WO2024150803A1 - Power storage element and method for producing same - Google Patents

Power storage element and method for producing same Download PDF

Info

Publication number
WO2024150803A1
WO2024150803A1 PCT/JP2024/000531 JP2024000531W WO2024150803A1 WO 2024150803 A1 WO2024150803 A1 WO 2024150803A1 JP 2024000531 W JP2024000531 W JP 2024000531W WO 2024150803 A1 WO2024150803 A1 WO 2024150803A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
current collector
electrode body
connection portion
electrode
Prior art date
Application number
PCT/JP2024/000531
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 小川
広徳 相田
良一 奥山
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024150803A1 publication Critical patent/WO2024150803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details

Definitions

  • the present invention relates to an energy storage element and a method for manufacturing the same.
  • a flat wound secondary battery that includes a wound group and a cylindrical battery can that houses the wound group.
  • the wound group is inserted into the open end of the flat cylindrical battery can and housed therein (see Patent Document 1).
  • the present invention therefore aims to provide an energy storage element and a manufacturing method thereof that can suppress damage to the electrode body during manufacturing.
  • the energy storage element comprises an electrode body having stacked plates including a connection portion, a current collector electrically connected to the connection portion of the electrode body, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector,
  • the container comprises a container body and a container lid body joined to the container body, the container body has a bottom wall arranged in the stacking direction of the electrode plates and a side wall that is provided in a state rising from at least a part of the periphery of the bottom wall
  • the current collector comprises a terminal connection portion and an electrode body connection portion, the terminal connection portion is joined to the terminal, and the electrode body connection portion is joined to the connection portion.
  • the energy storage element of the present invention can suppress damage to the electrode body during manufacturing.
  • FIG. 1 is a perspective view showing the appearance of an energy storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view showing the components of the energy storage device according to the embodiment.
  • FIG. 3 is a cross-sectional view showing a connection structure between a terminal and a current collector according to the embodiment.
  • FIG. 4 is a perspective view showing the configuration of an electrode body according to an embodiment.
  • FIG. 5 is an explanatory diagram showing a method for manufacturing an energy storage element according to an embodiment.
  • FIG. 6 is an explanatory diagram showing a manufacturing method of an energy storage element according to the first modification.
  • FIG. 7 is an explanatory diagram showing a manufacturing method of an energy storage element according to the second modification.
  • FIG. 8 is an explanatory diagram showing an energy storage device including the energy storage element according to the embodiment.
  • An energy storage element comprises an electrode body having stacked plates including a connection portion, a current collector electrically connected to the connection portion of the electrode body, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector,
  • the container comprises a container body and a container lid that is joined to the container body,
  • the container body has a bottom wall that is arranged in the stacking direction of the electrode plates and a side wall that is provided in a state that rises from at least a part of the periphery of the bottom wall
  • the current collector comprises a terminal connection portion and an electrode body connection portion, the terminal connection portion is joined to the terminal, and the electrode body connection portion is joined to the connection portion.
  • the friction that the electrode body experiences from the container body when inserting the electrode body into the container can be reduced. In other words, damage to the electrode body during manufacturing can be suppressed.
  • the side walls may be provided in a state where they rise from the entire periphery of the bottom wall.
  • the electrodes are stacked in a first direction
  • the electrode body has a main body portion in which an active material layer is formed
  • the connection portion protrudes from the main body portion at both ends in a second direction intersecting with the first direction
  • the electrode body connection portion may be aligned along a third direction intersecting with the first direction and the second direction.
  • the container may have a rectangular shape in a plan view of the bottom wall with the corners cut out, and the terminal may be attached to the side wall in the cut-out portion.
  • the portion (active material layer forming portion) that contributes to the power generation (electricity storage) of the electrode body can be placed in a position adjacent to the cut-out portion inside the container. This makes it possible to reduce excess space inside the container and increase the energy density of the electricity storage element.
  • the electrode body connection portion may be disposed on the side of the electrode body opposite the bottom wall.
  • a manufacturing method for an energy storage element is a manufacturing method for an energy storage element including an electrode body having stacked electrode plates including a connection portion, a current collector electrically connected to the connection portion, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector, the container including a container body and a container lid body joined to the container body, the container body having a bottom wall and a side wall that is provided in a state rising from at least a part of the periphery of the bottom wall, the manufacturing method includes joining one end of the current collector to the terminal and joining the other end of the current collector to the connection portion, and then deforming the current collector between the one end and the other end.
  • the current collector is deformed between the one end and the other end.
  • This deformation causes the electrode body to be tilted onto the bottom wall.
  • the electrode body is simply tilted onto the bottom wall, so friction that the electrode body experiences from the container body can be reduced. In other words, damage to the electrode body during manufacturing can be suppressed.
  • the direction in which the short sides of the container face each other is defined as the X-axis direction.
  • the direction in which the long sides of the container face each other, the direction in which the container body and container lid are aligned, or the thickness direction of the container is defined as the Y-axis direction.
  • the direction in which the top and bottom surfaces of the container are aligned, or the up-down direction is defined as the Z-axis direction.
  • the positive X-axis direction refers to the direction of the X-axis arrow
  • the negative X-axis direction refers to the opposite direction to the positive X-axis direction.
  • the Y-axis direction may also be called the first direction
  • the X-axis direction may also be called the second direction
  • the Z-axis direction may also be called the third direction.
  • Expressions indicating relative directions or attitudes, such as parallel and orthogonal, may also include cases where the direction or attitude is not strictly speaking the same.
  • Two directions being orthogonal does not only mean that the two directions are completely orthogonal, but also means that they are substantially orthogonal, that is, there is a difference of about a few percent.
  • insulation when the word “insulation” is used, it means “electrical insulation”.
  • Fig. 1 is a perspective view showing the external appearance of the energy storage device 10 according to the embodiment.
  • Fig. 2 is an exploded perspective view showing each component of the energy storage device 10 according to the embodiment.
  • the energy storage element 10 is an energy storage element that can be charged with electricity from the outside and can discharge electricity to the outside, and in this embodiment, has a substantially rectangular parallelepiped shape.
  • the energy storage element 10 is a battery used for power storage or power supply purposes. Specifically, the energy storage element 10 is used as a battery for driving or starting the engine of a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway.
  • a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway.
  • AGV automatic guided vehicle
  • Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles.
  • Examples of the above-mentioned railway vehicles for an electric railway include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor.
  • the energy storage element 10 may be used as a stationary battery for home or business use.
  • the energy storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the energy storage element 10 may be a primary battery instead of a secondary battery.
  • the energy storage element 10 may be a battery using a solid electrolyte.
  • the energy storage element 10 may be a pouch-type energy storage element.
  • the energy storage element 10 based on a flat rectangular parallelepiped shape (approximately rectangular parallelepiped shape) is illustrated, but the shape of the energy storage element 10, i.e., the shape of the container 100, is not limited to a shape based on a rectangular parallelepiped shape, and may be a shape based on a polygonal prism shape other than a rectangular parallelepiped, an elongated cylinder shape, an elliptical cylinder shape, a cylindrical shape, or a cylindrical shape.
  • the energy storage element 10 comprises a container 100, a pair of terminals 300, and a pair of external gaskets 400.
  • a pair of internal gaskets 500, a pair of current collectors 600, and an electrode body 700 are housed inside the container 100.
  • the positive electrode components one terminal 300, one external gasket 400, one internal gasket 500, one current collector 600, etc., the same below
  • the negative electrode components are arranged at the other end of the container 100 in the negative direction of the X axis.
  • An electrolyte (non-aqueous electrolyte) is enclosed inside the container 100, but is not shown in the figure.
  • electrolyte non-aqueous electrolyte
  • spacers may be placed on the sides, above, or below the electrode body 700, and insulating films may be placed to insulate the electrode body 700 and the current collector 600 from the container 100.
  • the container 100 is a case having an outer shape (approximately rectangular parallelepiped shape) based on a flat rectangular parallelepiped shape that is long in the X-axis direction.
  • the length of the container 100 in the X-axis direction is three times or more than the length of the container 100 in the Z-axis direction.
  • the length of the container 100 in the X-axis direction is five times or more than the length of the container 100 in the Y-axis direction.
  • the rectangular parallelepiped shape that serves as the reference is illustrated by a two-dot chain line L1. Specifically, a pair of rectangular cutouts 101 are formed at the top of both ends of the container 100 in the X-axis direction.
  • the container 100 has a shape with a pair of cutouts 101 in which a pair of adjacent corners of a rectangle (including a square) are cut out when viewed in the Y-axis direction.
  • the pair of cutouts 101 are lined up in the X-axis direction.
  • the cutout 101 in the positive direction of the X-axis is referred to as the first cutout 110
  • the cutout 101 in the negative direction of the X-axis is referred to as the second cutout 120.
  • the first notch 110 is formed by a rectangular first side surface 111 parallel to the YZ plane, and a rectangular first upper surface 112 extending from the lower end of the first side surface 111 in the positive direction of the X axis and parallel to the XY plane.
  • the first notch 110 is a corner of the container 100 in the positive direction of the X axis and the positive direction of the Z axis that is missing in a square shape (L-shape) when viewed from the Y axis direction.
  • the second cutout 120 is formed by a rectangular second side surface 121 parallel to the YZ plane, and a rectangular second upper surface 122 extending from the lower end of the second side surface 121 in the negative X-axis direction and parallel to the XY plane.
  • the second cutout 120 is a recess in which the corner of the container 100 in the negative X-axis direction and the positive Z-axis direction is recessed into a square shape (L-shape) when viewed from the Y-axis direction.
  • the long sides 130 are opposite end faces in the Y-axis direction.
  • Each long side 130 is a flat surface parallel to the XZ plane and elongated in the X-axis direction, and both ends in the X-axis direction have a shape corresponding to each notch 101.
  • the short sides 113, 123 are the surfaces at both ends that face each other in the X-axis direction.
  • the short side 113 has an upper end that is continuous with the first upper surface 112 and is a rectangular flat surface parallel to the YZ plane.
  • the short side 123 has an upper end that is continuous with the second upper surface 122 and is a rectangular flat surface parallel to the YZ plane.
  • the end face facing the positive Z-axis direction is upper face 140
  • the end face facing the negative Z-axis direction is lower face 150.
  • Upper face 140 is a plane that connects the upper end of first side face 111 and the upper end of second side face 121, and is a rectangular plane parallel to the XY plane.
  • Lower face 150 is a plane that connects the lower end of short side face 113 and the lower end of short side face 123, and is a rectangular plane parallel to the XY plane.
  • the container 100 has a container body 160 and a container lid 170.
  • the container 100 has a roughly rectangular parallelepiped shape with the container body 160 and the container lid 170 assembled together.
  • the container body 160 has a long side 130 in the positive Y-axis direction, an upper surface 140, a lower surface 150, short sides 113, 123, a first side surface 111, a first upper surface 112, a second side surface 121, and a second upper surface 122.
  • the container body 160 has a shape in which one of a pair of long side walls of a substantially rectangular parallelepiped has been removed.
  • the container body 160 is a box with an opening in which one wall in the thickness direction (negative Y-axis direction) of a substantially rectangular parallelepiped having a short side wall and a long side wall is opened.
  • the container body 160 has a flat bottom wall 161 and a side wall 162 rising in the negative Y-axis direction from the entire circumference of the bottom wall 161.
  • the side wall 162 is formed by an upper surface 140, a lower surface 150, short side surfaces 113, 123, a first side surface 111, a first upper surface 112, a second side surface 121, and a second upper surface 122.
  • the side wall 162 forms an opening in which the electrode body 700 and the like are housed.
  • One of a pair of long side surfaces 130 of the container 100 is included in the bottom wall 161.
  • the length between the short side surface 113 of the side wall 162 and the short side surface 123 of the side wall 162 in the container body 160 is three times or more the length between the upper surface 140 of the side wall 162 and the lower surface 150 of the side wall 162 in the container 160.
  • the length of the long side of the bottom wall 161 (the length of the side in the X-axis direction) when viewed from the stacking direction of the electrode plates (Y-axis direction, first direction) is three times or more the length of the short side of the bottom wall 161 (the length of the side in the Z-axis direction).
  • the length between the short side surface 113 of the side wall 162 and the short side surface 123 of the side wall 162 in the container body 160 is five times or more the height of the side wall 162.
  • the length of the long side of the bottom wall 161 (the length of the side in the X-axis direction) is five times or more the height of the side wall 162 (the length of the side in the Y-axis direction).
  • the container lid 170 covers the opening formed by the side wall 162 of the container body 160.
  • the container lid 170 is joined to the side wall 162.
  • the other of the pair of long sides 130 of the container 100 is included in the container lid 170. Therefore, the pair of long sides 130 of the container 100 are the surface of the bottom wall 161 and the surface of the container lid 170.
  • the container 100 is sealed by accommodating the electrode body 700 and the like in the opening of the container body 160, and then joining the container body 160 and the container lid 170 by welding or the like.
  • the material of the container 100 (container body 160 and container lid 170) is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
  • the container body 160 is formed with a liquid injection section 168 and a gas exhaust valve 169.
  • the gas exhaust valve 169 is a safety valve that releases pressure when the pressure inside the container 100 rises excessively.
  • the liquid injection section 168 is a section for injecting electrolyte into the container 100 during the manufacture of the energy storage element 10.
  • the terminals 300 are terminals (positive electrode terminal 310 and negative electrode terminal 320) that are electrically connected to the electrode body 700 via the current collector 600.
  • the terminals 300 are metal members that lead out the electricity stored in the electrode body 700 to the external space of the energy storage element 10 and introduce electricity into the internal space of the energy storage element 10 to store electricity in the electrode body 700.
  • the material of the terminals 300 is not particularly limited, but the terminals 300 are formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy.
  • the terminals 300 are connected (joined) to the current collector 600 by crimping, welding, or the like, and are attached to the container body 160.
  • FIG. 3 is a cross-sectional view showing the connection structure between the terminal 300 according to the embodiment and the current collector 600, etc.
  • FIG. 3 is a cross-sectional view of a cut surface including the line III-III shown in FIG. 1.
  • FIG. 3 shows the connection structure of each component of the positive electrode, but the connection structure of each component of the negative electrode is basically the same.
  • the terminal 300 has a terminal body 330 and a shaft 340 protruding from the terminal body 330.
  • the terminal body 330 is a portion disposed outward from the terminal installation surface of the container 100.
  • the terminal 300 (terminal body 330) protrudes from the terminal installation surface of the container 100 in the Z-axis direction (third direction).
  • the terminal installation surface in this embodiment is the first upper surface 112 and the second upper surface 122.
  • the terminal installation surface is a surface on which the terminal body 330 is installed via the external gasket 400.
  • through holes 112a, 122a through which the shaft 340 penetrates are formed.
  • the shaft 340 is connected (joined) to the current collector 600 by being crimped in a state in which it penetrates the terminal installation surface, the external gasket 400, the internal gasket 500, and the current collector 600.
  • the current collectors 600 are arranged at both ends of the electrode body 700 in the X-axis direction (the positive end and the negative end in the second direction).
  • the current collectors 600 are connected (joined) to the electrode body 700 and the terminal 300, and are conductive members (positive electrode current collector 610 and negative electrode current collector 620) that electrically connect the electrode body 700 and the terminal 300.
