1,2,3,4-四氢异喹啉4-(2,3-二氢-1H-吲哚-3-基)丁-2-胺2,3-二氢-1-苯并噻吩-2-羧酸二苯并噻哌喃2,3-二氢苯并呋喃-5-甲酸中的一种或多种。
在一些实施方式中,插入层13的厚度为0.5nm~50nm。插入层13的厚度在0.5nm~50nm范围之内,可以提高钙钛矿太阳能电池1的稳定性。可以理解,插入层13的厚度可以为但不限于0.5nm、1nm、3nm、5nm、7nm、9nm、11nm、13nm、15nm、17nm、19nm、21nm、23nm、25nm、27nm、29nm、31nm、33nm、35nm、37nm、39nm、41nm、43nm、45nm、47nm、49nm、50nm。
在一些实施方式中,插入层13的厚度为5nm~20nm。如此,可使钙钛矿太阳能电池获得较好的稳定性的同时,进一步提高钙钛矿太阳能电池的光电转换效率。
请参阅图1,在一些实施方式中,钙钛矿太阳能电池1还包括电子传输层15,该电子传输层15设于钙钛矿层12与插入层13之间。
请参阅图2,在一些实施方式中,钙钛矿太阳能电池1还包括电子传输层15,该电子传输层15设于插入层13与金属电极14之间。
以上两种结构的钙钛矿太阳能电池1中,插入层13均能够有效抑制钙钛矿层12中的卤素与金属电极14发生反应,从而能够有效地提高器件的 稳定性。其中,电子传输层15可以对钙钛矿层12产生的电子进行有效地提取和传输,提高钙钛矿太阳能电池1的光电转换效率。
需要说明的是,相比于将电子传输层15设于插入层13与金属电极14之间的钙钛矿太阳能电池1,将电子传输层15设于钙钛矿层12与插入层13之间的钙钛矿太阳能电池1可以获得更高的光电转换效率。
在一些实施方式中,电子传输层15的材料包括[6,6]-苯基C61丁酸甲酯(PC61BM)、[6,6]-苯基C71丁酸甲酯(PC71BM)、富勒烯C60、富勒烯C70、二氧化锡和氧化锌中的一种或多种。也可以采用上述材料的衍生物或上述材料经掺杂或钝化所得到的材料。
在一些实施方式中,钙钛矿太阳能电池1还包括空穴传输层16,该空穴传输层16设于钙钛矿层12与透明电极层11之间。钙钛矿层12与透明电极层11之间设置空穴传输层16,可以增加空穴的提取和传输能力,提高钙钛矿太阳能电池1的光电转换效率。
在一些实施方式中,空穴传输层16的材料包括氧化镍(NiOx,x表示氧原子数)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)和膦酸咔唑类化合物中的一种或多种。其中,氧化镍材料的空穴传输层16的制备方法包括但不限于溶胶法、溅射法、旋涂氧化镍纳米颗粒法、刮涂法和狭缝涂布法等;有机材料的空穴传输层16的制备方法包括但不限于旋涂、刮涂法和狭缝涂布法等。
在一些实施方式中,钙钛矿太阳能电池1还包括钝化层17,该钝化层17设于钙钛矿层12与空穴传输层16之间。通过设置钝化层17可以对钙钛矿层12进行钝化,进一步提高器件的光电转换效率。
在一些实施方式中,透明电极层11的材料包括氟掺杂氧化锡(FTO)、氧化铟锡(ITO)、铝掺杂氧化锌(AZO)、硼掺杂氧化锌(BZO)和铟掺杂氧化锌(IZO)中的一种或多种。
在一些实施方式中,钙钛矿层12包括化学式为ABX3或A2CDX6的材料;其中,A包括甲脒基(FA)、甲胺基(MA)和Cs+中的一种或多种;B包括Pb2+和Sn2+中的一种或多种;C包括Ag+;D包括Bi3+、Sb3+和In3+中的一种或多种;X包括Br-和I-中的一种或多种。
在一些实施方式中,钙钛矿层12的带隙为1.20eV~2.30eV,钙钛矿层12的厚度为200nm~1000nm。可以理解,钙钛矿层12的带隙可以为但不限于1.20eV、1.3eV、1.4eV、1.5eV、1.6eV、1.7eV、1.8eV、1.9eV、2.0eV、2.1eV、2.2eV、2.30eV;钙钛矿层12的厚度可以为但不限于200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm。
在一些实施方式中,金属电极14的材料包括Ag、Cu、Au和Al中的一种或多种。
在一些实施方式中,如图1所示的钙钛矿太阳能电池1的制备方法包括以下步骤:
刻蚀并清洗透明导电玻璃基底,吹干,作为透明电极层11;在透明电极层11上制备空穴传输层16;在空穴传输层16上制备钝化层17;在钝化层17上制备钙钛矿层12;在钙钛矿层12上制备电子传输层15;在电子传输层15上制备插入层13;清边,在插入层13上制备金属电极14,得到钙钛矿太阳能电池1。
在一些实施方式中,如图2所示的钙钛矿太阳能电池1的制备方法包括以下步骤:
刻蚀并清洗透明导电玻璃基底,吹干,作为透明电极层11;在透明电极层11上制备空穴传输层16;在空穴传输层16上制备钝化层17;在钝化层17上制备钙钛矿层12;在钙钛矿层12上制备插入层13;在插入层13上制备电子传输层15;在电子传输层15上制备金属电极14,得到钙钛矿太阳能电池1。
