WO2024157967A1 - Fibrous structure containing carbon nanomaterial and organic polymer, and method for manufacturing same - Google Patents

Fibrous structure containing carbon nanomaterial and organic polymer, and method for manufacturing same Download PDF

Info

Publication number
WO2024157967A1
WO2024157967A1 PCT/JP2024/001820 JP2024001820W WO2024157967A1 WO 2024157967 A1 WO2024157967 A1 WO 2024157967A1 JP 2024001820 W JP2024001820 W JP 2024001820W WO 2024157967 A1 WO2024157967 A1 WO 2024157967A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous structure
carbon nanomaterial
mass
organic polymer
cnt
Prior art date
Application number
PCT/JP2024/001820
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 馬場
健 向
理仁 渡辺
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2024157967A1 publication Critical patent/WO2024157967A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/02Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts
    • D01F2/04Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts from cuprammonium solutions

Definitions

  • This disclosure relates to a fibrous structure containing a carbon nanomaterial and an organic polymer, and a method for producing the same.
  • multi-walled CNTs which are carbon nanomaterials, are dispersed in a cellulose solution at high concentrations and then turned into fibers by a wet spinning method to produce conductive fibers that are wash-resistant.
  • Patent Document 1 because the cellulose is dissolved and the multi-walled CNTs are dispersed simultaneously, undissolved cellulose and poor dispersion of the multi-walled CNTs occur in the solution, reducing the dispersibility and uniformity of the CNTs and causing variations in the electrical conductivity of the fibers in the longitudinal direction.
  • Patent Documents 2 to 4 show an improvement in the strength of the CNT/cellulose composite fiber, they do not mention electrical conductivity.
  • one of the objectives of the present disclosure is to provide a fibrous structure containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity in the longitudinal direction of the fiber, and a method for producing the same.
  • a fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
  • the carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
  • the content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure
  • a fibrous structure, wherein the cross section of the fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions, and when the observed image is binarized using the Otsu method, the proportion of carbon nanomaterial dispersion regions displayed as bright areas is 85% or more of the entire cross section of the fibrous structure, and the measurement conditions are as follows: no conductive treatment of the cross section, acceleration voltage: 1 to 5 kV, and detector: upper detector.
  • a fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
  • the carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
  • the content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure,
  • a fibrous structure according to item 1 or 2 having a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
  • the fibrous structure according to any one of items 1 to 4 wherein the carbon nanomaterial is a carbon nanotube.
  • the organic polymer is a polysaccharide.
  • the carbon nanomaterial is a carbon nanotube and the organic polymer is a polysaccharide.
  • a method for producing a fibrous structure comprising the steps of: A step of preparing a carbon nanomaterial dispersion in which a carbon nanomaterial is dispersed in water; Providing an organic polymer solution; mixing the carbon nanomaterial dispersion liquid and the organic polymer solution at an oxygen concentration of 1000 ppm or less, a reduced pressure of ⁇ 0.1 MPa to ⁇ 0.01 MPa, and a liquid temperature of 20° C. to 40° C.
  • a method for producing a fibrous structure comprising the steps of: [9] Item 9. The method for producing a fibrous structure according to item 8, wherein in the step of preparing the mixed dispersion, the mass ratio of the carbon nanomaterial dispersion to the organic polymer solution (mass of the carbon nanomaterial dispersion:mass of the organic polymer solution) is 0.1:1 to 15:1.
  • the present disclosure provides a composite fiber containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity along the length of the fiber, and a method for producing the same.
  • FIG. 1A and 1B are electron microscope images showing an example of a uniform CNT network structure in a cross section of a fibrous structure (fiber) according to the present disclosure.
  • Fig. 1A is an electron microscope image of the entire cross section of the fibrous structure.
  • FIG. 1B is an image obtained by binarizing the electron micrograph of FIG. 1A.
  • Fig. 2 is an electron microscope image showing an example of a non-uniform CNT network structure in a cross section of a fibrous structure (fiber) of a comparative example.
  • Fig. 2A is an electron microscope image of the entire cross section of the fibrous structure.
  • FIG. 2B is an image obtained by binarizing the electron micrograph image of FIG. 2A.
  • the fibrous structure of the present disclosure includes an organic polymer and a carbon nanomaterial dispersed in the organic polymer.
  • the term "fibrous structure" refers to a structure having a ratio of the long axis direction to the short axis direction (long axis length/short axis length) of 1000 or more. Specifically, it is a continuous long fiber or a short fiber.
  • the carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide.
  • the fibrous structure contains 0.05% by mass or more and 50% by mass or less of the carbon nanomaterial based on the total mass of the fibrous structure.
  • the specific conductivity of the fibrous structure is 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and the linear resistance variation coefficient per 1 cm in the longitudinal direction of the fibrous structure is 10% or less.
  • the fibrous structure of the present disclosure can provide a composite fiber containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity in the longitudinal direction of the fiber.
  • the proportion of regions in the cross section of the fibrous structure where the amount of carbon nanomaterial is relatively greater than the amount in other regions is 85% or more, preferably 90% or more, and more preferably 95% or more.
  • the upper limit of the carbon nanomaterial dispersion region that can be arbitrarily combined with these lower limit values is not limited, but may be 100% or less, less than 100%, or 99.9% or less.
  • a "carbon nanomaterial dispersion region” refers to a region that is displayed as a bright area when the cross section of a fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions and the observed image is binarized using the Otsu method.
  • the measurement conditions are: no conductive treatment of the cross section, acceleration voltage: 1-5 kV, and detector: upper detector.
  • the proportion of the carbon nanomaterial dispersion region is an index showing the uniformity of the carbon nanomaterial network formed in the organic polymer matrix in the fiber structure, and the higher the proportion of the carbon nanomaterial dispersion region, the more uniformly the carbon nanomaterial is dispersed.
  • the inventors of the present application have found a method for uniformly dispersing nanomaterials in an organic polymer solution at any concentration, uniformly constructing a carbon nanomaterial network in the organic polymer matrix in the fiber, and making the proportion of the "carbon nanomaterial dispersion region" 85% or more. As a result, they have succeeded for the first time in obtaining a fibrous structure that has a wide range of electrical conductivity at various carbon nanomaterial concentrations and has small longitudinal electrical conductivity variation, which was not possible with conventional technology.
  • Carbon nanomaterials Graphene is a carbon-based material having a structure in which six-membered rings formed by sp2 bonds between carbon and carbon are laid out in a two-dimensional sheet shape.
  • Graphene generally has unique conductive properties and optical properties, and is also a material that is lightweight, has high strength, and has a high elastic modulus.
  • Graphene may be graphene oxide.
  • Graphene oxide is obtained by oxidizing graphene, and generally has functional groups such as hydroxyl groups, carboxyl groups, and epoxy groups, and has high dispersibility in water and polar organic solvents.
  • Carbon nanotubes are carbon-based materials that have a cylindrical shape made of graphene sheets.
  • Various types of CNTs are known, but they can be broadly classified into single-wall carbon nanotubes (SWCNTs), double-wall carbon nanotubes (DWCNTs), and multi-wall carbon nanotubes (MWCNTs) with three or more walls, based on the number of walls that they have. They can also be classified into chiral (spiral) type, zigzag type, and armchair type, based on the structure of the graphene sheets.
  • SWCNTs single-wall carbon nanotubes
  • DWCNTs double-wall carbon nanotubes
  • MWCNTs multi-wall carbon nanotubes
  • the physical properties of individual CNTs themselves are said to be approximately 150 GPa in strength, 100,000 S/cm or more in electrical conductivity, 0.9 TPa in Young's modulus, and 3,000 W/mK in thermal conductivity.
  • carbon nanotubes are preferred. Because carbon nanotubes have a fibrous shape, they tend to form a network structure (CNT network) between carbon nanotubes, which tends to provide high electrical conductivity and strength.
  • the carbon nanomaterial may further contain graphene and/or graphene oxide.
  • the carbon nanotube any type of CNT may be used as long as it is so-called CNT.
  • CNT multi-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • the carbon nanotube is at least one selected from the group consisting of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT).
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • the diameter of SWCNT and DWCNT is preferably 5 nm or less.
  • the ratio of CNTs with a diameter of 5 nm or less in the CNTs is preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and may be 100%.
  • the ratio of G/D is preferably 0.1 or more, more preferably 1 or more, even more preferably 2 or more, even more preferably 10 or more, even more preferably 20 or more, even more preferably 30 or more.
  • the peak in the range of 1550 to 1650 cm ⁇ 1 is called the G band, which is a peak derived from a graphite structure
  • the peak in the range of 1300 to 1400 cm ⁇ 1 is called the D band, which is a peak derived from lattice defects in graphene, graphene oxide, or CNT.
  • the relative occurrence rate of defective sites in graphene, graphene oxide, and CNT can be quantified using the G/D ratio.
  • a G/D ratio of 0.1 or more, particularly 1 or more, means that the material is composed of high-quality graphene, graphene oxide, or CNT with few lattice defects.
  • the graphene, graphene oxide, or CNT is of higher quality, and is more excellent in thermal conductivity, electrical conductivity, and heat resistance.
  • the manufacturing method of graphene, graphene oxide, and CNT is not particularly limited.
  • the organic polymer is preferably an organic substance having a weight average molecular weight of 10,000 or more.
  • the type of organic polymer is not limited, but examples thereof include synthetic polymers such as polysaccharides, polyamines, polyamides, polyurethanes, polyethers, nylons, vinylons, polyesters, polyethylene terephthalates, silicone resins, synthetic rubbers, natural rubbers, polypeptides, proteins, DNA, RNA, lignin, and asphaltene, as well as copolymers thereof.
  • the fibrous structure is preferably such that the total content of transition metals and post-transition metals in the organic polymer is 1,000 ppm or less relative to the total mass of the fibrous structure. However, the fibrous structure may contain an alkali metal, an alkaline earth metal, or a halogen in the organic polymer.
  • the presence or absence of metal elements and organic polymer elements can be determined by performing elemental analysis of the fibrous structures using energy dispersive X-ray analysis (EDX) or CHN analysis equipment.
  • EDX energy dispersive X-ray analysis
  • CHN analysis equipment The chemical structure of organic polymers can also be identified by solubility tests, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), enzymatic decomposition, dyeing tests using dyes, crystallinity, strength and elongation, and thermal analysis, etc.
  • the organic polymer is preferably a polysaccharide.
  • a polysaccharide is a polymer in which a large number of monosaccharides such as glucose are bonded together through glycosidic bonds, and examples of such polysaccharides include amylose, amylopectin, cellulose, curdlan, paramylon, chitin, dextran, agarose, carrageenan, alginic acid, hyaluronic acid, ⁇ -1,3-glucan, ⁇ -1,2-glucan, ⁇ -1,2-glucan, glucomannan, xylan, and levan.
  • Preferred examples include cellulose, curdlan, paramylon, chitin, agarose, carrageenan, alginic acid, and hyaluronic acid.
  • polysaccharides curdlan, alginic acid, and cellulose are preferred from the viewpoint of low water solubility and washing durability, and cellulose is even more preferred.
  • Cellulose is a type of polysaccharide, a polymer in which many glucose molecules are linked in a linear chain by ⁇ -1,4-glycosidic bonds. Cellulose has low water solubility and high water resistance, so it has long been used in recycled fibers and paper.
  • cellulose includes both unmodified cellulose and partially modified cellulose (modified cellulose).
  • modified cellulose include carboxymethyl cellulose (CMC), hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose butyrate, methyl cellulose, ethyl cellulose, and nitrocellulose.
  • CMC carboxymethyl cellulose
  • Preferred are carboxymethyl cellulose, hydroxypropyl cellulose, and cellulose acetate, and more preferred are carboxymethyl cellulose and cellulose acetate.
  • the degree of substitution of the modified cellulose is preferably 0.5 or less.
  • the organic polymer may contain a small amount of other polysaccharides in addition to cellulose.
  • Cellulose raw materials include so-called wood pulps such as coniferous pulp and hardwood pulp, and non-wood pulp.
  • Non-wood pulp can include cotton-derived pulp such as cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp.
  • Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp respectively refer to purified pulp obtained from raw materials such as cotton lint or cotton linter, hemp-based abaca (for example, many of which are produced in Ecuador or the Philippines), zaisal, bagasse, kenaf, bamboo, and straw, through delignification by cooking treatment, and a refining process and bleaching process aimed at removing hemicellulose.
  • refined products such as seaweed-derived cellulose and sea squirt cellulose can also be used as raw materials for cellulose fine fibers.
  • cut yarns of regenerated cellulose fibers and cut yarns of cellulose derivative fibers can also be used as cellulose raw materials, and cut yarns of ultra-fine yarns of regenerated cellulose or cellulose derivatives obtained by electrospinning can also be used as cellulose.
  • refined pulp derived from cotton lint or cotton linter, hemp-based abaca, zaisal, bagasse, kenaf, bamboo, straw, etc. is particularly preferred.
  • General methods can be used to determine whether a material is cellulose or a cellulose derivative. For example, spectral analysis using XRD or IR can be used. Also, if the material can be broken down with cellulase, it can be determined that the material is cellulose or a cellulose derivative.
  • the organic polymer content in the fibrous structure is 50% by mass or more and 99.95% by mass or less, based on the total mass of the fibrous structure.
  • the lower limit of the organic polymer content may preferably be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the upper limit of the organic polymer content that can be combined with these lower limits may preferably be 99.9% by mass or less, 99.5% by mass or less, 99.0% by mass or less, 97.0% by mass or less, or 95.0% by mass or less.
  • the fibrous structure of the present disclosure is not limited to a specific application, but can be suitably used, for example, as electrodes for acquiring bioelectric potentials such as electrocardiogram, electromyogram, and electroencephalogram in smart textiles, electrodes for electrical stimulation, wiring for wearables, electromagnetic wave shielding members, stretch sensors, humidity sensors, heaters, etc.
  • Smart textile refers to a textile material with new functions that cannot be obtained with ordinary fiber materials, or a textile material in which existing functions can be obtained by new technology.
  • smart textiles When smart textiles come into direct contact with the skin, they are preferably flexible, stretchable, and breathable, such as wearable electrodes, sensors, and heaters. Organic polymer electrodes are also preferred so as not to cause metal allergies. Furthermore, it is preferable for them to have mechanical strength that can withstand the stress of washing, and chemical stability that can withstand detergents and bleaches.
  • the conductivity required for conductive fibers used in smart textiles varies depending on the application, and it is preferable that the conductivity can be controlled to any value. For example, heaters are expected in low conductivity regions, electrodes and sensors in high conductivity regions, and electrical wires in even higher conductivity regions. Furthermore, there is a demand for materials that can improve sensitivity and precision in each application by reducing the variation in conductivity in the longitudinal direction.
  • the content of the carbon nanomaterial in the fibrous structure is 0.05% by mass or more and 50% by mass or less, based on the total mass of the fibrous structure.
  • the lower limit of the carbon nanomaterial content may be preferably 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, 3.0% by mass or more, or 5.0% by mass or more.
  • the upper limit of the carbon nanomaterial content that can be combined with these lower limits may be preferably 40% by mass or less, 30% by mass or less, 20% by mass or less, or 10% by mass or less.
  • the carbon nanomaterial content is preferably 0.05% by mass or more from the viewpoint of the amount of heat generated.
  • the carbon nanomaterial content is preferably 0.5% by mass or more and 25% by mass or less from the viewpoint of sensor accuracy.
  • the carbon nanomaterial content is preferably 5.0% by mass or more and 50% by mass or less for wearable electric wire applications.
  • the linear resistance variation coefficient of the fibrous structure is 10% or less. By setting the linear resistance variation coefficient to 10% or less, a fibrous structure with small variation in electrical conductivity in the longitudinal direction can be obtained.
  • the fibrous structure is used as, for example, a heater, uneven heat generation caused by local variation in resistance value can be suppressed.
  • the fibrous structure is used as, for example, an electrode for acquiring bioelectric potential such as electrocardiogram, electromyogram, and electroencephalogram, an expansion sensor, a humidity sensor, etc., detection sensitivity and accuracy can be improved by reducing data noise caused by variation in resistance value.
  • the linear resistance variation coefficient is preferably 8% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the fibrous structure may be a monofilament or a multifilament.
  • the fineness is preferably 0.5 dtex or more and 500 dtex or less, more preferably 1 dtex or more and 300 dtex or less, and even more preferably 1.5 dtex or more and 200 dtex or less.
  • the single yarn fineness is preferably 0.5 dtex or more and 500 dtex or less, more preferably 1 dtex or more and 300 dtex or less, and even more preferably 1.5 dtex or more and 200 dtex or less.
  • the single yarn fineness of the fibrous structure is 0.5 dtex or more and 500 dtex or less, the inside and outside of the single yarn are uniformly solidified during solidification, and it is easier to suppress the variation in electrical conductivity in the longitudinal direction.
  • the total fineness of the fibrous structure is preferably 1.0 dtex or more and 1000 dtex or less, more preferably 5 dtex or more and 1,000 dtex or less, even more preferably 10 dtex or more and 900 dtex or less, and even more preferably 20 dtex or more and 750 dtex or less.
  • the total fineness is 1.0 dtex or more, the strength of the yarn is high and breakage and significant loss of conductivity are unlikely to occur.
  • the total fineness is 1000 dtex or less, the spinnability is improved and single yarn breakage due to friction during yarn running is unlikely to occur, making it easier to suppress variation in electrical conductivity in the longitudinal direction of the fiber.
  • the single yarn fineness and the total fineness are the same.
  • the specific conductivity of the fibrous structure is preferably 0.01 Scm 2 /g or more and 2,500 Scm 2 /g or less.
  • the lower limit of the specific conductivity may be, for example, 0.05 Scm 2 /g or more, 0.1 Scm 2 /g or more, 0.5 Scm 2 /g or more, 1.0 Scm 2 /g or more, 5.0 Scm 2 /g or more, 10 Scm 2 /g or more, 50 Scm 2 /g or more, 100 Scm 2 /g or more, 200 Scm 2 /g or more, 300 Scm 2 /g or more, 400 Scm 2 /g or more, 500 Scm 2 /g or more, 1,000 Scm 2 /g or more, 1,500 Scm 2 /g or more, or 2,000 Scm 2 /g or more.
  • the upper limit of the specific conductivity that can be combined with these lower limit values may be, for example, 2,000 Scm2 /g or less, 1,500 Scm2 /g or less, 1,000 Scm2 /g or less, 500 Scm2 /g or less, 400 Scm2/g or less, 300 Scm2/g or less, 200 Scm2/g or less, 100 Scm2/g or less, 50 Scm2/g or less, 10 Scm2/g or less, 5.0 Scm2 /g or less, or 1.0 Scm2 /g or less.
  • the specific conductivity of 0.01 Scm2 /g or more and 2,500 Scm2 /g or less makes it particularly suitable for use in smart textiles.
  • the fibrous structure of the present disclosure preferably has a wide range of controllable specific conductivity by adjusting the concentration of the carbon nanomaterial within a specific range, and has small variation in the longitudinal direction of the fiber, resulting in an excellent balance of electrical properties, particularly the specific conductivity and the variation in the coefficient of variation.
  • the breaking strength of the fibrous structure is preferably 0.1 cN/dtex or more and 10 cN/dtex or less. When the breaking strength is 0.1 cN/dtex or more, the weaving and knitting properties are good.
  • the breaking strength is more preferably 0.3 cN/dtex or more and 7 cN/dtex or less, and even more preferably 0.4 cN/dtex or more and 5 cN/dtex or less.
  • the fibrous structure includes the steps of dispersing a carbon nanomaterial in water to prepare a dispersion of the carbon nanomaterial (hereinafter referred to as the "carbon nanomaterial dispersion"), preparing a solution of an organic polymer (hereinafter referred to as the “organic polymer solution”), mixing the carbon nanomaterial dispersion and the organic polymer solution under predetermined conditions to prepare a mixed dispersion containing the carbon nanomaterial and the organic polymer, wet-spinning the mixed dispersion to obtain an organic polymer fiber containing the carbon nanomaterial, and drying the organic polymer fiber to obtain a fibrous structure.
  • a carbon nanomaterial dispersion a dispersion of the carbon nanomaterial
  • organic polymer solution an organic polymer
  • the conditions for mixing the carbon nanomaterial dispersion and the organic polymer solution are not limited, but it is preferable to control at least one condition selected from the group consisting of oxygen concentration, reduced pressure (pressure), and liquid temperature (temperature of the mixed liquid).
  • the oxygen concentration is preferably 1000 ppm or less.
  • the reduced pressure is preferably -0.1 MPa or more and -0.01 MPa or less.
  • the liquid temperature is preferably 20°C to 40°C.
  • the fibrous structure obtained by the above process is constituted by a uniform carbon nanomaterial network, and in one embodiment, the ratio of the aforementioned "carbon nanomaterial dispersion region" is 85% or more, and in one embodiment, the specific conductivity is 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and the linear resistance variation coefficient per 1 cm in the longitudinal direction is 10% or less.
  • the present inventors do not wish to be bound by a specific theory, the present inventors presume that the above process can form a uniform carbon nanomaterial network structure in the fiber, and can obtain a conductive fiber that exhibits conductivity at any carbon nanomaterial concentration and has small variation in the longitudinal direction of the fiber as follows.
  • the carbon nanomaterial network is formed uniformly in the fiber. If foreign matter other than the uniform polymer matrix and carbon nanomaterial network is contained in the fiber, the uniformity of the carbon nanomaterial network is reduced, which can reduce the electrical conductivity and the uniformity of the electrical conductivity in the longitudinal direction. Therefore, in the process of mixing the carbon nanomaterial dispersion liquid and the organic polymer solution, it is important to reduce the inclusion of foreign matter such as air bubbles and aggregates of organic polymers.
  • the mixed dispersion liquid containing the carbon nanomaterial and the organic polymer prepared in the process of mixing the carbon nanomaterial dispersion liquid and the organic polymer solution has high viscosity due to the carbon nanomaterial network and the organic polymer formed in the liquid, so air bubbles are likely to be mixed in.
  • the components contained in the dissolution system such as ammonia, volatilize, organic polymer aggregates are generated, making it difficult to manufacture a uniform mixed dispersion liquid that does not contain foreign matter.
  • the inventors of the present application as a result of various studies, have succeeded in obtaining a uniform mixed dispersion liquid in which foreign matter is reduced by adjusting the oxygen concentration, the degree of vacuum, and the temperature during kneading, and have found that uniform conductive fibers can be obtained by wet spinning the obtained mixed dispersion.
  • the oxygen concentration during kneading By reducing the oxygen concentration during kneading, the decomposition of the organic polymer due to oxygen can be reduced, and the generation of foreign matter associated with the decomposition can be suppressed.
  • the degree of vacuum defoaming by vacuum can be promoted, and the volatilization of the components contained in the dissolution system due to excessive vacuum can be suppressed, and the generation of aggregates can be suppressed.
  • the temperature during kneading it is possible to suppress the volatilization of the components contained in the solution system and to promote degassing by adjusting the viscosity of the organic polymer solution.
  • the method for producing a fibrous structure preferably includes the following steps: preparing a CNT dispersion in which CNTs are dispersed in water; preparing a cellulose solution in which cellulose is dissolved in cuprammonium; mixing the CNT dispersion and the cellulose solution at an oxygen concentration of 1000 ppm or less, a reduced pressure of ⁇ 0.1 MPa to ⁇ 0.01 MPa, and a liquid temperature of 20° C. to 40° C. to prepare a mixed dispersion; A step of wet-spinning the obtained CNT/cellulose dispersion in a warm water coagulation bath and removing the copper component by washing with an acid and water; and drying the resulting CNT-containing cellulose fibers at an elevated temperature.
  • the carbon nanomaterial can be dispersed in a solvent including water, an organic solvent, or an ionic liquid.
  • a dispersant may be used for the dispersion.
  • any of a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and an aromatic ring-containing compound may be used.
  • Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene polyoxypropylene block copolymers, and more specifically, poly(oxyethylene) octylphenyl ether (e.g., Triton (registered trademark) X-100), polyoxyethylene sorbitan monolaurate (e.g., Tween (registered trademark) 20), and the like.
  • poly(oxyethylene) octylphenyl ether e.g., Triton (registered trademark) X-100
  • polyoxyethylene sorbitan monolaurate e.g., Tween (registered trademark) 20
  • Anionic surfactants include alkylbenzenesulfonates (e.g., sodium dodecylbenzenesulfonate, etc.), alkyl alcohol sulfates (e.g., sodium dodecyl sulfate, etc.), sodium alkyldiphenyletherdisulfonate, sodium polyoxyethylene alkylether sulfate, sodium dialkylsulfosuccinate, sodium alkylarylsulfosuccinate, sodium N-lauroylsarcosine, sodium polyoxyethylene alkylphenylether sulfate, sodium (meth)acryloylpolyoxyalkylene sulfate, alkyl alcohol phosphates, and bile salts (e.g., sodium cholate, sodium deoxycholate, etc.), with preferred examples being bile salts such as sodium cholate.
  • alkylbenzenesulfonates e.g., sodium dodecyl
  • the surfactant is preferably a bile salt, more preferably sodium deoxycholate, and even more preferably sodium taurodeoxycholate.
  • sodium taurodeoxycholate is particularly preferred in order to suppress the occurrence of defects and obtain a CNT dispersion and composite fibrous structure in which the CNTs are uniformly dispersed while maintaining their length.
  • Cationic surfactants include tetraalkylammonium halides, alkylpyridinium halides, and alkylimidazoline halides.
  • Amphoteric surfactants include alkylbetaines, alkylimidazolinium betaines, and lecithin.
  • Aromatic ring-containing compounds include naphthalene derivatives, anthracene derivatives, tetracene derivatives, phenanthrene derivatives, pyrene derivatives, acridine-containing compounds, and isoalloxazine-containing compounds.
  • Organic solvents include lower alcohols such as ethanol, methanol, propanol, and isopropanol; ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK); ethers such as tetrahydrofuran and dioxane; esters such as propylene carbonate; amides such as DMF, acetamide, formamide, dimethylacetamide, and N-methylpyrrolidone; glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin; alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; dimethyl sulfoxide; and acetonitrile.
  • lower alcohols such as ethanol, methanol, propanol, and isopropanol
  • ketones such as acetone, methyl ethyl
  • Ionic liquids are salts composed of anions and cations, and have a melting point of 100°C or less.
  • Examples include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium diethylphosphate, and 1-ethyl-3-methylimidazolium acetate, piperidinium salts such as 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, ammonium salts such as tetrabutylammonium acetate, phosphonium salts such as tributyl(ethyl)phosphonium diethylphosphate, pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, and sulfonium salts such as triethylsulfonium bis(trifluoromethanesul
  • the amount of carbon nanomaterial in the carbon nanomaterial dispersion is preferably 0.1% by mass to 20% by mass, more preferably 0.1% by mass to 15% by mass, and even more preferably 0.2% by mass to 10% by mass.
  • the amount of dispersant in the carbon nanomaterial dispersion is preferably 0.2% by mass to 20% by mass, more preferably 0.3% by mass to 16% by mass, and even more preferably 0.5% by mass to 10% by mass.
  • the organic polymer can be dissolved in a solvent containing water, an organic solvent, or an ionic liquid.
  • the organic solvent include lower alcohols such as ethanol, methanol, propanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK), ethers such as tetrahydrofuran and dioxane, amides such as dimethylformamide, acetamide, formamide, dimethylacetamide, and N-methylpyrrolidone, glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, dimethyl sulfoxide, and acetonitrile.
  • lower alcohols such as ethanol, methanol, propanol, and isoprop
  • Ionic liquids include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium diethyl phosphate, and 1-ethyl-3-methylimidazolium acetate; piperidinium salts such as 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide; ammonium salts such as tetrabutylammonium acetate; phosphonium salts such as tributyl(ethyl)phosphonium diethylphosphate; pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide; and sulfonium salts such as triethylsulfonium bis(trifluoromethanesulfonyl)imide. Any combination of cations and anions can be used.
  • the solvent for dissolving the organic polymer may contain any substance, such as inorganic or organic substances, either alone or in combination.
  • examples include hydroxides of alkali metals, alkaline earth metals, and transition metals, and preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, copper hydroxide, etc.
  • Salts include alkali metal salts, alkaline earth metal salts, and transition metal salts, more preferably sodium salts, potassium salts, lithium salts, calcium salts, magnesium salts, barium salts, strontium salts, and copper salts, and even more preferably sodium salts, calcium salts, magnesium salts, and copper salts.
  • Anions of salts include chloride ions, fluoride ions, bromide ions, iodide ions, sulfate ions, sulfite ions, phosphate ions, nitrate ions, nitrite ions, methanesulfonate ions, benzenesulfonate ions, toluenesulfonate ions, citrate ions, oxalate ions, malate ions, tartrate ions, maleate ions, fumarate ions, and acetate ions.
  • Preferred salts include sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, etc.
  • viscose method dissolution system cuprammonium method dissolution system, 4-methylmorpholine N-oxide/water system, dimethyl sulfoxide/carbon disulfide/amine system, dimethylformamide/dinitrogen tetroxide system, dimethyl sulfoxide/paraformaldehyde system, dimethylformamide/chloral/pyridine system, N-ethylpyridinium chloride system, dimethylacetamide/lithium chloride system, hydrazine system, trifluoroacetic acid/dichloromethane system, formic acid/lithium chloride system, urea/sodium hydroxide/water system, liquid ammonia/ammonium thiocyanate system, calcium thiocyanate/water system, zinc chloride/water system, dimethylformamide/sulfur trioxide system, sulfuric acid aqueous solution system, sulfuric acid/polyphosphoric acid/water system
  • a viscose method dissolution system In the manufacturing method of the fibrous structure, a viscose method dissolution system, a cuprammonium method dissolution system, a sulfuric acid/water system, a sulfuric acid/polyphosphoric acid/water system, or a caustic soda/water system is preferably used. More preferred are a viscose method dissolution system, a cuprammonium method dissolution system, and a caustic soda/water system. Most preferred is a cuprammonium method dissolution system.
  • the concentration of each component in the solvent that dissolves the organic polymer is determined by the combination of the solvent, additive, and organic polymer, and each can be set to any desired concentration.
  • the amount of organic polymer in the organic polymer solution is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and even more preferably 5% by mass or more and 15% by mass or less.
  • the mixing conditions preferably satisfy all conditions selected from the group consisting of oxygen concentration, degree of vacuum (pressure), and liquid temperature (temperature of the mixed liquid).
  • the oxygen concentration is preferably 1000 ppm or less.
  • the degree of vacuum is preferably -0.1 MPa or more and -0.01 MPa or less.
  • the liquid temperature is preferably 20°C to 40°C.
  • the mass ratio of the carbon nanomaterial dispersion liquid to the organic polymer solution when mixed is preferably 0.1:1 to 15:1, more preferably 0.1:1 to 10:1, and even more preferably 0.1:1 to 5:1.
  • mass ratio within the above range, it is easier to uniformly disperse the carbon nanomaterial in the obtained fiber structure.
  • concentration of the carbon nanomaterial in the carbon nanomaterial dispersion liquid and the concentration of the organic polymer in the organic polymer solution are adjusted to one of the preferred ranges mentioned above, and that the mass ratio of the carbon nanomaterial dispersion liquid to the organic polymer solution is within the above range.
  • the concentration of the organic polymer contained in the mixed dispersion is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.5% by mass or more and 15% by mass or less, even more preferably 1% by mass or more and 12.5% by mass or less, and even more preferably 1.5% by mass or more and 10.5% by mass or less, based on the total mass of the mixed dispersion.
  • the concentration of the carbon nanomaterial contained in the mixed dispersion is preferably 0.1% by mass or more and 50% by mass or less, based on the total mass of the mixed dispersion.
  • the lower limit of the concentration of the carbon nanomaterial contained in the mixed dispersion may be, for example, 0.5% by mass or more, 1.0% by mass or more, 3.0% by mass or more, or 5.0% by mass or more.
  • the upper limit of the concentration of the carbon nanomaterial that can be combined with these lower limits may be, for example, 40% by mass or less, 30% by mass or less, 20% by mass or less, or 10% by mass or less.
  • concentration of carbon nanomaterial contained in the mixed dispersion is correlated with the carbon nanomaterial residual index in the fibrous structure, and the mass percentage of carbon nanomaterial relative to the total mass of the fibrous structure can be calculated by multiplying the carbon nanomaterial residual index by 0.71.
  • ⁇ Spinning process> By wet spinning the mixed dispersion, organic polymer fibers containing carbon nanomaterials can be obtained.
  • the mixed dispersion is discharged from a syringe, spinneret, or the like into a coagulation bath in a spinning process, and a composite gel containing a carbon nanomaterial and an organic polymer in the form of a thread (hereinafter simply referred to as a "composite gel").
  • composite gel a composite gel containing a carbon nanomaterial and an organic polymer in the form of a thread
  • the diameter of the syringe, spinneret, or the like when discharging is preferably 5 ⁇ m or more and 5000 ⁇ m or less, more preferably 10 ⁇ m or more and 3000 ⁇ m or less, and even more preferably 15 ⁇ m or more and 1000 ⁇ m or less.
  • the dispersion is discharged directly from the spinneret into the coagulation bath in the direction of gravity or in a direction perpendicular to gravity, and the direction is changed by a change roll or a change rod, and the composite gel is continuously pulled up from the coagulation bath by a rotating roll such as a Nelson roll.
  • the syringe or spinneret When discharged in the direction of gravity, it may also be discharged from the spinneret into the coagulation bath through the air.
  • the syringe or spinneret is immersed in the bottom of the coagulation bath and the gel is discharged in the direction of a rotating roll that pulls the gel out of the coagulation bath.
  • it is preferable that the fibrous composite gel is continuously pulled out of the coagulation bath so that it does not slacken. In some cases, the gel is stretched in the coagulation bath.
  • the solvent for the coagulation bath is preferably water. Acids and salts may be added to the water used for the coagulation bath. If the organic polymer species, which is one of the elements constituting the fibrous structure, does not contain acids or salts, the fibrous composite gel cannot be in a coagulated state in which it can be continuously pulled up from the coagulation bath without loosening.
  • acids include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as carboxylic acids such as formic acid, acetic acid, benzoic acid, citric acid, and oxalic acid, and sulfonic acids such as toluenesulfonic acid.
  • the salts may be either inorganic salts or organic salts, but inorganic salts are preferred.
  • the salts are water-soluble.
  • the salts are preferably alkali metal salts and alkaline earth metal salts, more preferably sodium salts, potassium salts, lithium salts, calcium salts, magnesium salts, barium salts, and strontium salts, and even more preferably sodium salts, calcium salts, and magnesium salts.
  • anions of salts include chloride ions, fluoride ions, bromide ions, iodide ions, sulfate ions, sulfite ions, phosphate ions, nitrate ions, nitrite ions, methanesulfonate ions, benzenesulfonate ions, toluenesulfonate ions, citrate ions, oxalate ions, malate ions, tartrate ions, maleate ions, fumarate ions, and acetate ions.
  • Preferred salts include sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, sodium acetate, calcium acetate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, etc.
  • the solvent of the coagulation bath may be an organic solvent.
  • the organic solvent in the coagulation bath is preferably an organic solvent miscible with water, and examples of the organic solvent include lower alcohols such as ethanol, methanol, propanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK), ethers such as tetrahydrofuran and dioxane, esters such as propylene carbonate, amides such as dimethylformamide, acetamide, formamide, dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone, glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, dimethyl
  • the concentration of the salts added to the coagulation bath is preferably 0% by mass or more and 40% by mass or less, preferably 0% by mass or more and 35% by mass or less, and more preferably about 0% by mass or less and 30% by mass or less.
  • the salts are dissolved in the coagulation bath either alone or in combination of two or more types of salts.
  • the temperature of the coagulation bath it is determined by the combination of salts and salt concentrations so that the fibrous composite gel is in a coagulated state in which it can be continuously pulled out of the coagulation bath without loosening. 5°C to 80°C is preferable in terms of ease of temperature control.
  • the immersion time of the extruded composite gel in the coagulation bath varies depending on the conditions of the coagulation bath, and there are no particular limitations as long as the fibrous composite gel is in a coagulated state in which it can be continuously pulled out of the coagulation bath without loosening.
  • the coagulation bath may be a stationary bath or a flowing bath using a tube, etc.
  • the fibrous composite gel removed from the coagulation bath can be further immersed in water or the same organic solvent as used in the coagulation bath to wash away surfactants, transition metals, and salts.
  • transition metals it is preferable to wash using an acid with a pH of 3 or less.
  • the temperature of the water or organic solvent in this washing step can be, for example, 5°C to 80°C, and preferably about room temperature.
  • the immersion time can be, for example, 2 hours or more, and preferably 24 hours or more.
  • This water immersion step results in fibers containing carbon nanomaterials from which appropriate amounts of surfactant, or surfactant, transition metal, and salts have been removed.
  • the fibrous composite gel may be subjected to the next stretching step in a wet state.
  • the stretching is performed between rotating rolls such as Nelson rolls, and stretching is performed by varying the rotation speed.
  • the stretching ratio is preferably about 5% to 500%, more preferably about 10% to 300%.
  • the alignment of the carbon nanomaterial in the fibrous structure in the fiber axis direction and the orientation of the organic polymer are promoted, improving the electrical and mechanical properties.
  • the obtained fiber may be washed with water or the same organic solvent as used in the coagulation bath, if necessary. After washing, the obtained fiber can be dried to obtain a fiber containing a carbon nanomaterial. When drying, the obtained fiber may be heated, if necessary.
  • the heating temperature may be determined according to the type of organic polymer, and is not limited, but when polysaccharides are used, it may be, for example, 100°C to 300°C, or 150°C to 250°C.
  • CNTs with a diameter of 5 nm or less The content of CNTs with a diameter of 5 nm or less in the CNTs was observed at 200,000 to 1,000,000 times magnification, which allows the diameter of a single CNT to be measured by image analysis using a transmission electron microscope. 100 locations where the CNT bundles were loosened and single CNTs were present were selected from the field of view, and the diameters of the 100 CNTs were evaluated using image analysis software. The content (%) of CNTs with a diameter of 5 nm or less was measured by measuring the number of CNTs with a diameter of 5 nm or less.
  • the single yarn fineness and the total fineness were measured as follows. That is, the spun fibrous structure was left to stand in an environment of 23°C and 50.5% RH for 24 hours or more, and then a 10 m sample was measured. The weight of the sample was measured using a precision balance (XPE205) manufactured by METTLER TOLEDO. The single yarn fineness and the total fineness were measured by calculating the weight per 10,000 m from the weight.
  • the specific conductivity was calculated from the resistance value obtained from the current-voltage slope and the weight of the fibrous structure using a four-terminal method. 100 test pieces were taken from the fibrous structure, and repeated measurements were performed using a measuring tool with a fixed terminal distance of 5.6 cm, a potentio/galvanostat (manufactured by Biologic, SP-50), to obtain a resistance value. The linear resistance (resistance per cm) was calculated using the obtained resistance value and the value of the distance between the terminals of the measuring tool, and the reciprocal of the linear resistance was calculated by taking the reciprocal.
  • the weight of the fibrous structure per 10 m was measured using a precision balance (manufactured by METTLER TOLEDO, XPE205), and the weight per cm was calculated from the weight and length.
  • the specific conductivity was calculated by dividing the weight per cm from the reciprocal of the linear resistance.
  • the resistance value at 1 cm between the terminals was calculated using a resistance meter (HIOKI Corporation, RM3544).
  • the linear resistance was calculated as 35 M ⁇ or more, and the specific conductivity was quantified as a value obtained by dividing the reciprocal of the linear resistance of 35 M ⁇ by the mass per cm.
  • the carbon nanomaterial dispersion region is calculated from the scanning electron microscope (SEM) image of the fiber cross section obtained in the previous section. In the region where the carbon nanomaterial is not sufficiently dispersed, charging occurs due to the organic polymer, which is an insulator, and the region appears dark in the electron microscope image. On the other hand, the fiber cross section of the region where the carbon nanomaterial is sufficiently dispersed (carbon nanomaterial dispersion region) appears bright. Therefore, the proportion of the carbon nanomaterial dispersion region can be calculated from the area ratio of the bright part to the fiber cross section area in the electron microscope image.
  • the measurement conditions for the electron microscope image were: no conductive treatment of the cross section, acceleration voltage: 1 to 5 kV, emission current: 20 ⁇ A, working distance: 7 to 9 mm, detector: upper detector, measurement magnification: 250 times to 1000 times.
  • the measurement magnification may be appropriately adjusted so that contrast is obtained according to the thickness of the fibrous structure.
  • the ratio of the carbon nanomaterial dispersion region is calculated from the scanning electron microscope image of the fiber cross section obtained above. OpenCV was used for image processing in calculating the ratio.
  • the Canny method was applied, and then the contour with the largest area was extracted. At that time, the contour was corrected by a closing process to prevent it from being interrupted. (0, 100) was input for (threshold1, threshold2), which are options of the Canny method.
  • the outer region of the contour was masked with the minimum brightness value in the image for the original electron microscope image, and the circumscribed rectangular region of the contour was trimmed.
  • Figure 1b is an example of an image obtained by binarizing an electron microscope image of a fiber cross section of an embodiment of the present disclosure
  • Figure 2b is an example of an image obtained by binarizing an electron microscope image of a fiber cross section of a comparative example.
  • the number of pixels within the outline of the fiber cross section corresponds to the "area of the fiber cross section," and the number of pixels in the white area after binarization corresponds to the "area of the carbon nanomaterial dispersed area,” so the proportion of the carbon nanomaterial dispersed area can be calculated using the following formula.
  • Percentage of carbon nanomaterial dispersion region (%) 100 x (area of carbon nanomaterial dispersion region) / (area of fiber cross section)
  • the above calculation of the proportion of the carbon nanomaterial-dispersed region was carried out for 10 test pieces, and the average value was taken as the proportion of the carbon nanomaterial-dispersed region.
  • the fibrous structure was dried in an oven (AVO-250SB, AS ONE Corporation) at 105°C in air for 5 hours, and then its weight was measured using a precision balance (XPE205, METTLER TOLEDO). After the weight was measured, the structure was immersed in 95% sulfuric acid in air at room temperature for 72 hours. After the sulfuric acid immersion, water replacement and water immersion were performed, and the structure was dried in an oven at 105°C in air for 5 hours, and the weight of the fibrous structure was measured.
  • Carbon nanomaterial content carbon nanomaterial residual index ⁇ 0.71 It is defined by:
  • the breaking strength was measured in accordance with the test method for tensile strength and elongation of JIS L 1013. More specifically, stress-strain measurement was performed, and the strength (cN/dtex) was calculated from the stress at the cutting position and the fineness. The elongation is the elongation (%) at break.
  • Example 1 5 g of Tuball-CNT (manufactured by OCSiAl, Tuball, hereinafter also referred to as Tuball-CNT) and 10 g of sodium taurodeoxycholate (manufactured by Sigma-Aldrich, also referred to as TDOC) as a dispersant were added to 985 g of water, and dispersion was performed for 10 hours using an in-line mixer (manufactured by IKA, magic LAB).
  • Tuball-CNT manufactured by OCSiAl, Tuball, hereinafter also referred to as Tuball-CNT
  • TDOC sodium taurodeoxycholate
  • Tuball-CNT dispersion liquid with a weight concentration of Tuball-CNT of 0.5% by mass.
  • Copper hydroxide was dissolved in a 6.1% by mass ammonia aqueous solution so that the copper component was 3.6% by mass, and cellulose was added thereto so that the content was 10.15% by mass, and kneaded to prepare a cuprammonium cellulose solution.
  • the above-mentioned Tuball-CNT dispersion and cuprammonium cellulose solution were mixed in a mass ratio (mass of Tuball-CNT dispersion:mass of cuprammonium cellulose solution) of 1:4, with a Tuball-CNT concentration of 1.22 mass% relative to cellulose, and then poured into the flask.
  • the flask was adjusted to -0.08 MPa and 30°C, and the mixture was kneaded with a helical ribbon impeller for 5 hours, then left to stand for 10 hours to degas, yielding a uniform Tuball-CNT/cuprammonium cellulose dispersion.
  • This Tuball-CNT/cuprammonium cellulose dispersion was used for wet spinning.
  • the spinneret had a hole diameter of 0.2 mm and 10 holes, and the dispersion was discharged in the direction of gravity at a discharge rate of 0.72 ml/min while the spinneret was immersed in a coagulation bath filled with 40°C warm water.
  • the yarn was turned using a rotating roll in the warm water, and then pulled out of the water bath using a rotating roll running at 9 m/min.
  • a cleaning process was performed by running the yarn through a 2.0% by mass sulfuric acid bath at 40°C and then a water bath at 40°C.
  • the obtained coagulated yarn was then dried using a dryer at 200°C and wound up at a speed of 10 m/min to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 2 Dispersion was performed in the same manner as in Example 1, except that 10 g of Tuball-CNT and 20 g of TDOC were added to 970 g of water, to obtain a Tuball-CNT dispersion with a weight concentration of Tuball-CNT of 1.0 mass%.
  • the Tuball-CNT dispersion and the cuprammonium cellulose solution were blended so that the Tuball-CNT concentration relative to cellulose was 2.40 mass%, and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT dispersion/cuprammonium cellulose dispersion.
  • Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 3 A Tuball-CNT dispersion concentrated to 2.0% by mass was blended with a cuprammonium cellulose solution so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 4.69% by mass, and the mixture was kneaded in the same manner as in Example 1. Except for this, a Tuball-CNT/cellulose composite fiber was obtained in the same manner as in Example 1.
  • Example 4 A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 16.46% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 5 A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 22.81% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 6 A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 28.27% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 7 A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 37.15% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 8 Zeonano-CNT/cellulose composite fibers were obtained in the same manner as in Example 1, except that the raw material used was changed to CNT produced by the super-growth method (Zeonano, manufactured by Zeon Corporation; hereinafter, also referred to as Zeonano-CNT) and the concentration of Zeonano-CNT relative to cellulose was changed to 0.54 mass%.
  • Example 9 A Zeonano-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 1, except that the raw material used was changed to Zeonano-CNT. Spinning was performed under the same conditions as in Example 1 to obtain Zeonano-CNT/cellulose composite fibers.
  • Example 10 Except for changing the raw material used to CNTs produced by the improved direct injection pyrolysis synthesis method (eDIPS method) (manufactured by Meijo Nano Carbon Co., Ltd., EC-DX2P, hereinafter also referred to as eDIPS-CNT), an eDIPS-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 1. Spinning was performed under the same conditions as in Example 1 to obtain eDIPS-CNT/cellulose composite fibers.
  • eDIPS method improved direct injection pyrolysis synthesis method
  • Example 11 Except for changing the raw material to eDIPS-CNT, an eDIPS-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 2. Spinning was performed under the same conditions as in Example 1 to obtain an eDIPS-CNT/cellulose composite fiber.
  • Example 12 The raw material used was changed to eDIPS-CNT, and the eDIPS-CNT dispersion concentrated to 1.0% by mass was blended with a cuprammonium cellulose solution so that the eDIPS-CNT concentration relative to cellulose was 49.63% by mass, and kneaded under the same conditions as in Example 1 to obtain an eDIPS-CNT/cuprammonium cellulose dispersion.
  • the obtained eDIPS-CNT/cuprammonium cellulose dispersion was packed into a syringe, and then coagulated into a filamentous form by discharging it laterally into pure water at 40 ° C.
  • a high-pressure microfeeder manufactured by Sanyo Technos Co., Ltd., JP-HR
  • the speed of the winding device was set at a rotation speed of 12 m/min so that the coagulated yarn did not loosen, and the coagulated yarn was pulled up from the pure water at 40 ° C. and wound up.
  • the coagulated yarn was immersed in 5.0% by mass dilute sulfuric acid using a feed roller to remove the copper components, and then immersed in a water tank, and pulled out of the water using a winding device and dried to obtain an eDIPS-CNT/cellulose composite fiber.
  • Example 13 Sodium carboxymethylcellulose (manufactured by Fujifilm Wako Pure Chemical Industries, product code: 039-01335, hereinafter also referred to as CMC) was dissolved in pure water to a concentration of 10.0% by mass to prepare a 10.0% by mass CMC solution.
  • a 1.0% by mass eDIPS-CNT dispersion prepared in the same manner as in Example 1 was blended into the 10.0% by mass CMC aqueous solution so that the eDIPS-CNT concentration relative to the CMC was 23.08% by mass, and the mixture was kneaded under the same conditions as in Example 1 to obtain an eDIPS-CNT/CMC dispersion.
  • a high-pressure microfeeder JP-HR, manufactured by Sanyo Technos Co., Ltd.
  • JP-HR high-pressure microfeeder
  • a one-hole injection spinning nozzle with an inner diameter of 0.3 mm was used to eject the dispersion laterally into ethanol at an ejection rate of 1.10 ml/min, solidifying it into a filamentous form.
  • the filamentous filament was then pulled out of the ethanol and dried at a winding speed of 12 m/min to prevent it from loosening, yielding an eDIPS-CNT/CMC composite fiber.
  • Example 14 A 10.0 mass% CMC aqueous solution and a 1.0 mass% eDIPS-CNT dispersion were blended and kneaded so that the eDIPS-CNT concentration relative to the CMC in Example 13 was 37.50 mass%, and then the mixture was coagulated into a thread-like form by extruding laterally into ethanol at a discharge rate of 0.90 ml/min. The coagulated thread was then pulled up from the ethanol at a winding speed of 12 m/min so as not to loosen, and dried to obtain an eDIPS-CNT/CMC composite fiber.
  • Example 15 A cuprammonium curdlan solution was prepared in the same manner as in Example 1, except that the organic polymer was curdlan (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). The eDIPS-CNT dispersion concentrated to 3.0 mass% was kneaded in the same manner as in Example 1 to obtain an eDIPS-CNT/cellulose dispersion. The obtained eDIPS-CNT dispersion was spun under the same conditions as in Example 12, except that the discharge speed was 1.30 ml/min and the take-up speed was 10 m/min, to obtain an eDIPS-CNT/cellulose composite fiber.
  • Example 16 Sodium alginate (Nacalai Tesque, Inc., 300 cps) was dissolved in pure water to a concentration of 10.0% by mass to prepare a 10.0% by mass sodium alginate solution.
  • a 1.0% by mass eDIPS-CNT dispersion prepared in the same manner as in Example 1 was kneaded with the 10.0% by mass sodium alginate solution for 5 minutes using a planetary centrifugal mixer (Thinky Corporation, Awatori Rentaro ARE-310) so that the eDIPS-CNT concentration relative to the sodium alginate was 9.09% by mass, thereby obtaining an eDIPS-CNT/sodium alginate solution.
  • a high-pressure microfeeder JP-HR, manufactured by Sanyo Technos Co., Ltd.
  • JP-HR high-pressure microfeeder
  • a one-hole injection spinning nozzle with an inner diameter of 0.3 mm
  • the speed of the winding device was set at a rotation speed of 10 m/min so as not to loosen the solidified thread, and the solidified thread was pulled up from the 5% by mass aqueous calcium chloride solution and wound up.
  • the solidified thread was then immersed in pure water using a feed roller to remove the calcium chloride component, and then pulled up from the water using a winding device and dried, yielding an eDIPS-CNT/alginate composite fiber.
  • Example 17 The same procedure as in Example 16 was carried out except that the eDIPS-CNT was kneaded so that the concentration of the eDIPS-CNT relative to the sodium alginate in Example 16 was 16.67 mass %, to obtain eDIPS-CNT/alginic acid composite fibers.
  • Example 18 The same procedure as in Example 16 was carried out except that the eDIPS-CNT concentration relative to the sodium alginate in Example 16 was 23.08 mass %, and eDIPS-CNT/alginic acid composite fibers were obtained.
  • Example 19 Except for changing the dispersant in Example 7 from TDOC to sodium deoxycholate (Sigma-Aldrich, also referred to as DOC) and blending so that the Tuball-CNT concentration relative to the cellulose was 22.81% by mass, kneading was performed in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. The obtained Tuball-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 12 to obtain a Tuball-CNT/cellulose composite fiber.
  • TDOC sodium deoxycholate
  • DOC sodium deoxycholate
  • Example 20 Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to ethanol.
  • Example 21 Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to dimethyl sulfoxide.
  • Example 22 Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to 1,3-dimethyl-2-imidazolidinone.
  • Example 23 Except for changing the dispersant in Example 7 from TDOC to DOC and blending so that the Tuball-CNT concentration relative to the cellulose was 37.15% by mass, kneading was performed in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. The obtained Tuball-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 19 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 24 Except for changing the raw material of Example 7 to multi-walled CNT Jeno6A (manufactured by JEIO, hereinafter also referred to as Jeno6A-CNT) and blending so that the concentration of Jeno6A-CNT relative to cellulose was 22.81% by mass, kneading was performed in the same manner as in Example 1 to obtain a Jeno6A-CNT/cuprammonium cellulose dispersion. The obtained Jeno6A-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 19 to obtain a Jeno6A-CNT/cellulose composite fiber.
  • Jeno6A-CNT manufactured by JEIO, hereinafter also referred to as Jeno6A-CNT
  • Example 1 A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -1.5 MPa and 30°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 2 A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -0.08 MPa and 5°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Example 3 A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -0.08 MPa and 60°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
  • Comparative Example 4 A dispersion was produced and spun under the same conditions as in Comparative Example 1, except that the step of mixing the Tuball-CNT dispersion and the cuprammonium cellulose solution was carried out in air, to obtain a Tuball-CNT/cellulose composite fiber.
  • Comparative Example 5 A dispersion was produced and spun under the same conditions as in Comparative Example 3, except that the raw material used was changed to eDIPS-CNT, to obtain eDIPS-CNT/cellulose composite fibers.
  • the speed of the winding device was set at a rotation speed of 8 m/min so that the solidified yarn would not loosen, and the solidified yarn was pulled up from the 30% by mass NMMO aqueous solution and wound up.
  • the solidified yarn was then immersed in pure water using a feed roller to remove the NMMO component, and the yarn was then pulled up from the water using a winding device and dried to obtain an eDIPS-CNT/cellulose composite fiber.
  • the 0.2% by mass eDIPS-CNT/3% by mass curdlan/DMSO solution was loaded into a syringe, and a one-hole injection spinning nozzle with an inner diameter of 0.3 mm was attached. Then, using a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.), the solution was discharged laterally into pure water at a discharge speed of 1.3 m/min to solidify it into a thread-like shape. The speed of the winding device was set at a rotation speed of 7 m/min so that the solidified thread would not loosen, and the solidified thread was pulled out of the pure water and dried to obtain an eDIPS-CNT/curdlan composite fiber.
  • JP-HR high-pressure microfeeder
  • FIG. 1A is an electron microscope image of the entire cross section of a fibrous structure of an embodiment of the present disclosure
  • Figure 2A is an electron microscope image of the entire cross section of a fibrous structure of a comparative example
  • Figures 1B and 2B are images obtained by binarizing the electron microscope images of Figures 1A and 2A.
  • the fibrous structure of the present disclosure has a uniform CNT network structure
  • the fibrous structure of the comparative example has a non-uniform distribution of carbon nanomaterial non-dispersed regions (10) where there is relatively little or no carbon nanomaterial, and carbon nanomaterial dispersed regions (20) where there is relatively more carbon nanomaterial than the carbon nanomaterial non-dispersed regions (10).
  • Table 5 shows the relationship between the CNT concentration calculated from the CNT loading amount and the carbon nanomaterial residual index. As a result, it was found that there is a correlation between the CNT concentration and the carbon nanomaterial residual index, and that the mass percentage of CNT relative to the total amount of fiber can be calculated by multiplying the carbon nanomaterial residual index by 0.71.
  • the fibrous structure disclosed herein has a wide range of electrical conductivity and is uniform in the longitudinal direction, making it suitable for use as electrodes for acquiring bioelectric potentials such as electrocardiograms, electromyograms, and electroencephalograms in smart textiles, electrodes for electrical stimulation, wiring for wearables, heaters, stretch sensors, temperature and humidity sensors, electromagnetic shielding, antistatic, filters, etc.
  • bioelectric potentials such as electrocardiograms, electromyograms, and electroencephalograms in smart textiles
  • electrodes for electrical stimulation such as electrocardiograms, electromyograms, and electroencephalograms in smart textiles, electrodes for electrical stimulation, wiring for wearables, heaters, stretch sensors, temperature and humidity sensors, electromagnetic shielding, antistatic, filters, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