  • conductive members positive electrode current collector 610 and negative electrode current collector 620
  • the positive electrode current collector 610 is formed of a conductive member such as aluminum or an aluminum alloy
  • the negative electrode current collector 620 is formed of a conductive member such as copper or a copper alloy.
  • the current collector 600 is formed by bending a plate-like member.
  • the current collector 600 has an electrode body connection part 630 and a terminal connection part 640.
  • the electrode body connection part 630 is a flat part that is connected (joined) to a connection part 720 of the electrode body 700 described later by welding, crimping, or the like.
  • the electrode body connection part 630 is disposed on the opposite side of the connection part 720 from the bottom wall 161.
  • the electrode body connection part 630 is connected to the connection part 720 in a position along the bottom wall 161.
  • the thickness of the folded part of the current collector 600 may be made thinner than the thickness of the other parts of the current collector 600. By making the folded part of the current collector 600 thinner, it can be easily folded.
  • the terminal connection portion 640 is a flat portion that is connected (joined) to the terminal 300 by crimping or welding. Specifically, the terminal connection portion 640 has a through hole 641, and the shaft portion 340 of the terminal 300 is crimped and joined through this through hole 641. The terminal connection portion 640 is connected to the shaft portion 340 in a position that is aligned with the side wall 162.
  • the external gasket 400 is a plate-shaped, rectangular insulating sealing member that is disposed between the container body 160 and the terminal 300 of the container 100, and insulates and seals between the container body 160 and the terminal 300.
  • the internal gasket 500 is a plate-shaped, rectangular insulating sealing member that is disposed between the container body 160 and the current collector 600, and insulates and seals between the container body 160 and the current collector 600.
  • the external gasket 400 and the internal gasket 500 are formed from electrically insulating resins such as polypropylene (PP), polyethylene (PE), polystyrene (PS), ABS resin, or composite materials thereof.
  • the electrode body 700 is an electricity storage element (power generating element) formed by winding an electrode plate. As shown in FIG. 2, the electrode body 700 is arranged with the winding axis L oriented along the X-axis direction.
  • the electrode body 700 has an elongated shape extending in the X-axis direction, and has an elliptical shape when viewed from the X-axis direction.
  • the X-axis direction is the direction in which a pair of short sides 113, 123 of the container 100 face each other.
  • the electrode body 700 has a shape that extends in the X-axis direction (second direction) to a length of 300 mm or more, specifically, to about 500 mm to 1500 mm.
  • the electrode body 700 has a length in the X-axis direction that is longer than the length in the Z-axis direction (third direction).
  • the electrode body 700 has a length in the X-axis direction that is three times or more longer than the length in the Z-axis direction.
  • the electrode body 700 has a main body 710 and two connection parts 720 that protrude from the main body 710 to both ends in the X-axis direction (the positive end and the negative end in the second direction). As described above, the connection parts 720 are connected (joined) to the current collector 600.
  • the direction in which the connection parts 720 protrude from the main body 710 is along the axis (winding axis L) about which the electrode plate is wound.
  • connection parts 720 protrude from both end faces of the main body 710 in the X-axis direction, one each.
  • a positive electrode connection part 721 is provided on one end face of the main body 710 in the positive X-axis direction, at a predetermined distance from the end face in the positive Z-axis direction.
  • a negative electrode connection part 722 is provided on the other end face of the main body 710 in the negative X-axis direction, at a predetermined distance from the end face in the positive Z-axis direction.
  • the electrode body 700 has a rectangular shape with corners cut out in a plan view of the flat part 712 described below. The cut-out parts correspond to the parts with the predetermined distance. Therefore, the electrode body 700 has a protrusion on the positive side in the Z-axis direction. The configuration of such an electrode body 700 will be described in detail below.
  • FIG. 4 is a perspective view showing the configuration of an electrode assembly 700 according to an embodiment. Specifically, Fig. 4 shows the configuration in a partially developed state in which the electrode plates in the electrode assembly 700 are wound. As shown in Fig. 4, the electrode assembly 700 has a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762.
  • the positive electrode plate 740 is an electrode plate in which a positive electrode active material layer 742 is formed on the surface of a positive electrode current collector foil 741, which is a strip-shaped metal foil. Aluminum or an aluminum alloy, etc. is used for the positive electrode current collector foil 741.
  • the negative electrode plate 750 is an electrode plate in which a negative electrode active material layer 752 is formed on the surface of a negative electrode current collector foil 751, which is a strip-shaped metal foil. Copper or a copper alloy, etc. is used for the negative electrode current collector foil 751.
  • any suitable known material can be used as long as it is a positive electrode active material and a negative electrode active material that can absorb and release lithium ions.
  • polyanion compounds such as LiMPO 4 , LiMSiO 4 , and LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, spinel-type lithium manganese oxides such as LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 , and lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) may be used.
  • lithium metal an alloy capable of absorbing and releasing lithium
  • a carbon material graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature baked carbon, amorphous carbon, etc.
  • silicon oxide etc.
  • Separators 761 and 762 are microporous sheets made of resin. Any known material can be used as the material for separators 761 and 762 as long as it does not impair the performance of energy storage element 10. Separators 761 and 762 may be made of woven fabric or nonwoven fabric that is insoluble in organic solvents, or a synthetic resin microporous film made of a polyolefin resin such as polyethylene.
  • the electrode body 700 is formed by winding the positive electrode plate 740, the negative electrode plate 750, and the separators 761 and 762. That is, the electrode body 700 is formed by stacking the negative electrode plate 750, the separator 761, the positive electrode plate 740, and the separator 762 in this order and winding them.
  • the positive electrode plate 740, the negative electrode plate 750, etc. are wound around the winding axis L extending in the X-axis direction to form the wound electrode body 700.
  • the winding axis L is a virtual axis that serves as the central axis when winding the positive electrode plate 740, the negative electrode plate 750, etc.
  • the winding axis L is a straight line that passes through the center of the electrode body 700 and is parallel to the X-axis direction.
  • the electrode body 700 is arranged in the container 100 with the winding axis L oriented along the direction in which the short side surfaces 113 and 123 of the container 100 face each other (second direction).
  • protruding pieces 743 are spaced apart on one edge of the positive electrode plate 740 in the winding axis direction (the edge in the positive direction of the X-axis).
  • multiple protruding pieces 753 are spaced apart on the other edge of the negative electrode plate 750 in the winding axis direction (the edge in the negative direction of the X-axis).
  • Protruding pieces 743 and 753 are portions where no active material layer containing active material is formed and where the metal foil (current collector foil) is exposed (active material layer non-formed portions).
  • the shaded areas in Figure 4 correspond to the active material layer non-formed portions.
  • the protruding pieces 743 of the positive electrode plate 740 overlap on one end surface of the main body 710.
  • the portion where the protruding pieces 743 of the positive electrode plate 740 overlap is the positive electrode connection portion 721.
  • the portion where the protruding pieces 753 of the negative electrode plate 750 overlap is the negative electrode connection portion 722.
  • the main body 710 is an elongated cylindrical portion (active material layer forming portion) formed by winding a portion where the positive electrode active material layer 742 is formed (coated), a portion where the negative electrode active material layer 752 is formed (coated), and separators 761, 762.
  • the main body 710 has a pair of curved portions 711 on both sides in the Z-axis direction, and a flat portion 712 between the pair of curved portions 711. It can also be said that the pair of curved portions 711 are positioned to sandwich the flat portion 712 in the Z-axis direction.
  • the curved portions 711 are curved portions in which the arc shape of the end portion in the Z-axis direction extends in the X-axis direction when viewed from the X-axis direction.
  • the curved portions 711 face the upper surface 140 and the lower surface 150, which are part of the side wall 162 of the container body 160.
  • the pair of curved portions 711 are curved portions that protrude from the flat portions 712 on both sides in the Z-axis direction when viewed from the X-axis direction.
  • the flat portion 712 is a rectangular, flat portion extending parallel to the XZ plane, connecting the ends of the pair of curved portions 711.
  • the flat portion 712 faces the bottom wall 161 of the container body 160 and the container lid 170.
  • a plurality of wound electrode plates (positive electrode plate 740 and negative electrode plate 750) are stacked in the Y-axis direction (first direction).
  • the Y-axis direction (first direction) is the stacking direction of the plurality of electrode plates.
  • the electrode body 700 is accommodated in the container 100 so that the stacking direction of the electrode plates in the flat portion 712 of the electrode body 700 is the Y-axis direction (first direction).
  • the bottom wall 161 of the container body 160 is arranged on one side of the stacking direction (positive Y-axis direction) of the electrode body 700, and the container lid 170 is arranged on the other side of the stacking direction (negative Y-axis direction).
  • the curved shape of the curved portion 711 is not limited to a semicircular arc shape, but may be a part of an ellipse, etc., and may be curved in any manner.
  • the outer surface of the flat portion 712 facing the Y-axis direction is not limited to being flat, but the outer surface may be slightly concave or slightly bulging.
  • FIG. 5 is an explanatory diagram showing a method for manufacturing the energy storage element 10 according to the embodiment.
  • the steps proceed in the order of (a), (b), and (c).
  • Fig. 5 shows a connection structure of each member of the positive electrode of the energy storage element 10, but the same is true for the connection structure of each member of the negative electrode.
  • An example is shown in which a manufacturing device performs each step, but an operator may also perform each step.
  • the manufacturing device crimps and joins the flat collector 600 to the shaft 340 of the terminal 300 with the external gasket 400, internal gasket 500, and terminal 300 placed in the cutout 101 (terminal installation surface) of the container body 160.
  • one end (terminal connection portion 640) of the collector 600 is joined to the shaft 340 of the terminal 300 in a position along the side wall 162 of the container body 160.
  • the collector 600 is raised up against the bottom wall 161 of the container body 160.
  • the manufacturing device joins the connection portion 720 of the electrode body 700 to the other end (electrode body connection portion 630) of the collector 600.
  • the electrode body 700 is raised up against the bottom wall 161 of the container body 160. Specifically, the flat portion 712 of the electrode body 700 rises up along the first direction.
  • the current collector 600 rises up against the bottom wall 161, the current collector 600 does not need to be at a right angle to the bottom wall 161. It is sufficient that the electrode body 700 is raised at an angle that does not interfere with the bottom wall 161 during the operation of joining the current collector 600 and the electrode body 700.
  • the manufacturing device tilts the other end of the current collector 600 until the other end is aligned with the bottom wall 161, thereby bending and deforming the portion between one end and the other end of the current collector 600.
  • the current collector 600 is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300. This bent portion is referred to as the bent portion 650.
  • the bent portion 650 is formed along the X-axis direction.
  • the bent portion 650 is aligned with the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction).
  • the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is accommodated in the container main body 160 in a position along the bottom wall 161.
  • the electrode body 700 is tilted with the bent portion 650 as a reference.
  • the end of the body 710 in the positive Z-axis direction is positioned between a pair of notches 101 in the container body 160 (see FIG. 5(c)).
  • the manufacturing device closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and joins the container lid 170 to the side wall 162.
  • one end (terminal connection portion 640) of the current collector 600 is connected to the terminal 300, and the current collector 600 is arranged so as to rise up against the bottom wall 161.
  • the connection portion 720 of the electrode body 700 is joined to the other end (electrode body connection portion 630) of the current collector 600, and then the area between one end and the other end of the current collector 600 is deformed until the other end is in a position along the bottom wall 161.
  • the other end of the current collector 600 and the electrode body 700 are tilted, and the electrode body 700 is housed in the container body 160 in a position along the bottom wall 161.
  • the terminal connection portion 640 of the current collector 600 is joined to the terminal 300 in a position facing the side wall 162, and the electrode body connection portion 630 is bent with respect to the terminal connection portion 640 and in a position along the bottom wall 161.
  • the electrode body 700 is simply inverted on the bottom wall 161, so that the friction that the electrode body 700 receives from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacture can be suppressed.
  • This embodiment differs from the method of inserting the electrode body into the container from an opening in the short side wall of a rectangular container.
  • the electrode body 700 is inserted into the container from an opening in the long side wall of a rectangular container. Since the electrode body 700 is inserted from an opening in the long side wall, which has a larger area than the short side wall, damage to the electrode body 700 can be suppressed.
  • the electrodes (positive electrode plate 740, negative electrode plate 750) of the energy storage element 10 are stacked in the Y-axis direction (first direction).
  • the electrode body 700 has a main body 710 on which an active material layer is formed, and the connection portion 720 protrudes from the main body 710 at both ends (positive end and negative end in the second direction) in the X-axis direction intersecting with the Y-axis direction.
  • the electrode body connection portion 630 of the current collector 600 is along the Z-axis direction (third direction) intersecting with the Y-axis direction and the X-axis direction. Therefore, the length of the electrode body connection portion 630 in the Z-axis direction is not limited by the main body 710 of the electrode body 700.
  • the electrode body connection portion 630 can be extended according to the length of the electrode body in the Z-axis direction. Therefore, the degree of freedom in designing the joint area and joint position in the joint between the electrode body connection portion 630 and the connection portion 720 increases. When the electrode body connection portion 630 is extended, it is sufficient to extend the length of the connection portion in the third direction.
  • the electrode body connection portion 630 is joined to the connection portion 720 along the connection portion 720 located at both ends of the electrode body 700 in the X-axis direction (second direction). This allows the electrode body 700 to be supported by the current collector 600 at both ends in the X-axis direction.
  • the current collector 600 supports the electrode body 700 along the connection portion 720, so that the electrode body 700 is tilted in a stable position.
  • the part (main body 710, convex part of the electrode body 700) that contributes to power generation (electricity storage) of the electrode body 700 can be arranged between the pair of cutout parts. This makes it possible to reduce excess space in the container 100 and increase the energy density of the energy storage element 10.
  • the main body 330 of the terminal 300 is arranged in the pair of cutout parts. This allows a bus bar for electrical connection to be arranged in the cutout parts (cutout parts 101) when electrically connecting multiple energy storage elements 10. Therefore, the cutout parts 101 can be effectively used.
  • the current collector 600 can be directly deformed, making it easier to deform it as intended.
  • the electrode body connection portion 630 of the current collector 600 is disposed on the opposite side of the bottom wall 161 of the electrode body 700.
  • the current collector 600 can be deformed as intended, which is preferable.
  • FIG. 6 is an explanatory diagram showing a manufacturing method of the energy storage element 10A according to the first modified example.
  • FIG. 6 corresponds to FIG. 5.
  • the manufacturing device attaches the external gasket 400, the internal gasket 500, and the terminal 300 to the notch 101 (terminal installation surface) in the container body 160, and then crimps and joins the bent plate-shaped current collector 600a to the shaft 340 of the terminal 300.
  • one end (terminal connection portion 640a) of the current collector 600a is joined to the shaft 340 of the terminal 300 in a position along the side wall 162 of the container body 160.
  • the intermediate portion between the one end and the other end (electrode body connection portion 630a) of the current collector 600a is bent to form a bent portion 650a.
  • the current collector 600a is bent in a J-shape as a whole in FIG. 6A, and the other end of the current collector 600a is raised relative to the bottom wall 161.
  • the manufacturing device joins the connection part 720 of the electrode body 700 to the other end of the current collector 600a.
