KR101736080B1 - Process Of Producing Electroconductive Bicomponent Fiber - Google Patents

Process Of Producing Electroconductive Bicomponent Fiber Download PDF

Info

Publication number
KR101736080B1
KR101736080B1 KR1020160062962A KR20160062962A KR101736080B1 KR 101736080 B1 KR101736080 B1 KR 101736080B1 KR 1020160062962 A KR1020160062962 A KR 1020160062962A KR 20160062962 A KR20160062962 A KR 20160062962A KR 101736080 B1 KR101736080 B1 KR 101736080B1
Authority
KR
South Korea
Prior art keywords
acid
conductive
fiber
weight
solution
Prior art date
Application number
KR1020160062962A
Other languages
Korean (ko)
Inventor
김원근
이현호
민우기
Original Assignee
주식회사 파이버엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파이버엔텍 filed Critical 주식회사 파이버엔텍
Priority to KR1020160062962A priority Critical patent/KR101736080B1/en
Application granted granted Critical
Publication of KR101736080B1 publication Critical patent/KR101736080B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/065Addition and mixing of substances to the spinning solution or to the melt; Homogenising
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/103De-aerating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/448Yarns or threads for use in medical applications
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention relates to a method for producing an electroconductive composite fiber having electroconductive properties at the similar level with a conductor through a spinning process. According to the present invention, an electroconductive composite fiber has excellent conductivity of 200 /cm or less and physical properties of 80 MPa or more without problems in a sinning process. Therefore, provided is a metal nanoparticle-carbon nanotube-alginate conductive composite fiber which can be applied for textile products based on wearable devices, can be applied in biomedical fields such as a bioactuator, a biosensor, etc. for artificial muscle due to excellent biocompatibility, discharges few harmful materials in a spinning process and has excellent process properties.

Description

전기 전도성 복합섬유의 제조방법{Process Of Producing Electroconductive Bicomponent Fiber}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an electroconductive composite fiber,

본 발명은 방사공정에 의해 도체 수준의 전기전도 특성을 갖는 전기 전도성 섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing electrically conductive fibers having conductor-level electrical conductivity properties by a spinning process.

일반적으로 전기 전도성 섬유(이하 전도성 섬유)는 섬유자체 또는 내 외부 구조에 전기를 통할 수 있는 물질이 포함되어 일정 수준의 전기를 흐르게 할 수 있는 섬유상 물질을 의미한다. Generally, electrically conductive fibers (hereinafter referred to as conductive fibers) refer to fibrous materials that can contain a material that can electrically conduct electricity to the fiber itself or an internal structure thereof, and can flow a certain amount of electricity.

이러한 섬유의 제조방법으로는 크게 전도성 고분자를 사용하는 방법과 전도성 물질을 결합하는 방법으로 구분할 수 있으며, 현재까지 전자의 기술로 제조된 섬유는 반도체 수준이상의 양호한 전도성을 나타내나 유연성이 현저히 떨어져 일반 섬유제품용도로 사용하는 것이 어렵다. 또한 센서용도 이상, 나아가 전기도선으로 활용하기에는 전도성이 낮다. The method of manufacturing such fibers can be classified into a method of using a conductive polymer and a method of combining a conductive material. To date, a fiber produced by an electron technology has a good conductivity over a semiconductor level, It is difficult to use for product use. In addition, the conductivity is not good enough to be used for sensor applications and further for electric leads.

후자의 경우 더욱 구체적으로 구분하면 전도성 첨가물질을 섬유내부에 혼입하여 섬유를 제조하는 방법, 도금기법 등을 활용하여 일반 섬유에 코팅하는 방법으로 나눌 수 있다. 섬유고분자와 혼입하여 제조하는 전도성 복합섬유는 내구성이 우수하며 사용하는 전도성 첨가물질과 매트릭스 고분자에 따라 다양한 수준의 물성 및 전도성 구현이 가능 하지만 도체 수준의 전도성인 102 S/Cm 이상의 전도성 달성이 어렵고 첨가제 함량 증가에 따른 강도, 신도 등 물성저하의 단점이 있다, 반면 후처리 코팅에 의한 전도성 섬유제조는 기술적 난이도가 높지 않은 까닭에 다양하게 시도되고 있으나, 코팅에 따른 섬유 촉감의 저하와 내구성 저하의 문제점이 있다. In the latter case, more specifically, the conductive additive material may be incorporated into the fiber to produce a fiber, or the plating method may be used to coat the fiber with a common fiber. The conductive composite fiber prepared by mixing with the fiber polymer is excellent in durability and it is possible to realize various physical properties and conductivity depending on the conductive additive material and the matrix polymer to be used, but the conductive level conductive material 10 2 S / Cm However, on the other hand, conductive fiber production by post-treatment coating has been tried variously due to its low technical difficulty. However, it is difficult to achieve the desired effect of coating by fiber coating There is a problem of deterioration and durability deterioration.

최근 가장 많이 개발이 시도되고 있는 전도성 복합섬유는 구체적인 제조방법에 따라 다시 용융방사형 전도성 복합섬유와 습식방사형 전도성 복합섬유로 나눌 수 있으며, 용융방사형 전도성 복합섬유의 매트릭스 섬유고분자는 폴리에스터, 나일론, 폴리프로필렌, 폴리에틸렌, 등의 열가소성 고분자가 주로 사용되며, 습식방사형 전도성 복합섬유의 매트릭스 섬유고분자로는 폴리아크릴로니트릴, 폴리우레탄, 폴리비닐알콜 등의 합성고분자 및 비스코오스레이욘, 라이오셀 등의 재생 셀룰로오스, 그리고 키틴/키토산, 알지네이트와 같은 多糖류 고분자 섬유가 있다. The most recently developed conductive composite fibers can be divided into melt-radial conductive composite fibers and wet-radial conductive composite fibers according to a specific manufacturing method, and the matrix fiber polymer of the melt-radial conductive composite fibers is made of polyester, nylon, poly Propylene, and polyethylene. Matrix fiber polymers of the wet-type radial conductive composite fiber include synthetic polymers such as polyacrylonitrile, polyurethane, and polyvinyl alcohol, and recycled polymers such as viscose rayon and lyocell. Cellulose, and polysaccharide polymer fibers such as chitin / chitosan and alginate.