According to the present disclosure, provided are: a fibrous structure comprising a carbon nanomaterial and an organic polymer, the fibrous structure having a wide range of conductivity with little variation in conductivity along the longitudinal direction of fibers; and a method for manufacturing same. This fibrous structure comprises an organic polymer and a carbon nanomaterial dispersed in the organic polymer. The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide. The content of the carbon nanomaterial is 0.05-50 mass% on the basis of the total mass of the fibrous structure. In addition, when the cross section of the fibrous structure is observed using a scanning electron microscope (SEM) and the observed image is binarized by the Otsu method, the proportion of the area displayed as a bright part is at least 85% of the entire cross section of the fibrous structure.

Description

炭素ナノ材料と有機高分子を含む繊維状構造物及びその製造方法Fibrous structure containing carbon nanomaterial and organic polymer and method for producing same
 本開示は、炭素ナノ材料と有機高分子を含む繊維状構造物及びその製造方法に関する。本国際出願は、2023年1月24日に出願した日本国特許出願第2023-008492号に基づく優先権を主張するものであり、当該日本国特許出願の全内容を本国際出願に援用する。 This disclosure relates to a fibrous structure containing a carbon nanomaterial and an organic polymer, and a method for producing the same. This international application claims priority to Japanese Patent Application No. 2023-008492, filed on January 24, 2023, and the entire contents of said Japanese patent application are incorporated herein by reference.
 導電繊維を使用したスマートテキスタイル、例えば、ウェアラブル配線、伸縮センサ、ヒーターなどが数多く提案されており、これまでにスマートテキスタイル用に様々な導電繊維が報告されている。 Many smart textiles using conductive fibers have been proposed, such as wearable wiring, stretchable sensors, and heaters, and various conductive fibers have been reported for use in smart textiles.
 例えば、以下の特許文献1では、洗濯耐久性を有する導電繊維を製造するために、炭素ナノ材料である多層CNTをセルロース溶液へ高濃度に分散し、湿式紡糸法により繊維化することで導電繊維を製造している。 For example, in the following Patent Document 1, multi-walled CNTs, which are carbon nanomaterials, are dispersed in a cellulose solution at high concentrations and then turned into fibers by a wet spinning method to produce conductive fibers that are wash-resistant.
 以下の特許文献2、特許文献3、及び特許文献4では、セルロース繊維の機械的特性の改善を目的として、セルロース溶液中に炭素ナノ材料である単層CNTを分散し、これを湿式紡糸することでCNT/セルロース複合繊維を作製している。 In the following Patent Documents 2, 3, and 4, single-walled CNTs, which are carbon nanomaterials, are dispersed in a cellulose solution and then wet-spun to produce CNT/cellulose composite fibers, with the aim of improving the mechanical properties of cellulose fibers.
特開2017-160562号公報JP 2017-160562 A 特開2015-105441号公報JP 2015-105441 A 特開2021-21151号公報JP 2021-21151 A 特開2011-208327号公報JP 2011-208327 A
 ところで、スマートテキスタイルは用途に応じて必要な電気特性が異なるため、用途に合わせて電気特性を制御できる導電繊維を選択する必要があり、幅広い導電率を有し、かつ、繊維の長手方向の導電率のばらつきの少ない導電繊維が求められている。 However, since the electrical properties required for smart textiles vary depending on the application, it is necessary to select conductive fibers whose electrical properties can be controlled according to the application. There is therefore a demand for conductive fibers that have a wide range of electrical conductivity and little variation in electrical conductivity in the longitudinal direction of the fiber.
 しかしながら、特許文献1では、セルロースの溶解と多層CNTの分散を同時に行っているために、溶液中でセルロースの未溶解物や多層CNTの分散不良が発生し、CNTの分散性や均一性が低下することで、繊維の長手方向の導電性にばらつきが生じている。 However, in Patent Document 1, because the cellulose is dissolved and the multi-walled CNTs are dispersed simultaneously, undissolved cellulose and poor dispersion of the multi-walled CNTs occur in the solution, reducing the dispersibility and uniformity of the CNTs and causing variations in the electrical conductivity of the fibers in the longitudinal direction.
 特許文献2~4に記載されている有機溶媒やイオン液体を用いたセルロース溶液とCNT分散液の混練では、混練時にCNTの凝集が発生しやすいため、対セルロース比でCNT成分は低濃度にとどまっている。そのため、特許文献2~4ではCNT/セルロース複合繊維の強度の向上は見られるものの、導電性には言及されていない。 In the kneading of a cellulose solution and a CNT dispersion using an organic solvent or ionic liquid as described in Patent Documents 2 to 4, the CNTs tend to aggregate during kneading, so the CNT component remains at a low concentration relative to the cellulose. Therefore, although Patent Documents 2 to 4 show an improvement in the strength of the CNT/cellulose composite fiber, they do not mention electrical conductivity.
 上記の従来技術においては、任意の濃度の炭素ナノ材料が均一に分散した有機高分子溶液を得ることができないために、繊維状構造物中の有機高分子マトリックス内における炭素ナノ材料のネットワーク構造が不均一となり、導電性が低い、もしくは長手方向の導電性のばらつきの大きい繊維状構造物しか得られていない。 In the above-mentioned conventional techniques, it is not possible to obtain an organic polymer solution in which a carbon nanomaterial is uniformly dispersed at any concentration, and therefore the network structure of the carbon nanomaterial in the organic polymer matrix of the fibrous structure becomes non-uniform, resulting in only fibrous structures with low electrical conductivity or large variations in electrical conductivity in the longitudinal direction.
 したがって、かかる従来技術の水準に鑑み、本開示は、幅広い導電率を有し、繊維の長手方向の導電率のばらつきが少ない、炭素ナノ材料及び有機高分子を含む繊維状構造物、及びその製造方法を提供することを目的の一つとする。 Therefore, in view of the state of the prior art, one of the objectives of the present disclosure is to provide a fibrous structure containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity in the longitudinal direction of the fiber, and a method for producing the same.
 本開示の実施形態の例を、以下の項目[1]~[11]に列記する。
[1]
 有機高分子と、前記有機高分子中に分散した炭素ナノ材料とを含む、繊維状構造物であって、
 上記炭素ナノ材料は、カーボンナノチューブ、グラフェン、及び酸化グラフェンからなる群から選択される少なくとも1種であり、
 上記炭素ナノ材料の含有率が、上記繊維状構造物の全質量を基準として、0.05質量%以上50質量%以下であり、
 上記繊維状構造物の断面を、走査型電子顕微鏡(SEM)を用いて以下の測定条件で観察し、観察画像をOtsu法により二値化処理したとき、明部として表示される炭素ナノ材料分散領域の割合が、上記繊維状構造物の断面全体の85%以上であり、上記測定条件は、断面の導電処理:なし、加速電圧:1~5kV、及び検出器:上方検出器とする、繊維状構造物。
[2]
 上記明部として表示される領域の割合が95%以上である、項目1に記載の繊維状構造物。
[3]
 有機高分子と、上記有機高分子中に分散した炭素ナノ材料とを含む、繊維状構造物であって、
 上記炭素ナノ材料は、カーボンナノチューブ、グラフェン、及び酸化グラフェンからなる群から選択される少なくとも1種であり、
 上記炭素ナノ材料の含有率が、上記繊維状構造物の全質量を基準として、0.05質量%以上50質量%以下であり、
 比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ、長手方向1cmあたりの線抵抗変動係数が10%以下である、繊維状構造物。
[4]
 比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ、長手方向1cmあたりの線抵抗変動係数が10%以下である、項目1又は2に記載の繊維状構造物。
[5]
 上記炭素ナノ材料がカーボンナノチューブである、項目1~4のいずれか一項に記載の繊維状構造物。
[6]
 上記有機高分子が多糖類である、項目1~5のいずれか一項に記載の繊維状構造物。
[7]
 上記炭素ナノ材料がカーボンナノチューブであり、上記有機高分子が多糖類である、項目1~6のいずれか一項に記載の繊維状構造物。
[8]
 繊維状構造物の製造方法であって、上記方法は、以下の工程:
 炭素ナノ材料が水に分散された炭素ナノ材料分散液を準備する工程と;
 有機高分子溶液を準備する工程と;
 上記炭素ナノ材料分散液と上記有機高分子溶液を、酸素濃度1000ppm以下、減圧度-0.1MPa~-0.01MPa、液温20℃~40℃の範囲で混合して、炭素ナノ材料及び有機高分子を含有する混合分散液を調製する工程と;
 得られた上記混合分散液を、液中にて湿式紡糸し、酸及び水を用いて洗浄することで溶剤成分を除去して、炭素ナノ材料を含有する有機高分子繊維を得る工程と;
 得られた上記有機高分子繊維を乾燥して、繊維状構造物を得る工程と;
を含む、繊維状構造物の製造方法。
[9]
 上記混合分散液を調製する工程において、上記炭素ナノ材料分散液と上記有機高分子溶液の質量比(炭素ナノ材料分散液の質量:有機高分子溶液の質量)が、0.1:1~15:1である、項目8に記載の繊維状構造物の製造方法。
[10]
 上記繊維状構造物は、その断面を、走査型電子顕微鏡(SEM)を用いて以下の測定条件で観察し、観察画像をOtsu法により二値化処理したとき、明部として表示される領域の割合が、上記繊維状構造物の断面全体の85%以上であり、上記測定条件は、断面の導電処理:なし、加速電圧:1~5kV、及び検出器:上方検出器とする、項目8又は9に記載の繊維状構造物の製造方法。
[11]
 上記繊維状構造物は、比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ長手方向1cmあたりの線抵抗変動係数が10%以下である、項目8~10のいずれか一項に記載の繊維状構造物の製造方法。
Examples of embodiments of the present disclosure are listed in the following items [1] to [11].
[1]
A fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
The content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure,
A fibrous structure, wherein the cross section of the fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions, and when the observed image is binarized using the Otsu method, the proportion of carbon nanomaterial dispersion regions displayed as bright areas is 85% or more of the entire cross section of the fibrous structure, and the measurement conditions are as follows: no conductive treatment of the cross section, acceleration voltage: 1 to 5 kV, and detector: upper detector.
[2]
2. The fibrous structure according to item 1, wherein the ratio of the area displayed as the bright portion is 95% or more.
[3]
A fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
The content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure,
A fibrous structure having a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
[4]
3. A fibrous structure according to item 1 or 2, having a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
[5]
5. The fibrous structure according to any one of items 1 to 4, wherein the carbon nanomaterial is a carbon nanotube.
[6]
The fibrous structure according to any one of items 1 to 5, wherein the organic polymer is a polysaccharide.
[7]
7. The fibrous structure according to any one of items 1 to 6, wherein the carbon nanomaterial is a carbon nanotube and the organic polymer is a polysaccharide.
[8]
A method for producing a fibrous structure, the method comprising the steps of:
A step of preparing a carbon nanomaterial dispersion in which a carbon nanomaterial is dispersed in water;
Providing an organic polymer solution;
mixing the carbon nanomaterial dispersion liquid and the organic polymer solution at an oxygen concentration of 1000 ppm or less, a reduced pressure of −0.1 MPa to −0.01 MPa, and a liquid temperature of 20° C. to 40° C. to prepare a mixed dispersion liquid containing a carbon nanomaterial and an organic polymer;
a step of wet-spinning the obtained mixed dispersion in a liquid, and removing the solvent component by washing with an acid and water to obtain an organic polymer fiber containing a carbon nanomaterial;
A step of drying the obtained organic polymer fiber to obtain a fibrous structure;
A method for producing a fibrous structure comprising the steps of:
[9]
Item 9. The method for producing a fibrous structure according to item 8, wherein in the step of preparing the mixed dispersion, the mass ratio of the carbon nanomaterial dispersion to the organic polymer solution (mass of the carbon nanomaterial dispersion:mass of the organic polymer solution) is 0.1:1 to 15:1.
[10]
The method for producing a fibrous structure according to item 8 or 9, wherein when a cross section of the fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions, and the observed image is binarized by the Otsu method, the ratio of the area displayed as a bright area is 85% or more of the entire cross section of the fibrous structure, and the measurement conditions are: no conductive treatment of the cross section, an acceleration voltage of 1 to 5 kV, and a detector using an upper detector.
[11]
11. The method for producing a fibrous structure according to any one of items 8 to 10, wherein the fibrous structure has a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
 本開示によれば、幅広い導電率を有し、繊維の長手方向の導電率のばらつきが少ない、炭素ナノ材料及び有機高分子を含む複合繊維、及びその製造方法が提供される。 The present disclosure provides a composite fiber containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity along the length of the fiber, and a method for producing the same.
図1は、本開示の繊維状構造物(繊維)の断面における均一なCNTネットワーク構造の一例を示す電子顕微鏡撮影像である。図1Aは、繊維状構造物断面全体の電子顕微鏡撮影像である。1A and 1B are electron microscope images showing an example of a uniform CNT network structure in a cross section of a fibrous structure (fiber) according to the present disclosure. Fig. 1A is an electron microscope image of the entire cross section of the fibrous structure. 図1Bは、図1Aの電子顕微鏡撮影像を二値化処理した画像である。FIG. 1B is an image obtained by binarizing the electron micrograph of FIG. 1A. 図2は、比較例の繊維状構造物(繊維)の断面における不均一なCNTネットワーク構造の一例を示す電子顕微鏡撮影像である。図2Aは、繊維状構造物断面全体の電子顕微鏡撮影像である。Fig. 2 is an electron microscope image showing an example of a non-uniform CNT network structure in a cross section of a fibrous structure (fiber) of a comparative example. Fig. 2A is an electron microscope image of the entire cross section of the fibrous structure. 図2Bは、図2Aの電子顕微鏡撮影像を二値化処理した画像である。FIG. 2B is an image obtained by binarizing the electron micrograph image of FIG. 2A.
《繊維状構造物》
 本開示の繊維状構造物は、有機高分子と、上記有機高分子中に分散した炭素ナノ材料とを含む。本開示において、「繊維状構造物」とは、その構造物の長軸方向と短軸方向の比(長軸方向長さ/短軸方向長さ)が1000以上であるものをいう。具体的には、連続長繊維、短繊維である。炭素ナノ材料は、カーボンナノチューブ、グラフェン、及び酸化グラフェンからなる群から選択される少なくとも1種である。繊維状構造物は、該繊維状構造物の全質量を基準として、炭素ナノ材料を0.05質量%以上50質量%以下含有する。一態様において、繊維状構造物の比導電率(specific conductivity)は、0.01Scm/g以上2500Scm/g以下であり、かつ、繊維状構造物の長手方向1cmあたりの線抵抗変動係数変動係数は、10%以下である。本開示の繊維状構造物は、上記構成を有することにより、幅広い導電率を有し、繊維の長手方向の導電率のばらつきが少ない、炭素ナノ材料及び有機高分子を含む複合繊維を提供することができる。
<<Fibrous Structure>>
The fibrous structure of the present disclosure includes an organic polymer and a carbon nanomaterial dispersed in the organic polymer. In the present disclosure, the term "fibrous structure" refers to a structure having a ratio of the long axis direction to the short axis direction (long axis length/short axis length) of 1000 or more. Specifically, it is a continuous long fiber or a short fiber. The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide. The fibrous structure contains 0.05% by mass or more and 50% by mass or less of the carbon nanomaterial based on the total mass of the fibrous structure. In one embodiment, the specific conductivity of the fibrous structure is 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and the linear resistance variation coefficient per 1 cm in the longitudinal direction of the fibrous structure is 10% or less. By having the above-mentioned configuration, the fibrous structure of the present disclosure can provide a composite fiber containing a carbon nanomaterial and an organic polymer, which has a wide range of electrical conductivity and little variation in electrical conductivity in the longitudinal direction of the fiber.
 一態様において、本開示の繊維状構造物は、幅広い導電率を有し、かつ、長手方向の導電率のばらつきが小さい繊維状構造物を得るという観点から、繊維状構造物の断面における、炭素ナノ材料の存在量がそれ以外の領域における存在量より相対的に多い領域(以下、(本開示において、「炭素ナノ材料分散領域」という。)の割合が85%以上であり、好ましくは90%以上、より好ましくは95%以上である。これらの下限値と任意に組み合わせることのできる炭素ナノ材料分散領域の上限値は、限定されないが、100%以下、100%未満、又は99.9%以下であってよい。本開示において、「炭素ナノ材料分散領域」とは、繊維状構造物の断面を、走査型電子顕微鏡(SEM)を用いて以下の測定条件で観察し、観察画像をOtsu法により二値化処理したとき、明部として表示される領域を指す。測定条件とは、断面の導電処理:なし、加速電圧:1~5kV、及び検出器:上方検出器とする。炭素ナノ材料分散領域の割合は、繊維構造体中の有機高分子マトリックス内で形成される炭素ナノ材料のネットワークの均一性を示す指標であり、炭素ナノ材料分散領域の割合が高いほど、炭素ナノ材料が均一に分散していることを示す。本願発明者らは、ナノ材料を任意の濃度で均一に有機高分子溶液に分散させ、繊維中の有機高分子マトリックス内で炭素ナノ材料のネットワークを均一に構築し、上記「炭素ナノ材料分散領域」の割合を85%以上とする手法を見いだした。それにより、従来技術では達成することができなかった、様々な炭素ナノ材料の濃度で幅広い導電率を有し、かつ、長手方向の導電率のばらつきが小さい繊維状構造物を得ることに初めて成功した。 In one aspect, from the viewpoint of obtaining a fibrous structure having a wide range of electrical conductivity and small variation in electrical conductivity in the longitudinal direction, the proportion of regions in the cross section of the fibrous structure where the amount of carbon nanomaterial is relatively greater than the amount in other regions (hereinafter, in this disclosure, referred to as "carbon nanomaterial dispersion regions") is 85% or more, preferably 90% or more, and more preferably 95% or more. The upper limit of the carbon nanomaterial dispersion region that can be arbitrarily combined with these lower limit values is not limited, but may be 100% or less, less than 100%, or 99.9% or less. In this disclosure, a "carbon nanomaterial dispersion region" refers to a region that is displayed as a bright area when the cross section of a fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions and the observed image is binarized using the Otsu method. The measurement conditions are: no conductive treatment of the cross section, acceleration voltage: 1-5 kV, and detector: upper detector. The proportion of the carbon nanomaterial dispersion region is an index showing the uniformity of the carbon nanomaterial network formed in the organic polymer matrix in the fiber structure, and the higher the proportion of the carbon nanomaterial dispersion region, the more uniformly the carbon nanomaterial is dispersed. The inventors of the present application have found a method for uniformly dispersing nanomaterials in an organic polymer solution at any concentration, uniformly constructing a carbon nanomaterial network in the organic polymer matrix in the fiber, and making the proportion of the "carbon nanomaterial dispersion region" 85% or more. As a result, they have succeeded for the first time in obtaining a fibrous structure that has a wide range of electrical conductivity at various carbon nanomaterial concentrations and has small longitudinal electrical conductivity variation, which was not possible with conventional technology.
〈炭素ナノ材料〉
 グラフェンとは、炭素-炭素間のsp2結合による六員環が2次元シート状に敷き詰められた構造を有する炭素系材料である。グラフェンは、一般的に、特異な導電特性や光学特性を持ち、さらに、軽量性、高強度、高弾性率を併せ持つ材料である。グラフェンは、酸化グラフェンであってもよい。酸化グラフェンは、グラフェンを酸化させたものであり、一般的に、ヒドロキシル基、カルボキシル基、及びエポキシ基等の官能基を有しており、水や極性有機溶媒に対する分散性が高い。
Carbon nanomaterials
Graphene is a carbon-based material having a structure in which six-membered rings formed by sp2 bonds between carbon and carbon are laid out in a two-dimensional sheet shape. Graphene generally has unique conductive properties and optical properties, and is also a material that is lightweight, has high strength, and has a high elastic modulus. Graphene may be graphene oxide. Graphene oxide is obtained by oxidizing graphene, and generally has functional groups such as hydroxyl groups, carboxyl groups, and epoxy groups, and has high dispersibility in water and polar organic solvents.
 カーボンナノチューブ(CNT)は、グラフェンシートを筒形に巻いた形状を有する炭素系材料である。CNTとしては、様々な種類のものが知られているが、例えば、その周壁の構成数から単層カーボンナノチューブ(Single Wall Carbon Nanotube: SWCNT)、二層カーボンナノチューブ(Double Wall Carbon Nanotube: DWCNT)、及び三層以上の多層カーボンナノチューブ(Multi Wall Carbon Nanotube: MWCNT)とに大別される。また、グラフェンシートの構造の違いから、カイラル(らせん)型、ジグザグ型、及びアームチェア型に分けられる。尚、個々のCNT自体の物性としては、凡そ、強度150GPa、導電率100,000S/cm以上、ヤング率0.9TPa、熱伝導特性3,000W/m・Kといわれている。 Carbon nanotubes (CNTs) are carbon-based materials that have a cylindrical shape made of graphene sheets. Various types of CNTs are known, but they can be broadly classified into single-wall carbon nanotubes (SWCNTs), double-wall carbon nanotubes (DWCNTs), and multi-wall carbon nanotubes (MWCNTs) with three or more walls, based on the number of walls that they have. They can also be classified into chiral (spiral) type, zigzag type, and armchair type, based on the structure of the graphene sheets. The physical properties of individual CNTs themselves are said to be approximately 150 GPa in strength, 100,000 S/cm or more in electrical conductivity, 0.9 TPa in Young's modulus, and 3,000 W/mK in thermal conductivity.
 炭素ナノ材料のうちでより好ましいものとして、カーボンナノチューブが挙げられる。カーボンナノチューブは繊維状の形状であることからカーボンナノチューブ間のネットワーク構造(CNTネットワーク)を形成しやすく、高い導電率や強度が得られる傾向にある。炭素ナノ材料は、カーボンナノチューブに加えて、グラフェン及び/又は酸化グラフェンを更に含んでもよい。 Among the carbon nanomaterials, carbon nanotubes are preferred. Because carbon nanotubes have a fibrous shape, they tend to form a network structure (CNT network) between carbon nanotubes, which tends to provide high electrical conductivity and strength. In addition to carbon nanotubes, the carbon nanomaterial may further contain graphene and/or graphene oxide.
 カーボンナノチューブとしては、所謂CNTと称されるものであれば、いずれのタイプのCNTを用いてもよい。例えば、三層以上の多層カーボンナノチューブ(MWCNT)を含有していても、高い導電率及び比導電率を達成することができる。カーボンナノチューブとして、より好ましくは、単層カーボンナノチューブ(SWCNT)、及び二層カーボンナノチューブ(DWCNT)からなる群から選択される少なくとも一つである。SWCNT及び/又はDWCNTを原料として用いることで、より高い導電率の繊維状構造物を得ることができる。SWCNT及びDWCNTの直径は、好ましくは5nm以下である。より高い導電率の繊維状構造物を得る観点から、CNTにおける直径が5nm以下であるCNTの比率は、好ましくは50%以上、より好ましくは70%以上、更に好ましくは80%以上、更に好ましくは90%以上であり、100%であってもよい。 As the carbon nanotube, any type of CNT may be used as long as it is so-called CNT. For example, even if it contains multi-walled carbon nanotubes (MWCNT) with three or more walls, high electrical conductivity and specific conductivity can be achieved. More preferably, the carbon nanotube is at least one selected from the group consisting of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT). By using SWCNT and/or DWCNT as raw materials, a fibrous structure with higher electrical conductivity can be obtained. The diameter of SWCNT and DWCNT is preferably 5 nm or less. From the viewpoint of obtaining a fibrous structure with higher electrical conductivity, the ratio of CNTs with a diameter of 5 nm or less in the CNTs is preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and may be 100%.
 炭素ナノ材料の共鳴ラマン散乱測定により得られるスペクトルで、1550~1650cm-1の範囲内で最大のピーク強度をG、1300~1400cm-1の範囲内で最大のピーク強度をDとしたとき、G/Dの比は、好ましくは0.1以上、より好ましくは1以上、更に好ましくは2以上、更に好ましくは10以上、更に好ましくは20以上、更に好ましくは30以上である。当該1550~1650cm-1の範囲内のピークはGバンドと呼ばれ、グラファイト構造に由来するピークであり、1300~1400cm-1の範囲内のピークはDバンドと呼ばれ、グラフェン、酸化グラフェン、又はCNTの格子欠陥に由来するピークである。グラフェン、酸化グラフェン、及びCNT中の欠陥部位の相対的発生率は、G/D比を用いて数値化することができる。G/D比が0.1以上、特に1以上であることは、格子欠陥の少ない高品質のグラフェン、酸化グラフェン又はCNTで構成されることを意味する。特に、G/D比が2以上、さらに10以上、20以上、特に30以上であれば、より高品質のグラフェン、酸化グラフェン、またはCNTで構成され、熱伝導性、電気伝導性、及び耐熱性により優れる。また、グラフェン、酸化グラフェン、およびCNTの製造方法は、特に限定されない。 In a spectrum obtained by resonance Raman scattering measurement of a carbon nanomaterial, when the maximum peak intensity in the range of 1550 to 1650 cm −1 is G and the maximum peak intensity in the range of 1300 to 1400 cm −1 is D, the ratio of G/D is preferably 0.1 or more, more preferably 1 or more, even more preferably 2 or more, even more preferably 10 or more, even more preferably 20 or more, even more preferably 30 or more. The peak in the range of 1550 to 1650 cm −1 is called the G band, which is a peak derived from a graphite structure, and the peak in the range of 1300 to 1400 cm −1 is called the D band, which is a peak derived from lattice defects in graphene, graphene oxide, or CNT. The relative occurrence rate of defective sites in graphene, graphene oxide, and CNT can be quantified using the G/D ratio. A G/D ratio of 0.1 or more, particularly 1 or more, means that the material is composed of high-quality graphene, graphene oxide, or CNT with few lattice defects. In particular, when the G/D ratio is 2 or more, further 10 or more, 20 or more, particularly 30 or more, the graphene, graphene oxide, or CNT is of higher quality, and is more excellent in thermal conductivity, electrical conductivity, and heat resistance. In addition, the manufacturing method of graphene, graphene oxide, and CNT is not particularly limited.
〈有機高分子〉
 有機高分子は、重量平均分子量が1万以上の有機物であることが好ましい。有機高分子の種類は、限定されないが、例えば、多糖類、ポリアミン、ポリアミド、ポリウレタン、ポリエーテル、ナイロン、ビニロン、ポリエステル、ポリエチレンテレフタラート、シリコン樹脂、合成ゴム等の合成高分子、天然ゴム、ポリペプチド、タンパク質、DNA、RNA、リグニン、及びアスファルテン、並びにこれらの共重合体が挙げられる。繊維状構造物は、有機高分子中に、遷移金属及びポスト遷移金属の合計含有量が、繊維状構造物の全質量に対して1,000ppm以下であることが好ましい。但し、繊維状構造物は、有機高分子中に、アルカリ金属、アルカリ土類金属、又はハロゲンを含んでもよい。
<Organic polymers>
The organic polymer is preferably an organic substance having a weight average molecular weight of 10,000 or more. The type of organic polymer is not limited, but examples thereof include synthetic polymers such as polysaccharides, polyamines, polyamides, polyurethanes, polyethers, nylons, vinylons, polyesters, polyethylene terephthalates, silicone resins, synthetic rubbers, natural rubbers, polypeptides, proteins, DNA, RNA, lignin, and asphaltene, as well as copolymers thereof. The fibrous structure is preferably such that the total content of transition metals and post-transition metals in the organic polymer is 1,000 ppm or less relative to the total mass of the fibrous structure. However, the fibrous structure may contain an alkali metal, an alkaline earth metal, or a halogen in the organic polymer.
 エネルギー分散型X線分析(EDX)やCHN分析装置により繊維状構造物を元素分析することによって、金属元素および有機高分子元素の有無を判定することができる。また、有機高分子の化学構造は、溶解性試験、核磁気共鳴(NMR)、赤外吸収スペクトル(IR)、酵素による分解性、色素による染色試験、結晶性、強伸度、及び熱分析等によって同定することができる。 The presence or absence of metal elements and organic polymer elements can be determined by performing elemental analysis of the fibrous structures using energy dispersive X-ray analysis (EDX) or CHN analysis equipment. The chemical structure of organic polymers can also be identified by solubility tests, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), enzymatic decomposition, dyeing tests using dyes, crystallinity, strength and elongation, and thermal analysis, etc.