  • the current collector 600a is raised relative to the bottom wall 161, it is not necessary for the current collector 600a to be at a right angle to the bottom wall 161. In the operation of joining the current collector 600a and the electrode body 700, it is sufficient that the electrode body 700 is raised at an angle that does not interfere with the bottom wall 161.
  • the manufacturing device tilts the other end of the current collector 600a until the other end is aligned with the bottom wall 161, thereby deforming the bent portion 650a.
  • the current collector 600a is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300 so that the angle of the bent portion 650a opens.
  • the bent portion 650a is formed along the X-axis direction.
  • the bent portion 650a is aligned with the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction).
  • the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is accommodated in the container main body 160 in a position along the bottom wall 161.
  • the electrode body 700 is tilted with the bent portion 650a as a reference.
  • the end of the body 710 in the positive Z-axis direction is positioned between a pair of notches 101 in the container body 160 (see FIG. 6(c)).
  • the manufacturing device closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and bonds the container lid 170 to the side wall 162.
  • the electrode body connection portion 630a of the current collector 600a is disposed between the bottom wall 161 of the container body 160 and the electrode body 700.
  • the electrode body 700 is simply inverted on the bottom wall 161, so the friction that the electrode body 700 experiences from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacture can be suppressed.
  • FIG. 7 is an explanatory diagram showing a manufacturing method of the energy storage element 10B according to the second modified example.
  • FIG. 7 is a diagram corresponding to FIG. 5.
  • the manufacturing device attaches the external gasket 400, the internal gasket 500, and the terminal 300 to the notch 101 (terminal installation surface) in the container body 160, and then crimps and joins the bent plate-shaped current collector 600b to the shaft 340 of the terminal 300.
  • the current collector 600b has a terminal connection portion 640b and a pair of electrode body connection portions 630b (630b1, 630b2) that sandwich the terminal connection portion 640b.
  • the terminal connection portion 640b is one end of the current collector 600b.
  • the pair of electrode body connection portions 630b (630b1, 630b2) are the other end portions of the current collector 600b.
  • the terminal connection portion 640b is joined to the shaft portion 340 of the terminal 300 in a position along the side wall 162 of the container body 160.
  • one electrode body connection portion 630b1 extends linearly from the terminal connection portion 640b and stands up against the bottom wall 161.
  • the other electrode body connection portion 630b2 is bent at the periphery of the tip (crimping portion) of the shaft portion 340 of the terminal 300 and stands up against the bottom wall 161. This bent portion is the bent portion 650b2.
  • the connection portion 720 of the electrode body 700 is disposed between the pair of electrode body connection portions 630b. In this state, the manufacturing device joins the connection portion 720 of the electrode body 700 to the pair of electrode body connection portions 630b.
  • the manufacturing device tilts each electrode body connection portion 630b until the pair of electrode body connection portions 630b are aligned with the bottom wall 161, whereby the current collector 600b is deformed between one end (terminal connection portion 640b) and the other end (electrode body connection portions 630b1, 630b2).
  • the bending (deformation) of one side of the current collector 600b will be described.
  • the intermediate portion between the electrode body connection portion 630b1 and the terminal connection portion 640b is bent at the periphery of the tip (crimping portion) of the shaft portion 340 of the terminal 300. This bent portion is the bent portion 650b1.
  • the bent portion 650b1 is formed along the X-axis direction.
  • the bent portion 650b1 is aligned along the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction).
  • the bending (deformation) of the other side of the current collector 600b will be described.
  • the current collector 600b is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300 so that the angle of the bent portion 650b2 is open.
  • the bent portion 650b2 is formed along the X-axis direction.
  • the bent portion 650b2 is along the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction).
  • the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is housed in the container body 160 in a position along the bottom wall 161.
  • the electrode body 700 is in a position along the bottom wall 161, the end of the main body portion 710 in the positive Z-axis direction is disposed between a pair of notches 101 in the container body 160 (see FIG. 7C).
  • the manufacturing apparatus closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and joins the container lid 170 to the side wall 162.
  • the electrode body 700 is simply tilted over the bottom wall 161, so that the friction that the electrode body 700 experiences from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacturing can be suppressed.
  • the shaft portion 340 of the terminal 300 is crimped inside the container 100 while penetrating the terminal installation surface, the external gasket 400, the internal gasket 500, and the current collector 600.
  • the shaft portion 340 is not limited to being crimped inside the container 100, and may be crimped outside the container 100.
  • the terminal body portion 330 of the terminal 300 may be disposed inside the container, and the shaft portion 340 may protrude from the terminal body portion 300 to the outside of the container 100.
  • the terminal 300 is joined to one end of the current collector 600, and then the electrode body 700 is joined to the other end of the current collector 600.
  • the order of the steps is not limited to this. In other words, the terminal 300 may be joined to the current collector 600 after the electrode body 700 is joined to the other end of the current collector 600.
  • a substantially rectangular parallelepiped container 100 having a first container member, which is a container body 160 with only one side open, and a second container member, which is a container lid 170 that covers that one side.
  • the first container member forms five of the six sides of the substantially rectangular parallelepiped shape
  • the second container member forms one side.
  • the number of substantially rectangular parallelepiped faces formed by the first container member and the second container member can be any number.
  • the first container member may form four sides and the second container member may form two sides, or of the six sides of the substantially rectangular parallelepiped shape, the first container member may form three sides and the second container member may form three sides.
  • a container 100 having a pair of notches 101 is exemplified. Any number of notches may be provided, and there may be no notches. Even if there is only one notch, the main body of the electrode body can be disposed in a position adjacent to the notch within the container. This makes it possible to reduce excess space within the container and increase the energy density of the energy storage element.
  • a wound type electrode body 700 is exemplified.
  • the shape of the electrode body is not limited to the wound type, and may be a stack type in which flat electrode plates are stacked, or a shape in which the electrode plates and/or separators are folded in an accordion-like shape (such as a shape in which the separator is folded in an accordion-like shape to sandwich a rectangular electrode plate, or a shape in which the electrode plate and the separator are stacked and then folded in an accordion-like shape).
  • the stacking direction of the electrode body may be the Y-axis direction.
  • a stack type or accordion-like folded electrode body has a tab portion protruding in the X-axis direction, and the tab portion and the current collector are joined. The tab portion may be separate from the electrode body, or may be integral with it.
  • FIG. 8 is an explanatory diagram showing an energy storage device including energy storage elements according to the embodiments. As shown in FIG. 8, multiple energy storage elements 10 are arranged inside the energy storage device 800.
  • the energy storage device 800 may include bus bars (not shown) that electrically connect the energy storage elements 10.
  • the energy storage device 800 may include a status monitoring device (not shown) that monitors the status of one or more energy storage elements 10.
  • the present invention can be applied to energy storage elements such as lithium-ion secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

This power storage element (10) is provided with: an electrode body (700) which has stacked electrode plates, while comprising a connection part (720); a collector (600) which is electrically connected to the connection part (720); a container (100) which houses the electrode body (700) and the collector (600); and a terminal (300) which is fitted to the container (100) and is electrically connected to the collector (600). The container (100) is provided with a container main body (160) and a container cover member (170) which is bonded to the container main body (160). The container main body (160) is provided with: a bottom wall (161) that is disposed in the stacking direction of the electrode plates; and a side wall (162) that is provided so as to extend upwardly from at least a part of the peripheral edge of the bottom wall (161). The collector (600) is provided with a terminal connection part (640) and an electrode body connection part (630). The terminal connection part (640) is bonded to the terminal (300), while the electrode body connection part (630) is bonded to the connection part (720).

Description

蓄電素子及びその製造方法Electric storage element and manufacturing method thereof
 本発明は、蓄電素子及びその製造方法に関する。 The present invention relates to an energy storage element and a method for manufacturing the same.
 従来、捲回群と、捲回群を収容する筒状の電池缶とを備えた扁平捲回形二次電池が知られている。製造時においては、扁平筒形の電池缶の開放端から捲回群が挿入されて収容される(特許文献1参照)。  Conventionally, a flat wound secondary battery is known that includes a wound group and a cylindrical battery can that houses the wound group. During manufacture, the wound group is inserted into the open end of the flat cylindrical battery can and housed therein (see Patent Document 1).
特開2013-161555号公報JP 2013-161555 A
 挿入時においては捲回群が電池缶から受ける摩擦や圧迫により、電極が損傷するおそれがある。 When inserting the battery, friction and pressure from the battery can on the wound group can cause damage to the electrodes.
 このため、本発明は、製造時における電極体の損傷を抑制可能な蓄電素子及びその製造方法を提供することを目的とする。 The present invention therefore aims to provide an energy storage element and a manufacturing method thereof that can suppress damage to the electrode body during manufacturing.
 本発明の一態様に係る蓄電素子は、接続部を含む、積層された極板を有する電極体と、前記電極体の接続部に電気的に接続される集電体と、前記電極体及び前記集電体を収容する容器と、前記容器に取り付けられて、前記集電体に電気的に接続される端子とを備え、前記容器は、容器本体と、前記容器本体に接合される容器蓋体とを備え、前記容器本体は、前記極板の積層方向に配置される底壁と、前記底壁の周縁の少なくとも一部から立ち上がった状態に設けられた側壁とを有し、前記集電体は端子接続部と電極体接続部とを備え、前記端子接続部は前記端子と接合されており、前記電極体接続部は前記接続部と接合されている。 The energy storage element according to one aspect of the present invention comprises an electrode body having stacked plates including a connection portion, a current collector electrically connected to the connection portion of the electrode body, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector, the container comprises a container body and a container lid body joined to the container body, the container body has a bottom wall arranged in the stacking direction of the electrode plates and a side wall that is provided in a state rising from at least a part of the periphery of the bottom wall, the current collector comprises a terminal connection portion and an electrode body connection portion, the terminal connection portion is joined to the terminal, and the electrode body connection portion is joined to the connection portion.
 本発明に係る蓄電素子によれば、製造時における電極体の損傷を抑制できる。 The energy storage element of the present invention can suppress damage to the electrode body during manufacturing.
図1は、実施の形態に係る蓄電素子の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of an energy storage device according to an embodiment. 図2は、実施の形態に係る蓄電素子を分解して各構成要素を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the components of the energy storage device according to the embodiment. 図3は、実施の形態に係る端子と、集電体等との接続構造を示す断面図である。FIG. 3 is a cross-sectional view showing a connection structure between a terminal and a current collector according to the embodiment. 図4は、実施の形態に係る電極体の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of an electrode body according to an embodiment. 図5は、実施の形態に係る蓄電素子の製造方法を示す説明図である。FIG. 5 is an explanatory diagram showing a method for manufacturing an energy storage element according to an embodiment. 図6は、変形例1に係る蓄電素子の製造方法を示す説明図である。FIG. 6 is an explanatory diagram showing a manufacturing method of an energy storage element according to the first modification. 図7は、変形例2に係る蓄電素子の製造方法を示す説明図である。FIG. 7 is an explanatory diagram showing a manufacturing method of an energy storage element according to the second modification. 図8は、実施の形態に係る蓄電素子を備えた蓄電装置を示す説明図である。FIG. 8 is an explanatory diagram showing an energy storage device including the energy storage element according to the embodiment.
 (1)本発明の一態様に係る蓄電素子は、接続部を含む、積層された極板を有する電極体と、前記電極体の接続部に電気的に接続される集電体と、前記電極体及び集電体を収容する容器と、前記容器に取り付けられて、前記集電体に電気的に接続される端子とを備え、前記容器は、容器本体と、前記容器本体に接合される容器蓋体とを備え、前記容器本体は、前記極板の積層方向に配置される底壁と、前記底壁の周縁の少なくとも一部から立ち上がった状態に設けられた側壁とを有し、前記集電体は端子接続部と電極体接続部とを備え、前記端子接続部は前記端子と接合されており、前記電極体接続部は前記接続部と接合されている。 (1) An energy storage element according to one aspect of the present invention comprises an electrode body having stacked plates including a connection portion, a current collector electrically connected to the connection portion of the electrode body, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector, the container comprises a container body and a container lid that is joined to the container body, the container body has a bottom wall that is arranged in the stacking direction of the electrode plates and a side wall that is provided in a state that rises from at least a part of the periphery of the bottom wall, the current collector comprises a terminal connection portion and an electrode body connection portion, the terminal connection portion is joined to the terminal, and the electrode body connection portion is joined to the connection portion.
 このような蓄電素子の製造時においては、電極体を容器に挿入する際に容器本体から電極体が受ける摩擦を低減できる。つまり、製造時における電極体の損傷を抑制できる。 When manufacturing such an energy storage element, the friction that the electrode body experiences from the container body when inserting the electrode body into the container can be reduced. In other words, damage to the electrode body during manufacturing can be suppressed.
 (2)上記(1)に記載の蓄電素子において、前記側壁は、前記底壁の周縁の全体から立ち上がった状態に設けられている、としてもよい。 (2) In the energy storage element described in (1) above, the side walls may be provided in a state where they rise from the entire periphery of the bottom wall.
 これによれば、側壁が底壁の周縁の全体から立ち上がった容器本体においても、製造時に電極体が容器本体から受ける摩擦を低減できる。したがって、このような容器本体においても製造時の電極体の損傷を抑制できる。 This allows the friction that the electrode body receives from the container body during manufacturing to be reduced, even in a container body whose side walls rise from the entire periphery of the bottom wall. Therefore, even in such a container body, damage to the electrode body during manufacturing can be suppressed.
 (3)上記(1)または(2)に記載の蓄電素子は、第一方向において前記極板は積層されており、前記電極体は、活物質層が形成されている本体部を備え、前記接続部は、前記第一方向と交差する第二方向の両端部において前記本体部から突出しており、前記電極体接続部は、前記第一方向および前記第二方向と交差する第三方向に沿っていてもよい。 (3) In the energy storage element described in (1) or (2) above, the electrodes are stacked in a first direction, the electrode body has a main body portion in which an active material layer is formed, the connection portion protrudes from the main body portion at both ends in a second direction intersecting with the first direction, and the electrode body connection portion may be aligned along a third direction intersecting with the first direction and the second direction.
 これによれば、集電体の電極体接続部を、電極体の本体部に制限されずに、第三方向に沿って、電極体の接続部に接合できる。したがって、接合面積や、接合位置を設計する際の自由度が増す。 This allows the electrode body connection part of the current collector to be joined to the electrode body connection part along the third direction without being restricted by the main body of the electrode body. This increases the degree of freedom when designing the joint area and joint position.
 (4)上記(1)から(3)のいずれかひとつに記載の蓄電素子において、前記容器は、前記底壁の平面視において長方形の角部が切り欠かれた形状であり、前記切り欠かれた部分における前記側壁に、前記端子が取り付けられている、としてもよい。 (4) In the energy storage element described in any one of (1) to (3) above, the container may have a rectangular shape in a plan view of the bottom wall with the corners cut out, and the terminal may be attached to the side wall in the cut-out portion.
 これによれば、切り欠かれた部分における側壁に、端子が取り付けられているので、容器内において切り欠かれた部位に隣り合う位置に電極体の発電(蓄電)に寄与する部位(活物質層形成部)を配置できる。したがって容器内における余剰空間を削減でき、蓄電素子のエネルギー密度を高めることができる。 With this, since the terminal is attached to the side wall of the cut-out portion, the portion (active material layer forming portion) that contributes to the power generation (electricity storage) of the electrode body can be placed in a position adjacent to the cut-out portion inside the container. This makes it possible to reduce excess space inside the container and increase the energy density of the electricity storage element.