이중 가장 일반적인 열가소성 섬유고분자를 이용한 전도성 섬유의 제조 방법으로는 금속분말, 탄소나노튜브, 그래핀 등, 탄소 동소체와 같은 전도성 첨가물질로 수십 중량 % 농도의 마스터배치를 제조한 후 virgin chip과 혼합, 용융 방사하여 전도성 섬유를 제조한다. 이렇게 제조한 전도성 섬유는 통상 반도체 정도인 100 S/cm(단자리) 수준의 전도도를 나타내는 것이 현재까지의 기술적 한계이며 그 이상의 전도성 발현을 위해 전도성 첨가물질 함량을 올리는 것은 높은 용융점도로 인한 분산성 저하, 고온 및 전단력 등에 의한 첨가물질 특성 변화가 불가피하여 매우 어려운 실정이다. As a method for producing conductive fibers using the most common thermoplastic fiber polymer, a master batch having a concentration of several tens% by weight is prepared by a conductive additive material such as a metal powder, a carbon nanotube, and a graphene, Melt spinning to produce conductive fibers. The conductive fibers thus produced usually exhibit a conductivity of about 10 0 S / cm (single-digit) on the order of a semiconductor, which is a technical limitation to the present. Raising the content of the conductive additive for the further development of conductivity requires a high melting point It is very difficult to change the properties of the additive material due to degradation, high temperature and shear force.

습식방사에 의한 전도성 섬유제조는 비교적 낮은 점도에서 첨가제를 혼입함으로써 용용방사 공법에 비해 상대적으로 높은 비율의 전도성 첨가제를 혼입할 수 있으며, 상대적으로 낮은 점도 및 공정온도를 유지함으로써 첨가제의 물리. 화학적 형태 변화를 최소화하여 전기전도 특성을 유지할 수 있는 장점이 있다. 그러나 이러한 습식방사의 경우 대부분 강산, 강염기 및 디메틸포름아미드, 디메틸아세틸아미드 등 유기용제를 다량으로 사용하며 이를 회수하는 것이 반드시 필요하다. 또한 제조된 섬유의 전도도는 현재까지 102S/cm 수준에는 미치지 못하고 있다. 이러한 단점을 보완키 위해 전도성 물질을 단독으로 구성된 섬유제조 연구가 진행되고 있다. The production of conductive fibers by wet spinning can incorporate a relatively high proportion of the conductive additive as compared to the spinneret method by incorporating the additive at a relatively low viscosity and by maintaining the relatively low viscosity and process temperature, It is possible to maintain the electric conduction characteristic by minimizing the chemical form change. However, most of these wet spinning processes require strong acids, strong bases, and organic solvents such as dimethylformamide and dimethylacetamide. In addition, the conductivity of the manufactured fibers has not reached the level of 10 2 S / cm to date. In order to overcome these disadvantages, studies on the fabrication of fibers composed of conductive materials alone are underway.

그 예로써 대한민국특허공개제10-2012-0107026호에서는 그래핀을 계면활성제에 분산한 후 고분자와 혼합하여 습식방사 한 후 열처리 또는 산처리를 거쳐 고분자를 제거하여 그래핀 섬유를 제조하는 방법을 제공하고 있다. 또한 몇몇 연구자들은 진한황산, 클로로술폰산과 같은 초강산에 탄소나노튜브를 분산시킨 후 이를 습식방사하여 탄소나노튜브섬유를 제조하였다(11 JANUARY 2013 VOL 339 SCIENCE). 이렇게 제조한 전도성 섬유는 도체 수준의 매우 우수한 전기전도도를 나타낸다. 그러나 초강산을 사용해야 하는 공정의 제약성 및 탄소동소체 단독으로 구성된 섬유의 유연성이 매우 떨어지는(부서지기 쉬움) 까닭에 일반 섬유용도로 사용하기에는 풀어야할 과제가 많다. 이처럼 다가오는 스마트 의류시대를 대비한 다양한 전도성 섬유가 개발되고 있으나, 반도체 수준을 뛰어넘는 전도성 및 일반 섬유제품 적용이 가능한 강도 및 유연성, 그리고 제조공정의 현실성 및 친환경 특성을 고루 갖는 전도성 섬유의 제조에 대한 연구개발이 보다 요구되는 실정이다. 이에 다량의 전도성 첨가물질의 혼입 방사가 가능하고 공정중 유해물질 배출이 거의 없는 동시에 우수한 물성을 갖는 다당류 고분자를 활용한 습식방사 공법의 전도성 섬유 개발이 요구된다. For example, Korean Patent Laid-Open Publication No. 10-2012-0107026 discloses a method for producing graphene fibers by dispersing graphene in a surfactant, mixing the polymer with a polymer, wet-spinning the polymer, and then removing the polymer through heat treatment or acid treatment . In addition, some researchers fabricated carbon nanotube fibers by dispersing carbon nanotubes in super strong acids such as concentrated sulfuric acid and chlorosulfonic acid, and then wet-spinning them (11 JANUARY 2013 VOL 339 SCIENCE). The conductive fibers thus produced exhibit very good electrical conductivity at the conductor level. However, there are many problems to be solved for general fiber use because of the limitations of the process of using super strong acid and the very low flexibility of the fiber composed of the carbon isotope alone. Although a variety of conductive fibers are being developed for the coming era of smart apparel, there is a need to develop conductive fibers that are more conductive than semiconductors, capable of applying strength and flexibility to general textile products, R & D is more demanded. Therefore, it is required to develop a conductive fiber of a wet spinning method utilizing a polysaccharide polymer having excellent physical properties while allowing a large amount of conductive additive to be mixed and radiated, and there is little discharge of toxic substances in the process.

