WO2024153115A1 - 抗alk-1抗体及其用途 - Google Patents

抗alk-1抗体及其用途 Download PDF

Info

Publication number
WO2024153115A1
WO2024153115A1 PCT/CN2024/072728 CN2024072728W WO2024153115A1 WO 2024153115 A1 WO2024153115 A1 WO 2024153115A1 CN 2024072728 W CN2024072728 W CN 2024072728W WO 2024153115 A1 WO2024153115 A1 WO 2024153115A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
light chain
amino acid
acid sequence
complementary determining
Prior art date
Application number
PCT/CN2024/072728
Other languages
English (en)
French (fr)
Inventor
童友之
周晴晴
庄兰芳
杨剑飞
Original Assignee
开拓药业(广东)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 开拓药业(广东)有限公司 filed Critical 开拓药业(广东)有限公司
Publication of WO2024153115A1 publication Critical patent/WO2024153115A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins

Definitions

  • the present application relates to a monoclonal antibody that specifically binds to ALK-1, a bispecific antibody that simultaneously binds to ALK-1 and VEGF, and a bispecific antibody that specifically binds to ALK-1 and PD-1, pharmaceutical compositions of the antibodies, and uses thereof.
  • ALK-1 is a type I cell surface receptor for transforming growth factor beta receptor type 1 (TGF- ⁇ -1).
  • Human ALK-1 is a 503 amino acid polypeptide that includes a signal sequence (amino acids: 1-21), an N-terminal extracellular TGF- ⁇ -1 ligand binding domain or ECD (amino acids: 22-118), a single transmembrane domain (amino acids: 119-141), a regulatory glycine/serine-rich (GS) domain (amino acids: 142-202), and a C-terminal serine-threonine kinase domain (amino acids: 202-492).
  • ALK-1 shares 60-80% overall homology with other type I receptors (ALK-2 to ALK-7), the ECD of ALK-1 is significantly different from that of other ALK family members. For example, in humans, only the ECD of ALK-2 is significantly related to the ECD of ALK-1 (sharing approximately 25% amino acid identity).
  • TGF- ⁇ superfamily ligands exert their biological activity by binding to heteromeric receptor complexes of two types (I and II) of serine/threonine kinases.
  • Type II receptors are constitutively active kinases that can be activated by ligands. Phosphorylates type I receptors after binding to the kinase.
  • activated type I kinases phosphorylate downstream signaling molecules, including various Smads proteins, which translocate to the nucleus and lead to transcriptional responses. (Heldin et al. Nature, 1997, vol. 390, pp. 465-471) Under the expression of ALK-1, it has been shown that Smad1 is specifically phosphorylated and translocated to the nucleus, and ALK-1 directly regulates the expression of Smad1-responsive genes Id1 and EphB2.
  • ALK-1 is highly and selectively expressed in endothelial cells and other highly vascularized tissues such as the placenta or brain.
  • the expression of ALK-1 in endothelial cells highly exceeds the expression of other types of receptors (ALK-5) and endoglin.
  • ALK-1 is associated with hereditary hemorrhagic telangiectasia (HHT), suggesting that ALK-1 plays a key role in controlling vascular development or repair.
  • HHT hereditary hemorrhagic telangiectasia
  • Antiangiogenic therapy is expected to be chronic in nature. Therefore, targets with high selectivity for endothelial function, such as ALK-1, are preferred to reduce attrition caused by side effects.
  • ALK-1 ECD differs significantly from the ECDs of other ALK family members
  • mAbs directed against the human ALK-1 ECD are expected to selectively target ALK-1. Based on these considerations, a monoclonal antibody against the ALK-1 extracellular domain that can inhibit dimerization with the type II receptor, thereby preventing Smad1 phosphorylation and downstream transcriptional responses, is highly desirable.
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • the maturation and stabilization of early branching vessels and the subsequent formation of a functional vascular bed is a complex process that involves multiple factors such as angiopoietin, platelet-derived growth factor, sphingosine phosphate receptors, and the ALK1/ENG pathway.
  • Much of what is known about vessel maturation comes from genetic studies and a few in vivo angiogenesis models. The exact functions of these molecules in tumors are not fully understood due to the lack of adequate tumor angiogenesis models.
  • In vitro studies using cultured endothelial cell lines and in vivo studies similar to the chicken chorioallantoic membrane (CAM) assay often fail to recapitulate the interactions between the tumor and the host. Therefore, optimal and sustained inhibition of tumor angiogenesis may require the coordinated inhibition of multiple components of the angiogenic program.
  • CAM chicken chorioallantoic membrane
  • Cancer is a leading cause of death and is characterized by the uncontrolled growth and spread of abnormal cells. Many types of tumors rely on the growth of new blood vessels (angiogenesis) to provide sufficient nutrients and oxygen to allow cancer cells to grow, invade nearby tissues, and spread to other parts of the body. Angiogenesis inhibition is a widely used cancer treatment. Several angiogenesis inhibitors that work by blocking the vascular endothelial growth factor (VEGF) pathway are approved or in development. These therapies, given alone or in combination with chemotherapy and/or radiation therapy, can significantly improve survival rates.
  • VEGF vascular endothelial growth factor
  • ALK1 and VEGF have different mechanisms of action in angiogenesis, but they can synergistically promote the migration and proliferation of endothelial cells.
  • Existing VEGF/VEGFR blocking drugs will develop a certain degree of drug resistance after a period of use. Therefore, the combination of target drugs with different anti-angiogenic mechanisms is a new direction of development.
  • VEGF inhibitors play an important role in the treatment of certain tumors, some tumors are resistant to VEGF alone. Treatment with VEGF inhibitors results in either no response at all or only a temporary response. Thus, there is a need for additional compositions and methods to inhibit angiogenesis in the context of cancer treatment.
  • Bispecific antibodies also known as “double antibodies” are artificial antibodies prepared by cell fusion or recombinant DNA technology, which can specifically bind to two antigens or two different epitopes of the same antigen. BsAbs can play a role by bridging cells, bridging receptors, bridging factors, etc. Compared with monoclonal antibodies or combined use, bispecific antibodies have better efficacy and safety, and have differentiated advantages. Bispecific antibodies can recognize and bind to two different antigen epitopes, thereby bridging tumor cells and effector cells, mediating their targeted killing of tumors; or bridging two different receptors, which may activate new biological signals.
  • bispecific antibodies can block multiple signal pathways at the same time, prevent drug resistance and improve efficacy; and compared with monoclonal antibody combination therapy, bispecific antibodies have stronger specificity and targeting, and better safety.
  • ALK1/VEGF bispecific antibodies can simultaneously inhibit two different signal pathways for angiogenesis by bridging two different receptors that control the signal pathway of new blood vessel proliferation in the tumor microenvironment, strengthen the inhibition of new blood vessel proliferation in the tumor microenvironment, and thus achieve the effect of inhibiting tumor growth.
  • this application confirms that the ALK1/VEGF dual antibody has a lower dose, stronger targeting, and higher drug-related safety.
  • Nivolumab can block PD-1 of T lymphocytes and prevent them from binding to PD-L1 on the surface of tumor cells, thereby relieving the immunosuppression of tumor cells on immune cells and allowing immune cells to resume their anti-tumor cell function. Kill tumor cells through immune action.
  • PD-1 inhibitors alone is only about 20% in the vast majority of unselected solid tumors. Long-term use will cause patients to develop drug resistance, and there are too many side effects.
  • drug combination has become a trend in tumor treatment. It can not only enrich the diversity of anti-tumor treatment effects, achieve short-term and efficient control of tumor growth, and alleviate the course of the disease, but also achieve the purpose of curing the disease and ensuring prognosis by combining existing drugs. Therefore, in order to improve tumor inhibition rates and reduce side effects, more and more anti-tumor drugs are combined with PD-1/PD-L1 drugs for the treatment of various advanced solid tumors.
  • Nivolumab blocks the binding of PD-1 and PD-L1, thereby reducing the immune escape of tumors and enhancing the immune attack of T lymphocytes on tumor cells. Therefore, the development of bispecific antibodies that simultaneously target ALK-1 and PD-1 opens up valuable prospects in improving anti-tumor efficacy, prolonging the overall survival and safety of patients.
  • the present application provides an anti-ALK-1 monoclonal antibody and an anti-ALK-1-anti-VEGF bispecific antibody with high affinity and excellent drugability.
  • the bispecific antibody Compared with ALK-1 monoclonal antibody or VEGF monoclonal antibody, the bispecific antibody has higher binding affinity to CHO-K1-hALK1 cells, stronger blocking effect on inhibiting HUVEC cell microtubule formation, more significant inhibitory effect on tumor growth, and good safety.
  • the present application provides a monoclonal antibody or an antigen-binding portion thereof that binds to ALK-1, wherein the antibody or the antigen-binding portion thereof has a heavy chain and a light chain;
  • the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the antibody or antigen-binding portion thereof are the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of SEQ ID NO: 1; or the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the antibody or antigen-binding portion thereof are CDR1H, CDR2H and CDR3H with the same functions as SEQ ID NO: 1 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1;
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the antibody or antigen-binding portion thereof are obtained by amino acid mutation based on the CDR1L, CDR2L and CDR3L of the light chain variable domain of SEQ ID NO: 5, and the mutation refers to mutation of the amino acid at position 91 and position 95 of SEQ ID NO: 5.
  • the amino acids at positions 91 and 95 are not a combination of tryptophan W and valine V, proline P and tryptophan W, leucine L and phenylalanine F.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the antibody or its antigen binding portion are CDR1L, CDR2L and CDR3L of the light chain variable domain VL of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53 or SEQ ID NO: 55.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the antibody or antigen binding portion thereof are SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 NO
  • the monoclonal antibody or antigen-binding portion thereof that binds to ALK-1 wherein the antibody or antigen-binding portion thereof has a heavy chain and a light chain, as defined by the IMGT antibody numbering scheme for the CDR region, and the light chain CDR is selected from:
  • the heavy chain comprises the heavy chain complementary determining region 1 (CDR1H) described in the amino acid sequence of SEQ ID: 2, the heavy chain complementary determining region 2 (CDR2H) described in the amino acid sequence of SEQ ID: 3, and the heavy chain complementary determining region 3 (CDR3H) described in the amino acid sequence of SEQ ID: 4.
  • CDR1H heavy chain complementary determining region 1
  • CDR2H heavy chain complementary determining region 2
  • CDR3H heavy chain complementary determining region 3
  • the light chain CDR region is selected from the CDRs in (a)-(k), (m)-(u) or (w) above; further preferably, it is the CDR in (a)-(c), (h), (k) or (u); and most preferably, it is the CDR in (a).
  • the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the antibody or its antigen-binding portion are the CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO: 1;
  • the light chain variable domain of the antibody or its antigen-binding portion is
  • the CDR1L, CDR2L and CDR3L of VL are CDR1L, CDR2L and CDR3L of the light chain variable domain of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 25, SEQ ID NO: 31 or SEQ ID NO: 51; most preferably, the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the antibody or antigen-binding portion thereof are SEQ ID NO: 11.
  • the heavy chain variable domain VH of the antibody or its antigen binding portion comprises the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81;
  • the light chain variable domain VL of the antibody or its antigen binding portion comprises SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO:
  • the light chain variable domain VL of the antibody or antigen binding portion thereof comprises the amino acid sequence of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, The amino acid sequence of SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:55, SEQ ID NO:66, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:77 or SEQ ID NO:79; More preferably, the light chain variable domain VL of the antibody, or its antigen binding portion, comprises the amino acid sequence of SEQ ID NO:11, SEQ ID NO:13,
  • the heavy chain variable domain VH of the antibody or its antigen binding portion comprises the amino acid sequence of SEQ ID NO: 1;
  • the light chain variable domain VL of the antibody or its antigen binding portion comprises the amino acid sequence of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53 or SEQ ID NO: 55.
  • the light chain variable domain VL of the antibody or antigen binding portion thereof comprises SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65
  • amino acids amino
  • the antibody or antigen-binding fragment thereof binds to the extracellular domain of human ALK-1.
  • the antibody or antigen-binding fragment is a human antibody or antigen-binding fragment.
  • the antigen-binding fragment is a Fab fragment, a F(ab′)2 fragment or a single-chain antibody.
  • the antibody or antigen-binding fragment is IgG, IgM, IgE, IgA or IgD, more preferably IgG1, IgG2, IgG3 or IgG4, and more preferably human IgG1-LALA.
  • the present application provides a bispecific antibody, which comprises a first antigen binding region (ALK-1 binding region) that specifically binds to ALK-1 and a second antigen binding region (VEGF binding region) that specifically binds to VEGF, wherein the first antigen binding region that specifically binds to ALK-1 comprises a heavy chain variable region (VH) and a light chain variable region (VL), and the second antigen binding region that specifically binds to VEGF comprises a heavy chain variable region (VH) and a light chain variable region (VL) or a VEGF receptor fragment that specifically binds to VEGF;
  • the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are the CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO: 1; or the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are CDR1H, CDR2H and CDR3H with the same functions as SEQ ID NO: 1 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1;
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are obtained by amino acid mutation based on the CDR1L, CDR2L and CDR3L of the light chain variable domain of SEQ ID NO: 5, and the mutation refers to the mutation of the amino acid at position 91 and position 95 of SEQ ID NO: 5.
  • the amino acids at positions 91 and 95 are not a combination of tryptophan W and valine V, proline P and tryptophan W, leucine L and phenylalanine F.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are CDR1L, CDR2L and CDR3L of the light chain variable domain VL of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53 or SEQ ID NO: 55.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO
  • CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO: 1.
  • the CDR region is defined according to the IMGT antibody numbering scheme, and the light chain CDR of the first antigen binding region is selected from the following combinations:
  • the heavy chain of the first antigen binding region comprises the heavy chain complementary determining region 1 (CDR1H) described in the amino acid sequence of SEQ ID: 2, the heavy chain complementary determining region 2 (CDR2H) described in the amino acid sequence of SEQ ID: 3, and the heavy chain complementary determining region 3 (CDR3H) described in the amino acid sequence of SEQ ID: 4.
  • CDR1H heavy chain complementary determining region 1
  • CDR2H heavy chain complementary determining region 2
  • CDR3H heavy chain complementary determining region 3
  • the light chain CDR region of the first antigen binding region is selected from the CDRs in (a)-(k), (m)-(u) or (w) above; further preferably, it is the CDR in (a)-(c), (h), (k) or (u), and most preferably, it is the CDR in (a).
  • the heavy chain variable region of the first antigen binding region comprises SEQ The amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81; or a heavy chain variable region comprising the first antigen binding region having the same function as SEQ ID NO: 1, SEQ ID NO: 67 or SEQ ID NO: 81 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1.
  • the heavy chain variable region of the first antigen binding region comprises the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 67 or SEQ ID NO: 81.
  • the heavy chain variable region of the first antigen binding region comprises the amino acid sequence of SEQ ID NO: 1; or the heavy chain variable region of the first antigen binding region having the same function as SEQ ID NO: 1, which is obtained by adding, deleting, or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1.
  • the light chain variable region of the first antigen binding region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 79.
  • the light chain variable domain VL of the first antigen binding region comprises a light chain variable domain selected from SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, :
  • the light chain variable region of the first antigen binding region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53 or SEQ ID NO: 55.
  • the light chain variable domain VL of the first antigen binding region comprises a light chain variable domain selected from SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, The amino acid sequence shown in SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, and SEQ ID NO:55; more preferably, the light chain variable domain VL of the first antigen binding region comprises an amino acid sequence selected from SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:25, SEQ ID NO:31, or SEQ ID NO:51; most preferably, the light chain variable domain VL of the first antigen binding
  • the bispecific antibody comprises the heavy chain constant region of IgG, preferably, comprises the heavy chain constant region of IgG1, IgG4 or IgG2, more preferably, comprises the heavy chain constant region of IgG1, and most preferably, comprises the heavy chain constant region shown in SEQ ID NO: 9.
  • the second antigen binding region that specifically binds to VEGF comprises a heavy chain variable region and a light chain variable region
  • CDR1H, CDR2H and CDR3H of the heavy chain variable region VH are CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO: 57, or CDR1H, CDR2H and CDR3H of the heavy chain variable region VH are sequences shown in SEQ ID NO: 57 obtained by adding, deleting or replacing one or more amino acids.
  • the CDR1L, CDR2L and CDR3L of the light chain variable region VL are the CDR1L, CDR2L and CDR3L of the heavy chain variable domain of SEQ ID NO: 61, or the CDR1L, CDR2L and CDR3L of the heavy chain variable region VL are the CDR1L, CDR2L and CDR3L with the same function as SEQ ID NO: 61 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 61.
  • the second antigen binding region that specifically binds to VEGF comprises a heavy chain variable region and a light chain variable region.
  • the heavy chain variable region comprises CDR1H as shown in SEQ ID NO: 58, as shown in SEQ ID NO: 59 and CDR2H as shown in SEQ ID NO: 60; and
  • the light chain variable region comprises CDR1L as shown in SEQ ID NO: 62, CDR2L as shown in SEQ ID NO: 63 and CDR3L as shown in SEQ ID NO: 64.
  • the heavy chain variable region comprises the sequence shown in SEQ ID NO: 57
  • the light chain variable region comprises the sequence shown in SEQ ID NO: 61.
  • the second antigen binding region that specifically binds to VEGF comprises a VEGF receptor fragment that specifically binds to VEGF, and the VEGF receptor fragment comprises the extracellular domain 2 of VEGF receptor-1 and the extracellular domain 3 of VEGF receptor-2.
  • the first antigen binding region or the second antigen binding region is in the form of scFv, preferably, the first antigen binding region is in the form of scFv.
  • the first antigen binding region and the second antigen binding region are connected by a linker.
  • the Linker comprises (G4S)n, where n is an integer greater than 1.
  • the Linker consists of (G4S)n, where n is an integer of 2-10.
  • the Linker is composed of (G4S)n, where n is 2, 3 or 4, for example, the Linker is GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 65).
  • the scFv comprises a heavy chain variable region and a light chain variable region, and the heavy chain variable region and the light chain variable region are connected by a Linker.
  • the Linker comprises (G4S)n, where n is an integer greater than 1.
  • the Linker consists of (G4S)n, where n is an integer of 2-10.
  • the Linker consists of (G4S)n, where n is 2, 3 or 4.
  • the bispecific antibody is composed of 4 peptide chains, 2 The same first chain and 2 identical second chains,
  • the first chain comprises, from the N-terminus to the C-terminus, VH of the VEGF binding region, CH of the VEGF binding region, Linker, VH of the ALK-1 binding region, Linker and VL of the ALK-1 binding region, and
  • the second chain comprises VL and CL, which are VEGF binding regions, from N-terminus to C-terminus.
  • the specific sequence contained in the bispecific antibody is as follows:
  • VH sequence of the VEGF binding region is shown in SEQ ID NO: 57,
  • the CH sequence of the VEGF binding region is shown in SEQ ID NO: 9,
  • VL sequence of the VEGF binding region is shown in SEQ ID NO: 61,
  • the CL sequence of the VEGF binding region is shown in SEQ ID NO: 10,
  • the linker sequence is shown in SEQ ID NO: 65.
  • VL sequence of the ALK-1 binding region is shown as SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 79, and
  • VH sequence of the ALK-1 binding region is shown in SEQ ID NO: 67, SEQ ID NO: 1, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81.
  • the sequence of the first chain is as shown in SEQ ID NO: 68 or SEQ ID NO: 82; the sequence of the second chain is as shown in SEQ ID NO: 69.
  • the specific sequence contained in the bispecific antibody is as follows:
  • VH sequence of the VEGF binding region is shown in SEQ ID NO: 57,
  • the CH sequence of the VEGF binding region is shown in SEQ ID NO: 9,
  • VL sequence of the VEGF binding region is shown in SEQ ID NO: 61,
  • the CL sequence of the VEGF binding region is shown in SEQ ID NO: 10,
  • the linker sequence is shown in SEQ ID NO: 65.
  • VL sequence of the ALK-1 binding region is shown in SEQ ID NO: 66.
  • VH sequence of the ALK-1 binding region is shown in SEQ ID NO: 67.
  • the sequence of the first chain is as shown in SEQ ID NO: 68; the sequence of the second chain is as shown in SEQ ID NO: 69.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises, from the N-terminus to the C-terminus, the VH of the ALK-1 binding region, the CH of the ALK-1 binding region, the Linker and the VEGF binding region, and
  • the second chain comprises VL and CL of the ALK-1 binding region from N-terminus to C-terminus.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises VH and CH of the ALK-1 binding region from N-terminus to C-terminus, and
  • the second chain comprises a VEGF binding region, a linker, a VL and a CL of an ALK-1 binding region in sequence from the N-terminus to the C-terminus.
  • the bispecific antibody is composed of two identical peptide chains, which sequentially comprise a VEGF binding region, IgG1-Fc, Linker, VH of an ALK-1 binding region, Linker, and VL of an ALK-1 binding region from the N-terminus to the C-terminus.
  • IgG1-Fc means the Fc region of IgG1, preferably the Fc region of human IgG1.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises, from the N-terminus to the C-terminus, VH of the ALK-1 binding region, CH of the ALK-1 binding region, Linker, VH of the VEGF binding region, Linker, VL of the VEGF binding region, and
  • the second chain comprises VL and CL of the ALK-1 binding region from N-terminus to C-terminus.
  • the present application provides a bispecific antibody, comprising a first antigen binding region (ALK-1 binding region) that specifically binds to ALK-1 and a second antigen binding region (PD-1 binding region) that specifically binds to PD-1, wherein the first antigen binding region that specifically binds to ALK-1 comprises a heavy chain variable region (VH) and a light chain variable region (VL), and the second antigen binding region that specifically binds to PD-1 comprises a heavy chain variable region (VH) and a light chain variable region (VL);
  • the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of SEQ ID NO: 1; or the CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are the CDR1H, CDR2H and CDR3H with the same function as SEQ ID NO: 1 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1;
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are obtained by amino acid mutation based on the CDR1L, CDR2L and CDR3L of the light chain variable domain of SEQ ID NO: 5, and the mutation refers to the mutation of the amino acid at position 91 and position 95 of SEQ ID NO: 5; or the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are the CDR1L, CDR2L and CDR3L of the light chain variable domain of SEQ ID NO: 5.
  • the amino acids No. 91 and No. 95 are a combination of tryptophan W and valine V, proline P and tryptophan W, leucine L and phenylalanine F.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45.
  • the CDR1L, CDR2L and CDR3L of the light chain variable domain VL of the first antigen binding region are CDR1L, CDR2L and CDR3L of the light chain variable domain VL of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 55; more preferably, the
  • CDR1H, CDR2H and CDR3H of the heavy chain variable domain VH of the first antigen binding region are CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO:1.
  • the CDR region is defined according to the IMGT antibody numbering scheme, and the light chain CDR of the first antigen binding region is selected from the following combinations:
  • the heavy chain of the first antigen binding region comprises the heavy chain complementary determining region 1 (CDR1H) described in the amino acid sequence of SEQ ID: 2, the heavy chain complementary determining region 2 (CDR2H) described in the amino acid sequence of SEQ ID: 3, and the heavy chain complementary determining region 3 (CDR3H) described in the amino acid sequence of SEQ ID: 4.
  • CDR1H heavy chain complementary determining region 1
  • CDR2H heavy chain complementary determining region 2
  • CDR3H heavy chain complementary determining region 3
  • the light chain CDR region of the first antigen binding region is selected from the CDRs in (a)-(k), (m)-(u) or (w) above; further preferably, it is the CDR in (a)-(c), (h), (k) or (u), and most preferably, it is the CDR in (a).
  • the heavy chain variable region of the first antigen binding region comprises the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81; or comprises the heavy chain variable region of the first antigen binding region having the same function as SEQ ID NO: 1 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 1; preferably comprises the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81, and further preferably comprises the amino acid sequence of SEQ ID NO: 67 or SEQ ID NO: 81.
  • the light chain variable region of the first antigen binding region comprises a light chain variable region selected from SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID
  • the light chain variable domain VL of the first antigen binding region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 79; more preferably, the light chain variable domain VL of the first antigen binding region comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 11, S
  • the bispecific antibody comprises a heavy chain constant region of IgG, Preferably, it comprises the heavy chain constant region of IgG1, IgG4 or IgG2, more preferably, it comprises the heavy chain constant region of IgG4, and most preferably, it comprises the heavy chain constant region shown in SEQ ID NO: 91.
  • the second antigen binding region that specifically binds to PD-1 comprises a heavy chain variable region and a light chain variable region
  • CDR1H, CDR2H and CDR3H of the heavy chain variable region VH are CDR1H, CDR2H and CDR3H of the heavy chain variable domain of SEQ ID NO: 83, or CDR1H, CDR2H and CDR3H of the heavy chain variable region VH are sequences shown in SEQ ID NO: 83 obtained by adding, deleting or replacing one or more amino acids.
  • the CDR1L, CDR2L and CDR3L of the light chain variable region VL are the CDR1L, CDR2L and CDR3L of the heavy chain variable domain of SEQ ID NO: 87, or the CDR1L, CDR2L and CDR3L of the heavy chain variable region VL are the CDR1L, CDR2L and CDR3L with the same function as SEQ ID NO: 87 obtained by adding, deleting or replacing one or more amino acids in the sequence shown in SEQ ID NO: 87.
  • the second antigen binding region that specifically binds to PD-1 comprises a heavy chain variable region and a light chain variable region.
  • the heavy chain variable region comprises CDR1H as shown in SEQ ID NO: 84, CDR2H as shown in SEQ ID NO: 85 and CDR3H as shown in SEQ ID NO: 86; and
  • the light chain variable region comprises CDR1L as shown in SEQ ID NO: 88, CDR2L as shown in SEQ ID NO: 89 and CDR3L as shown in SEQ ID NO: 90.
  • the heavy chain variable region comprises the sequence shown in SEQ ID NO: 83