 (5)上記(1)から(4)のいずれかひとつに記載の蓄電素子において、前記電極体接続部は、前記電極体において前記底壁とは反対側に配置されている、としてもよい。 (5) In the energy storage element described in any one of (1) to (4) above, the electrode body connection portion may be disposed on the side of the electrode body opposite the bottom wall.
 これによれば、集電体の他端部が電極体における底壁とは反対側に配置されているので、製造時に集電体を意図通りに変形でき、好適である。 This is advantageous because the other end of the current collector is positioned on the opposite side of the bottom wall of the electrode body, allowing the current collector to be deformed as intended during manufacturing.
 本発明の他の態様に係る蓄電素子の製造方法は、接続部を含む、積層された極板を有する電極体と、前記接続部に電気的に接続される集電体と、前記電極体及び前記集電体を収容する容器と、前記容器に取り付けられて、前記集電体に電気的に接続される端子とを備える蓄電素子の製造方法であって、前記容器は、容器本体と、前記容器本体に接合される容器蓋体とを備え、前記容器本体は、底壁と、前記底壁の周縁の少なくとも一部から立ち上がった状態に設けられた側壁とを有し、前記製造方法は、前記集電体の一端部と前記端子との接合、及び、前記集電体の他端部と前記接続部との接合を行ってから、前記一端部と前記他端部との間で前記集電体を変形させる。 A manufacturing method for an energy storage element according to another aspect of the present invention is a manufacturing method for an energy storage element including an electrode body having stacked electrode plates including a connection portion, a current collector electrically connected to the connection portion, a container that houses the electrode body and the current collector, and a terminal attached to the container and electrically connected to the current collector, the container including a container body and a container lid body joined to the container body, the container body having a bottom wall and a side wall that is provided in a state rising from at least a part of the periphery of the bottom wall, the manufacturing method includes joining one end of the current collector to the terminal and joining the other end of the current collector to the connection portion, and then deforming the current collector between the one end and the other end.
 これによれば、集電体の一端部と端子との接合及び集電体の他端部と接続部との接合を行ってから、一端部と他端部との間で集電体を変形させる。この変形に伴って、電極体を底壁上に倒すことができる。このように製造時においては、電極体は底壁上に倒されるだけであるので、容器本体から電極体が受ける摩擦を低減できる。つまり、製造時における電極体の損傷を抑制できる。 In this way, after joining one end of the current collector to the terminal and the other end of the current collector to the connection part, the current collector is deformed between the one end and the other end. This deformation causes the electrode body to be tilted onto the bottom wall. In this way, during manufacturing, the electrode body is simply tilted onto the bottom wall, so friction that the electrode body experiences from the container body can be reduced. In other words, damage to the electrode body during manufacturing can be suppressed.
 (実施の形態)
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電素子について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。本実施の形態の各構成部材(各構成要素)の名称は、本実施の形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
(Embodiment)
Hereinafter, with reference to the drawings, a description will be given of an energy storage element according to an embodiment (including its modified example) of the present invention. The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, the arrangement and connection forms of the components, the manufacturing process, and the order of the manufacturing process shown in the following embodiments are examples and are not intended to limit the present invention. In each figure, the dimensions are not strictly illustrated. In each figure, the same or similar components are given the same reference numerals. The names of the components (each component) in this embodiment are those in this embodiment and may differ from the names of the components (each component) in the background art.
 以下の説明及び図面中において、容器の短側面の対向方向をX軸方向と定義する。容器の長側面の対向方向、容器に備わる容器本体と容器蓋体との並び方向、または、容器の厚さ方向をY軸方向と定義する。容器の上面と下面との並び方向、または、上下方向をZ軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following explanation and drawings, the direction in which the short sides of the container face each other is defined as the X-axis direction. The direction in which the long sides of the container face each other, the direction in which the container body and container lid are aligned, or the thickness direction of the container is defined as the Y-axis direction. The direction in which the top and bottom surfaces of the container are aligned, or the up-down direction, is defined as the Z-axis direction. These X-axis, Y-axis, and Z-axis directions intersect with each other (orthogonal in this embodiment). Depending on the mode of use, it is possible that the Z-axis direction is not the up-down direction, but for ease of explanation, the following explanation will be given assuming that the Z-axis direction is the up-down direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。以下では、Y軸方向を第一方向とも呼び、X軸方向を第二方向とも呼び、Z軸方向を第三方向とも呼ぶ場合がある。平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、数%程度の差異を含むことも意味する。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。 In the following explanation, the positive X-axis direction refers to the direction of the X-axis arrow, and the negative X-axis direction refers to the opposite direction to the positive X-axis direction. The same applies to the Y-axis and Z-axis directions. Hereinafter, the Y-axis direction may also be called the first direction, the X-axis direction may also be called the second direction, and the Z-axis direction may also be called the third direction. Expressions indicating relative directions or attitudes, such as parallel and orthogonal, may also include cases where the direction or attitude is not strictly speaking the same. Two directions being orthogonal does not only mean that the two directions are completely orthogonal, but also means that they are substantially orthogonal, that is, there is a difference of about a few percent. In the following explanation, when the word "insulation" is used, it means "electrical insulation".
 [蓄電素子の全般的な説明]
 まず、図1及び図2を用いて、本実施の形態における蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10を分解して各構成要素を示す分解斜視図である。
[General Description of Energy Storage Element]
First, an overall description of an energy storage device 10 according to the present embodiment will be given with reference to Fig. 1 and Fig. 2. Fig. 1 is a perspective view showing the external appearance of the energy storage device 10 according to the embodiment. Fig. 2 is an exploded perspective view showing each component of the energy storage device 10 according to the embodiment.
 蓄電素子10は、外部からの電気を充電し、また外部へ電気を放電できる蓄電素子であり、本実施の形態では、略直方体形状を有している。蓄電素子10は、電力貯蔵用途または電源用途等に使用されるバッテリである。具体的には、蓄電素子10は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、無人搬送車(AGV:Automatic Guided Vehicle)、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、及び、化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電素子10は、家庭用または事業用等に使用される定置用のバッテリ等として用いてもよい。 The energy storage element 10 is an energy storage element that can be charged with electricity from the outside and can discharge electricity to the outside, and in this embodiment, has a substantially rectangular parallelepiped shape. The energy storage element 10 is a battery used for power storage or power supply purposes. Specifically, the energy storage element 10 is used as a battery for driving or starting the engine of a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway. Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles. Examples of the above-mentioned railway vehicles for an electric railway include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor. The energy storage element 10 may be used as a stationary battery for home or business use.
 蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子10は、二次電池ではなく、一次電池であってもよい。蓄電素子10は、固体電解質を用いた電池であってもよい。蓄電素子10は、パウチタイプの蓄電素子であってもよい。本実施の形態では、扁平な直方体形状を基準とした(略直方体形状の)蓄電素子10を図示しているが、蓄電素子10の形状、つまり容器100の形状は、直方体形状を基準とした形状には限定されず、直方体以外の多角柱形状、長円柱形状、楕円柱形状または円柱形状等を基準とした形状であってもよい。 The energy storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The energy storage element 10 may be a primary battery instead of a secondary battery. The energy storage element 10 may be a battery using a solid electrolyte. The energy storage element 10 may be a pouch-type energy storage element. In this embodiment, the energy storage element 10 based on a flat rectangular parallelepiped shape (approximately rectangular parallelepiped shape) is illustrated, but the shape of the energy storage element 10, i.e., the shape of the container 100, is not limited to a shape based on a rectangular parallelepiped shape, and may be a shape based on a polygonal prism shape other than a rectangular parallelepiped, an elongated cylinder shape, an elliptical cylinder shape, a cylindrical shape, or a cylindrical shape.
 図1及び図2に示すように、蓄電素子10は、容器100と、一対の端子300と、一対の外部ガスケット400とを備えている。容器100の内方には、一対の内部ガスケット500と、一対の集電体600と、電極体700と、が収容されている。具体的には、容器100におけるX軸プラス方向の一端部に、正極の各部材(一つの端子300、一つの外部ガスケット400、一つの内部ガスケット500及び一つの集電体600等。以下同様)が配置されている。容器100におけるX軸マイナス方向の他端部に、負極の各部材が配置されている。 As shown in Figures 1 and 2, the energy storage element 10 comprises a container 100, a pair of terminals 300, and a pair of external gaskets 400. A pair of internal gaskets 500, a pair of current collectors 600, and an electrode body 700 are housed inside the container 100. Specifically, the positive electrode components (one terminal 300, one external gasket 400, one internal gasket 500, one current collector 600, etc., the same below) are arranged at one end of the container 100 in the positive direction of the X axis. The negative electrode components are arranged at the other end of the container 100 in the negative direction of the X axis.
 容器100の内部には、電解液(非水電解質)が封入されているが、図示は省略する。当該電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択してもよい。上記の構成要素の他、電極体700の側方、上方または下方等に配置されるスペーサ、電極体700及び集電体600と容器100とを絶縁する絶縁フィルム等が配置されてもよい。 An electrolyte (non-aqueous electrolyte) is enclosed inside the container 100, but is not shown in the figure. There is no particular limit to the type of electrolyte as long as it does not impair the performance of the energy storage element 10, and various electrolytes may be selected. In addition to the above components, spacers may be placed on the sides, above, or below the electrode body 700, and insulating films may be placed to insulate the electrode body 700 and the current collector 600 from the container 100.
 容器100は、X軸方向に長尺である扁平な直方体形状を基準とした(略直方体形状の)外形を有するケースである。容器100のX軸方向の長さは、容器100のZ軸方向の長さの3倍以上となっている。容器100のX軸方向の長さは、容器100のY軸方向の長さの5倍以上となっている。図1では、基準となる直方体形状を二点鎖線L1で図示している。具体的には、容器100のX軸方向の両端の上部には、直方体形状の一対の切欠部101が形成されている。これにより、容器100は、Y軸方向視で、長方形(正方形を含む)の隣り合う一対の角部が切り欠かれた一対の切欠部101を有する形状となっている。一対の切欠部101は、X軸方向に並んでいる。一対の切欠部101のうち、X軸プラス方向の切欠部101を第一切欠部110と称し、X軸マイナス方向の切欠部101を第二切欠部120と称す。 The container 100 is a case having an outer shape (approximately rectangular parallelepiped shape) based on a flat rectangular parallelepiped shape that is long in the X-axis direction. The length of the container 100 in the X-axis direction is three times or more than the length of the container 100 in the Z-axis direction. The length of the container 100 in the X-axis direction is five times or more than the length of the container 100 in the Y-axis direction. In FIG. 1, the rectangular parallelepiped shape that serves as the reference is illustrated by a two-dot chain line L1. Specifically, a pair of rectangular cutouts 101 are formed at the top of both ends of the container 100 in the X-axis direction. As a result, the container 100 has a shape with a pair of cutouts 101 in which a pair of adjacent corners of a rectangle (including a square) are cut out when viewed in the Y-axis direction. The pair of cutouts 101 are lined up in the X-axis direction. Of the pair of cutouts 101, the cutout 101 in the positive direction of the X-axis is referred to as the first cutout 110, and the cutout 101 in the negative direction of the X-axis is referred to as the second cutout 120.
 具体的には、第一切欠部110は、YZ面に平行な矩形状の第一側面111と、第一側面111の下端からX軸プラス方向に延びて、XY面に平行な矩形状の第一上面112とにより形成されている。第一切欠部110は、容器100のX軸プラス方向かつZ軸プラス方向の角部が、Y軸方向から見て四角形状(L字状)に欠けた部分である。 Specifically, the first notch 110 is formed by a rectangular first side surface 111 parallel to the YZ plane, and a rectangular first upper surface 112 extending from the lower end of the first side surface 111 in the positive direction of the X axis and parallel to the XY plane. The first notch 110 is a corner of the container 100 in the positive direction of the X axis and the positive direction of the Z axis that is missing in a square shape (L-shape) when viewed from the Y axis direction.
 第二切欠部120は、YZ面に平行な矩形状の第二側面121と、第二側面121の下端からX軸マイナス方向に延びて、XY面に平行な矩形状の第二上面122とにより形成されている。第二切欠部120は、容器100のX軸マイナス方向かつZ軸プラス方向の角部が、Y軸方向から見て四角形状(L字状)に凹んだ凹部である。 The second cutout 120 is formed by a rectangular second side surface 121 parallel to the YZ plane, and a rectangular second upper surface 122 extending from the lower end of the second side surface 121 in the negative X-axis direction and parallel to the XY plane. The second cutout 120 is a recess in which the corner of the container 100 in the negative X-axis direction and the positive Z-axis direction is recessed into a square shape (L-shape) when viewed from the Y-axis direction.
 容器100において、長側面130はY軸方向で対向する両端面である。各長側面130は、XZ面に平行かつX軸方向に長尺な平面であり、そのX軸方向の両端部が各切欠部101に対応した形状となっている。 In the container 100, the long sides 130 are opposite end faces in the Y-axis direction. Each long side 130 is a flat surface parallel to the XZ plane and elongated in the X-axis direction, and both ends in the X-axis direction have a shape corresponding to each notch 101.
 容器100において、短側面113、123は、X軸方向で対向する両端の面である。短側面113は、上端が第一上面112に連続し、YZ面に平行な矩形状の平面である。短側面123は、上端が第二上面122に連続し、YZ面に平行な矩形状の平面である。 In the container 100, the short sides 113, 123 are the surfaces at both ends that face each other in the X-axis direction. The short side 113 has an upper end that is continuous with the first upper surface 112 and is a rectangular flat surface parallel to the YZ plane. The short side 123 has an upper end that is continuous with the second upper surface 122 and is a rectangular flat surface parallel to the YZ plane.
 容器100においてZ軸方向で対向する両端面のうち、Z軸プラス方向の端面が上面140であり、Z軸マイナス方向の端面が下面150である。上面140は、第一側面111の上端と、第二側面121の上端とを結ぶ平面であり、XY面に平行な矩形状の平面である。下面150は、短側面113の下端と短側面123の下端とを結ぶ平面であり、XY面に平行な矩形状の平面である。 Of the two end faces of container 100 that face each other in the Z-axis direction, the end face facing the positive Z-axis direction is upper face 140, and the end face facing the negative Z-axis direction is lower face 150. Upper face 140 is a plane that connects the upper end of first side face 111 and the upper end of second side face 121, and is a rectangular plane parallel to the XY plane. Lower face 150 is a plane that connects the lower end of short side face 113 and the lower end of short side face 123, and is a rectangular plane parallel to the XY plane.
 容器100は、容器本体160と容器蓋体170とを有している。容器100は、容器本体160と容器蓋体170とが組み付けられることで略直方体形状をなしている。容器本体160は、Y軸プラス方向の長側面130と、上面140と、下面150と、短側面113、123と、第一側面111と、第一上面112と、第二側面121と、第二上面122とを有している。 The container 100 has a container body 160 and a container lid 170. The container 100 has a roughly rectangular parallelepiped shape with the container body 160 and the container lid 170 assembled together. The container body 160 has a long side 130 in the positive Y-axis direction, an upper surface 140, a lower surface 150, short sides 113, 123, a first side surface 111, a first upper surface 112, a second side surface 121, and a second upper surface 122.