대한민국특허공개공보제10-2012-0107026호(2012년09월28일공개)Korean Patent Laid-Open Publication No. 10-2012-0107026 (published on September 28, 2012) 대한민국특허공개공보제10-2014-0071751호(2014년06월12일공개)Korean Patent Laid-Open Publication No. 10-2014-0071751 (published on June 12, 2014)

따라서 본 발명에서는 반도체 수준을 뛰어넘는 우수한 전기전도성과 섬유제품 사용에 적합한 강도 및 신도, 유연성을 갖는 동시에 제조 중 유해물질 배출이 적으며 공정성이 우수한 전도성 섬유의 제조방법을 제공하는 것을 기술적과제로 한다. 또한, 본 고안의 다른 목적은 생체적합성이 우수한 바이오 고분자를 器材로 사용함으로써 바이오센서, 바이오전지 전극으로 사용가능한 바이오 메디컬 시스템용 전도성 섬유의 제조방법을 제공하고자 함이다. Accordingly, it is a technical object of the present invention to provide a method for producing a conductive fiber having superior electrical conductivity exceeding a semiconductor level, strength, elongation and flexibility suitable for use in a textile product, . Another object of the present invention is to provide a method for manufacturing a conductive fiber for a biomedical system which can be used as a biosensor or a bio-cell electrode by using a biomolecule excellent in biocompatibility as an instrument.

그러므로 본 발명에 의하면, 금속나노입자 10~80중량%, 다중벽 탄소나노튜브 1~20중량% 및 잔부로서 증류수를 혼합하여 40~60℃ 중탕에서 초음파를 가하며 2~3시간에 거쳐 교반하여 금속나노입자-탄소나노튜브 수분산액을 만든 후,Therefore, according to the present invention, 10 to 80% by weight of metal nanoparticles, 1 to 20% by weight of multi-walled carbon nanotubes, and distilled water as a remainder are mixed and stirred in a bath at 40 to 60 ° C for 2 to 3 hours with ultrasonic waves, After making the nanoparticle-carbon nanotube aqueous dispersion,

상기 금속나노입자-탄소나노튜브 수분산액에 금속나노입자-탄소나노튜브 수분산액 100중량부 대비 소디움알긴산 고분자 5~15중량부를 혼합하여 초음파를 가하며 교반하여 금속나노입자-탄소나노튜브/알지네이트 방사원액을 제조한 후,The metal nanoparticle-carbon nanotube aqueous dispersion was mixed with 5-15 parts by weight of sodium alginic acid polymer with respect to 100 parts by weight of the metal nanoparticle-carbon nanotube aqueous dispersion, and the mixture was stirred while applying ultrasonic waves to prepare a metal nanoparticle-carbon nanotube / alginate spinning solution , ≪ / RTI >

기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘 응고액하에서 응고한 후 수세조, 유제조, 산 처리를 위한 산용액욕조를 차례로 거친 후 건조하여 권취하는 것을 특징으로 하는 전기 전도성 복합섬유의 제조방법이 제공된다.The water is degassed to remove air bubbles, filtered and then discharged in a fixed quantity through a gear pump to solidify in a coagulating solution of calcium chloride, followed by drying in an aqueous acid bath for water treatment, oil production and acid treatment, A method for producing a conductive composite fiber is provided.

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 전기 전도성 복합섬유의 제조방법은 금속나노입자-탄소나노튜브를 증류수에 분산시킨 수분산액과 알지네이트 수용액을 혼합하여 습식방사하는 것이다. 보다 구체적으로는 습식방사 공정 중 전도성 첨가물질을 혼입하여 기존 전도성 섬유 보다 전기 전도성이 높으며 강도 및 신도 등의 물리적 특성이 원사제조 후 2차원 또는 3차원의 섬유 구조체를 제조하기에 적합한 전기 전도성 섬유의 제조방법에 관한 것이다.The method for producing an electrically conductive composite fiber according to the present invention is a method of wet spinning by mixing an aqueous dispersion in which metal nanoparticles-carbon nanotubes are dispersed in distilled water and an aqueous alginate solution. More specifically, it is preferable that the conductive material is mixed with the conductive additive material during the wet spinning process, and the electrical conductivity is higher than that of the conventional conductive fiber, and the physical properties such as the strength and elongation are obtained from the electroconductive fibers suitable for producing the two- or three- And a manufacturing method thereof.

본 발명에서 전도성 섬유의 器材로 사용하는 알긴산은 해양생물의 하나인 갈조류에서 추출한 것으로 분자 속에 우론산의 카르복시기(COOH-)가 있으므로 산의 성질을 나타내는데, 보통은 나트륨염 형태로 이용되고 있다. 알긴산 나트륨은 염화칼슘용액을 응고욕으로 방사하여 쉽게 섬유화 될 수 있는 것으로 알려져 있다(Encyclopedia of textile finishing, H. K. Rouette, Springer, 2000). 인체에 무독성이며 가공하기가 쉽고, 물에 용해되어 고점성을 나타내므로 식품, 의약품, 섬유 공업에서 사용되고 있으며, 금속염과 가교결합을 형성하여 겔을 유도하게 되므로 이를 이용하여 최근에는 창상피복재(Wound dressing)로 키틴, 키토산 등과 함께 천연 고분자 물질로 관심을 받고 있다. In the present invention, alginic acid used as a material for conductive fibers is extracted from brown algae, which is one of marine organisms. Since the carboxyl group (COOH-) of uronic acid is present in the molecule, it exhibits properties of acid, usually sodium salt. Sodium alginate is known to be readily fibrous by spinning calcium chloride solution into a coagulating bath ( Encyclopedia of textile finishing, HK Rouette, Springer, 2000 ). It is used in foods, medicines and textile industry because it is non-toxic to human body, easy to process, soluble in water and exhibits high viscosity, and forms a cross-link with metal salt to induce gel. ) With chitin, chitosan and other natural polymers.