 有機高分子としては、好ましくは多糖類である。多糖類とは、グルコース等の単糖類がグリコシド結合によって多数結合されている重合体であり、例えば、アミロース、アミロペクチン、セルロース、カードラン、パラミロン、キチン、デキストラン、アガロース、カラギナン、アルギン酸、ヒアルロン酸、α-1,3グルカン、α-1,2-グルカン、β-1,2-グルカン、グルコマンナン、キシラン、及びレバン等が挙げられる。好ましくは、セルロース、カードラン、パラミロン、キチン、アガロース、カラギナン、アルギン酸、及びヒアルロン酸が挙げられる。多糖類としては、水溶性が低く、洗濯耐久性の観点で、カードラン、アルギン酸、及びセルロースが好ましく、セルロースがよりさらに好ましい。 The organic polymer is preferably a polysaccharide. A polysaccharide is a polymer in which a large number of monosaccharides such as glucose are bonded together through glycosidic bonds, and examples of such polysaccharides include amylose, amylopectin, cellulose, curdlan, paramylon, chitin, dextran, agarose, carrageenan, alginic acid, hyaluronic acid, α-1,3-glucan, α-1,2-glucan, β-1,2-glucan, glucomannan, xylan, and levan. Preferred examples include cellulose, curdlan, paramylon, chitin, agarose, carrageenan, alginic acid, and hyaluronic acid. As polysaccharides, curdlan, alginic acid, and cellulose are preferred from the viewpoint of low water solubility and washing durability, and cellulose is even more preferred.
 セルロースとは、多糖類の一種であり、グルコースがβ-1,4-グリコシド結合によって多数直鎖状に結合されている重合体である。セルロースは水溶性が低く、耐水性が高いため、古くから再生繊維や紙などに利用されている。 Cellulose is a type of polysaccharide, a polymer in which many glucose molecules are linked in a linear chain by β-1,4-glycosidic bonds. Cellulose has low water solubility and high water resistance, so it has long been used in recycled fibers and paper.
 本開示において、用語「セルロース」とは、変性していないセルロースと、セルロースを部分的に変性させたもの(変性セルロース)の両方を含む。変性セルロースとは、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、メチルセルロース、エチルセルロース、及びニトロセルロースなどが挙げられる。好ましくはカルボキシメチルセルロース、ヒドロキシプロピルセルロース、及び酢酸セルロースが挙げられ、さらに好ましくはカルボキシメチルセルロース、及び酢酸セルロースが挙げられる。また、水溶性でないという観点から、変性セルロースの置換度は、0.5以下であることが好ましい。有機高分子としては、セルロースに加えて、少量の他の多糖類を含んでもよい。 In this disclosure, the term "cellulose" includes both unmodified cellulose and partially modified cellulose (modified cellulose). Examples of modified cellulose include carboxymethyl cellulose (CMC), hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose butyrate, methyl cellulose, ethyl cellulose, and nitrocellulose. Preferred are carboxymethyl cellulose, hydroxypropyl cellulose, and cellulose acetate, and more preferred are carboxymethyl cellulose and cellulose acetate. In addition, from the viewpoint of being water-insoluble, the degree of substitution of the modified cellulose is preferably 0.5 or less. The organic polymer may contain a small amount of other polysaccharides in addition to cellulose.
 セルロース原料としては、針葉樹パルプ、広葉樹パルプ等のいわゆる木材パルプ、及び非木材パルプが挙げられる。非木材パルプとしては、コットンリンターパルプ等のコットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、及びワラ由来パルプを挙げることができる。コットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、及びワラ由来パルプは各々、コットンリント又はコットンリンター、麻系のアバカ(例えば、エクアドル産又はフィリピン産のものが多い)、ザイサル、バガス、ケナフ、竹、及びワラ等の原料から、蒸解処理による脱リグニン、及びヘミセルロース除去を目的とした精製工程及び漂白工程を経て得られる精製パルプを意味する。この他、海藻由来のセルロース、ホヤセルロース等の精製物もセルロース微細繊維の原料として使用することができる。さらに、再生セルロース繊維のカット糸及びセルロース誘導体繊維のカット糸もセルロース原料として使用でき、また、エレクトロスピニング法により得られた再生セルロース又はセルロース誘導体の極細糸のカット糸も、セルロースとして使用することができる。これらの中でも、コットンリント又はコットンリンター、麻系のアバカ、ザイサル、バガス、ケナフ、竹、及びワラ等に由来した精製パルプが特に好ましい。 Cellulose raw materials include so-called wood pulps such as coniferous pulp and hardwood pulp, and non-wood pulp. Non-wood pulp can include cotton-derived pulp such as cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp. Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp respectively refer to purified pulp obtained from raw materials such as cotton lint or cotton linter, hemp-based abaca (for example, many of which are produced in Ecuador or the Philippines), zaisal, bagasse, kenaf, bamboo, and straw, through delignification by cooking treatment, and a refining process and bleaching process aimed at removing hemicellulose. In addition, refined products such as seaweed-derived cellulose and sea squirt cellulose can also be used as raw materials for cellulose fine fibers. Furthermore, cut yarns of regenerated cellulose fibers and cut yarns of cellulose derivative fibers can also be used as cellulose raw materials, and cut yarns of ultra-fine yarns of regenerated cellulose or cellulose derivatives obtained by electrospinning can also be used as cellulose. Among these, refined pulp derived from cotton lint or cotton linter, hemp-based abaca, zaisal, bagasse, kenaf, bamboo, straw, etc. is particularly preferred.
 セルロース又はセルロース誘導体の断定方法としては、一般的な方法を用いることができる。例えば、XRDやIRによるスペクトル解析する方法が挙げられる。また、セルラーゼで分解させることができれば、セルロース又はセルロース誘導体と断定できる。 General methods can be used to determine whether a material is cellulose or a cellulose derivative. For example, spectral analysis using XRD or IR can be used. Also, if the material can be broken down with cellulase, it can be determined that the material is cellulose or a cellulose derivative.
 繊維状構造物における有機高分子の含有率は、繊維状構造物の全質量を基準として、50質量%以上99.95質量%以下である。有機高分子の含有率の下限値は、好ましくは、60質量%以上、70質量%以上、80質量%以上、又は90質量%以上であってよい。これらの下限値と組み合わせることのできる有機高分子の含有率の上限値は、好ましくは99.9質量%以下、99.5質量%以下、99.0質量%以下、97.0質量%以下、又は95.0質量%以下であってよい。 The organic polymer content in the fibrous structure is 50% by mass or more and 99.95% by mass or less, based on the total mass of the fibrous structure. The lower limit of the organic polymer content may preferably be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. The upper limit of the organic polymer content that can be combined with these lower limits may preferably be 99.9% by mass or less, 99.5% by mass or less, 99.0% by mass or less, 97.0% by mass or less, or 95.0% by mass or less.
〈繊維状構造物の用途〉
 本開示の繊維状構造物は、特定の用途に限定されないが、例えば、スマートテキスタイルの心電、筋電、脳波等の生体電位取得用電極、電気刺激用電極、ウェアラブル用配線、電磁波遮蔽部材、伸縮センサ、湿度センサ、及びヒーター等に好適に用いることができる。「スマートテキスタイル」とは、一般の繊維素材では得られない新しい機能を備えたテキスタイル素材、又は既存の機能を新規の技術で得ることができるテキスタイル素材のことを指す。
<Uses of fibrous structures>
The fibrous structure of the present disclosure is not limited to a specific application, but can be suitably used, for example, as electrodes for acquiring bioelectric potentials such as electrocardiogram, electromyogram, and electroencephalogram in smart textiles, electrodes for electrical stimulation, wiring for wearables, electromagnetic wave shielding members, stretch sensors, humidity sensors, heaters, etc. "Smart textile" refers to a textile material with new functions that cannot be obtained with ordinary fiber materials, or a textile material in which existing functions can be obtained by new technology.
 スマートテキスタイルにおいて、肌に直接触れる場合は、柔軟で伸縮性、通気性を持ったものが好ましく、ウェアラブルの電極、センサ、ヒーターなどがこれに当たる。また、金属アレルギーを引き起こさないために有機高分子電極が好ましい。さらに、洗濯の応力に耐えられる機械的な強度と、洗剤や漂白剤に耐えられる化学的な安定性を有することが好ましい。スマートテキスタイルに用いられる導電繊維の導電性は、用途に応じて要求される値が異なり、導電率を任意の値に制御できることが好ましい。例えば、導電率が低い領域ではヒーター、高い領域では電極やセンサ、更に高い領域では電線などの用途が見込まれている。さらに、長手方向の導電率のばらつきを小さくすることによって、各用途における感度や精度を向上させることが可能な材料が求められている。 When smart textiles come into direct contact with the skin, they are preferably flexible, stretchable, and breathable, such as wearable electrodes, sensors, and heaters. Organic polymer electrodes are also preferred so as not to cause metal allergies. Furthermore, it is preferable for them to have mechanical strength that can withstand the stress of washing, and chemical stability that can withstand detergents and bleaches. The conductivity required for conductive fibers used in smart textiles varies depending on the application, and it is preferable that the conductivity can be controlled to any value. For example, heaters are expected in low conductivity regions, electrodes and sensors in high conductivity regions, and electrical wires in even higher conductivity regions. Furthermore, there is a demand for materials that can improve sensitivity and precision in each application by reducing the variation in conductivity in the longitudinal direction.
〈炭素ナノ材料の含有率〉
 繊維状構造物における炭素ナノ材料の含有率は、繊維状構造物の全質量を基準として、0.05質量%以上50質量%以下である。炭素ナノ材料の含有率の下限値は、好ましくは0.1質量%以上、0.5質量%以上、1.0質量%以上、3.0質量%以上、又は5.0質量%以上であってよい。これらの下限値と組み合わせることのできる炭素ナノ材料の含有率の上限値は、好ましくは、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下であってよい。繊維状構造物がこれらの炭素ナノ材料含有率を有することにより、上述した様々な用途に好適に用いることができる。例えば、ヒーターにおいては、発熱量の観点から炭素ナノ材料含有率が0.05質量%以上であることが好ましい。心電、筋電、脳波等の生体電位取得用電極やウェアラブルの伸縮センサ、湿度センサ等の用途では、センサの精度の観点から炭素ナノ材料含有率が0.5質量%以上25質量%以下であることが好ましい。ウェアラブル用電線用途では、電力損失の観点から炭素ナノ材料含有率が5.0質量%以上50質量%以下であることが好ましい。炭素ナノ材料含有率が50質量%以下であることにより、強度が向上し、製造工程中での単糸切れなどの欠陥が生じにくくなり、導電率が著しく低下、又は長手方向のばらつきが大きくなることが少なく、電気特性が向上する。
<Carbon nanomaterial content>
The content of the carbon nanomaterial in the fibrous structure is 0.05% by mass or more and 50% by mass or less, based on the total mass of the fibrous structure. The lower limit of the carbon nanomaterial content may be preferably 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, 3.0% by mass or more, or 5.0% by mass or more. The upper limit of the carbon nanomaterial content that can be combined with these lower limits may be preferably 40% by mass or less, 30% by mass or less, 20% by mass or less, or 10% by mass or less. By having the fibrous structure have these carbon nanomaterial contents, it can be suitably used in the various applications described above. For example, in a heater, the carbon nanomaterial content is preferably 0.05% by mass or more from the viewpoint of the amount of heat generated. In applications such as electrodes for acquiring bioelectric potentials such as electrocardiograms, electromyograms, and electroencephalograms, wearable stretch sensors, and humidity sensors, the carbon nanomaterial content is preferably 0.5% by mass or more and 25% by mass or less from the viewpoint of sensor accuracy. In terms of power loss, the carbon nanomaterial content is preferably 5.0% by mass or more and 50% by mass or less for wearable electric wire applications. By having the carbon nanomaterial content of 50% by mass or less, the strength is improved, defects such as single yarn breakage during the manufacturing process are unlikely to occur, and electrical conductivity is unlikely to decrease significantly or vary significantly in the longitudinal direction, resulting in improved electrical properties.
〈線抵抗変動係数〉
 繊維状構造物の線抵抗変動係数は、10%以下である。線抵抗変動係数を10%以下とすることで、長手方向の導電率のばらつきが少ない繊維状構造物を得ることができる。繊維状構造物を、例えばヒーターとして使用した際に、局所的な抵抗値のばらつきに起因する発熱のムラを抑えることができる。また、繊維状構造物を、例えば心電、筋電、脳波等の生体電位取得用電極や伸縮センサ、湿度センサ等として使用した場合においては、抵抗値のばらつきに起因するデータのノイズを低減することで、検出感度や精度を向上させることができる。繊維の長手方向の導電率のばらつきはより小さい方がヒーターの発熱の均一性やセンサの精度を向上させることができるため、線抵抗変動係数は、好ましくは8%以下、より好ましくは5%以下、更に好ましくは1%以下である。
<Linear resistance variation coefficient>
The linear resistance variation coefficient of the fibrous structure is 10% or less. By setting the linear resistance variation coefficient to 10% or less, a fibrous structure with small variation in electrical conductivity in the longitudinal direction can be obtained. When the fibrous structure is used as, for example, a heater, uneven heat generation caused by local variation in resistance value can be suppressed. In addition, when the fibrous structure is used as, for example, an electrode for acquiring bioelectric potential such as electrocardiogram, electromyogram, and electroencephalogram, an expansion sensor, a humidity sensor, etc., detection sensitivity and accuracy can be improved by reducing data noise caused by variation in resistance value. Since the smaller the variation in electrical conductivity in the longitudinal direction of the fiber, the more uniform the heat generation of the heater and the accuracy of the sensor can be improved, the linear resistance variation coefficient is preferably 8% or less, more preferably 5% or less, and even more preferably 1% or less.
〈繊度〉
 繊維状構造物は、モノフィラメントであっても、マルチフィラメントであってもよい。繊維状構造物がモノフィラメントである場合、繊度(単糸繊度)は、好ましくは0.5dtex以上500dtex以下、より好ましくは1dtex以上300dtex以下、さらに好ましくは1.5dtex以上200dtex以下である。繊維状構造物がマルチフィラメントである場合、単糸繊度は、好ましくは0.5dtex以上500dtex以下、より好ましくは1dtex以上300dtex以下、さらに好ましくは1.5dtex以上200dtex以下である。モノフィラメント又はマルチフィラメントのいずれの場合であっても、繊維状構造物の単糸繊度が0.5dtex以上500dtex以下であれば、凝固時に単糸の内外が均一に固まることで、長手方向の導電率のばらつきを抑えることがより容易である。
<Fineness>
The fibrous structure may be a monofilament or a multifilament. When the fibrous structure is a monofilament, the fineness (single yarn fineness) is preferably 0.5 dtex or more and 500 dtex or less, more preferably 1 dtex or more and 300 dtex or less, and even more preferably 1.5 dtex or more and 200 dtex or less. When the fibrous structure is a multifilament, the single yarn fineness is preferably 0.5 dtex or more and 500 dtex or less, more preferably 1 dtex or more and 300 dtex or less, and even more preferably 1.5 dtex or more and 200 dtex or less. In either case of a monofilament or a multifilament, if the single yarn fineness of the fibrous structure is 0.5 dtex or more and 500 dtex or less, the inside and outside of the single yarn are uniformly solidified during solidification, and it is easier to suppress the variation in electrical conductivity in the longitudinal direction.
 繊維状構造物がマルチフィラメントである場合、繊維状構造物の総繊度は、好ましくは1.0dtex以上1000dtex以下、より好ましくは5dtex以上1,000dtex以下であり、さらに好ましくは10dtex以上900dtex以下であり、よりさらに好ましくは20dtex以上750dtex以下である。総繊度が1.0dtex以上であると、糸の強力が高く、断線が発生し、導電性が著しく損なわれることが少ない。総繊度が1000dtex以下であると、紡糸性が改善し、糸が走行中に摩擦などで単糸切れを起こしにくくなることで、繊維の長手方向の導電率のばらつきを抑えることがより容易である。尚、モノフィラメントの場合、単糸繊度と総繊度は同じである。 When the fibrous structure is a multifilament, the total fineness of the fibrous structure is preferably 1.0 dtex or more and 1000 dtex or less, more preferably 5 dtex or more and 1,000 dtex or less, even more preferably 10 dtex or more and 900 dtex or less, and even more preferably 20 dtex or more and 750 dtex or less. When the total fineness is 1.0 dtex or more, the strength of the yarn is high and breakage and significant loss of conductivity are unlikely to occur. When the total fineness is 1000 dtex or less, the spinnability is improved and single yarn breakage due to friction during yarn running is unlikely to occur, making it easier to suppress variation in electrical conductivity in the longitudinal direction of the fiber. In the case of a monofilament, the single yarn fineness and the total fineness are the same.
〈比導電率〉
 繊維状構造物の比導電率(specific conductivity)は、好ましくは0.01Scm/g以上2,500Scm/g以下である。比導電率の下限値は、例えば、0.05Scm/g以上、0.1Scm/g以上、0.5Scm/g以上、1.0Scm/g以上、5.0Scm/g以上、10Scm/g以上、50Scm/g以上、100Scm/g以上、200Scm/g以上、300Scm/g以上、400Scm/g以上、500Scm/g以上、1,000Scm/g以上、1,500Scm/g以上、又は2,000Scm/g以上であってよい。これらの下限値と組み合わせることのできる比導電率の上限値は、例えば、2,000Scm/g以下、1,500Scm/g以下、1,000Scm/g以下、500Scm/g以下、400Scm/g以下、300Scm/g以下、200Scm/g以下、100Scm/g以下、50Scm/g以下、10Scm/g以下、5.0Scm/g以下、又は1.0Scm/g以下であってよい。比導電率が0.01Scm/g以上2,500Scm/g以下であることにより、特に、スマートテキスタイルの用途に好適に適用することができる。本開示の繊維状構造物は、好ましくは、炭素ナノ材料を特定範囲の濃度で調整することで、比導電率を広範囲で制御可能であり、かつ、繊維の長手方向へのばらつきが小さいため、電気特性、特に比導電率と変動係数のばらつきとのバランスに優れる。
<Specific Conductivity>
The specific conductivity of the fibrous structure is preferably 0.01 Scm 2 /g or more and 2,500 Scm 2 /g or less. The lower limit of the specific conductivity may be, for example, 0.05 Scm 2 /g or more, 0.1 Scm 2 /g or more, 0.5 Scm 2 /g or more, 1.0 Scm 2 /g or more, 5.0 Scm 2 /g or more, 10 Scm 2 /g or more, 50 Scm 2 /g or more, 100 Scm 2 /g or more, 200 Scm 2 /g or more, 300 Scm 2 /g or more, 400 Scm 2 /g or more, 500 Scm 2 /g or more, 1,000 Scm 2 /g or more, 1,500 Scm 2 /g or more, or 2,000 Scm 2 /g or more. The upper limit of the specific conductivity that can be combined with these lower limit values may be, for example, 2,000 Scm2 /g or less, 1,500 Scm2 /g or less, 1,000 Scm2 /g or less, 500 Scm2 /g or less, 400 Scm2/g or less, 300 Scm2/g or less, 200 Scm2/g or less, 100 Scm2/g or less, 50 Scm2/g or less, 10 Scm2/g or less, 5.0 Scm2 /g or less, or 1.0 Scm2 /g or less. The specific conductivity of 0.01 Scm2 /g or more and 2,500 Scm2 /g or less makes it particularly suitable for use in smart textiles. The fibrous structure of the present disclosure preferably has a wide range of controllable specific conductivity by adjusting the concentration of the carbon nanomaterial within a specific range, and has small variation in the longitudinal direction of the fiber, resulting in an excellent balance of electrical properties, particularly the specific conductivity and the variation in the coefficient of variation.
〈破断強度〉
 繊維状構造物の破断強度は、好ましくは0.1cN/dtex以上10cN/dtex以下が好ましい。破断強度が0.1cN/dtex以上であると製織性及び製編性が良好である。破断強度は、より好ましくは、0.3cN/dtex以上7cN/dtex以下、さらに好ましくは0.4cN/dtex以上5cN/dtex以下である。
<Breaking strength>
The breaking strength of the fibrous structure is preferably 0.1 cN/dtex or more and 10 cN/dtex or less. When the breaking strength is 0.1 cN/dtex or more, the weaving and knitting properties are good. The breaking strength is more preferably 0.3 cN/dtex or more and 7 cN/dtex or less, and even more preferably 0.4 cN/dtex or more and 5 cN/dtex or less.
《繊維状構造物の製造方法》
 繊維状構造物は、炭素ナノ材料を水に分散して炭素ナノ材料の分散液(以下、「炭素ナノ材料分散液」という。)を準備する工程と、有機高分子の溶液(以下、「有機高分子溶液」という。)を準備する工程と、炭素ナノ材料分散液と有機高分子溶液を所定の条件で混合して、炭素ナノ材料及び有機高分子を含有する混合分散液を調整する工程と、混合分散液を湿式紡糸して炭素ナノ材料を含有する有機高分子繊維を得る工程と、上記有機高分子繊維を乾燥して、繊維状構造物を得る工程とを含む。炭素ナノ材料分散液と有機高分子溶液を混合する際の条件としては、限定されないが、酸素濃度、減圧度(圧力)、及び液温(混合液の温度)からなる群から選択される少なくとも一つの条件を制御することが好ましい。例えば、酸素濃度としては、好ましくは1000ppm以下である。減圧度としては、好ましくは、-0.1MPa以上-0.01MPa以下である。そして、液温としては、好ましくは、20℃~40℃である。
<<Method for producing a fibrous structure>>
The fibrous structure includes the steps of dispersing a carbon nanomaterial in water to prepare a dispersion of the carbon nanomaterial (hereinafter referred to as the "carbon nanomaterial dispersion"), preparing a solution of an organic polymer (hereinafter referred to as the "organic polymer solution"), mixing the carbon nanomaterial dispersion and the organic polymer solution under predetermined conditions to prepare a mixed dispersion containing the carbon nanomaterial and the organic polymer, wet-spinning the mixed dispersion to obtain an organic polymer fiber containing the carbon nanomaterial, and drying the organic polymer fiber to obtain a fibrous structure. The conditions for mixing the carbon nanomaterial dispersion and the organic polymer solution are not limited, but it is preferable to control at least one condition selected from the group consisting of oxygen concentration, reduced pressure (pressure), and liquid temperature (temperature of the mixed liquid). For example, the oxygen concentration is preferably 1000 ppm or less. The reduced pressure is preferably -0.1 MPa or more and -0.01 MPa or less. And the liquid temperature is preferably 20°C to 40°C.
 上記工程で得られた繊維状構造物は、均一な炭素ナノ材料のネットワークが構成されており、一態様において、前述の「炭素ナノ材料分散領域」の割合が85%以上となり、一態様において、比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ長手方向1cmあたりの線抵抗変動係数が10%以下となる。本発明者らは、特定の理論に拘束されることは望まないが、上記工程によって、繊維内に均一な炭素ナノ材料のネットワーク構造が形成され、任意の炭素ナノ材料濃度において導電率を発現し、繊維の長手方向にばらつきの小さい導電繊維を得ることができる理由として、以下にように推定している。すなわち、繊維中で任意の濃度の炭素ナノ材料が導電率を均一に発現するためには、炭素ナノ材料ネットワークが繊維中で均一に形成されていることが好ましい。繊維中に均一な高分子マトリックスや炭素ナノ材料ネットワーク以外の異物が含まれると、炭素ナノ材料ネットワークの均一性が低下することで、導電率および導電率の長手方向の均一性を低下させうる。そのため、炭素ナノ材料分散液と有機高分子溶液を混合する工程において、気泡や有機高分子の凝集体などの異物の混入を低減することが重要である。しかしながら、炭素ナノ材料分散液と有機高分子溶液を混合する工程において調整される炭素ナノ材料と有機高分子を含む混合分散液は、液中で形成されている炭素ナノ材料ネットワークと有機高分子によって高い粘性を持つため気泡が混入しやすい。また、溶解系に含まれる成分、例えばアンモニアが揮発する際に、有機高分子凝集体が発生するため、異物を含まない均一な混合分散液を製造することが困難である。この点、本願発明者らは、種々の検討の結果、混練時の酸素濃度、減圧度および温度を調整することで異物が低減された均一な混合分散液を得ることに成功し、得られた混合分散液を湿式紡糸することで均一な導電繊維が得られることを見いだした。混練時の酸素濃度を低減することで酸素による有機高分子の分解を低減し、分解に伴う異物の発生を抑制することができる。減圧度を制御することで、減圧による脱泡を促すとともに、過剰な減圧による溶解系に含まれる成分の揮発を抑制し、凝集体の発生を抑制することができる。混練時の温度を制御することで、溶解系に含まれる成分の揮発を抑制し、有機高分子溶液の粘度を調整することによる脱泡の促進させることができる。 The fibrous structure obtained by the above process is constituted by a uniform carbon nanomaterial network, and in one embodiment, the ratio of the aforementioned "carbon nanomaterial dispersion region" is 85% or more, and in one embodiment, the specific conductivity is 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and the linear resistance variation coefficient per 1 cm in the longitudinal direction is 10% or less. Although the present inventors do not wish to be bound by a specific theory, the present inventors presume that the above process can form a uniform carbon nanomaterial network structure in the fiber, and can obtain a conductive fiber that exhibits conductivity at any carbon nanomaterial concentration and has small variation in the longitudinal direction of the fiber as follows. That is, in order for a carbon nanomaterial of any concentration in the fiber to exhibit uniform conductivity, it is preferable that the carbon nanomaterial network is formed uniformly in the fiber. If foreign matter other than the uniform polymer matrix and carbon nanomaterial network is contained in the fiber, the uniformity of the carbon nanomaterial network is reduced, which can reduce the electrical conductivity and the uniformity of the electrical conductivity in the longitudinal direction. Therefore, in the process of mixing the carbon nanomaterial dispersion liquid and the organic polymer solution, it is important to reduce the inclusion of foreign matter such as air bubbles and aggregates of organic polymers. However, the mixed dispersion liquid containing the carbon nanomaterial and the organic polymer prepared in the process of mixing the carbon nanomaterial dispersion liquid and the organic polymer solution has high viscosity due to the carbon nanomaterial network and the organic polymer formed in the liquid, so air bubbles are likely to be mixed in. In addition, when the components contained in the dissolution system, such as ammonia, volatilize, organic polymer aggregates are generated, making it difficult to manufacture a uniform mixed dispersion liquid that does not contain foreign matter. In this regard, the inventors of the present application, as a result of various studies, have succeeded in obtaining a uniform mixed dispersion liquid in which foreign matter is reduced by adjusting the oxygen concentration, the degree of vacuum, and the temperature during kneading, and have found that uniform conductive fibers can be obtained by wet spinning the obtained mixed dispersion. By reducing the oxygen concentration during kneading, the decomposition of the organic polymer due to oxygen can be reduced, and the generation of foreign matter associated with the decomposition can be suppressed. By controlling the degree of vacuum, defoaming by vacuum can be promoted, and the volatilization of the components contained in the dissolution system due to excessive vacuum can be suppressed, and the generation of aggregates can be suppressed. By controlling the temperature during kneading, it is possible to suppress the volatilization of the components contained in the solution system and to promote degassing by adjusting the viscosity of the organic polymer solution.
 繊維状構造物の製造方法として、好ましくは、以下の工程:
 CNTが水に分散されたCNT分散液を準備する工程と;
 セルロースが銅アンモニアに溶解されたセルロース溶液を準備する工程と;
 該CNT分散液と該セルロース溶液を、酸素濃度1000ppm以下、減圧度-0.1MPa~-0.01MPa、液温20℃~40℃の範囲で混合して、混合分散液を調製する工程と;
 得られたCNT/セルロース分散溶液を、凝固浴である温水中にて湿式紡糸し、酸及び水を用いて洗浄することで銅成分を除去する工程と;
 得られたCNT含有セルロース繊維を高温で乾燥する工程と、を含む。
The method for producing a fibrous structure preferably includes the following steps:
preparing a CNT dispersion in which CNTs are dispersed in water;