 容器本体160は、略直方体が有する一対の長側壁のうちの一方の長側壁が除去された形状を有している。言い換えると、容器本体160は、短側壁と長側壁とを有する略直方体の厚さ方向における一方(Y軸マイナス方向)の壁が開放された、開口を有する箱である。容器本体160は、平板状の底壁161と、底壁161の全周からY軸マイナス方向に立ち上がる側壁162とを有している。側壁162は、上面140と、下面150と、短側面113、123と、第一側面111と、第一上面112と、第二側面121と、第二上面122とで形成されている。側壁162は、電極体700等が収容される開口を形成している。容器100が有する一対の長側面130の一方は、底壁161に含まれる。 The container body 160 has a shape in which one of a pair of long side walls of a substantially rectangular parallelepiped has been removed. In other words, the container body 160 is a box with an opening in which one wall in the thickness direction (negative Y-axis direction) of a substantially rectangular parallelepiped having a short side wall and a long side wall is opened. The container body 160 has a flat bottom wall 161 and a side wall 162 rising in the negative Y-axis direction from the entire circumference of the bottom wall 161. The side wall 162 is formed by an upper surface 140, a lower surface 150, short side surfaces 113, 123, a first side surface 111, a first upper surface 112, a second side surface 121, and a second upper surface 122. The side wall 162 forms an opening in which the electrode body 700 and the like are housed. One of a pair of long side surfaces 130 of the container 100 is included in the bottom wall 161.
 容器本体160における側壁162の短側面113と側壁162の短側面123との間の長さは、容器160における側壁162の上面140と側壁162の下面150との間の長さの3倍以上となっている。つまり、極板の積層方向(Y軸方向、第一方向)からみて底壁161の長い辺の長さ(X軸方向の辺の長さ)は、底壁161の短い辺の長さ(Z軸方向の辺の長さ)の3倍以上となっている。容器本体160における側壁162の短側面113と側壁162の短側面123との間の長さは、側壁162の高さの5倍以上となっている。つまり、底壁161の長い辺の長さ(X軸方向の辺の長さ)は、側壁162の高さ(Y軸方向の辺の長さ)の5倍以上となっている。 The length between the short side surface 113 of the side wall 162 and the short side surface 123 of the side wall 162 in the container body 160 is three times or more the length between the upper surface 140 of the side wall 162 and the lower surface 150 of the side wall 162 in the container 160. In other words, the length of the long side of the bottom wall 161 (the length of the side in the X-axis direction) when viewed from the stacking direction of the electrode plates (Y-axis direction, first direction) is three times or more the length of the short side of the bottom wall 161 (the length of the side in the Z-axis direction). The length between the short side surface 113 of the side wall 162 and the short side surface 123 of the side wall 162 in the container body 160 is five times or more the height of the side wall 162. In other words, the length of the long side of the bottom wall 161 (the length of the side in the X-axis direction) is five times or more the height of the side wall 162 (the length of the side in the Y-axis direction).
 容器蓋体170は、容器本体160の側壁162がなす開口を覆っている。容器蓋体170は、側壁162に接合されている。容器100が有する一対の長側面130の他方は、容器蓋体170に含まれる。したがって、容器100の一対の長側面130は、底壁161の表面および容器蓋体170の表面である。このような構成により、容器100は、電極体700等を容器本体160の開口に収容後、容器本体160と容器蓋体170とが溶接等によって接合されることで、密封される。容器100(容器本体160及び容器蓋体170)の材質は特に限定されないが、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属であるのが好ましい。 The container lid 170 covers the opening formed by the side wall 162 of the container body 160. The container lid 170 is joined to the side wall 162. The other of the pair of long sides 130 of the container 100 is included in the container lid 170. Therefore, the pair of long sides 130 of the container 100 are the surface of the bottom wall 161 and the surface of the container lid 170. With this configuration, the container 100 is sealed by accommodating the electrode body 700 and the like in the opening of the container body 160, and then joining the container body 160 and the container lid 170 by welding or the like. The material of the container 100 (container body 160 and container lid 170) is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
 容器本体160には注液部168と、ガス排出弁169とが形成されている。ガス排出弁169は、容器100内方の圧力が過度に上昇した場合に当該圧力を開放する安全弁である。注液部168は、蓄電素子10の製造時に容器100の内方に電解液を注液するための部位である。 The container body 160 is formed with a liquid injection section 168 and a gas exhaust valve 169. The gas exhaust valve 169 is a safety valve that releases pressure when the pressure inside the container 100 rises excessively. The liquid injection section 168 is a section for injecting electrolyte into the container 100 during the manufacture of the energy storage element 10.
 端子300は、集電体600を介して、電極体700に電気的に接続される端子(正極端子310及び負極端子320)である。つまり、端子300は、電極体700に蓄えられている電気を蓄電素子10の外部空間に導出し、電極体700に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の部材である。端子300の材質は特に限定されないが、端子300は、アルミニウム、アルミニウム合金、銅または銅合金等の導電部材で形成されている。端子300は、かしめ接合または溶接等によって、集電体600に接続(接合)され、かつ、容器本体160に取り付けられる。 The terminals 300 are terminals (positive electrode terminal 310 and negative electrode terminal 320) that are electrically connected to the electrode body 700 via the current collector 600. In other words, the terminals 300 are metal members that lead out the electricity stored in the electrode body 700 to the external space of the energy storage element 10 and introduce electricity into the internal space of the energy storage element 10 to store electricity in the electrode body 700. The material of the terminals 300 is not particularly limited, but the terminals 300 are formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy. The terminals 300 are connected (joined) to the current collector 600 by crimping, welding, or the like, and are attached to the container body 160.
 図3は、実施の形態に係る端子300と、集電体600等との接続構造を示す断面図である。図3は図1に示すIII-III線を含む切断面を見た断面図である。図3では、正極の各部材の接続構造を示しているが、負極の各部材の接続構造においても基本的には同様である。 FIG. 3 is a cross-sectional view showing the connection structure between the terminal 300 according to the embodiment and the current collector 600, etc. FIG. 3 is a cross-sectional view of a cut surface including the line III-III shown in FIG. 1. FIG. 3 shows the connection structure of each component of the positive electrode, but the connection structure of each component of the negative electrode is basically the same.
 図3に示すように、端子300は、端子本体部330と、端子本体部330から突出した軸部340とを有している。端子本体部330は、容器100における端子設置面よりも外方に配置された部位である。端子300は(端子本体部330)は、Z軸方向(第三方向)において、容器100の端子設置面から突出している。本実施形態の端子設置面は、第一上面112及び第二上面122である。端子設置面は、外部ガスケット400を介して端子本体部330が設置される面である。各端子設置面に対応する箇所には、軸部340が貫通する貫通孔112a、122aが形成されている。軸部340は、端子設置面、外部ガスケット400、内部ガスケット500及び集電体600を貫通した状態でかしめられることで、集電体600に接続(接合)されている。 As shown in FIG. 3, the terminal 300 has a terminal body 330 and a shaft 340 protruding from the terminal body 330. The terminal body 330 is a portion disposed outward from the terminal installation surface of the container 100. The terminal 300 (terminal body 330) protrudes from the terminal installation surface of the container 100 in the Z-axis direction (third direction). The terminal installation surface in this embodiment is the first upper surface 112 and the second upper surface 122. The terminal installation surface is a surface on which the terminal body 330 is installed via the external gasket 400. At the locations corresponding to each terminal installation surface, through holes 112a, 122a through which the shaft 340 penetrates are formed. The shaft 340 is connected (joined) to the current collector 600 by being crimped in a state in which it penetrates the terminal installation surface, the external gasket 400, the internal gasket 500, and the current collector 600.
 集電体600は、電極体700のX軸方向の両端部(第二方向のプラス側端部およびマイナス側端部)に一つずつ配置されている。集電体600は、電極体700と端子300とに接続(接合)されて、電極体700と端子300とを電気的に接続する導電性を備えた部材(正極集電体610及び負極集電体620)である。集電体600の材質は特に限定されないが、正極集電体610は、アルミニウムまたはアルミニウム合金等の導電部材で形成され、負極集電体620は、銅または銅合金等の導電部材で形成されている。 The current collectors 600 are arranged at both ends of the electrode body 700 in the X-axis direction (the positive end and the negative end in the second direction). The current collectors 600 are connected (joined) to the electrode body 700 and the terminal 300, and are conductive members (positive electrode current collector 610 and negative electrode current collector 620) that electrically connect the electrode body 700 and the terminal 300. There are no particular limitations on the material of the current collectors 600, but the positive electrode current collector 610 is formed of a conductive member such as aluminum or an aluminum alloy, and the negative electrode current collector 620 is formed of a conductive member such as copper or a copper alloy.
 具体的には、集電体600は、一枚の板状部材を折り曲げて形成されている。集電体600は、電極体接続部630と、端子接続部640とを有している。電極体接続部630は、後述する電極体700の接続部720と溶接またはかしめ接合等により接続(接合)される平板状の部位である。電極体接続部630は、接続部720において底壁161とは反対側に配置されている。電極体接続部630は、底壁161に沿った姿勢で接続部720に接続されている。集電体600の折り曲げられる部分の厚さを集電体600の他の部分の厚さより薄くしてもよい。集電体600の折り曲げられる部分の厚さを薄くすることで容易に折り曲げることができる。 Specifically, the current collector 600 is formed by bending a plate-like member. The current collector 600 has an electrode body connection part 630 and a terminal connection part 640. The electrode body connection part 630 is a flat part that is connected (joined) to a connection part 720 of the electrode body 700 described later by welding, crimping, or the like. The electrode body connection part 630 is disposed on the opposite side of the connection part 720 from the bottom wall 161. The electrode body connection part 630 is connected to the connection part 720 in a position along the bottom wall 161. The thickness of the folded part of the current collector 600 may be made thinner than the thickness of the other parts of the current collector 600. By making the folded part of the current collector 600 thinner, it can be easily folded.
 端子接続部640は、端子300とかしめ接合または溶接等により接続(接合)される平板状の部位である。具体的には、端子接続部640は、貫通孔641を有しており、この貫通孔641を介して端子300の軸部340がかしめ接合されている。端子接続部640は、側壁162に沿った姿勢で軸部340に接続されている。 The terminal connection portion 640 is a flat portion that is connected (joined) to the terminal 300 by crimping or welding. Specifically, the terminal connection portion 640 has a through hole 641, and the shaft portion 340 of the terminal 300 is crimped and joined through this through hole 641. The terminal connection portion 640 is connected to the shaft portion 340 in a position that is aligned with the side wall 162.
 外部ガスケット400は、容器100の容器本体160と端子300との間に配置され、容器本体160と端子300との間を絶縁し、かつシールする板状かつ矩形状の絶縁性のシール部材である。内部ガスケット500は、容器本体160と集電体600との間に配置され、容器本体160と集電体600との間を絶縁し、かつシールする板状かつ矩形状の絶縁性のシール部材である。外部ガスケット400及び内部ガスケット500は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ABS樹脂、若しくは、それらの複合材料等の電気的な絶縁性を有する樹脂等によって形成されている。 The external gasket 400 is a plate-shaped, rectangular insulating sealing member that is disposed between the container body 160 and the terminal 300 of the container 100, and insulates and seals between the container body 160 and the terminal 300. The internal gasket 500 is a plate-shaped, rectangular insulating sealing member that is disposed between the container body 160 and the current collector 600, and insulates and seals between the container body 160 and the current collector 600. The external gasket 400 and the internal gasket 500 are formed from electrically insulating resins such as polypropylene (PP), polyethylene (PE), polystyrene (PS), ABS resin, or composite materials thereof.
 電極体700は、極板が巻回されて形成された蓄電要素(発電要素)である。図2に示すように、電極体700は、巻回軸LがX軸方向に沿う向きで配置されている。電極体700は、X軸方向に延びる長尺な形状であって、X軸方向から見て長円形状を有している。本実施の形態では、X軸方向は、容器100の一対の短側面113、123が対向する方向である。電極体700は、X軸方向の長さが300mm以上、具体的には、500mm~1500mm程度までX軸方向(第二方向)に延びる形状を有している。このため、電極体700は、Z軸方向(第三方向)の長さよりもX軸方向の長さが長くなっている。電極体700は、Z軸方向の長さに対し、X軸方向の長さが3倍以上となっている。電極体700は、本体部710と、本体部710からX軸方向の両端部(第二方向のプラス側端部およびマイナス側端部)に突出した二つの接続部720とを有する。上述の通り、接続部720が集電体600に接続(接合)される。接続部720が本体部710から突出する方向は、極板が巻回される軸(巻回軸L)に沿っている。 The electrode body 700 is an electricity storage element (power generating element) formed by winding an electrode plate. As shown in FIG. 2, the electrode body 700 is arranged with the winding axis L oriented along the X-axis direction. The electrode body 700 has an elongated shape extending in the X-axis direction, and has an elliptical shape when viewed from the X-axis direction. In this embodiment, the X-axis direction is the direction in which a pair of short sides 113, 123 of the container 100 face each other. The electrode body 700 has a shape that extends in the X-axis direction (second direction) to a length of 300 mm or more, specifically, to about 500 mm to 1500 mm. For this reason, the electrode body 700 has a length in the X-axis direction that is longer than the length in the Z-axis direction (third direction). The electrode body 700 has a length in the X-axis direction that is three times or more longer than the length in the Z-axis direction. The electrode body 700 has a main body 710 and two connection parts 720 that protrude from the main body 710 to both ends in the X-axis direction (the positive end and the negative end in the second direction). As described above, the connection parts 720 are connected (joined) to the current collector 600. The direction in which the connection parts 720 protrude from the main body 710 is along the axis (winding axis L) about which the electrode plate is wound.
 具体的には、二つの接続部720は、本体部710のX軸方向の両端面から一つずつ突出している。本体部710のX軸プラス方向の一端面には、Z軸プラス方向の端部から所定の間隔をあけて正極接続部721が設けられている。一方、本体部710のX軸マイナス方向の他端面には、Z軸プラス方向の端部から所定の間隔をあけて負極接続部722が設けられている。図2に示すように、電極体700は、後述する平坦部712の平面視において、長方形の角部が切り欠かれた形状になっている。切り欠かれた部分は、上記の所定の間隔をあけられた部分に相当する。したがって、電極体700は、Z軸方向のプラス側に凸部を有している。このような電極体700の構成について、以下に詳細に説明する。 Specifically, the two connection parts 720 protrude from both end faces of the main body 710 in the X-axis direction, one each. A positive electrode connection part 721 is provided on one end face of the main body 710 in the positive X-axis direction, at a predetermined distance from the end face in the positive Z-axis direction. On the other hand, a negative electrode connection part 722 is provided on the other end face of the main body 710 in the negative X-axis direction, at a predetermined distance from the end face in the positive Z-axis direction. As shown in FIG. 2, the electrode body 700 has a rectangular shape with corners cut out in a plan view of the flat part 712 described below. The cut-out parts correspond to the parts with the predetermined distance. Therefore, the electrode body 700 has a protrusion on the positive side in the Z-axis direction. The configuration of such an electrode body 700 will be described in detail below.