알긴산의 화학구조를 보면 하기 화학식 1과 같이 만루론산(M) 단위의 블록, 글루론산(G) 단위의 블록 및 그 중간의 MG 단위의 블록이 1,4-글리코시드로 구성된 직쇄의 공중합체로서 물리 화학적 특성은 M/G 비율과 분자들의 배열상태, 분자량의 차이에 의하여 점도, 용해도, 이온교환능 등의 물성에 영향을 받는 것으로 알려져 있다.The chemical structure of alginic acid is as shown in the following formula (1), as a block copolymer of maleuronic acid (M) unit, a block of glutaric acid (G) unit and a block of MG unit in the middle thereof as a linear chain composed of 1,4- Physico - chemical properties are known to be influenced by physical properties such as viscosity, solubility, and ion exchange capacity due to differences in M / G ratio, molecular arrangement, and molecular weight.

[화학식 1][Chemical Formula 1]

Figure 112016049385448-pat00001
Figure 112016049385448-pat00001

상기 화학식 1에서 알긴산의 카르복실기를 소디움염(-COO-Na+)형태로 제조한 것을 알지네이트라 하며 이는 고분자 전해질(Polyelectrolyte)의 특성을 가짐으로써 전도성 섬유제조에 유리한 조건을 갖추고 있다.The alginate in which the carboxyl group of the alginic acid is prepared in the form of a sodium salt (-COO - Na + ) is called an alginate. The alginate has a characteristic of a polyelectrolyte and thus has favorable conditions for the production of a conductive fiber.

본 발명에서 전도성 첨가물질로 사용하는 탄소나노튜브는 1985년 Kroto와 Smalley가 탄소의 동소체(allotrope)의 하나인 플러렌(탄소원자가 60개 모인 것: C60)을 처음으로 발견한 후 1991년 이 물질을 연구하던 일본 전기회사(NEC)의 이지마가 전기 방전법을 사용하여 흑연 음극상에 형성시킨 탄소덩어리를 TEM으로 분석하는 과정에서 발견하였다. 이후 나노기술의 빌딩블럭으로 주목 받으며 물리적, 화학적 특성 규명 및 다양한 응용분야에 관한 연구가 수행되고 있는데, 특히 금속수준에 근접하는 뛰어난 전기전도성 및 우수한 물성으로 인해 디스플레이, 터치패널, 전도성섬유 등 다양한 전도성 구현 소재로서 각광 받고 있다. 그러나 나노미터 크기의 작은 크기(직경: 단일벽 탄소나노튜브 < 2㎚, 다중벽 탄소나노튜브 5∼100㎚)로 반데르발스 인력에 의한 응집현상이 발생하여 전도성 섬유의 첨가제로 사용할 때에는 적절한 분산기술이 반드시 필요하다. Carbon nanotubes used as conductive additive materials in the present invention were first discovered in 1985 by Kroto and Smalley as fullerenes (carbon atoms 60 carbon atoms: C 60 ), one of carbon allotrope, IJima of Japan Electricity Company (NEC), who was working on the research, was found in the process of TEM analysis of the carbon particles formed on the graphite cathode using the electric discharge method. Since then, research on various physical and chemical properties has been carried out. In particular, due to excellent electrical conductivity and excellent physical properties close to the metal level, various conductive materials such as display, touch panel and conductive fiber It is getting popular as an implementation material. However, when a small size of nanometer size (diameter: single-walled carbon nanotube <2 nm, multi-walled carbon nanotube 5 to 100 nm) causes flocculation due to van der Waals attraction and is used as an additive for conductive fibers, Technology is essential.

본 발명에서 사용하는 바이오고분자인 알긴산염은 수용성 고분자로서 탄소나노튜브 또한 水분산 시스템의 설계가 필요하므로 본 발명에서는 탄소나노튜브의 분산을 먼저 시행하였으며, 이 후 전도성 향상을 위한 후처리 가공 공정을 진행한다. Since alginate, which is a biopolymer used in the present invention, is required to design a carbon nanotube as a water-soluble polymer and also to design a water dispersion system, in the present invention, carbon nanotubes are dispersed first, and then a post- Go ahead.

본 발명에서는 금속나노입자 10~80중량%, 다중벽 탄소나노튜브 1~20중량% 및 잔부로서 증류수를 혼합하여 40~60℃ 중탕에서 초음파를 가하며 2~3시간에 거쳐 교반하여 금속나노입자-탄소나노튜브 수분산액을 만든 후, 상기 금속나노입자-탄소나노튜브 수분산액에 금속나노입자-탄소나노튜브 수분산액 100중량부 대비 소디움알긴산 고분자 5~15중량부를 혼합하여 초음파를 가하며 교반하여 금속나노입자-탄소나노튜브/알지네이트 방사원액을 제조한다. In the present invention, 10 to 80% by weight of metal nanoparticles, 1 to 20% by weight of multi-walled carbon nanotubes, and distilled water as a remainder are mixed and stirred in a bath at 40 to 60 ° C for 2 to 3 hours with ultrasonic waves, After the carbon nanotube aqueous dispersion was prepared, 5 to 15 parts by weight of sodium alginic acid polymer was mixed with the metal nanoparticle-carbon nanotube aqueous dispersion in an amount of 100 parts by weight of the metal nanoparticle-carbon nanotube water dispersion, and the mixture was stirred with ultrasonic waves, Particle-carbon nanotube / alginate spinning solution.

상기 알긴산의 분자량은 30~50만 중량평균 분자량이 바람직하며 다분산 지수는 2.5미만이고 이성질체 구성비는 만우론산(Mannuroni acid)과 글루론산(Gluronic acid)의 비율(M/G비율)로 0.6 ~ 1.4이나 전도성섬유 용도에는 0.6 ~ 1 (G > M)이 바람직하다. 알긴산은 M블록과 G블록 이성분으로 구성된 직쇄상의 고분자이지만 천연물에서 생합성되므로 원료에 따라 구성비율이나 배열순서가 불규칙적이다 또한 M블록과 G블록 및 M/G블록이 전체 고분자에서 차지하는 비율에 따라 구분하여 사용한다. 대표적으로 금속이온과의 결합성질을 살펴보면 G블록은 "egg box"형태로 금속이온을 결합하는 성질을 가지고 있고 M블록은 셀룰로스와 같은 구조를 가지고 단순히 카르복시기와 이온결합을 하여 상기와 같이 글루론산이 많을수록 전도성섬유제조에 유리하다.The molecular weight of the alginic acid is preferably from 30 to 500,000, and the polydispersity index is preferably less than 2.5. The isomer composition ratio of mannuronic acid to gluronic acid (M / G ratio) is 0.6 to 1.4 And 0.6 to 1 (G > M) is preferable for the conductive fiber application. Although alginic acid is a linear polymer composed of M block and G block two components, it is biosynthesized from natural products, so that the composition ratio and arrangement order are irregular according to the raw material. Also, according to the ratio of M block, G block and M / . As for the binding property with metal ion, G block has a property of binding metal ion in the form of "egg box", M block has a structure like cellulose and merely carries ionic bond with carboxy group so that glutaric acid The more it is, the more advantageous it is to produce conductive fibers.

