WO2024174687A1 - 漏液检测电路、系统、方法、电子设备及存储介质 - Google Patents

漏液检测电路、系统、方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024174687A1
WO2024174687A1 PCT/CN2023/138568 CN2023138568W WO2024174687A1 WO 2024174687 A1 WO2024174687 A1 WO 2024174687A1 CN 2023138568 W CN2023138568 W CN 2023138568W WO 2024174687 A1 WO2024174687 A1 WO 2024174687A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing line
leakage detection
liquid leakage
leakage
liquid
Prior art date
Application number
PCT/CN2023/138568
Other languages
English (en)
French (fr)
Inventor
杨斌
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2024174687A1 publication Critical patent/WO2024174687A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/40Investigating fluid-tightness of structures by using electric means, e.g. by observing electric discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of heat dissipation technology for liquid-cooled servers, and in particular to a liquid leakage detection circuit, system, method, electronic device, and non-volatile readable storage medium.
  • CPU central processing unit
  • GPU graphics processing unit
  • NIC network interface controller
  • DIMM dual inline memory modules
  • SSD solid state drive
  • the heat dissipation system of a liquid-cooled server includes internal circulation and external circulation of the server.
  • the internal circulation refers to the liquid (coolant) being transported from the Coolant Distribution Unit (CDU) to the liquid cooling pipe and the liquid cooling cold plate, taking away the heat of the heating device, and then flowing into the CDU to exchange heat with the external cooling water, so as to finally bring the heat to the external water cooling tower through the external circulation. Since the internal circulation line is inside the liquid-cooled server, there is bound to be a risk of liquid leakage and damage to the board.
  • a leakage sensing line is usually wrapped around the liquid cooling pipe and the liquid cooling cold plate, and the two ends of the leakage sensing line are connected to the leakage detection circuit on the mainboard of the liquid cooling server to form a loop, thereby realizing the detection of leakage.
  • the leakage sensing line In the current liquid cooling leakage detection device, it is necessary to ensure that the leakage sensing line is intact or plugged in place to successfully perform the detection. However, during the production, transportation or maintenance of liquid cooling servers, the leakage sensing line is damaged or detached, and the inspection is done manually. There is a problem of low manual detection accuracy. When a liquid cooling server leaks, the leakage sensing line with damage or detached interface cannot detect the leakage, causing the liquid cooling server to short-circuit or even be damaged due to the leakage.
  • the present application provides a liquid leakage detection circuit, system, method, electronic device and non-volatile readable storage medium.
  • the present application provides a liquid leakage detection circuit, comprising a sensing line abnormality detection trigger subcircuit and a liquid leakage detection subcircuit, wherein the sensing line abnormality detection trigger subcircuit and the liquid leakage detection subcircuit are connected via a liquid leakage sensing line, wherein:
  • the induction line abnormality detection trigger subcircuit is configured to be turned on according to the leakage simulation signal generated by the complex programmable logic control to detect abnormalities on the leakage induction line through the leakage detection subcircuit.
  • the leakage simulation signal is used to form a leakage simulation scene in the leakage detection circuit when the induction line abnormality detection trigger subcircuit is turned on;
  • the leakage detection subcircuit is configured to perform abnormality detection on the leakage sensing line according to the change of the input voltage when it is determined that the sensing line abnormality detection trigger subcircuit is turned on, and perform leakage detection after determining that there is no abnormality in the leakage sensing line.
  • the liquid leakage sensing line is composed of a first conductive line and a second conductive line, and the liquid leakage sensing line is wound around a target area corresponding to a liquid cooling pipeline.
  • the liquid leakage detection subcircuit includes a first resistor, a second resistor and a comparator circuit, wherein:
  • the first end of the first wire is connected to the first end of the first resistor, the first end of the second resistor and the first input end of the comparator circuit, and the second end of the first wire is connected to the induction line abnormality detection trigger subcircuit;
  • the second end of the first resistor is connected to the power supply, and the second end of the second resistor is grounded;
  • the second input terminal of the comparator circuit is connected to a reference power supply, and the output terminal of the comparator circuit is connected to the input terminal of a complex programmable logic control.
  • the comparator circuit is configured to generate a corresponding level signal based on a comparison result between the first input voltage and the second input voltage, so that the complex programmable logic control can determine the leakage situation of the target area based on the level signal.
  • the first input voltage is the input voltage input to the first input terminal of the comparator circuit
  • the second input voltage is the input voltage input to the second input terminal of the comparator circuit.
  • the comparator circuit is configured to generate a high-level signal when it is determined that the input voltage of the first input terminal of the comparator circuit is greater than the input voltage of the second input terminal of the comparator circuit, so that the complex programmable logic control can determine that there is no leakage in the target area according to the high-level signal; and generate a low-level signal when it is determined that the input voltage of the first input terminal of the comparator circuit is less than the input voltage of the second input terminal of the comparator circuit, so that the complex programmable logic control can determine that there is leakage in the target area according to the low-level signal.
  • the induction line abnormality detection trigger subcircuit is composed of a switch circuit, which is configured to be turned on upon receiving a liquid leakage simulation signal, so that when the induction line abnormality detection trigger subcircuit is turned on, if the liquid leakage detection subcircuit generates a low-level signal, the complex programmable logic control determines that there is no abnormality in the liquid leakage sensing line according to the low-level signal; if the liquid leakage detection subcircuit generates a high-level signal, the complex programmable logic control determines that there is an abnormality in the liquid leakage sensing line according to the high-level signal;
  • the first input end of the switch circuit is connected to the output end of the complex programmable logic control
  • the second input end of the switch circuit is connected to the second end of the second wire
  • the output end of the switch circuit is connected to the second end of the first wire
  • the first end of the second wire is grounded.
  • the induction line abnormality detection trigger subcircuit is also configured to shut down after receiving a simulation shutdown signal generated by a complex programmable logic control.
  • the present application also provides a liquid leakage detection system, comprising a liquid leakage sensing line, a liquid leakage detection controller and a liquid leakage detection circuit based on any of the above items, wherein:
  • the liquid leakage sensing line is connected to the liquid leakage detection circuit and is arranged in the target area corresponding to the liquid cooling pipe to be detected in the liquid cooling server;
  • the liquid leakage detection controller is connected to the liquid leakage detection circuit and is configured to obtain the sensing line abnormality detection result or the liquid leakage detection result sent by the liquid leakage detection circuit, and generate a corresponding alarm signal according to the sensing line abnormality detection result or the liquid leakage detection result;
  • the liquid leakage detection circuit is configured to detect abnormal conditions or liquid leakage of the liquid leakage sensing line.
  • the liquid leakage detection controller includes a complex programmable logic control and a baseboard management controller, wherein:
  • the complex programmable logic control is connected to the liquid leakage detection circuit and is configured to send a liquid leakage simulation signal to the liquid leakage detection circuit according to the sensing line abnormality detection signal sent by the baseboard management control, so as to start the liquid leakage detection circuit to perform abnormality detection on the liquid leakage sensing line and obtain the sensing line abnormality detection result; and after the baseboard management controller determines that there is no abnormality in the liquid leakage sensing line, the liquid leakage detection circuit is started to perform liquid leakage detection according to the liquid leakage detection signal sent by the baseboard management controller to obtain the liquid leakage detection result of the target area;
  • the baseboard management controller is connected to the complex programmable logic control unit through an integrated circuit bus, and is configured to generate a corresponding alarm signal according to the abnormal detection result of the sensing line or the leakage detection result.
  • the complex programmable logic control is also configured to generate a simulation shutdown signal according to the sensing line abnormal detection shutdown signal sent by the baseboard management controller after the baseboard management controller determines that there is no abnormality in the leakage sensing line, and send the simulation shutdown signal to the leakage detection circuit to shut down the leakage detection circuit to perform abnormal detection on the leakage sensing line.
  • a baseboard management controller is connected to a power supply unit via a power management bus, and the power supply unit is configured to shut down the power of a liquid-cooled server according to an alarm signal generated by the baseboard management controller.
  • a complex programmable logic control is connected to a power supply unit through a universal input and output interface, and the complex programmable logic control is connected to a baseboard management controller through a universal input and output interface for heartbeat signal detection. If it is determined that an abnormality exists in the baseboard management controller according to the heartbeat signal detection result, a power-off signal is generated and sent to the power supply unit, wherein the power supply unit is configured to shut down the power of the liquid-cooled server according to the power-off signal generated by the complex programmable logic control.
  • the complex programmable logic control is also configured to determine whether a heartbeat signal is received within a preset period, and determine the abnormal condition of the baseboard management controller based on the determination result.
  • the liquid leakage detection system includes a plurality of liquid leakage detection circuits, each of which is arranged in correspondence with a layout area of a liquid leakage sensing line in a liquid cooling server.
  • the leakage detection system also includes an alarm display module, which is connected to the baseboard management controller via a network and is configured to display corresponding leakage sensing line alarm content based on the sensing line abnormality detection result or leakage detection result sent by the baseboard management controller.
  • the alarm display module is also configured to The leakage detection result corresponds to the leakage area location information, and displays the leakage sensing line alarm content corresponding to different leakage alarm levels.
  • the present application also provides a liquid leakage detection method based on any of the above-mentioned liquid leakage detection systems, comprising:
  • the leakage sensing line of the liquid cooling pipe in the liquid cooling server is detected for abnormality, and after determining that there is no abnormality in the leakage sensing line, the target area corresponding to the liquid cooling pipe is detected for leakage;
  • a corresponding alarm signal is generated according to the abnormal detection result of the sensing line or the leakage detection result sent by the leakage detection circuit.
  • a corresponding alarm signal is generated according to a sensing line abnormality detection result or a liquid leakage detection result sent by a liquid leakage detection circuit, including:
  • a method for obtaining a corresponding alarm risk level according to an abnormal detection result of a sensing line includes:
  • the abnormal area position information corresponding to the target leakage sensing line with abnormal situation in the liquid cooling server is obtained;
  • the corresponding sensing line alarm risk level is generated.
  • a corresponding alarm signal is generated according to a liquid leakage detection result sent by a liquid leakage detection circuit, including:
  • the leakage area position information corresponding to the liquid cooling pipeline where the liquid is leaking in the liquid cooling server is obtained;
  • a corresponding leakage alarm risk level is generated.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, any of the above-mentioned liquid leakage detection methods is implemented.
  • the present application also provides a non-transitory computer non-volatile readable storage medium, on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the computer program is executed by a processor, any of the above-mentioned liquid leakage detection methods is implemented.
  • the leakage detection circuit, system, method, electronic device and non-volatile readable storage medium provided in the present application generate a leakage simulation signal to detect abnormal conditions such as damage or detachment of the leakage sensing line of the liquid cooling pipe in the liquid cooling server, thereby automatically detecting abnormal conditions of the leakage sensing line more accurately, and when it is determined that there is no abnormality in the leakage sensing line, detecting leakage of the liquid cooling pipe, thereby improving the stability of leakage detection of the liquid cooling server.
  • FIG1 is a schematic diagram of the structure of a liquid leakage detection circuit provided by the present application.
  • FIG2 is a schematic diagram of the overall structure of a liquid leakage detection circuit provided by the present application.
  • FIG3 is a schematic diagram of the structure of a liquid leakage detection system provided by the present application.
  • FIG4 is a schematic diagram of the overall structure of a liquid leakage detection system for a liquid cooling server provided in the present application;
  • FIG5 is a schematic diagram of a flow chart of a liquid leakage detection method provided in the present application.
  • FIG6 is a schematic diagram of the overall process of the liquid leakage detection method for the liquid cooling server provided by the present application.
  • FIG. 7 is a schematic diagram of the structure of an electronic device provided in this application.
  • the leakage sensing wire is spirally wound on the cooling pipeline of the liquid cooling server (i.e., the liquid cooling pipeline, which is used to transport the cooling liquid), wherein the outer layer of the leakage sensing wire is a water-absorbing coating layer with a built-in metal wire.
  • the leakage sensing wire is electrically connected to the leakage detection circuit, which is electrically connected to the leakage detection controller, which is electrically connected to the alarm, the display screen, and the server power supply.
  • the leakage detection circuit detects the leakage sensing wire connection signal and transmits it to the leakage detection controller, thereby controlling the alarm through the leakage detection controller and shutting off the server power supply.