本申请第二方面提供了一种光伏组件,该光伏组件包括本申请第一方面的钙钛矿太阳能电池1。本申请的光伏组件,通过采用本申请第一方面的钙钛矿太阳能电池1,具有较好的稳定性。
上述光伏组件中,包括一个或多个钙钛矿太阳能电池1,可根据具体的应用场景选择;进一步地,上述光伏组件中包括多个钙钛矿太阳能电池1,多个钙钛矿太阳能电池1串联或并联连接形成电池片。
在其中一些实施例中,上述光伏组件还包括光伏玻璃层、粘结层和背板。
电池片的两个表面分别设有粘结层,在其中一个粘结层中远离电池片 的表面设有背板,在另一个粘结层中远离电池片的表面设有光伏玻璃层。
光伏玻璃层和背板用于保护保护钙钛矿太阳能电池1,其具有密封、绝缘、防水的作用;粘结层起到粘结光伏玻璃层与电池片、粘结背板与电池片的作用。
可选地,光伏玻璃层的材质为钢化玻璃,背板的材质采用TPT(聚氟乙烯)或TPE(热塑性弹性体)材质,粘结层的材质采用EVA(聚乙烯-聚醋酸乙烯酯共聚物)。
进一步地,上述光伏组件还包括接线盒及外框。
接线盒用于保护整个光伏组件的发电系统,它相当于一个电流中转站,当有电池片出现短路,接线盒会自动断开短路的电池串。
外框可以起到支撑和保护整个光伏组件的作用,边框可采用铝合金材质,其强度、耐腐蚀性优异。
进一步地,通过硅胶来粘结、密封边框与光伏组件中其他部位的连接处。光伏组件可以将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。
在其中一些实施例中,上述光伏组件为太阳能电池板。
本申请的第三方面提供了一种光伏系统,包括上述光伏组件。
光伏系统利用上述光伏组件中的钙钛矿太阳能电池1,将太阳辐射能直接转换成电能,效率高、稳定性好;进一步地,上述光伏系统为光伏发电系统。
光伏组件是光伏发电系统中的核心部分,上述光伏系统中,包括一个或多个光伏组件,可根据具体的应用场景选择;进一步地,上述光伏系统中包括多个光伏组件时,多个光伏组件形成光伏阵列。
上述光伏系统可以是独立光伏发电系统,也可以是并网光伏发电系统。
独立光伏发电系统包括光伏阵列、蓄电池组、充电控制器、电力电子变换器(逆变器)、负载等。其工作原理是,太阳辐射能量经过光伏阵列首先被转换成电能,然后由电力电子变换器变换后给负载供电,同时将多余的电能经过充电控制器后以化学能的形式储存在储能装置中,这样在日照不足时,储存在电池中的能量就可经过电力电子逆变器、滤波和工频变压器升压后 变成交流220V、50Hz的电能供交流负载使用。
并网光伏发电系统包括光伏阵列、高频DC/DC升压电路、电力电子变换器(逆变器)和系统监控。其工作原理是,太阳辐射能量经过光伏阵列转换后,再经高频直流变换后变成高压直流电,然后经过电力电子逆变器逆变后向电网输出与电网电压相频一致的正弦交流电流。
上述两种光伏发电系统各有特点,可根据具体的应用场景选择。
本申请第四方面提供了一种用电装置,包括本申请第一方面的钙钛矿太阳能电池1。
在一些实施方式中,用电装置为包括本申请的太阳能电池的常见的设备,例如通信领域、交通领域、工农业领域、照明领域等。所述用电装置例如可包括卫星、通讯设备、交通信号灯、灯塔、无线电话亭、石油钻探领域的监测设备、电源系统、野营灯、电动汽车、电子设备充电器、楼宇幕墙等。图3为电动汽车作为用电装置2的一个具体示例的结构示意图。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、钙钛矿太阳能电池
实施例1:
1)取20片规格为2.0cm*2.0cm的FTO导电玻璃,两端通过激光刻蚀各去掉0.35cm的FTO,裸露出玻璃基底;用水、丙酮、异丙醇依次超声清洗刻蚀后的FTO导电玻璃数次;将FTO导电玻璃在氮气枪下吹干溶剂,放入紫外臭氧机中进一步清洗;作为透明电极层备用;
2)在透明电极层上以4000rpm的速率旋涂10mg/mL的氧化镍纳米颗粒(水溶液为溶剂)后,在100℃热台上退火处理30分钟,得到空穴传输层;
3)称取碘化铅(PbI2)600mg、碘甲脒(FAI)158mg、氯甲胺(MACl)5mg和碘化铯(CsI)23.4mg溶解在DMF(N,N-二甲基甲酰胺)与DMSO(二甲基亚砜)的混合溶液中,其中DMF与DMSO体积比为1:4,溶剂总 体积为1mL;搅拌3h,用0.22μm有机滤膜过滤,得到钙钛矿前驱体溶液;在得到的自组装分子层上以3000rpm的速率旋涂钙钛矿前驱液,100℃下退火30min,冷却至室温,得到钙钛矿层;其中钙钛矿层的活性物质为CsFAMA体系的ABX3型化合物;
4)在钙钛矿层上以1500rpm/s的速率旋涂电子传输层材料PCBM,在100℃下退火10min,得到电子传输层;