또한, 방사원액의 점도는 50,000∼200,000cps, 농도는 5∼15 wt%, 바람직하게는 8∼10wt %가 좋다. 제조된 방사원액은 매쉬필터를 통해 불용분 및 불순물을 걸러 준 후 감압하여 탈포하고 공기압을 통해 정량토출을 위한 기어펌프를 통과 후 방사구금으로 토출한다. 이 후 염화칼슘 응고액에서 나트륨-칼슘 이온교환 반응에 의해 겔상의 섬유가 형성되며, 수세 및 건조를 하여 섬유를 제조한다. 상기 공정은 통상의 알긴산 섬유 제조 공정과 같은데, 본 발명의 전도성 섬유의 제조를 위해서는 상기 방사원액 제조단계에서 탄소나노튜브를 1~20중량%를 혼입하게 된다.The viscosity of the spinning stock solution is 50,000 to 200,000 cps and the concentration is 5 to 15 wt%, preferably 8 to 10 wt%. The prepared spinning liquid is filtered through insulated powder and impurities through a mesh filter, then defoamed under reduced pressure, passed through a gear pump for quantitative discharge through air pressure, and discharged through a spinneret. After that, a gel-like fiber is formed by a sodium-calcium ion exchange reaction in a calcium chloride coagulating solution, and washed and dried to produce a fiber. The above process is similar to a conventional alginic acid fiber production process. In order to produce the conductive fiber of the present invention, 1 to 20% by weight of carbon nanotubes are mixed in the spinning solution preparation step.

구체적인 탄소나노튜브의 구조는 경제성과 분산안정성을 고려할 때 단일벽 또는 이중벽 탄소나노튜브 보다 다중벽 탄소나노튜브의 사용이 바람직하며 크기는 직경 5∼100㎚, 길이 1∼50㎛이고, 바람직하기로는 직경 10∼30㎚ 길이 10∼30㎛이다. Considering economical efficiency and dispersion stability, the multi-walled carbon nanotubes are preferable to the single wall or double walled carbon nanotubes and have a size of 5 to 100 nm and a length of 1 to 50 μm, 10 to 30 nm in diameter and 10 to 30 占 퐉 in length.

본 발명에서는 전도성의 향상을 위해 금속나노입자 10~80중량% 및 잔부로서 증류수를 혼합한 후 40~60℃ 중탕에서 초음파를 가하며 2~3시간에 거쳐 교반하여 분산시켜 금속나노입자-탄소나노튜브 수분산액을 만든다. In the present invention, 10 to 80% by weight of metal nanoparticles and distilled water are mixed and dispersed by stirring in a bath at 40 to 60 ° C. for 2 to 3 hours with ultrasonic waves to improve the conductivity. Make an aqueous dispersion.

상기 금속나노입자는 금, 은, 니켈, 구리, 철, 티타늄 중 어느 하나인 금속나노입자인 것이 바람직하며, 그 중에서도 입경 50~200㎚인 구체(Spherical)형태의 은나노입자인 것을 사용하는 것이 바람직하다. The metal nanoparticles are preferably metal nanoparticles of any one of gold, silver, nickel, copper, iron and titanium. Of these, silver nanoparticles having a particle size of 50 to 200 nm are preferably used Do.

은나노입자는 그 형태가 구형, 타원형, 다면체, 와이어, 막대형등의 여러종류가 있는데, 통상적으로 전도성을 향상시키기 위해서는 와이어형, 막대형이 바람직하나, 본 발명에서와 같이 고농도로 방사원액에 분산시켜 전도성섬유를 제조하여 향상된 전도성을 얻기 위해서는 구체(Spherical)형태의 은나노입자인 것이 바람직하다.There are many kinds of silver nanoparticles, such as spherical, elliptical, polyhedral, wire, rod-shaped, and the like. In order to improve the conductivity, wire type or bar size is preferable. However, Silver nanoparticles are preferably spherical in order to produce conductive fibers and obtain improved conductivity.

일반적으로 금속나노입자를 혼입하여 전도성섬유를 제조하는 경우, 충분한 전도성을 가지기 위해서는 많은 양의 금속나노입자가 필요한데 이는 방사성문제, 원가상승의 문제를 가지게 된다. 따라서 본 발명과 같이 금속나노입자와 탄소나노튜브를 복합하게 되면 탄소나노튜브에 의해 도전경로를 확보함으로서 상대적으로 적은 양의 금속입자만으로도 충분한 전도성을 가질 수 있도록 할 수 있다. 금속나노입자 10중량%미만에서는 전도성이 나쁘며, 금속나노입자 80중량% 초과시에는 방사성이 저하된다.Generally, when conductive fibers are prepared by incorporating metal nanoparticles, a large amount of metal nanoparticles are required to have sufficient conductivity, which causes a problem of radioactive problems and cost increase. Therefore, when the metal nanoparticles are combined with the carbon nanotubes as in the present invention, the conductive path is ensured by the carbon nanotubes, so that even a relatively small amount of metal particles can provide sufficient conductivity. When the metal nanoparticles are less than 10% by weight, the conductivity is poor. When the metal nanoparticles are 80% by weight or more, the radioactivity is lowered.