  • the light chain variable region comprises the sequence shown in SEQ ID NO: 87.
  • the first antigen binding region or the second antigen binding region is in the form of scFv, preferably, the first antigen binding region is in the form of scFv.
  • the first antigen binding region and the second antigen binding region are connected via a linker.
  • the Linker comprises (G4S)n, where n is an integer greater than 1.
  • the Linker consists of (G4S)n, where n is an integer of 2-10.
  • the Linker is composed of (G4S)n, where n is 2, 3 or 4, for example, the Linker is GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 65).
  • the scFv comprises a heavy chain variable region and a light chain variable region, and the heavy chain variable region and the light chain variable region are connected by a Linker.
  • the Linker comprises (G4S)n, where n is an integer greater than 1.
  • the Linker consists of (G4S)n, where n is an integer of 2-10.
  • the Linker consists of (G4S)n, where n is 2, 3 or 4.
  • the bispecific antibody is composed of four peptide chains, two identical first chains and two identical second chains.
  • the first chain comprises, from the N-terminus to the C-terminus, VH of the PD-1 binding region, CH of the PD-1 binding region, Linker, VH of the ALK-1 binding region, Linker, and VL of the ALK-1 binding region, and
  • the second chain comprises VL and CL of the PD-1 binding region from N-terminus to C-terminus.
  • the specific sequence contained in the bispecific antibody is as follows:
  • the VH sequence of the PD-1 binding region is shown in SEQ ID NO: 83.
  • the CH sequence of the PD-1 binding region is shown in SEQ ID NO: 91.
  • VL sequence of the PD-1 binding region is shown in SEQ ID NO: 87.
  • the CL sequence of the PD-1 binding region is shown in SEQ ID NO: 92.
  • the linker sequence is shown in SEQ ID NO: 65,
  • VL sequence of the ALK-1 binding region is shown as SEQ ID NO: 66, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 79, and
  • VH sequence of the ALK-1 binding region is shown in SEQ ID NO: 67, SEQ ID NO: 1, SEQ ID NO: 70, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 78, SEQ ID NO: 80 or SEQ ID NO: 81.
  • the sequence of the first chain is as shown in SEQ ID NO: 93; the sequence of the second chain is as shown in SEQ ID NO: 94.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises, from the N-terminus to the C-terminus, the VH of the ALK-1 binding region, the CH of the ALK-1 binding region, the Linker and the PD-1 binding region, and
  • the second chain comprises VL and CL of the ALK-1 binding region from N-terminus to C-terminus.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises VH and CH of the ALK-1 binding region from N-terminus to C-terminus, and
  • the second chain comprises, from N-terminus to C-terminus, a PD-1 binding region, a linker, VL and CL of the ALK-1 binding region.
  • the bispecific antibody is composed of two identical peptide chains, which sequentially comprise a PD-1 binding region, IgG4-Fc, Linker, VH of an ALK-1 binding region, Linker, and VL of an ALK-1 binding region from the N-terminus to the C-terminus.
  • IgG4-Fc means the Fc region of IgG4, preferably the Fc region of human IgG4.
  • the bispecific antibody is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain comprises, from the N-terminus to the C-terminus, VH of the ALK-1 binding region, CH of the ALK-1 binding region, Linker, VH of the PD-1 binding region, Linker, VL of the PD-1 binding region, and
  • the second chain comprises VL and CL of the ALK-1 binding region from N-terminus to C-terminus.
  • the present application provides a polynucleotide encoding the monoclonal antibody or antigen binding portion thereof that binds to ALK-1 as described in the first aspect, the bispecific antibody or fragment thereof as described in the second or third aspect.
  • the bispecific antibody fragment referred to herein refers to the full length or fragment of the polypeptide chain that constitutes the bispecific antibody.
  • the present application provides an expression vector capable of expressing the monoclonal antibody or its antigen-binding portion binding to ALK-1 described in the first aspect, the bispecific antibody or its fragment described in the second or third aspect.
  • the present application provides an engineered cell comprising the vector described in the fourth aspect.
  • the present application provides a pharmaceutical composition, which comprises the monoclonal antibody or its antigen-binding portion binding to ALK-1 as described in the first aspect, the bispecific antibody or its fragment as described in the second or third aspect, the polynucleotide as described in the fourth aspect, the vector as described in the fifth aspect or the cell as described in the sixth aspect, and a pharmaceutically acceptable carrier.
  • the present application provides use of the monoclonal antibody or antigen-binding portion thereof that binds to ALK-1 as described in the first aspect, the bispecific antibody or fragment thereof as described in the second or third aspect, the polynucleotide as described in the fourth aspect, the vector as described in the fifth aspect, the cell as described in the sixth aspect, or the pharmaceutical composition as described in the seventh aspect in the preparation of a medicament for inhibiting angiogenesis.
  • the disease that inhibits tumor angiogenesis is a solid tumor or a hematological tumor.
  • the disease for inhibiting tumor angiogenesis is selected from esophageal cancer (e.g., esophageal adenocarcinoma and esophageal squamous cell carcinoma), brain tumor, lung cancer (e.g., small cell lung cancer and non-small cell lung cancer), squamous cell carcinoma, bladder cancer, gastric cancer, ovarian cancer, peritoneal cancer, pancreatic cancer, breast cancer, head and neck cancer, cervical cancer, endometrial cancer, colorectal cancer, liver cancer, intestinal cancer liver metastasis, renal cancer, urothelial carcinoma, non-Hodgkin's lymphoma, central nervous system tumors (e.g., glioma, glioblastoma multiforme, glioma or sarcoma), prostate cancer or thyroid cancer.
  • esophageal cancer e.g., esophageal adenocarcinoma and esophageal squamous cell carcinoma
  • the present application provides a method for inhibiting angiogenesis, comprising administering to a subject in need thereof an effective dose of the monoclonal antibody or its antigen-binding portion binding to ALK-1 as described in the first aspect, the bispecific antibody or fragment thereof as described in the second or third aspect, the polynucleotide as described in the fourth aspect, the vector as described in the fifth aspect, or the cell as described in the sixth aspect, or the pharmaceutical composition as described in the seventh aspect, for example, to inhibit angiogenesis in tumors or some eye diseases, such as retinal detachment, vitreoretinopathy, retinopathy of prematurity, glaucoma, synovitis, proliferative diabetic retinopathy, branch retinal vein occlusion, etc.
  • eye diseases such as retinal detachment, vitreoretinopathy, retinopathy of prematurity, glaucoma, synovitis, proliferative diabetic retinopathy, branch retinal vein occlusion, etc.
  • the present application provides a method for treating a tumor, comprising administering to a subject in need thereof an effective dose of the monoclonal antibody or its antigen-binding portion binding to ALK-1 described in the first aspect, the bispecific antibody or its fragment described in the second or third aspect, the polynucleotide described in the fourth aspect, the vector described in the fifth aspect, or the cell described in the sixth aspect, or the pharmaceutical composition described in the seventh aspect, wherein the tumor comprises a solid tumor and a non-solid tumor, such as advanced or refractory hepatocellular carcinoma (HCC), colorectal cancer (RCC), non-small cell lung cancer (NSCLC), triple-negative breast cancer, gastric cancer (GC), gastroesophageal junction (GEJ) adenocarcinoma, bile duct cancer, urothelial carcinoma (UC), esophageal square cell carcinoma (ESCC), brain tumors, lung cancer, breast cancer, ovarian cancer, fallopian tube cancer, gli
  • HCC advanced or
  • the present application provides a composition for inhibiting angiogenesis, comprising the monoclonal antibody or its antigen-binding portion that binds to ALK-1 as described in the first aspect, the bispecific antibody or its fragment as described in the second or third aspect, the polynucleotide as described in the fourth aspect, the vector as described in the fifth aspect or the cell as described in the sixth aspect, and a pharmaceutically acceptable carrier.
  • the present application provides a composition for treating tumors, comprising the monoclonal antibody or its antigen-binding portion that binds to ALK-1 as described in the first aspect, the bispecific antibody or its fragment as described in the second or third aspect, the polynucleotide as described in the fourth aspect, the vector as described in the fifth aspect or the cell as described in the sixth aspect and a pharmaceutically acceptable carrier.
  • the present application provides a pharmaceutical composition, comprising the bispecific antibody (such as BEV813 bsAb) of the second aspect of the present application and anti-PD-1 antibodies (such as pembrolizumab, nivolumab, toripalimab, sintilimab, carrelizumab, tilelizumab, penampalimab, sepalimab, slulizumab, etc.) or anti-PD-L1 antibodies (such as durvalumab, atezolizumab, envolimab, sugemalimab, etc.), or cytotoxic and non-cytotoxic small molecule drugs;
  • the pharmaceutical composition can be used to treat solid tumors, including but not limited to hepatocellular carcinoma, lung cancer, colorectal cancer, gastric cancer, breast cancer, esophageal squamous cell carcinoma, urothelial carcinoma, nausea pleural mesothelioma, etc.
  • the present application provides a pharmaceutical composition, comprising the monoclonal antibody against ALK-1 described in the first aspect of the present application and an anti-PD-1 antibody (e.g., pembrolizumab, nivolumab, toripalimab, sintilimab, carrelizumab, tislelizumab, penampalimumab, sepalimumab, slulizumab, etc.) or an anti-PD-L1 antibody (e.g., durvalumab, atilizumab,
  • the pharmaceutical composition can be used to treat solid tumors, including but not limited to hepatocellular carcinoma, lung cancer, colorectal cancer, gastric cancer, breast cancer, esophageal squamous cell carcinoma, urothelial carcinoma, nausea, pleural mesothelioma, etc.
  • FIG1 is a schematic diagram of the anti-ALK-1 antibody of the present application.
  • FIG. 2 is a schematic diagram of the BEV813 bsAb bispecific antibody of the present application.
  • Figure 3 is a comparison of the cell binding activities of ALK1 mAbs, BEV813 bsAb and CHO-K1-hALK1 cells.
  • Figure 4 is a map of the binding epitope of BEV813 bsAb competing with BMP9 for binding to CHO-K1-hALK1 cells.
  • Figure 5 is a comparison of the cellular functional activities of BEV813 bsAb and bevacizumab.
  • Figure 6 is a comparison of the cellular functional activities of BEV813 and ALK1 mAb.
  • FIG. 7 is a graph comparing the effects of BEV813 and bevacizumab in blocking HUVEC cell proliferation.
  • Figure 8 is a comparison of the effects of BEV813 bsAb, ALK1 mAb and bevacizumab in blocking microtubule formation in HUVEC cells.
  • Figure 9 is a comparison of the efficacy and safety of BEV813 bsAb and other antibodies in the human immune system reconstructed CDX mouse model (MDA-MB-231).
  • Figure 10 is a comparison of the efficacy and safety of BEV813 bsAb and other antibodies in the human immune system reconstructed CDX mouse model (KYSE450).
  • FIG. 11 is a comparison of the efficacy and safety of BEV813 bsAb and other antibodies in the human immune system reconstructed CDX mouse model (HCC827).
  • Figure 12 is a comparison of the efficacy and safety of BEV813 bsAb and other antibodies in the PDTX mouse model of colorectal cancer liver metastasis.
  • Figure 13 shows the purity of intact proteins of different mutants of BEV813 bsAb detected by SDS-PAGE.
  • Figure 14 shows the different BEV813 bsAb mutant bands detected by SDS-PAGE after Ides digestion.
  • FIG. 15 shows the liquid HPLC results.
  • FIG. 16 is a mass spectrum of the F(ab′)2 structure of BEV813.
  • FIG. 17 is a mass spectrum of the de-N-glycosylated sFc domain of BEV813.
  • FIG. 18 is a mass spectrum of the de-N-glycosylated Fc domain of BEV813.
  • FIG. 19 is a mass spectrum of the de-N-glycosylated sFc domain of BEV813-9.
  • FIG. 20 is a mass spectrum of the de-N-glycosylated F(ab′) 2 domain of BEV813-9.
  • FIG. 21 shows the results of detecting isomers of BEV813 and BEV813-9 by nrCGE.
  • Figure 22 shows the binding activity of BEV813 bsAb and its mutants to CHO-K1-hALK-1 cells.
  • Figure 23 is a map of the binding epitope of BEV813 bsAb and its mutants competing with BMP9 for binding to CHO-K1-hALK1 cells.
  • FIG. 24 is a schematic diagram of the structure of the Nivo813 bispecific antibody.
  • Figure 25 shows the binding affinity results of the Nivo813 bispecific antibody molecule binding to antigens PD-1 and ALK-1 simultaneously.
  • Figure 26 is a comparison of the binding activities of Nivo813 bsAb, ALK-1 mAb (#18) and CHO-K1-ALK-1 cell surface receptors.
  • FIG. 27 is a graph comparing the binding activities of Nivo813 bsAb, nivolumab and H-PD-1 NFAT Reporter Jurkat cell surface receptors.
  • Figure 28 shows the results of Nivo813 bsAb blocking PD-1/PD-L1 interaction, causing TCR signaling pathway transduction and NFAT-mediated luciferase expression.
  • Figure 29 shows the results of Nivo813 bsAb blocking BMP9-induced Smad1 phosphorylation.
  • Figure 30 shows the effect of Nivo813 bsAb in inhibiting HUVEC microtubule formation.
  • Figure 31 compares the effects of Nivolumab, ALK-1 mAb (#18) and Nivo813 bsAb on mouse tumor models.
  • antibody encompasses full-length antibodies (e.g., IgG1 or IgG4 antibodies), Various functional fragments thereof (e.g., may contain only the antigen binding portion, such as Fab, F(ab') 2 or scFv fragments) and modified antibodies (e.g., humanized, glycosylated, etc.).
  • modification to remove undesirable glycosylation sites may be useful, or antibodies without fucose moieties on oligosaccharide chains to, for example, enhance antibody-dependent cellular cytotoxicity (ADCC) function.
  • ADCC enhance antibody-dependent cellular cytotoxicity
  • galactosylation modification may be performed to alter complement-dependent cytotoxicity (CDC).
  • CDR region refers to the complementarity determining regions of the heavy and light chains of an immunoglobulin.
  • CDRs may be defined using various numbering schemes, such as Kabat (Wu et al., (1970) J Exp Med 132:211-50) (Kabat et al., "Sequences of Proteins of Immunological Interest", 5th Edition, Public Health Service, National Institutes of Health, Bethesda, Md., 1991), Chothia (Chothia et al., (1987) J Mol Biol 196:901-17), IMGT (Lefranc et al., (2003) Dev Comp Immunol 27:55-77), and AbM (Martin and Thornton, (1996) J Bmol Biol 263:800-15).
  • CDR CDR
  • CDR1H CDR2H
  • CDR3H CDR1L
  • CDR2L CDR3L
  • CDR area is defined by the numbering scheme.
  • Fc region or “Fc part” used herein are terms well known to those skilled in the art.
  • Fab region refers to the VH and CH1 domains of the heavy chain (“Fab heavy chain”) or the VL and CL domains of the light chain (“Fab light chain”) of an immunoglobulin, or both.
  • scFv single-chain antibody fragment
  • linker e.g., a short peptide of 10-25 amino acids
  • peptide linker refers to a peptide used to connect different antigen binding sites and/or antibody fragments (e.g., single-chain Fv, full-length antibodies, VH domains and/or VL domains, Fab, F(ab') 2 and Fc parts) that ultimately contain different antigen binding sites, preferably, having an amino acid sequence of synthetic origin.
  • the peptide linker may comprise the amino acid sequence listed in one or more embodiments, as well as other arbitrarily selected amino acids.
  • binding refers to the binding of an antibody to an antigen epitope in an in vitro assay (ELISA).
  • ELISA in vitro assay
  • the Fortebio) assay studies the binding of antibodies to antigens or Fc ⁇ RIII. Binding affinity is defined by the terms ka or kon (the association rate constant of the antibody in the antibody/antigen complex), kd or koff or kdis (the dissociation constant) and KD (the equilibrium dissociation constant, kd/ka or koff/kon or kdis/kon).
  • terapéuticaally effective amount refers to a dosage sufficient to show benefit to the subject to which it is administered.
  • the actual amount administered, as well as the rate and time course of administration will depend on the individual condition and severity of the subject being treated.
  • the prescription of treatment e.g., determination of dosage, etc.
  • the prescription of treatment is ultimately the responsibility of and is relied upon by general practitioners and other physicians, generally taking into account the disease being treated, the individual patient's condition, the site of delivery, the method of administration, and other factors known to physicians.
  • the term "subject" refers to a mammal, such as a human, but may also be other animals, such as wild animals (e.g., herons, storks, cranes, etc.), domestic animals (e.g., ducks, geese, etc.), or experimental animals (e.g., gorillas, monkeys, rats, mice, rabbits, guinea pigs, woodchucks, ground squirrels, etc.).
  • wild animals e.g., herons, storks, cranes, etc.
  • domestic animals e.g., ducks, geese, etc.
  • experimental animals e.g., gorillas, monkeys, rats, mice, rabbits, guinea pigs, woodchucks, ground squirrels, etc.
  • compositions of the present application can be administered by a variety of methods known in the art. It will be appreciated by those skilled in the art that the route of administration and/or mode will vary depending on the desired results. In order to administer the compounds of the present application by a specific route of administration, it may be necessary to cover the compounds with materials that avoid their inactivation, or to administer the compounds together with the materials.
  • the compounds may be administered to subjects in a suitable carrier, such as liposomes or diluents.
  • Pharmaceutically acceptable diluents include saline solutions and aqueous buffers.
  • Pharmaceutical carriers include sterile aqueous solutions or dispersions and sterile powders for the temporary preparation of sterile injectable solutions or dispersions. The use of such media and reagents for pharmaceutically active substances is known in the art.
  • composition of the present application may also include adjuvants, such as preservatives, wetting agents, emulsifiers and dispersants.
  • adjuvants such as preservatives, wetting agents, emulsifiers and dispersants.
  • the presence of microorganisms may be avoided by the sterilization procedure above and by comprising a variety of antibacterial and antifungal agents, such as parabens, chlorobutanol, phenol, sorbic acid, etc.
  • the dual guarantee may also be used to avoid the presence of microorganisms.
  • isotonic agents such as sugar, sodium chloride, etc. in the composition.
  • the extended absorption of injectable drug forms may be achieved by comprising an agent that delays absorption, such as aluminum monostearate and gelatin.
  • Adalimumab (trade name: Humira) is an antibody drug developed by AbbVie that can bind to tumor necrosis factor- ⁇ (TNF ⁇ ) and is a TNF inhibitory biological drug.
  • Ipilimumab (trade name: Yervoy) is an antibody drug developed by Bristol-Myers Squibb (BMS) that can effectively block a molecule called cytotoxic T cell antigen-4 (CTLA-4).
  • Bevacizumab (trade name Avastin) is a recombinant humanized anti-VEGF monoclonal antibody. It was approved by the FDA on February 26, 2004 and is the first tumor suppressor drug approved for marketing in the United States. Angiogenesis drug. In vivo and in vitro detection systems have confirmed that the antibody can bind to human vascular endothelial growth factor (VEGF) and block its biological activity.
  • VEGF vascular endothelial growth factor
  • Nivolumab (trade name Opdivo) is a genetically engineered human immunoglobulin IgG4 monoclonal antibody that targets the human cell surface receptor programmed death-1 (PD-1, PCD-1) with negative immune regulatory function.
  • Bispecific antibodies also known as bifunctional antibodies, are antibodies that can bind to at least two different antigens or antibodies to two different epitopes of the same antigen. They can be produced by immunoprecipitation and purification. In addition, they can also be obtained through genetic engineering. Genetic engineering methods have certain advantages because they have corresponding flexibility in terms of binding site optimization, synthetic form considerations, and yield. At present, more than 45 forms of bispecific antibodies have been proven to exist (Dafne Müller, Kontermann R E. 2010, BioDrugs, 24 (2): 89-98). Many bispecific antibodies that have been developed are in the form of IgG-scFv, namely the Morrison model (Coloma MJ, Morrison SL. 1997, Nat Biotechnol.
  • Human IgG1-LALA refers to the artificial mutation of two amino acid sites in the Fc segment of natural human IgG1 antibody, namely L234A/L235A (LALA).
  • L234A/L235A LALA
  • Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol.
  • the PCR product containing the target sequence was recovered by gel according to the instructions of the DNA gel recovery kit (Axygen, AP-GX-250) and constructed into the linear vector pcDNA 3.4 (Biointron homemade).
  • the ALK-1 gene constructed into the linear vector was electroporated into Top10 competent cells, coated with ampicillin resistant plates, cultured at 37°C overnight, and single clones were picked for sequencing.
  • the plasmid was transferred into Expi293F cells (Gibco, A14528) by transient expression method.
  • the transfection method was as follows (taking 30 mL system as an example): Expi293F cells were passaged according to the required transfection volume, and the cell density was adjusted to 1.5 ⁇ 10 6 cells/ml one day before transfection; the cells to be transfected were counted, and the cell density was adjusted to 3 ⁇ 10 6 cells/ml with preheated Expi293F cell culture medium; 60ug plasmid was diluted with 1ml culture medium, mixed, and used as solution 1; 15ul transfection reagent was diluted with 1ml culture medium, mixed, and used as solution 2.
  • Solution 2 was added to solution 1, mixed, incubated at 37°C for 15 minutes, and then the mixed transfection solution was added dropwise to the cell solution, while shaking, and placed on a shaker for culture. After expressing for one week, the supernatant was collected and centrifuged at 8000rpm for 5min. The cell supernatant was purified using a Protein A affinity chromatography column (manufactured by Biointron), and the protein concentration was detected using a NanoDrop instrument (Thermo-NanoDrop TM One, catalog number ND-ONE-W).
  • the heavy chain constant region of the anti-ALK-1 monoclonal antibody adopts the IgG1-LALA sequence.
  • BM anti-ALK-1 antibody
  • VH Heavy chain variable region
  • VL Light chain variable region
  • the NMR (nuclear magnetic resonance) crystal structure was used to predict epitopes and residue mutation modules to predict affinity changes through deep learning models, and the above results were combined to determine the final antigen mutation sequence for experiments and scoring.
  • the residues with higher frequencies were divided into epitopes.
  • point saturation mutations on these antigen residues and analyzed the changes in affinity of the point saturation mutations.
  • the single point mutation sequence used for experimental detection was finally determined.
  • the numbers of each mutant and its corresponding sequence information are as follows:
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • the light chain sequence information in antibody #3 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #1 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #2 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • the light chain sequence information in antibody #6 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #12 is as follows:
  • VL Light chain variable region
  • the anti-ALK-1 antibody numbered #13 Compared with the anti-ALK-1 antibody numbered BM, the anti-ALK-1 antibody numbered #13 has Except for point mutations Q91P and S95I in the variable region (VL), the rest of the antibody structure sequence was consistent with BM.
  • the light chain sequence information in antibody #13 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #14 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #15 is as follows:
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is the same as BM Consistent.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • VL Light chain variable region
  • the rest of the antibody structure sequence is consistent with that of BM.
  • the light chain sequence information in antibody #30 is as follows:
  • VL Light chain variable region
  • FIG1 The schematic diagram of the structures corresponding to the numbers of the above anti-ALK-1 monoclonal antibodies and their mutants is shown in FIG1 .
  • Gator (manufacturer: Gatorbio) affinity determination was performed according to the existing method (Estep, P et al., Solution-based high-throughput antibody-antigen affinity and epitope fractionation measurements, MAbs, 2013.5(2): p.270-8).
  • the sensor was offline equilibrated in the analysis buffer for 10 min, and then online detection was performed for 60 s to establish a baseline.
  • the BM antibody and each mutant were loaded online onto the AHC sensor, and the sensor was connected to the Anti-HFC probe (Probelife, 20-5036).
  • the sensor was then placed in the prepared human ALK-1 antigen protein ("Human ALK-1/ACVRL1 Protein, His Tag", brand: Acro; item number: AL1-H5227; the protein contains the amino acid sequence of positions 22-118 of the extracellular segment of the human ALK-1 protein and has a polyhistidine tag at the C-terminus) and incubated, and then the sensor was transferred to PBS for dissociation.
  • the kinetic analysis was performed using a 1:1 binding model.
  • BMP9 can bind to ALK1 protein on the surface of HUVEC cells, activate ALK1 receptors, and mediate the phosphorylation of downstream protein Smad1. Therefore, we designed an experiment to detect the blocking effect of 10 antibody molecules on BMP9-induced Smad1 phosphorylation.
  • HUVEC cells were seeded on 96-well plates, and 2 ⁇ 10 4 cells per well were placed in ECM (Sciencell, 1001) culture medium containing 5% FBS and ECG. Cultured overnight in a 37°C, 5% CO 2 incubator. The culture medium was removed from the cell culture plate and washed twice with 200 ⁇ l PBS. 100 ⁇ l of ECM without FBS and ECG was added, and then the cells were starved for 4 hours. The culture medium was removed from the cell culture plate, and 100uL of the test article (BM and its mutants) with a concentration gradient dilution was added. After treatment for 1.5 hours, a final concentration of 0.5ng/mL BMP9 was added to the culture medium and the cells were incubated for 45 minutes.
  • the culture medium was removed, and the ELISA kit (Invitrogen, 85-86182-11) was used to determine the level of Smad1 phosphorylation in the cells. After three independent repeated experiments, the results are shown in Table 2 below.
  • the blocking effect of the affinity-enhanced ALK1 monoclonal antibody mutant is significantly better than that of the wild-type BM antibody reference.
  • CE Sodium dodecyl sulfate capillary electrophoresis
  • PA800 electrophoresis instrument was used for CE detection. 100 ⁇ g of mutant sample was taken. After sample treatment, non-/reduced purity test samples were obtained. PDA detector was used with a detection window width of 200 ⁇ m. The judgment standard was that the main component of the candidate mutant was greater than 90%.
  • DSF Thermal stability: The thermal stability of candidate mutants was investigated by differential scanning fluorescence (DSF). The test used a fluorescent quantitative PCR instrument. The mutant samples were stained with the fluorescent colorimetric agent Sypro Orange and added to a 96-well plate for determination. The sample volume was 10 ⁇ L, and 3 replicates were tested each time. The judgment standard was that the temperature Tm1 value of the candidate mutant was greater than 60°C, which was considered to be developable.
  • Hydrophobicity Hydrophobic interaction chromatography (HIC) was used to investigate the hydrophobicity of candidate mutants.
  • the hydrophobicity test was performed using an Ultimate 3000 chromatograph and a Thermo ProPac HIC-10 column.
  • the mobile phase was ammonium sulfate buffer at a flow rate of 1 mL/min.
  • the collection time was 30 min, the injection volume was 10 ⁇ L, and the column temperature was 40 °C. 25°C, detection wavelength 280nm, injector temperature 10°C.
  • Adalimumab was used as the positive control
  • Ipilimumab was used as the negative control
  • the judgment standard was that the shorter the retention time of the mutant sample, the weaker the hydrophobicity, and the hydrophobicity of the candidate molecule should be weaker than that of the negative control.
  • Nonspecific adsorption Cross-interaction chromatography (CIC) was used to investigate the nonspecific adsorption of candidate mutants.
  • the nonspecific adsorption was detected using Ultimate 3000 and human serum IgG coupled to Hitrap-NHS chromatographic column, with PBS as the mobile phase, a flow rate of 0.1 mL/min, a collection time of 20 min, an injection volume of 5 ⁇ L, a column temperature of 25 °C, a detection wavelength of 280 nm, and an injector temperature of 10 °C.
  • Adalimumab was used as the positive control and Ipilimumab as the negative control. The judgment standard was that the shorter the retention time of the mutant sample, the weaker the nonspecific adsorption, and the nonspecific adsorption of the candidate mutant should be weaker than that of the negative control.
  • SMAC Colloidal stability
  • the colloidal stability of the candidate mutants was investigated by vertical monolayer adsorption chromatography (SMAC method).