  • leakage sensing line damage or detachment (such as the interface between the leakage sensing line and the leakage detection circuit is not successfully plugged in) are all inspected manually, and even if the labor cost is increased, there are still cases where the inspection is not in place.
  • the leakage sensing line has the above abnormal situation, if the liquid cooling pipe in the liquid cooling server leaks, it cannot be detected, causing the liquid cooling server to short-circuit or even be damaged due to leakage.
  • FIG1 is a schematic diagram of the structure of a liquid leakage detection circuit provided by the present application.
  • the present application provides a liquid leakage detection circuit, including a sensing line abnormality detection trigger subcircuit 101 and a liquid leakage detection subcircuit 102.
  • the sensing line abnormality detection trigger subcircuit 101 and the liquid leakage detection subcircuit 102 are connected via a liquid leakage sensing line, wherein:
  • the sensing line abnormality detection trigger subcircuit 101 is configured to be turned on according to the leakage simulation signal generated by the complex programmable logic control, so as to perform abnormality detection on the leakage sensing line through the leakage detection subcircuit, wherein the leakage simulation signal is used to form a leakage simulation scene in the leakage detection circuit when the sensing line abnormality detection trigger subcircuit is turned on;
  • the leakage detection subcircuit 102 is configured to perform abnormality detection on the leakage sensing line according to the change of the input voltage when it is determined that the sensing line abnormality detection trigger subcircuit 101 is turned on, and perform leakage detection after determining that there is no abnormality in the leakage sensing line.
  • the induction line abnormality detection trigger subcircuit 101 is electrically connected to a complex programmable logic device (CPLD) and is adjusted The CPLD outputs a level signal, thereby turning on the induction line abnormality detection trigger subcircuit 101.
  • CPLD complex programmable logic device
  • the induction line abnormality detection trigger subcircuit 101 is turned on.
  • the leakage detection circuit will create a leakage simulation scene, so as to perform leakage detection in the leakage simulation scene through the leakage detection subcircuit 102.
  • the leakage simulation signal generated by the CPLD can be generated in an initialized manner after the initial installation of the liquid cooling server is completed, that is, after confirming that the leakage sensing line is installed, based on the trigger signal of the baseboard management controller (Baseboard Manager Controller, referred to as BMC), the various interface conditions of the leakage sensing line are detected to determine whether each interface is correctly installed. Therefore, the present application simulates a leakage signal and performs abnormal detection on the installation condition of the leakage sensing line through the leakage detection subcircuit 102 in the leakage detection circuit.
  • BMC Baseboard Manager Controller
  • the leakage detection subcircuit 102 should generate a corresponding level signal (such as a low-level signal) according to the change of the input voltage to determine the existence of a leakage situation (leakage situation in the simulation scenario), but the detection result corresponding to the level signal (high-level signal) actually generated is no leakage situation.
  • a corresponding level signal such as a low-level signal
  • the leakage sensing line is detached or damaged; when the leakage detection subcircuit 102 generates a correct level signal in the leakage simulation scenario, it can be determined that the leakage sensing line is not detached or damaged at this time.
  • the maintenance personnel after the maintenance personnel maintain the liquid cooling pipes and the corresponding leakage sensing lines in the liquid cooling server, they can also send a trigger signal to the CPLD through the BMC, so that the CPLD generates a leakage simulation information for abnormal detection, and detects the detachment or damage of the leakage sensing line caused by maintenance.
  • the liquid cooling pipe is leaked in real time through the liquid leakage detection subcircuit 102.
  • the liquid leakage sensing line is arranged below the liquid cooling pipe, and when the pipe leaks, the coolant seeps into the liquid leakage sensing line, thereby making the connection of the liquid leakage sensing line conductive, and at this time the liquid leakage detection subcircuit 102 generates a corresponding level signal, thereby obtaining a liquid leakage detection result.
  • the leakage detection circuit provided in the present application generates a leakage simulation signal to detect abnormal conditions such as damage or detachment of the leakage sensing line of the liquid cooling pipe in the liquid cooling server, thereby automatically detecting the abnormal conditions of the leakage sensing line more accurately, and when it is determined that there is no abnormality in the leakage sensing line, detecting leakage of the liquid cooling pipe, thereby improving the stability of leakage detection of the liquid cooling server.
  • the liquid leakage sensing line is composed of a first conductive line and a second conductive line, and the liquid leakage sensing line is wound around a target area corresponding to the liquid cooling pipeline;
  • the abnormal situation at least includes the situation that the interface of the leakage sensing line is detached and damaged.
  • the leakage sensing line includes a left 2-pin (pin) connector (including the 1st pin on the left and the 2nd pin on the left), a right 2-pin connector (including the 1st pin on the right and the 2nd pin on the right) and a sensing line
  • the sensing line includes an outer braided layer, an inner braided layer, a first wire (multi-strand wire core) and a second wire (multi-strand wire core), wherein the outer braided layer and the inner braided layer have a water absorption function, and when a liquid cooling pipe leaks, the cooling liquid can be effectively absorbed and immersed into the first wire and the second wire. Under normal circumstances, that is, when there is no leakage, the first wire and the second wire are disconnected.
  • the left 2-pin connector and the right 2-pin connector correspond to the two ports of the first wire and the second wire, for example, the left 1st pin is the first port of the first wire, the left 2nd pin is the first port of the second wire, the right 1st pin is the second port of the first wire, and the right 2nd pin is the second port of the second wire; or, the left 1st pin is the first port of the second wire, the left 2nd pin is the first port of the first wire, the right 1st pin is the second port of the second wire, and the right 2nd pin is the second port of the first wire, and the present application does not make specific limitations on this.
  • the leakage sensing line can be laid out in a reasonable winding manner.
  • the cold plate interface and welding point positions are risk points for coolant leakage, and the leakage sensing line needs to be wound around each interface position and welding point position.
  • the liquid cooling pipe can be laid straight along the pipe, and the leakage sensing line is located below the liquid cooling pipe and fixed with tape to detect leakage at any position on the liquid cooling cold plate and liquid cooling pipe to ensure the normal operation of the liquid cooling server.
  • the leakage sensing line after determining that the leakage sensing line is not damaged and the interface area is not detached, if there is no leakage in the liquid cooling pipeline, the leakage sensing line is disconnected, and the leakage detection subcircuit 102 outputs a first level signal (high level signal), and the CPLD detection result shows that there is no leakage in the liquid cooling; if there is a leakage in the liquid cooling pipeline, the leakage sensing line is turned on, and the leakage detection subcircuit 102 outputs a second level signal (low level signal), and the CPLD detection result shows that there is leakage in the liquid cooling.
  • a first level signal high level signal
  • the CPLD detection result shows that there is no leakage in the liquid cooling
  • the leakage detection subcircuit includes a first resistor, a second resistor and a comparator circuit, wherein:
  • the first end of the first wire is connected to the first end of the first resistor, the first end of the second resistor and the first input end of the comparator circuit, and the second end of the first wire is connected to the induction line abnormality detection trigger subcircuit;
  • the second end of the first resistor is connected to the power supply, and the second end of the second resistor is grounded;
  • the second input terminal of the comparator circuit is connected to a reference power supply, and the output terminal of the comparator circuit is connected to the input terminal of a complex programmable logic control.
  • the comparator circuit is configured to generate a corresponding level signal based on a comparison result between the first input voltage and the second input voltage, so that the complex programmable logic control can determine the leakage situation of the target area based on the level signal.
  • the first input voltage is the input voltage input to the first input terminal of the comparator circuit
  • the second input voltage is the input voltage input to the second input terminal of the comparator circuit.
  • Figure 2 is a schematic diagram of the overall structure of the leakage detection circuit provided in the present application.
  • the leakage detection subcircuit includes a first resistor R1, a second resistor R2 and a comparator circuit U1;
  • the leakage sensing line includes a first wire 201 and a second wire 202, wherein the 1st pin on the left side of the leakage sensing line (i.e., the first end of the second wire 202) is grounded, the 2nd pin on the left side of the leakage sensing line (i.e., the first end of the first wire 201) is connected to the first resistor R1, the second resistor R2 and the input terminal a of the comparator circuit U1, the other end of the first resistor R1 is connected to the power supply (providing the power supply voltage VCC (Volt Current Condenser)), the other end of the second resistor R2 is grounded, the reference power supply (providing the reference voltage Vref (Voltage reference)) is connected to the input terminal
  • VCC Volt
  • the first resistor R1, the second resistor R2 and the reference voltage value may be adjusted to improve the leakage detection sensitivity of the comparator circuit U1.
  • the induction line abnormality detection trigger subcircuit is composed of a switch circuit, and is configured to be turned on upon receiving a leakage simulation signal, so that when the induction line abnormality detection trigger subcircuit is turned on, if the leakage detection subcircuit generates a low-level signal, the complex programmable logic control determines that there is no abnormality in the leakage sensing line according to the low-level signal; if the leakage detection subcircuit generates a high-level signal, the complex programmable logic control determines that there is an abnormality in the leakage sensing line according to the high-level signal;
  • the first input end of the switch circuit is connected to the output end of the complex programmable logic control
  • the second input end of the switch circuit is connected to the second end of the second wire
  • the output end of the switch circuit is connected to the second end of the first wire
  • the first end of the second wire is grounded.
  • the first pin on the right side of the leakage sensing line i.e., the second end of the second wire 202
  • the second pin on the right side i.e., the second end of the first wire 201
  • the output terminal b of the switch circuit U2 the input terminal c of the switch circuit U2 is connected to the output terminal (GPO 1 (General-purpose output 1)) of the CPLD.
  • signal transmission is performed through the general-purpose input/output interface (General-purpose input/output, referred to as GPIO) of the CPLD, and the switch circuit U2 is controlled to be turned on or off by adjusting the high and low level signals output by the output terminal GPO1 of the CPLD, thereby simulating the leakage scene and identifying abnormal conditions such as damage or detachment of the leakage sensing line.
  • multiple groups of leakage detection circuits can be set to separately monitor key components in the liquid-cooled server, such as the CPU cold plate and water cooling pipe and the GPU cold plate and water cooling pipe.
  • the switch circuit U2 is a switch circuit having two states, “on” and “off”, and can realize the on and off of the circuit according to the GPLD output signal.
  • the comparator circuit is configured to generate a high-level signal when it is determined that the input voltage of the first input terminal of the comparator circuit is greater than the input voltage of the second input terminal of the comparator circuit, so that the complex programmable logic control can determine that there is no leakage in the target area based on the high-level signal; and generate a low-level signal when it is determined that the input voltage of the first input terminal of the comparator circuit is less than the input voltage of the second input terminal of the comparator circuit, so that the complex programmable logic control can determine that there is leakage in the target area based on the low-level signal.
  • the power supply voltage VCC is set to 3.3V, and the reference power supply Vref is set to 2.24V.
  • the first wire 201 and the second wire 202 in the leakage sensing line are not connected.
  • the leakage sensing line is in a disconnected state, and its resistance is equivalent to infinity.
  • the input voltage of the input terminal a of the comparator circuit U1 is determined according to the resistance values of the first resistor R1 and the second resistor R2 and the power supply voltage VCC, wherein the power supply voltage VCC is selected according to actual needs, for example, 3.3V or 5V.
  • the resistance values of the first resistor R1 and the second resistor R2 in the leakage detection circuit can be configured, so that when the leakage sensing line is disconnected, the input voltage of the input terminal a of the comparator circuit U1 is The voltage is close to the power supply voltage VCC, such as 3.3V, which is higher than the input voltage 2.24V of the input terminal b of the comparator circuit U1.
  • VCC power supply voltage
  • the output terminal c of the comparator circuit U1 outputs a high level, which is recognized as a non-leakage state by the CPLD; when leakage occurs, the leakage sensing line is connected, and its resistance is relatively small.
  • the input terminal a of the comparator circuit U1 For the input terminal a of the comparator circuit U1, it is equivalent to adding a parallel resistor to the second resistor R2. At this time, the input voltage of the input terminal a of the comparator circuit U1 will be reduced. For example, the input voltage of the input terminal a of the comparator circuit U1 is 0.7V (this value can be adjusted according to the actual circuit structure), which is lower than the input voltage 2.24V of the input terminal b of the comparator circuit U1. At this time, the output terminal c of the comparator circuit U1 outputs a low level, through The CPLD identifies that a liquid leak has occurred. In this application, the output level of the output terminal c of the comparator circuit U1 changes between normal and liquid leak conditions, generates corresponding high and low level signals, and then sends them to the CPLD for identification, and finally generates a corresponding liquid leak alarm.