상기 제조한 금속나노입자-탄소나노튜브 수분산액 100중량부와 소디움알긴산 고분자 5~15중량부를 혼합하여 방사원액을 제조하는데, 상기 금속나노입자-탄소나노튜브가 혼입, 분산된 알지네이트 방사원액은 전술한 통상의 방사공정을 거쳐 연속상의 섬유를 제조하며, 전도도 향상을 목적으로 계면활성제를 제거하기 위한 산 처리 공정을 시행한다. 즉, 기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘 응고액하에서 응고한 후 수세조, 유제조, 산 처리를 위한 산용액 욕조를 차례로 거친 후 건조하여 권취하게 된다.100 parts by weight of the metal nanoparticle-carbon nanotube aqueous dispersion prepared above and 5-15 parts by weight of sodium alginic acid polymer are mixed to prepare a spinning solution. The solution of the alginate spinning solution in which the metal nanoparticles-carbon nanotubes are mixed and dispersed is mixed with tungsten Continuous fiber is produced through one ordinary spinning process and an acid treatment process is carried out to remove the surfactant for the purpose of improving the conductivity. In other words, after vacuum degassing and filtration to remove air bubbles, they are fixedly discharged through a gear pump, solidified in a calcium chloride coagulating solution, and then dried in a water bath, an oil bath, and an acid bath for acid treatment.

계면활성제 제거를 위한 산 처리는 황산, 염산, 질산 중 어느 하나 또는 황산, 염산, 질산 중 어느 2이상의 혼합액으로서 농도는 0.5∼2.0N인 것을 사용하는 것이 좋다.The acid treatment for removing the surfactant is preferably a mixed solution of any one of sulfuric acid, hydrochloric acid and nitric acid or any two or more of sulfuric acid, hydrochloric acid and nitric acid, and the concentration is 0.5 to 2.0N.

상기의 제조방법에 의해 제조한 섬유를 이용해 전선과 같이 피복을 입힌 전도성섬유 전선을 제공할 수 있다. The conductive fiber wires coated with the fibers such as electric wires can be provided by using the fibers produced by the above-mentioned manufacturing method.

그러므로 본 발명에 의하면, 방사공정상의문제점이 없이 200Ω/cm 이하의 뛰어난 전도성 및 80MPa 이상의 우수한 물성을 가짐으로써 웨어러블 디바이스 기반의 섬유제품에 대한 적용을 할 수 있음은 물론, 생체적합성이 뛰어나 인공근육용 바이오액츄에이터, 바이오센서 등 바이오메디컬 분야에 적용이 가능함과 동시에 방사 공정에서의 유해물질 배출이 적고 공정특성이 우수한 금속나노입자-탄소나노튜브-알지네이트 전도성 복합섬유를 제공할 수 있다. Therefore, according to the present invention, excellent conductivity of not more than 200? / Cm and excellent physical properties of not less than 80 MPa can be applied to a textile product based on a wearable device, It is possible to provide a metal nanoparticle-carbon nanotube-alginate conductive composite fiber which can be applied to a biomedical field such as a bioactuator, a biosensor, and also has a small emission of harmful substances in a spinning process and an excellent process characteristic.

도 1 및 도 2는 본 발명인 전기 전도성 복합섬유의 단면 확대사진이다.1 and 2 are enlarged cross-sectional photographs of the electrically conductive conjugate fiber of the present invention.

다음의 실시예에서는 본 발명의 전기 전도성 복합섬유를 제조하는 비한정적인 예시를 하고 있다.The following examples illustrate non-limiting examples of preparing the electrically conductive conjugate fibers of the present invention.

[실시예 1] [Example 1]

알긴산소다의 원료는 표 1과 같은 M/G 값을 가지는 FMC Biopolymer에서 구입한 알긴산소다(상품명 : Protanal)를 사용하였다. M/G ratio의 분석방법은 ASTM F 2269-10(Reapproved 2012)를 기초로 하여 1H-NMR(JeoIJNM-LA4-- with LFG, 400Mhz)를 이용하여 분석하였다. 탄소나노튜브 및 은나노입자는 표 2에 도시한 것을 사용하였다. Sodium alginate (Protanal) purchased from FMC Biopolymer having an M / G value as shown in Table 1 was used. The analysis method of M / G ratio was analyzed using 1 H-NMR (Jeo IJNM-LA 4 - with LFG, 400 MHz) based on ASTM F 2269-10 (Reapproved 2012). Carbon nanotubes and silver nanoparticles used in Table 2 were used.

탄소나노튜브(CNT) 5중량%와 은나노입자 20중량%를 잔부인 물에 용해시켜 초음파를 투사하면서 60분간 혼합하였다. 상기 혼합용액 100중량부 대비 알긴산소다 10중량부를 서서히 투입하면서 초음파를 투사하면서 2~3시간 혼합하여 방사원액을 준비하였다.5% by weight of carbon nanotubes ( CNT ) and 20% by weight of silver nanoparticles were dissolved in residual water and mixed for 60 minutes while projecting ultrasonic waves. 10 parts by weight of sodium alginate was slowly added to 100 parts by weight of the mixed solution while mixing with ultrasonic waves for 2 to 3 hours to prepare a spinning solution.

시료명Name of sample GG MM M/GM / G 실시예 1Example 1 0.880.88 0.530.53 0.60.6 비교예 1Comparative Example 1 1.571.57 1.821.82 1.151.15

G : Gluronic acid =0.5(A+C+0.5(B1+B2+B3)) G: Gluconic acid = 0.5 (A + C + 0.5 (B1 + B2 + B3))

M : Mannuronic acid = B4 + 0.5(B1+B2+B3) M: Mannuronic acid = B4 + 0.5 (B1 + B2 + B3)

품목subject TypeType SpecSpec CNTCNT MultiWallMultiWall Dia 20 nm, Length 10 μmDia 20 nm, Length 10 μm
5% Water dispersion5% Water dispersion
AgAg SphericalSpherical 80 nm80 nm

알긴산 나트륨 용액(도프)을 만든 후 중성상태를 유지하면서 기포를 제거하여 도프조에 넣어 직경이 0.1 ㎜이고 구멍수가 1,525 hole인 노즐을 통해 3.5데니어가 되도록 기어펌프로 토출량을 조절하면서 습식방사를 하였다. Sodium alginate solution (dope) was prepared, and the bubbles were removed while keeping the neutral state. The dope was removed by adjusting the discharge amount with a gear pump so as to be 3.5 denier through a nozzle having a diameter of 0.1 mm and a hole number of 1,525 holes.