 [電極体の構成の説明]
 図4は、実施の形態に係る電極体700の構成を示す斜視図である。具体的には、図4は、電極体700における極板の巻回状態を一部展開した状態での構成を示している。図4に示すように、電極体700は、正極板740と、負極板750と、セパレータ761、762と、を有している。
[Explanation of the configuration of the electrode body]
Fig. 4 is a perspective view showing the configuration of an electrode assembly 700 according to an embodiment. Specifically, Fig. 4 shows the configuration in a partially developed state in which the electrode plates in the electrode assembly 700 are wound. As shown in Fig. 4, the electrode assembly 700 has a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762.
 正極板740は、帯状の金属箔である正極集電箔741の表面に、正極活物質層742が形成された極板(電極板)である。正極集電箔741には、アルミニウムまたはアルミニウム合金等が用いられる。負極板750は、帯状の金属箔である負極集電箔751の表面に、負極活物質層752が形成された極板(電極板)である。負極集電箔751には、銅または銅合金等からなるが用いられる。正極活物質層742に用いられる正極活物質、及び、負極活物質層752に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質及び負極活物質であれば、適宜公知の材料を使用できる。 The positive electrode plate 740 is an electrode plate in which a positive electrode active material layer 742 is formed on the surface of a positive electrode current collector foil 741, which is a strip-shaped metal foil. Aluminum or an aluminum alloy, etc. is used for the positive electrode current collector foil 741. The negative electrode plate 750 is an electrode plate in which a negative electrode active material layer 752 is formed on the surface of a negative electrode current collector foil 751, which is a strip-shaped metal foil. Copper or a copper alloy, etc. is used for the negative electrode current collector foil 751. As the positive electrode active material used in the positive electrode active material layer 742 and the negative electrode active material used in the negative electrode active material layer 752, any suitable known material can be used as long as it is a positive electrode active material and a negative electrode active material that can absorb and release lithium ions.
 正極活物質として、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、LiMn、LiMn1.5Ni0.5等のスピネル型リチウムマンガン酸化物、LiMO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いてもよい。負極活物質としては、リチウム金属、リチウムを吸蔵・放出可能な合金、炭素材料(黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、ケイ素酸化物などが挙げられる。 As the positive electrode active material, polyanion compounds such as LiMPO 4 , LiMSiO 4 , and LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, spinel-type lithium manganese oxides such as LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 , and lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) may be used. As the negative electrode active material, lithium metal, an alloy capable of absorbing and releasing lithium, a carbon material (graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature baked carbon, amorphous carbon, etc.), silicon oxide, etc. may be used.
 セパレータ761、762は、樹脂からなる微多孔性のシートである。セパレータ761、762の素材としては、蓄電素子10の性能を損なうものでなければ、適宜公知の材料を使用できる。セパレータ761、762として、有機溶剤に不溶な織布、不織布、ポリエチレン等のポリオレフィン樹脂からなる合成樹脂微多孔膜等を用いてもよい。 Separators 761 and 762 are microporous sheets made of resin. Any known material can be used as the material for separators 761 and 762 as long as it does not impair the performance of energy storage element 10. Separators 761 and 762 may be made of woven fabric or nonwoven fabric that is insoluble in organic solvents, or a synthetic resin microporous film made of a polyolefin resin such as polyethylene.
 電極体700は、正極板740及び負極板750と、セパレータ761、762とが巻回されることで形成されている。つまり、電極体700は、負極板750と、セパレータ761と、正極板740と、セパレータ762とがこの順に積層され、巻回されることで形成されている。本実施の形態では、正極板740及び負極板750等がX軸方向に延びる巻回軸Lを中心に巻回されることで巻回型の電極体700が形成される。巻回軸Lとは、正極板740及び負極板750等を巻回する際の中心軸となる仮想的な軸である。本実施の形態の巻回軸Lは、電極体700の中心を通る、X軸方向に平行な直線である。電極体700は、巻回軸Lが容器100の短側面113、123が対向する方向(第二方向)に沿う向きに容器100内に配置されている。 The electrode body 700 is formed by winding the positive electrode plate 740, the negative electrode plate 750, and the separators 761 and 762. That is, the electrode body 700 is formed by stacking the negative electrode plate 750, the separator 761, the positive electrode plate 740, and the separator 762 in this order and winding them. In this embodiment, the positive electrode plate 740, the negative electrode plate 750, etc. are wound around the winding axis L extending in the X-axis direction to form the wound electrode body 700. The winding axis L is a virtual axis that serves as the central axis when winding the positive electrode plate 740, the negative electrode plate 750, etc. In this embodiment, the winding axis L is a straight line that passes through the center of the electrode body 700 and is parallel to the X-axis direction. The electrode body 700 is arranged in the container 100 with the winding axis L oriented along the direction in which the short side surfaces 113 and 123 of the container 100 face each other (second direction).
 正極板740の巻回軸方向の一端縁(X軸プラス方向の端縁)には、複数の突出片743が間隔をあけて配置されている。同様に、負極板750の巻回軸方向の他端縁(X軸マイナス方向の端縁)には、複数の突出片753が間隔をあけて配置されている。突出片743及び突出片753は、活物質を含む活物質層が形成されておらず、金属箔(集電箔)が露出した部分(活物質層非形成部)である。図4の斜線部分が活物質層非形成部に該当する。 Multiple protruding pieces 743 are spaced apart on one edge of the positive electrode plate 740 in the winding axis direction (the edge in the positive direction of the X-axis). Similarly, multiple protruding pieces 753 are spaced apart on the other edge of the negative electrode plate 750 in the winding axis direction (the edge in the negative direction of the X-axis). Protruding pieces 743 and 753 are portions where no active material layer containing active material is formed and where the metal foil (current collector foil) is exposed (active material layer non-formed portions). The shaded areas in Figure 4 correspond to the active material layer non-formed portions.
 正極板740及び負極板750と、セパレータ761、762とが巻回されると、本体部710の一端面で、正極板740の各突出片743が重なり合う。正極板740の各突出片743が重なり合った部分が正極接続部721である。同様に、本体部710の他端面で、負極板750の各突出片753同士が重なり合う。負極板750の各突出片753同士が重なり合った部分が負極接続部722である。 When the positive electrode plate 740 and the negative electrode plate 750 and the separators 761, 762 are wound, the protruding pieces 743 of the positive electrode plate 740 overlap on one end surface of the main body 710. The portion where the protruding pieces 743 of the positive electrode plate 740 overlap is the positive electrode connection portion 721. Similarly, the protruding pieces 753 of the negative electrode plate 750 overlap on the other end surface of the main body 710. The portion where the protruding pieces 753 of the negative electrode plate 750 overlap is the negative electrode connection portion 722.
 本体部710は、正極活物質層742が形成(塗工)された部分と、負極活物質層752が形成(塗工)された部分と、セパレータ761、762とが巻回されて形成された長円柱形状の部位(活物質層形成部)である。本体部710は、Z軸方向両側に一対の湾曲部711を有し、この一対の湾曲部711間に、平坦状の平坦部712を有している。一対の湾曲部711は、Z軸方向で平坦部712を挟む位置に配置されているとも言える。 The main body 710 is an elongated cylindrical portion (active material layer forming portion) formed by winding a portion where the positive electrode active material layer 742 is formed (coated), a portion where the negative electrode active material layer 752 is formed (coated), and separators 761, 762. The main body 710 has a pair of curved portions 711 on both sides in the Z-axis direction, and a flat portion 712 between the pair of curved portions 711. It can also be said that the pair of curved portions 711 are positioned to sandwich the flat portion 712 in the Z-axis direction.
 湾曲部711は、X軸方向から見てZ軸方向の端部の円弧形状がX軸方向に延びる湾曲状の部位である。湾曲部711は、容器本体160の側壁162の一部である上面140と、下面150とに対向している。つまり、一対の湾曲部711は、X軸方向から見て、平坦部712からZ軸方向両側に突出するように湾曲した部位である。 The curved portions 711 are curved portions in which the arc shape of the end portion in the Z-axis direction extends in the X-axis direction when viewed from the X-axis direction. The curved portions 711 face the upper surface 140 and the lower surface 150, which are part of the side wall 162 of the container body 160. In other words, the pair of curved portions 711 are curved portions that protrude from the flat portions 712 on both sides in the Z-axis direction when viewed from the X-axis direction.
 平坦部712は、一対の湾曲部711の端部同士を繋ぐ、XZ平面に平行に広がる矩形状かつ平坦状の部位である。平坦部712は、容器本体160の底壁161及び容器蓋体170に対向している。当該平坦部712では、巻回された複数の極板(正極板740及び負極板750)がY軸方向(第一方向)に積層されている。つまり、平坦部712では、Y軸方向(第一方向)が複数の極板の積層方向である。本実施の形態では、電極体700の平坦部712における極板の積層方向がY軸方向(第一方向)となるように、電極体700が容器100に収容される。電極体700における積層方向の一方(Y軸プラス方向)には容器本体160の底壁161が配置され、積層方向の他方(Y軸マイナス方向)には容器蓋体170が配置される。 The flat portion 712 is a rectangular, flat portion extending parallel to the XZ plane, connecting the ends of the pair of curved portions 711. The flat portion 712 faces the bottom wall 161 of the container body 160 and the container lid 170. In the flat portion 712, a plurality of wound electrode plates (positive electrode plate 740 and negative electrode plate 750) are stacked in the Y-axis direction (first direction). In other words, in the flat portion 712, the Y-axis direction (first direction) is the stacking direction of the plurality of electrode plates. In this embodiment, the electrode body 700 is accommodated in the container 100 so that the stacking direction of the electrode plates in the flat portion 712 of the electrode body 700 is the Y-axis direction (first direction). The bottom wall 161 of the container body 160 is arranged on one side of the stacking direction (positive Y-axis direction) of the electrode body 700, and the container lid 170 is arranged on the other side of the stacking direction (negative Y-axis direction).
 湾曲部711の湾曲形状は、半円の円弧形状には限定されず、楕円形状の一部等でもよく、どのように湾曲してもよい。平坦部712は、Y軸方向に向く外面が平面であることには限定されず、当該外面が少し凹んでいたり、少し膨らんでいてもよい。 The curved shape of the curved portion 711 is not limited to a semicircular arc shape, but may be a part of an ellipse, etc., and may be curved in any manner. The outer surface of the flat portion 712 facing the Y-axis direction is not limited to being flat, but the outer surface may be slightly concave or slightly bulging.
 [蓄電素子の製造方法]
 次に、蓄電素子10の製造方法について説明する。図5は、実施の形態に係る蓄電素子10の製造方法を示す説明図である。図5では、(a)、(b)、(c)という順に工程が進行している。図5では、蓄電素子10の正極の各部材の接続構造を示しているが、負極の各部材の接続構造においても同様である。製造装置が各工程を実行する場合を例示するが、作業者が各工程を実行してもよい。
[Method of manufacturing the energy storage element]
Next, a method for manufacturing the energy storage element 10 will be described. Fig. 5 is an explanatory diagram showing a method for manufacturing the energy storage element 10 according to the embodiment. In Fig. 5, the steps proceed in the order of (a), (b), and (c). Fig. 5 shows a connection structure of each member of the positive electrode of the energy storage element 10, but the same is true for the connection structure of each member of the negative electrode. An example is shown in which a manufacturing device performs each step, but an operator may also perform each step.
 図5の(a)に示すように、まず、製造装置は、容器本体160における切欠部101(端子設置面)に外部ガスケット400、内部ガスケット500及び端子300を配置した状態で、端子300の軸部340に平板状の集電体600をかしめ接合する。具体的には、集電体600の一端部(端子接続部640)は、容器本体160の側壁162に沿う姿勢で、端子300の軸部340に接合される。これにより、集電体600は容器本体160の底壁161に対して立ち上がった状態となる。この状態で、製造装置は、集電体600の他端部(電極体接続部630)に電極体700の接続部720を接合する。この結果、電極体700は、容器本体160の底壁161に対して立ち上がった状態となる。具体的には、電極体700の平坦部712が第一方向に沿うように、立ち上がっている。集電体600が底壁161に対して立ち上がった状態において、集電体600が底壁161に対して直角である必要はない。集電体600と電極体700との接合の作業において、電極体700が底壁161と干渉しない程度の角度に立ち上げられていればよい。 As shown in FIG. 5A, first, the manufacturing device crimps and joins the flat collector 600 to the shaft 340 of the terminal 300 with the external gasket 400, internal gasket 500, and terminal 300 placed in the cutout 101 (terminal installation surface) of the container body 160. Specifically, one end (terminal connection portion 640) of the collector 600 is joined to the shaft 340 of the terminal 300 in a position along the side wall 162 of the container body 160. As a result, the collector 600 is raised up against the bottom wall 161 of the container body 160. In this state, the manufacturing device joins the connection portion 720 of the electrode body 700 to the other end (electrode body connection portion 630) of the collector 600. As a result, the electrode body 700 is raised up against the bottom wall 161 of the container body 160. Specifically, the flat portion 712 of the electrode body 700 rises up along the first direction. When the current collector 600 rises up against the bottom wall 161, the current collector 600 does not need to be at a right angle to the bottom wall 161. It is sufficient that the electrode body 700 is raised at an angle that does not interfere with the bottom wall 161 during the operation of joining the current collector 600 and the electrode body 700.
 ついで、図5の(b)に示すように、製造装置が、集電体600の他端部が底壁161に沿う姿勢となるまで当該他端部を倒すことで、集電体600の一端部と他端部との間が曲げられ、変形する。具体的には、集電体600が、端子300の軸部340の先端(かしめ部)の周縁で曲げられる。この曲げられる部位を曲げ部650と称する。曲げ部650はX軸方向に沿って形成される。曲げ部650は、接続部720が本体部710から突出する方向(第二方向)に沿っている。これにより、電極体700は、Y軸方向(第一方向)に沿う姿勢からZ軸方向(第三方向)に沿う姿勢に倒されて、底壁161に沿う姿勢で容器本体160に収容される。電極体700は曲げ部650を基準として倒される。電極体700が底壁161に沿った姿勢となると、本体部710のZ軸プラス方向の端部が、容器本体160における一対の切欠部101間に配置される(図5の(c)参照)。 5B, the manufacturing device tilts the other end of the current collector 600 until the other end is aligned with the bottom wall 161, thereby bending and deforming the portion between one end and the other end of the current collector 600. Specifically, the current collector 600 is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300. This bent portion is referred to as the bent portion 650. The bent portion 650 is formed along the X-axis direction. The bent portion 650 is aligned with the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction). As a result, the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is accommodated in the container main body 160 in a position along the bottom wall 161. The electrode body 700 is tilted with the bent portion 650 as a reference. When the electrode body 700 is aligned along the bottom wall 161, the end of the body 710 in the positive Z-axis direction is positioned between a pair of notches 101 in the container body 160 (see FIG. 5(c)).
 ついで、製造装置は、図5の(c)に示すように、容器本体160の側壁162がなす開口を容器蓋体170で塞いで、当該容器蓋体170を側壁162に接合する。 Then, as shown in FIG. 5(c), the manufacturing device closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and joins the container lid 170 to the side wall 162.