preparing a cellulose solution in which cellulose is dissolved in cuprammonium;
mixing the CNT dispersion and the cellulose solution at an oxygen concentration of 1000 ppm or less, a reduced pressure of −0.1 MPa to −0.01 MPa, and a liquid temperature of 20° C. to 40° C. to prepare a mixed dispersion;
A step of wet-spinning the obtained CNT/cellulose dispersion in a warm water coagulation bath and removing the copper component by washing with an acid and water;
and drying the resulting CNT-containing cellulose fibers at an elevated temperature.
〈炭素ナノ材料分散液の調整〉
 炭素ナノ材料は、水又は有機溶媒又はイオン液体を含む溶媒に分散することができる。分散には分散剤を使用してもよい。分散剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、含芳香環化合物のいずれを使用してもよい。
Preparation of Carbon Nanomaterial Dispersion
The carbon nanomaterial can be dispersed in a solvent including water, an organic solvent, or an ionic liquid. A dispersant may be used for the dispersion. As the dispersant, any of a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and an aromatic ring-containing compound may be used.
 ノニオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックコポリマーなどが挙げられ、具体的にはポリ(オキシエチレン)オクチルフェニルエーテル(例えば、Triton(登録商標)X-100)、ポリオキシエチレンソルビタンモノラウラート(例えば、Tween(登録商標)20)などが挙げられる。 Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene polyoxypropylene block copolymers, and more specifically, poly(oxyethylene) octylphenyl ether (e.g., Triton (registered trademark) X-100), polyoxyethylene sorbitan monolaurate (e.g., Tween (registered trademark) 20), and the like.
 アニオン界面活性剤としては、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム等)、アルキルアルコール硫酸エステル塩(例えば、ドデシル硫酸ナトリウム等)、アルキルジフェニルエーテルジスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム、ジアルキルスルホコハク酸ナトリウム、アルキルアリルスルホコハク酸ナトリウム、N-ラウロイルサルコシンナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルナトリウム、(メタ)アクリロイルポリオキシアルキレン硫酸エステルナトリウム、アルキルアルコールリン酸エステル塩、胆汁酸塩(例えば、コール酸ナトリウム、デオキシコール酸ナトリウムなど)が挙げられ、コール酸ナトリウムなどの胆汁酸塩が好ましく例示される。 Anionic surfactants include alkylbenzenesulfonates (e.g., sodium dodecylbenzenesulfonate, etc.), alkyl alcohol sulfates (e.g., sodium dodecyl sulfate, etc.), sodium alkyldiphenyletherdisulfonate, sodium polyoxyethylene alkylether sulfate, sodium dialkylsulfosuccinate, sodium alkylarylsulfosuccinate, sodium N-lauroylsarcosine, sodium polyoxyethylene alkylphenylether sulfate, sodium (meth)acryloylpolyoxyalkylene sulfate, alkyl alcohol phosphates, and bile salts (e.g., sodium cholate, sodium deoxycholate, etc.), with preferred examples being bile salts such as sodium cholate.
 得られる繊維状構造物中に含まれる炭素ナノ材料の欠陥を少なくすることや、繊維構造体中に均一に炭素ナノ材料を分散させることにより、高い機械特性を維持しつつ、導電性を改善する観点で、界面活性剤として、好ましくは胆汁酸塩、より好ましくはデオキシコール酸ナトリウム、更に好ましくはタウロデオキシコール酸ナトリウムである。特にCNTを使用する場合、欠陥の発生を抑え、長さを保持したまま均一に分散したCNT分散液及び複合繊維状構造物を得るためには、タウロデオキシコール酸ナトリウムが特に好ましい。 From the viewpoint of improving electrical conductivity while maintaining high mechanical properties by reducing defects in the carbon nanomaterial contained in the obtained fibrous structure and by dispersing the carbon nanomaterial uniformly in the fibrous structure, the surfactant is preferably a bile salt, more preferably sodium deoxycholate, and even more preferably sodium taurodeoxycholate. In particular, when using CNTs, sodium taurodeoxycholate is particularly preferred in order to suppress the occurrence of defects and obtain a CNT dispersion and composite fibrous structure in which the CNTs are uniformly dispersed while maintaining their length.
 カチオン界面活性剤としては、テトラアルキルアンモニウムハライド、アルキルピリジニウムハライド、アルキルイミダゾリンハライドなどが挙げられる。両性界面活性剤としては、アルキルベタイン、アルキルイミダゾリニウムベタイン、レシチンなどが挙げられる。 Cationic surfactants include tetraalkylammonium halides, alkylpyridinium halides, and alkylimidazoline halides. Amphoteric surfactants include alkylbetaines, alkylimidazolinium betaines, and lecithin.
 含芳香環化合物としては、ナフタレン誘導体、アントラセン誘導体、テトラセン誘導体、フェナントレン誘導体、ピレン誘導体、含アクリジン化合物、含イソアロキサジン化合物などが挙げられる。 Aromatic ring-containing compounds include naphthalene derivatives, anthracene derivatives, tetracene derivatives, phenanthrene derivatives, pyrene derivatives, acridine-containing compounds, and isoalloxazine-containing compounds.
 有機溶媒としては、エタノール、メタノール、プロパノール、イソプロパノール等の低級アルコール、アセトン、メチルエチルケトン、4-メチル-2-ペンタノン(MIBK)などのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、炭酸プロピレンなどのエステル類、DMF、アセトアミド、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリンなどのグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル、ジメチルスルホキシド、アセトニトリルなどが挙げられる。 Organic solvents include lower alcohols such as ethanol, methanol, propanol, and isopropanol; ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK); ethers such as tetrahydrofuran and dioxane; esters such as propylene carbonate; amides such as DMF, acetamide, formamide, dimethylacetamide, and N-methylpyrrolidone; glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin; alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; dimethyl sulfoxide; and acetonitrile.
 イオン液体とはアニオンとカチオンから構成される塩であり、且つ融点が100℃以下のものを指す。例えば、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムジエチルりん酸や1-エチル-3-メチルイミダゾリウムアセタートなどのイミダゾリウム塩、1-ブチル-1-メチルピペリジニウムビス(トリフルオロメタンスルホニル)イミドなどのピペリジニウム塩、テトラブチルアンモニウムアセタートなどのアンモニウム塩、トリブチル(エチル)ホスホニウムジエチルホスファートなどのホスホニウム塩、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミドなどのピロリジニウム塩、トリエチルスルホニウムビス(トリフルオロメタンスルホニル)イミドなどのスルホニウム塩等が挙げられる。 Ionic liquids are salts composed of anions and cations, and have a melting point of 100°C or less. Examples include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium diethylphosphate, and 1-ethyl-3-methylimidazolium acetate, piperidinium salts such as 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, ammonium salts such as tetrabutylammonium acetate, phosphonium salts such as tributyl(ethyl)phosphonium diethylphosphate, pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, and sulfonium salts such as triethylsulfonium bis(trifluoromethanesulfonyl)imide.
 炭素ナノ材料分散液中の炭素ナノ材料の量は、好ましくは0.1質量%以上20質量%以下、より好ましくは0.1以上15質量%以下、さらに好ましくは0.2質量%以上10質量%以下である。炭素ナノ材料分散液中の分散剤の量は、好ましくは0.2質量%以上20質量%以下、より好ましくは0.3以上16質量%以下、さらに好ましくは0.5質量%以上10質量%以下である。 The amount of carbon nanomaterial in the carbon nanomaterial dispersion is preferably 0.1% by mass to 20% by mass, more preferably 0.1% by mass to 15% by mass, and even more preferably 0.2% by mass to 10% by mass. The amount of dispersant in the carbon nanomaterial dispersion is preferably 0.2% by mass to 20% by mass, more preferably 0.3% by mass to 16% by mass, and even more preferably 0.5% by mass to 10% by mass.
〈有機高分子溶液の調整〉
 有機高分子は、水又は有機溶媒又はイオン液体を含む溶媒に溶解することができる。有機溶媒としては、エタノール、メタノール、プロパノール、イソプロパノール等の低級アルコール、アセトン、メチルエチルケトン、4-メチル-2-ペンタノン(MIBK)などのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、ジメチルホルムアミド、アセトアミド、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリンなどのグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル、ジメチルスルホキシド、アセトニトリルなどが挙げられる。
Preparation of organic polymer solutions
The organic polymer can be dissolved in a solvent containing water, an organic solvent, or an ionic liquid. Examples of the organic solvent include lower alcohols such as ethanol, methanol, propanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK), ethers such as tetrahydrofuran and dioxane, amides such as dimethylformamide, acetamide, formamide, dimethylacetamide, and N-methylpyrrolidone, glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, dimethyl sulfoxide, and acetonitrile.
 イオン液体としては、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムジエチルりん酸や1-エチル-3-メチルイミダゾリウムアセタートなどのイミダゾリウム塩、1-ブチル-1-メチルピペリジニウムビス(トリフルオロメタンスルホニル)イミドなどのピペリジニウム塩、テトラブチルアンモニウムアセタートなどのアンモニウム塩、トリブチル(エチル)ホスホニウムジエチルホスファートなどのホスホニウム塩、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミドなどのピロリジニウム塩、トリエチルスルホニウムビス(トリフルオロメタンスルホニル)イミドなどのスルホニウム塩等が挙げられる。また、カチオンとアニオンの組み合わせとしては任意のものを使用することができる。 Ionic liquids include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium diethyl phosphate, and 1-ethyl-3-methylimidazolium acetate; piperidinium salts such as 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide; ammonium salts such as tetrabutylammonium acetate; phosphonium salts such as tributyl(ethyl)phosphonium diethylphosphate; pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide; and sulfonium salts such as triethylsulfonium bis(trifluoromethanesulfonyl)imide. Any combination of cations and anions can be used.
 有機高分子を溶解させる溶媒は、無機物や有機物など任意の物質を単独または複数含有してもよい。例えば、アルカリ金属やアルカリ土類金属、遷移金属の水酸化物が挙げられ、好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化銅などが挙げられる。 The solvent for dissolving the organic polymer may contain any substance, such as inorganic or organic substances, either alone or in combination. Examples include hydroxides of alkali metals, alkaline earth metals, and transition metals, and preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, copper hydroxide, etc.
 塩類としては、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩が挙げられ、より好ましくはナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩、ストロンチウム塩、銅塩が挙げられ、さらに好ましくはナトリウム塩、カルシウム塩、マグネシウム塩、銅塩が挙げられる。塩類のアニオンとしては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、亜硫酸イオン、リン酸イオン、硝酸イオン、亜硝酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、クエン酸イオン、シュウ酸イオン、リンゴ酸イオン、酒石酸イオン、マレイン酸イオン、フマル酸イオン、酢酸イオンなどが挙げられる。 Salts include alkali metal salts, alkaline earth metal salts, and transition metal salts, more preferably sodium salts, potassium salts, lithium salts, calcium salts, magnesium salts, barium salts, strontium salts, and copper salts, and even more preferably sodium salts, calcium salts, magnesium salts, and copper salts. Anions of salts include chloride ions, fluoride ions, bromide ions, iodide ions, sulfate ions, sulfite ions, phosphate ions, nitrate ions, nitrite ions, methanesulfonate ions, benzenesulfonate ions, toluenesulfonate ions, citrate ions, oxalate ions, malate ions, tartrate ions, maleate ions, fumarate ions, and acetate ions.
 好ましい塩類としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化カルシウム、塩化マグネシウム、臭化ナトリウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸マグネシウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウムなどが挙げられる。 Preferred salts include sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, etc.
 また、アンモニア、二硫化炭素、パラホルムアルデヒド、4-メチルモルホリンN-オキシド、四酸化二窒素系、クロラール、ピリジン系、N-エチルピリジニウムクロリド、ヒドラジン、三フッ化酢酸、尿素、チオシアン酸アンモン、チオシアン酸カルシウム、塩化亜鉛、三酸化硫黄、ポリリン酸、及びテトラブチルアンモニウムアセテート系を添加剤として使用することもできる。 Additionally, ammonia, carbon disulfide, paraformaldehyde, 4-methylmorpholine N-oxide, dinitrogen tetroxide, chloral, pyridine, N-ethylpyridinium chloride, hydrazine, trifluoroacetic acid, urea, ammonium thiocyanate, calcium thiocyanate, zinc chloride, sulfur trioxide, polyphosphoric acid, and tetrabutylammonium acetate can also be used as additives.
 特に、セルロースを溶解する溶媒系は一般的に多数知られている。例えば、ビスコース法溶解系、銅アンモニア法溶解系、4-メチルモルホリンN-オキシド/水系、ジメチルスルホキシド/二硫化炭素/アミン系、ジメチルホルムアミド/四酸化二窒素系、ジメチルスルホキシド/パラホルムアルデヒド系、ジメチルホルムアミド/クロラール/ピリジン系、N-エチルピリジニウムクロリド系、ジメチルアセトアミド/塩化リチウム系、ヒドラジン系、三フッ化酢酸/ジクロロメタン系、ギ酸/塩化リチウム系、尿素/水酸化ナトリウム/水系、液安/チオシアン酸アンモン系、チオシアン酸カルシウム/水系、塩化亜鉛/水系、ジメチルホルムアミド/三酸化硫黄系、硫酸水溶液系、硫酸/ポリリン酸/水系、苛性ソーダ/水系、ジメチルスルホキシド/テトラブチルアンモニウムアセテート系、1-エチル-3-メチルイミダゾリウムジエチルりん酸系、1-エチル-3-メチルイミダゾリウムアセタート系などが挙げられる。 In particular, a large number of solvent systems that dissolve cellulose are commonly known. For example, viscose method dissolution system, cuprammonium method dissolution system, 4-methylmorpholine N-oxide/water system, dimethyl sulfoxide/carbon disulfide/amine system, dimethylformamide/dinitrogen tetroxide system, dimethyl sulfoxide/paraformaldehyde system, dimethylformamide/chloral/pyridine system, N-ethylpyridinium chloride system, dimethylacetamide/lithium chloride system, hydrazine system, trifluoroacetic acid/dichloromethane system, formic acid/lithium chloride system, urea/sodium hydroxide/water system, liquid ammonia/ammonium thiocyanate system, calcium thiocyanate/water system, zinc chloride/water system, dimethylformamide/sulfur trioxide system, sulfuric acid aqueous solution system, sulfuric acid/polyphosphoric acid/water system, caustic soda/water system, dimethyl sulfoxide/tetrabutylammonium acetate system, 1-ethyl-3-methylimidazolium diethylphosphate system, 1-ethyl-3-methylimidazolium acetate system, etc.
 繊維状構造物の製造製法においては、好ましくは、ビスコース法溶解系、銅アンモニア法溶解系、硫酸/水系、硫酸/ポリリン酸/水系、苛性ソーダ/水系、が使用される。さらに好ましくはビスコース法溶解系、銅アンモニア法溶解系、苛性ソーダ/水系、が挙げられる。最も好ましくは銅アンモニア法溶解系が挙げられる。 In the manufacturing method of the fibrous structure, a viscose method dissolution system, a cuprammonium method dissolution system, a sulfuric acid/water system, a sulfuric acid/polyphosphoric acid/water system, or a caustic soda/water system is preferably used. More preferred are a viscose method dissolution system, a cuprammonium method dissolution system, and a caustic soda/water system. Most preferred is a cuprammonium method dissolution system.
 有機高分子を溶解する溶媒における各成分の濃度は、溶媒と添加物と有機高分子との組み合わせによって決定され、それぞれ任意の濃度を設定することができる。有機高分子溶液中の有機高分子の量は、好ましくは1質量%以上30質量%以下、より好ましくは3質量%以上20質量%以下、さらに好ましくは5質量%以上15質量%以下である。 The concentration of each component in the solvent that dissolves the organic polymer is determined by the combination of the solvent, additive, and organic polymer, and each can be set to any desired concentration. The amount of organic polymer in the organic polymer solution is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, and even more preferably 5% by mass or more and 15% by mass or less.
〈混合分散液の調整〉
 上記で得られた炭素ナノ材料分散液と有機高分子溶液とを混合することによって、炭素ナノ材料と有機高分子が均一に混練された混合分散液(紡糸原液)を得ることができる。
<Preparation of Mixed Dispersion>
By mixing the carbon nanomaterial dispersion liquid obtained above with an organic polymer solution, a mixed dispersion liquid (spinning dope) in which the carbon nanomaterial and the organic polymer are uniformly kneaded can be obtained.
 混合する際の条件としては、上述したように、酸素濃度、減圧度(圧力)、及び液温(混合液の温度)からなる群から選択される全ての条件を満たしていることが好ましい。例えば、酸素濃度としては、好ましくは1000ppm以下である。減圧度としては、好ましくは、-0.1MPa以上-0.01MPa以下である。そして、液温としては、好ましくは、20℃~40℃である。当該条件の少なくとも一つを満たすことにより、得られる繊維構造体中に均一に炭素ナノ材料を分散させることがより容易である。 As described above, the mixing conditions preferably satisfy all conditions selected from the group consisting of oxygen concentration, degree of vacuum (pressure), and liquid temperature (temperature of the mixed liquid). For example, the oxygen concentration is preferably 1000 ppm or less. The degree of vacuum is preferably -0.1 MPa or more and -0.01 MPa or less. And the liquid temperature is preferably 20°C to 40°C. By satisfying at least one of these conditions, it is easier to uniformly disperse the carbon nanomaterial in the resulting fiber structure.
 混合する際の炭素ナノ材料分散液と有機高分子溶液の質量比(炭素ナノ材料分散液の質量:有機高分子溶液の質量)としては、好ましくは0.1:1~15:1、より好ましくは0.1:1~10:1、更に好ましくは0.1:1~5:1である。当該質量比が上記範囲内であることにより、得られる繊維構造体中に均一に炭素ナノ材料を分散させることがより容易である。同様の観点から、炭素ナノ材料分散液中の炭素ナノ材料の濃度と、有機高分子溶液中の有機高分子の濃度を上述した好ましい範囲のいずれかに調整し、かつ、炭素ナノ材料分散液と有機高分子溶液の質量比が上記範囲内であることがより更に好ましい。 The mass ratio of the carbon nanomaterial dispersion liquid to the organic polymer solution when mixed (mass of carbon nanomaterial dispersion liquid: mass of organic polymer solution) is preferably 0.1:1 to 15:1, more preferably 0.1:1 to 10:1, and even more preferably 0.1:1 to 5:1. By having this mass ratio within the above range, it is easier to uniformly disperse the carbon nanomaterial in the obtained fiber structure. From the same perspective, it is even more preferable that the concentration of the carbon nanomaterial in the carbon nanomaterial dispersion liquid and the concentration of the organic polymer in the organic polymer solution are adjusted to one of the preferred ranges mentioned above, and that the mass ratio of the carbon nanomaterial dispersion liquid to the organic polymer solution is within the above range.
 混合分散液に含まれる有機高分子の濃度は、混合分散液の合計質量を基準として、好ましくは0.1質量%以上20質量%以下、より好ましくは0.5質量%以上15質量%以下、さらに好ましくは1質量%以上12.5質量%以下、より更に好ましくは1.5質量%以上10.5質量%以下である。混合分散液に含まれる炭素ナノ材料の濃度は、混合分散液の合計質量を基準として、好ましくは0.1質量%以上50質量%以下である。混合分散液に含まれる炭素ナノ材料の濃度の下限値は、例えば、0.5質量%以上、1.0質量%以上、3.0質量%以上又は5.0質量%以上であってよい。これらの下限値と組み合わせることのできる炭素ナノ材料の濃度の上限値は、例えば、40質量%以下、30質量%以下、20質量%以下、又は10質量%以下であってよい。なお、混合分散液に含まれる炭素ナノ材料の濃度は、繊維状構造物における炭素ナノ材料残留指数と相関関係があり、炭素ナノ材料残留指数に0.71を乗じることにより繊維状構造物の全質量に対する炭素ナノ材料の質量%を算出できる。 The concentration of the organic polymer contained in the mixed dispersion is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.5% by mass or more and 15% by mass or less, even more preferably 1% by mass or more and 12.5% by mass or less, and even more preferably 1.5% by mass or more and 10.5% by mass or less, based on the total mass of the mixed dispersion. The concentration of the carbon nanomaterial contained in the mixed dispersion is preferably 0.1% by mass or more and 50% by mass or less, based on the total mass of the mixed dispersion. The lower limit of the concentration of the carbon nanomaterial contained in the mixed dispersion may be, for example, 0.5% by mass or more, 1.0% by mass or more, 3.0% by mass or more, or 5.0% by mass or more. The upper limit of the concentration of the carbon nanomaterial that can be combined with these lower limits may be, for example, 40% by mass or less, 30% by mass or less, 20% by mass or less, or 10% by mass or less. The concentration of carbon nanomaterial contained in the mixed dispersion is correlated with the carbon nanomaterial residual index in the fibrous structure, and the mass percentage of carbon nanomaterial relative to the total mass of the fibrous structure can be calculated by multiplying the carbon nanomaterial residual index by 0.71.
〈紡糸工程〉
 混合分散液を湿式紡糸することにより、炭素ナノ材料を含有する有機高分子繊維を得ることができる。典型的には、混合分散液は、紡糸工程によりシリンジ、紡糸口金などから凝固浴中に吐出され、糸の形状の炭素ナノ材料及び有機高分子を含有する複合ゲル(以下、単に「複合ゲル」という。)を得ることができる。紡糸工程では、該複合ゲルが弛まないように該凝固浴から連続的に引き上げることが好ましい。吐出する際のシリンジ、紡糸口金などの口径は、好ましくは5μm以上5000μm以下、より好ましくは10μm以上3000μm以下、さらに好ましくは15μm以上1000μm以下である。この口径を調節することにより、凝固速度や繊維状構造物の径を調節することができる。分散液は重力方向、または、重力と垂直の方向に紡糸口金から直接凝固浴に吐出され、変更ロールや変更棒で方向転換して、ネルソンロールのような回転ロールにより凝固浴から複合ゲルが連続的に引き上げられる。重力方向に吐出される場合、空中を介して紡糸口金から凝固浴に吐出される場合もある。また、シリンジや紡糸口金を凝固浴の底に沈め、凝固浴から引き上げる回転ロール方向に吐出される場合もある。いずれも繊維状の複合ゲルが弛まないように凝固浴から連続的に引き上げられることが好ましい。凝固浴中で延伸される場合もある。
<Spinning process>
By wet spinning the mixed dispersion, organic polymer fibers containing carbon nanomaterials can be obtained. Typically, the mixed dispersion is discharged from a syringe, spinneret, or the like into a coagulation bath in a spinning process, and a composite gel containing a carbon nanomaterial and an organic polymer in the form of a thread (hereinafter simply referred to as a "composite gel"). In the spinning process, it is preferable to continuously pull up the composite gel from the coagulation bath so that it does not slacken. The diameter of the syringe, spinneret, or the like when discharging is preferably 5 μm or more and 5000 μm or less, more preferably 10 μm or more and 3000 μm or less, and even more preferably 15 μm or more and 1000 μm or less. By adjusting this diameter, the coagulation rate and the diameter of the fibrous structure can be adjusted. The dispersion is discharged directly from the spinneret into the coagulation bath in the direction of gravity or in a direction perpendicular to gravity, and the direction is changed by a change roll or a change rod, and the composite gel is continuously pulled up from the coagulation bath by a rotating roll such as a Nelson roll. When discharged in the direction of gravity, it may also be discharged from the spinneret into the coagulation bath through the air. In some cases, the syringe or spinneret is immersed in the bottom of the coagulation bath and the gel is discharged in the direction of a rotating roll that pulls the gel out of the coagulation bath. In either case, it is preferable that the fibrous composite gel is continuously pulled out of the coagulation bath so that it does not slacken. In some cases, the gel is stretched in the coagulation bath.
 凝固浴の溶媒は水であることが好ましい。凝固浴に使用する水には酸類や塩類を添加してもよい。繊維状構造物を構成する要素の一つである有機高分子種によっては酸類や塩類が含まれていない場合、繊維状の複合ゲルが弛まないように凝固浴から連続的に引き上げられる凝固状態とすることができない。酸類としては硫酸、塩酸、硝酸などの無機酸類、ギ酸や酢酸、安息香酸、クエン酸、シュウ酸などのカルボン酸類、トルエンスルホン酸などのスルホン酸類といった有機酸類が挙げられる。塩類は無機塩及び有機塩のいずれでもよいが、無機塩類が好ましい。塩類は水溶性である。塩類は、アルカリ金属塩、アルカリ土類金属塩が好ましく、より好ましくはナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩、ストロンチウム塩が挙げられ、さらに好ましくはナトリウム塩、カルシウム塩、マグネシウム塩が挙げられる。塩類のアニオンとしては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、亜硫酸イオン、リン酸イオン、硝酸イオン、亜硝酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、クエン酸イオン、シュウ酸イオン、リンゴ酸イオン、酒石酸イオン、マレイン酸イオン、フマル酸イオン、酢酸イオンなどが挙げられる。 The solvent for the coagulation bath is preferably water. Acids and salts may be added to the water used for the coagulation bath. If the organic polymer species, which is one of the elements constituting the fibrous structure, does not contain acids or salts, the fibrous composite gel cannot be in a coagulated state in which it can be continuously pulled up from the coagulation bath without loosening. Examples of acids include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, and organic acids such as carboxylic acids such as formic acid, acetic acid, benzoic acid, citric acid, and oxalic acid, and sulfonic acids such as toluenesulfonic acid. The salts may be either inorganic salts or organic salts, but inorganic salts are preferred. The salts are water-soluble. The salts are preferably alkali metal salts and alkaline earth metal salts, more preferably sodium salts, potassium salts, lithium salts, calcium salts, magnesium salts, barium salts, and strontium salts, and even more preferably sodium salts, calcium salts, and magnesium salts. Examples of anions of salts include chloride ions, fluoride ions, bromide ions, iodide ions, sulfate ions, sulfite ions, phosphate ions, nitrate ions, nitrite ions, methanesulfonate ions, benzenesulfonate ions, toluenesulfonate ions, citrate ions, oxalate ions, malate ions, tartrate ions, maleate ions, fumarate ions, and acetate ions.
 好ましい塩類としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化カルシウム、塩化マグネシウム、臭化ナトリウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸マグネシウム、酢酸ナトリウム、酢酸カルシウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸ナトリウム、リン酸一水素二ナトリウム、リン酸二水素一ナトリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウム、リン酸カリウム、リン酸一水素二カリウム、リン酸二水素一カリウムなどが挙げられる。 Preferred salts include sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, sodium acetate, calcium acetate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, sodium phosphate, disodium monohydrogen phosphate, monosodium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, potassium phosphate, dipotassium monohydrogen phosphate, monopotassium dihydrogen phosphate, etc.
 別の態様においては、凝固浴の溶媒は有機溶媒を用いてもよい。凝固浴中の有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、エタノール、メタノール、プロパノール、イソプロパノール等の低級アルコール、アセトン、メチルエチルケトン、4-メチル-2-ペンタノン(MIBK)などのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、炭酸プロピレンなどのエステル類、ジメチルホルムアミド、アセトアミド、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリンなどのグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル、ジメチルスルホキシド、アセトニトリルなどが挙げられる。凝固浴の溶媒は含水有機溶媒が好ましい。有機溶媒を凝固浴とした場合も塩類を凝固浴に添加することができる。 In another embodiment, the solvent of the coagulation bath may be an organic solvent. The organic solvent in the coagulation bath is preferably an organic solvent miscible with water, and examples of the organic solvent include lower alcohols such as ethanol, methanol, propanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and 4-methyl-2-pentanone (MIBK), ethers such as tetrahydrofuran and dioxane, esters such as propylene carbonate, amides such as dimethylformamide, acetamide, formamide, dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone, glycols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and glycerin, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, dimethyl sulfoxide, and acetonitrile. The solvent of the coagulation bath is preferably a water-containing organic solvent. Even when an organic solvent is used as the coagulation bath, salts can be added to the coagulation bath.