  • the colloidal stability test used a ZENIX column, the mobile phase was PBS, the flow rate was 0.35 mL/min, the acquisition time was 20 min, the injection volume was 10 ⁇ L, the column temperature was 25 ° C, the detection wavelength was 214 nm, and the injector temperature was 10 ° C.
  • Adalimumab was used as the positive control and Ipilimumab as the negative control. The judgment standard was that the shorter the retention time of the mutant sample, the better the colloidal stability, and the colloidal stability of the candidate mutant should be weaker than that of the negative control.
  • rCE-SDS refers to reducing capillary electrophoresis
  • nrCE-SDS refers to non-reducing capillary electrophoresis
  • low molecular weight fragments protein peptides with a molecular weight less than the target protein.
  • High molecular weight fragments protein aggregates with a molecular weight greater than the molecular weight of the target protein.
  • mutants #3, #1, #9, #14, #18, and #28 had better physicochemical properties.
  • the 6 candidate mutants had higher purity, weaker hydrophobicity, weaker nonspecific adsorption, better colloidal stability, and better thermal stability.
  • the ALK-1 monoclonal antibody mutant sequence #18 was selected as the basis for further improvement as the source of the ScFv structure in the ALK1-VEGF bispecific antibody BEV813.
  • BEV813 is a typical human IgG1 bispecific antibody with a "2+2" symmetrical structure, which is obtained by fusing the "ScFv" (Single-chain variable fragment) formed by the heavy chain variable region (VH) and light chain variable region (VL) of the ALK-1 antibody (ALK-1 monoclonal antibody #18) to the "C" terminus of the constant region of the VEGF-A monoclonal antibody (Bevacizumab) (as shown in Figure 2).
  • ScFv Single-chain variable fragment formed by the heavy chain variable region (VH) and light chain variable region (VL) of the ALK-1 antibody (ALK-1 monoclonal antibody #18)
  • BEV813 is composed of 4 peptide chains, 2 identical first chains and 2 identical second chains.
  • the first chain includes VH of VEGF binding region, CH of VEGF binding region, Linker, VH of ALK-1 binding region, Linker and VL of ALK-1 binding region from N-terminus to C-terminus.
  • the second chain includes VL and CL of VEGF binding region from N-terminus to C-terminus.
  • the 4 peptide chains can be connected by disulfide bonds.
  • the VEGF binding region of BEV813 contains the following sequence:
  • VH Heavy chain variable region
  • VL Light chain variable region
  • the CH of the VEGF binding region i.e., the heavy chain constant region (CH) is shown in SEQ ID NO: 9.
  • the CL of the VEGF binding region i.e., the light chain constant region (CL) is shown in SEQ ID NO: 10.
  • the linker sequence is shown in SEQ ID NO: 65, i.e., GGGGSGGGGSGGGGSGGGGS.
  • the linker is located between the VEGF binding region and the ALK-1 binding region.
  • the ALK-1 binding region of BEV813 is in the form of a scFv, which contains the following sequence:
  • VL Light chain variable region
  • VH Heavy chain variable region
  • the linker sequence is shown in SEQ ID NO: 65.
  • the linker is located between VH and VL of scFv.
  • BEV813 bsAb For the preparation process of BEV813 bsAb, please refer to the "Construction, expression and purification of anti-ALK-1 monoclonal antibodies and mutants" section.
  • bsAb, bevacizumab, #18 mutant or BM to 5ug/mL on AHC sensor (Fortebio, 18-5060) for 120s; dilute antigen protein with loading buffer (same as above) (starting from 200nM, set 7 concentration gradients); then put the sensor connected to the antibody into different concentration gradients of loading buffer as antigen diluent for 60s, then transfer the sensor to PBS for dissociation for 300s; then wash in regeneration buffer and neutralization buffer for 3 times, each solution for 5s each time. Finally, kinetic analysis was performed using a 1:1 binding model.
  • CHO-K1-hALK-1 cells (provided by Stainwei Biotech Inc) were seeded at 1 ⁇ 10 5 cells/ml in a 96-well plate, and different antibodies with different concentration gradients were added: BEV813, ALK-1 mAb (#18 mutant), bevacizumab (Biointron, B7424), human IgG (Beyotime, A7001). Incubate at 4°C for 1 hour. VEGF 165-biotin (10 ⁇ g/mL) (sino biological, 11066-HNAB-B) and APC-anti-human IgG mAb (Biolegend, 410708) and then incubated at 4°C for 1 hour. The cells were collected and the binding of the tested antibodies to CHO-K1-hALK-1 cells was analyzed by flow cytometry.
  • CHO-K1-hALK1 cells (provided by Stainwei Biotech Inc) were seeded in a 96-well plate, and then different dilutions of BMP9 molecules (Acro, GD2-H5211) and BEV813 bispecific antibodies (initial concentration of 50 nM) were added and incubated at 4°C for 1 hour. After washing three times with PBS solution containing 2% FBS, 100uL VEGF 165-biotin (sino biological, 11066-HNAB-B) was added and incubated at 4°C for 1 hour.
  • BMP9 molecules Acro, GD2-H5211
  • BEV813 bispecific antibodies initial concentration of 50 nM
  • H_VEGF Reporter 293 cells 2.5 ⁇ 10 4 H_VEGF Reporter 293 cells (provided by Yoshiman Bio, GM-C09057) were inoculated in a 96-well plate and cultured overnight. Different antibodies with different concentration gradients were added: BEV813, ALK-1 mab (#18 mutant), bevacizumab (Biointron, B7424), human IgG (Beyotime, A7001), incubate at 4°C for 1 hour. Then add 1 nM VEGF165 protein (Sino, 11066-HNAH), incubate at 37°C for 6 hours. After adding 100 ul/well cell lysate, the fluorescence signal was detected using an Iuciferase kit.
  • BEV813 bsAb can block the binding of VEGF to H_VEGF Reporter 293 cells, thereby blocking the signal transmission into the cells. From the IC50 value, the blocking effect of BEV813 bsAb is comparable to that of bevacizumab.
  • BMP9 can bind to ALK1 protein on the surface of HUVEC cells or A172 cells to activate ALK1 receptors, thereby mediating the phosphorylation of downstream protein Smad1. Therefore, we designed an experiment to detect the blocking effect of BEV813 bispecific antibody on BMP9-induced Smad1 phosphorylation.
  • HUVEC or A172 cells were seeded on 96-well plates, and 2 ⁇ 10 4 cells per well were placed in ECM (Sciencell, 1001) medium containing 5% FBS and ECG or DMEM medium (Gibco, 11995065) containing 10% FBS. Cultured overnight at 37°C, 5% CO 2 incubator. Remove the medium from the cell culture plate and wash twice with 200 ⁇ l PBS. Add 100 ⁇ l of ECM without FBS and ECG or DMEM without FBS, and then starve the cells for 1 hour.
  • ECM Sciencell, 1001
  • ECG or DMEM medium Gibco, 11995065
  • the affinity matured ALK1 monoclonal antibody (#18 mutant) molecule had the strongest blocking effect, but the BEV813 bispecific antibody molecule also showed a good blocking effect.
  • HUVEC cells were seeded on 96-well plates, and 5 ⁇ 10 3 cells per well were placed in M199 (Source Culture, 1001) medium containing 10% FBS.
  • M199 Source Culture, 1001
  • Different concentration gradients of the test antibody containing 10 ng/mL VEGF165 protein (Sino biological, 11066-HNAB-B) were added to the above cells and cultured in a 37°C, 5% CO 2 incubator for 72 hours. The culture medium was removed, and the fluorescence value was read on a microplate reader after treatment with the Cell Titer Glo Kits detection kit (Promega, G755B).
  • HUVEC cells Human Umbilical Vein Endothelial Cells
  • PBS PBS
  • 4 ⁇ 10 4 HUVEC cells were added to a 24-well plate and treated with 1 mg/ml of the antibody to be tested. After incubation at 37°C for 48 hours, the formation of microtubules was observed using a fluorescence microscope (Olympus CKX53, Tokyo, Japan).
  • anti-HEL-Human IgG1 Isotype-control (hIgG1, Bio-Bio, Catalog No. B117901)
  • anti-HEL-Human IgG2 Isotype-control (hIgG2, Bio-Bio, Catalog No. B107803)
  • non-stimulation group (Non-stimulation)
  • Isotype control isotype control
  • negative control Negative control
  • MDA-MB-231 (ATCC No. HTB-26) tumor cells were inoculated subcutaneously in tumor-donor mice (NCG mice, female, provided by Jiangsu Jicui Yaokang Biotechnology Co., Ltd.). After the tumor grew, the tumor with a volume of about 500-1000 mm3 was removed under sterile conditions, cut into small pieces of about 2mm ⁇ 2mm ⁇ 2mm, and inoculated subcutaneously in the right flank of the experimental mouse with a trocar. One piece of tumor tissue was inoculated in each mouse.
  • PBMC human peripheral blood mononuclear cells
  • Donor#: SC12291 human peripheral blood mononuclear cells
  • the cell inoculation amount was 2 ⁇ 106 /mouse.
  • the proportion of human CD45 positive cells in the mouse blood was detected by FACS one day before grouping and at the end of the experiment. Animals were treated with Bevacizumab, ALK-1 mAb (#18 mutant) and BEV813 bsAb or saline (as Vehicle group).
  • the dosage of Bevacizumab and ALK-1 mAb (#18 mutant) monoclonal antibodies was 5 mg/kg, and the dosage of BEV813 bsAb was 6.7 mg/kg.
  • Group dosing began when the tumor grew to about 53 mm3. Each antibody was administered intraperitoneally 3 times a week, with a volume of 100-uL each time. Each group consisted of 8 mice. Tumor volume and mouse body weight were measured twice a week. After 3 weeks of administration, the animals were euthanized, and the tumors were removed and weighed.
  • One-Way ANOVA test was used for inter-group statistical analysis of tumor volume and tumor weight, and p ⁇ 0.05 was considered to be significantly different.
  • the experimental results are shown in FIG9 .
  • the tumor growth inhibition rates (TGI TV %) of the Bevacizumab (5 mg/kg) group, the ALK-1 mAb (#18 mutant) (5 mg/kg) group, and the BEV813 bsAb (6.7 mg/kg) group were 22%, 0%, and 48% , respectively ( FIG9 A ); and the tumor weight inhibition rates (TGI TW % ) were 20%, 2%, and 51%, respectively ( FIG9 B ).
  • ALK-1 mAb (#18 mutant) could not inhibit tumor growth at a dose of 5 mg/kg; Bevacizumab had a certain inhibitory effect on tumor growth at a dose of 5 mg/kg; and BEV813 bsAb had a significant inhibitory effect on tumor growth under equimolar conditions (6.7 mg/kg), and the tumor volume and weight were significantly smaller than those of the control group ( FIG9 A and B , ** p ⁇ 0.01). During the treatment period, there was no significant change in the body weight of mice in each group, indicating that the drug had good safety ( Figure 9C ).
  • the tumor growth inhibition rates (TGI TV %) of the BM (20 mg/kg) group, Bevacizumab (5 mg/kg) group, and bevacizumab + BM (5 + 20 mg/kg) group were 13%, 34%, and 41% , respectively ( Figure 9 D); the tumor weight inhibition rates (TGI TW % ) were 15%, 40%, and 45%, respectively (Figure 9 E).
  • ALK1 mAb (BM) had almost no inhibitory effect on tumors at a dose of 20 mg/kg; while Bevacizumab had a certain inhibitory effect on tumor growth at a dose of 5 mg/, or when it was co-administered with BM, and the tumor volume and weight were significantly smaller than those of the control group ( Figure 9 D and E, *** p ⁇ 0.001). However, no statistical difference was seen between the bevacizumab group and the combined treatment group. During the treatment period, the body weight of mice in each group did not change significantly, indicating that the drug was safe (Figure 9 F).
  • BEV813 bsAb has a better efficacy in inhibiting tumor growth than the combination of ALK1 mAb and bevacizumab, and BEV813 bsAb has a good safety profile.
  • PBMC humanized xenograft KYSE450 esophageal cancer model KYSE450 (JCRB After washing with PBS, the tumor cells of 10-JCRB1430 (donor # JCRB1430) were resuspended in a mixture of PBS:Matrigel (volume ratio 1:1) at a concentration of 1 ⁇ 10 8 /mL and inoculated subcutaneously in the right flank of tumor-donating mice (NCG mice, male, provided by Jiangsu Jicui Yaokang Biotechnology Co., Ltd.).
  • PBMC human peripheral blood mononuclear cells
  • Donor #: PAZ012T01 provided by Shanghai Heyousheng Biotechnology Co., Ltd.
  • the proportion of human CD45 positive cells in mouse blood was detected by FACS 1 day before grouping and at the end of the experiment.
  • Animals were treated with Bevacizumab, BEV813 bsAb or saline.
  • the administration dose of Bevacizumab monoclonal antibody was 5 mg/kg, and the administration dose of BEV813 bsAb was 6.7 mg/kg.
  • the grouping and dosing were performed when the tumor grew to about 89 mm 3 .
  • Each antibody was administered intraperitoneally 3 times a week, with each administration volume of 100uL.
  • Each group consisted of 8 mice. Tumor volume and mouse weight were measured twice a week. After 4 weeks of administration, the animals were euthanized, and then the tumors were removed and weighed.
  • One-Way ANOVA test was used to perform statistical analysis of tumor volume and tumor weight between groups, and p ⁇ 0.05 was considered to be significantly different.
  • HCC827 (provided by Pengli Biopharmaceutical Technology (Shanghai) Co., Ltd.) tumor cells were washed with PBS, resuspended in a mixture of PBS:Matrigel (mixed in a volume ratio of 1:1) at a concentration of 5 ⁇ 10 6 /mL, and inoculated subcutaneously on the right side of the back of humanized mice (provided by Pengli Biopharmaceutical Technology (Shanghai) Co., Ltd.) near the armpit. Animals were treated with Bevacizumab, BEV813 bsAb or saline.
  • the dosage of Bevacizumab monoclonal antibody was 1 mg/kg, and the dosage of BEV813bsAb was 1.33 mg/kg.
  • the tumors were divided into groups when they grew to about 50-80 mm 3. Each antibody was administered intraperitoneally 3 times a week, with a volume of 100uL each time. Each group consisted of 6 mice. Tumor volume and mouse body weight were measured twice a week. After 4 weeks of administration, the animals were euthanized, and the tumors were removed and weighed. One-Way ANOVA test was used to analyze the tumor volume and tumor weight among the groups, and p ⁇ 0.05 was considered to be a significant difference.
  • the tumor growth inhibition rates (TGI TV %) of the Bevacizumab (1 mg/kg) group and the BEV813 bsAb (1.33 mg/kg) group were 46% and 61% (A in FIG11 ); the tumor weight inhibition rates (TGI TW %) were 38% and 56% (B in FIG11 ).
  • the tumor volume was significantly reduced during Day 7 to Day 28 (A in FIG11 , ** p ⁇ 0.01); the tumor weight was significantly reduced on Day 28 (B in FIG11 , ** p ⁇ 0.01).
  • Tumor tissues (2 ⁇ 2 ⁇ 2 mm 3 ) from patients with colorectal cancer liver metastasis were subcutaneously inoculated into the right flank of tumor-donor mice (NCG mice, female, provided by Jiangsu Jicui Pharmaceutical Biotechnology Co., Ltd.). Animals were treated with Bevacizumab, BEV813 bsAb or saline. The dosage was 5 mg/kg, and the dosage of BEV813 bsAb was 6.7 mg/kg. Group dosing began when the tumor grew to about 60-100 mm 3. Each antibody was administered intraperitoneally 3 times a week, with each administration volume of 100uL. Each group consisted of 6 mice. Tumor volume and mouse weight were measured twice a week. After 4 weeks of dosing, the animals were euthanized, and the tumors were removed and weighed.
  • the ALK-1 part of the sequence of BEV813 bsAb was mutated.
  • the sequence information of the mutant and its mutated ALK-1 binding region are as follows (other regions are the same as BEV813 bsAb):
  • VH light chain variable region
  • ALK-1 binding region light chain variable region (VL): SEQ ID NO: 66
  • ALK-1 binding region light chain variable region (VH): SEQ ID NO: 67
  • VL light chain variable region
  • ALK-1 binding region light chain variable region (VH): SEQ ID NO: 67
  • VL light chain variable region
  • VH light chain variable region
  • VL light chain variable region
  • VH light chain variable region
  • VL light chain variable region
  • VL light chain variable region
  • VH light chain variable region
  • VL light chain variable region
  • VH light chain variable region
  • VH light chain variable region
  • ALK-1 binding region light chain variable region (VL): SEQ ID NO: 76
  • Ides protease (Rhinogen, QIP-001-A) is located only at a specific site below the hinge region Immunoglobulin degrading enzyme that cleaves IgG to produce F(ab′)2 and single-chain Fc (sFc).
  • the antibody can be effectively used to determine the presence of isomers by SDS-PAGE or mass spectrometry.
  • Figure 13 shows the purity of different mutants
  • BEV813-9 There were no aggregates
  • BEV813-3 and BEV813-7 had a small amount of aggregates, and the rest had aggregates to varying degrees.
  • Figure 14 shows the different mutant bands after Ides digestion. If isomers exist, they will be displayed If there is no isoform, the sFc band will be visible, but no Fc band.
  • BEV813-9 has no isomers, while the others have isomers.
  • the concept of isomers the ScFv in one heavy chain is connected to the ScFv in another heavy chain. If the presence of Fc bands can be confirmed by Ides digestion, it proves that there are isomers.
  • Concept Two or three antibody proteins are bound together by covalent or non-covalent means. A complete antibody protein, without aggregates and isomers.
  • sFc Single chain Fc, antibody hinge The domain corresponds to the heavy chain region below the heavy chain antibody, including ScFv; ScFv: It is composed of the variable region of the heavy chain and the variable region of the light chain of the antibody.
  • Fc two sFcs are connected by a disulfide bond connected together.
  • the purity of the samples was tested by HPLC using the instrument from Thermofisher Scientific. DIONEX UltiMate 3000; the chromatographic column is BioMix SEC 300 from Sepax (Sepax, BioMix SEC, 3um, 150mmX4.6mm), the mobile phase is PB containing 0.673M NaCl solution, column temperature was 25°C, flow rate was 0.4 ml/min, and 5 ug was injected.
  • the molecular weight of each subunit of the dual antibody is listed in Table 7 below, which lists the theoretical molecular weight. The error between the actual measured molecular weight and the theoretical molecular weight is within an acceptable range.
  • the subunits are mainly F(ab′) 2 , sFc and Fc. The existence of Fc indicates that the molecule has isomers ( Figure 16- 18).
  • the subunit molecular weight of BEV813-9 is mainly F(ab′) 2 and sFc, and no Fc structure is detected. This indicates that there are no isomers ( Figures 19-20).
  • nrCGE Non-reduced capillary gel Electrophoresis
  • the method was as follows: 100 ⁇ g of treated Antibody samples (BEV813 dual antibody or BEV813-9 mutant) were placed in 1.5 mL microcentrifuge tubes and added Add sample buffer (100 mM Tris-HCl, pH 9.0, 1% SDS) to 95 ⁇ L and add 2 ⁇ L of Marker (10KD molecular weight marker), 5 ⁇ L 250mM iodoacetamide (IAM) solution, Cover the bottle cap, mix thoroughly, centrifuge at 300g for 1 min, seal with sealing film, and then incubate in a 70°C water bath for 10 min, cool at room temperature for at least 3 min, transfer 100 ⁇ L of sample to a 200 ⁇ L micro-sample tube and spin Remove the bubbles, put it into a universal bottle and cover the bottle cap.
  • Marker 10KD molecular weight marker
  • IAM iodoacetamide
  • the antibodies were processed as follows before the nrCGE test, where BEV813 and The BEV-813-9 sample was captured by Protein A only; the BEV813 monomer was captured by Protein A. After capture, further ion purification (HiTrap Capto SP ImpRes, Cytiva: 17546851) The sample obtained (the purpose is to remove the aggregates and isomers in the antibody and obtain a sample containing only BEV813 monomers, as a control for nrCGE detection).
  • the detection method is similar to the aforementioned method in the patent: Fortebio Octet (Sartorius) affinity determination method is as follows: the sensor is offline balanced in the analysis buffer for 10 minutes, and then online detection is performed for 60 seconds to establish a baseline, and the BM antibody and the antibody corresponding to the antibody number in the table are loaded online onto the Protein A sensor. Then the sensor is placed in the human ALK-1 antigen prepared above, and then the sensor is transferred to PBS 0.02% T + 0.1% BSA for dissociation, and the kinetic analysis is performed using a 1:1 binding model.
  • the detection method is consistent with the aforementioned method in the patent.
  • the detection method is consistent with the aforementioned method in the patent.
  • BEV813 and its mutant BEV813-9 both have excellent effects on blocking BMP9-induced Smad1 phosphorylation, which is significantly better than ALK1 monoclonal antibody BM.
  • Nivo813 is a human IgG4 bispecific antibody with a typical "2+2" symmetrical structure (as shown in Figure 24), which is achieved by fusing the "ScFv” (Single-chain variable fragment) formed by the heavy chain variable region (VH) and light chain variable region (VL) of the ALK-1 monoclonal antibody to the "C" end of the constant region of the PD-1 monoclonal antibody (Nivolumab).
  • ScFv Single-chain variable fragment formed by the heavy chain variable region (VH) and light chain variable region (VL) of the ALK-1 monoclonal antibody
  • the ALK-1 scFv antibody is connected to the C-terminus of the heavy chain of the PD-1 monoclonal antibody (Nivolumab) through a linker sequence (G20-linker: GGGGSGGGGSGGGGSGGGGS), thereby generating a new bispecific antibody Nivo813.
  • a point mutation to Cys is performed to introduce a disulfide bond.
  • the Fab segment of the antibody is modified to enhance its binding affinity without reducing the blocking function.
  • the specific sequence information of Nivo813 is as follows:
  • VH PD-1 binding region heavy chain variable region
  • VL light chain variable region
  • ALK-1 binding region of Nivo813 bsAb ALK-1 binding region of Nivo813 bsAb:
  • VL light chain variable region
  • VH ALK-1 binding region light chain variable region
  • Nivo813 bsAb For the preparation process of Nivo813 bsAb, please refer to the construction, expression and purification of anti-ALK-1 monoclonal antibodies and their mutants.
  • the detection method is consistent with the aforementioned Nivo813 bsAb detection method in the patent.
  • the control Nivolumab used in the method was purchased from Beijing Sino Biological Technology Co., Ltd. (hereinafter referred to as "Sino Biological"), with the catalog number: 68050-H001; the antigen PD-1-his protein was purchased from Antibody system, with the catalog number: YHH02201; the antigen ALK-1-his protein was purchased from ACROBiosystems, with the catalog number: AL1-H5227.
  • the binding activity of Nivo813 bispecific antibody to PD-1 antigen is comparable to that of Nivolumab; the binding activity to ALK-1 antigen is comparable to that of the control antibody BM, but weaker than the binding activity of the ALK-1 monoclonal antibody (#18 mutant) after affinity maturation.
  • ALK-1-his (ACROBiosystems, AL1-H5227) was added to a 96-well plate and incubated overnight at 4°C. The next day, the coated ALK-1-his antigen was fully washed off with washing solution, and 5% bovine serum albumin (BSA, ST023-200g, Shanghai Bio-Technology Co., Ltd.) diluted with ELISA diluent buffer (Biolegend, 421203) was added to block at 37°C for 2 hours (300rpm). After the blocking solution was fully washed off with washing solution, different antibodies to be tested (primary antibodies) (15nM, 3-fold dilution) were added and incubated at 37°C for 2 hours (300rpm).
  • BSA bovine serum albumin
  • ELISA diluent buffer Biolegend, 421203
  • Human IgG1 antibody (Beijing Yiqiao, HG1K) was used as a negative control antibody. After washing away the primary antibody with detergent, add 5 ⁇ g/ml PD-1-mFc (Sino Biological, 10377-H05H) and incubate at 37°C for 1 hour (300rpm). After washing away the above proteins with detergent, add 1 ⁇ 1000 diluted secondary antibody Goat Anti-Mouse IgG-HRP (Sino Biological, SSA007) or Goat Anti-Human IgG-HRP (Sino Biological, SSA002) and incubate at 37°C for 1 hour (300rpm).
  • Nivo813 bispecific antibody molecule Compared with ALK-1 mAb (#18 mutant), the Nivo813 bispecific antibody molecule has a higher binding affinity for both antigens PD-1 and ALK-1; the EC50 value of Nivo813 bsAb is 5 times that of ALK-1 mAb (#18 mutant).
  • CHO-K1-ALK-1 cells 1 ⁇ 10 5 cells/ml of CHO-K1-ALK-1 cells (provided by Stainwei) were seeded in a 96-well plate, and different antibodies to be tested (primary antibodies) (50 nM, 3-fold dilution) were added and incubated at 4°C for 1 hour. After the primary antibody was fully washed away with FACS buffer, 10 ⁇ g/mL human PD-1-PE (ACRObiosystems, PD-1HP2F2) and 1:20 PE anti-human IgG Fc Antibody (secondary antibody) (Biolegend, 410708) were added and incubated at 4°C for 1 hour. After the secondary antibody was fully washed away with FACS buffer, the cells were collected and the binding of the test antibody to CHO-K1-ALK-1 cells was analyzed by flow cytometry.
  • primary antibodies 50 nM, 3-fold dilution
  • H-PD-1 NFAT Reporter Jurkat cells 2 ⁇ 10 6 cells/ml H-PD-1 NFAT Reporter Jurkat cells (Genomeditech) were seeded in a 96-well plate, and different antibodies (primary antibodies) to be tested (50nM, 3-fold dilution) were added and incubated at 4°C for 1 hour. After the primary antibody was fully washed away with FACS buffer, 10 ⁇ g/mL human ALK-1-his protein (ACRObiosystems, PD-1HP2F2) was added and incubated at 4°C for 1 hour.
  • Nivo813 bsAb The binding activity of Nivo813 bsAb, ALK-1 mAb (#18 mutant), and nivolumab to cell surface receptors was compared using two overexpression cell lines. The results are shown in Figures 26-27. Compared with ALK-1 mAb (#18 mutant), Nivo813 bsAb has a higher binding activity to the ALK-1 receptor on the CHO-K1-ALK-1 cell line ( Figure 26). Similarly, compared with nivolumab, Nivo813 bsAb has a higher binding activity to the PD-1 receptor on the H-PD-1 NFAT Reporter Jurkat cell line, and the EC50 value of Nivo813 bsAb is 65 times that of nivolumab ( Figure 27).
  • Nivo813 bsAb blocks PD-1/PD-L1 interaction, leading to TCR signaling pathway transduction and NFAT-mediated luciferase expression
  • CHO-K1-PDL1 cells 2.5 ⁇ 10 4 cells/well of CHO-K1-PDL1 cells (Jiman Bio) were inoculated in a 96-well plate and cultured overnight. The next day, 1 ⁇ 10 5 cells/well of H-PD-1/NFAT reporter Jurkat cells (Jiman Bio) containing the test antibody (100ug/ml, 3-fold dilution) were added to the above well plate, mixed thoroughly, and incubated at 37°C for 16 hours. After 16 hours of culture, the cell supernatant was taken to detect the expression of luciferase.
  • both Nivo813 bsAb and nivolumab can inhibit PD1/PDL1 interaction and restore downstream signal transduction and NFAT-mediated luciferase expression.
  • Nivo813 bsAb has a higher inhibitory effect than nivolumab.
  • Nivo813 bsAb blocks BMP9-induced Smad1 phosphorylation
  • BMP9 can bind to ALK1 protein on the surface of HUVEC cells or A172 cells to activate ALK1 receptors, thereby mediating the phosphorylation of downstream protein Smad1. Therefore, we designed an experiment to detect the blocking effect of Nivo813 bispecific antibody on BMP9-induced Smad1 phosphorylation.
  • HUVEC Allcells, H-001F-C in Figure 29.A or A172 cells (Sciencell, CBP60575) in Figure 29.B were seeded on a 96-well plate, with 2 ⁇ 10 4 cells per well placed in ECM (Sciencell, 1001) medium containing 5% FBS and ECG or DMEM medium containing 10% FBS. Cultured overnight in a 37°C, 5% CO 2 incubator. Remove the medium from the cell culture plate and wash twice with 200 ⁇ l PBS. Add 100 ⁇ l of ECM or DMEM without FBS and ECG, and then starve the cells for 1 hour. Remove the medium from the cell culture plate and add 100uL of a certain concentration gradient dilution.
  • test article was treated for 3 hours, and then BMP9 was added to the culture medium at a final concentration of 0.15 ng/mL or 0.3 ng/mL to treat the cells for 45 minutes.
  • the culture medium was removed, and the Smad1 phosphorylation level was measured using an ELISA kit (Invitrogen, 85-86182-11).
  • the affinity matured ALK1 monoclonal antibody (#18 mutant) molecule had the strongest blocking effect, but the Nivo813 bispecific antibody molecule also showed a good blocking effect.
  • MDA-MB-231 (ATCC No. HTB-26) human breast cancer tumor cells were inoculated subcutaneously into tumor-donor mice (NCG mice, female, provided by Jiangsu Jicui Pharmaceutical Biotechnology Co., Ltd.). After the tumor grew, the tumor with a volume of about 500-1000 mm3 was removed under sterile conditions and cut into pieces of about A small piece of 2mm ⁇ 2mm ⁇ 2mm was inoculated subcutaneously in the right flank of the experimental mouse with a trocar, and one piece of tumor tissue was inoculated in each mouse.
  • PBMC human peripheral blood mononuclear cells
  • Donor#: SC12291 human peripheral blood mononuclear cells
  • the cell inoculation amount was 2 ⁇ 10 6 / mouse.
  • the proportion of human CD45 positive cells in the mouse blood was detected by FACS one day before grouping and at the end of the experiment. Animals were treated with Nivolumab, ALK-1 mAb (#18 mutant) and Nivo813 bsAb or saline (control group Vehicle).
  • Nivolumab, ALK-1 mAb (#18 mutant) monoclonal antibody and Nivo813 bsAb were 1mg/kg, 5mg/kg and 1.33mg/kg, respectively.
  • Grouping and dosing began when the tumor grew to about 53mm 3.
  • Each antibody was administered intraperitoneally 3 times a week, with a volume of 100mL each.
  • Each group consisted of 8 mice. Tumor volume and mouse body weight were measured twice a week. After 3 weeks of administration, the animals were euthanized, and then the tumors were removed and weighed.
  • One-Way ANOVA test was used to perform statistical analysis of tumor volume and tumor weight between groups, and p ⁇ 0.05 was considered to be significantly different.
  • the tumor growth inhibition rates (TGI TV %) of the Nivolumab (1 mg/kg) group, ALK-1 mAb (#18 mutant) (5 mg/kg) group and Nivo813 bsAb (1.33 mg/kg) group were 30%, 0%, and 52%, respectively (A in Figure 31); the tumor weight inhibition rates (TGI TW %) were 30%, 2%, and 51%, respectively (B in Figure 31).
  • mice showed good anti-tumor efficacy, while in the Nivolumab treatment group, Only 3 mice (out of 8) showed a certain anti-tumor effect (D in Figure 31).
  • the test substances Nivolumab, ALK-1 mAb (#18 mutant) and Nivo-813 bsAb had no acute adverse reactions after administration, and the mice in each group ate and drank water normally without obvious abnormalities (C in Figure 31).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了一种高亲和力、成药性质优异的抗ALK-1单克隆抗体,并在其基础上进一步提供一种抗ALK-1-抗VEGF双特异性抗体,和一种抗ALK-1-抗PD-1双特异性抗体,并进一步提供包含所述抗体的药物组合物,及其在制备用于抑制血管生成和/或治疗肿瘤药物中的应用。