  • the leakage detection function of the leakage detection subcircuit is also used, but in this scenario, the leakage scenario is formed by simulating the subcircuit triggered by abnormal detection of the sensing line.
  • the CPLD determines that the leakage sensing line has been correctly plugged in or is not damaged based on the received low-level signal; and when the leakage detection subcircuit does not detect leakage, it means that there is an abnormality in the leakage sensing line, so the generated high-level signal is sent to the CPLD for identification, and finally the corresponding abnormal prompt is generated to inform the maintenance personnel to carry out maintenance, thereby improving the stability and safety of leakage detection, and avoiding the damage or detachment of the leakage sensing line caused by the production, transportation or maintenance of the liquid-cooled server, resulting in the inability to accurately detect leakage during subsequent liquid cooling.
  • the sensing line abnormality detection trigger subcircuit is also configured to shut down after receiving a simulation shutdown signal generated by a complex programmable logic control.
  • abnormal detection of the leakage sensing line can be performed after the initial installation or maintenance of the liquid cooling server. After the abnormal detection is completed, a low-level signal can be generated by the CPLD to shut down the sensing line abnormal detection trigger sub-circuit, which will not affect the subsequent real-time leakage detection process.
  • FIG3 is a schematic diagram of the structure of a liquid leakage detection system provided by the present application.
  • the present application provides a liquid leakage detection system, including a liquid leakage sensing line 301, a liquid leakage detection controller 302 and a liquid leakage detection circuit 303, wherein:
  • the liquid leakage sensing line 301 is connected to the liquid leakage detection circuit 303 and is arranged in the target area corresponding to the liquid cooling pipe to be detected in the liquid cooling server;
  • the leakage detection controller 302 is connected to the leakage detection circuit 303 and is configured to obtain the sensing line abnormality detection result or the leakage detection result sent by the leakage detection circuit 303, and generate a corresponding alarm signal according to the sensing line abnormality detection result or the leakage detection result;
  • the leakage detection circuit 303 is configured to detect abnormal conditions or leakage of the leakage sensing line 301 .
  • the braided layer in the liquid leakage sensing line 301 has a water absorption function.
  • the cooling liquid can be effectively absorbed and immersed in the sensing line.
  • the liquid leakage sensing line 301 is disconnected; when leakage occurs, the cooling liquid is absorbed and immersed in the sensing line. Since the cooling liquid has a conductive effect, the liquid leakage sensing line 301 is in a conductive state.
  • the liquid leakage detection controller 302 may use the liquid cooling server's own device.
  • the liquid leakage detection controller includes a complex programmable logic control and a baseboard management controller, wherein:
  • the complex programmable logic control is connected to the leakage detection circuit and is configured to send a leakage simulation signal to the leakage detection circuit according to the abnormal detection signal of the sensing line sent by the baseboard management control, so as to start the leakage detection circuit to perform abnormal detection on the leakage sensing line and obtain the abnormal detection result of the sensing line; and after the baseboard management controller determines that there is no abnormality in the leakage sensing line, according to the leakage detection signal sent by the baseboard management controller Detecting the signal, starting the leakage detection circuit to perform leakage detection, and obtaining the leakage detection result of the target area;
  • the baseboard management controller is connected to the complex programmable logic control unit through an integrated circuit bus, and is configured to generate a corresponding alarm signal according to the abnormal detection result of the sensing line or the leakage detection result.
  • the leakage sensing line 301 and the leakage detection circuit 303 constitute a leakage detection device
  • the leakage detection controller 302 includes a CPLD chip 3021 and a baseboard management controller (Baseboard Manager Controller, referred to as BMC) chip 3022; the output end of the leakage detection circuit 303 is electrically connected to the input end GPI 1 of the CPLD chip 3021, and the input end of the leakage detection circuit 303 is electrically connected to the output end GPO 1 of the CPLD chip 3021.
  • BMC Baseboard Manager Controller
  • the CPLD chip 3021 and the BMC chip 3022 communicate through an integrated circuit bus (Inter Integrated Circuit, referred to as I2C), so that the CPLD chip 3021 sends a corresponding control signal to the leakage detection circuit 303 according to the trigger signal (such as the sensing line abnormality detection signal or the leakage detection signal) sent by the BMC chip 3022, so as to realize leakage detection or sensing line abnormality detection.
  • I2C Inter Integrated Circuit
  • the baseboard management controller is connected to the power supply unit via a power management bus, and the power supply unit is configured to shut down the power of the liquid-cooled server according to an alarm signal generated by the baseboard management controller.
  • the GPIO interface of the CPLD chip 3021 is electrically connected to the power supply unit 304 (Power Supply Unit, referred to as PSU) of the liquid cooling server.
  • the output end of the BMC chip 3022 is electrically connected to the power supply unit 304 through the power management bus (Power Management Bus, referred to as PMBUS), and is connected to the remote client 305 network in a wireless or wired manner.
  • PMBUS Power Management Bus
  • the leakage detection circuit 303 when a liquid cooling pipe in a liquid cooling server leaks, the level signal output by the leakage detection circuit 303 changes. At this time, the leakage detection circuit 303 notifies the CPLD chip 3021 through GPI 1 that key components of the liquid cooling server such as the CPU cold plate and water cooling pipe or the GPU cold plate and water cooling pipe are leaking.
  • the CPLD chip 3021 notifies the BMC chip 3022 of the specific leakage location (for example, according to the layout area information corresponding to the leakage sensing line 301) through the I2C bus.
  • the BMC chip 3022 connects to the remote client 305 through the network to send an alarm and shuts down the power supply unit 304 of the liquid cooling server through the PMBUS bus.
  • the leakage detection system provided in the present application generates a leakage simulation signal to detect abnormal conditions such as damage or detachment of the leakage sensing line of the liquid cooling pipe in the liquid cooling server, thereby automatically detecting the abnormal conditions of the leakage sensing line more accurately, and when it is determined that there is no abnormality in the leakage sensing line, the liquid cooling pipe is detected for leakage, thereby improving the stability of leakage detection in the liquid cooling server.
  • the complex programmable logic control is also configured to generate a simulation shutdown signal based on the sensing line abnormal detection shutdown signal sent by the baseboard management controller after the baseboard management controller determines that there is no abnormality in the leakage sensing line, and send the simulation shutdown signal to the leakage detection circuit to shut down the leakage detection circuit to perform abnormal detection on the leakage sensing line.
  • the conduction of the sensing line abnormality detection trigger subcircuit in the leakage detection circuit 303 is realized by adjusting the level signal (such as high level signal and low level signal) output by GPO 1 of the CPLD. and closed, so that the leakage detection circuit simulates a leakage scenario, thereby detecting whether the leakage sensing line has abnormal conditions such as damage or detachment.
  • the level signal such as high level signal and low level signal
  • a trigger signal is generated through the BMC, so that the CPLD generates a conduction signal (i.e., a leakage simulation signal), and after the sensing line abnormality detection is completed, the sensing line abnormality detection shutdown signal is sent to the CPLD through the BMC, so that the CPLD generates a shutdown signal (i.e., a simulation shutdown information), thereby completing the current leakage sensing line abnormality detection, so as to improve the stability of subsequent leakage detection.
  • a conduction signal i.e., a leakage simulation signal
  • the complex programmable logic control is connected to the power supply unit via a universal input/output interface, and the complex programmable logic control is connected to the baseboard management controller via the universal input/output interface for heartbeat signal detection. If it is determined that an abnormality exists in the baseboard management controller based on the heartbeat signal detection result, a power-off signal is generated and sent to the power supply unit, wherein the power supply unit is configured to shut down the power of the liquid-cooled server according to the power-off signal generated by the complex programmable logic control.
  • the existing leakage detection controller relies heavily on the normal operation of the BMC chip, especially the I2C module, when performing leakage protection.
  • the BMC chip is in abnormal conditions such as failure, upgrade, and restart, it is impossible to detect the leakage or shut down the power supply of the liquid-cooled server, causing the liquid-cooled server to short-circuit or even be damaged due to the leakage.
  • the present application collects the heartbeat signal of the BMC chip through the CPLD chip.
  • the CPLD chip is used to shut down the power supply of the liquid-cooled server to improve safety.
  • the complex programmable logic control is also configured to determine whether a heartbeat signal is received within a preset period, and determine an abnormal condition of the baseboard management controller based on the determination result.
  • a preset cycle can be set. For example, when the CPLD chip does not receive the heartbeat signal sent by the BMC chip for 10s, it is determined that there is an abnormality in the BMC chip. At this time, the CPLD chip pulls down the Power-ok signal through GPIO, thereby forcibly shutting down the PSU of the liquid-cooled server, thereby improving the reliability and safety of the liquid-cooled server.
  • the liquid leakage detection system includes multiple liquid leakage detection circuits, and each liquid leakage detection circuit is arranged corresponding to a layout area of the liquid leakage sensing line in the liquid cooling server.
  • a corresponding number of leakage sensing lines 301 are set according to the number of liquid cooling pipes in the liquid cooling server, and each leakage sensing line 301 is simultaneously connected to its corresponding leakage detection circuit 303. That is, the present application sets a corresponding number of leakage detection devices according to the area information of the liquid cooling server where leakage detection is to be performed, thereby performing leakage detection on each liquid cooling pipe in the liquid cooling server and realizing rapid positioning of the leakage occurrence area.
  • the leakage detection system also includes an alarm display module, which is connected to the baseboard management controller via a network and is configured to display corresponding leakage sensing line alarm content according to the sensing line abnormality detection result or leakage detection result sent by the baseboard management controller.
  • an alarm display module which is connected to the baseboard management controller via a network and is configured to display corresponding leakage sensing line alarm content according to the sensing line abnormality detection result or leakage detection result sent by the baseboard management controller.
  • the BMC chip 3022 provides an alarm option or an alarm and shutdown option, so that the alarm display module (which can be implemented through the remote client 305) can configure the liquid cooling server to only alarm after the liquid leaks through the WEB (World Wide Web, Global Wide Area Network) interface or the command line interface.
  • the alarm option or the alarm and shutdown option is selected so that the remote operation and maintenance personnel can execute the corresponding strategy according to the severity of the leakage of the leakage detection device.
  • the alarm display module is further configured to display the leakage sensing line alarm content corresponding to different leakage alarm levels according to the leakage area location information corresponding to the leakage detection result.
  • the leakage detection controller automatically shuts off the server power supply, which easily leads to business loss.
  • the alarm display module generates corresponding leakage alarm levels based on the leakage conditions in different areas according to the leakage detection results, thereby providing a more intuitive display interface for maintenance personnel, allowing operation and maintenance personnel to execute corresponding strategies according to the alarm priority and improve the efficiency of leakage fault handling.
  • FIG5 is a flow chart of a liquid leakage detection method provided by the present application. As shown in FIG5 , the present application provides a liquid leakage detection method of a liquid leakage detection system, including:
  • Step 501 through the leakage detection circuit, the leakage sensing line of the liquid cooling pipe in the liquid cooling server is detected for abnormality, and after determining that there is no abnormality in the leakage sensing line, the target area corresponding to the liquid cooling pipe is detected for leakage.
  • a leakage simulation signal is sent to the leakage detection circuit through the CPLD chip to start the leakage detection circuit to perform abnormal detection on the leakage sensing line. After determining that there is no abnormality in the leakage sensing line, leakage detection is further performed on the target area corresponding to the leakage sensing line.
  • Step 502 Based on the leakage detection controller, a corresponding alarm signal is generated according to the sensing line abnormality detection result or the leakage detection result sent by the leakage detection circuit.
  • the water absorption function of the braided layer in the leakage sensing line can be utilized.
  • the cooling liquid When a liquid cooling pipe leaks, the cooling liquid is effectively absorbed and immersed into the sensing line. Under normal circumstances without leakage, the leakage sensing line is disconnected; when leakage occurs, the cooling liquid is absorbed and immersed into the sensing line. Since the cooling liquid has a conductive effect, the leakage sensing line is in a conductive state.
  • the leakage sensing line when the liquid cooling heat dissipation is normal, the leakage sensing line is disconnected, and a first level signal is output to the leakage detection controller to identify that there is no leakage; when a liquid cooling heat dissipation leaks, the leakage sensing line is connected, and a second level signal is output to the leakage detection controller to identify that there is leakage.