이때 연신비 1.1로 고정하였고 권취속도는 5m/분으로 하였다. 응고욕은 1M 염화칼슘용액을 사용하였다. 이후 CNT-알지네이트 섬유를 비이온성 계면활성제인 Triton X-100 1% 수용액에서 수세를 하여 미반응염을 제거한 후, 유제조, 산처리를 위한 산용액욕조, 처리한 산을 제거하기 위한 수세조를 거친 후 건조하여 권취하여 전기 전도성 복합섬유를 제조하였다. 여기서 산처리는 0.5N 질산처리에 의해 유제 및 첨가제에 함유된 분산제 등 계면활성제를 제거함으로써 전기전도도를 향상하고자 위함이다.At this time, the stretching ratio was fixed at 1.1, and the winding speed was 5 m / min. The coagulation bath was a 1M calcium chloride solution. The CNT-alginate fibers were then washed with 1% aqueous solution of Triton X-100, a non-ionic surfactant, to remove unreacted salts. Then, an acid bath for oil production, an acid bath for acid treatment, Followed by coarsening to obtain an electrically conductive composite fiber. Here, the acid treatment is intended to improve the electric conductivity by removing the surfactant such as the dispersant contained in the emulsion and the additive by 0.5N nitric acid treatment.

[비교예 1][Comparative Example 1]

알긴산소다의 원료로 표 1과 같은 M/G 값을 가지는 FMC Biopolymer에서 구입한 알긴산소다(상품명 : Protanal)를 사용하는 것을 제외하고는 실시예 1과 동일하게 방사하였다.The same procedure was carried out as in Example 1, except that sodium alginate (Protanal) purchased from FMC Biopolymer having an M / G value as shown in Table 1 was used as a raw material of alginate soda.

[ 전도성 섬유의 특성 분석 ][Characteristic Analysis of Conductive Fiber]

상기 실시예 및 비교예에서 제조한 섬유의 전도도 측정은 2Probe 저항계를 사용하여 측정하였으며, 다음의 환산식을 통해 최종 섬유의 저항값을 구하여 표 3에 나타내었다. The conductivities of the fibers prepared in the Examples and Comparative Examples were measured using a 2-probe meter, and the resistance values of the final fibers were obtained through the following conversion equations.

식 1] ----

Figure 112016049385448-pat00002
Equation 1] ----
Figure 112016049385448-pat00002

(ρ(Ω/cm)는 비저항, A는 원형섬유의 단면적, L은 저항 측정 거리이며, 최종 전도도 값의 단위인 S/cm 는 비저항 값의 역수이다.)(ρ (Ω / cm) is the resistivity, A is the cross-sectional area of the circular fiber, L is the resistance measurement distance, and S / cm, the unit of final conductivity value, is the reciprocal of the resistivity value.)

(시험기준 : ① 전도도: 2probe method 측정 (Test standard: ① Conductivity: 2probe method measurement

② 강도, 신도 : 단섬유 강신도 측정기로 샘플당 10회 측정 평균값)② Strength and elongation: Average value of 10 measurements per sample with a short fiber strength meter)

M/G 비 M / G ratio 전도도(Ω/cm) Conductivity (Ω / cm) 실시예 1Example 1 0.60.6 4646 비교예 1Comparative Example 1 1.151.15 102102

실시예 1 및 비교예 1의 전도성 복합섬유의 직경을 측정하고 단위면적당 인장강도(MPa)와 신도(%)를 측정하였다. Ag/CNT/Alginate 전도성 복합섬유의 인장강도와 신도는 표 4와 같이 전도성섬유로 활용하기에 충분한 물성을 나타내었다.The diameter of the conductive composite fibers of Example 1 and Comparative Example 1 was measured, and the tensile strength (MPa) and elongation (%) per unit area were measured. The tensile strength and elongation of the Ag / CNT / Alginate conductive composite fiber showed sufficient physical properties to be used as the conductive fiber as shown in Table 4.

시료명Name of sample diameter(㎛)diameter (탆) Tensile strength(MPa)Tensile strength (MPa) Elongation(%) Elongation (%) 실시예 1Example 1 31.0431.04 179179 8.68.6 비교예 1Comparative Example 1 33.2133.21 130130 5.65.6

금속 Nano 전도성 첨가제의 함량이 적었음에도 우수한 전도도를 나타내었는데 이는 탄소나노튜브(CNT)가 도전경로를 확보해줌으로서 전기전도도 상승 효과가 있음을 알 수 있었다. Even though the content of metal Nano conductive additive was small, it showed excellent conductivity. It was found that carbon nanotube (CNT) secures a conductive path and thus has a synergistic effect of electric conductivity.

Claims (5)