 [効果の説明]
 以上のように、本発明の実施の形態によれば、製造時において、集電体600の一端部(端子接続部640)を端子300に接続し、集電体600を底壁161に対して立ち上がるように配置する。その後、集電体600の他端部(電極体接続部630)に電極体700の接続部720を接合してから、他端部が底壁161に沿う姿勢となるまで、集電体600の一端部と他端部との間を変形させる。これにより、集電体600の他端部及び電極体700が倒され、電極体700が底壁161に沿う姿勢で容器本体160に収容される。製造後の状態では、集電体600の端子接続部640は側壁162に対向した姿勢で端子300に接合されていて、電極体接続部630は端子接続部640に対して折れ曲がり、底壁161に沿う姿勢となっている。このような蓄電素子10の製造時においては、電極体700は底壁161上で倒されるだけであるので、容器本体160から電極体700が受ける摩擦を低減できる。つまり、製造時における電極体700の損傷を抑制できる。本実施の形態は、直方体状の容器の短側壁が開口した開口部分から電極体を容器内部に挿入する方法とは異なっている。本実施の形態は、直方体状の容器の長側壁が開口した開口部分から電極体700を容器内部に挿入する。短側壁よりも面積が大きい長側壁の開口部分から電極体700を挿入するため、電極体700の損傷を抑制できる。
[Effects]
As described above, according to the embodiment of the present invention, during manufacturing, one end (terminal connection portion 640) of the current collector 600 is connected to the terminal 300, and the current collector 600 is arranged so as to rise up against the bottom wall 161. After that, the connection portion 720 of the electrode body 700 is joined to the other end (electrode body connection portion 630) of the current collector 600, and then the area between one end and the other end of the current collector 600 is deformed until the other end is in a position along the bottom wall 161. As a result, the other end of the current collector 600 and the electrode body 700 are tilted, and the electrode body 700 is housed in the container body 160 in a position along the bottom wall 161. In the state after manufacturing, the terminal connection portion 640 of the current collector 600 is joined to the terminal 300 in a position facing the side wall 162, and the electrode body connection portion 630 is bent with respect to the terminal connection portion 640 and in a position along the bottom wall 161. During the manufacture of such an energy storage element 10, the electrode body 700 is simply inverted on the bottom wall 161, so that the friction that the electrode body 700 receives from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacture can be suppressed. This embodiment differs from the method of inserting the electrode body into the container from an opening in the short side wall of a rectangular container. In this embodiment, the electrode body 700 is inserted into the container from an opening in the long side wall of a rectangular container. Since the electrode body 700 is inserted from an opening in the long side wall, which has a larger area than the short side wall, damage to the electrode body 700 can be suppressed.
 側壁162が底壁161の周縁の全体から立ち上がった容器本体160においても、製造時に電極体700が容器本体160から受ける摩擦を低減できる。したがって、このような容器本体160においても製造時の電極体700の損傷を抑制できる。 Even in a container body 160 in which the side wall 162 rises from the entire periphery of the bottom wall 161, the friction that the electrode body 700 experiences from the container body 160 during manufacturing can be reduced. Therefore, even in such a container body 160, damage to the electrode body 700 during manufacturing can be suppressed.
 蓄電素子10が備える極板(正極板740、負極板750)は、Y軸方向(第一方向)において積層されている。電極体700は、活物質層が形成されている本体部710を備え、接続部720は、Y軸方向と交差するX軸方向の両端部(第二方向のプラス側端部およびマイナス側端部)において本体部710から突出している。集電体600の電極体接続部630は、Y軸方向およびX軸方向と交差するZ軸方向(第三方向)に沿っている。このため、電極体接続部630のZ軸方向の長さは、電極体700の本体部710に制限されない。電極体接続部630を電極体のZ軸方向の長さに応じて延ばすことができる。したがって、電極体接続部630と接続部720との接合おいて、接合面積や、接合位置を設計する際の自由度が増す。電極体接続部630を延ばす場合は、接続部の第三方向の長さを延ばせばよい。 The electrodes (positive electrode plate 740, negative electrode plate 750) of the energy storage element 10 are stacked in the Y-axis direction (first direction). The electrode body 700 has a main body 710 on which an active material layer is formed, and the connection portion 720 protrudes from the main body 710 at both ends (positive end and negative end in the second direction) in the X-axis direction intersecting with the Y-axis direction. The electrode body connection portion 630 of the current collector 600 is along the Z-axis direction (third direction) intersecting with the Y-axis direction and the X-axis direction. Therefore, the length of the electrode body connection portion 630 in the Z-axis direction is not limited by the main body 710 of the electrode body 700. The electrode body connection portion 630 can be extended according to the length of the electrode body in the Z-axis direction. Therefore, the degree of freedom in designing the joint area and joint position in the joint between the electrode body connection portion 630 and the connection portion 720 increases. When the electrode body connection portion 630 is extended, it is sufficient to extend the length of the connection portion in the third direction.
 蓄電素子10において、電極体接続部630は、電極体700のX軸方向(第二方向)の両端に位置する接続部720に沿って接続部720に接合されている。これにより、電極体700は、X軸方向の両端で集電体600に支持される。蓄電素子10の製造時において、電極体700が倒される際に、集電体600が電極体700を接続部720に沿って支持することで、電極体700は安定した姿勢で倒される。 In the energy storage element 10, the electrode body connection portion 630 is joined to the connection portion 720 along the connection portion 720 located at both ends of the electrode body 700 in the X-axis direction (second direction). This allows the electrode body 700 to be supported by the current collector 600 at both ends in the X-axis direction. When the electrode body 700 is tilted during the manufacture of the energy storage element 10, the current collector 600 supports the electrode body 700 along the connection portion 720, so that the electrode body 700 is tilted in a stable position.
 各切欠部101における側壁162に、端子300が取り付けられているので、一対の切り欠かれた部位間に電極体700の発電(蓄電)に寄与する部位(本体部710、電極体700の凸部)を配置できる。したがって容器100内における余剰空間を削減でき、蓄電素子10のエネルギー密度を高めることができる。一対の切り欠かれた部位には、端子300の本体部330が配置される。これにより、複数の蓄電素子10を電気接続する際に、切り欠かれた部位(切欠部101)に電気接続のためのバスバーを配置できる。従って、切欠部101を有効に活用できる。 Since the terminal 300 is attached to the side wall 162 of each cutout 101, the part (main body 710, convex part of the electrode body 700) that contributes to power generation (electricity storage) of the electrode body 700 can be arranged between the pair of cutout parts. This makes it possible to reduce excess space in the container 100 and increase the energy density of the energy storage element 10. The main body 330 of the terminal 300 is arranged in the pair of cutout parts. This allows a bus bar for electrical connection to be arranged in the cutout parts (cutout parts 101) when electrically connecting multiple energy storage elements 10. Therefore, the cutout parts 101 can be effectively used.
 本実施の形態のように集電体600の他端部が電極体700における底壁161とは反対側に配置されていると、集電体600を直接的に変形でき、意図通りに変形させやすい。この場合、製造後においても、集電体600の電極体接続部630は、電極体700における底壁161とは反対側に配置されている。このような蓄電素子10の製造時においては、集電体600を意図通りに変形でき、好適である。 When the other end of the current collector 600 is disposed on the opposite side of the bottom wall 161 of the electrode body 700 as in this embodiment, the current collector 600 can be directly deformed, making it easier to deform it as intended. In this case, even after manufacture, the electrode body connection portion 630 of the current collector 600 is disposed on the opposite side of the bottom wall 161 of the electrode body 700. During the manufacture of such an energy storage element 10, the current collector 600 can be deformed as intended, which is preferable.
 [変形例の説明]
 以下に、上記実施の形態の各変形例について説明する。以降の説明において上記実施の形態または他の変形例と同一の部分においては同一の符号を付してその説明を省略する場合がある。変形例においても、上記実施の形態と同じ効果を奏する。
[Description of Modifications]
The following describes various modifications of the above embodiment. In the following description, the same reference numerals may be used to refer to the same parts as those in the above embodiment or other modifications, and the description thereof may be omitted. The modifications also have the same effects as the above embodiment.
 (変形例1)
 上記実施の形態の変形例1について説明する。上記実施の形態では、集電体600の電極体接続部630が、容器蓋体170と電極体700との間に配置されている場合を例示した。この変形例1では、集電体600aの電極体接続部630aが、容器本体160の底壁161と電極体700との間に配置されている場合について説明する。
(Variation 1)
A first modification of the above embodiment will be described. In the above embodiment, the case where the electrode body connection part 630 of the current collector 600 is disposed between the container lid 170 and the electrode body 700 is exemplified. In this first modification, a case where the electrode body connection part 630a of the current collector 600a is disposed between the bottom wall 161 of the container body 160 and the electrode body 700 will be described.
 図6は、変形例1に係る蓄電素子10Aの製造方法を示す説明図である。図6は図5に対応する図である。図6の(a)に示すように、まず、製造装置は、容器本体160における切欠部101(端子設置面)に外部ガスケット400、内部ガスケット500及び端子300を取り付けた状態で、端子300の軸部340に屈曲板状の集電体600aをかしめ接合する。具体的には、集電体600aの一端部(端子接続部640a)は、容器本体160の側壁162に沿う姿勢で、端子300の軸部340に接合される。集電体600aにおける一端部と、他端部(電極体接続部630a)との間の中間部分は、折り曲げられて、曲げ部650aが形成されている。これにより、集電体600aは、図6の(a)においては全体としてJ字状に屈曲しており、集電体600aの他端部は底壁161に対して立ち上がった状態となる。(図6では、X軸方向のプラス側から見ることにより、集電体600aは逆J字に見える。)この状態で、製造装置は、集電体600aの他端部に電極体700の接続部720を接合する。集電体600aが底壁161に対して立ち上がった状態において、集電体600aが底壁161に対して直角である必要はない。集電体600aと電極体700との接合の作業において、電極体700が底壁161と干渉しない程度の角度に立ち上げられていればよい。 6 is an explanatory diagram showing a manufacturing method of the energy storage element 10A according to the first modified example. FIG. 6 corresponds to FIG. 5. As shown in FIG. 6(a), first, the manufacturing device attaches the external gasket 400, the internal gasket 500, and the terminal 300 to the notch 101 (terminal installation surface) in the container body 160, and then crimps and joins the bent plate-shaped current collector 600a to the shaft 340 of the terminal 300. Specifically, one end (terminal connection portion 640a) of the current collector 600a is joined to the shaft 340 of the terminal 300 in a position along the side wall 162 of the container body 160. The intermediate portion between the one end and the other end (electrode body connection portion 630a) of the current collector 600a is bent to form a bent portion 650a. As a result, the current collector 600a is bent in a J-shape as a whole in FIG. 6A, and the other end of the current collector 600a is raised relative to the bottom wall 161. (In FIG. 6, the current collector 600a appears to be an inverted J when viewed from the positive side in the X-axis direction.) In this state, the manufacturing device joins the connection part 720 of the electrode body 700 to the other end of the current collector 600a. When the current collector 600a is raised relative to the bottom wall 161, it is not necessary for the current collector 600a to be at a right angle to the bottom wall 161. In the operation of joining the current collector 600a and the electrode body 700, it is sufficient that the electrode body 700 is raised at an angle that does not interfere with the bottom wall 161.
 ついで、図6の(b)に示すように、製造装置が、集電体600aの他端部が底壁161に沿う姿勢となるまで当該他端部を倒すことで、曲げ部650aが変形する。具体的には、集電体600aが、端子300の軸部340の先端(かしめ部)の周縁で、曲げ部650aの角度が開くように曲げられる。曲げ部650aはX軸方向に沿って形成される。曲げ部650aは、接続部720が本体部710から突出する方向(第二方向)に沿っている。これにより、電極体700は、Y軸方向(第一方向)に沿う姿勢からZ軸方向(第三方向)に沿う姿勢に倒されて、底壁161に沿う姿勢で容器本体160に収容される。電極体700は曲げ部650aを基準として倒される。電極体700が底壁161に沿った姿勢となると、本体部710のZ軸プラス方向の端部が、容器本体160における一対の切欠部101間に配置される(図6の(c)参照)。 6B, the manufacturing device tilts the other end of the current collector 600a until the other end is aligned with the bottom wall 161, thereby deforming the bent portion 650a. Specifically, the current collector 600a is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300 so that the angle of the bent portion 650a opens. The bent portion 650a is formed along the X-axis direction. The bent portion 650a is aligned with the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction). As a result, the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is accommodated in the container main body 160 in a position along the bottom wall 161. The electrode body 700 is tilted with the bent portion 650a as a reference. When the electrode body 700 is aligned along the bottom wall 161, the end of the body 710 in the positive Z-axis direction is positioned between a pair of notches 101 in the container body 160 (see FIG. 6(c)).
 ついで、製造装置は、図6の(c)に示すように、容器本体160の側壁162がなす開口を容器蓋体170で塞いで、当該容器蓋体170を側壁162に接合する。接合後においては、集電体600aの電極体接続部630aが、容器本体160の底壁161と電極体700との間に配置される。 Then, as shown in FIG. 6(c), the manufacturing device closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and bonds the container lid 170 to the side wall 162. After bonding, the electrode body connection portion 630a of the current collector 600a is disposed between the bottom wall 161 of the container body 160 and the electrode body 700.
 このような蓄電素子10Aの製造時においても、電極体700は底壁161上で倒されるだけであるので、容器本体160から電極体700が受ける摩擦を低減できる。つまり、製造時における電極体700の損傷を抑制できる。 Even during the manufacture of such an energy storage element 10A, the electrode body 700 is simply inverted on the bottom wall 161, so the friction that the electrode body 700 experiences from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacture can be suppressed.
 (変形例2)
 上記実施の形態の変形例2について説明する。上記実施の形態では、集電体600の電極体接続部630が、電極体700の接続部720の一面にのみ接合される場合を例示した。この変形例2では、集電体600bの電極体接続部630bが、接続部720の両面に接合される場合について説明する。
(Variation 2)
Modification 2 of the above embodiment will be described. In the above embodiment, the case where the electrode body connection portion 630 of the current collector 600 is joined to only one surface of the connection portion 720 of the electrode body 700 is exemplified. In this modification 2, a case where the electrode body connection portion 630b of the current collector 600b is joined to both surfaces of the connection portion 720 will be described.