  • the leakage sensing line When the liquid cooling pipeline is in a normal state without leakage, the leakage sensing line is in a disconnected state, and its resistance is equivalent to infinity. At this time, the leakage detection circuit outputs a high level, and the CPLD chip recognizes that there is no leakage. When leakage occurs, the leakage sensing line is connected, and its resistance is relatively small. At this time, the leakage detection circuit outputs a low level, and the CPLD chip recognizes that there is leakage. In the abnormal detection process of the leakage sensing line, it is a simulated leakage scene.
  • the leakage detection circuit detects that a leakage has occurred, it is determined that the leakage sensing line has been correctly plugged in or is not damaged; when the leakage detection circuit does not detect a leakage, it means that there is an abnormality in the leakage sensing line, which can prompt maintenance personnel to perform maintenance and improve the stability and safety of leakage detection.
  • the leakage detection method provided in the present application generates a leakage simulation signal to detect abnormal conditions such as damage or detachment of the leakage sensing line of the liquid cooling pipe in the liquid cooling server, thereby automatically detecting the abnormal conditions of the leakage sensing line more accurately, and when it is determined that there is no abnormality in the leakage sensing line, the liquid cooling pipe is detected for leakage, thereby improving the stability of leakage detection in the liquid cooling server.
  • the corresponding alarm signals are generated, including:
  • the leakage detection circuit when the leakage detection circuit detects that there is a leakage or an abnormality in the leakage sensing line, the leakage detection result or the sensing line abnormality detection result can be sent to the remote client for alarm, and the PSU of the liquid cooling server can be shut down; at the same time, based on the leakage detection result or the sensing line abnormality detection result, a corresponding alarm risk level is generated to provide to maintenance personnel to execute corresponding strategies.
  • a method for obtaining a corresponding alarm risk level includes:
  • the abnormal area position information corresponding to the target leakage sensing line with abnormal situation in the liquid cooling server is obtained;
  • the corresponding sensing line alarm risk level is generated.
  • generating a corresponding alarm signal according to the leakage detection result sent by the leakage detection circuit includes:
  • the leakage area position information corresponding to the liquid cooling pipeline where the liquid is leaking in the liquid cooling server is obtained;
  • a corresponding leakage alarm risk level is generated.
  • the risk level of the alarm signal is determined based on the leakage detection results or the abnormal detection results of the sensing line generated in different detection areas, and then corresponding options are provided for maintenance personnel to evaluate based on the alarm risk level.
  • the option of only alarming without powering off is provided so that remote operation and maintenance personnel can evaluate the severity of the leakage and perform subsequent processing, such as powering on the alarm node and migrating the node business; or, the detection results generated in the CPU and GPU areas have a higher risk level, and maintenance personnel are required to eliminate the fault as soon as possible (automatic power-off processing can also be implemented).
  • Figure 6 is an overall flow chart of the leakage detection method for the liquid-cooled server provided in the present application. As shown in Figure 6, after the initial installation of the liquid-cooled server is completed, the abnormal detection process of the leakage sensing line is triggered by the BMC, and then the leakage simulation signal is generated by the CPLD, so that the leakage detection device performs abnormal detection of the leakage sensing line.
  • the CPLD chip detects the abnormality of the leakage sensing line and its corresponding position information, and notifies the BMC chip, so that after receiving the abnormality of the leakage sensing line and its position information, the BMC chip notifies the remote client, thereby executing the corresponding strategy through the remote client according to the alarm priority.
  • leakage detection device when the leakage detection device is normal, that is, the leakage sensing line is not damaged and the connection is normal and not falling off, leakage detection is performed through the leakage detection circuit in the leakage detection device, and then it is determined that the liquid cooling server is working normally at this time;
  • the CPLD chip when the leakage detection device detects a leakage, the CPLD chip will send the detected leakage and its location information to the BMC chip.
  • the BMC chip After the BMC chip receives the leakage and its location information, it generates an alarm-only option according to the BMC, thereby sending corresponding alarm information to the remote client, or generates an alarm and shutdown option according to the BMC, sending the alarm to the remote client and shutting down the power supply of the server, so that the maintenance personnel can execute the corresponding strategy through the alarm priority displayed by the remote client.
  • the CPLD chip determines whether there is an abnormality in the BMC chip through the heartbeat signal of the BMC chip. When the BMC chip is detected to be alive (normal), it indicates that the leakage detection process can be performed normally. When the CPLD chip cannot detect the heartbeat signal of the BMC chip (after repeated attempts to detect a preset number of times), it is determined that there is an abnormality in the BMC chip. At this time, the CPLD chip shuts off the power supply of the server through GPIO, so that maintenance personnel can execute corresponding strategies according to the alarm priority through the remote client.
  • FIG7 is a schematic diagram of the structure of an electronic device provided by the present application.
  • the electronic device may include: a processor 701, a communications interface 702, a memory 703 and a communication bus 704, wherein the processor 701, the communications interface 702 and the memory 703 communicate with each other through the communication bus 704.