5)在电子传输层PCBM上以5000rpm/s的速率旋涂含有插入层材料4,7-二甲氧基-1,10-菲咯啉(CAS号:92149-07-0)的旋涂液,旋涂液中溶剂为异丙醇,4,7-二甲氧基-1,10-菲咯啉的浓度为0.5mg/mL;清边后等溶剂的进一步挥发,得到插入层,插入层的厚度为5nm;
6)将制备插入层后的片子放入蒸镀机,蒸镀金属电极Ag,获得钙钛矿太阳能电池。
实施例2:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为4,7-二苯基-1,10-菲罗啉(CAS号:1662-01-7)。
实施例3:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为5,6-二氨基-1,10-邻菲罗啉(CAS号:168646-54-6)。
实施例4:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实 施例中插入层的材料为(1,10-二氮杂菲)(三氟甲基)铜(I)(CAS号:1300746-79-5)。
实施例5:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为3,8-(双-2-噻吩基)-1,10-菲咯啉(CAS号:753491-32-6)。
实施例6:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为3,8-二([1,1'-联苯]-4-基)-1,10-菲咯啉(CAS号:1363543-83-2)。
实施例7:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为1,10-菲咯啉-4-甲酸(CAS号:31301-27-6)。
实施例8:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为6,7-二甲氧基-1,2,3,4-四氢异喹啉(CAS号:1745-07-9)。
实施例9:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为4-(2,3-二氢-1H-吲哚-3-基)丁-2-胺(CAS号:2089257-12-3)。
实施例10:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为2,3-二氢-1-苯并噻吩-2-羧酸(CAS号:27916-82-1)。
实施例11:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为二苯并噻哌喃(CAS号:261-31-4)。
实施例12:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层的材料为2,3-二氢苯并呋喃-5-甲酸(CAS号:76429-73-7)。
实施例13:
本实施例与实施例1基本相同,区别仅在于:插入层的设置位置不同。本实施例中插入层设置在电子传输层和钙钛矿层之间。
实施例14:
本实施例与实施例2基本相同,区别仅在于:插入层的厚度和制备工艺不同。本实施例中,含有插入层材料的旋涂液中插入层材料的浓度为0.1mg/mL,旋涂的速率为5000rpm/s,形成的插入层的厚度为1nm。
实施例15:
本实施例与实施例2基本相同,区别仅在于:插入层的厚度和制备工艺不同。本实施例中,含有插入层材料的旋涂液中插入层材料的浓度为1mg/mL,旋涂的速率为5000rpm/s,形成的插入层的厚度为10nm。
实施例16:
本实施例与实施例2基本相同,区别仅在于:插入层的厚度和制备工艺不同。本实施例中,含有插入层材料的旋涂液中插入层材料的浓度为5mg/mL,旋涂的速率为3000rpm/s,形成的插入层的厚度为20nm。
实施例17:
本实施例与实施例2基本相同,区别仅在于:插入层的厚度和制备工艺不同。本实施例中,含有插入层材料的旋涂液中插入层材料的浓度为10mg/mL,旋涂的速率为2500rpm/s,形成的插入层的厚度为50nm。
对比例1:
本实施例与实施例1基本相同,区别仅在于:不设置插入层。
对比例2:
本实施例与实施例1基本相同,区别仅在于:插入层的材料不同。本实施例中插入层采用3-苯基-吡咯烷(CAS号:936-44-7)。
二、性能测试
钙钛矿太阳能电池的光电转换效率测试(I-V测试)采用的是光焱的太 阳光模拟器,符合国家标准IEC61215进行测试,采用晶硅太阳能电池校正光的强度,使其达到一个太阳强度,AM 1.5,电池与数字源表连接,光照下测其光电转换效率。具体地,在钙钛矿太阳能电池制备完成后的第3天和第30天分别再测试其光电转换效率,考察电池的光电转换效率的稳定性。
对各个实施例和对比例的钙钛矿太阳能电池的光电转换效率进行测试,测试结果如表1所示。
表1