Description

抗ALK-1抗体及其用途
本申请要求2023年1月18日提交的中国专利申请CN 202310083522.1和2023年09月25日提交的中国专利申请CN202311249366.8的优先权,该优先权文件的说明书、说明书附图和权利要求书所记载的内容全文引入本申请的说明书并被作为本申请说明书原始记载的一部分。申请人进一步声明,申请人拥有基于该优先权文件修改本申请的说明书和权利要求书的权利。
技术领域
本申请涉及一种特异性结合ALK-1的单抗、一种同时结合ALK-1和VEGF的双特异性抗体以及一种特异性结合ALK-1和PD-1的双特异性抗体,所述抗体的药物组合物,及其应用。
背景技术
ALK-1是转化生长因子β受体1型(TGF-β-1)的I型细胞表面受体。人ALK-1是一个503个氨基酸的多肽,它包括一个信号序列(氨基酸:1-21)、一个N端细胞外TGF-β-1配体结合域或ECD(氨基酸:22-118)、一个单个跨膜结构域(氨基酸:119-141)、一个调节性甘氨酸/丝氨酸富集(GS)结构域(氨基酸:142-202)和一个C端丝氨酸-苏氨酸激酶结构域(氨基酸:202-492)。尽管ALK-1与其他I型受体(ALK-2到ALK-7)具有60-80%的整体同源性。ALK-1的ECD与其他ALK家族成员的ECD明显不同。例如,在人类中,只有ALK-2的ECD与ALK-1的ECD显着相关(共享大约25%的氨基酸同一性)。
通常,TGF-β超家族配体通过与两种类型(I和II)丝氨酸/苏氨酸激酶的异聚受体复合物结合来发挥其生物活性。II型受体是组成型活性激酶,可在配 体结合后磷酸化I型受体。反过来,活化的I型激酶磷酸化下游信号分子,包括各种Smads蛋白,这些分子易位到细胞核并导致转录反应。(Heldin et al.Nature,1997,vol.390,pp.465-471)在ALK-1的表达下,已经证明Smad1被特异性磷酸化并转移到细胞核,ALK-1直接调节Smad1响应基因Id1和EphB2的表达。
ALK-1在内皮细胞和其他高度血管化的组织(如胎盘或脑)中高度且选择性地表达。内皮细胞中ALK-1的表达高度超过其他类型受体(ALK-5)和内皮糖蛋白的表达。ALK-1的突变与遗传性出血性毛细血管扩张症(HHT)相关,表明ALK-1在控制血管发育或修复方面发挥关键作用。(Abdalla et al.J.Med.Genet.,2003,vol.40,pp.494-502;Sadick et al.Hematologica/The Hematology J.,2005,vol.90,818-828.)此外,对ALK-1基因敲除小鼠的两项独立研究为血管生成过程中ALK-1的功能提供了关键的体内证据。(Oh et al.Proc Natl Acad Sci USA,2000,vol.97,pp.2626-2631;Urness et al.Nature Genetics,2000,vol.26,pp.328-331.)
预计抗血管生成疗法本质上是慢性的。因此,首选具有高度选择性内皮功能的靶标,例如ALK-1,以减少由副作用引起的损耗。此外,鉴于ALK-1 ECD与其他ALK家族成员的ECD存在显着差异,针对人类ALK-1 ECD的mAb预计将选择性靶向ALK-1。基于这些考虑,非常需要一种针对ALK-1胞外域的单克隆抗体,该抗体可以抑制与II型受体的二聚化,从而阻止Smad1磷酸化和下游转录反应。
脉管网络的发展是一个多步骤过程,其中血管内皮生长因子(VEGF)发挥着关键作用。VEGF是血管生成的启动因子,和成纤维细胞生长因子(FGF)共 同作用刺激刺激内皮细胞发生增殖和迁移。随后,VEGF和Notch通路蛋白发出信号以启动并支持内皮血管的萌发。然后,细胞外基质蛋白酶对基底膜的重塑继续支持血管的发芽和分支。早期分支血管的成熟和稳定以及随后功能性血管床的形成是一个复杂的过程,其中包括血管生成素,血小板衍生的生长因子,鞘氨醇磷酸受体和ALK1/ENG途径等多种因素。有关血管成熟的许多已知信息来自遗传研究和一些体内血管生成模型。由于缺乏足够的肿瘤血管生成模型,因此尚未完全了解这些分子在肿瘤中的确切功能。使用培养的内皮细胞系的体外研究以及鸡绒膜尿囊膜(CAM)测定类似的体内研究通常无法概括肿瘤与宿主之间的相互作用。因此,对肿瘤血管生成的最佳持续抑制可能需要协同抑制血管生成程序的多个组成部分。
癌症是导致死亡的主要原因,其特征是异常细胞不受控制的生长和扩散。许多类型的肿瘤依赖于新血管的生长(血管生成)来提供足够的营养和氧气,从而使癌细胞生长、侵入附近的组织并扩散到身体的其他部位。血管生成抑制是一种广泛使用的癌症治疗方法。几种通过阻断血管内皮生长因子(VEGF)途径起作用的血管生成抑制剂已获批准或正在开发中。这些疗法,单独给予或与化学疗法和/或放射疗法联合给予,可以显着提高存活率。
在内皮细胞和小鼠中的研究表明,ALK1的表达下调会使内皮细胞的迁移能力受阻,而对VEGF-A进行阻断则可以降低内皮细胞的增殖能力。ALK1与VEGF在血管的生成中作用机制不同,但可协同促进内皮细胞的迁移和增殖。现有VEGF/VEGFR阻断药物在使用一段时间后均会出现一定程度的耐药性,因此,结合不同抗血管生成机制的靶点药物联用是目前开发的一个新方向。
虽然VEGF抑制剂在某些肿瘤的治疗中发挥重要作用,但一些肿瘤对单独 使用VEGF抑制剂治疗根本没有反应或仅暂时反应。因此,在癌症治疗的背景下,需要有另外的组合物和方法来抑制血管生成。
双特异性抗体(bispecific antibody,BsAb)也称″双抗″,是通过细胞融合或重组DNA技术制备的人工抗体,可以特异性结合两种抗原或同一抗原的两个不同表位。双抗可以通过桥联细胞、桥联受体、桥联因子等方式发挥作用。双抗相较单抗或联用疗效更佳安全性更好,具有差异化优势双抗能够识别并结合两种不同的抗原表位,从而桥联肿瘤细胞与效应细胞,介导其对肿瘤的靶向杀伤;或桥联两种不同受体,可能激活新的生物学信号。相较单抗单用疗法,双抗可以同时阻断多条信号通路,防止耐药并提升疗效;而对比单抗联用疗法,双抗的特异性和靶向性更强,安全性更佳。ALK1/VEGF双抗通过桥连肿瘤微环境中控制新生血管增生信号通路的两种不同受体,可同时抑制针对血管增生的两个不同信号通路,强化抑制肿瘤微环境中新血管的增生,从而达到抑制肿瘤生长的作用。与ALK1和VEGF靶向药的联用相比较,本申请证实ALK1/VEGF双抗的剂量更低,靶向性更强,药物相关安全性更高。
随着免疫检查点细胞程序性死亡受体1(programmed death 1,PD-1)、PD-1配体1(PD-1ligand 1,PD-L1)以及细胞毒性T淋巴细胞相关抗原(CTLA-4)抑制剂在肿瘤治疗领域的应用不断深入,其在肝细胞癌中的临床研究也已广泛开展,一些前期研究已显示出良好结果。2017年9月,美国食品药品监督管理局批准Nivolumab用于治疗接受过索拉非尼治疗失败后的肝细胞癌患者(纳武利尤单抗(Nivolumab,)注射液说明书.)。Nivolumab可通过封闭T淋巴细胞的PD-1,阻断其与肿瘤细胞表面PD-L1结合,解除肿瘤细胞对免疫细胞的免疫抑制,使免疫细胞重新发挥抗肿瘤细胞 免疫作用而杀伤肿瘤细胞。但是,单独使用PD-1抑制剂的有效率在绝大多数未经挑选的实体瘤中只有20%左右,长期使用患者会产生耐药性,且副作用太多。近年来,药物联用已成为肿瘤治疗的一种趋势。不仅能够丰富抗肿瘤治疗的作用多样性,做到短期高效控制肿瘤生长,缓解病程,且能够达到利用已有药物的组合达到治愈疾病确保预后的目的。因此,为了提高肿瘤抑制率和减少副作用,越来越多的抗肿瘤药物均采取与PD-1/PD-L1药物进行联合用于治疗各种晚期实体肿瘤。
Nivolumab通过阻断PD-1与PD-L1的结合,从而降低肿瘤的免疫逃避,提高T淋巴细胞对肿瘤细胞的免疫攻击。因此,开发同时靶向ALK-1和PD-1双靶点的双特异性抗体在提高抗肿瘤疗效,延长患者的整体生存期及安全性上开辟了有价值的前景。
发明内容
本申请提供了一种高亲和力、成药性质优异的抗ALK-1单克隆抗体和抗ALK-1-抗VEGF双特异性抗体,与ALK-1单抗或VEGF单抗相比,所述双特异性抗体与CHO-K1-hALK1细胞有更高的结合亲和力、更强的抑制HUVEC细胞微管形成的阻断作用、对肿瘤的生长有更加显著的抑制作用,并且安全性良好。
根据本申请的第一个方面,本申请提供了一种结合ALK-1的单克隆抗体或其抗原结合部分,其中所述抗体或其抗原结合部分具有重链和轻链;
所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H; 或所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变。优选地,所述第91号和第95号氨基酸不为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
在本申请的一些实施方案中,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L。优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID  NO:51、SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;更优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的轻链可变结构域的CDR1L、CDR2L和CDR3L。
在本申请的一些实施方案中,所述结合ALK-1的单克隆抗体或其抗原结合部分,其中所述抗体或其抗原结合部分具有重链和轻链,如按照IMGT抗体编号方案对CDR区进行定义,所述轻链CDR选自:
(a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ  ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨 基酸序列所述的轻链互补决定区3(CDR3L);或
(t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
所述重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H)。
优选地,所述轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的CDR;进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR;最优选为(a)中的CDR。
在本申请的一些实施方案中,所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;所述抗体或其抗原结合部分的轻链可变结构域 VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11。
在本申请的一些实施方案中,所述抗体或其抗原结合部分的重链可变结构域VH包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79的氨基酸序列。优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、 SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79的氨基酸序列;更优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76的氨基酸序列;最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11的氨基酸序列。
在本申请的一些实施方案中,所述抗体或其抗原结合部分的重链可变结构域VH包含SEQ ID NO:1的氨基酸序列;所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的氨基酸序列。优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、 SEQ ID NO:55的氨基酸序列;更优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的氨基酸序列;最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11的氨基酸序列。
在本申请的一些实施方案中,所述抗体或其抗原结合片段结合至人ALK-1的细胞外结构域。
在本申请的一些实施方案中,所述抗体或抗原结合片段为人抗体或抗原结合片段。
在本申请的一些实施方案中,所述述抗原结合片段为Fab片段、F(ab′)2片段或单链抗体。
在本申请的一些实施方案中,所述抗体或抗原结合片段为IgG、IgM、IgE、IgA或IgD,进一步优选为IgG1、IgG2、IgG3或IgG4,更优选为人IgG1-LALA。
根据本申请的第二个方面,本申请提供一种双特异性抗体,其包含特异性结合ALK-1的第一抗原结合区(ALK-1结合区)和特异性结合VEGF的第二抗原结合区(VEGF结合区),所述特异性结合ALK-1的第一抗原结合区包含重链可变区(VH)和轻链可变区(VL),所述特异性结合VEGF的第二抗原结合区包含重链可变区(VH)和轻链可变区(VL)或特异性结合VEGF的VEGF受体片段;
所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H; 或所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变。优选地,所述第91号和第95号氨基酸不为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
在本申请的一些实施方案中,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L。优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ  ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;更优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;最优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的轻链可变结构域的CDR1L、CDR2L和CDR3L。
在本申请的一些实施方案中,所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H。
在本申请的一些实施方案中,按照IMGT抗体编号方案对CDR区进行定义,所述第一抗原结合区的轻链CDR选自以下组合:
(a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32 的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
所述第一抗原结合区的重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H)。
优选地,所述第一抗原结合区轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的CDR;进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR,最优选为(a)中的CDR。
在本申请的一些实施方案中,所述第一抗原结合区的重链可变区包含SEQ  ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;或者包含由SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1、SEQ ID NO:67或SEQ ID NO:81功能相同的第一抗原结合区的重链可变区。优选地,所述第一抗原结合区的重链可变区包含SEQ ID NO:1、SEQ ID NO:67或SEQ ID NO:81的氨基酸序列。
在本申请的一些实施方案中,所述第一抗原结合区的重链可变区包含SEQ ID NO:1的氨基酸序列;或者由SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的第一抗原结合区的重链可变区。
在本申请的一些实施方案中,所述第一抗原结合区的轻链可变区包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列。优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、 SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;更优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列;最优选地,所述第一抗原结合区的轻链可变结构域VL为SEQ ID NO:11、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列。
在本申请的一些实施方案中,所述第一抗原结合区的轻链可变区包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55所示的氨基酸序列。优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、 SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55所示的氨基酸序列;更优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51所示的氨基酸序列;最优选地,所述第一抗原结合区的轻链可变结构域VL为SEQ ID NO:11所示的氨基酸序列。
在本申请的一些实施方案中,所述双特异性抗体包含IgG的重链恒定区,优选地,包含IgG1、IgG4或IgG2的重链恒定区,更优选地,包含IgG1的重链恒定区,最优选地,包含如SEQ ID NO:9所示的重链恒定区。
在本申请的一些实施方案中,所述特异性结合VEGF的第二抗原结合区包含重链可变区和轻链可变区,所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:57的重链可变结构域的CDR1H、CDR2H和CDR3H,或所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:57所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:57功能相同的CDR1H、CDR2H和CDR3H;所述轻链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:61的重链可变结构域的CDR1L、CDR2L和CDR3L,或所述重链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:61所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:61功能相同的CDR1L、CDR2L和CDR3L。
在本申请的一些实施方案中,所述特异性结合VEGF的第二抗原结合区包含重链可变区和轻链可变区,
所述重链可变区包含如SEQ ID NO:58所示的CDR1H,如SEQ ID NO: 59所示的CDR2H和如SEQ ID NO:60所示的CDR3H;和
所述轻链可变区包含如SEQ ID NO:62所示的CDR1L,如SEQ ID NO:63所示的CDR2L和如SEQ ID NO:64所示的CDR3L。
在本申请的一些实施方案中,所述重链可变区包含如SEQ ID NO:57所示的序列,所述轻链可变区包含如SEQ ID NO:61所示的序列。
在本申请的一些实施方案中,所述特异性结合VEGF的第二抗原结合区包含特异性结合VEGF的VEGF受体片段,所述VEGF受体片段包含VEGF受体-1的胞外段结构域2和VEGF受体-2的胞外段结构域3。
在本申请的一些实施方案中,所述第一抗原结合区或所述第二抗原结合区是scFv形式,优选地,所述第一抗原结合区是scFv形式。
在本申请的一些实施方案中,所述第一抗原结合区与所述第二抗原结合区之间通过Linker连接,
优选地,所述Linker包含(G4S)n,n为大于1的整数,
更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
更优选地,所述Linker由(G4S)n组成,n为2,3或4,例如,所述Linker为GGGGSGGGGSGGGGSGGGGS(SEQ ID NO:65)。
在本申请的一些实施方案中,所述scFv包含重链可变区和轻链可变区,所述重链可变区和轻链可变区之间通过Linker连接,
优选地,所述Linker包含(G4S)n,n为大于1的整数,
更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
更优选地,所述Linker由(G4S)n组成,n为2,3或4。
在本申请的一些实施方案中,所述的双特异性抗体由4条肽链组成,2条 相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含VEGF结合区的VH、VEGF结合区的CH、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL,和
所述第二链从N端到C端依次包含VEGF结合区的VL和CL。
在本申请的一些实施例中,所述双特异性抗体包含的具体序列如下:
所述VEGF结合区的VH序列如SEQ ID NO:57所示,
所述VEGF结合区的CH序列如SEQ ID NO:9所示,
所述VEGF结合区的VL序列如SEQ ID NO:61所示,
所述VEGF结合区的CL序列如SEQ ID NO:10所示,
所述Linker序列如SEQ ID NO:65所示,
所述ALK-1结合区的VL序列如SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示,和
所述ALK-1结合区的VH序列如SEQ ID NO:67、SEQ ID NO:1、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81所示。
优选地,所述第一链的序列如SEQ ID NO:68或SEQ ID NO:82所示;所述第二链的序列如SEQ ID NO:69所示。
在本申请的一些实施例中,所述双特异性抗体包含的具体序列如下:
所述VEGF结合区的VH序列如SEQ ID NO:57所示,
所述VEGF结合区的CH序列如SEQ ID NO:9所示,
所述VEGF结合区的VL序列如SEQ ID NO:61所示,
所述VEGF结合区的CL序列如SEQ ID NO:10所示,
所述Linker序列如SEQ ID NO:65所示,
所述ALK-1结合区的VL序列如SEQ ID NO:66所示,和
所述ALK-1结合区的VH序列如SEQ ID NO:67所示。
优选地,所述第一链的序列如SEQ ID NO:68所示;所述第二链的序列如SEQ ID NO:69所示。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH、ALK-1结合区的CH、Linker和VEGF结合区,和
所述第二链从N端到C端依次包含ALK-1结合区的VL和CL。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH和CH,和
所述第二链从N端到C端依次包含VEGF结合区、Linker、ALK-1结合区的VL和CL。
在本申请的一些实施方案中,所述双特异性抗体由2条相同的肽链组成,所述肽链从N端到C端依次包含VEGF结合区、IgG1-Fc、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL。本文中,IgG1-Fc意指IgG1的Fc区,优选为人IgG1的Fc区。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH、ALK-1结合区的CH、Linker、VEGF结合区的VH、Linker、VEGF结合区的VL,和
所述第二链从N端到C端依次包含ALK-1结合区的VL和CL。
根据本申请的第三个方面,本申请提供了一种双特异性抗体,其包含特异性结合ALK-1的第一抗原结合区(ALK-1结合区)和特异性结合PD-1的第二抗原结合区(PD-1结合区),所述特异性结合ALK-1的第一抗原结合区包含重链可变区(VH)和轻链可变区(VL),所述特异性结合PD-1的第二抗原结合区包含重链可变区(VH)和轻链可变区(VL);
所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;或所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变;或所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L。优选地,所述第91号和第95号氨基酸为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
在本申请的一些实施方案中,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ  ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L。优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;更优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;最优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的轻链可变结构域的CDR1L、CDR2L和CDR3L。