  • the processor 701 may call the logic instructions in the memory 703 to execute a liquid leakage detection method, which includes: performing a liquid leakage sensing line abnormality detection on a liquid cooling pipe in a liquid cooling server through a liquid leakage detection circuit, and after determining that there is no abnormality in the liquid leakage sensing line, performing a liquid leakage detection on a target area corresponding to the liquid cooling pipe; based on a liquid leakage detection controller, generating a corresponding alarm signal according to the sensing line abnormality detection result or the liquid leakage detection result sent by the liquid leakage detection circuit.
  • the logic instructions in the above-mentioned memory 703 can be implemented in the form of software functional units and can be stored in a computer non-volatile readable storage medium when sold or used as an independent product.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a non-volatile readable storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present application.
  • the aforementioned non-volatile readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program codes.
  • the present application also provides a computer program product, which includes a computer program stored on a non-transitory computer non-volatile readable storage medium, and the computer program includes program instructions.
  • the computer can execute the leakage detection method provided by the above methods, and the method includes: through a leakage detection circuit, a sensing line abnormality detection is performed on the leakage sensing line of the liquid cooling pipe in the liquid cooling server, and after determining that there is no abnormality in the leakage sensing line, a leakage detection is performed on the target area corresponding to the liquid cooling pipe; based on a leakage detection controller, a corresponding alarm signal is generated according to the sensing line abnormality detection result or the leakage detection result sent by the leakage detection circuit.
  • the present application further provides a non-transitory computer non-volatile readable storage medium having a computer program stored thereon, which is implemented when the computer program is executed by the processor to execute the leakage detection method provided in the above embodiments, the method comprising: performing a sensing line abnormality detection on a leakage sensing line of a liquid cooling pipe in a liquid cooling server through a leakage detection circuit, and after determining that there is no abnormality in the leakage sensing line, performing a leakage detection on a target area corresponding to the liquid cooling pipe; based on a leakage detection controller, generating a corresponding report according to the sensing line abnormality detection result or the leakage detection result sent by the leakage detection circuit; Warning signal.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, i.e., they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative effort.
  • each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer non-volatile readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种漏液检测电路(303),包括感应线异常检测触发子电路(101)和漏液检测子电路(102),感应线异常检测触发子电路(101)和漏液检测子电路(102)之间通过漏液感应线(301)连接,感应线异常检测触发子电路(101)被配置为根据复杂可编程逻辑控件生成的漏液仿真信号进行导通,以通过漏液检测子电路(102)对漏液感应线(301)进行异常检测;漏液检测子电路(102)被配置为在确定感应线异常检测触发子电路(101)导通的情况下,根据输入电压的变化情况,对漏液感应线(301)进行异常检测,并在确定漏液感应线(301)无异常情况后进行漏液检测。还包括一种漏液检测系统、方法、电子设备及非易失性可读存储介质。

Description

漏液检测电路、系统、方法、电子设备及存储介质
相关申请的交叉引用
本申请要求于2023年02月22日提交中国专利局,申请号为202310147661.6,申请名称为“漏液检测电路、系统、方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷服务器散热技术领域,尤其涉及一种漏液检测电路、系统、方法、电子设备及非易失性可读存储介质。
背景技术
随着对服务器性能要求越来越高,服务器的关键部件,如中央处理器(Central Processing Unit,简称CPU)、图形处理器(Graphics Processing Unit,简称GPU)、网络接口控制器(Network Interface Controller,简称NIC)、双列直插式存储模块(Dual Inline Memory Modules,简称DIMM)和固态驱动器(Solid State Drive,简称SSD)等功率也越来越大,风冷散热技术将很难解决高功率的CPU和GPU等散热问题。
液冷散热具有散热效果好、节能环保以及低噪音的优点,逐渐成为服务器主流散热方式。液冷服务器的散热系统包括服务器内循环和外循环,其中,内循环是指液体(冷却液)从冷量分配单元(Coolant Distribution Unit,简称CDU)输送到液冷管以及液冷冷板,带走发热器件的热量,再流进CDU与外部冷却水进行热交换,以通过外循环最终把热量带到外部水冷塔。由于内循环的线路是在液冷服务器内部,必然存在液体泄露并导致板卡损坏的风险,因此通常会在液冷管道及液冷冷板上缠绕漏液感应线,通过漏液感应线两端与液冷服务器主板上的漏液检测电路相连接形成一个回路,从而实现对漏液进行检测。
在目前的液冷散热漏液检测装置中,需要保证漏液感应线完好无损或插接到位才能顺利进行检测,而目前液冷服务器生产、运输或维修时,漏液感应线损坏或脱落等情况是依靠人工进行检查,存在人工检测准确率较低的问题,当液冷服务器发生漏液,存在损坏或接口脱落的漏液感应线无法检测到漏液情况,导致液冷服务器因为漏液而短路甚至损坏。
发明内容
针对现有技术存在的问题,本申请提供一种漏液检测电路、系统、方法、电子设备及非易失性可读存储介质。
本申请提供一种漏液检测电路,包括感应线异常检测触发子电路和漏液检测子电路,感应线异常检测触发子电路和漏液检测子电路之间通过漏液感应线连接,其中:
感应线异常检测触发子电路,被配置为根据复杂可编程逻辑控件生成的漏液仿真信号进行导通,以通过漏液检测子电路对漏液感应线进行异常检 测,其中,漏液仿真信号用于在感应线异常检测触发子电路导通的情况下,在漏液检测电路中形成漏液仿真场景;
漏液检测子电路,被配置为在确定感应线异常检测触发子电路导通的情况下,根据输入电压的变化情况,对漏液感应线进行异常检测,并在确定漏液感应线无异常情况后进行漏液检测。
根据本申请提供的一种漏液检测电路,漏液感应线是由第一导线和第二导线构成的,漏液感应线缠绕在液冷管路对应的目标区域。
根据本申请提供的一种漏液检测电路,漏液检测子电路包括第一电阻、第二电阻和比较器电路,其中:
第一导线的第一端,连接第一电阻的第一端、第二电阻的第一端以及比较器电路的第一输入端,第一导线的第二端连接感应线异常检测触发子电路;
第一电阻的第二端连接供电电源,第二电阻的第二端接地;
比较器电路的第二输入端连接参考电源,比较器电路的输出端连接复杂可编程逻辑控件的输入端,被配置为根据第一输入电压和第二输入电压的对比结果,生成对应的电平信号,以供复杂可编程逻辑控件根据电平信号确定目标区域的漏液情况,第一输入电压为输入至比较器电路的第一输入端的输入电压,第二输入电压为输入至比较器电路的第二输入端的输入电压。
根据本申请提供的一种漏液检测电路,比较器电路被配置为,在确定比较器电路的第一输入端的输入电压大于比较器电路的第二输入端的输入电压时,生成高电平信号,以供复杂可编程逻辑控件根据高电平信号,确定目标区域无漏液情况;在确定比较器电路的第一输入端的输入电压小于比较器电路的第二输入端的输入电压时,生成低电平信号,以供复杂可编程逻辑控件根据低电平信号,确定目标区域存在漏液情况。
根据本申请提供的一种漏液检测电路,感应线异常检测触发子电路是由开关电路构成,被配置为在接收到漏液仿真信号进行导通,以使得感应线异常检测触发子电路导通时,若漏液检测子电路生成低电平信号,复杂可编程逻辑控件根据低电平信号,确定漏液感应线无异常情况;若漏液检测子电路生成高电平信号,复杂可编程逻辑控件根据高电平信号,确定漏液感应线存在异常情况;
其中,开关电路的第一输入端连接复杂可编程逻辑控件的输出端,开关电路的第二输入端连接第二导线的第二端,开关电路的输出端连接第一导线的第二端,第二导线的第一端接地。
根据本申请提供的一种漏液检测电路,感应线异常检测触发子电路还被配置为在接收到复杂可编程逻辑控件生成的仿真关闭信号后进行关断。
本申请还提供一种漏液检测系统,包括漏液感应线、漏液检测控制器和基于上述任一项的漏液检测电路,其中:
漏液感应线与漏液检测电路连接,布放在液冷服务器中待检测液冷管道对应的目标区域;
漏液检测控制器连接漏液检测电路,被配置为获取漏液检测电路发送的感应线异常检测结果或漏液检测结果,并根据感应线异常检测结果或漏液检测结果,生成对应的告警信号;
漏液检测电路,被配置为对漏液感应线的异常情况或漏液情况进行检测。
根据本申请提供的一种漏液检测系统,漏液检测控制器包括复杂可编程逻辑控件和基板管理控制器,其中:
复杂可编程逻辑控件连接漏液检测电路,被配置为根据基板管理控制发送的感应线异常检测信号,向漏液检测电路发送漏液仿真信号,以启动漏液检测电路对漏液感应线进行异常检测,获取感应线异常检测结果;并在基板管理控制器确定漏液感应线无异常情况后,根据基板管理控制器发送的漏液检测信号,启动漏液检测电路进行漏液检测,获取目标区域的漏液检测结果;
基板管理控制器通过集成电路总线与复杂可编程逻辑控件连接,被配置为根据感应线异常检测结果或漏液检测结果,生成对应的告警信号。
根据本申请提供的一种漏液检测系统,复杂可编程逻辑控件还被配置为在基板管理控制器确定漏液感应线无异常情况后,根据基板管理控制器发送的感应线异常检测关闭信号,生成仿真关闭信号,并向漏液检测电路发送仿真关闭信号,以关闭漏液检测电路对漏液感应线进行异常检测。
根据本申请提供的一种漏液检测系统,基板管理控制器通过电源管理总线连接电源供应单元,电源供应单元被配置为根据基板管理控制器生成的告警信号,执行液冷服务器的电源关断。
根据本申请提供的一种漏液检测系统,复杂可编程逻辑控件通过通用型输入输出接口与电源供应单元连接,且复杂可编程逻辑控件通过通用型输入输出接口与基板管理控制器连接进行心跳信号检测,若根据心跳信号检测结果确定基板管理控制器存在异常情况后,生成电源关闭信号,并发送到电源供应单元,其中,电源供应单元被配置为根据复杂可编程逻辑控件生成的电源关闭信号,执行液冷服务器的电源关断。
根据本申请提供的一种漏液检测系统,复杂可编程逻辑控件还被配置为判断预设周期内是否接收到心跳信号,并根据判断结果,确定基板管理控制器的异常情况。
根据本申请提供的一种漏液检测系统,漏液检测系统包括多个漏液检测电路,每个漏液检测电路是根据漏液感应线在液冷服务器中的布放区域对应设置的。
根据本申请提供的一种漏液检测系统,漏液检测系统还包括告警显示模块,告警显示模块通过网络连接基板管理控制器,被配置为根据基板管理控制器发送的感应线异常检测结果或漏液检测结果,显示对应的漏液感应线告警内容。
根据本申请提供的一种漏液检测系统,告警显示模块,还被配置为根据 漏液检测结果对应的漏液区域位置信息,显示不同漏液告警级别对应的漏液感应线告警内容。
本申请还提供一种基于上述任一项的漏液检测系统的漏液检测方法,包括:
通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定漏液感应线无异常情况后,对液冷管道对应的目标区域进行漏液检测;
基于漏液检测控制器,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号。
根据本申请提供的一种漏液检测方法,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号,包括:
根据感应线异常检测结果或漏液检测结果,获取对应的告警风险等级;
通过告警风险等级,生成对应的告警信号。
根据本申请提供的一种漏液检测方法,根据感应线异常检测结果,获取对应的告警风险等级方法,包括:
根据感应线异常检测结果,获取液冷服务器中存在异常情况的目标漏液感应线对应的异常区域位置信息;
根据异常区域位置信息,生成对应的感应线告警风险等级。
根据本申请提供的一种漏液检测方法,根据漏液检测电路发送的漏液检测结果,生成对应的告警信号,包括:
根据感应线异常检测结果,获取液冷服务器中存在漏液情况的液冷管道对应的漏液区域位置信息;
根据漏液区域位置信息,生成对应的漏液告警风险等级。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上述任一项漏液检测方法。
本申请还提供一种非暂态计算机非易失性可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一项漏液检测方法。
本申请提供的漏液检测电路、系统、方法、电子设备及非易失性可读存储介质,通过生成漏液仿真信号,对液冷服务器中液冷管道的漏液感应线进行损坏或脱落等异常情况检测,从而更为准确地对漏液感应线的异常情况进行自动检测,并在确定漏液感应线无异常时,对液冷管道进行漏液检测,提高了液冷服务器漏液检测的稳定性。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图进行简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的漏液检测电路的结构示意图;
图2为本申请提供的漏液检测电路的整体结构示意图;
图3为本申请提供的漏液检测系统的结构示意图;
图4为本申请提供的液冷服务器的漏液检测系统的整体结构示意图;
图5为本申请提供的漏液检测方法的流程示意图;
图6为本申请提供的液冷服务器的漏液检测方法的整体流程示意图;
图7为本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在现有液冷漏液检测技术中,漏液感应线螺旋缠绕在液冷服务器的冷却管路(即液冷管道,该管道用于输送冷却液体)上,其中,漏液感应线外层为吸水包覆层,内置金属导线。漏液感应线与漏液检测电路电连接,漏液检测电路与漏液检测控制器电连接,漏液检测控制器分别与报警器、显示屏以及服务器供电电源电连接。当漏液时,液体浸入漏液感应线,漏液感应线被浸润后阻值会越来越小,使得漏液感应线接通,由漏液检测电路检测到漏液感应线接通信号并传输至漏液检测控制器,从而通过漏液检测控制器控制报警器报警,并关断服务器供电电源。
由于漏液感应线需完好无损或插接到位才能顺利进行检测,而目前液冷服务器在生产、运输或维修时,漏液感应线损坏或脱落(如漏液感应线与漏液检测电路之间的接口未成功插接)等异常情况,均是依靠人工进行检查,即使增加人力成本依旧存在检查不到位的情况。当漏液感应线存在上述异常情况时,如果液冷服务器中的液冷管道发生漏液就无法检测到,导致液冷服务器因为漏液而短路甚至损坏。
图1为本申请提供的漏液检测电路的结构示意图,如图1所示,本申请提供了一种漏液检测电路,包括感应线异常检测触发子电路101和漏液检测子电路102,感应线异常检测触发子电路101和漏液检测子电路102之间通过漏液感应线连接,其中:
感应线异常检测触发子电路101,被配置为根据复杂可编程逻辑控件生成的漏液仿真信号进行导通,以通过漏液检测子电路对漏液感应线进行异常检测,其中,漏液仿真信号用于在感应线异常检测触发子电路导通的情况下,在漏液检测电路中形成漏液仿真场景;
漏液检测子电路102,被配置为在确定感应线异常检测触发子电路101导通的情况下,根据输入电压的变化情况,对漏液感应线进行异常检测,并在确定漏液感应线无异常情况后进行漏液检测。
在本申请中,感应线异常检测触发子电路101与复杂可编程逻辑控件(ComplexProgrammable Logic Device,简称CPLD)电性连接,通过调整 CPLD输出的电平信号,从而使得感应线异常检测触发子电路101导通。在本申请中,当CPLD输出高电平(即漏液仿真信号)时,感应线异常检测触发子电路101导通,此时,漏液检测电路将制造出一个漏液仿真场景,以通过漏液检测子电路102在漏液仿真场景下进行漏液检测。
在本申请中,CPLD生成的漏液仿真信号可以在液冷服务器初次安装完成之后以初始化的方式生成,即在确认漏液感应线安装完毕后,基于基板管理控制器(Baseboard Manager Controller,简称BMC)的触发信号,对漏液感应线的各个接口情况进行检测,判断每个接口是否正确安装,因此,本申请通过仿真一个漏液信号,通过漏液检测电路中的漏液检测子电路102对漏液感应线的安装情况进行异常检测,当漏液感应线未正确安装(如漏液检测电路的端口与漏液感应线的接口未正确插接,存在脱落情况),在漏液仿真场景下,漏液检测子电路102应根据输入电压的变化情况生成对应的电平信号(如低电平信号)以判定存在漏液情况(仿真场景下的漏液情况),但实际产生的电平信号(高电平信号)对应的检测结果为无漏液情况,此时可判定漏液感应线存在脱落或损坏情况;当在漏液仿真场景下,漏液检测子电路102产生正确的电平信号时,则可确定此时漏液感应线不存在脱落或损坏情况。在一可选实施例中,当维护人员对液冷服务器中的液冷管道以及相应的漏液感应线进行维护后,也可通过BMC向CPLD发送触发信号,使得CPLD生成一个漏液仿真信息进行异常检测,对维护导致的漏液感应线脱落或损坏等情况进行检测。
可选的,在确定漏液感应线无异常后,通过漏液检测子电路102实时对液冷管道进行漏液检测。在本申请中,漏液感应线布放在液冷管道下方,当管道发生漏液时,冷却液渗入到漏液感应线中,进而使得连接漏液感应线导通,此时漏液检测子电路102产生对应的电平信号,从而得到漏液检测结果。
本申请提供的漏液检测电路,通过生成漏液仿真信号,对液冷服务器中液冷管道的漏液感应线进行损坏或脱落等异常情况检测,从而更为准确地对漏液感应线的异常情况进行自动检测,并在确定漏液感应线无异常时,对液冷管道进行漏液检测,提高了液冷服务器漏液检测的稳定性。
可选的,漏液感应线是由第一导线和第二导线构成的,漏液感应线缠绕在液冷管路对应的目标区域;
其中,异常情况至少包括漏液感应线的接口脱落情况和损坏情况。
在本申请中,漏液感应线包括左侧2pin(引脚)连接器(包括左侧第1pin和左侧第2pin)、右侧2pin连接器(包括右侧第1pin和右侧第2pin)和感应线,感应线包括外部编织层、内部编织层、第一导线(多股线芯)和第二导线(多股线芯),其中,外部编织层和内部编织层具有吸水功能,当液冷管道发生漏液时,可有效将冷却液体吸附浸入至第一导线和第二导线。正常情况下,即无漏液时,第一导线和第二导线为断开状态,在发生漏液后,冷却液体吸附浸入感应线内,由于液体有导电作用,使第一导线和第二导线 为导通状态。需要说明的是,在本申请中,左侧2pin连接器和右侧2pin连接器对应的是第一导线和第二导线的两个端口,例如,左侧第1pin为第一导线的第一端口,左侧第2pin为第二导线的第一端口,右侧第1pin为第一导线的第二端口,右侧第2pin为第二导线的第二端口;或者,左侧第1pin为第二导线的第一端口,左侧第2pin为第一导线的第一端口,右侧第1pin为第二导线的第二端口,右侧第2pin为第一导线的第二端口,本申请对此不做具体限定。
可选的,采用合理的缠绕方式将漏液感应线进行布放,在冷板接口位置和焊接点位置为冷却液泄露的风险点,需将漏液感应线缠绕到各接口位置和焊接点位置;同时,在液冷管道处选择沿着管道平直式铺设,并且漏液感应线位于液冷管道的下方并胶带缠绕固定,以检测液冷冷板和液冷管道上任意位置的漏液情况,保证液冷服务器的正常运行。
在本申请中,在确定漏液感应线无损坏和接口区域无脱落后,若液冷管道未发生漏液,此时漏液感应线断开,漏液检测子电路102输出第一电平信号(高电平信号),通过CPLD检测结果为液冷散热无漏液情况;若液冷管道发生漏液,漏液感应线导通,此时漏液检测子电路102输出第二电平信号(低电平信号),通过CPLD检测结果为液冷散热存在漏液情况。
可选的,漏液检测子电路包括第一电阻、第二电阻和比较器电路,其中:
第一导线的第一端,连接第一电阻的第一端、第二电阻的第一端以及比较器电路的第一输入端,第一导线的第二端连接感应线异常检测触发子电路;
第一电阻的第二端连接供电电源,第二电阻的第二端接地;
比较器电路的第二输入端连接参考电源,比较器电路的输出端连接复杂可编程逻辑控件的输入端,被配置为根据第一输入电压和第二输入电压的对比结果,生成对应的电平信号,以供复杂可编程逻辑控件根据电平信号确定目标区域的漏液情况,第一输入电压为输入至比较器电路的第一输入端的输入电压,第二输入电压为输入至比较器电路的第二输入端的输入电压。
图2为本申请提供的漏液检测电路的整体结构示意图,可参考图2所示,在本申请中,漏液检测子电路包括第一电阻R1、第二电阻R2和比较器电路U1;漏液感应线包括第一导线201和第二导线202,其中,漏液感应线左侧第1pin(即第二导线202的第一端)接地,漏液感应线左侧第2pin(即第一导线201的第一端)连接第一电阻R1、第二电阻R2和比较器电路U1输入端a,第一电阻R1的另一端接供电电源(提供供电电压VCC(Volt Current Condenser)),第二电阻R2的另一端接地,参考电源(提供参考电压Vref(Voltage reference))连接比较器电路U1输入端b,比较器电路U1输出端c连接CPLD的输入端口(GPI 1(General-purpose input 1))。
在一可选实施例中,可对第一电阻R1、第二电阻R2以及参考电压数值进行调整,从而提高比较器电路U1的漏液检测灵敏度。
可选的,感应线异常检测触发子电路是由开关电路构成,被配置为在接收到漏液仿真信号进行导通,以使得感应线异常检测触发子电路导通时,若漏液检测子电路生成低电平信号,复杂可编程逻辑控件根据低电平信号,确定漏液感应线无异常情况;若漏液检测子电路生成高电平信号,复杂可编程逻辑控件根据高电平信号,确定漏液感应线存在异常情况;
其中,开关电路的第一输入端连接复杂可编程逻辑控件的输出端,开关电路的第二输入端连接第二导线的第二端,开关电路的输出端连接第一导线的第二端,第二导线的第一端接地。
可选地,在本申请中,漏液感应线右侧第1pin(即第二导线202的第二端)连接开关电路U2的输入端a,右侧第2pin(即第一导线201的第二端)连接开关电路U2的输出端b,开关电路U2的输入端c连接CPLD的输出端(GPO 1(General-purpose output 1))。在本申请中,通过CPLD的通用型输入输出接口(General-purpose input/output,简称GPIO)进行信号传输,通过调整CPLD的输出端GPO1输出的高低电平信号,控制开关电路U2导通或关闭,从而仿真漏液场景,实现识别漏液感应线损坏或脱落等异常情况。在一可选实施例中,可以设置多组漏液检测电路,分别对液冷服务器中关键部件,如CPU冷板及水冷管和GPU冷板及水冷管等进行单独监控。需要说明的是,在本申请中,开关电路U2作为一种开关电路,具有“接通”和“断开”两种状态,可根据GPLD输出信号实现电路的导通和关断。
可选的,比较器电路被配置为,在确定比较器电路的第一输入端的输入电压大于比较器电路的第二输入端的输入电压时,生成高电平信号,以供复杂可编程逻辑控件根据高电平信号,确定目标区域无漏液情况;在确定比较器电路的第一输入端的输入电压小于比较器电路的第二输入端的输入电压时,生成低电平信号,以供复杂可编程逻辑控件根据低电平信号,确定目标区域存在漏液情况。
在本申请中,可参考图2所示,设置供电电压VCC为3.3V,设置参考电源Vref为2.24V,正常无漏液状态下,漏液感应线中的第一导线201和第二导线202未连接,此时漏液感应线处于断开状态,其阻值相当于无穷大,比较器电路U1的输入端a的输入电压是根据第一电阻R1和第二电阻R2的阻值以及供电电压VCC确定,其中,供电电压VCC是根据实际需求选取的,例如,3.3V或5V,在本申请中,可以通过配置漏液检测电路中的第一电阻R1和第二电阻R2的阻值,进而使得在漏液感应线断开时,比较器电路U1的输入端a的输入电压接近于供电电压VCC,如3.3V,比比较器电路U1的输入端b的输入电压2.24V高,此时,比较器电路U1的输出端c输出为高电平,通过CPLD识别为无漏液状态;当漏液发生时,漏液感应线接通,其阻值比较小,对于比较器电路U1的输入端a相当于给第二电阻R2增加了一个并联电阻,此时,比较器电路U1的输入端a的输入电压将会降低,例如,比较器电路U1的输入端a的输入电压为0.7V(该值可根据实际电路结构进行调整),比比较器电路U1的输入端b的输入电压2.24V低,此时,比较器电路U1输出端c输出低电平,通过 CPLD识别为发生漏液。本申请通过比较器电路U1的输出端c输出电平在正常和漏液情况下发生变化,生成对应的高低电平信号,进而发送到CPLD进行识别,最终产生对应的漏液情况告警。
在本申请中,在对漏液感应线进行异常检测时,同样是用到了漏液检测子电路的漏液检测功能,只是在该场景下,漏液场景是通过感应线异常检测触发子电路仿真形成的。因此,在漏液仿真场景下,如果通过漏液检测子电路检测到发生漏液,则CPLD根据接收到的低电平信号,判定漏液感应线已正确插接或无损坏;而当漏液检测子电路未检测到漏液时,则说明漏液感应线存在异常情况,从而将生成的高电平信号发送到CPLD进行识别,最终生成对应的异常提示,以告知维护人员进行检修,提高漏液检测的稳定性和安全性,避免了液冷服务器在生产、运输或维修时,造成的漏液感应线损坏或脱落等情况,导致后续在液冷散热时无法准确检测漏液的情况。
可选的,感应线异常检测触发子电路还被配置为在接收到复杂可编程逻辑控件生成的仿真关闭信号后进行关断。
在本申请中,可根据漏液感应线实际的异常检测需求,在液冷服务器初次安装完毕或检修之后进行漏液感应线的异常检测,而在异常检测完成之后,可通过CPLD生成一个低电平信号,用于使感应线异常检测触发子电路关断,不会影响后续实时漏液检测过程。
图3为本申请提供的漏液检测系统的结构示意图,如图3所示,本申请提供了一种漏液检测系统,包括漏液感应线301、漏液检测控制器302和漏液检测电路303,其中:
漏液感应线301与漏液检测电路303连接,布放在液冷服务器中待检测液冷管道对应的目标区域;
漏液检测控制器302连接漏液检测电路303,被配置为获取漏液检测电路303发送的感应线异常检测结果或漏液检测结果,并根据感应线异常检测结果或漏液检测结果,生成对应的告警信号;
漏液检测电路303,被配置为对漏液感应线301的异常情况或漏液情况进行检测。
在本申请中,漏液感应线301中的编织层具有吸水功能,当液冷管道发生漏液时,可有效将冷却液体吸附浸入至感应线内。在正常无漏液情况下,漏液感应线301为断开状态;而在发生漏液时,冷却液体吸附浸入感应线内,由于冷却液体有导电作用,使漏液感应线301处于导通状态。
在一可选实施例中,漏液检测控制器302可采用液冷服务器自身器件,可选的,漏液检测控制器包括复杂可编程逻辑控件和基板管理控制器,其中:
复杂可编程逻辑控件连接漏液检测电路,被配置为根据基板管理控制发送的感应线异常检测信号,向漏液检测电路发送漏液仿真信号,以启动漏液检测电路对漏液感应线进行异常检测,获取感应线异常检测结果;并在基板管理控制器确定漏液感应线无异常情况后,根据基板管理控制器发送的漏液 检测信号,启动漏液检测电路进行漏液检测,获取目标区域的漏液检测结果;
基板管理控制器通过集成电路总线与复杂可编程逻辑控件连接,被配置为根据感应线异常检测结果或漏液检测结果,生成对应的告警信号。