将本申请的各实施例与对比例1及对比例2比较可知,本申请在钙钛矿太阳能电池的钙钛矿层与金属电极之间设置插入层,且插入层包括分子结构中含有苯并杂环的有机材料,可以有效地提高钙钛矿太阳能电池的光电转换效率的稳定性。本申请各实施例的钙钛矿太阳能电池的第3天效率和第30天效率基本保持稳定;而对比例1中不设置插入层的电池和对比例2中插入层材料采用3-苯基-吡咯烷的电池,其第30天效率明显低于第3天效率,说明其稳定性较差。
实施例2、实施例15和实施例16中插入层的厚度为5nm~20nm,实施例14和实施例17中插入层的厚度分别为1nm和50nm,而其他条件均相同;实施例2、实施例15和实施例16的钙钛矿太阳能电池的光电转换效 率高于实施例14和实施例17。说明将插入层的厚度设置为5nm~20nm,有利于在获得较好的稳定性的同时,进一步提高钙钛矿太阳能电池的光电转换效率。
将实施例1与实施例13进行比较可知,实施例1中将电子传输层设置在钙钛矿层与插入层之间(即插入层设置在电子传输层和金属电极之间),实施例13中将电子传输层设置在插入层与金属电极之间(即插入层设置在电子传输层和钙钛矿层之间),均可使钙钛矿太阳能电池获得较好的稳定性。但相对来说,实施例1中将电子传输层设置在钙钛矿层与插入层之间,可以进一步提升钙钛矿太阳能电池的光电转换效率。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (21)