 凝固浴に添加する塩類の濃度は、好ましくは0質量%以上40質量%以下、好ましくは0質量%以上35質量%以下、さらに好ましくは0質量%程度30質量%以下である。塩類は単独で又は2種以上の塩類を組み合わせて凝固浴に溶解される。 The concentration of the salts added to the coagulation bath is preferably 0% by mass or more and 40% by mass or less, preferably 0% by mass or more and 35% by mass or less, and more preferably about 0% by mass or less and 30% by mass or less. The salts are dissolved in the coagulation bath either alone or in combination of two or more types of salts.
 凝固浴の温度に特に制限は無いが、繊維状の複合ゲルが弛まないように凝固浴から連続的に引き上げられる凝固状態となるように、塩類と塩類濃度との組合せにより決定される。5℃~80℃が温度制御のし易さの点で好ましい。 There are no particular limitations on the temperature of the coagulation bath, but it is determined by the combination of salts and salt concentrations so that the fibrous composite gel is in a coagulated state in which it can be continuously pulled out of the coagulation bath without loosening. 5°C to 80°C is preferable in terms of ease of temperature control.
 吐出された複合ゲルの凝固浴中での浸漬時間は、凝固浴の条件により異なり、繊維状の複合ゲルが弛まないように凝固浴から連続的に引き上げられる凝固状態となっていれば、特に制限は無い。凝固浴は、静止浴であっても、チューブ等を用いた流動浴であってもよい。 The immersion time of the extruded composite gel in the coagulation bath varies depending on the conditions of the coagulation bath, and there are no particular limitations as long as the fibrous composite gel is in a coagulated state in which it can be continuously pulled out of the coagulation bath without loosening. The coagulation bath may be a stationary bath or a flowing bath using a tube, etc.
 凝固浴から引き上げられた繊維状の複合ゲルは、さらに水や凝固浴に用いたときと同様な有機溶剤に浸漬し、界面活性剤、遷移金属、塩類を洗浄除去することができる。遷移金属を使用した場合は、pH3以下の酸を用いて洗浄することが好ましい。この洗浄工程における水や有機溶剤の温度は特に制限はないが、例えば、5℃~80℃、好ましくは室温程度の温度であることができる。浸漬時間も特に制限はなく、例えば、2時間以上、好ましくは24時間以上であることができる。この水中の浸漬工程により界面活性剤、又は界面活性剤、遷移金属及び、塩類が適量除去された、炭素ナノ材料を含む繊維が得られる。 The fibrous composite gel removed from the coagulation bath can be further immersed in water or the same organic solvent as used in the coagulation bath to wash away surfactants, transition metals, and salts. When transition metals are used, it is preferable to wash using an acid with a pH of 3 or less. There is no particular limit to the temperature of the water or organic solvent in this washing step, but it can be, for example, 5°C to 80°C, and preferably about room temperature. There is also no particular limit to the immersion time, but it can be, for example, 2 hours or more, and preferably 24 hours or more. This water immersion step results in fibers containing carbon nanomaterials from which appropriate amounts of surfactant, or surfactant, transition metal, and salts have been removed.
 繊維状の複合ゲルは湿潤状態で次の延伸工程に供される場合がある。延伸はネルソンロールのような回転ロールと回転ロールの間で行われ、回転速度が異なることにより延伸される。延伸倍率は、好ましくは、5%以上500%以下程度、より好ましくは10%以上300%以下程度である。繊維状構造物内の炭素ナノ材料の繊維軸方向への配列、有機高分子の配向が促進され、電気特性および機械特性向上する。
 延伸倍率は、下記式により定義される。
   延伸倍率(%)=[{(延伸後の長さ)-(延伸前の長さ)}/(延伸前の長さ)]×100
The fibrous composite gel may be subjected to the next stretching step in a wet state. The stretching is performed between rotating rolls such as Nelson rolls, and stretching is performed by varying the rotation speed. The stretching ratio is preferably about 5% to 500%, more preferably about 10% to 300%. The alignment of the carbon nanomaterial in the fibrous structure in the fiber axis direction and the orientation of the organic polymer are promoted, improving the electrical and mechanical properties.
The stretching ratio is defined by the following formula.
Stretching ratio (%)=[(length after stretching)−(length before stretching)}/(length before stretching)]×100
 延伸後は、得られた繊維を必要に応じてさらに水や凝固浴に用いたときと同様の有機溶剤で洗浄してもよい。洗浄後、得られた繊維を乾燥することにより、炭素ナノ材料を含む繊維を得ることができる。乾燥する際は、必要に応じて得られた繊維を加熱してもよい。加熱する際の温度は、有機高分子の種類に応じて決定してよく、限定されないが、多糖類を用いた場合、例えば100℃以上300℃以下、又は150℃以上250℃以下であってよい。 After stretching, the obtained fiber may be washed with water or the same organic solvent as used in the coagulation bath, if necessary. After washing, the obtained fiber can be dried to obtain a fiber containing a carbon nanomaterial. When drying, the obtained fiber may be heated, if necessary. The heating temperature may be determined according to the type of organic polymer, and is not limited, but when polysaccharides are used, it may be, for example, 100°C to 300°C, or 150°C to 250°C.
 以下、本開示の実施例及び比較例を用いて具体的に説明する。尚、本開示は、以下の実施例に限定されるものではない。繊維状構造物の物性測定及び評価方法は、以下のとおりであった。 Below, the present disclosure will be explained in detail using examples and comparative examples. Note that the present disclosure is not limited to the following examples. The physical properties of the fibrous structures were measured and evaluated as follows.
《測定及び評価方法》
[直径5nm以下のCNTの含有率]
 CNTにおける直径5nm以下のCNTの含有率は、透過型電子顕微鏡において画像解析によりCNT1本の直径が測定できる20万倍~100万倍で観察した。視野の中からCNTバンドルがほぐれCNTが1本で存在している100箇所を選定し、100本のCNTについて画像解析ソフトから直径を評価し、直径5nm以下のCNTの本数を測定することで、直径5nm以下のCNTの含有率(%)を測定した。このとき、視野中で1本の状態で存在しているCNTの一部が見えていれば1本と計上し、必ずしも両端(CNTの全体)が見えている必要はない。また、視野中で2本と認識されても、視野外でつながって1本となっていることもあり得るため、その場合は2本と計上する。
Measurement and evaluation methods
[Content of CNTs with a diameter of 5 nm or less]
The content of CNTs with a diameter of 5 nm or less in the CNTs was observed at 200,000 to 1,000,000 times magnification, which allows the diameter of a single CNT to be measured by image analysis using a transmission electron microscope. 100 locations where the CNT bundles were loosened and single CNTs were present were selected from the field of view, and the diameters of the 100 CNTs were evaluated using image analysis software. The content (%) of CNTs with a diameter of 5 nm or less was measured by measuring the number of CNTs with a diameter of 5 nm or less. At this time, if a part of a CNT present in a single state in the field of view is visible, it is counted as one, and it is not necessary that both ends (the entire CNT) are visible. In addition, even if two CNTs are recognized in the field of view, they may be connected outside the field of view to form one CNT, in which case they are counted as two.
[繊度]
 単糸繊度及び総繊度は、以下のように測定した。すなわち、紡糸した繊維状構造物を温度23℃、湿度50.5%RHの環境に24時間以上静置したのち、10mのサンプルを測りとった。サンプルの重量を、METTLER TOLEDO社製精密天秤(XPE205)を使用して測定した。その重量から10,000mあたりの重さを計算することにより、単糸繊度及び総繊度を測定した。
[Fineness]
The single yarn fineness and the total fineness were measured as follows. That is, the spun fibrous structure was left to stand in an environment of 23°C and 50.5% RH for 24 hours or more, and then a 10 m sample was measured. The weight of the sample was measured using a precision balance (XPE205) manufactured by METTLER TOLEDO. The single yarn fineness and the total fineness were measured by calculating the weight per 10,000 m from the weight.
[比導電率及び線抵抗変動係数]
 比導電率は4端子法を用い、繊維状構造物に、所定の電流を印加した際の電圧値の測定を行い、その電流-電圧の傾きから得た抵抗値と繊維状構造物の重量から算出した。繊維状構造物から試験片を100個採取し、端子間の距離が5.6cmに定まっている測定治具、ポテンショ/ガルバノスタット(バイオロジック社製、SP-50)を用いて繰り返し測定を行い、抵抗値を得た。得られた抵抗値、及び測定治具の端子間の距離の値を用いて線抵抗(1cmあたりの抵抗)を算出し、さらにその逆数をとることで線抵抗の逆数を算出した。また、精密天秤(METTLER TOLEDO社製,XPE205)を用い、10m当たりの繊維状構造物の重量を測定し、その重量と長さから1cmあたりの重量を算出した。最後に、線抵抗の逆数から1cmあたりの重量を除することで比導電率を算出した。他方、1cmあたりの抵抗値が10,000Ωを超える高い繊維状構造物の場合は抵抗計(HIOKI社製、RM3544)を用いて端子間1cmでの抵抗値を算出した。1mm当たりの抵抗値が3.5MΩを超える高い繊維状に関しては線抵抗を35MΩ以上として算出し、比導電率は、線抵抗35MΩの逆数から1cm当たりの質量を除した数値以下として、比導電率を数値化した。また、上記のようにして得た100個の試験片の線抵抗の相加平均値と不偏分散から、下記式を用いて繊維の長手方向の線抵抗変動係数を算出した。
 繊維の長手方向の線抵抗変動係数(%)=(V/E)×100
 V:線抵抗の不偏分散の平方根
 E:線抵抗の平均値
[Specific Conductivity and Linear Resistance Variation Coefficient]
The specific conductivity was calculated from the resistance value obtained from the current-voltage slope and the weight of the fibrous structure using a four-terminal method. 100 test pieces were taken from the fibrous structure, and repeated measurements were performed using a measuring tool with a fixed terminal distance of 5.6 cm, a potentio/galvanostat (manufactured by Biologic, SP-50), to obtain a resistance value. The linear resistance (resistance per cm) was calculated using the obtained resistance value and the value of the distance between the terminals of the measuring tool, and the reciprocal of the linear resistance was calculated by taking the reciprocal. In addition, the weight of the fibrous structure per 10 m was measured using a precision balance (manufactured by METTLER TOLEDO, XPE205), and the weight per cm was calculated from the weight and length. Finally, the specific conductivity was calculated by dividing the weight per cm from the reciprocal of the linear resistance. On the other hand, in the case of a high fibrous structure with a resistance value of more than 10,000Ω per cm, the resistance value at 1 cm between the terminals was calculated using a resistance meter (HIOKI Corporation, RM3544). For a high fibrous structure with a resistance value of more than 3.5 MΩ per mm, the linear resistance was calculated as 35 MΩ or more, and the specific conductivity was quantified as a value obtained by dividing the reciprocal of the linear resistance of 35 MΩ by the mass per cm. In addition, the linear resistance variation coefficient in the longitudinal direction of the fiber was calculated using the following formula from the arithmetic mean value and unbiased variance of the linear resistance of 100 test pieces obtained as described above.
Coefficient of variation of linear resistance in the longitudinal direction of fiber (%) = (V/E) x 100
V: Square root of the unbiased variance of the linear resistance E: Average value of the linear resistance
[繊維断面におけるCNTネットワーク構造の観察]
 繊維状構造物の断面構造を走査型電子顕微鏡(日立ハイテク社製、Regulus8220、以下、SEMとも記載。)を用い、CNTネットワーク構造の均一性を確認した。断面出しの手法として、繊維状構造物を液体窒素等で凍結させたのち、ハンマー、刃物等で割断することにより断面出しを実施した。
[Observation of CNT network structure in fiber cross section]
The cross-sectional structure of the fibrous structure was examined using a scanning electron microscope (Regulus 8220, manufactured by Hitachi High-Tech Corporation, hereinafter also referred to as SEM) to confirm the uniformity of the CNT network structure. The cross-section was exposed by freezing the fibrous structure with liquid nitrogen or the like, and then cutting it with a hammer, blade, or the like.
[繊維状構造物の断面における炭素ナノ材料分散領域の割合の算出]
 前項で得られた繊維断面の走査型電子顕微鏡(SEM)像から、炭素ナノ材料分散領域を算出する。炭素ナノ材料が十分に分散していない領域では、絶縁体である有機高分子による帯電現象が発生するため、電子顕微鏡像内では暗く表示される。一方、炭素ナノ材料が十分に分散している領域(炭素ナノ材料分散領域)は繊維断面が明るく表示される。したがって、電子顕微鏡像中の繊維断面積に対する明部の面積比率から、炭素ナノ材料分散領域の割合を算出することができる。電子顕微鏡像の測定条件は、断面の導電処理:なし、加速電圧:1~5kV、エミッション電流:20μA、ワーキングディスタンス:7~9mm、検出器:上方検出器、測定倍率:250倍~1000倍とした。なお、測定倍率は繊維状構造物の太さに合わせてコントラストが出るように適宜調整すればよい。
[Calculation of the ratio of carbon nanomaterial dispersion region in the cross section of the fibrous structure]
The carbon nanomaterial dispersion region is calculated from the scanning electron microscope (SEM) image of the fiber cross section obtained in the previous section. In the region where the carbon nanomaterial is not sufficiently dispersed, charging occurs due to the organic polymer, which is an insulator, and the region appears dark in the electron microscope image. On the other hand, the fiber cross section of the region where the carbon nanomaterial is sufficiently dispersed (carbon nanomaterial dispersion region) appears bright. Therefore, the proportion of the carbon nanomaterial dispersion region can be calculated from the area ratio of the bright part to the fiber cross section area in the electron microscope image. The measurement conditions for the electron microscope image were: no conductive treatment of the cross section, acceleration voltage: 1 to 5 kV, emission current: 20 μA, working distance: 7 to 9 mm, detector: upper detector, measurement magnification: 250 times to 1000 times. The measurement magnification may be appropriately adjusted so that contrast is obtained according to the thickness of the fibrous structure.
 上記で得られた繊維断面の走査型電子顕微鏡像から炭素ナノ材料分散領域の割合を算出する。割合の算出に当たっての画像処理はOpenCVを利用した。繊維断面の電子顕微鏡像から繊維断面のみをトリミングするために、Canny法を適用後、面積最大の輪郭を抽出した。その際、輪郭が途切れることを防止するためにクロージング処理で補正した。Canny法のオプションである(threshold1, threshold2)にはそれぞれ(0,100)を入力した。繊維断面の輪郭を抽出後、元の電子顕微鏡像に対して、輪郭の外側領域を画像内の最小輝度値でマスクして、輪郭の外接長方形領域をトリミングした。その後、トリミングした画像に対してOtsu法による二値化処理を行うことで、炭素ナノ材料の含有率の違いによって発生する繊維断面内の明暗領域を白黒で区別する。図1bは本開示の実施例、図2bは比較例の繊維断面の電子顕微鏡像を二値化処理した画像の例である。繊維断面の輪郭内のピクセル数は「繊維断面の面積」、二値化後の白い領域のピクセル数は「炭素ナノ材料分散領域の面積」にそれぞれ対応するため、下記式を用いて炭素ナノ材料分散領域の割合が算出できる。
 炭素ナノ材料分散領域の割合(%)=100×(炭素ナノ材料分散領域の面積)/(繊維断面の面積)
 上記の炭素ナノ材料分散領域の割合の算出を10個の試験片に対して実施し、この平均値を炭素ナノ材料分散領域の割合の値とした。
The ratio of the carbon nanomaterial dispersion region is calculated from the scanning electron microscope image of the fiber cross section obtained above. OpenCV was used for image processing in calculating the ratio. In order to trim only the fiber cross section from the electron microscope image of the fiber cross section, the Canny method was applied, and then the contour with the largest area was extracted. At that time, the contour was corrected by a closing process to prevent it from being interrupted. (0, 100) was input for (threshold1, threshold2), which are options of the Canny method. After extracting the contour of the fiber cross section, the outer region of the contour was masked with the minimum brightness value in the image for the original electron microscope image, and the circumscribed rectangular region of the contour was trimmed. Then, the trimmed image was subjected to binarization processing by the Otsu method, and the light and dark regions in the fiber cross section generated due to the difference in the content rate of the carbon nanomaterial were distinguished in black and white. Figure 1b is an example of an image obtained by binarizing an electron microscope image of a fiber cross section of an embodiment of the present disclosure, and Figure 2b is an example of an image obtained by binarizing an electron microscope image of a fiber cross section of a comparative example. The number of pixels within the outline of the fiber cross section corresponds to the "area of the fiber cross section," and the number of pixels in the white area after binarization corresponds to the "area of the carbon nanomaterial dispersed area," so the proportion of the carbon nanomaterial dispersed area can be calculated using the following formula.
Percentage of carbon nanomaterial dispersion region (%) = 100 x (area of carbon nanomaterial dispersion region) / (area of fiber cross section)
The above calculation of the proportion of the carbon nanomaterial-dispersed region was carried out for 10 test pieces, and the average value was taken as the proportion of the carbon nanomaterial-dispersed region.
[炭素ナノ材料残留指数の測定、及び炭素ナノ材料含有率の算出]
 繊維状構造物を、乾燥器(アズワン株式会社製,AVO-250SB)を用いて大気中105℃、5時間の条件で乾燥させた後、精密天秤(METTLER TOLEDO社製,XPE205)を用いて重量測定を実施した。重量測定後、95%硫酸に室温大気下で72時間浸漬させた。硫酸浸漬後、水置換及び水浸漬を行った後、乾燥器で大気中105℃、5時間の条件で乾燥させ、繊維状構造物の重量の測定を実施した。硫酸浸漬後の繊維状楮物の重量を、硫酸浸漬前の繊維状構造物の重量を除し100を乗じることで、炭素ナノ材料残留指数を算出した。炭素ナノ材料含有率は、下記式:
    炭素ナノ材料含有率(質量%)=炭素ナノ材料残留指数×0.71
により定義される。
[Measurement of carbon nanomaterial residual index and calculation of carbon nanomaterial content]
The fibrous structure was dried in an oven (AVO-250SB, AS ONE Corporation) at 105°C in air for 5 hours, and then its weight was measured using a precision balance (XPE205, METTLER TOLEDO). After the weight was measured, the structure was immersed in 95% sulfuric acid in air at room temperature for 72 hours. After the sulfuric acid immersion, water replacement and water immersion were performed, and the structure was dried in an oven at 105°C in air for 5 hours, and the weight of the fibrous structure was measured. The weight of the fibrous mulberry after sulfuric acid immersion was divided by the weight of the fibrous structure before sulfuric acid immersion, and the result was multiplied by 100 to calculate the carbon nanomaterial residual index. The carbon nanomaterial content was calculated using the following formula:
Carbon nanomaterial content (mass%) = carbon nanomaterial residual index × 0.71
It is defined by:
[破断強度及び伸度]
 破断強度は、JIS L 1013の引張り強さ及び伸び率の試験方法に準拠して測定した。より具体的には、応力-歪み測定を行い、切断位置の応力と繊度から強度(cN/dtex)を算出した。伸度は、破断時の伸度(%)である。
[Breaking strength and elongation]
The breaking strength was measured in accordance with the test method for tensile strength and elongation of JIS L 1013. More specifically, stress-strain measurement was performed, and the strength (cN/dtex) was calculated from the stress at the cutting position and the fineness. The elongation is the elongation (%) at break.
《実施例及び比較例》
[実施例1]
 Tuball-CNT(OCSiAl社製、Tuball、以下、Tuball-CNTとも記載)5gと分散剤としてタウロデオキシコール酸ナトリウム(シグマ・アルドリッチ社製、TDOCともいう。)10gを水985gに加え、インラインミキサー(IKA社製、magic LAB)を用い10時間分散を行った。その後、自転公転式ミキサー(株式会社シンキー社製、あわとり練太郎ARE-310)を用い、10分間脱泡作業を行って、Tuball-CNTの重量濃度が0.5質量%であるTuball-CNT分散液を得た。6.1質量%のアンモニア水溶液に銅成分が3.6質量%となるように水酸化銅を溶解させ、そこにセルロースを10.15質量%となるように添加、混練することにより銅アンモニアセルロース溶液を作製した。
Examples and Comparative Examples
[Example 1]
5 g of Tuball-CNT (manufactured by OCSiAl, Tuball, hereinafter also referred to as Tuball-CNT) and 10 g of sodium taurodeoxycholate (manufactured by Sigma-Aldrich, also referred to as TDOC) as a dispersant were added to 985 g of water, and dispersion was performed for 10 hours using an in-line mixer (manufactured by IKA, magic LAB). Then, degassing was performed for 10 minutes using a planetary centrifugal mixer (manufactured by Thinky Corporation, Awatori Rentaro ARE-310) to obtain a Tuball-CNT dispersion liquid with a weight concentration of Tuball-CNT of 0.5% by mass. Copper hydroxide was dissolved in a 6.1% by mass ammonia aqueous solution so that the copper component was 3.6% by mass, and cellulose was added thereto so that the content was 10.15% by mass, and kneaded to prepare a cuprammonium cellulose solution.
 攪拌ユニットを備えたフラスコ内を窒素パージすることで酸素濃度を992ppmとした後、上記、Tuball-CNT分散液と銅アンモニアセルロース溶液を、質量比(Tuball-CNT分散液の質量:銅アンモニアセルロース溶液の質量)が1:4、セルロース対比のTuball-CNT濃度が1.22質量%となるように配合してフラスコ内に投入した。フラスコ内を-0.08MPa、30℃に調整し、ヘリカルリボン翼で5時間混練後、10時間静置脱泡することで均一なTuball-CNT/銅アンモニアセルロース分散液を得た。 After purging the inside of a flask equipped with a stirring unit with nitrogen to bring the oxygen concentration to 992 ppm, the above-mentioned Tuball-CNT dispersion and cuprammonium cellulose solution were mixed in a mass ratio (mass of Tuball-CNT dispersion:mass of cuprammonium cellulose solution) of 1:4, with a Tuball-CNT concentration of 1.22 mass% relative to cellulose, and then poured into the flask. The flask was adjusted to -0.08 MPa and 30°C, and the mixture was kneaded with a helical ribbon impeller for 5 hours, then left to stand for 10 hours to degas, yielding a uniform Tuball-CNT/cuprammonium cellulose dispersion.
 このTuball-CNT/銅アンモニアセルロース分散液を用いて湿式紡糸を行った。紡糸ノズルとして、穴径0.2mm、穴数10の吐出口を有する紡口より、40℃の温水で満たした凝固浴中に紡口を浸漬させた状態で0.72ml/minの吐出速度で概分散液を重力方向に吐出した。凝固後は温水中の回転ロールをもって変向させたのち9m/minで走行する回転ロールを用いて湯浴から引き揚げ、40℃の2.0質量%硫酸浴、40℃の水浴の順に糸を走行させることで洗浄処理を行った。その後、得られた凝固糸を、200℃の乾燥機を用いて乾燥を行い、10m/minの速度で巻き取りを行うことでTuball-CNT/セルロース複合繊維を得た。 This Tuball-CNT/cuprammonium cellulose dispersion was used for wet spinning. The spinneret had a hole diameter of 0.2 mm and 10 holes, and the dispersion was discharged in the direction of gravity at a discharge rate of 0.72 ml/min while the spinneret was immersed in a coagulation bath filled with 40°C warm water. After coagulation, the yarn was turned using a rotating roll in the warm water, and then pulled out of the water bath using a rotating roll running at 9 m/min. A cleaning process was performed by running the yarn through a 2.0% by mass sulfuric acid bath at 40°C and then a water bath at 40°C. The obtained coagulated yarn was then dried using a dryer at 200°C and wound up at a speed of 10 m/min to obtain a Tuball-CNT/cellulose composite fiber.
[実施例2]
 Tuball-CNT10gとTDOC20gを水970gに加えたこと以外は実施例1と同様に分散を行い、Tuball-CNTの重量濃度が1.0質量%であるTuball-CNT分散液を得た。セルロース対比のTuball-CNT濃度が2.40質量%となるように、Tuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させ、Tuball-CNT分散液/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 2]
Dispersion was performed in the same manner as in Example 1, except that 10 g of Tuball-CNT and 20 g of TDOC were added to 970 g of water, to obtain a Tuball-CNT dispersion with a weight concentration of Tuball-CNT of 1.0 mass%. The Tuball-CNT dispersion and the cuprammonium cellulose solution were blended so that the Tuball-CNT concentration relative to cellulose was 2.40 mass%, and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT dispersion/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例3]
 実施例2のセルロース対比のTuball-CNT濃度が4.69質量%となるように、2.0質量%に濃縮させたTuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させた他は、実施例1と同様の手法で、Tuball-CNT/セルロース複合繊維を得た。
[Example 3]
A Tuball-CNT dispersion concentrated to 2.0% by mass was blended with a cuprammonium cellulose solution so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 4.69% by mass, and the mixture was kneaded in the same manner as in Example 1. Except for this, a Tuball-CNT/cellulose composite fiber was obtained in the same manner as in Example 1.
[実施例4]
 実施例2のセルロース対比のTuball-CNT濃度が16.46質量%となるように3.0質量%に濃縮させたTuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 4]
A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 16.46% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例5]
 実施例2のセルロース対比のTuball-CNT濃度が22.81質量%となるように3.0質量%に濃縮させたTuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 5]
A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 22.81% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例6]
 実施例2のセルロース対比のTuball-CNT濃度が28.27質量%となるように3.0質量%に濃縮させたTuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 6]
A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 28.27% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例7]
 実施例2のセルロース対比のTuball-CNT濃度が37.15質量%となるように3.0質量%に濃縮させたTuball-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 7]
A Tuball-CNT dispersion concentrated to 3.0% by mass so that the Tuball-CNT concentration relative to the cellulose in Example 2 was 37.15% by mass was blended with a cuprammonium cellulose solution and kneaded in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例8]
 使用する原料をスーパーグロース法により製造されたCNT(日本ゼオン株式会社製、Zeonano、以下、Zeonano-CNTともいう。)に変更し、セルロース対比のZeonano-CNT濃度が0.54質量%となるように変更した以外は実施例1と同様に、Zeonano-CNT/セルロース複合繊維を得た。
[Example 8]
Zeonano-CNT/cellulose composite fibers were obtained in the same manner as in Example 1, except that the raw material used was changed to CNT produced by the super-growth method (Zeonano, manufactured by Zeon Corporation; hereinafter, also referred to as Zeonano-CNT) and the concentration of Zeonano-CNT relative to cellulose was changed to 0.54 mass%.
[実施例9]
 使用する原料をZeonano-CNTに変更する以外は実施例1と同様の条件でZeonano-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Zeonano-CNT/セルロース複合繊維を得た。
[Example 9]
A Zeonano-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 1, except that the raw material used was changed to Zeonano-CNT. Spinning was performed under the same conditions as in Example 1 to obtain Zeonano-CNT/cellulose composite fibers.
[実施例10]