在本申请的一些实施方案中,所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H。
在本申请的一些实施方案中,按照IMGT抗体编号方案对CDR区进行定义,所述第一抗原结合区的轻链CDR选自以下组合:
(a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24 的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
(w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
所述第一抗原结合区的重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H)。
优选地,所述第一抗原结合区轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的CDR;进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR,最优选为(a)中的CDR。
在本申请的一些实施方案中,所述第一抗原结合区的重链可变区包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;或者包含由SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的第一抗原结合区的重链可变区;优选为包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列,进一步优选为包含SEQ ID NO:67或SEQ ID NO:81的氨基酸序列。
在本申请的一些实施方案中,所述第一抗原结合区的轻链可变区包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、 SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列。优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;更优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列;最优选地,所述第一抗原结合区的轻链可变结构域VL为SEQ ID NO:11、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列。
在本申请的一些实施方案中,所述双特异性抗体包含IgG的重链恒定区, 优选地,包含IgG1、IgG4或IgG2的重链恒定区,更优选地,包含IgG4的重链恒定区,最优选地,包含如SEQ ID NO:91所示的重链恒定区。
在本申请的一些实施方案中,所述特异性结合PD-1的第二抗原结合区包含重链可变区和轻链可变区,所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:83的重链可变结构域的CDR1H、CDR2H和CDR3H,或所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:83所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:83功能相同的CDR1H、CDR2H和CDR3H;所述轻链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:87的重链可变结构域的CDR1L、CDR2L和CDR3L,或所述重链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:87所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:87功能相同的CDR1L、CDR2L和CDR3L。
在本申请的一些实施方案中,所述特异性结合PD-1的第二抗原结合区包含重链可变区和轻链可变区,
所述重链可变区包含如SEQ ID NO:84所示的CDR1H,如SEQ ID NO:85所示的CDR2H和如SEQ ID NO:86所示的CDR3H;和
所述轻链可变区包含如SEQ ID NO:88所示的CDR1L,如SEQ ID NO:89所示的CDR2L和如SEQ ID NO:90所示的CDR3L。
在本申请的一些实施方案中,所述重链可变区包含如SEQ ID NO:83所示的序列,所述轻链可变区包含如SEQ ID NO:87所示的序列。
在本申请的一些实施方案中,所述第一抗原结合区或所述第二抗原结合区是scFv形式,优选地,所述第一抗原结合区是scFv形式。
在本申请的一些实施方案中,所述第一抗原结合区与所述第二抗原结合区之间通过Linker连接,
优选地,所述Linker包含(G4S)n,n为大于1的整数,
更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
更优选地,所述Linker由(G4S)n组成,n为2,3或4,例如,所述Linker为GGGGSGGGGSGGGGSGGGGS(SEQ ID NO:65)。
在本申请的一些实施方案中,所述scFv包含重链可变区和轻链可变区,所述重链可变区和轻链可变区之间通过Linker连接,
优选地,所述Linker包含(G4S)n,n为大于1的整数,
更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
更优选地,所述Linker由(G4S)n组成,n为2,3或4。
在本申请的一些实施方案中,所述的双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含PD-1结合区的VH、PD-1结合区的CH、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL,和
所述第二链从N端到C端依次包含PD-1结合区的VL和CL。
在本申请的一些实施例中,所述双特异性抗体包含的具体序列如下:
所述PD-1结合区的VH序列如SEQ ID NO:83所示,
所述PD-1结合区的CH序列如SEQ ID NO:91所示,
所述PD-1结合区的VL序列如SEQ ID NO:87所示,
所述PD-1结合区的CL序列如SEQ ID NO:92所示,
所述Linker序列如SEQ ID NO:65所示,
所述ALK-1结合区的VL序列如SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示,和
所述ALK-1结合区的VH序列如SEQ ID NO:67、SEQ ID NO:1、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81所示。
优选地,所述第一链的序列如SEQ ID NO:93所示;所述第二链的序列如SEQ ID NO:94所示。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH、ALK-1结合区的CH、Linker和PD-1结合区,和
所述第二链从N端到C端依次包含ALK-1结合区的VL和CL。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH和CH,和
所述第二链从N端到C端依次包含PD-1结合区、Linker、ALK-1结合区的VL和CL。
在本申请的一些实施方案中,所述双特异性抗体由2条相同的肽链组成,所述肽链从N端到C端依次包含PD-1结合区、IgG4-Fc、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL。本文中,IgG4-Fc意指IgG4的Fc区,优选为人IgG4的Fc区。
在本申请的一些实施方案中,所述双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
所述第一链从N端到C端依次包含ALK-1结合区的VH、ALK-1结合区的CH、Linker、PD-1结合区的VH、Linker、PD-1结合区的VL,和
所述第二链从N端到C端依次包含ALK-1结合区的VL和CL。
根据本申请的第四个方面,本申请提供一种多核苷酸,其编码第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段。本文所指双特异性抗体片段,是指组成双特异性抗体的多肽链的全长或其片段。
根据本申请的第五个方面,本申请提供一种表达载体,其能够表达第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段。
根据本申请的第六个方面,本申请提供一种工程化细胞,其包含第四个方面所述的载体。
根据本申请的第七个方面,本申请提供一种药物组合物,其包含第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞,和药学上可接受的载体。
在第八个方面,本申请提供第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞或第七个方面所述的药物组合物在制备用于抑制血管生成的药物中的用途。
在一些实施方案中,所述抑制肿瘤血管生成的疾病为实体肿瘤或血液肿瘤。
在一些实施方案中,所述抑制肿瘤血管生成的疾病选自食管癌(例如食管腺癌和食管鳞状细胞癌)、脑瘤、肺癌(例如小细胞性肺癌和非小细胞性肺癌)、鳞状上皮细胞癌、膀胱癌、胃癌、卵巢癌、腹膜癌、胰腺癌、乳腺癌、头颈癌、子宫颈癌、子宫内膜癌、结直肠癌、肝癌、肠癌肝转移、肾癌、尿路上皮癌、非霍奇金淋巴瘤、中枢神经系统肿瘤(例如神经胶质瘤、多形性胶质母细胞瘤、胶质瘤或肉瘤)、前列腺癌或甲状腺癌。
在第九个方面,本申请提供一种抑制血管生成的方法,包括向有此需要的受试者施用有效剂量的第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞或第七个方面所述的药物组合物,例如抑制肿瘤或一些眼部疾病中的血管生成,所述眼部疾病如视网膜脱离、玻璃体视网膜病变、早产儿视网膜病变、青光眼、滑膜炎、增殖性糖尿病视网膜病变、分支视网膜静脉阻塞等。
在第十个方面,本申请提供一种治疗肿瘤的方法,包括向有此需要的受试者施用有效剂量的第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞或第七个方面所述的药物组合物,所述肿瘤包括实体瘤和非实体瘤,例如晚期或难治性肝细胞癌(HCC)、结直肠癌(RCC)、非小细胞肺癌(NSCLC)、三阴性乳腺癌、胃癌(GC)、胃食管交界处(GEJ)腺癌、胆管癌、尿路上皮癌(UC)、食管方形细胞癌(ESCC)、脑肿瘤、肺癌、乳腺癌、卵巢癌、输卵管癌、胶质母细胞瘤、结直 肠腺癌、垂体瘤、垂体腺瘤、垂体大腺瘤、妊娠滋养细胞肿瘤、绒癌、胎盘部位滋养细胞肿瘤、上皮样滋养细胞肿瘤、肾细胞癌、肺腺癌和胶质肉瘤。
在第十一个方面,本申请提供一种用于抑制血管生成的组合物,其包含第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞及药学上可接受的载体。
在第十二个方面,本申请提供一种用于治疗肿瘤的组合物,其包含第一个方面所述的结合ALK-1的单克隆抗体或其抗原结合部分、第二个或第三个方面所述的双特异性抗体或其片段、第四个方面所述的多核苷酸、第五个方面所述的载体或第六个方面所述的细胞及药学上可接受的载体。
在第十三个方面,本申请提供了一种药物组合物,包括本申请第二个方面的双特异性抗体(如BEV813 bsAb)和抗PD-1抗体(如帕博丽珠单抗,纳武利尤单抗,特瑞普利单抗,信迪利单抗,卡瑞利珠单抗,替雷利珠单抗,派安普利单抗,赛帕利单抗,斯鲁利单抗等)或抗PD-L1抗体(如度伐利尤单抗,阿替利珠单抗,恩沃利单抗,舒格利单抗等)药物,或细胞毒性类和非细胞毒性类小分子药物;所述药物组合物可用于治疗实体肿瘤,包括但不限于肝细胞癌、肺癌、结直肠癌、胃癌、乳腺癌、食管鳞状细胞癌、尿路上皮癌、恶心胸膜间皮瘤等。
在第十四个方面,本申请提供了一种药物组合物,包括本申请第一个方面所述的ALK-1的单克隆抗体和抗PD-1抗体(例如帕博丽珠单抗,纳武利尤单抗,特瑞普利单抗,信迪利单抗,卡瑞利珠单抗,替雷利珠单抗,派安普利单抗,赛帕利单抗,斯鲁利单抗等)或抗PD-L1抗体(如度伐利尤单抗,阿替利 珠单抗,恩沃利单抗,舒格利单抗等)或抗VEGF抗体(如贝伐珠单抗等)药物,或细胞毒性类和非细胞毒性类小分子药物;所述药物组合物可以用于治疗实体肿瘤,包括但不限于肝细胞癌、肺癌、结直肠癌、胃癌、乳腺癌、食管鳞状细胞癌、尿路上皮癌、恶心胸膜间皮瘤等。
附图说明
图1为本申请抗ALK-1抗体的示意图。
图2为本申请BEV813 bsAb双特异性抗体的示意图。
图3为ALK1 mAbs、BEV813 bsAb与CHO-K1-hALK1细胞的细胞结合活性比较图。
图4为BEV813 bsAb与BMP9竞争结合CHO-K1-hALK1细胞结合表位图。
图5为BEV813 bsAb、bevacizumab的细胞功能活性比较图。
图6为BEV813、ALK1 mAb的细胞功能活性比较图。
图7为BEV813、bevacizumab阻断HUVEC细胞增殖的作用比较图。
图8为BEV813 bsAb、ALK1 mAb和bevacizumab阻断HUVEC细胞微管形成的作用比较图。
图9为BEV813 bsAb等抗体在人免疫系统重建CDX小鼠模型(MDA-MB-231)中的药效和安全情况比较图。
图10为BEV813 bsAb等抗体在人免疫系统重建CDX小鼠模型(KYSE450)中的药效和安全情况比较图。
图11为BEV813 bsAb等抗体在人免疫系统重建CDX小鼠模型(HCC827)中的药效和安全情况比较图。
图12为BEV813 bsAb等抗体在肠癌肝转移PDTX小鼠模型中的药效和安全情况比较图。
图13为使用SDS-PAGE检测BEV813 bsAb不同突变体完整蛋白的纯度。
图14为使用SDS-PAGE检测经Ides酶切后的不同BEV813 bsAb突变体条带。
图15为液相HPLC结果。
图16为BEV813的F(ab′)2结构的质谱。
图17为BEV813的去-N-糖基化sFc结构域的质谱。
图18为BEV813去-N-糖基化Fc结构域的质谱。
图19为BEV813-9的去-N-糖基化sFc结构域的质谱。
图20为BEV813-9的去-N-糖基化F(ab′)2结构域的质谱。
图21为通过nrCGE检测BEV813和BEV813-9的异构体的结果。
图22为BEV813 bsAb及其突变体与CHO-K1-hALK-1细胞结合活性图。
图23为BEV813 bsAb及其突变体与BMP9竞争结合CHO-K1-hALK1细胞结合表位图。
图24为Nivo813双特异性抗体结构示意图。
图25为Nivo813双抗分子同时结合抗原PD-1和ALK-1的结合亲和力结果。
图26为Nivo813 bsAb、ALK-1mAb(#18)与CHO-K1-ALK-1细胞表面受体结合活性比较图。
图27为Nivo813 bsAb、nivolumab与H-PD-1 NFAT Reportor Jurkat细胞表面受体结合活性比较图。
图28为Nivo813 bsAb阻断PD-1/PD-L1相互作用引起TCR信号通路的转导及NFAT介导的luciferase表达结果。
图29为Nivo813 bsAb阻断BMP9诱导的Smad1的磷酸化结果。
图30为Nivo813 bsAb抑制HUVEC微管形成效果图。
图31为Nivolumab、ALK-1 mAb(#18)及Nivo813 bsAb对小鼠肿瘤模型的作用比较。
具体实施方式
术语
除非另有定义,本文使用的所有科技术语具有本领域普通技术人员所理解的相同含义。
尽管本申请的广义范围所示的数字范围和参数近似值,但是具体实施例中所示的数值尽可能准确的进行记载。然而,任何数值本来就必然含有一定的误差,其是由它们各自的测量中存在的标准偏差所致。另外,本文公开的所有范围应理解为涵盖其中包含的任何和所有子范围。例如记载的″1至10″的范围应认为包含最小值1和最大值10之间(包含端点)的任何和所有子范围;也就是说,所有以最小值1或更大起始的子范围,例如1至6.1,以及以最大值10或更小终止的子范围,例如5.5至10。另外,任何称为″并入本文″的参考文献应理解为以其整体并入。
另外应注意,如本说明书中所使用的,单数形式包括其所指对象的复数形式,除非清楚且明确的限于一个所指对象。术语″或″可与术语″和/或″互换使用,除非上下文另有清楚指明。
本文所使用的术语″抗体″涵盖全长抗体(例如,IgG1或IgG4抗体)、 其各种功能性片段(例如可仅包含抗原结合部分,如Fab、F(ab′)2或scFv片段)以及经过修饰的抗体(例如人源化、糖基化等等)。在一些应用中,进行修饰以除去不期望的糖基化位点可以是有用的,或在寡糖链上不存在岩藻糖部分以例如增强抗体依赖性细胞毒性(ADCC)功能的抗体。在另一些应用中,可进行半乳糖基化修饰以改变补体依赖性细胞毒性(CDC)。
本文中所使用的术语″CDR区″或″CDR″是指免疫球蛋白的重链和轻链的互补决定区,CDR可使用各种编号方案来定义,诸如Kabat(Wu等人,(1970)J Exp Med 132:211-50)(Kabat等人,″Sequences of Proteins oflmmunological Interest″,第5版,Public Health Service,National Institutes ofHealth,Bethesda,Md.,1991)、Chothia(Chothia等人,(1987)J Mol Biol 196:901-17)、IMGT(Lefranc等人,(2003)DeV Comp Immunol 27:55-77)和AbM(Martin和Thornton,(1996)J Bmol Biol 263:800-15)。描述了各种编号系统和可变区编号之间的对应关系(参见例如Lefranc等人,(2003)DeV Comp Immunol 27:55-77;Honegger和Pluckthun,(2001)J MolBiol 309:657-70;国际免疫遗传学(IMGT)数据库;Web资源,http://www_imgt_org)。可用程序(诸如UCL Business PLC的abYsis)可用于描绘CDR。除非说明书中另有明确地说明,否则如本文所用,术语″CDR″、″CDR1H″、″CDR2H″、″CDR3H″、″CDR1L″、″CDR2L″和″CDR3L″包括由任何上述方法(Kabat、Chothia、IMGT或AbM)定义的CDR。根据情况,本文所用术语CDR或CDRs是为了指示这些区域之一、或者这些区域的几个或者甚至全部,所述区域包含通过抗体对抗原或其识别表位的亲和力而负责结合的大部分氨基酸残基。本申请实施例中是以IMGT抗体编 号方案对CDR区进行定义的。
本文中所用的术语″Fc区″或″Fc部分″是本领域技术人员公知的术语。
本文中所用的术语″Fab区″是指由免疫球蛋白的重链的VH和CH1结构域(″Fab重链″)或轻链的VL和CL结构域(″Fab轻链″)或其两者。
如本文使用的,术语″scFv″或″单链抗体片段″表示通过接头(例如10-25个氨基酸的短肽)线性连接在一起的抗体重链可变区和抗体轻链可变区所组成的单链,其表现出与抗原的特异性结合。
如本申请中使用的术语″肽接头″表示用于将不同的抗原结合位点和/或最终包含不同抗原结合位点的抗体片段(例如单链Fv、全长抗体、VH结构域和/或VL结构域、Fab、F(ab′)2和Fc部分)连接在一起的肽,优选地,其具有合成来源的氨基酸序列。肽接头可包含一个或多个实施例中所列的氨基酸序列,以及其他任意选择的氨基酸。
如本文使用的,术语″结合″或″特异性结合″指抗体与抗原表位在体外测定(ELISA)中的结合。可通过可以用分子相互作用仪(Fortebio)测定研究抗体与抗原或FcyRIII的结合。结合亲和力通过术语ka或kon(抗体/抗原复合物中抗体的结合速率常数),kd或koff或kdis(解离常数)和KD(平衡解离常数,kd/ka或koff/kon或kdis/kon)定义。
本文使用的″治疗有效量″或″有效量″是指足以显示其对于所施用对象益处的剂量。施用的实际量,以及施用的速率和时间过程会取决于所治疗者的自身情况和严重程度。治疗的处方(例如对剂量的决定等)最终是全科医生及其他医生的责任并依赖其做决定,通常考虑所治疗的疾病、患者个体的情况、递送部位、施用方法以及对于医生来说已知的其它因素。
本文所使用的术语″对象″是指哺乳动物,如人类,但也可以是其它动物,如野生动物(如苍鹭、鹳、鹤等),家畜(如鸭、鹅等)或实验动物(如猩猩、猴子、大鼠、小鼠、兔子、豚鼠、土拨鼠、地松鼠等)。
可通过本领域已知的多种方法施用本申请的组合物。熟练技术人员将理解,施用途径和/或模式将依赖希望的结果而变化。为了通过特定施用途径施用本申请的化合物,可能需要用避免其失活的材料覆盖化合物,或与所述材料共同施用化合物。例如,可在合适的载体中,例如脂质体或稀释剂中对受试者施用化合物。可药用的稀释剂包括盐溶液和水性缓冲液。药物载体包括无菌水溶液或分散液和无菌粉末,用于临时制备无菌的可注射的溶液或分散液。用于药物活性物质的这样的介质和试剂的用途是本领域已知的。
本申请的组合物也可包含辅料,例如防腐剂、湿润剂、乳化剂和分散剂。可通过上文中的灭菌程序和通过包含多种抗菌和抗真菌剂,例如对羟基苯甲酸酯、氯代丁醇、苯酚、山梨酸等等双重保证避免微生物的存在。也可能希望在组合物中包含等渗剂,例如糖、氯化钠等等。另外,可通过包含延迟吸收的试剂,例如单硬脂酸铝和明胶实现可注射的药物形式的延长吸收。
阿达木单抗(Adalimumab,商品名:Humira)是由艾伯维(AbbVie)开发的一种抗体药物,它能够结合肿瘤坏死因子-α(TNFα),是一种TNF抑制性生物药。易普利姆玛(Ipilimumab,商品名:Yervoy)是由百时美施贵宝(BMS)开发的一种抗体药物,能有效阻滞一种叫做细胞毒性T细胞抗原-4(CTLA-4)的分子。
Bevacizumab(商品名Avastin),是重组的人源化抗VEGF单克隆抗体。2004年2月26日获得FDA的批准,是美国第一个获得批准上市的抑制肿瘤 血管生成的药。通过体内、体外检测系统证实该抗体能与人血管内皮生长因子(VEGF)结合并阻断其生物活性。
Nivolumab(商品名Opdivo),是一种通过基因工程改造的、人类免疫球蛋白IgG4单克隆抗体,靶向具有负向免疫调节功能的人类细胞表面受体程序性死亡-1(PD-1,PCD-1)。
双特异性抗体(Bispecific Antibody)亦称为双功能抗体,是结合至少两种不同抗原的能力的抗体或同一抗原的两个不同表位的抗体,其可通过免疫分选纯化生产。另外,也可通过基因工程获得。基因工程方法在结合位点优化,合成形式的考量以及产量等方面都具有相应的灵活性,所以具有一定的优势。目前,其存在形式已被证明有超过45种(Dafne Müller,Kontermann R E.2010,BioDrugs,24(2):89-98)。目前已开发的多种双特异性抗体为IgG-scFv形式即Morrison模式(Coloma MJ,Morrison SL.1997,Nat Biotechnol.15:159-163),由于这种类似于天然存在的IgG形式,其在抗体工程、表达和纯化上所具有的优势,已被证明是双功能抗体的其中一种理想存在形式(Miller BR,Demarest SJ,et al.,2010,Protein Eng Des Sel;23:549-57;Fitzgerald J,Lugovskoy A.2011.MAbs;3:299-309)。
Human IgG1-LALA是指在天然的人IgG1抗体中,人为的对其Fc段中的两个氨基酸位点进行突变,即L234A/L235A(LALA)。(参考文献:Lund J,Winter G,Jones PT,Pound JD,Tanaka T,Walker MR et al.Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG.J Immunol.1991;147:2657-2662.)这些突变可以降低IgG1与IgG Fc受体FcγRI,FcγRII和FcγRIII的结合,从而降低由Fc受体结 合诱导的ATCC、ADCP、CDC效应。
具体实施方式
一、抗ALK-1单克隆抗体的筛选
1.1抗ALK-1单克隆抗体、突变体的构建及表达纯化
通过PCR克隆目标序列后,按照DNA凝胶回收试剂盒的说明书(Axygen,AP-GX-250),将含有目标序列的PCR产物进行胶回收后,构建入线性载体pcDNA 3.4(Biointron自制)中。将构建入线性载体的ALK-1基因电转化入Top10感受态细胞,涂布氨苄抗性平板,37℃培养过夜,挑取单克隆测序。
采用瞬转表达方法,将质粒转入Expi293F细胞(Gibco,A14528)中,转染方法如下(按照30mL体系为例):根据所需转染体积传代Expi293F细胞,并在转染前一天将细胞密度调整至1.5×106细胞/ml;取待转染的细胞进行计数,并用预热的Expi293F细胞培养基将细胞密度调整至3×106细胞/ml;用1ml培养液稀释60ug质粒,混匀,作为溶液1;用1ml培养液稀释15ul转染试剂,混匀,作为溶液2。将溶液2加入溶液1中,混匀,37℃孵育15分钟后,将混合转染液逐滴加入细胞液中,边摇边加,放至摇床培养,表达一周,收集上清,8000rpm离心5min。用Protein A亲和层析柱(Biointron自制)对细胞上清进行蛋白纯化,并用NanoDrop仪器(Thermo-NanoDropTM One,货号ND-ONE-W)检测蛋白浓度。
抗ALK-1单克隆抗体的重链恒定区采用的是IgG1-LALA的序列。
本申请以抗ALK-1抗体(以下简称为BM)作为参照物(benchmark),其序列信息如下:
(1)BM
重链可变区(VH)
VH的3个CDR:
轻链可变区(VL)
VL的3个CDR:
重链恒定区(CH)