  1. 一种钙钛矿太阳能电池,包括:
    透明电极层;
    钙钛矿层,设于所述透明电极层的表面;
    插入层,设于所述钙钛矿层背离所述透明电极层的表面,所述插入层包括有机材料,所述有机材料的分子结构中含有苯并杂环;以及
    金属电极,设于所述插入层背离所述钙钛矿层的表面。
  2. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环包括苯并五元杂环和苯并六元杂环中的任意一种。
  3. 根据权利要求1或2所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环中的杂原子包括氮原子、氧原子和硫原子中的一种或多种。
  4. 根据权利要求1至3中任一项所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环中的杂环与苯环形成共轭结构。
  5. 根据权利要求1至4中任一项所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环中的杂原子与苯环形成共轭结构。
  6. 根据权利要求1至5中任一项所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环的苯环上连接有至少一个取代基R1,所述R1各自独立地包括苯基、-N(R2)2、-NHR2、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR2和-OCOR2中的任意一种;其中R2表示C1~C5的烷基。
  7. 根据权利要求1至5中任一项所述的钙钛矿太阳能电池,其特征在于,所述苯并杂环的杂环上连接有至少一个取代基R3,所述R3各自独立地包括苯基、-N(R4)2、-NHR4、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、烷氧基、羟基、羧基、萘基、-NHCOR4和-OCOR4中的任意一种;其中R4表示C1~C5的烷基。
  8. 根据权利要求1至5中任一项所述的钙钛矿太阳能电池,其特征在于,所述有机材料包括具有如下结构通式化合物中的一种或多种:
    其中,以上通式中的各个环上的A各自独立地包括C、N、O和S中的任意一种,且一个环上至少有一个A为N、O和S中的任意一种;R5~R12分别独立地包括苯环、氢、-N(R13)2、-NHR13、-NH2、三甲胺基、三乙胺基、三丙胺基、吡啶基、烷基、卤素、羟基、羧基、萘基、-NHCOR13和-OCOR13中的任意一种,R13为C1~C5的烷基。
  9. 根据权利要求1至5中任一项所述的钙钛矿太阳能电池,其特征在于,所述有机材料包括如下化合物中的一种或多种:
  10. 根据权利要求1至9中任一项所述的钙钛矿太阳能电池,其特征在于,所述插入层的厚度为0.5nm~50nm;
    可选地,所述插入层的厚度为5nm~20nm。
  11. 根据权利要求1至10中任一项所述的钙钛矿太阳能电池,其特征在于,还包括:
    电子传输层,所述电子传输层设于所述钙钛矿层与所述插入层之间,或者设于所述插入层与所述金属电极之间。
  12. 根据权利要求11所述的钙钛矿太阳能电池,其特征在于,所述电子传输层的材料包括[6,6]-苯基C61丁酸甲酯、[6,6]-苯基C71丁酸甲酯、富勒烯C60、富勒烯C70、二氧化锡和氧化锌中的一种或多种。
  13. 根据权利要求1至12中任一项所述的钙钛矿太阳能电池,其特征在于,还包括:
    空穴传输层,所述空穴传输层设于所述钙钛矿层与所述透明电极层之间。
  14. 根据权利要求13所述的钙钛矿太阳能电池,其特征在于,所述空穴传输层的材料包括NiOx、PTAA、PEDOT:PSS和膦酸咔唑类化合物中的一种或多种;其中,x表示氧原子数。
  15. 根据权利要求1至14中任一项所述的钙钛矿太阳能电池,其特征在于,所述透明电极层的材料包括FTO、ITO、AZO、BZO和IZO中的一种或多种。
  16. 根据权利要求1至15中任一项所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿层包括化学式为ABX3的材料和化学式为A2CDX6的材料中的至少一种;
    其中,A包括甲脒基、甲胺基和Cs+中的一种或多种;B包括Pb2+和Sn2+中的一种或多种;C包括Ag+;D包括Bi3+、Sb3+和In3+中的一种或多种;X包括Br-和I-中的一种或多种。
  17. 根据权利要求1至16中任一项所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿层的带隙为1.20eV~2.30eV,所述钙钛矿层的厚度为200nm~1000nm。
  18. 根据权利要求1至17中任一项所述的钙钛矿太阳能电池,其特征在于,所述金属电极的材料包括Ag、Cu、Au和Al中的一种或多种。
  19. 一种光伏组件,包括权利要求1至18中任一项所述的钙钛矿太阳能电池。
  20. 一种光伏系统,包括权利要求19所述的光伏组件。
  21. 一种用电装置,包括权利要求1至18中任一项所述的钙钛矿太阳能电池。
PCT/CN2023/093224 2023-05-10 2023-05-10 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置 WO2024229743A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/093224 WO2024229743A1 (zh) 2023-05-10 2023-05-10 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置
CN202380068049.8A CN119908189A (zh) 2023-05-10 2023-05-10 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/093224 WO2024229743A1 (zh) 2023-05-10 2023-05-10 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置