 使用する原料を改良直噴熱分解合成法(eDIPS法)により製造されたCNT(名城ナノカーボン社製、EC―DX2P、以下、eDIPS-CNTともいう。)に変更する以外は実施例1と同様の条件でeDIPS-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、eDIPS-CNT/セルロース複合繊維を得た。
[Example 10]
Except for changing the raw material used to CNTs produced by the improved direct injection pyrolysis synthesis method (eDIPS method) (manufactured by Meijo Nano Carbon Co., Ltd., EC-DX2P, hereinafter also referred to as eDIPS-CNT), an eDIPS-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 1. Spinning was performed under the same conditions as in Example 1 to obtain eDIPS-CNT/cellulose composite fibers.
[実施例11]
 使用する原料をeDIPS-CNTに変更する以外は実施例2と同様の条件でeDIPS-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、eDIPS-CNT/セルロース複合繊維を得た。
[Example 11]
Except for changing the raw material to eDIPS-CNT, an eDIPS-CNT/cuprammonium cellulose dispersion was obtained under the same conditions as in Example 2. Spinning was performed under the same conditions as in Example 1 to obtain an eDIPS-CNT/cellulose composite fiber.
[実施例12]
 使用する原料をeDIPS-CNTに変更し、セルロース対比のeDIPS-CNT濃度が49.63質量%となるように、1.0質量%に濃縮させたeDIPS-CNT分散液と銅アンモニアセルロース溶液を配合し、実施例1と同様の条件で混練させ、eDIPS-CNT/銅アンモニアセルロース分散液を得た。得られたeDIPS-CNT/銅アンモニアセルロース分散液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着した高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度1.10ml/minの条件で40℃の純水に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度12m/minの条件で巻き取り装置の速度を設定し、凝固糸を40℃の純水から引き上げ巻き取った。次いで、凝固糸を送りローラを用い5.0質量%の希硫酸中に浸漬させ、銅成分を除去した後、水槽に浸漬させ、巻き取り装置を用い、水から引き上げ乾燥させることでeDIPS-CNT/セルロース複合繊維を得た。
[Example 12]
The raw material used was changed to eDIPS-CNT, and the eDIPS-CNT dispersion concentrated to 1.0% by mass was blended with a cuprammonium cellulose solution so that the eDIPS-CNT concentration relative to cellulose was 49.63% by mass, and kneaded under the same conditions as in Example 1 to obtain an eDIPS-CNT/cuprammonium cellulose dispersion. The obtained eDIPS-CNT/cuprammonium cellulose dispersion was packed into a syringe, and then coagulated into a filamentous form by discharging it laterally into pure water at 40 ° C. at a discharge rate of 1.10 ml/min using a high-pressure microfeeder (manufactured by Sanyo Technos Co., Ltd., JP-HR) equipped with an injection spinning nozzle with an inner diameter of 0.3 mm and one hole. The speed of the winding device was set at a rotation speed of 12 m/min so that the coagulated yarn did not loosen, and the coagulated yarn was pulled up from the pure water at 40 ° C. and wound up. Next, the coagulated yarn was immersed in 5.0% by mass dilute sulfuric acid using a feed roller to remove the copper components, and then immersed in a water tank, and pulled out of the water using a winding device and dried to obtain an eDIPS-CNT/cellulose composite fiber.
[実施例13]
 カルボキシメチルセルロースナトリウム(富士フィルム和光純薬製、製品コード:039-01335、以下、CMCとも記載)を10.0質量%となるように純水に溶解させ、10.0質量%CMC溶液を調整した。その10.0質量%CMC水溶液に、実施例1と同様の方法で調整した1.0質量%eDIPS-CNT分散液を対CMC比でeDIPS-CNT濃度が23.08質量%となるように配合し、実施例1と同様の条件で混練させ、eDIPS-CNT/CMC分散液を得た。
[Example 13]
Sodium carboxymethylcellulose (manufactured by Fujifilm Wako Pure Chemical Industries, product code: 039-01335, hereinafter also referred to as CMC) was dissolved in pure water to a concentration of 10.0% by mass to prepare a 10.0% by mass CMC solution. A 1.0% by mass eDIPS-CNT dispersion prepared in the same manner as in Example 1 was blended into the 10.0% by mass CMC aqueous solution so that the eDIPS-CNT concentration relative to the CMC was 23.08% by mass, and the mixture was kneaded under the same conditions as in Example 1 to obtain an eDIPS-CNT/CMC dispersion.
 このeDIPS-CNT/CMC分散液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着した高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度1.10ml/minの条件でエタノール中に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度12m/minの巻き取り速度で、エタノールから引き上げ乾燥させることでeDIPS-CNT/CMC複合繊維を得た。 After filling a syringe with this eDIPS-CNT/CMC dispersion, a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.) equipped with a one-hole injection spinning nozzle with an inner diameter of 0.3 mm was used to eject the dispersion laterally into ethanol at an ejection rate of 1.10 ml/min, solidifying it into a filamentous form. The filamentous filament was then pulled out of the ethanol and dried at a winding speed of 12 m/min to prevent it from loosening, yielding an eDIPS-CNT/CMC composite fiber.
[実施例14]
 実施例13のCMC対比のeDIPS-CNT濃度が37.50量%となるように10.0質量%CMC水溶液と1.0質量%eDIPS-CNT分散液を配合し、混練した後、吐出速度が0.90ml/minの条件でエタノール中に横方向に吐出することで糸状に凝固し、凝固糸が緩まないように回転速度12m/minの巻き取り速度で、エタノールから引き上げ乾燥させることでeDIPS-CNT/CMC複合繊維を得た。
[Example 14]
A 10.0 mass% CMC aqueous solution and a 1.0 mass% eDIPS-CNT dispersion were blended and kneaded so that the eDIPS-CNT concentration relative to the CMC in Example 13 was 37.50 mass%, and then the mixture was coagulated into a thread-like form by extruding laterally into ethanol at a discharge rate of 0.90 ml/min. The coagulated thread was then pulled up from the ethanol at a winding speed of 12 m/min so as not to loosen, and dried to obtain an eDIPS-CNT/CMC composite fiber.
[実施例15]
 有機高分子をカードラン(富士フイルム和光純薬株式会社製)としたこと以外は実施例1と同様に銅アンモニアカードラン溶液を調整した。3.0質量%に濃縮させたeDIPS-CNT分散液と実施例1と同様に混練させ、eDIPS-CNT/セルロース分散液を得た。得られたeDIPS-CNT分散液を吐出速度を1.30ml/min、巻き取り速度を10m/minとした他は実施例12と同様の条件で紡糸することでeDIPS-CNT/セルロース複合繊維を得た。
[Example 15]
A cuprammonium curdlan solution was prepared in the same manner as in Example 1, except that the organic polymer was curdlan (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). The eDIPS-CNT dispersion concentrated to 3.0 mass% was kneaded in the same manner as in Example 1 to obtain an eDIPS-CNT/cellulose dispersion. The obtained eDIPS-CNT dispersion was spun under the same conditions as in Example 12, except that the discharge speed was 1.30 ml/min and the take-up speed was 10 m/min, to obtain an eDIPS-CNT/cellulose composite fiber.
[実施例16]
 アルギン酸ナトリウム(ナカライテスク株式会社社製、300cps)を10.0質量%となるように純水に溶解させ、10.0質量%アルギン酸ナトリウム溶液を調整した。その10.0質量%アルギン酸ナトリウム溶液に、実施例1と同様の方法で調整した1.0質量%eDIPS-CNT分散液を対アルギン酸ナトリウム比でeDIPS-CNT濃度が9.09質量%となるように自転公転式ミキサー(株式会社シンキー社製、あわとり練太郎ARE-310)を用いて5分間混練することでeDIPS-CNT/アルギン酸ナトリウム液を得た。
[Example 16]
Sodium alginate (Nacalai Tesque, Inc., 300 cps) was dissolved in pure water to a concentration of 10.0% by mass to prepare a 10.0% by mass sodium alginate solution. A 1.0% by mass eDIPS-CNT dispersion prepared in the same manner as in Example 1 was kneaded with the 10.0% by mass sodium alginate solution for 5 minutes using a planetary centrifugal mixer (Thinky Corporation, Awatori Rentaro ARE-310) so that the eDIPS-CNT concentration relative to the sodium alginate was 9.09% by mass, thereby obtaining an eDIPS-CNT/sodium alginate solution.
 このeDIPS-CNT/アルギン酸ナトリウム液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着した高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度1.10m/minの条件で5質量%塩化カルシウム水溶液中に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度10m/minの条件で巻き取り装置の速度を設定し、凝固糸を5質量%塩化カルシウム水溶液から引き上げ巻き取った。次いで、凝固糸を送りローラを用い純水に浸漬させ、塩化カルシウム成分を除去した後、巻き取り装置を用い、水から引き上げ乾燥させることでeDIPS-CNT/アルギン酸複合繊維を得た。 After filling a syringe with this eDIPS-CNT/sodium alginate solution, a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.) equipped with a one-hole injection spinning nozzle with an inner diameter of 0.3 mm was used to eject the solution laterally into a 5% by mass aqueous calcium chloride solution at an ejection speed of 1.10 m/min, causing it to solidify into a filamentous form. The speed of the winding device was set at a rotation speed of 10 m/min so as not to loosen the solidified thread, and the solidified thread was pulled up from the 5% by mass aqueous calcium chloride solution and wound up. The solidified thread was then immersed in pure water using a feed roller to remove the calcium chloride component, and then pulled up from the water using a winding device and dried, yielding an eDIPS-CNT/alginate composite fiber.
[実施例17]
 実施例16のアルギン酸ナトリウム対比のeDIPS-CNT濃度が16.67質量%となるように混練させた他は実施例16と同様に行い、eDIPS-CNT/アルギン酸複合繊維を得た。
[Example 17]
The same procedure as in Example 16 was carried out except that the eDIPS-CNT was kneaded so that the concentration of the eDIPS-CNT relative to the sodium alginate in Example 16 was 16.67 mass %, to obtain eDIPS-CNT/alginic acid composite fibers.
[実施例18]
 実施例16のアルギン酸ナトリウム対比のeDIPS-CNT濃度が23.08質量%となるように混練させた他は実施例16と同様に行い、eDIPS-CNT/アルギン酸複合繊維を得た。
[Example 18]
The same procedure as in Example 16 was carried out except that the eDIPS-CNT concentration relative to the sodium alginate in Example 16 was 23.08 mass %, and eDIPS-CNT/alginic acid composite fibers were obtained.
[実施例19]
 実施例7の分散剤をTDOCからデオキシコール酸ナトリウム(シグマ・アルドリッチ社製、DOCともいう。)へと変更し、セルロース対比のTuball-CNT濃度が22.81質量%となるように配合した以外は、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。得られたTuball-CNT/銅アンモニアセルロース分散液を実施例12と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 19]
Except for changing the dispersant in Example 7 from TDOC to sodium deoxycholate (Sigma-Aldrich, also referred to as DOC) and blending so that the Tuball-CNT concentration relative to the cellulose was 22.81% by mass, kneading was performed in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. The obtained Tuball-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 12 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例20]
 実施例19の凝固浴を40℃の純水からエタノールへと変更した以外は、実施例19と同様の条件で、Tuball-CNT/セルロース複合繊維を得た。
[Example 20]
Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to ethanol.
[実施例21]
 実施例19の凝固浴を40℃の純水からジメチルスルホキシドへと変更した以外は、実施例19と同様の条件で、Tuball-CNT/セルロース複合繊維を得た。
[Example 21]
Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to dimethyl sulfoxide.
[実施例22]
 実施例19の凝固浴を40℃の純水から1,3-ジメチル-2-イミダゾリジノンへと変更した以外は、実施例19と同様の条件で、Tuball-CNT/セルロース複合繊維を得た。
[Example 22]
Tuball-CNT/cellulose composite fibers were obtained under the same conditions as in Example 19, except that the coagulation bath in Example 19 was changed from 40° C. pure water to 1,3-dimethyl-2-imidazolidinone.
[実施例23]
 実施例7の分散剤をTDOCからDOCへと変更し、セルロース対比のTuball-CNT濃度が37.15質量%となるように配合した以外は、実施例1と同様の方法で混練させ、Tuball-CNT/銅アンモニアセルロース分散液を得た。得られたTuball-CNT/銅アンモニアセルロース分散液を実施例19と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Example 23]
Except for changing the dispersant in Example 7 from TDOC to DOC and blending so that the Tuball-CNT concentration relative to the cellulose was 37.15% by mass, kneading was performed in the same manner as in Example 1 to obtain a Tuball-CNT/cuprammonium cellulose dispersion. The obtained Tuball-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 19 to obtain a Tuball-CNT/cellulose composite fiber.
[実施例24]
 実施例7の原料を多層CNTであるJeno6A(JEIO社製、以下Jeno6A―CNTともいう。)へと変更し、セルロース対比Jeno6A-CNT濃度が22.81質量%となるように配合した以外は、実施例1と同様の方法で混練させ、Jeno6A-CNT/銅アンモニアセルロース分散液を得た。得られたJeno6A-CNT/銅アンモニアセルロース分散液を実施例19と同様の条件で紡糸を行い、Jeno6A-CNT/セルロース複合繊維を得た。
[Example 24]
Except for changing the raw material of Example 7 to multi-walled CNT Jeno6A (manufactured by JEIO, hereinafter also referred to as Jeno6A-CNT) and blending so that the concentration of Jeno6A-CNT relative to cellulose was 22.81% by mass, kneading was performed in the same manner as in Example 1 to obtain a Jeno6A-CNT/cuprammonium cellulose dispersion. The obtained Jeno6A-CNT/cuprammonium cellulose dispersion was spun under the same conditions as in Example 19 to obtain a Jeno6A-CNT/cellulose composite fiber.
[比較例1]
 実施例2と同様の条件でTuball-CNT分散液と銅アンモニアセルロース溶液を得た。攪拌ユニットを備えたフラスコ内を窒素パージすることで酸素濃度を992ppmとした後、得られたTuball-CNT分散液と銅アンモニアセルロース溶液を、セルロース対比のTuball-CNT濃度が2.40質量%となるように配合してフラスコ内に投入した。フラスコ内を-1.5MPa、30℃に調整し、ヘリカルリボン翼で5時間混練後、10時間静置脱泡することでTuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Comparative Example 1]
A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -1.5 MPa and 30°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[比較例2]
 実施例2と同様の条件でTuball-CNT分散液と銅アンモニアセルロース溶液を得た。攪拌ユニットを備えたフラスコ内を窒素パージすることで酸素濃度を992ppmとした後、得られたTuball-CNT分散液と銅アンモニアセルロース溶液を、セルロース対比のTuball-CNT濃度が2.40質量%となるように配合してフラスコ内に投入した。フラスコ内を-0.08MPa、5℃に調整し、ヘリカルリボン翼で5時間混練後、10時間静置脱泡することでTuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Comparative Example 2]
A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -0.08 MPa and 5°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[比較例3]
 実施例2と同様の条件でTuball-CNT分散液と銅アンモニアセルロース溶液を得た。攪拌ユニットを備えたフラスコ内を窒素パージすることで酸素濃度を992ppmとした後、得られたTuball-CNT分散液と銅アンモニアセルロース溶液を、セルロース対比のTuball-CNT濃度が2.40質量%となるように配合してフラスコ内に投入した。フラスコ内を-0.08MPa、60℃に調整し、ヘリカルリボン翼で5時間混練後、10時間静置脱泡することでTuball-CNT/銅アンモニアセルロース分散液を得た。実施例1と同様の条件で紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Comparative Example 3]
A Tuball-CNT dispersion and a cuprammonium cellulose solution were obtained under the same conditions as in Example 2. After the oxygen concentration was adjusted to 992 ppm by purging the inside of a flask equipped with a stirring unit with nitrogen, the obtained Tuball-CNT dispersion and the cuprammonium cellulose solution were mixed so that the Tuball-CNT concentration relative to cellulose was 2.40 mass% and charged into the flask. The flask was adjusted to -0.08 MPa and 60°C, and the mixture was kneaded for 5 hours with a helical ribbon blade, and then left to stand for 10 hours for degassing to obtain a Tuball-CNT/cuprammonium cellulose dispersion. Spinning was performed under the same conditions as in Example 1 to obtain a Tuball-CNT/cellulose composite fiber.
[比較例4]
 Tuball-CNT分散液と銅アンモニアセルロース溶液を混合する工程を大気下で行ったこと以外は比較例1と同様の条件で分散液の製造及び紡糸を行い、Tuball-CNT/セルロース複合繊維を得た。
[Comparative Example 4]
A dispersion was produced and spun under the same conditions as in Comparative Example 1, except that the step of mixing the Tuball-CNT dispersion and the cuprammonium cellulose solution was carried out in air, to obtain a Tuball-CNT/cellulose composite fiber.
[比較例5]
 使用する原料をeDIPS-CNTに変更する以外は比較例3と同様の条件で分散液の製造及び紡糸を行い、eDIPS-CNT/セルロース複合繊維を得た。
[Comparative Example 5]
A dispersion was produced and spun under the same conditions as in Comparative Example 3, except that the raw material used was changed to eDIPS-CNT, to obtain eDIPS-CNT/cellulose composite fibers.
[比較例6]
 混練時の条件を比較例2と同様の条件で行う以外は、実施例12と同様の条件で分散液の製造及び紡糸を行い、eDIPS-CNT/セルロース複合繊維を得た。
[Comparative Example 6]
Except for the fact that the kneading conditions were the same as those in Comparative Example 2, the production of a dispersion and spinning were carried out under the same conditions as those in Example 12 to obtain eDIPS-CNT/cellulose composite fibers.
[比較例7]
 50質量%4-メチルモルホリンN-オキシド(東京化成工業株式会社製、以下、NMMOとも記載)を減圧濃縮し、NMMOが70質量%含有している水溶液を作製した。そこに実施例10と同様の方法で作製した1質量%eDIPS-CNT分散液と、NMMOを70質量%含有している水溶液とを重量比1:4の割合で混練させ、0.2質量%eDIPS-CNT/56質量%NMMO/43.8質量%水の混合溶液を作製した。そこにセルロースを投入し、濃縮することで最終的に0.3質量%eDIPS-CNT/5質量%セルロース/85質量%NMMO/9.7質量%水の混合溶液を得た。
[Comparative Example 7]
50% by mass 4-methylmorpholine N-oxide (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter also referred to as NMMO) was concentrated under reduced pressure to prepare an aqueous solution containing 70% by mass of NMMO. A 1% by mass eDIPS-CNT dispersion prepared in the same manner as in Example 10 and an aqueous solution containing 70% by mass of NMMO were kneaded therein at a weight ratio of 1:4 to prepare a mixed solution of 0.2% by mass eDIPS-CNT / 56% by mass NMMO / 43.8% by mass water. Cellulose was added therein and concentrated to finally obtain a mixed solution of 0.3% by mass eDIPS-CNT / 5% by mass cellulose / 85% by mass NMMO / 9.7% by mass water.
 この0.3質量%eDIPS-CNT/5質量%セルロース/85質量%NMMO/9.7質量%水の混合溶液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着した高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度1.00ml/minの条件でNMMO30質量%水溶液中に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度8m/minの条件で巻き取り装置の速度を設定し、凝固糸をNMMO30質量%水溶液から引き上げ巻き取った。次いで、凝固糸を送りローラを用い純水に浸漬させ、NMMO成分を除去した後、巻き取り装置を用い、水から引き上げ乾燥させることでeDIPS-CNT/セルロース複合繊維を得た。 After filling a syringe with this mixed solution of 0.3% by mass eDIPS-CNT/5% by mass cellulose/85% by mass NMMO/9.7% by mass water, a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.) equipped with a 1-hole injection spinning nozzle with an inner diameter of 0.3 mm was used to eject the solution laterally into a 30% by mass NMMO aqueous solution at an ejection rate of 1.00 ml/min, allowing it to solidify into a filament. The speed of the winding device was set at a rotation speed of 8 m/min so that the solidified yarn would not loosen, and the solidified yarn was pulled up from the 30% by mass NMMO aqueous solution and wound up. The solidified yarn was then immersed in pure water using a feed roller to remove the NMMO component, and the yarn was then pulled up from the water using a winding device and dried to obtain an eDIPS-CNT/cellulose composite fiber.
[比較例8]
 イオン液体である1-エチル-3-メチルイミダゾリウムジエチルホスファート(東京化成株式会社製、以下EMIMDEPとも記載)に、CNT濃度0.20質量%となるようにeDIPS-CNT、セルロース濃度5.0質量%となるようにセルロースを添加し、メノウ乳鉢で30分以上混練し、0.2質量%eDIPS-CNT/5.0質量%セルロース/EMIMDEP溶液を得た。
[Comparative Example 8]
To 1-ethyl-3-methylimidazolium diethyl phosphate (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter also referred to as EMIMDEP), which is an ionic liquid, eDIPS-CNT was added so that the CNT concentration was 0.20 mass%, and cellulose was added so that the cellulose concentration was 5.0 mass%, and the mixture was kneaded for 30 minutes or more in an agate mortar to obtain a 0.2 mass% eDIPS-CNT/5.0 mass% cellulose/EMIMDEP solution.
 この0.2質量%eDIPS-CNT/5.0質量%セルロース/EMIMDEP溶液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着した高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度0.90m/minの条件で純水中に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度15m/minの条件で巻き取り装置の速度を設定し、凝固糸を純水から引き上げ乾燥させることでeDIPS-CNT/セルロース複合繊維を得た。 After filling a syringe with this 0.2% by mass eDIPS-CNT/5.0% by mass cellulose/EMIMDEP solution, a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.) equipped with a 1-hole injection spinning nozzle with an inner diameter of 0.3 mm was used to eject the solution laterally into pure water at a discharge speed of 0.90 m/min, causing it to solidify into a thread-like shape. The speed of the winding device was set at a rotation speed of 15 m/min so as not to loosen the solidified thread, and the solidified thread was pulled out of the pure water and dried to obtain an eDIPS-CNT/cellulose composite fiber.
[比較例9]
 ジメチルスルホキシド(関東化学株式会社製、以下DMSOとも記載)にCNT濃度0.2質量%となるようにeDIPS-CNT、濃度3wt%となるようにカードラン(富士フイルム和光純薬株式会社製)を添加し、メノウ乳鉢で30分以上混錬し、0.2質量%eDIPS-CNT/3質量%カードラン/DMSO溶液を得た。
[Comparative Example 9]
To dimethyl sulfoxide (Kanto Chemical Co., Ltd., hereinafter also referred to as DMSO), eDIPS-CNT was added so that the CNT concentration was 0.2% by mass, and curdlan (FUJIFILM Wako Pure Chemical Industries, Ltd.) was added so that the concentration was 3 wt %, and the mixture was kneaded in an agate mortar for 30 minutes or more to obtain a 0.2% by mass eDIPS-CNT/3% by mass curdlan/DMSO solution.
 この0.2質量%eDIPS-CNT/3質量%カードラン/DMSO溶液をシリンジに詰め込んだ後、内径0.3mm、1ホールの注入紡糸ノズルを装着したのち、高圧マイクロフィーダー(三洋テクノス株式会社製、JP-HR)を用い、吐出速度1.3m/minの条件で純水中に横方向に吐出することで糸状に凝固させた。凝固糸が緩まないように回転速度7m/minの条件で巻き取り装置の速度を設定し、凝固糸を純水から引き上げ乾燥させることでeDIPS-CNT/カードラン複合繊維を得た。 The 0.2% by mass eDIPS-CNT/3% by mass curdlan/DMSO solution was loaded into a syringe, and a one-hole injection spinning nozzle with an inner diameter of 0.3 mm was attached. Then, using a high-pressure microfeeder (JP-HR, manufactured by Sanyo Technos Co., Ltd.), the solution was discharged laterally into pure water at a discharge speed of 1.3 m/min to solidify it into a thread-like shape. The speed of the winding device was set at a rotation speed of 7 m/min so that the solidified thread would not loosen, and the solidified thread was pulled out of the pure water and dried to obtain an eDIPS-CNT/curdlan composite fiber.
 実施例及び比較例で得られた複合繊維の各物性等を以下の表1~4に示す。尚、表3及び4中、強度と伸度の記号「-」は未測定であることを示す。 The physical properties of the composite fibers obtained in the examples and comparative examples are shown in Tables 1 to 4 below. In Tables 3 and 4, the symbols "-" for strength and elongation indicate that the values were not measured.
 繊維状構造物(繊維)断面における均一なCNTネットワーク構造の一例を示す電子顕微鏡撮影像を、図1及び図2にそれぞれ示す。図1Aは本開示の実施例、図2Aは比較例の繊維状構造物断面全体の電子顕微鏡撮影像である。図1B及び図2Bは、図1A及び図2Aの電子顕微鏡撮影像を二値化処理した画像である。図1及び図2から明らかなように、本開示の繊維状構造物は、均一なCNTネットワーク構造が形成されているのに対して、比較例の繊維状構造物では、炭素ナノ材料が相対的に少ない又は存在しない、炭素ナノ材料非分散領域(10)と、炭素ナノ材料非分散領域(10)よりも炭素ナノ材料が相対的に多く存在する、炭素ナノ材料分散領域(20)とが不均一に存在することがわかる。 Electron microscope images showing an example of a uniform CNT network structure in the cross section of a fibrous structure (fiber) are shown in Figures 1 and 2, respectively. Figure 1A is an electron microscope image of the entire cross section of a fibrous structure of an embodiment of the present disclosure, and Figure 2A is an electron microscope image of the entire cross section of a fibrous structure of a comparative example. Figures 1B and 2B are images obtained by binarizing the electron microscope images of Figures 1A and 2A. As is clear from Figures 1 and 2, the fibrous structure of the present disclosure has a uniform CNT network structure, whereas the fibrous structure of the comparative example has a non-uniform distribution of carbon nanomaterial non-dispersed regions (10) where there is relatively little or no carbon nanomaterial, and carbon nanomaterial dispersed regions (20) where there is relatively more carbon nanomaterial than the carbon nanomaterial non-dispersed regions (10).
[炭素ナノ材料残留指数の算出]
 実施例1、実施例2、実施例3、実施例4、実施例5、実施例7、及び実施例11で作製した複合繊維を大気中105℃、5時間の条件で乾燥し、重量を測定した後、95%硫酸(富士フィルム和光純薬株式会社製、薬品コード:192-04696)に72時間浸漬させた。95%硫酸に浸漬後、水洗した後、大気中、105℃、5時間の条件で乾燥し、乾燥後の重量を測定した。硫酸浸漬前後の重量から炭素ナノ材料残留指数を算出した。
[Calculation of carbon nanomaterial residual index]
The composite fibers produced in Examples 1, 2, 3, 4, 5, 7, and 11 were dried in air at 105°C for 5 hours, their weights were measured, and then they were immersed in 95% sulfuric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., chemical code: 192-04696) for 72 hours. After immersion in 95% sulfuric acid, they were washed with water and then dried in air at 105°C for 5 hours, and their weights after drying were measured. The carbon nanomaterial residual index was calculated from the weights before and after immersion in sulfuric acid.
 表5に、CNT仕込み量から算出したCNT濃度と炭素ナノ材料残留指数との関係を示す。結果として、CNT濃度と炭素ナノ材料残留指数に相関関係があり、炭素ナノ材料残留指数に0.71を乗じることにより繊維全量に対するCNTの質量%を算出できることがわかった。 Table 5 shows the relationship between the CNT concentration calculated from the CNT loading amount and the carbon nanomaterial residual index. As a result, it was found that there is a correlation between the CNT concentration and the carbon nanomaterial residual index, and that the mass percentage of CNT relative to the total amount of fiber can be calculated by multiplying the carbon nanomaterial residual index by 0.71.
 本開示の繊維状構造物は、幅広い導電率を有し、かつ、長手方向に導電率が均一であることから、スマートテキスタイルの心電、筋電、脳波等の生体電位取得用電極や電気刺激用電極、ウェアラブル用配線、ヒーター、伸縮センサ、温湿度センサ、電磁遮蔽シールド、静電防止、フィルター等の用途の部材に適する。 The fibrous structure disclosed herein has a wide range of electrical conductivity and is uniform in the longitudinal direction, making it suitable for use as electrodes for acquiring bioelectric potentials such as electrocardiograms, electromyograms, and electroencephalograms in smart textiles, electrodes for electrical stimulation, wiring for wearables, heaters, stretch sensors, temperature and humidity sensors, electromagnetic shielding, antistatic, filters, etc.
 10  炭素ナノ材料非分散領域
 20  炭素ナノ材料分散領域
10 Carbon nano material non-dispersed region 20 Carbon nano material dispersed region