轻链恒定区(CL)
在BM基础上将NMR(核磁共振)晶体结构分别通过深度学习模型预测表位和残基突变模块预测亲和力变化,并综合以上结果确定最终的抗原突变序列来进行实验和打分,将出现频率较高的残基进行表位划分,随后我们对这些抗原残基进行点饱和突变,分析点饱和突变亲和力变化的情况,经过筛选最终确定用于实验检测的(抗ALK-1抗体)单点突变序列,各突变体编号及其对应的序列信息如下:
(2)#18
#18号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91A,S95W的点突变外(第91、95位的突变是以SEQ ID NO:5序列为基准,其余突变体描述类似),其余与BM的抗体结构序列一致。
即#18抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(3)#3
#3号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91L,S95F的点突变外,其余与BM的抗体结构序列一致。
即#3抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(4)#1
#1号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91G,S95F的点突变外,其余与BM的抗体结构序列一致。
即#1抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(5)#2
#2号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91F,S95F的点突变外,其余与BM的抗体结构序列一致。
即#2抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(6)#6
#6号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91P,S95V的点突变外,其余与BM的抗体结构序列一致。
即#6抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(7)#7
#7号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91A,S95V的点突变外,其余与BM的抗体结构序列一致。
即#7抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(8)#8
#8号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91M,S95I的点突变外,其余与BM的抗体结构序列一致。
即#8抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(9)#9
#9号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91I,S95W的点突变外,其余与BM的抗体结构序列一致。
即#9抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(10)#12
#12号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91I,S95I的点突变外,其余与BM的抗体结构序列一致。
即#12抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(11)#13
#13号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链 可变区(VL)中进行了Q91P,S95I的点突变外,其余与BM的抗体结构序列一致。
即#13抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(12)#14
#14号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91M,S95W的点突变外,其余与BM的抗体结构序列一致。
即#14抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:

(13)#15
#15号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91W,S95V的点突变外,其余与BM的抗体结构序列一致。
即#15抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(14)#16
#16号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91V,S95I的点突变外,其余与BM的抗体结构序列一致。
即#16抗体中轻链序列信息如下:
轻链可变区(VL)

VL的3个CDR:
(15)#17
#17号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91G,S95I的点突变外,其余与BM的抗体结构序列一致。
即#17抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(16)#19
#19号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91F,S95W的点突变外,其余与BM的抗体结构序列 一致。
即#19抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(17)#23
#23号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91F,S95V的点突变外,其余与BM的抗体结构序列一致。
即#23抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:

(18)#24
#24号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91F,S95I的点突变外,其余与BM的抗体结构序列一致。
即#24抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(19)#25
#25号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91V,S95W的点突变外,其余与BM的抗体结构序列一致。
即#25抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(20)#26
#26号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91V,S95V的点突变外,其余与BM的抗体结构序列一致。
即#26抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(21)#27
#27号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91G,S95W的点突变外,其余与BM的抗体结构序列一致。
即#27抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(22)#28
#28号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91I,S95V的点突变外,其余与BM的抗体结构序列一致。
即#28抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(23)#29
#29号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91P,S95W的点突变外,其余与BM的抗体结构序列一致。
即#29抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
(24)#30
#30号抗ALK-1抗体中,与编号为BM的抗ALK-1抗体相比,除对轻链可变区(VL)中进行了Q91G,S95V的点突变外,其余与BM的抗体结构序列一致。
即#30抗体中轻链序列信息如下:
轻链可变区(VL)
VL的3个CDR:
以上抗ALK-1单克隆抗体及其突变体编号对应的结构示意图如图1所示。
1.2抗ALK-1单克隆抗体及其突变体的的结合亲和力的测定
Gator(厂家:Gatorbio)亲和力测定按照现有的方法(Estep,P等人,基于溶液的高通量抗体-抗原亲和力和表位分级的测量,MAbs,2013.5(2):p.270-8)进行。简言之,传感器在分析缓冲液中线下平衡10min,然后线上检测60s建立基线,分别在线加载BM抗体以及各突变体至AHC传感器上,传感器上连接的是Anti-HFC probe(Probelife,20-5036)。再将传感器放入制备好的人ALK-1抗原蛋白(″Human ALK-1/ACVRL1 Protein,His Tag″,品牌:Acro;货号:AL1-H5227;该蛋白包含了人ALK-1蛋白胞外段的22-118位氨基酸序列并在c端带有一个多组氨酸标签)中孵育,之后将传感器转移至PBS中解离。使用1∶1结合模型进行动力学的分析。
BM及其突变体与人ALK-1抗原蛋白的亲和力KD(M)检测结果如下表1所示:
表1不同ALK-1抗体与ALK-1抗原结合亲和力检测结果汇总

与参照抗体BM相比较,除了#15和#29突变体外,其他突变体的结合亲和力(KD值)均得到提高。
1.3 BMP9诱导ALK1下游Smad1磷酸化阻断实验
BMP9分子作为ALK1的配体,可以通过和HUVEC细胞表面的ALK1蛋白结合,激活ALK1受体从而介导下游蛋白Smad1的磷酸化。因此我们设计实验检测10个抗体分子对BMP9诱导的Smad1磷酸化的阻断作用。
HUVEC细胞接种于96孔板上,每孔2×104个细胞置于含5%FBS和ECG的ECM(Sciencell,1001)培养基中。37℃,5%的CO2培养箱培养过夜。从细胞培养板中移除培养基,用200μlPBS洗涤两次。加入不含FBS和ECG的ECM 100μl,然后饥饿细胞4小时。从细胞培养板中移除培养基,加入100uL浓度梯度稀释的受试品(BM及其突变体),处理1.5小时后,在培养基中加入终浓度为0.5ng/mL BMP9孵育细胞45分钟。移除培养基,并使用ELISA试剂盒(Invitrogen,85-86182-11)测定细胞中Smad1磷酸化水平。经三次独立的重复实验,结果如下表2所示,亲和力提升的ALK1单抗突变体的阻断效果明显优于野生型的BM抗体参照物。
表2 ALK-1抗体与ALK1抗原结合亲和力KD值及其细胞功能活性IC50值汇总

1.4抗体初步成药性检测:
根据亲和力KD值和Smad1磷酸化阻断IC50值,挑选#3,#1,#9,#14,#18,#28六个突变体进行初步的成药性检测。通过对候选突变体的成药性相关理化性质(包括完整性,疏水性,非特异性吸附,胶体稳定性,热稳定性)的表征,评价分子的可开发性。
纯度(CE):采用十二烷基硫酸钠毛细电泳法(CE-SDS法)考察候选突变体的完整性。CE检测用PA800电泳仪,取突变体样品100μg,样品处理后得到非/还原型纯度检测供试品,采用PDA检测器,检测窗口宽度为200μm。判断标准为候选突变体主成分大于90%。
热稳定性(DSF):采用差示扫描荧光法(DSF法)考察候选突变体的热稳定性。检测使用荧光定量PCR仪,突变体样品经过荧光显色剂Sypro Orange染色,加入96孔板中测定,样品量10μL,每次检测3个复孔。判断标准为候选突变体的温度Tm1值大于60℃为具有可开发性。
疏水性(HIC):采用疏水作用色谱法(HIC)考察候选突变体的疏水性。疏水性检测使用Ultimate 3000色谱仪和Thermo ProPac HIC-10色谱柱,流动相为硫酸铵缓冲液,流速1mL/min;采集时间30min,进样量10μL,柱温 25℃,检测波长280nm,进样器温度10℃。以Adalimumab为阳性对照,以Ipilimumab为阴性对照,判断标准为突变体样品的保留时间越短则疏水性越弱,候选分子的疏水性应弱于阴性对照品。
非特异性吸附(CIC):采用交叉相互作用色谱法(CIC法)考察候选突变体的非特异性吸附。非特异性吸附检测用Ultimate 3000和人血清IgG偶联Hitrap-NHS色谱柱,流动相为PBS,流速0.1mL/min,采集时间20min,进样量5μL,柱温25℃,检测波长280nm,进样器温度10℃。以Adalimumab为阳性对照,以Ipilimumab为阴性对照,判断标准为突变体样品的保留时间越短则非特异性吸附越弱,候选突变体的非特异性吸附应弱于阴性对照品。
胶体稳定性(SMAC):采用直立单层吸附色谱法(SMAC法)考察候选突变体的胶体稳定性。胶体稳定性检测用ZENIX色谱柱,流动相为PBS,流速0.35mL/min,采集时间20min,进样量10μL,柱温25℃,检测波长214nm,进样器温度10℃。以Adalimumab为阳性对照,以Ipilimumab为阴性对照,判断标准为突变体样品的保留时间越短则胶体稳定性越好,候选突变体的胶体稳定性应弱于阴性对照品。
以上成药性性能检测结果如表3所示。
表3 ALK-1抗体突变体的成药性检测指标结果汇总

其中rCE-SDS是指还原毛细管电泳法;nrCE-SDS是指非还原毛细管电泳法;低分子量碎片:分子量小于目的蛋白的蛋白肽段。高分子量碎片:分子量大于目的蛋白分子量的蛋白聚体。
以上表征结果显示:
(1)6个候选突变体的CE纯度较优,表明突变体的纯度较高;
(2)6个候选突变体的HIC保留时间均早于阴性对照,表明突变体的疏水性较弱;
(3)6个候选突变体的CIC保留时间均早于阴性对照,表明突变体的非特异性吸附较好;
(4)6个候选突变体的SMAC保留时间均早于阴性对照,表明突变体的胶体稳定性较好;
(5)6个候选突变体的Tm1值均大于60℃,表明突变体的热稳定性较好。
6个候选突变体中,初步表征结果显示:#3,#1,#9,#14,#18,#28突变体的理化性质较优。6个候选突变体的纯度较高,疏水性较弱,非特异性吸附较弱,胶体稳定性较好,热稳定性较好。
二、抗ALK-1-抗VEGF双特异性抗体(BEV813 bsAb)的构建
结合抗体亲和力(KD值)、细胞生物学功能(IC50值)以及初步的成药性分析结果判断,挑选#18号ALK-1单克隆抗体突变体序列为基础进行进一步改进,作为ALK1-VEGF双特异性抗体BEV813中ScFv结构的来源。
2.1 BEV813 bsAb的组成元件
BEV813是一个典型的″2+2″对称结构的人IgG1双特异性抗体,通过将ALK-1抗体(#18号ALK-1单克隆抗体)的重链可变区(VH)和轻链可变区(VL)形成的″ScFv″(Single-chain variable fragment)融合到VEGF-A单克隆抗体(Bevacizumab)的恒定区的″C″端获得(如图2所示)。
为了增强ScFv的稳定性,在#18号ALK-1单克隆抗体序列的基础上,对#18号突变体的ALK-1结合区的VH和VL引入Cys点突变,以便引入二硫键,增强ScFv结构的稳定性。
由图2中可以看出,BEV813由4条肽链组成,2条相同的第一链和2条相同的第二链。所述第一链从N端到C端依次包含VEGF结合区的VH、VEGF结合区的CH、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL。所述第二链从N端到C端依次包含VEGF结合区的VL和CL。4条肽链之间可通过二硫键相连。
BEV813具体序列信息如下:
其中,BEV813的VEGF结合区包含如下序列:
重链可变区(VH)
VH的3个CDR:
轻链可变区(VL)
VL的3个CDR:
VEGF结合区的CH,即重链恒定区(CH)如SEQ ID NO:9所示,
VEGF结合区的CL,即轻链恒定区(CL)如SEQ ID NO:10所示,
Linker序列如SEQ ID NO:65所示,即GGGGSGGGGSGGGGSGGGGS。Linker位于VEGF结合区与ALK-1结合区之间。
BEV813的ALK-1结合区为scFv形式,其包含如下序列:
轻链可变区(VL)
重链可变区(VH)
Linker序列如SEQ ID NO:65所示。Linker位于scFv的VH和VL之间。
BEV813第一链序列:
BEV813第二链序列:

2.2 BEV813 bsAb的制备及纯化
BEV813 bsAb的制备过程参见″抗ALK-1单克隆抗体、突变体的构建及表达纯化″部分。
2.3 BEV813 bsAb体外活性检测
2.3.1 BEV813 bsAb与ALK-1蛋白、VEGFA蛋白的结合活性
ForteBio(Octet RED96e)亲和力测定按照现有的方法(Estep,P等人,基于溶液的高通量抗体-抗原亲和力和表位分级的测量,MAbs,2013.5(2):p.270-8)进行。操作过程:传感器在分析缓冲液中线下平衡10min,然后线上检测60s建立基线,用上样缓冲液(1×PBS,pH7.4,with 0.02%Tween-20(10nM Na2HPO4.12H2O,2mM KH2PO4,137mM NaCl,2.7mM KCl,0.02%Tween-20,pH7.4))稀释BEV813 bsAb、bevacizumab、#18突变体或BM至5ug/mL至AHC传感器(Fortebio,18-5060)上120s;用上样缓冲液(同前)稀释抗原蛋白(从200nM开始,设置7个浓度梯度);再将连接抗体的传感器放入不同浓度梯度的上样缓冲液作为抗原稀释液中作用60s,之后将传感器转移至PBS中解离300s;然后在再生缓冲液和中和缓冲液中连续洗涤3次,每次每种溶液5s。最后使用1∶1结合模型进行动力学分析。
表1.BEV813 bsAb、bevacizumab与VEGF抗原结合动力学参数比较
表2.BEV813 bsAb、ALK1 mAsb与ALK1抗原结合动力学参数比较
结果显示,BEV813双抗与VEGF-A抗原的结合活性略弱于VEGF单抗(bevacizumab);与ALK-1抗原的结合活性与ALK-1单克隆抗体(#18突变体)相当,但优于亲和力成熟之前的参照物抗体BM。
2.3.2 BEV813 bsAb与CHO-K1-hALK-1细胞结合活性
将CHO-K1-hALK-1细胞(由Stainwei Biotech Inc提供)以1×105细胞/ml接种在96孔板中,加入不同浓度梯度的不同抗体:BEV813,ALK-1 mab(#18突变体),bevacizumab(Biointron,B7424),human IgG(Beyotime,A7001)。4℃孵育1小时。再陆续加入VEGF 165-biotin(10μg/mL)(sino biological,11066-HNAB-B)和APC-anti-human IgG mAb(Biolegend, 410708)后4℃孵育1小时。收集细胞,并用流式细胞术分析待测抗体与CHO-K1-hALK-1细胞的结合情况。
结果如图3显示,与ALK-1 mAb(#18突变体)相比,BEV813双抗分子与CHO-K1-hALK1细胞有更高的结合亲和力。
2.3.3 BEV813 bsAb与配体BMP9竞争结合CHO-K1-hALK-1细胞
将1.0×105CHO-K1-hALK1细胞(由Stainwei Biotech Inc提供)接种在96孔板中,随后加入不同稀释浓度的BMP9分子(Acro,GD2-H5211)和BEV813双抗分子(起始浓度为50nM),4℃孵育1小时。用含有2%FBS的PBS溶液洗涤3次后,加入100uL VEGF 165-biotin(sino biological,11066-HNAB-B),4℃孵育1小时。用含有2%FBS的PBS溶液洗涤3次后,加入100uL的APC Streptavidin(Biolegend,405207),4℃孵育1小时。收集细胞,并用流式细胞术分析BEV813与BMP9竞争结合CHO-K1-hALK1细胞的情况。
结果如图4显示,随着BMP9浓度的增高,BEV813与CHO-K1-ALK1细胞的结合亲和力下降,从此证明BEV813双抗与BMP9竞争与CHO-K1-hALK1细胞结合的结合表位。
2.3.4.BEV813 bsAb阻断VEGF信号细胞活性实验
将2.5×104个H_VEGF Reporter 293细胞(由吉满生物提供,GM-C09057)接种在96孔板中过夜培养。加入不同浓度梯度的不同抗体:BEV813,ALK-1 mab(#18突变体),bevacizumab(Biointron,B7424),human IgG (Beyotime,A7001),4℃孵育1小时。再加入1nM VEGF165蛋白(Sino,11066-HNAH),37℃孵育6小时。加入100ul/孔细胞裂解液后,用Iuciferase试剂盒检测荧光信号。
实验结果如图5所示,随着抗体浓度的增加,BEV813 bsAb能够阻断VEGF与H_VEGF Reporter 293细胞的结合,从阻断信号向细胞内传导。从IC50值看,BEV813 bsAb的阻断效果与bevacizumab相当。
2.3.5 BEV813 bsAb阻断BMP9诱导的Smad1的磷酸化
BMP9分子作为ALK1的配体可以通过和HUVEC细胞或者A172细胞表面的ALK1蛋白结合激活ALK1受体从而介导下游蛋白Smad1的磷酸化。因此我们设计实验检测BEV813双抗分子对BMP9诱导的Smad1磷酸化的阻断作用。
HUVEC或A172细胞接种于96孔板上,每孔2×104个细胞置于含5%FBS和ECG的ECM(Sciencell,1001)培养基或者含10%FBS的DMEM培养基(Gibco,11995065)中。37℃,5%的CO2培养箱培养过夜。从细胞培养板中移除培养基,用200μl PBS洗涤两次。加入不含FBS和ECG的ECM或者不含FBS的DMEM 100μl,然后饥饿细胞1小时。从细胞培养板中移除培养基,加入100uL一定浓度梯度稀释的受试品,处理3小时,然后在培养基中加入终浓度0.15ng/mL或0.3ng/mL BMP9处理细胞45分钟。移除培养基,并使用ELISA试剂盒(Invitrogen,85-86182-11)测定Smad1磷酸化水平。
结果如图6所示,亲和力成熟后的ALK1单抗(#18突变体)分子的阻断效果最强,但BEV813双抗分子也显示出了很好的阻断效果。
2.3.6 BEV813 bsAb抑制HUVEC增殖
HUVEC细胞接种于96孔板上,每孔5×103个细胞置于含10%FBS的M199(源培,1001)培养基中。将含有10ng/mL VEGF165蛋白(Sino biological,11066-HNAB-B)的不同浓度梯度的待测抗体加入上述细胞中37℃,5%的CO2培养箱培养72小时。移除培养基,并使用Cell Titer Glo Kits检测试剂盒(Promega,G755B)处理后,在酶标仪上读取荧光值。
BEV813双抗对HUVEC增殖的阻断如图7所示。结果显示BEV813对HUVEC增殖的阻断效果与Bevacizumab相当。
2.3.7 BEV813 bsAb抑制HUVEC微管形成
将200μL Matrigel基质胶(Corning:354234,Caiifornia,USA)加入到24孔板中,并在37℃下固化30分钟。将HUVEC细胞(人脐静脉内皮细胞Human Umbilical Vein Endothelial Cells)与2μg/ml钙黄绿素AM孵育30min,并用PBS洗涤。将4×104HUVEC细胞加入到24孔板中,并用1mg/ml待测抗体处理细胞。在37℃孵育48小时后,使用荧光显微镜(Olympus CKX53,东京,日本)观察微管的形成情况。其中,anti-HEL-Human IgG1 Isotype-control(hIgG1,百英生物,货号B117901),anti-HEL-Human IgG2 Isotype-control(hIgG2,百英生物,货号B107803)和未刺激组(Non-stimulation)分别作为同性对照(Isotype control)和阴性对照(Negative control);相同浓度下(1mg/ml),比较BM,#18突变体,bevacizumab和BEV813各给药组对HUVEC细胞微管形成的影响。
结果如图8所示显示,HUVEC细胞中加入等量的BEV813双抗,ALK-1单抗(#18突变体)及Bevacizumab单抗,都能很好的抑制微管的形成。并且,BEV813双抗显示出了更强的抑制HUVEC细胞微管形成的阻断作用。
2.4 BEV813 bsAb体内药效检测
2.4.1人免疫系统重建CDX小鼠模型
(A)PBMC免疫系统人源化MDA-MB-231乳腺癌皮下移植瘤模型
将MDA-MB-231(ATCC编号HTB-26)肿瘤细胞接种于供瘤小鼠(NCG小鼠,雌性,由江苏集萃药康生物科技股份有限公司提供)皮下,待肿瘤长大后,在无菌条件下取出体积约500~1000mm3的肿瘤,切成大小约2mm×2mm×2mm的小块,用套管针接种在实验小鼠右侧胁肋部皮下,每只小鼠接种一块肿瘤组织。肿瘤接种后3天将健康成人PBMC(人外周血单个核细胞,Donor#:SC12291,由上海轩峰生物科技有限公司提供)用PBS重悬接种于小鼠体内,细胞接种量为2×106/鼠。分组前1天和实验结束时用FACS检测小鼠血中人CD45阳性细胞比例。用Bevacizumab、ALK-1 mAb(#18突变体)及BEV813 bsAb或生理盐水(作为Vehicle组)给药处理动物。Bevacizumab和ALK-1 mAb(#18突变体)单克隆抗体的施用剂量是5mg/kg,BEV813 bsAb的施用剂量是6.7mg/kg。在肿瘤生长至53mm3左右时开始分组给药。每种抗体在腹腔内一周施用3次,每次给药体积各为100-uL。每组由8只小鼠构成。每周对肿瘤体积和小鼠体重进行2次测量。在给药3周后,动物被安乐死亡,然后取出肿瘤并称重。应用One-Way ANOVA检验对肿瘤体积和瘤重进行组间统计学分析,p<0.05认为有显著性差异。
实验结果如图9所示,在分组给药后20天,Bevacizumab(5mg/kg)组、ALK-1 mAb(#18突变体)(5mg/kg)组和BEV813 bsAb(6.7mg/kg)组的肿瘤生长抑制率(TGITV%)分别为22%,0%,48%(图9中A);肿瘤重量抑制率(TGITW%)分别为20%,2%,51%(图9中B)。ALK-1 mAb(#18突变体)在5mg/kg剂量下,不能抑制肿瘤的生长;Bevacizumab在5mg/kg剂量下,对肿瘤的生长有一定的抑制作用;而BEV813 bsAb在等摩尔情况下(6.7mg/kg)对肿瘤的生长有显著的抑制作用,肿瘤体积和重量显著小于对照组(图9中A和B,**p<0.01)。治疗期间,各组小鼠的体重没有明显变化,说明药物安全性良好(图9中C)。
而相同模型在另外一次实验当中,在分组给药后15天,BM(20mg/kg)组、Bevacizumab(5mg/kg)组和bevacizumab+BM(5+20mg/kg)组的肿瘤生长抑制率(TGITV%)分别为13%、34%和41%(图9中D);肿瘤重量抑制率(TGITW%)分别为15%、40%和45%(图9中E)。ALK1 mAb(BM)在20mg/kg剂量下,对肿瘤几乎没有抑制作用;而Bevacizumab在5mg/剂量下,或者与BM联合给药情况下,对肿瘤的生长都有一定的抑制作用,肿瘤体积和重量显著小于对照组(图9中D和E,***p<0.001)。但是,bevacizumab组和联合治疗组并未看到统计学差异。治疗期间,各组小鼠的体重没有明显变化,说明药物安全性良好(图9中F)。
比较图9中A和D,B和E可以得出,BEV813 bsAb相比ALK1 mAb和bevacizumab的联合用药,有更加优秀的抑制肿瘤生长的药效,并且BEV813bsAb的安全性良好。
(B)PBMC人源化异种移植食管癌KYSE450模型将KYSE450(JCRB编 号JCRB1430)肿瘤细胞经PBS洗涤后,重悬于PBS:Matrigel(体积比1∶1混合)混合液中,浓度为1×108/mL,接种于供瘤小鼠(NCG小鼠,雄性,由江苏集萃药康生物科技股份有限公司提供)的右侧胁肋部皮下。肿瘤接种后4天将健康成人PBMC(人外周血单个核细胞,Donor#:PAZ012T01,由上海合佑生生物科技有限公司提供)用PBS重悬接种于小鼠体内,细胞接种量为2×106/鼠。分组前1天和实验结束时用FACS检测小鼠血中人CD45阳性细胞比例。用Bevacizumab、BEV813 bsAb或生理盐水处理动物。Bevacizumab单克隆抗体的施用剂量是5mg/kg,BEV813 bsAb的施用剂量是6.7mg/kg。在肿瘤生长至89mm3左右时分组给药。每种抗体在腹腔内一周施用3次,每次给药体积各为100uL。每组由8只小鼠构成。每周对肿瘤体积和小鼠体重进行2次测量。在给药4周后,动物被安乐死亡,然后取出肿瘤并称重。应用One-Way ANOVA检验对肿瘤体积和瘤重进行组间统计学分析,p<0.05认为有显著性差异。
结果如图10所示,在分组给药后28天,Bevacizumab(5mg/kg)组和BEV813 bsAb(6.7mg/kg)组的肿瘤生长抑制率(TGITV%)分别为28%、52%(图10中A);肿瘤重量抑制率(TGITW%)分别为34%,53%(图10中B)。Bevacizumab在5mg/剂量下,对肿瘤的生长有一定的抑制作用;而BEV813bsAb在等摩尔情况下(6.7mg/kg)对肿瘤的生长有显著的抑制作用,肿瘤体积和重量显著小于对照组(图10中A和Bp<0.05)。治疗期间,各组小鼠的体重没有明显变化,说明药物安全性良好(图10中C)。
(C)人非小细胞肺癌HCC827细胞株在CD34+人源化小鼠皮下移植瘤模型
将HCC827(由澎立生物医药技术(上海)股份有限公司提供)肿瘤细胞经PBS洗涤后,重悬于PBS:Matrigel(体积比1∶1混合)混合液中,浓度为5×106/mL,接种于人源化小鼠(由澎立生物医药技术(上海)股份有限公司提供)背部右边靠近腋下的皮下。用Bevacizumab、BEV813 bsAb或生理盐水给药处理动物。Bevacizumab单克隆抗体的施用剂量是1mg/kg,BEV813bsAb的施用剂量是1.33mg/kg。在肿瘤生长至50-80mm3左右时分组给药。每种抗体在腹腔内一周施用3次,每次给药体积各为100uL。每组由6只小鼠构成。每周对肿瘤体积和小鼠体重进行2次测量。在给药4周后,动物被安乐死亡,然后取出肿瘤并称重。应用One-Way ANOVA检验对肿瘤体积和瘤重进行组间统计学分析,p<0.05认为有显著性差异。
结果如图11所示,在分组给药后28天,Bevacizumab(1mg/kg)组和BEV813 bsAb(1.33mg/kg)组的肿瘤生长抑制率(TGITV%)分别为46%、61%(图11中A);肿瘤重量抑制率(TGITW%)分别为38%、56%(图11中B)。与同时期的对照组相比,肿瘤体积在Day 7~Day 28期间显著减小(图11中A,**p<0.01);肿瘤重量在Day 28显著降低(图11中B,**p<0.01)。这说明BEV813 bsAb(1.33mg/kg)在等摩尔情况下比Bevacizumab(1mg/kg)对肿瘤的生长有更加显著的抑制作用(图11中A和B,p<0.05,**p<0.01)。治疗期间,各组小鼠的体重没有明显变化,说明药物安全性良好(图11中C)。
2.4.2肠癌肝转移PDTX小鼠模型
将肠癌肝转移患者的肿瘤组织(2×2×2mm3)皮下接种于供瘤小鼠(NCG小鼠,雌性,由江苏集萃药康生物科技股份有限公司提供)右侧胁肋部皮下。用Bevacizumab、BEV813 bsAb或生理盐水处理动物。Bevacizumab的施 用剂量是5mg/kg,BEV813 bsAb的施用剂量是6.7mg/kg。在肿瘤生长至60-100mm3左右时开始分组给药。每种抗体在腹腔内一周施用3次,每次给药体积各为100uL。每组由6只小鼠构成。每周对肿瘤体积和小鼠体重进行2次测量。在给药4周后,动物被安乐死亡,然后取出肿瘤并称重。
结果如图12所示,在分组给药后28天,Bevacizumab(5mg/kg)组和BEV813 bsAb(6.7mg/kg)组的肿瘤生长抑制率(TGITV%)分别为61.2%、85.9%(图12中A);肿瘤重量抑制率(TGITW%)分别为56%、73%(图12中B)。Bevacizumab和BEV813均对肿瘤的生长有显著的抑制作用,肿瘤体积均显著小于对照组(图12中A,**p<0.01,***p<0.001);肿瘤重量也均显著小于对照组(图12中B,**p<0.01,***p<0.001)。同时,等摩尔数的BEV813相比Bevacizumab有更佳明显的抑瘤效果,且有显著的统计学差异(图12中A和B,p<0.05,**p<0.01)。另外,药物未对动物产生明显毒副作用,安全性较好(图12中C)。
三、抗ALK-1-抗VEGF双特异性抗体(BEV813 bsAb)突变体的构建
为了解决BEV813 bsAb在制备过程中异构体及其聚集体(聚体)比例过高的问题,对BEV813 bsAb的ALK-1部分序列进行了突变,所获得的突变体及其突变后的ALK-1结合区的序列信息如下(其他区域同BEV813 bsAb):
1.BEV813-1:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):SEQ ID NO:66
2.BEV813-2:
ALK-1结合区轻链可变区(VH):SEQ ID NO:67
ALK-1结合区轻链可变区(VL):
3.BEV813-3:
ALK-1结合区轻链可变区(VH):SEQ ID NO:67
ALK-1结合区轻链可变区(VL):
4.BEV813-4:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):
5.BEV813-5:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):
6.BEV813-6:
ALK-1结合区轻链可变区(VH):SEQ ID NO:75
ALK-1结合区轻链可变区(VL):
7.BEV813-7:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):
8.BEV813-8:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):SEQ ID NO:79
9.BEV813-9:
ALK-1结合区轻链可变区(VH):
ALK-1结合区轻链可变区(VL):SEQ ID NO:76
BEV813-9第一链:
BEV813-9第二链:
以上突变体编号及其轻、重链序列信息汇总如下表6所示:
表6.BEV813 bsAb突变体编号及其轻、重链序列信息
3.1 BEV813 bsAb突变体的制备及纯化
3.1.1 BEV813 bsAb突变体的制备过程与前述抗ALK-1单克隆抗体、突变 体的构建及表达纯化部分相同。
3.1.2十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)检测纯度
Ides蛋白酶(Rhinogen,QIP-001-A)是仅在铰链区下方的一个特定位 点裂解IgG以产生F(ab′)2和单链Fc(sFc)的免疫球蛋白降解酶。酶切后 的抗体经SDS-PAGE或是质谱能有效判断是否有异构体的存在。
将2ugBEV813 bsAb及其突变体样品经Ides酶切(大肠杆菌表达)后, 加入非还原上样缓冲液,金属浴(Mini Dry Bath,GL-120A)100℃,10分 钟后,进行SDS-PAGE电泳检测(Tanon,EPS600)。
结果如图13-图14所示,图13展示的是不同突变体的纯度,BEV813-9 无聚集体,BEV813-3、BEV813-7有少量聚集体,其余均有不同程度的聚集体。 图14展示的是经Ides酶切后的不同突变体条带,如果有异构体存在,会显示 出Fc条带,如果无异构体存在,可见sFc条带,无Fc条带。经Ides酶切后, BEV813-9无异构体,其余均有异构体。
异构体的概念:其中一条重链中的ScFv连接到另一条重链的ScFv上,通 过Ides酶切,如能确定Fc条带的存在,即证明有异构体。聚集体(聚体)的 概念:两个或是三个抗体蛋白通过共价或非共价的方式结合在一起。单体:单 个完整抗体蛋白,无聚集体和异构体。sFc:Single chain Fc单链Fc,抗体铰 链区以下的重链抗体,包括ScFv;The domain corresponds to the heavy  chain after the hinge region。ScFv:是由抗体重链可变区和轻链可变区通过 15~20个氨基酸的短肽(linker)连接而成的抗体。Fc:两条sFc通过二硫键 连接在一起。
3.1.3 HPLC纯度检测
采用HPLC的方法检测样品纯度,仪器为Thermofisher Scientific公司的 DIONEX UltiMate 3000;色谱柱为SePax公司的BioMix SEC 300(Sepax, BioMix SEC,3um,150mmX4.6mm),流动相为含有0.673M NaCl的PB 溶液,柱温为25℃,流速为0.4ml/min,进样5ug。
在液相HPLC中,样品通过BioMix色谱柱的分离,不仅可以检测聚集体, 同时也能检测单体和异构体,从而对抗体蛋白中的聚集体、单体和异构体进行 相对定量。结果如图15所示,只有BEV813-9的色谱峰主要是一单峰,其余 均有聚集体(主峰前)和异构体(主峰后),该结果与SDS-PAGE的结果相 对应。
3.1.4突变体BEV813-9的结构表征
3.1.4.1分子量的测定和异构体检测
在PBS缓冲液或其他相容缓冲液中加入所需量的BEV813或BEV813-9抗 体IgG(0.5~10mg/ml),再将IdeS蛋白酶加入至IgG样品中,每1μg  IgG加1unit IdeS蛋白酶进行消化,在37℃条件下孵育30~60分钟得到亚 基。液相系统为Thermo fisher Vanquish UPLC,亚基在色谱柱(MAbPac TM  RP column,4μm,3.0×100mm(P/N 088644))中的洗脱流速为 0.3ml/min,流动相A为含有0.1%FA(Fomic acid甲酸)的水溶液,流动相 B为含有0.1%FA的乙腈溶液,十分钟内流动相B的梯度从5%到95%。RP- UPLC与四级杆静电场轨道阱超高分辨率质谱仪(Thermo Orbitrap Exploris  240)相连,进行亚基分子量的检测。
解卷积后,每个双抗的亚基的分子量列于下表7,表中列出了理论分子量, 实际测得的分子量与理论分子量之间的误差均在可接受范围内。BEV813双抗 的亚基主要是F(ab′)2、sFc和Fc,Fc的存在说明该分子存在异构体(图16- 18)。BEV813-9的亚基分子量主要是F(ab′)2和sFc,没有检测到Fc结构, 说明不存在异构体(图19-20)。
表7 BEV813双抗以及BEV813-9突变体的分子量测定
进一步采用毛细管电泳法(nrCGE(Non-reduced capillary gel  electrophoresis))检测抗体异构体的存在。方法为:移取100μg处理后的 抗体样品(BEV813双抗或BEV813-9突变体)到1.5mL微型离心管中,加 入样品缓冲液(100mM Tris-HCl,pH9.0,1%SDS)到95μL,加入2μL内 标(10KD的分子量marker),5μL 250mM的碘代乙酰胺(IAM)溶液, 盖上瓶盖,充分混合,300g离心1min,用封口膜封好,然后70℃水浴10 min,室温冷却至少3min,转移100μL样品到200μL微量样品管并旋转去 除存在的气泡,将其放入通用瓶中,盖好瓶盖。采用PA800plus毛细管电泳仪 进行检测。抗体在进行nrCGE检测前经过如下方法进行处理,其中BEV813和 BEV-813-9样品是只经过ProteinA一步捕获;BEV813单体是经过ProteinA 捕获后,进一步离子(HiTrap Capto SP ImpRes,Cytiva:17546851)精纯 得到的样品(目的是去除抗体中的聚集体和异构体,获得只含有BEV813单体, 作为nrCGE检测的对照)。
结果如图21所示,在完整蛋白层面上,通过nrCGE检测BEV813和 BEV813-9的异构体,BEV813呈现一定比例的异构体,而BEV813-9无异构 体。
3.2 BEV813 bsAb突变体体外活性检测
3.2.1 BEV813 bsAb突变体与ALK-1蛋白的结合活性
检测方法与专利前述方法类似:Fortebio Octet(Sartorius)亲和力测定方法如下,传感器在分析缓冲液中线下平衡10min,然后线上检测60s建立基线,分别在线加载BM抗体及其表中抗体序号对应的抗体至ProteinA传感器上。再将传感器放入上述制备的人ALK-1抗原中作用,之后将传感器转移至PBS0.02%T+0.1%BSA中解离,使用1∶1结合模型进行动力学的分析。
结果如下表8所示,BEV813-1、5、6、8、9号突变体与ALK-1抗原的结合活性均优于BEV813双抗。
表8.BEV813 bsAb突变体与ALK-1抗原蛋白结合动力学参数比较
3.2.2 BEV813 bsAb与CHO-K1-hALK-1细胞结合活性
检测方法与专利前述方法一致。
结果如图22显示,BEV813 bsAb突变体与BEV813与CHO-K1-hALK1细胞均具有较高的结合亲和力,尤其是BEV813-1。
3.2.3 BEV813 bsAb突变体阻断BMP9诱导的Smad1的磷酸化
检测方法与专利前述方法一致。
结果如图23所示,BEV813及其突变体BEV813-9均具有优异的阻断BMP9诱导的Smad1的磷酸化作用,显著优于ALK1单抗BM。
四、抗ALK-1-抗PD-1双特异性抗体(Nivo813 bsAb)的构建
4.1 Nivo813 bsAb的组成元件
Nivo813是一个典型的″2+2″对称结构的人IgG4双特异性抗体(如图24所示),通过将ALK-1单克隆抗体的重链可变区(VH)和轻链可变区(VL)形成的″ScFv″(Single-chain variable fragment)融合到PD-1单克隆抗体(Nivolumab)的恒定区的″C″端。
ALK-1 scFv抗体通过一种接头序列(G20-linker:GGGGSGGGGSGGGGSGGGGS)连接到PD-1单克隆抗体(Nivolumab)重链的C端,从而产生一个新的双特异抗体Nivo813。为了增强ScFv的稳定性,进行点突变成Cys,引入二硫键。同时,通过对ALK-1 mAb的亲和力成熟,对其抗体的Fab段进行改造,在不降低阻断功能的前提下,增强其结合亲和力。Nivo813具体序列信息如下:
Nivo813 bsAb的PD-1结合区:
(1)PD-1结合区重链可变区(VH):
PD-1结合区重链可变区的3个CDR:
(2)PD-1结合区轻链可变区(VL):
PD-1结合区轻链可变区的3个CDR:
(3)PD-1结合区的CH:

(4)PD-1结合区的CL:
PD-1结合区的Linker序列:GGGGSGGGGSGGGGSGGGGS(SEQ ID NO:65)
Nivo813 bsAb的ALK-1结合区:
(1)ALK-1结合区轻链可变区(VL):
(2)ALK-1结合区轻链可变区(VH):
(3)ALK-1结合区的linker序列:GGGGSGGGGSGGGGSGGGGS(SEQ ID NO:65)
Nivo813双抗第一链:

Nivo813双抗第二链:
4.2 Nivo813 bsAb的制备及纯化
Nivo813 bsAb的制备过程参见抗ALK-1单克隆抗体及其突变体的构建及表达纯化部分。
4.3 Nivo813 bsAb体外活性检测
4.3.1 Nivo813 bsAb与ALK-1蛋白、PD-1蛋白的结合活性
检测方法与专利前述Nivo813 bsAb检测方法一致。其中,方法所用对照物Nivolumab购自北京义翘神州科技股份有限公司(简称″义翘神州″),货号:68050-H001;抗原PD-1-his蛋白购自Antibody system,货号:YHH02201;抗原ALK-1-his蛋白购自ACROBiosystems,货号:AL1-H5227。
结果分别如表9和10所示,Nivo813双抗与PD-1抗原的结合活性与Nivolumab相当;与ALK-1抗原的结合活性与对照抗体BM相当,但弱于亲和力成熟之后的ALK-1单克隆抗体(#18突变体)的结合活性。
表9.Nivo813 bsAb、Nivolumab与PD-1抗原蛋白结合动力学参数比较
表10 Nivo813 bsAb、ALK-1单抗(BM、#18)与ALK-1抗原蛋白结合动力学参数比较
4.3.2 Nivo813 bsAb同时结合PD-1和ALK-1抗原的结合活性
将2μg/mL ALK-1-his(ACROBiosystems,AL1-H5227)加入96孔板中,4℃孵育过夜。第二天,用洗涤液充分洗去包被的ALK-1-his抗原后,加入用ELISA diluent buffer(Biolegend,421203)稀释的5%牛血清白蛋白Bovine Serum Albumin,BSA(上海碧云天生物技术有限公司,ST023-200g)在37℃封闭2小时(300rpm)。用洗涤液充分洗去封闭液后,加入不同的待测抗体(一抗)(15nM,3倍稀释),37℃孵育2小时(300rpm)。人IgG1抗体(北京义翘,HG1K)作为阴性对照抗体。用洗涤液充分洗去一抗后,加入5μg/ml PD-1-mFc(义翘神州,10377-H05H),37℃孵育1小时(300rpm)。用洗涤液充分洗去上述蛋白后,加入1∶1000稀释的二抗Goat Anti-Mouse IgG-HRP(义翘神州,SSA007)或者Goat Anti-Human IgG-HRP(义翘神州,SSA002),37℃孵育1小时(300rpm)。随后加入100μl底物3,3′,5,5′-Tetramethylbenzidine TMB(Liankebio,E0231)反应15-30分钟后,加入终止液(Liankebio,E0300)终止反应。最后,在酶标仪(Molecular Devices,ID5-STD)上读取OD450nm波长的吸光度值。
结果如图25所示,与ALK-1 mAb(#18突变体)相比,Nivo813双抗分子同时结合抗原PD-1和ALK-1的结合亲和力更高;Nivo813 bsAb的EC50值是ALK-1 mAb(#18突变体)的5倍。
4.3.3 Nivo813 bsAb与高表达ALK-1或者PD-1细胞株结合活性
将1×105细胞/ml的CHO-K1-ALK-1细胞(由Stainwei提供)接种在96孔板中,加入不同待测抗体(一抗)(50nM,3倍稀释)4℃孵育1小时。用 FACS buffer充分洗去一抗后,再分别加入10μg/mL human PD-1-PE(ACRObiosystems,PD-1HP2F2)和1∶20 PE anti-human IgG Fc Antibody(二抗)(Biolegend,410708)后4℃孵育1小时。用FACS buffer充分洗去二抗后,收集细胞,并用流式细胞术分析待测抗体与CHO-K1-ALK-1细胞的结合情况。
将2×106细胞/ml的H-PD-1 NFAT Reportor Jurkat细胞(Genomeditech)接种在96孔板中,加入不同待测抗体(一抗)(50nM,3倍稀释)4℃孵育1小时。用FACS buffer充分洗去一抗后,加入10μg/mL human ALK-1-his蛋白(ACRObiosystems,PD-1HP2F2)后4℃孵育1小时。用FACS buffer充分洗去上述蛋白后,在分别加入1∶10 APC anti-His Tag Antibody(二抗)(Biolegend,362605)和1∶10 PE anti-human IgG Fc Antibody(二抗)(Biolegend,410708)后4℃孵育1小时。用FACS buffer充分洗去二抗后,收集细胞,并用流式细胞术分析待测抗体与H-PD-1 NFAT Reportor Jurkat细胞的结合情况。
通过2种过表达细胞株分别比较Nivo813 bsAb、ALK-1mAb(#18突变体)、nivolumab与细胞表面受体结合活性的强弱。结果如图26-27所示,与ALK-1 mAb(#18突变体)相比,Nivo813 bsAb与CHO-K1-ALK-1细胞株上ALK-1受体的结合活性较高(图26)。同样的,与nivolumab相比,Nivo813 bsAb与H-PD-1 NFAT Reportor Jurkat细胞株上PD-1受体的结合活性更高,Nivo813 bsAb的EC50值是nivolumab的65倍(图27)。
4.3.4 Nivo813 bsAb阻断PD-1/PD-L1相互作用引起TCR信号通路的转导及NFAT介导的luciferase表达
将2.5×104细胞/孔的CHO-K1-PDL1细胞(吉满生物)接种在96孔板中,进行过夜培养。第二天,将含有待测抗体(100ug/ml,3倍稀释)的1×105细胞/孔的H-PD-1/NFAT reporter Jurkat细胞(吉满生物)加入上述孔板中,并充分混合后,37℃孵育16小时。培养16小时后,取细胞上清检测luciferase的表达情况。
结果如图28所示,Nivo813 bsAb和nivolumab都能抑制PD1/PDL1相互作用,恢复下游信号转导及NFAT介导的luciferase的表达。其中,相比nivolumab,Nivo813 bsAb有更高的抑制作用。
4.3.5 Nivo813 bsAb阻断BMP9诱导的Smad1的磷酸化
BMP9分子作为ALK1的配体可以通过和HUVEC细胞或者A172细胞表面的ALK1蛋白结合激活ALK1受体从而介导下游蛋白Smad1的磷酸化。因此我们设计实验检测Nivo813双抗分子对BMP9诱导的Smad1磷酸化的阻断作用。
图29.A中HUVEC(Allcells,H-001F-C)或图29.B中A172细胞(科佰生物,CBP60575)接种于96孔板上,每孔2×104个细胞置于含5%FBS和ECG的ECM(Sciencell,1001)培养基或者含10%FBS的DMEM培养基中。37℃,5%的CO2培养箱培养过夜。从细胞培养板中移除培养基,用200μl PBS洗涤两次。加入不含FBS和ECG的ECM或者DMEM 100μl,然后饥饿细胞1小时。从细胞培养板中移除培养基,加入100uL一定浓度梯度稀释的 受试品,处理3小时,然后在培养基中加入终浓度0.15ng/mL或0.3ng/mL BMP9处理细胞45分钟。移除培养基,并使用ELISA试剂盒(Invitrogen,85-86182-11)测定Smad1磷酸化水平。
结果如图29所示,亲和力成熟后的ALK1单抗(#18突变体)分子的阻断效果最强,但Nivo813双抗分子也显示出了很好的阻断效果。
4.3.6 Nivo813 bsAb抑制HUVEC微管形成
将200μL Matrigel基质胶(Corning:354234,California,USA)加入到24孔板中,并在37℃下固化30分钟。将HUVEC细胞与2μg/ml钙黄绿素AM孵育30min,并用PBS洗涤。将4×104HUVEC细胞加入到24孔板中,并用不同浓度梯度的待测抗体(1mg/ml,4倍稀释)处理细胞。人IgG4抗体(百英生物,B107804)作为同型对照(Isotype control)。在37℃孵育48小时后,使用荧光显微镜(Olympus CKX53,东京,日本)观察微管的形成情况。
结果如图30,随着Nivo813 bsAb浓度的增加,HUVEC微管形成受到抑制,且呈现剂量依赖性。
4.4 Nivo813 bsAb体内药效检测
4.4.1人免疫系统重建CDX小鼠模型
将MDA-MB-231(ATCC编号HTB-26)人乳腺癌肿瘤细胞接种于供瘤小鼠(NCG小鼠,雌性,由江苏集萃药康生物科技股份有限公司提供)皮下,待肿瘤长大后,在无菌条件下取出体积约500~1000mm3的肿瘤,切成大小约 2mm×2mm×2mm的小块,用套管针接种在实验小鼠右侧胁肋部皮下,每只小鼠接种一块肿瘤组织。肿瘤接种后3天将健康成人PBMC(人外周血单个核细胞,Donor#:SC12291,由上海轩峰生物科技有限公司提供)用PBS重悬接种于小鼠体内,细胞接种量为2×106/鼠。分组前1天和实验结束时用FACS检测小鼠血中人CD45阳性细胞比例。用Nivolumab、ALK-1 mAb(#18突变体)及Nivo813 bsAb或生理盐水(对照组Vehicle)处理动物。Nivolumab、ALK-1 mAb(#18突变体)单克隆抗体及Nivo813 bsAb的施用剂量分别是1mg/kg、5mg/kg和1.33mg/kg。在肿瘤生长至53mm3左右时开始分组给药。每种抗体在腹腔内一周施用3次,体积各为100mL。每组由8只小鼠构成。每周对肿瘤体积和小鼠体重进行2次测量。在给药3周后,动物被安乐死亡,然后取出肿瘤并称重。应用One-Way ANOVA检验对肿瘤体积和瘤重进行组间统计学分析,p<0.05认为有显著性差异。
在分组给药后20天,Nivolumab(1mg/kg)组、ALK-1 mAb(#18突变体)(5mg/kg)组和Nivo813 bsAb(1.33mg/kg)组的肿瘤生长抑制率(TGITV%)分别为30%,0%,52%(图31中的A);肿瘤重量抑制率(TGITW%)分别为30%,2%,51%(图31中的B)。ALK-1 mAb(#18突变体)在5mg/kg剂量下,不能抑制肿瘤的生长;Nivolumab在1mg/kg的低剂量下,对肿瘤的生长有一定的抑制作用,但与对照组相比,无显著性差异(p>0.05);而Nivo813 bsAb在与Nivolumab等摩尔情况下(1.33mg/kg)对肿瘤的生长有显著的抑制作用,肿瘤体积和重量均显著小于对照组(图31中的A和B,**p=0.002;**p=0.008)。另外,在NIvo813 bsAb治疗组中,有7只(共8只)小鼠展现出了很好的抗肿瘤药效,而在Nivolumab治疗组中, 只有3只(共8只)小鼠展现出了一定的抗肿瘤药效(图31中的D)。治疗期间,测试物Nivolumab、ALK-1 mAb(#18突变体)和Nivo-813 bsAb在给药后均无急性不良反应,各组小鼠正常摄食饮水,无明显异常表现(图31中的C)。