图4为本申请提供的液冷服务器的漏液检测系统的整体结构示意图,可参考图4所示,在本实施例中,漏液感应线301和漏液检测电路303构成漏液检测装置,漏液检测控制器302包括CPLD芯片3021和基板管理控制器(Baseboard Manager Controller,简称BMC)芯片3022;漏液检测电路303的输出端与CPLD芯片3021的输入端GPI 1电连接,漏液检测电路303的输入端与CPLD芯片3021的输出端GPO 1电连接,CPLD芯片3021与BMC芯片3022之间通过集成电路总线(Inter Integrated Circuit,简称I2C)进行通信,使得CPLD芯片3021根据BMC芯片3022发送的触发信号(如感应线异常检测信号或漏液检测信号),对漏液检测电路303发送对应的控制信号,实现漏液检测或感应线异常检测。
可选的,基板管理控制器通过电源管理总线连接电源供应单元,电源供应单元被配置为根据基板管理控制器生成的告警信号,执行液冷服务器的电源关断。
在本申请中,可参考图4所示,通过CPLD芯片3021的GPIO接口与液冷服务器的电源供应单元304(Power Supply Unit,简称PSU)电连接。BMC芯片3022的输出端通过电源管理总线(Power Management Bus,简称PMBUS)与电源供应单元304电连接,通过无线或有线的方式与远程客户端305网络连接。
可选地,当液冷服务器中的液冷管道发生漏液时,漏液检测电路303输出的电平信号发生变化,此时,漏液检测电路303通过GPI 1通知CPLD芯片3021,液冷服务器的关键部件如CPU冷板及水冷管或GPU冷板及水冷管等漏液,可选地,CPLD芯片3021通过I2C总线通知BMC芯片3022具体漏液位置(例如,根据漏液感应线301对应的布放区域信息),BMC芯片3022通过网络连接远程客户端305告警,并通过PMBUS总线关闭液冷服务器的电源供应单元304。
本申请提供的漏液检测系统,通过生成漏液仿真信号,对液冷服务器中液冷管道的漏液感应线进行损坏或脱落等异常情况检测,从而更为准确地对漏液感应线的异常情况进行自动检测,并在确定漏液感应线无异常时,对液冷管道进行漏液检测,提高了液冷服务器漏液检测的稳定性。
可选的,复杂可编程逻辑控件还被配置为在基板管理控制器确定漏液感应线无异常情况后,根据基板管理控制器发送的感应线异常检测关闭信号,生成仿真关闭信号,并向漏液检测电路发送仿真关闭信号,以关闭漏液检测电路对漏液感应线进行异常检测。
在本申请中,通过调整CPLD的GPO 1输出的电平信号(如高电平信号和低电平信号),实现漏液检测电路303中感应线异常检测触发子电路的导通 和关闭,使得漏液检测电路仿真一个漏液场景,从而检测漏液感应线是否存在损坏或脱落等异常情况。可选地,在本申请中,根据预设感应线检测条件,例如,液冷服务器初次安装完成后或维护人员对液冷服务器的液冷管道进行检修之后,通过BMC生成触发信号,使得CPLD生成导通信号(即漏液仿真信号),在完成感应线异常检测后,再通过BMC向CPLD发送感应线异常检测关闭信号,使得CPLD生成关断信号(即仿真关闭信息),从而完成本次的漏液感应线异常检测,以提高后续漏液检测的稳定性。
可选的,复杂可编程逻辑控件通过通用型输入输出接口与电源供应单元连接,且复杂可编程逻辑控件通过通用型输入输出接口与基板管理控制器连接进行心跳信号检测,若根据心跳信号检测结果确定基板管理控制器存在异常情况后,生成电源关闭信号,并发送到电源供应单元,其中,电源供应单元被配置为根据复杂可编程逻辑控件生成的电源关闭信号执行液冷服务器的电源关断。
现有漏液检测控制器在进行漏液保护时,关键依赖于BMC芯片尤其I2C模块正常工作,在液冷服务器漏液且BMC芯片处于失效、升级和重启等异常情况下,无法检测漏液情况或无法关闭液冷服务器的供电电源,导致液冷服务器因为漏液而短路甚至损坏。针对上述情况,本申请通过CPLD芯片采集BMC芯片的心跳信号,当未接收到BMC芯片的心跳信号时,判断BMC芯片发生故障,使得在面对BMC失效、升级以及重启等异常情况下,通过CPLD芯片对液冷服务器进行电源关断操作,提高安全性。
可选的,复杂可编程逻辑控件还被配置为判断预设周期内是否接收到心跳信号,并根据判断结果,确定基板管理控制器的异常情况。
在本申请中,可通过设置一个预设周期,例如,当CPLD芯片10s没有收到BMC芯片发送的心跳信号,则判断出BMC芯片存在异常,此时由CPLD芯片通过GPIO将Power-ok(电源正常)信号拉低,从而强制关断液冷服务器的PSU,提高液冷服务器可靠性和安全性。
可选的,漏液检测系统包括多个漏液检测电路,每个漏液检测电路是根据漏液感应线在液冷服务器中的布放区域对应设置的。
在本申请中,可参考图4所示,根据液冷服务器中各个液冷管道的数量,设置对应数量的漏液感应线301,每个漏液感应线301同时与自身对应的漏液检测电路303连接,即本申请根据液冷服务器中待进行漏液检测的区域信息,设置对应数量的漏液检测装置,从而对液冷服务器中各个液冷管道进行漏液检测,同时对于漏液发生区域实现快速定位。
可选的,漏液检测系统还包括告警显示模块,告警显示模块通过网络连接基板管理控制器,被配置为根据基板管理控制器发送的感应线异常检测结果或漏液检测结果,显示对应的漏液感应线告警内容。
在本申请中,可参考图4所示,BMC芯片3022提供告警选项或告警并关机选项,令告警显示模块(可通过远程客户端305实现)可通过WEB(World Wide Web,全球广域网)界面或命令行界面,配置该液冷服务器漏液后仅告 警选项或告警并关机选项,以便远程运维人员根据漏液检测装置漏液严重程度,再进行执行相应策略。
可选的,告警显示模块,还被配置为根据漏液检测结果对应的漏液区域位置信息,显示不同漏液告警级别对应的漏液感应线告警内容。
针对现有液冷服务器发生漏液后,漏液检测控制器自行关断服务器供电电源,易导致业务丢失的问题。在本申请中,告警显示模块根据获取到漏液检测结果,通过不同区域发生的漏液情况,生成相应的漏液告警级别,从而为维护人员提供更为直观的显示界面,使得运维人员根据告警优先级执行相应策略,提高漏液故障处理效率。
图5为本申请提供的漏液检测方法的流程示意图,如图5所示,本申请提供了一种漏液检测系统的漏液检测方法,包括:
步骤501,通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定漏液感应线无异常情况后,对液冷管道对应的目标区域进行漏液检测。
在本申请中,通过CPLD芯片向漏液检测电路发送漏液仿真信号,以启动漏液检测电路对漏液感应线进行异常检测,在确定漏液感应线无异常情况后,进一步对漏液感应线对应的目标区域进行漏液检测。
步骤502,基于漏液检测控制器,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号。
在本申请中,可利用漏液感应线中编织层的吸水功能,当液冷管道发生漏液时,有效将冷却液体吸附浸入至感应线内。在正常无漏液情况下,漏液感应线为断开状态;而在发生漏液时,冷却液体吸附浸入感应线内,由于冷却液体有导电作用,使漏液感应线处于导通状态。在本申请中,液冷散热正常时,漏液感应线断开,输出第一电平信号至漏液检测控制器识别结果为未漏液;液冷散热发生漏液时,漏液感应线接通,输出第二电平信号至漏液检测控制器识别为已漏液。
液冷管道正常无漏液状态下,漏液感应线处于断开状态,其阻值相当于无穷大,此时漏液检测电路输出为高电平,通过CPLD芯片识别为无漏液状态;当漏液发生时,漏液感应线接通,其阻值比较小,此时漏液检测电路输出低电平,通过CPLD芯片识别为发生漏液。而在漏液感应线的异常检测过程中,为仿真的漏液场景,如果漏液检测电路检测到发生漏液,则判定漏液感应线已正确插接或无损坏;而当漏液检测电路未检测到漏液时,则说明漏液感应线存在异常情况,从而可提示维护人员进行检修,提高漏液检测的稳定性和安全性。
本申请提供的漏液检测方法,通过生成漏液仿真信号,对液冷服务器中液冷管道的漏液感应线进行损坏或脱落等异常情况检测,从而更为准确地对漏液感应线的异常情况进行自动检测,并在确定漏液感应线无异常时,对液冷管道进行漏液检测,提高了液冷服务器漏液检测的稳定性。
可选的,根据漏液检测电路发送的感应线异常检测结果或漏液检测结 果,生成对应的告警信号,包括:
根据感应线异常检测结果或漏液检测结果,获取对应的告警风险等级;
通过告警风险等级,生成对应的告警信号。
在本申请中,当漏液检测电路检测到当前存在漏液情况或漏液感应线存在异常,可将漏液检测结果或感应线异常检测结果发送到远程客户端进行告警,并关断液冷服务器的PSU;同时,根据漏液检测结果或感应线异常检测结果,生成相应的告警风险等级,以提供给维护人员执行相应的策略。
可选的,根据感应线异常检测结果,获取对应的告警风险等级方法,包括:
根据感应线异常检测结果,获取液冷服务器中存在异常情况的目标漏液感应线对应的异常区域位置信息;
根据异常区域位置信息,生成对应的感应线告警风险等级。
可选的,根据漏液检测电路发送的漏液检测结果,生成对应的告警信号,包括:
根据感应线异常检测结果,获取液冷服务器中存在漏液情况的液冷管道对应的漏液区域位置信息;
根据漏液区域位置信息,生成对应的漏液告警风险等级。
在本申请中,根据不同检测区域产生的漏液检测结果或感应线异常检测结果,确定告警信号的风险等级,从而根据告警风险等级,提供相应选项以供维护人员进行评估,例如,仅告警不断电选项以便远程运维人员评估漏液的严重程度,再进行后续处理,如下电告警节点和节点业务迁移;或者,CPU和GPU区域产生的检测结果,具有较高风险等级,需要维护人员尽快排除故障(也可实施自动断电处理)。
图6为本申请提供的液冷服务器的漏液检测方法的整体流程示意图,可参考图6所示,在液冷服务器完成初次安装后,通过BMC触发漏液感应线的异常检测进程,进而通过CPLD生成漏液仿真信号,使得漏液检测装置执行漏液感应线的异常检测,当漏液检测装置异常,如漏液感应线不在位、开路和短路等,CPLD芯片检测到漏液感应线异常及其对应的位置信息,并通知BMC芯片,使得BMC芯片在接收到漏液感应线异常及其位置信息后,通知远程客户端,从而通过远程客户端根据告警优先级执行相应策略。
可选地,当漏液检测装置正常时,即漏液感应线无损坏和插接正常无脱落,通过漏液检测装置中的漏液检测电路进行漏液检测,进而判定此时液冷服务器正常工作;
可选地,当漏液检测装置检测到漏液情况时,CPLD芯片会将检测到的漏液情况及其位置信息,发送到BMC芯片,在BMC芯片接收到漏液情况及其位置信息后,根据BMC生成仅告警选项,从而向远程客户端发送对应的告警信息,或根据BMC生成告警并关机选项,向远程客户端发送该告警并关断服务器供电电源,使得维护人员通过远程客户端展示的告警优先级执行相应策略。
在漏液检测装置执行漏液检测的同时,CPLD芯片通过BMC芯片的心跳信号,判断BMC芯片是否存在异常,当检测到BMC芯片alive(正常),表示可正常执行漏液检测过程;当CPLD芯片检测不到BMC芯片的心跳信号时(重复尝试检测预设次数后),判定BMC芯片存在异常,此时CPLD芯片通过GPIO关断服务器供电电源,以供维护人员通过远程客户端,根据告警优先级执行相应策略。
图7为本申请提供的电子设备的结构示意图,如图7所示,该电子设备可以包括:处理器(Processor)701、通信接口(Communications Interface)702、存储器(Memory)703和通信总线704,其中,处理器701,通信接口702,存储器703通过通信总线704完成相互间的通信。处理器701可以调用存储器703中的逻辑指令,以执行漏液检测方法,该方法包括:通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定漏液感应线无异常情况后,对液冷管道对应的目标区域进行漏液检测;基于漏液检测控制器,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号。
此外,上述的存储器703中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机非易失性可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个非易失性可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的非易失性可读存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,计算机程序产品包括存储在非暂态计算机非易失性可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,计算机能够执行上述各方法所提供的漏液检测方法,该方法包括:通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定漏液感应线无异常情况后,对液冷管道对应的目标区域进行漏液检测;基于漏液检测控制器,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号。
又一方面,本申请还提供一种非暂态计算机非易失性可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的漏液检测方法,该方法包括:通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定漏液感应线无异常情况后,对液冷管道对应的目标区域进行漏液检测;基于漏液检测控制器,根据漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告 警信号。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机非易失性可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种漏液检测电路,其特征在于,包括感应线异常检测触发子电路和漏液检测子电路,所述感应线异常检测触发子电路和所述漏液检测子电路之间通过漏液感应线连接,其中:
    所述感应线异常检测触发子电路,被配置为根据复杂可编程逻辑控件生成的漏液仿真信号进行导通,以通过所述漏液检测子电路对所述漏液感应线进行异常检测,其中,所述漏液仿真信号用于在所述感应线异常检测触发子电路导通的情况下,在所述漏液检测电路中形成漏液仿真场景;
    所述漏液检测子电路,被配置为在确定所述感应线异常检测触发子电路导通的情况下,根据输入电压的变化情况,对所述漏液感应线进行异常检测,并在确定所述漏液感应线无异常情况后进行漏液检测。
  2. 根据权利要求1所述的漏液检测电路,其特征在于,所述漏液感应线是由第一导线和第二导线构成的,所述漏液感应线缠绕在液冷管路对应的目标区域。
  3. 根据权利要求2所述的漏液检测电路,其特征在于,所述漏液检测子电路包括第一电阻、第二电阻和比较器电路,其中:
    所述第一导线的第一端,连接所述第一电阻的第一端、所述第二电阻的第一端以及所述比较器电路的第一输入端,所述第一导线的第二端连接所述感应线异常检测触发子电路;
    所述第一电阻的第二端连接供电电源,所述第二电阻的第二端接地;
    所述比较器电路的第二输入端连接参考电源,所述比较器电路的输出端连接所述复杂可编程逻辑控件的输入端,被配置为根据第一输入电压和第二输入电压的对比结果,生成对应的电平信号,以供所述复杂可编程逻辑控件根据所述电平信号确定所述目标区域的漏液情况,所述第一输入电压为输入至所述比较器电路的第一输入端的输入电压,所述第二输入电压为输入至所述比较器电路的第二输入端的输入电压。
  4. 根据权利要求3所述的漏液检测电路,其特征在于,所述比较器电路被配置为,在确定所述比较器电路的第一输入端的输入电压大于所述比较器电路的第二输入端的输入电压时,生成高电平信号,以供所述复杂可编程逻辑控件根据所述高电平信号,确定所述目标区域无漏液情况;在确定所述比较器电路的第一输入端的输入电压小于所述比较器电路的第二输入端的输入电压时,生成低电平信号,以供所述复杂可编程逻辑控件根据所述低电平信号,确定所述目标区域存在漏液情况。