Claims (11)

  1.  有機高分子と、前記有機高分子中に分散した炭素ナノ材料とを含む、繊維状構造物であって、
     前記炭素ナノ材料は、カーボンナノチューブ、グラフェン、及び酸化グラフェンからなる群から選択される少なくとも1種であり、
     前記炭素ナノ材料の含有率が、前記繊維状構造物の全質量を基準として、0.05質量%以上50質量%以下であり、
     前記繊維状構造物の断面を、走査型電子顕微鏡(SEM)を用いて以下の測定条件で観察し、観察画像をOtsu法により二値化処理したとき、明部として表示される炭素ナノ材料分散領域の割合が、前記繊維状構造物の断面全体の85%以上であり、前記測定条件は、断面の導電処理:なし、加速電圧:1~5kV、及び検出器:上方検出器とする、繊維状構造物。
    A fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
    The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
    The content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure,
    A fibrous structure, wherein the cross section of the fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions, and when the observed image is binarized using the Otsu method, the proportion of carbon nanomaterial dispersion regions displayed as bright areas is 85% or more of the entire cross section of the fibrous structure, and the measurement conditions are as follows: no conductive treatment of the cross section, acceleration voltage: 1 to 5 kV, and detector: upper detector.
  2.  前記明部として表示される領域の割合が95%以上である、請求項1に記載の繊維状構造物。 The fibrous structure of claim 1, in which the ratio of the area displayed as the bright portion is 95% or more.
  3.  有機高分子と、前記有機高分子中に分散した炭素ナノ材料とを含む、繊維状構造物であって、
     前記炭素ナノ材料は、カーボンナノチューブ、グラフェン、及び酸化グラフェンからなる群から選択される少なくとも1種であり、
     前記炭素ナノ材料の含有率が、前記繊維状構造物の全質量を基準として、0.05質量%以上50質量%以下であり、
     比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ、長手方向1cmあたりの線抵抗変動係数が10%以下である、繊維状構造物。
    A fibrous structure comprising an organic polymer and a carbon nanomaterial dispersed in the organic polymer,
    The carbon nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene, and graphene oxide;
    The content of the carbon nanomaterial is 0.05% by mass or more and 50% by mass or less based on the total mass of the fibrous structure,
    A fibrous structure having a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
  4.  比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ、長手方向1cmあたりの線抵抗変動係数が10%以下である、請求項1又は2に記載の繊維状構造物。 3. The fibrous structure according to claim 1 or 2, which has a specific conductivity of 0.01 Scm 2 /g or more and 2500 Scm 2 /g or less, and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
  5.  前記炭素ナノ材料がカーボンナノチューブである、請求項1~3のいずれか一項に記載の繊維状構造物。 The fibrous structure according to any one of claims 1 to 3, wherein the carbon nanomaterial is a carbon nanotube.
  6.  前記有機高分子が多糖類である、請求項1~3のいずれか一項に記載の繊維状構造物。 The fibrous structure according to any one of claims 1 to 3, wherein the organic polymer is a polysaccharide.
  7.  前記炭素ナノ材料がカーボンナノチューブであり、前記有機高分子が多糖類である、請求項1~3のいずれか一項に記載の繊維状構造物。 The fibrous structure according to any one of claims 1 to 3, wherein the carbon nanomaterial is a carbon nanotube and the organic polymer is a polysaccharide.
  8.  繊維状構造物の製造方法であって、前記方法は、以下の工程:
     炭素ナノ材料が水に分散された炭素ナノ材料分散液を準備する工程と;
     有機高分子溶液を準備する工程と;
     前記炭素ナノ材料分散液と前記有機高分子溶液を、酸素濃度1000ppm以下、減圧度-0.1MPa~-0.01MPa、液温20℃~40℃の範囲で混合して、炭素ナノ材料及び有機高分子を含有する混合分散液を調製する工程と;
     得られた前記混合分散液を、液中にて湿式紡糸し、酸及び水を用いて洗浄することで溶剤成分を除去して、炭素ナノ材料を含有する有機高分子繊維を得る工程と;
     得られた前記有機高分子繊維を乾燥して、繊維状構造物を得る工程と;
    を含む、繊維状構造物の製造方法。
    A method for producing a fibrous structure, the method comprising the steps of:
    A step of preparing a carbon nanomaterial dispersion in which a carbon nanomaterial is dispersed in water;
    Providing an organic polymer solution;
    mixing the carbon nanomaterial dispersion liquid and the organic polymer solution at an oxygen concentration of 1000 ppm or less, a reduced pressure of −0.1 MPa to −0.01 MPa, and a liquid temperature of 20° C. to 40° C. to prepare a mixed dispersion liquid containing a carbon nanomaterial and an organic polymer;
    a step of wet-spinning the obtained mixed dispersion in a liquid, and removing the solvent component by washing with an acid and water to obtain an organic polymer fiber containing a carbon nanomaterial;
    drying the obtained organic polymer fiber to obtain a fibrous structure;
    A method for producing a fibrous structure comprising the steps of:
  9.  前記混合分散液を調製する工程において、前記炭素ナノ材料分散液と前記有機高分子溶液の質量比(炭素ナノ材料分散液の質量:有機高分子溶液の質量)が、0.1:1~15:1である、請求項8に記載の繊維状構造物の製造方法。 The method for producing a fibrous structure according to claim 8, wherein in the step of preparing the mixed dispersion, the mass ratio of the carbon nanomaterial dispersion to the organic polymer solution (mass of the carbon nanomaterial dispersion: mass of the organic polymer solution) is 0.1:1 to 15:1.
  10.  前記繊維状構造物は、その断面を、走査型電子顕微鏡(SEM)を用いて以下の測定条件で観察し、観察画像をOtsu法により二値化処理したとき、明部として表示される領域の割合が、前記繊維状構造物の断面全体の85%以上であり、前記測定条件は、断面の導電処理:なし、加速電圧:1~5kV、及び検出器:上方検出器とする、請求項8又は9に記載の繊維状構造物の製造方法。 The method for producing a fibrous structure according to claim 8 or 9, wherein the cross section of the fibrous structure is observed using a scanning electron microscope (SEM) under the following measurement conditions, and when the observed image is binarized by the Otsu method, the ratio of the area displayed as a bright area is 85% or more of the entire cross section of the fibrous structure, and the measurement conditions are: cross section conductive treatment: none, acceleration voltage: 1 to 5 kV, and detector: upper detector.
  11.  前記繊維状構造物は、比導電率が0.01Scm/g以上2500Scm/g以下であり、かつ長手方向1cmあたりの線抵抗変動係数が10%以下である、請求項8又は9に記載の繊維状構造物の製造方法。 10. The method for producing a fibrous structure according to claim 8, wherein the fibrous structure has a specific conductivity of 0.01 Scm2 /g to 2500 Scm2 /g and a linear resistance variation coefficient per cm in the longitudinal direction of 10% or less.
PCT/JP2024/001820 2023-01-24 2024-01-23 Fibrous structure containing carbon nanomaterial and organic polymer, and method for manufacturing same WO2024157967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023008492 2023-01-24
JP2023-008492 2023-01-24