Claims (50)

  1. 一种结合ALK-1的单克隆抗体或其抗原结合部分,其中所述抗体或其抗原结合部分具有重链和轻链,
    所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;或所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
    所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变。
  2. 根据权利要求1所述的结合ALK-1的单克隆抗体或其抗原结合部分,所述第91号和第95号氨基酸不为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
  3. 根据权利要求1-2任一项所述的结合ALK-1的单克隆抗体或其抗原结合部分,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可 变结构域的CDR1L、CDR2L和CDR3L;
    优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    更优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的CDR1L、CDR2L和CDR3L。
  4. 根据权利要求1-3任一项所述的结合ALK-1的单克隆抗体或其抗原结合部分,如按照IMGT抗体编号方案对CDR区进行定义,所述轻链CDR选自:
    (a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14 的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
    所述重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、 SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H);
    优选地,所述轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的的CDR;
    进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR,最优选为所述轻链CDR区选自(a)中的CDR。
  5. 根据权利要求1-4任一项所述的结合ALK-1的单克隆抗体或其抗原结合部分,所述抗体或其抗原结合部分的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    优选地,所述抗体或其抗原结合部分的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的CDR1L、CDR2L和CDR3L。
  6. 根据权利要求1-5任一项所述的结合ALK-1的单克隆抗体或其抗原结合部分,所述抗体或其抗原结合部分的重链可变结构域VH包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID  NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79的氨基酸序列;
    优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79的氨基酸序列;
    更优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76的氨基酸序列;最优选地,所述抗体或其抗原结合部分的轻链可变结构域VL包含SEQ ID NO:11的氨基酸序列。
  7. 根据权利要求1-6任一项所述的结合ALK-1的单克隆抗体或其抗原结合部分,所述述抗原结合片段为Fab片段、F(ab′)2片段或单链抗体。
  8. 根据权利要求1-7任一项所述的结合ALK-1的单克隆抗体或其抗原结合 部分,所述抗体或抗原结合片段为IgG、IgM、IgE、IgA或IgD,进一步优选为IgG1、IgG2或IgG4,更优选为人IgG1-LALA。
  9. 一种双特异性抗体或抗原结合片段,其包含特异性结合ALK-1的第一抗原结合区(ALK-1结合区)和特异性结合VEGF的第二抗原结合区(VEGF结合区),所述特异性结合ALK-1的第一抗原结合区包含重链可变区(VH)和轻链可变区(VL),所述特异性结合VEGF的第二抗原结合区包含重链可变区(VH)和轻链可变区(VL)或特异性结合VEGF的VEGF受体片段;
    所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;或所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
    所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变。
  10. 根据权利要求9所述的双特异性抗体或抗原结合片段,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变,且第91号和第95号氨基酸突变不为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
  11. 根据权利要求9-10任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ  ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    更优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    最优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的CDR1L、CDR2L和CDR3L。
  12. 根据权利要求9-11任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ  ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H。
  13. 根据权利要求9-12任一项所述的双特异性抗体或抗原结合片段,按照IMGT抗体编号方案对CDR区进行定义,所述第一抗原结合区的轻链CDR选自以下组合:
    (a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52 的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
    所述第一抗原结合区的重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H);
    优选地,所述第一抗原结合区轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的CDR;进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR,最优选为(a)中的CDR。
  14. 根据权利要求9-13任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的重链可变区包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;或者由SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的第一抗原结合区的重链可变区;
    优选地,所述第一抗原结合区的重链可变区包含SEQ ID NO:1、SEQ ID NO:67或SEQ ID NO:81的氨基酸序列。
  15. 根据权利要求14所述的双特异性抗体或抗原结合片段,所述第一抗原 结合区的轻链可变区包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;
    优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;
    更优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列;
    最优选地,所述第一抗原结合区的轻链可变结构域VL为SEQ ID NO:11、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列。
  16. 根据权利要求9-15所述的双特异性抗体,所述双特异性抗体包含IgG的重链恒定区,优选地,包含IgG1、IgG4或IgG2的重链恒定区;更优选地,包含IgG1的重链恒定区,最优选地,包含如SEQ ID NO:9所示的重链恒定区。
  17. 根据权利要求9-16所述的双特异性抗体或抗原结合片段,所述特异性结合VEGF的第二抗原结合区包含重链可变区和轻链可变区,所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:57的重链可变结构域的CDR1H、CDR2H和CDR3H,或所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:57所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:57功能相同的CDR1H、CDR2H和CDR3H;所述轻链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:61的重链可变结构域的CDR1L、CDR2L和CDR3L,或所述重链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:61所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:61功能相同的CDR1L、CDR2L和CDR3L。
  18. 根据权利要求17所述的双特异性抗体或抗原结合片段,所述特异性结合VEGF的第二抗原结合区包含重链可变区和轻链可变区,
    所述重链可变区包含如SEQ ID NO:58所示的CDR1H,如SEQ ID NO:59所示的CDR2H和如SEQ ID NO:60所示的CDR3H;和
    所述轻链可变区包含如SEQ ID NO:62所示的CDR1L,如SEQ ID NO: 63所示的CDR2L和如SEQ ID NO:64所示的CDR3L。
  19. 根据权利要求9-18任一项所述的双特异性抗体或抗原结合片段,所述重链可变区包含如SEQ ID NO:57所示的序列,所述轻链可变区包含如SEQ ID NO:61所示的序列。
  20. 根据权利要求9-19任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区或所述第二抗原结合区是scFv形式,优选地,所述第一抗原结合区是scFv形式。
  21. 根据权利要求9-20任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区与所述第二抗原结合区之间通过Linker连接,
    优选地,所述Linker包含(G4S)n,n为大于1的整数,
    更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
    更优选地,所述Linker由(G4S)n组成,n为2,3或4。
  22. 根据权利要求9-21任一项所述的双特异性抗体或抗原结合片段,所述scFv包含重链可变区和轻链可变区,所述重链可变区和轻链可变区之间通过Linker连接,
    优选地,所述Linker包含(G4S)n,n为大于1的整数,
    更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
    更优选地,所述Linker由(G4S)n组成,n为2,3或4。
  23. 根据权利要求9-22任一项所述的双特异性抗体或抗原结合片段,所述的双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
    所述第一链从N端到C端依次包含VEGF结合区的VH、VEGF结合区的CH、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL,和
    所述第二链从N端到C端依次包含VEGF结合区的VL和CL。
  24. 根据权利要求23所述的双特异性抗体或抗原结合片段,所述双特异性抗体包含的具体序列如下:
    所述VEGF结合区的VH序列如SEQ ID NO:57所示,
    所述VEGF结合区的CH序列如SEQ ID NO:9所示,
    所述VEGF结合区的VL序列如SEQ ID NO:61所示,
    所述VEGF结合区的CL序列如SEQ ID NO:10所示,
    所述Linker序列如SEQ ID NO:65所示,
    所述ALK-1结合区的VL序列如SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示,和
    所述ALK-1结合区的VH序列如SEQ ID NO:67、SEQ ID NO:1、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81所示;
    优选地,所述双特异性抗体的第一链的序列如SEQ ID NO:68或SEQ ID NO:82所示;所述双特异性抗体的第二链的序列如SEQ ID NO:69所示。
  25. 一种双特异性抗体或抗原结合片段,其包含特异性结合ALK-1的第一抗原结合区(ALK-1结合区)和特异性结合PD-1的第二抗原结合区(PD-1结合区),所述特异性结合ALK-1的第一抗原结合区包含重链可变区(VH)和轻链可变区(VL),所述特异性结合PD-1的第二抗原结合区包含重链可变区(VH)和轻链可变区(VL);
    所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和 CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H;或所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的CDR1H、CDR2H和CDR3H;
    所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L的基础上进行的氨基酸突变所得,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变;或所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是在SEQ ID NO:5的轻链可变结构域的CDR1L、CDR2L和CDR3L。
  26. 根据权利要求25所述的双特异性抗体或抗原结合片段,所述突变是指对SEQ ID NO:5的第91号位和95号位氨基酸进行突变,且第91号和第95号氨基酸突变为色氨酸W和缬氨酸V、脯氨酸P和色氨酸W、亮氨酸L和苯基丙氨酸F的组合。
  27. 根据权利要求25-26任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53或SEQ ID NO:55的轻链可变结构域的 CDR1L、CDR2L和CDR3L;
    优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    更优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31或SEQ ID NO:51的轻链可变结构域的CDR1L、CDR2L和CDR3L;
    最优选地,所述第一抗原结合区的轻链可变结构域VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:11的轻链可变结构域的CDR1L、CDR2L和CDR3L。
  28. 根据权利要求25-27任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的重链可变结构域VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:1的重链可变结构域的CDR1H、CDR2H和CDR3H。
  29. 根据权利要求25-28任一项所述的双特异性抗体或抗原结合片段,按照IMGT抗体编号方案对CDR区进行定义,所述第一抗原结合区的轻链CDR选自以下组合:
    (a)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:12的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (b)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:14的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (c)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:16的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (d)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:18的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (e)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:20的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (f)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:22的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (g)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:24的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (h)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:26 的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (i)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:28的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (j)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:30的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (k)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:32的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (l)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:34的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (m)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:36的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (n)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:38的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (o)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:40的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (p)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:42的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (q)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:44的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (r)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:46的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (s)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:48的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (t)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:50的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (u)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:52的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (v)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:54的氨基酸序列所述的轻链互补决定区3(CDR3L);或
    (w)SEQ ID:6的氨基酸序列所述的轻链互补决定区1(CDR1L)、 SEQ ID:7的氨基酸序列所述的轻链互补决定区2(CDR2L)、SEQ ID:56的氨基酸序列所述的轻链互补决定区3(CDR3L);
    所述第一抗原结合区的重链包含SEQ ID:2的氨基酸序列所述的重链互补决定区1(CDR1H)、SEQ ID:3的氨基酸序列所述的重链互补决定区2(CDR2H)、SEQ ID:4的氨基酸序列所述的重链互补决定区3(CDR3H);
    优选地,所述第一抗原结合区轻链CDR区选自上述(a)-(k)、(m)-(u)或(w)中的CDR;进一步优选为(a)-(c)、(h)、(k)或(u)中的CDR,最优选为(a)中的CDR。
  30. 根据权利要求25-29任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的重链可变区包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列;或者包含由SEQ ID NO:1所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:1功能相同的第一抗原结合区的重链可变区;
    优选为包含SEQ ID NO:1、SEQ ID NO:67、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81的氨基酸序列,进一步优选为包含SEQ ID NO:67或SEQ ID NO:81的氨基酸序列。
  31. 根据权利要求30所述的双特异性抗体或抗原结合片段,所述第一抗原结合区的轻链可变区包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID  NO:31、SEQ ID NO:33、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:53、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;
    优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:21、SEQ ID NO:23、SEQ ID NO:25、SEQ ID NO:27、SEQ ID NO:29、SEQ ID NO:31、SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39、SEQ ID NO:41、SEQ ID NO:43、SEQ ID NO:45、SEQ ID NO:47、SEQ ID NO:49、SEQ ID NO:51、SEQ ID NO:55、SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示的氨基酸序列;
    更优选地,所述第一抗原结合区的轻链可变结构域VL包含选自SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:25、SEQ ID NO:31、SEQ ID NO:51、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列;
    最优选地,所述第一抗原结合区的轻链可变结构域VL为SEQ ID NO:11、SEQ ID NO:66、SEQ ID NO:72、SEQ ID NO:79或SEQ ID NO:76所示的氨基酸序列。
  32. 根据权利要求25-31所述的双特异性抗体,所述双特异性抗体包含IgG的重链恒定区,优选地,包含IgG1、IgG4或IgG2的重链恒定区,更优选地,包含IgG4的重链恒定区,最优选地,包含如SEQ ID NO:91所示的重链恒定区。
  33. 根据权利要求25-32所述的双特异性抗体或抗原结合片段,所述特异性结合PD-1的第二抗原结合区包含重链可变区和轻链可变区,所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:83的重链可变结构域的CDR1H、CDR2H和CDR3H,或所述重链可变区VH的CDR1H、CDR2H和CDR3H是SEQ ID NO:83所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:83功能相同的CDR1H、CDR2H和CDR3H;所述轻链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:87的重链可变结构域的CDR1L、CDR2L和CDR3L,或所述重链可变区VL的CDR1L、CDR2L和CDR3L是SEQ ID NO:87所示序列经添加、缺失、替换一个或更多个氨基酸得到的与SEQ ID NO:87功能相同的CDR1L、CDR2L和CDR3L。
  34. 根据权利要求33所述的双特异性抗体或抗原结合片段,所述特异性结合PD-1的第二抗原结合区包含重链可变区和轻链可变区,
    所述重链可变区包含如SEQ ID NO:84所示的CDR1H,如SEQ ID NO:85所示的CDR2H和如SEQ ID NO:86所示的CDR3H;和
    所述轻链可变区包含如SEQ ID NO:88所示的CDR1L,如SEQ ID NO:89所示的CDR2L和如SEQ ID NO:90所示的CDR3L。
  35. 根据权利要求25-34任一项所述的双特异性抗体或抗原结合片段,所述特异性结合PD-1的重链可变区包含如SEQ ID NO:83所示的序列,所述 特异性结合PD-1的轻链可变区包含如SEQ ID NO:87所示的序列。
  36. 根据权利要求25-35任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区或所述第二抗原结合区是scFv形式,优选地,所述第一抗原结合区是scFv形式。
  37. 根据权利要求25-36任一项所述的双特异性抗体或抗原结合片段,所述第一抗原结合区与所述第二抗原结合区之间通过Linker连接,
    优选地,所述Linker包含(G4S)n,n为大于1的整数,
    更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
    更优选地,所述Linker由(G4S)n组成,n为2,3或4。
  38. 根据权利要求25-37任一项所述的双特异性抗体或抗原结合片段,所述sc Fv包含重链可变区和轻链可变区,所述重链可变区和轻链可变区之间通过Linker连接,
    优选地,所述Linker包含(G4S)n,n为大于1的整数,
    更优选地,所述Linker由(G4S)n组成,n为2-10的整数,
    更优选地,所述Linker由(G4S)n组成,n为2,3或4。
  39. 根据权利要求25-38任一项所述的双特异性抗体或抗原结合片段,所述的双特异性抗体由4条肽链组成,2条相同的第一链和2条相同的第二链,
    所述第一链从N端到C端依次包含PD-1结合区的VH、PD-1结合区的CH、Linker、ALK-1结合区的VH、Linker和ALK-1结合区的VL,和
    所述第二链从N端到C端依次包含PD-1结合区的VL和CL。
  40. 根据权利要求39所述的双特异性抗体或抗原结合片段,所述双特异性抗体包含的具体序列如下:
    所述PD-1结合区的VH序列如SEQ ID NO:83所示,
    所述PD-1结合区的CH序列如SEQ ID NO:91所示,
    所述PD-1结合区的VL序列如SEQ ID NO:87所示,
    所述PD-1结合区的CL序列如SEQ ID NO:92所示,
    所述Linker序列如SEQ ID NO:65所示,
    所述ALK-1结合区的VL序列如SEQ ID NO:66、SEQ ID NO:71、SEQ ID NO:72、SEQ ID NO:74、SEQ ID NO:76、SEQ ID NO:77或SEQ ID NO:79所示,和
    所述ALK-1结合区的VH序列如SEQ ID NO:67、SEQ ID NO:1、SEQ ID NO:70、SEQ ID NO:73、SEQ ID NO:75、SEQ ID NO:78、SEQ ID NO:80或SEQ ID NO:81所示;
    优选地,所述第一链的序列如SEQ ID NO:93所示;所述第二链的序列如SEQ ID NO:94所示。
  41. 一种多核苷酸,其编码根据权利要求1-8任一所述的结合ALK-1的单克隆抗体或其抗原结合部分、或权利要求9-40任一项所述的双特异性抗体或其抗原结合部分。
  42. 一种表达载体,其能够表达根据权利要求1-8任一所述的结合ALK-1的单克隆抗体或其抗原结合部分、或权利要求9-40任一项所述的双特异性抗体。
  43. 一种工程化细胞,其包含根据权利要求42所述的载体。
  44. 一种药物组合物,其包含根据权利要求1-8任一所述的结合ALK-1的单克隆抗体或其抗原结合部分、根据权利要求9-40任一项所述的双特异性 抗体、根据权利要求41所述的多核苷酸、根据权利要求42所述的载体或根据权利要求43所述的细胞,和药学上可接受的载体。
  45. 根据权利要求1-8任一所述的结合ALK-1的单克隆抗体或其抗原结合部分、根据权利要求9-40任一项所述的双特异性抗体、根据权利要求41所述的多核苷酸、根据权利要求42所述的载体或根据权利要求43所述的细胞,和药学上可接受的载体或根据权利要求44所述的药物组合物在制备用于抑制肿瘤血管生成的药物中的用途。
  46. 根据权利要求1-8任一所述的结合ALK-1的单克隆抗体或其抗原结合部分、根据权利要求9-40任一项所述的双特异性抗体、根据权利要求41所述的多核苷酸、根据权利要求42所述的载体或根据权利要求43所述的细胞,和药学上可接受的载体或根据权利要求44所述的药物组合物在制备用于治疗肿瘤的药物中的用途;
    所述肿瘤实体肿瘤或血液肿瘤;
    优选地,所述肿瘤选自选自食管癌(例如食管腺癌和食管鳞状细胞癌)、脑瘤、肺癌(例如小细胞性肺癌和非小细胞性肺癌)、鳞状上皮细胞癌、膀胱癌、胃癌、卵巢癌、腹膜癌、胰腺癌、乳腺癌、头颈癌、子宫颈癌、子宫内膜癌、结直肠癌、肝癌、肠癌肝转移、肾癌、尿路上皮癌、非霍奇金淋巴瘤、中枢神经系统肿瘤(例如神经胶质瘤、多形性胶质母细胞瘤、胶质瘤或肉瘤)、前列腺癌或甲状腺癌。
  47. 一种药物组合物,包括权利要求9-24所述的双特异性抗体,和抗PD-1抗体、抗PD-L1抗体、细胞毒性类或非细胞毒性类小分子药物中的任意一种。
  48. 一种权利要求47所述组合物在制备治疗肿瘤药物中的用途,所述肿瘤 为实体肿瘤,优选地,所述实体瘤为肝细胞癌、肺癌、结直肠癌、胃癌、乳腺癌、食管鳞状细胞癌、尿路上皮癌、恶心胸膜间皮瘤。
  49. 一种药物组合物,包括权利要求1-8所述的双特异性抗体,和抗PD-1抗体、抗PD-L1抗体、细胞毒性类或非细胞毒性类小分子药物中的任意一种。
  50. 一种权利要求49所述组合物在制备治疗肿瘤药物中的用途,所述肿瘤为实体肿瘤;优选地,所述实体肿瘤为肝细胞癌、肺癌、结直肠癌、胃癌、乳腺癌、食管鳞状细胞癌、尿路上皮癌或恶心胸膜间皮瘤。
PCT/CN2024/072728 2023-01-18 2024-01-17 抗alk-1抗体及其用途 WO2024153115A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202310083522.1 2023-01-18
CN202310083522 2023-01-18
CN202311249366 2023-09-25
CN202311249366.8 2023-09-25

Publications (1)

Publication Number Publication Date
WO2024153115A1 true WO2024153115A1 (zh) 2024-07-25

Family

ID=91955290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/072728 WO2024153115A1 (zh) 2023-01-18 2024-01-17 抗alk-1抗体及其用途

Country Status (1)

Country Link
WO (1) WO2024153115A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517068A (zh) * 2005-09-07 2009-08-26 安进弗里蒙特公司 活化素受体样激酶-1的人单克隆抗体
WO2009134428A2 (en) * 2008-05-02 2009-11-05 Acceleron Pharma, Inc. Methods and compositions for modulating angiogenesis and pericyte composition
CN110669135A (zh) * 2018-07-03 2020-01-10 上海健信生物医药科技有限公司 一种双特异性抗体及其用途
CN110885377A (zh) * 2018-09-11 2020-03-17 上海洛启生物医药技术有限公司 抗cd47/vegf双特异性抗体及其应用
CN111344306A (zh) * 2017-11-02 2020-06-26 拜耳股份公司 结合alk-1和bmpr-2的双特异性抗体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517068A (zh) * 2005-09-07 2009-08-26 安进弗里蒙特公司 活化素受体样激酶-1的人单克隆抗体
WO2009134428A2 (en) * 2008-05-02 2009-11-05 Acceleron Pharma, Inc. Methods and compositions for modulating angiogenesis and pericyte composition
CN102099374A (zh) * 2008-05-02 2011-06-15 阿塞勒隆制药公司 用于调节血管发生和周细胞包裹的基于alk1拮抗剂的方法和组合物
CN111344306A (zh) * 2017-11-02 2020-06-26 拜耳股份公司 结合alk-1和bmpr-2的双特异性抗体
CN110669135A (zh) * 2018-07-03 2020-01-10 上海健信生物医药科技有限公司 一种双特异性抗体及其用途
CN110885377A (zh) * 2018-09-11 2020-03-17 上海洛启生物医药技术有限公司 抗cd47/vegf双特异性抗体及其应用

Similar Documents

Publication Publication Date Title
US11332541B2 (en) Multi-specific binding proteins for cancer treatment
CN108864290B (zh) 双特异性重组蛋白及其应用
CN109476732B (zh) 三特异性和/或三价结合蛋白
US11312785B2 (en) Antagonizing CD73 antibody
JP6944369B2 (ja) T細胞活性化二重特異性抗原結合分子cd3 abd葉酸受容体1(folr1)及びpd−1軸結合アンタゴニストの併用療法
WO2021104302A1 (zh) 抗pd-1-抗vegfa的双特异性抗体、其药物组合物及其用途
IL258214B (en) Antibodies - anti-pd-1 and preparations
KR102678252B1 (ko) 재조합 이중특이적 항체
KR20220075383A (ko) 암 치료용 다중 특이적 결합 단백질
CN111699200A (zh) 针对pd-1的单域抗体和其变体
KR20220057558A (ko) 항-cd73 항체
KR20220012313A (ko) 항-ror1/항-cd3 이중특이적 결합 분자
CN115836088A (zh) 结合nkg2d、cd16和clec12a的蛋白质
KR20210149141A (ko) 삼중특이적 결합 단백질, 이의 방법 및 용도
CN113321735B (zh) 一种多功能融合蛋白
US20230235090A1 (en) Bispecific antibody and use thereof
KR20220044748A (ko) 4가 대칭 이중 특이적 항체
WO2024153115A1 (zh) 抗alk-1抗体及其用途
WO2022100613A1 (zh) 针对密蛋白18a2和cd3的双特异性抗体及其应用
JP2024521701A (ja) 抗cd137抗体及びその使用方法
CN116438198A (zh) 能够结合ror2的抗体以及结合ror2和cd3的双特异性抗体
WO2024067474A1 (zh) 靶向pd-1,ctla-4和vegf的三特异性抗体及其应用
WO2023030433A1 (zh) 抗alk-1/抗vegf双特异性抗体及其应用
JP2024508304A (ja) Claudin-6に対する抗体およびそれの使用
TW202400662A (zh) 結合pd-l1和cldn18.2的抗體及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24744290

Country of ref document: EP

Kind code of ref document: A1