  5. 根据权利要求4所述的漏液检测电路,其特征在于,所述感应线异常检测触发子电路是由开关电路构成,被配置为在接收到所述漏液仿真信号进行导通,以使得所述感应线异常检测触发子电路导通时,若所述漏液检测子电路生成所述低电平信号,所述复杂可编程逻辑控件根据所述低电平信号,确定所述漏液感应线无异常情况;若所述漏液检测子电路生成所述高电平信号,所述复杂可编程逻辑控件根据所述高电平信号,确定所述漏液感应线存 在异常情况;
    其中,所述开关电路的第一输入端连接所述复杂可编程逻辑控件的输出端,所述开关电路的第二输入端连接所述第二导线的第二端,所述开关电路的输出端连接所述第一导线的第二端,所述第二导线的第一端接地。
  6. 根据权利要求1至5任一项所述的漏液检测电路,其特征在于,所述感应线异常检测触发子电路还被配置为在接收到所述复杂可编程逻辑控件生成的仿真关闭信号后进行关断。
  7. 一种漏液检测系统,其特征在于,包括漏液感应线、漏液检测控制器和基于权利要求1至6中任一项所述的漏液检测电路,其中:
    所述漏液感应线与所述漏液检测电路连接,布放在液冷服务器中待检测液冷管道对应的目标区域;
    所述漏液检测控制器连接所述漏液检测电路,被配置为获取所述漏液检测电路发送的感应线异常检测结果或漏液检测结果,并根据所述感应线异常检测结果或所述漏液检测结果,生成对应的告警信号;
    所述漏液检测电路,被配置为对所述漏液感应线的异常情况或漏液情况进行检测。
  8. 根据权利要求7所述的漏液检测系统,其特征在于,所述漏液检测控制器包括复杂可编程逻辑控件和基板管理控制器,其中:
    所述复杂可编程逻辑控件连接所述漏液检测电路,被配置为根据所述基板管理控制发送的感应线异常检测信号,向所述漏液检测电路发送漏液仿真信号,以启动所述漏液检测电路对所述漏液感应线进行异常检测,获取感应线异常检测结果;并在所述基板管理控制器确定所述漏液感应线无异常情况后,根据所述基板管理控制器发送的漏液检测信号,启动所述漏液检测电路进行漏液检测,获取所述目标区域的漏液检测结果;
    所述基板管理控制器通过集成电路总线与所述复杂可编程逻辑控件连接,被配置为根据所述感应线异常检测结果或所述漏液检测结果,生成对应的告警信号。
  9. 根据权利要求8所述的漏液检测系统,其特征在于,所述复杂可编程逻辑控件还被配置为在所述基板管理控制器确定所述漏液感应线无异常情况后,根据所述基板管理控制器发送的感应线异常检测关闭信号,生成仿真关闭信号,并向所述漏液检测电路发送所述仿真关闭信号,以关闭所述漏液检测电路对所述漏液感应线进行异常检测。
  10. 根据权利要求8所述的漏液检测系统,其特征在于,所述基板管理控制器通过电源管理总线连接电源供应单元,所述电源供应单元被配置为根据所述基板管理控制器生成的告警信号,执行液冷服务器的电源关断。
  11. 根据权利要求10所述的漏液检测系统,其特征在于,所述复杂可编程逻辑控件通过通用型输入输出接口与所述电源供应单元连接,且所述复杂可编程逻辑控件通过通用型输入输出接口与所述基板管理控制器连接进行心跳信号检测,若根据心跳信号检测结果确定所述基板管理控制器存在异常情况后,生成电源关闭信号,并发送到所述电源供应单元,其中,所述电源供 应单元被配置为根据所述复杂可编程逻辑控件生成的电源关闭信号,执行所述液冷服务器的电源关断。
  12. 根据权利要求11所述的漏液检测系统,其特征在于,所述复杂可编程逻辑控件还被配置为判断预设周期内是否接收到心跳信号,并根据判断结果,确定所述基板管理控制器的异常情况。
  13. 根据权利要求7所述的漏液检测系统,其特征在于,所述漏液检测系统包括多个所述漏液检测电路,每个所述漏液检测电路是根据所述漏液感应线在液冷服务器中的布放区域对应设置的。
  14. 根据权利要求8所述的漏液检测系统,其特征在于,所述漏液检测系统还包括告警显示模块,所述告警显示模块通过网络连接所述基板管理控制器,被配置为根据所述基板管理控制器发送的所述感应线异常检测结果或所述漏液检测结果,显示对应的漏液感应线告警内容。
  15. 根据权利要求14所述的漏液检测系统,其特征在于,所述告警显示模块,还被配置为根据所述漏液检测结果对应的漏液区域位置信息,显示不同漏液告警级别对应的漏液感应线告警内容。
  16. 一种基于权利要求7至15任一项所述的漏液检测系统的漏液检测方法,其特征在于,包括:
    通过漏液检测电路,对液冷服务器中液冷管道的漏液感应线进行感应线异常检测,并在确定所述漏液感应线无异常情况后,对所述液冷管道对应的目标区域进行漏液检测;
    基于漏液检测控制器,根据所述漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号。
  17. 根据权利要求16所述的漏液检测方法,其特征在于,所述根据所述漏液检测电路发送的感应线异常检测结果或漏液检测结果,生成对应的告警信号,包括:
    根据所述感应线异常检测结果或所述漏液检测结果,获取对应的告警风险等级;
    通过所述告警风险等级,生成对应的告警信号。
  18. 根据权利要求17所述的漏液检测方法,其特征在于,所述根据所述感应线异常检测结果,获取对应的告警风险等级方法,包括:
    根据所述感应线异常检测结果,获取所述液冷服务器中存在异常情况的目标漏液感应线对应的异常区域位置信息;
    根据所述异常区域位置信息,生成对应的感应线告警风险等级。
  19. 根据权利要求17所述的漏液检测方法,其特征在于,所述根据所述漏液检测电路发送的漏液检测结果,生成对应的告警信号,包括:
    根据所述感应线异常检测结果,获取所述液冷服务器中存在漏液情况的液冷管道对应的漏液区域位置信息;
    根据所述漏液区域位置信息,生成对应的漏液告警风险等级。
  20. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机 程序时实现如权利要求16至19任一项所述漏液检测方法。
  21. 一种非暂态计算机非易失性可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求16至19任一项所述漏液检测方法。
PCT/CN2023/138568 2023-02-22 2023-12-13 漏液检测电路、系统、方法、电子设备及存储介质 WO2024174687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310147661.6A CN115950608B (zh) 2023-02-22 2023-02-22 漏液检测电路、系统、方法、电子设备及存储介质
CN202310147661.6 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024174687A1 true WO2024174687A1 (zh) 2024-08-29

Family

ID=85892881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138568 WO2024174687A1 (zh) 2023-02-22 2023-12-13 漏液检测电路、系统、方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115950608B (zh)
WO (1) WO2024174687A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950608B (zh) * 2023-02-22 2023-06-02 苏州浪潮智能科技有限公司 漏液检测电路、系统、方法、电子设备及存储介质
CN118394694B (zh) * 2024-06-28 2024-10-01 苏州元脑智能科技有限公司 一种控制系统、服务器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060008522A (ko) * 2004-07-21 2006-01-27 김현일 누액감지 장치
CN103376191A (zh) * 2012-04-20 2013-10-30 上海华虹Nec电子有限公司 多通道智能漏液及断线检测系统
CN109580135A (zh) * 2018-12-06 2019-04-05 英业达科技有限公司 漏液检测板及漏液监测系统
CN110631782A (zh) * 2018-06-22 2019-12-31 三菱电机大楼技术服务株式会社 漏液检测装置
CN214173663U (zh) * 2021-02-26 2021-09-10 山东英信计算机技术有限公司 一种漏液感应线的测试装置
WO2021218642A1 (zh) * 2020-04-26 2021-11-04 东莞塔菲尔新能源科技有限公司 漏液检测装置及其电池模组和电池包
CN215117499U (zh) * 2021-03-17 2021-12-10 联想(北京)信息技术有限公司 一种漏液检测装置
CN113867512A (zh) * 2021-08-27 2021-12-31 苏州浪潮智能科技有限公司 一种优化液冷服务器漏液保护的系统、方法及装置
WO2022134429A1 (zh) * 2020-12-23 2022-06-30 比亚迪股份有限公司 电池包、电池包的控制方法和车辆
CN114993564A (zh) * 2022-06-29 2022-09-02 苏州浪潮智能科技有限公司 一种漏液检测管理方法、装置和系统
KR20220124319A (ko) * 2021-03-02 2022-09-14 (주)유민에쓰티 누액 감지 시스템
CN115950608A (zh) * 2023-02-22 2023-04-11 苏州浪潮智能科技有限公司 漏液检测电路、系统、方法、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350275A (ja) * 2001-05-30 2002-12-04 Tatsuta Electric Wire & Cable Co Ltd 漏液監視装置
JP3641258B2 (ja) * 2002-08-26 2005-04-20 株式会社東芝 電子機器
CN111397819B (zh) * 2020-03-12 2022-02-18 苏州浪潮智能科技有限公司 一种服务器冷却液漏液检测系统、方法及可读存储介质
CN113552495B (zh) * 2021-07-27 2022-11-22 石家庄通合电子科技股份有限公司 一种电力电源系统蓄电池漏液在线检测方法及装置
CN113884251A (zh) * 2021-08-27 2022-01-04 苏州浪潮智能科技有限公司 一种液冷散热漏液检测装置及方法
CN115237714A (zh) * 2022-07-22 2022-10-25 苏州浪潮智能科技有限公司 一种用于服务器上液体流量监控及漏液保护的装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060008522A (ko) * 2004-07-21 2006-01-27 김현일 누액감지 장치
CN103376191A (zh) * 2012-04-20 2013-10-30 上海华虹Nec电子有限公司 多通道智能漏液及断线检测系统
CN110631782A (zh) * 2018-06-22 2019-12-31 三菱电机大楼技术服务株式会社 漏液检测装置
CN109580135A (zh) * 2018-12-06 2019-04-05 英业达科技有限公司 漏液检测板及漏液监测系统
WO2021218642A1 (zh) * 2020-04-26 2021-11-04 东莞塔菲尔新能源科技有限公司 漏液检测装置及其电池模组和电池包
WO2022134429A1 (zh) * 2020-12-23 2022-06-30 比亚迪股份有限公司 电池包、电池包的控制方法和车辆
CN214173663U (zh) * 2021-02-26 2021-09-10 山东英信计算机技术有限公司 一种漏液感应线的测试装置
KR20220124319A (ko) * 2021-03-02 2022-09-14 (주)유민에쓰티 누액 감지 시스템
CN215117499U (zh) * 2021-03-17 2021-12-10 联想(北京)信息技术有限公司 一种漏液检测装置
CN113867512A (zh) * 2021-08-27 2021-12-31 苏州浪潮智能科技有限公司 一种优化液冷服务器漏液保护的系统、方法及装置
CN114993564A (zh) * 2022-06-29 2022-09-02 苏州浪潮智能科技有限公司 一种漏液检测管理方法、装置和系统
CN115950608A (zh) * 2023-02-22 2023-04-11 苏州浪潮智能科技有限公司 漏液检测电路、系统、方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115950608B (zh) 2023-06-02
CN115950608A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024174687A1 (zh) 漏液检测电路、系统、方法、电子设备及存储介质
CN112286709B (zh) 一种服务器硬件故障的诊断方法、诊断装置及诊断设备
US20120136502A1 (en) Fan speed control system and fan speed reading method thereof
CN106055438A (zh) 一种快速定位主板上内存条异常的方法及系统
CN111488233A (zh) 一种处理PCIe设备掉带宽问题的方法及系统
TW201714432A (zh) 管理方法、服務控制器裝置以及非暫態電腦可讀取媒體
CN107544655A (zh) Ups断电后计算机系统保护方法
CN112527582A (zh) 服务器线缆的检测方法、检测装置、检测设备及存储介质
CN101593082A (zh) 一种管理存储设备电源电路的装置、方法和计算机
CN111366316A (zh) 一种服务器内部液体检测系统,方法及服务器
CN112035285A (zh) 基于高通平台的硬件看门狗电路系统及其监控方法
CN115129558A (zh) 一种水冷服务器的漏液监控方法、装置、设备及介质
WO2024113962A1 (zh) 漏液检测线检测方法、系统、装置、服务器及电子设备
CN113868051A (zh) 一种PCIe故障检测装置、方法、设备和存储介质
TW201530304A (zh) 異常狀態警示方法
CN113608970A (zh) 核心板,服务器,故障修复方法、装置以及存储介质
CN105119765A (zh) 一种智能处理故障体系架构
CN115795568A (zh) 一种液冷服务器漏液保护方法、装置、设备及存储介质
CN116149954A (zh) 一种服务器智能运维系统及其方法
CN116089139A (zh) 一种串口硬盘故障处理方法、装置、介质
CN113778732A (zh) 业务板卡的故障定位方法及装置
WO2021197274A1 (zh) 漏液检测的装置、方法及机柜系统
CN115022163A (zh) 日志收集方法、装置、计算机设备及存储介质
CN114064401A (zh) 定位硬盘故障的方法、装置、电子设备及存储介质
TWI852616B (zh) 漏液檢測模組的功能驗證方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23923850

Country of ref document: EP

Kind code of ref document: A1