Publications (1)

Publication Number Publication Date
WO2024157967A1 true WO2024157967A1 (en) 2024-08-02

Family

ID=91970704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001820 WO2024157967A1 (en) 2023-01-24 2024-01-23 Fibrous structure containing carbon nanomaterial and organic polymer, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024157967A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028660A (en) * 2004-07-13 2006-02-02 Unitica Fibers Ltd Conductive multifilament yarn
JP2007092234A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Conductive fiber and textile product made thereof
JP2011208327A (en) * 2010-03-30 2011-10-20 Shinshu Univ Composite fiber and method for producing composite fiber
CN108411395A (en) * 2018-02-05 2018-08-17 南通强生石墨烯科技有限公司 Conductive cellulose fiber and preparation method thereof
CN111491405A (en) * 2020-04-22 2020-08-04 南京林业大学 Electric heating wire based on cellulose-dopamine/carbon nanotube conductive fibers and application thereof
WO2021015078A1 (en) * 2019-07-24 2021-01-28 オーミケンシ株式会社 Cellulose fiber containing carbon nanotube, and method for producing same
JP2023019716A (en) * 2021-07-29 2023-02-09 旭化成株式会社 Fibrous structure containing carbon nanomaterial and organic polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028660A (en) * 2004-07-13 2006-02-02 Unitica Fibers Ltd Conductive multifilament yarn
JP2007092234A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Conductive fiber and textile product made thereof
JP2011208327A (en) * 2010-03-30 2011-10-20 Shinshu Univ Composite fiber and method for producing composite fiber
CN108411395A (en) * 2018-02-05 2018-08-17 南通强生石墨烯科技有限公司 Conductive cellulose fiber and preparation method thereof
WO2021015078A1 (en) * 2019-07-24 2021-01-28 オーミケンシ株式会社 Cellulose fiber containing carbon nanotube, and method for producing same
CN111491405A (en) * 2020-04-22 2020-08-04 南京林业大学 Electric heating wire based on cellulose-dopamine/carbon nanotube conductive fibers and application thereof
JP2023019716A (en) * 2021-07-29 2023-02-09 旭化成株式会社 Fibrous structure containing carbon nanomaterial and organic polymer

Similar Documents

Publication Publication Date Title
JP6744268B2 (en) Method for producing lignin-containing precursor fibers and also carbon fibers
JP5544510B2 (en) Composite fiber and method for producing composite fiber
KR20150139596A (en) Polysaccaride fibres with increased fibrillation tendency and method for the production thereof
KR102601181B1 (en) Method for manufacturing molded articles containing carbon nanotubes
JP7224256B2 (en) Carbon nanotube-containing cellulose fiber and method for producing the same
JP6316577B2 (en) Method for producing carbon nanotube-containing fiber and carbon nanotube-containing fiber
KR102556948B1 (en) Carbon nanotube nanocomposite conducting multifiber and manufacturing method the same
EP3408433A1 (en) Wet spinning method for producing a lignin-containing fiber as a precursor for a carbon fiber
CN101805935B (en) Novel antistatic acrylic fiber and preparation method of antistatic acrylic fiber
KR20180055425A (en) A method for preparation of Ultra-Strong Single-Walled Carbon Nanotube)/polymer composite Filament and Ultra-Strong Single-Walled Carbon Nanotube)/polymer composite Filament by the same
Zhu et al. Effect of fibre spinning conditions on the electrical properties of cellulose and carbon nanotube composite fibres spun using ionic liquid as a benign solvent.
KR101736080B1 (en) Process Of Producing Electroconductive Bicomponent Fiber
JP2023019716A (en) Fibrous structure containing carbon nanomaterial and organic polymer
CN103668616A (en) Carbon nanotube modified polyvinyl akohol nano-fiber yarn and preparing method thereof
WO2024157967A1 (en) Fibrous structure containing carbon nanomaterial and organic polymer, and method for manufacturing same
Liu et al. A novel structural design of cellulose-based conductive composite fibers for wearable e-textiles
CN110042499A (en) The preparation method of the alginate fibre of electric conductivity enhancing
TWI826882B (en) Manufacturing method of cellulose fiber and cellulose fiber
CN113337925B (en) Preparation method of carbon nanotube/graphene composite fiber
KR101695370B1 (en) Process Of Producing Electroconductive Bicomponent Fiber
Piotr et al. Regenerated cellulose/graphene composite fibers with electroconductive properties
CN114438618B (en) Fiber and preparation method thereof
KR102551480B1 (en) Method for dispersing composition of high content carbon material and polymer composition prepared from the method
Lundahl Spinning of cellulose nanofibrils
JP2023086237A (en) Wet-spinning fibers and its production method, submicron fibril and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747294

Country of ref document: EP

Kind code of ref document: A1