Publications (1)

Publication Number Publication Date
WO2024229743A1 true WO2024229743A1 (zh) 2024-11-14

Family

ID=93431596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093224 WO2024229743A1 (zh) 2023-05-10 2023-05-10 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置

Country Status (2)

Country Link
CN (1) CN119908189A (zh)
WO (1) WO2024229743A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294585A1 (en) * 2014-09-01 2017-10-12 Merck Patent Gmbh Fullerene mixtures for use in organic electronic devices
CN108258128A (zh) * 2018-01-17 2018-07-06 杭州纤纳光电科技有限公司 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN114315828A (zh) * 2021-12-29 2022-04-12 华能新能源股份有限公司 一种可溶液加工的电子传输层修饰材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294585A1 (en) * 2014-09-01 2017-10-12 Merck Patent Gmbh Fullerene mixtures for use in organic electronic devices
CN108258128A (zh) * 2018-01-17 2018-07-06 杭州纤纳光电科技有限公司 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN114315828A (zh) * 2021-12-29 2022-04-12 华能新能源股份有限公司 一种可溶液加工的电子传输层修饰材料及其制备方法和应用

Also Published As

Publication number Publication date
CN119908189A (zh) 2025-04-29

Similar Documents

Publication Publication Date Title
KR101573611B1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
Gao et al. An asymmetrical fused-ring electron acceptor designed by a cross-conceptual strategy achieving 15.6% efficiency
Du et al. Excimer emission induced intra-system self-absorption enhancement–a novel strategy to realize high efficiency and excellent stability ternary organic solar cells processed in green solvents
CN107531731A (zh) 杂环化合物和包含其的有机太阳能电池
CN102604048B (zh) 含氧化胺基团的共轭聚合物光电材料及其应用
Huang et al. A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate ligand for highly efficient inverted perovskite solar cells
JP6200096B2 (ja) 共重合体およびこれを含む有機太陽電池
CN115666145A (zh) 一种高稳定性环保型钙钛矿太阳能电池
KR102441145B1 (ko) 중합체, 이를 포함하는 조성물 및 이를 포함하는 유기 태양 전지
CN118201379A (zh) 太阳能电池及其制备方法
WO2024187465A1 (zh) 钙钛矿前驱体溶液、钙钛矿薄膜、钙钛矿电池和用电装置
CN110337439A (zh) 化合物和包含其的有机太阳能电池
WO2024229743A1 (zh) 钙钛矿太阳能电池、光伏组件、光伏系统和用电装置
EP3557642B1 (en) Photoactive layer and organic solar cell including same
CN107466295A (zh) 化合物和包含其的有机太阳能电池
JP2020519014A (ja) 有機太陽電池の有機物層用組成物および有機太陽電池
JP6862650B2 (ja) 有機太陽電池の有機物層用組成物およびこれを用いた有機太陽電池の製造方法
WO2025011160A1 (zh) 钙钛矿太阳能电池及其制备方法、光伏组件、系统和用电装置
CN108602942A (zh) 共聚物和包含其的有机太阳能电池
CN118684683A (zh) 可用于钙钛矿电池的材料、钙钛矿电池、光伏组件、系统和用电装置
WO2020062254A1 (en) Chlorine atoms induced molecular interlocked network in a non-fullerene acceptor
WO2024216582A1 (zh) 钙钛矿太阳能电池及其制备方法、光伏组件、系统和装置
CN110383519A (zh) 光活性层和包括其的有机太阳能电池
WO2025011316A1 (zh) 太阳能电池及其制备方法、光伏组件、系统和用电装置
KR102683527B1 (ko) 중합체 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23936066

Country of ref document: EP

Kind code of ref document: A1