금속나노입자 10~80중량%, 다중벽 탄소나노튜브 1~20중량% 및 잔부로서 증류수를 혼합하여 40~60℃ 중탕에서 초음파를 가하며 2~3시간에 거쳐 교반하여 금속나노입자-탄소나노튜브 수분산액을 만든 후,
상기 금속나노입자-탄소나노튜브 수분산액에 만우론산과 글루론산의 비(M/G 비)가 0.6 ~ 1.0인 소디움알긴산 고분자를 혼합하되 금속나노입자-탄소나노튜브 수분산액 100중량부 대비 소디움알긴산 고분자 5~15중량부를 혼합하여 초음파를 가하며 교반하여 금속나노입자-탄소나노튜브-알지네이트 방사원액을 제조한 후,
기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘 응고액하에서 응고한 후 수세조, 유제조, 산 처리를 위한 산용액욕조를 차례로 거친 후 건조하여 권취하는 것을 특징으로 하는 전기 전도성 복합섬유의 제조방법.
10 to 80% by weight of metal nanoparticles, 1 to 20% by weight of multi-walled carbon nanotubes, and distilled water as a remainder, and the resulting mixture is stirred at 40 to 60 ° C in a hot water bath for 2 to 3 hours with ultrasonic waves. After making the aqueous dispersion,
The metal nano-particle-carbon nanotube aqueous dispersion was mixed with a sodium alginic acid polymer having a ratio of mannuronic acid and glutaric acid (M / G ratio) of 0.6 to 1.0, wherein sodium alginic acid And 5 to 15 parts by weight of a polymer were mixed and stirred under ultrasonic wave to prepare a spinning solution of metal nanoparticle-carbon nanotube-alginate,
The water is degassed to remove air bubbles, filtered and then discharged in a fixed quantity through a gear pump to solidify in a coagulating solution of calcium chloride, followed by drying in an aqueous acid bath for water treatment, oil production and acid treatment, A method for producing a conductive composite fiber.
삭제delete 제 1항에 있어서,
상기 산용액은 황산, 염산, 질산 중 어느 하나 또는 황산, 염산, 질산 중 어느 2이상의 혼합액으로서 농도는 0.5∼2.0N인 것을 특징으로 하는 전기 전도성 복합섬유의 제조방법.
The method according to claim 1,
Wherein the acid solution is a mixed solution of any one of sulfuric acid, hydrochloric acid and nitric acid or any two or more of sulfuric acid, hydrochloric acid and nitric acid, and the concentration is 0.5 to 2.0 N.
제 1항에 있어서,
상기 금속나노입자는 금, 은, 니켈, 구리, 철, 티타늄 중 어느 하나인 금속나노입자인 것을 특징으로 하는 전기 전도성 복합섬유의 제조방법.
The method according to claim 1,
Wherein the metal nanoparticles are metal nanoparticles of any one of gold, silver, nickel, copper, iron, and titanium.
제 4항에 있어서,
상기 은나노입자는 입경 50~200㎚인 구체(Spherical)형태의 은나노입자인 것을 특징으로 하는 전기 전도성 복합섬유의 제조방법.
5. The method of claim 4,
Wherein the silver nanoparticles are spherical silver nanoparticles having a particle diameter of 50 to 200 nm.
KR1020160062962A 2016-05-23 2016-05-23 Process Of Producing Electroconductive Bicomponent Fiber KR101736080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160062962A KR101736080B1 (en) 2016-05-23 2016-05-23 Process Of Producing Electroconductive Bicomponent Fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160062962A KR101736080B1 (en) 2016-05-23 2016-05-23 Process Of Producing Electroconductive Bicomponent Fiber

Publications (1)

Publication Number Publication Date
KR101736080B1 true KR101736080B1 (en) 2017-05-16

Family

ID=59035358

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160062962A KR101736080B1 (en) 2016-05-23 2016-05-23 Process Of Producing Electroconductive Bicomponent Fiber

Country Status (1)

Country Link
KR (1) KR101736080B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619487A (en) * 2017-10-11 2018-01-23 哈尔滨工程大学 A kind of preparation method of the calcium cross-linked sodium alginate electric drive film of chlorination
KR102130936B1 (en) 2020-03-03 2020-07-06 주식회사 파이버엔텍 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby
CN116038665A (en) * 2023-02-03 2023-05-02 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure
CN116987306A (en) * 2022-12-01 2023-11-03 东北电力大学 Artificial muscle output force improvement process similar to squid muscle fiber through acupuncture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134158A1 (en) 2002-06-28 2006-06-22 Chemical Biology Institute Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134158A1 (en) 2002-06-28 2006-06-22 Chemical Biology Institute Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619487A (en) * 2017-10-11 2018-01-23 哈尔滨工程大学 A kind of preparation method of the calcium cross-linked sodium alginate electric drive film of chlorination
KR102130936B1 (en) 2020-03-03 2020-07-06 주식회사 파이버엔텍 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby
CN116987306A (en) * 2022-12-01 2023-11-03 东北电力大学 Artificial muscle output force improvement process similar to squid muscle fiber through acupuncture
CN116987306B (en) * 2022-12-01 2024-02-23 东北电力大学 Artificial muscle output force improvement process similar to squid muscle fiber through acupuncture
CN116038665A (en) * 2023-02-03 2023-05-02 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure
CN116038665B (en) * 2023-02-03 2023-08-15 东北电力大学 Flexible variable-rigidity artificial muscle device construction process of trunk-imitating multi-joint structure

Similar Documents

Publication Publication Date Title
KR101736080B1 (en) Process Of Producing Electroconductive Bicomponent Fiber
Islam et al. Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method
Hu et al. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning
Miyauchi et al. Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose
Razal et al. Carbon nanotube biofiber formation in a polymer‐free coagulation bath
Ayutsede et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process
Li et al. Poly (vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition
Ma et al. Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose
Li et al. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/Chitosan (CS)/Graphene (Gr) nanofibrous membranes
Park et al. Electrospinning and characterization of poly (vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions
Kou et al. A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties
Wang et al. Facile production of natural silk nanofibers for electronic device applications
Zhao et al. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers
Zhang et al. Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation
Mahdieh et al. Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility
Bang et al. Effects of pH on electrospun PVA/acid-treated MWNT composite nanofibers
Fu et al. Conductive core-sheath calcium alginate/graphene composite fibers with polymeric ionic liquids as an intermediate
KR20150139367A (en) Conducting fibers fabricated with nano carbon materials having multiple hydrogen bonding motifs and their fabrication method
Pan et al. Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver
Zhang et al. Fabrication of reduced graphene oxide/chitosan composite fiber by dry-jet wet spinning
US20170092388A1 (en) Conductive composites and compositions for producing the same, and production methods thereof
Deng et al. Hydroxypropyl chitosan/organic rectorite-based nanofibrous mats with intercalated structure for bacterial inhibition
Granero et al. Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes
Islam et al. Mechanical and electrical properties: electrospun alginate/carbon nanotube composite nanofiber
Zhu et al. Effect of fibre spinning conditions on the electrical properties of cellulose and carbon nanotube composite fibres spun using ionic liquid as a benign solvent.

Legal Events

Date Code Title Description
GRNT Written decision to grant