 図7は、変形例2に係る蓄電素子10Bの製造方法を示す説明図である。図7は図5に対応する図である。図7の(a)に示すように、まず、製造装置は、容器本体160における切欠部101(端子設置面)に外部ガスケット400、内部ガスケット500及び端子300を取り付けた状態で、端子300の軸部340に屈曲板状の集電体600bをかしめ接合する。具体的には、集電体600bは、端子接続部640bと、端子接続部640bを挟む一対の電極体接続部630b(630b1、630b2)を有している。端子接続部640bは、集電体600bにおける一端部である。一対の電極体接続部630b(630b1、630b2)は、それぞれ集電体600bにおける他端部である。端子接続部640bは、容器本体160の側壁162に沿う姿勢で、端子300の軸部340に接合される。一対の電極体接続部630bのうち、一方の電極体接続部630b1は、端子接続部640bから直線的に延びて、底壁161に対して立ち上がった状態となる。他方の電極体接続部630b2は、端子300の軸部340の先端(かしめ部)の周縁で曲がっており、底壁161に対して立ち上がった状態となる。この曲がっている部位は曲げ部650b2である。一対の電極体接続部630bの間には、電極体700の接続部720が配置されている。この状態で、製造装置は、一対の電極体接続部630bに電極体700の接続部720を接合する。 FIG. 7 is an explanatory diagram showing a manufacturing method of the energy storage element 10B according to the second modified example. FIG. 7 is a diagram corresponding to FIG. 5. As shown in FIG. 7(a), first, the manufacturing device attaches the external gasket 400, the internal gasket 500, and the terminal 300 to the notch 101 (terminal installation surface) in the container body 160, and then crimps and joins the bent plate-shaped current collector 600b to the shaft 340 of the terminal 300. Specifically, the current collector 600b has a terminal connection portion 640b and a pair of electrode body connection portions 630b (630b1, 630b2) that sandwich the terminal connection portion 640b. The terminal connection portion 640b is one end of the current collector 600b. The pair of electrode body connection portions 630b (630b1, 630b2) are the other end portions of the current collector 600b. The terminal connection portion 640b is joined to the shaft portion 340 of the terminal 300 in a position along the side wall 162 of the container body 160. Of the pair of electrode body connection portions 630b, one electrode body connection portion 630b1 extends linearly from the terminal connection portion 640b and stands up against the bottom wall 161. The other electrode body connection portion 630b2 is bent at the periphery of the tip (crimping portion) of the shaft portion 340 of the terminal 300 and stands up against the bottom wall 161. This bent portion is the bent portion 650b2. The connection portion 720 of the electrode body 700 is disposed between the pair of electrode body connection portions 630b. In this state, the manufacturing device joins the connection portion 720 of the electrode body 700 to the pair of electrode body connection portions 630b.
 ついで、図7の(b)に示すように、製造装置が、一対の電極体接続部630bが底壁161に沿う姿勢となるまで各電極体接続部630bを倒すことで、集電体600bの一端部(端子接続部640b)と他端部(電極体接続部630b1、630b2)との間が変形する。集電体600bの一側の曲げ(変形)について説明する。電極体接続部630b1と端子接続部640bとの中間部分が、端子300の軸部340の先端(かしめ部)の周縁で曲げられる。この曲げられる部位は曲げ部650b1である。曲げ部650b1はX軸方向に沿って形成される。曲げ部650b1は、接続部720が本体部710から突出する方向(第二方向)に沿っている。集電体600bの他側の曲げ(変形)について説明する。集電体600bは、端子300の軸部340の先端(かしめ部)の周縁で、曲げ部650b2の角度が開くように曲げられる。曲げ部650b2はX軸方向に沿って形成される。曲げ部650b2は、接続部720が本体部710から突出する方向(第二方向)に沿っている。以上により、電極体700は、Y軸方向(第一方向)に沿う姿勢からZ軸方向(第三方向)に沿う姿勢に倒されて、底壁161に沿う姿勢で容器本体160に収容される。電極体700が底壁161に沿った姿勢となると、本体部710のZ軸プラス方向の端部が、容器本体160における一対の切欠部101間に配置される(図7の(c)参照)。 7B, the manufacturing device tilts each electrode body connection portion 630b until the pair of electrode body connection portions 630b are aligned with the bottom wall 161, whereby the current collector 600b is deformed between one end (terminal connection portion 640b) and the other end (electrode body connection portions 630b1, 630b2). The bending (deformation) of one side of the current collector 600b will be described. The intermediate portion between the electrode body connection portion 630b1 and the terminal connection portion 640b is bent at the periphery of the tip (crimping portion) of the shaft portion 340 of the terminal 300. This bent portion is the bent portion 650b1. The bent portion 650b1 is formed along the X-axis direction. The bent portion 650b1 is aligned along the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction). The bending (deformation) of the other side of the current collector 600b will be described. The current collector 600b is bent at the periphery of the tip (crimped portion) of the shaft portion 340 of the terminal 300 so that the angle of the bent portion 650b2 is open. The bent portion 650b2 is formed along the X-axis direction. The bent portion 650b2 is along the direction in which the connection portion 720 protrudes from the main body portion 710 (second direction). As a result, the electrode body 700 is tilted from a position along the Y-axis direction (first direction) to a position along the Z-axis direction (third direction) and is housed in the container body 160 in a position along the bottom wall 161. When the electrode body 700 is in a position along the bottom wall 161, the end of the main body portion 710 in the positive Z-axis direction is disposed between a pair of notches 101 in the container body 160 (see FIG. 7C).
 ついで、製造装置は、図7の(c)に示すように、容器本体160の側壁162がなす開口を容器蓋体170で塞いで、当該容器蓋体170を側壁162に接合する。このような蓄電素子10Bの製造時においても、電極体700は底壁161上で倒されるだけであるので、容器本体160から電極体700が受ける摩擦を低減できる。つまり、製造時における電極体700の損傷を抑制できる。 Then, as shown in FIG. 7(c), the manufacturing apparatus closes the opening formed by the side wall 162 of the container body 160 with the container lid 170 and joins the container lid 170 to the side wall 162. Even during the manufacturing of such an energy storage element 10B, the electrode body 700 is simply tilted over the bottom wall 161, so that the friction that the electrode body 700 experiences from the container body 160 can be reduced. In other words, damage to the electrode body 700 during manufacturing can be suppressed.
 (その他の変形例)
 以上、本発明の実施の形態(その変形例も含む。以下同様)に係る蓄電素子について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であり、本発明の範囲には、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
(Other Modifications)
Although the energy storage element according to the embodiment of the present invention (including its modified examples, the same applies below) has been described above, the present invention is not limited to the above-mentioned embodiment. The embodiment disclosed here is illustrative in all respects, and the scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
 上記実施の形態では、端子300の軸部340が、端子設置面、外部ガスケット400、内部ガスケット500及び集電体600を貫通した状態で、容器100内部でかしめられた形態を示した。軸部340が容器100内部でかしめられた形態に限らず、軸部340が容器100外部でかしめられた形態であってもよい。つまり、端子300の端子本体部330が容器内部に配置されており、端子本体部300から軸部340が容器100外部に突出する形態であってもよい。 In the above embodiment, the shaft portion 340 of the terminal 300 is crimped inside the container 100 while penetrating the terminal installation surface, the external gasket 400, the internal gasket 500, and the current collector 600. The shaft portion 340 is not limited to being crimped inside the container 100, and may be crimped outside the container 100. In other words, the terminal body portion 330 of the terminal 300 may be disposed inside the container, and the shaft portion 340 may protrude from the terminal body portion 300 to the outside of the container 100.
 上記実施の形態に記載の蓄電素子の製造方法では、端子300と集電体600の一端部とを接合した後に、電極体700と集電体600の他端部とを接合する形態を示した。工程の順序はこれに限らない。つまり、電極体700と集電体600の他端部とを接合した後に、端子300と集電体600とを接合してもよい。 In the manufacturing method of the energy storage element described in the above embodiment, the terminal 300 is joined to one end of the current collector 600, and then the electrode body 700 is joined to the other end of the current collector 600. The order of the steps is not limited to this. In other words, the terminal 300 may be joined to the current collector 600 after the electrode body 700 is joined to the other end of the current collector 600.
 上記実施の形態では、略直方体形状の容器100が、一面のみを開放した容器本体160である第一容器部材と、当該一面を塞ぐ容器蓋体170である第二容器部材とを有する場合を例示した。つまり、上記実施の形態では、第一容器部材は、略直方体形状をなす六面のうち五面をなし、第二容器部材は一面をなしている。第一容器部材と第二容器部材とがなす略直方体状の面は如何様でもよい。略直方体形状をなす六面のうち第一容器部材が四面をなし、第二容器部材が二面をなしてもよいし、略直方体形状をなす六面のうち第一容器部材が三面をなし、第二容器部材が三面をなしてもよい。 In the above embodiment, an example is given of a substantially rectangular parallelepiped container 100 having a first container member, which is a container body 160 with only one side open, and a second container member, which is a container lid 170 that covers that one side. In other words, in the above embodiment, the first container member forms five of the six sides of the substantially rectangular parallelepiped shape, and the second container member forms one side. The number of substantially rectangular parallelepiped faces formed by the first container member and the second container member can be any number. Of the six sides of the substantially rectangular parallelepiped shape, the first container member may form four sides and the second container member may form two sides, or of the six sides of the substantially rectangular parallelepiped shape, the first container member may form three sides and the second container member may form three sides.
 上記実施の形態では、一対の切欠部101を有する容器100を例示した。切欠部の設置個数は如何様でもよく、切欠部がなくてもよい。切欠部が1つの場合であっても、容器内において切欠部に隣り合う位置に電極体の本体部を配置できる。したがって容器内における余剰空間を削減でき、蓄電素子のエネルギー密度を高めることができる。 In the above embodiment, a container 100 having a pair of notches 101 is exemplified. Any number of notches may be provided, and there may be no notches. Even if there is only one notch, the main body of the electrode body can be disposed in a position adjacent to the notch within the container. This makes it possible to reduce excess space within the container and increase the energy density of the energy storage element.
 上記実施の形態では、容器100内に電極体700が一つのみ収容されている場合を例示したが、複数の電極体が容器内に収容されてもよい。 In the above embodiment, a case in which only one electrode body 700 is contained in the container 100 is illustrated, but multiple electrode bodies may be contained in the container.
 上記実施の形態では、巻回型の電極体700を例示した。しかし、電極体の形状は巻回型に限らず、平板状極板を積層したスタック型や、極板及び/またはセパレータを蛇腹状に折り畳んだ形状(セパレータを蛇腹状に折り畳んで矩形の極板を挟む形態、極板とセパレータとを重ねた後に蛇腹状に折り畳む形態等)などであってもよい。いずれにおいても、電極体の積層方向はY軸方向であればよい。スタック型や蛇腹状に折り畳んだ形状の電極体はX軸方向に突出したタブ部を有し、タブ部と集電体とが接合される。タブ部は電極体と別体であってもよく、又は、一体であってもよい。 In the above embodiment, a wound type electrode body 700 is exemplified. However, the shape of the electrode body is not limited to the wound type, and may be a stack type in which flat electrode plates are stacked, or a shape in which the electrode plates and/or separators are folded in an accordion-like shape (such as a shape in which the separator is folded in an accordion-like shape to sandwich a rectangular electrode plate, or a shape in which the electrode plate and the separator are stacked and then folded in an accordion-like shape). In either case, the stacking direction of the electrode body may be the Y-axis direction. A stack type or accordion-like folded electrode body has a tab portion protruding in the X-axis direction, and the tab portion and the current collector are joined. The tab portion may be separate from the electrode body, or may be integral with it.
 上記実施の形態等の蓄電素子は、蓄電装置に用いられてもよい。この場合、蓄電装置が備える少なくとも1つの蓄電素子に対して、本発明の技術が適用されればよい。図8は、実施の形態に係る蓄電素子を備えた蓄電装置を示す説明図である。図8に示すように、複数の蓄電素子10は、蓄電装置800の内部に配置される。蓄電装置800は、各蓄電素子10を電気的に接続するバスバー(図示省略)を備えてもよい。蓄電装置800は、一以上の蓄電素子10の状態を監視する状態監視装置(図示省略)を備えてもよい。 The energy storage elements of the above embodiments and the like may be used in an energy storage device. In this case, the technology of the present invention may be applied to at least one energy storage element included in the energy storage device. FIG. 8 is an explanatory diagram showing an energy storage device including energy storage elements according to the embodiments. As shown in FIG. 8, multiple energy storage elements 10 are arranged inside the energy storage device 800. The energy storage device 800 may include bus bars (not shown) that electrically connect the energy storage elements 10. The energy storage device 800 may include a status monitoring device (not shown) that monitors the status of one or more energy storage elements 10.
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。  Any combination of the components included in the above embodiment and its variations is also included within the scope of the present invention.
 本発明は、リチウムイオン二次電池などの蓄電素子に適用できる。 The present invention can be applied to energy storage elements such as lithium-ion secondary batteries.
10、10A、10B 蓄電素子
100 容器
101 切欠部
110 第一切欠部
120 第二切欠部
160 容器本体
161 底壁
162 側壁
170 容器蓋体
300 端子
330 端子本体部
340 軸部
600、600a、600b 集電体
630、630a、630b、630b1、630b2 電極体接続部
640、640a、640b 端子接続部
650、650a、650b1、650b2 曲げ部
700 電極体
710 本体部
711 湾曲部
712 平坦部
720 接続部
10, 10A, 10B Energy storage element 100 Container 101 Notch 110 First notch 120 Second notch 160 Container body 161 Bottom wall 162 Side wall 170 Container lid 300 Terminal 330 Terminal body 340 Shaft 600, 600a, 600b Current collector 630, 630a, 630b, 630b1, 630b2 Electrode body connection 640, 640a, 640b Terminal connection 650, 650a, 650b1, 650b2 Bent portion 700 Electrode body 710 Body 711 Curved portion 712 Flat portion 720 Connection

Claims (6)

  1.  接続部を含む、積層された極板を有する電極体と、
     前記接続部に電気的に接続される集電体と、
     前記電極体及び前記集電体を収容する容器と、
     前記容器に取り付けられて、前記集電体に電気的に接続される端子とを備え、
     前記容器は、容器本体と、前記容器本体に接合される容器蓋体とを備え、
     前記容器本体は、
     前記極板の積層方向に配置される底壁と、
     前記底壁の周縁の少なくとも一部から立ち上がった状態に設けられた側壁とを備え、
     前記集電体は端子接続部と電極体接続部とを備え、
     前記端子接続部は前記端子と接合されており、前記電極体接続部は前記接続部と接合されている、
     蓄電素子。
    An electrode assembly having stacked electrode plates including a connection portion;
    a current collector electrically connected to the connection portion;
    a container that contains the electrode assembly and the current collector;
    a terminal attached to the container and electrically connected to the current collector;
    The container includes a container body and a container lid body joined to the container body,
    The container body includes:
    A bottom wall disposed in the stacking direction of the electrode plates;
    a side wall extending upward from at least a portion of the periphery of the bottom wall;
    The current collector includes a terminal connection portion and an electrode body connection portion,
    The terminal connection portion is joined to the terminal, and the electrode body connection portion is joined to the connection portion.
    Energy storage element.
  2.  前記側壁は、前記底壁の周縁の全体から立ち上がった状態に設けられている、
     請求項1に記載の蓄電素子。
    The side wall is provided in a state of rising from the entire peripheral edge of the bottom wall.
    The energy storage element according to claim 1 .
  3.  第一方向において前記極板は積層されており、
     前記電極体は、活物質層が形成されている本体部を備え、
     前記接続部は、前記第一方向と交差する第二方向の両端部において前記本体部から突出しており、
     前記電極体接続部は、前記第一方向および前記第二方向と交差する第三方向に沿っている、
     請求項1に記載の蓄電素子。
    The plates are stacked in a first direction,
    The electrode body includes a main body portion on which an active material layer is formed,
    the connection portion protrudes from the main body portion at both ends in a second direction intersecting the first direction,
    The electrode body connection portion is aligned along a third direction intersecting the first direction and the second direction.
    The energy storage element according to claim 1 .
  4.  前記容器は、前記底壁の平面視において長方形の角部が切り欠かれた形状であり、
     前記切り欠かれた部分における前記側壁に、前記前記端子が取り付けられている
     請求項3に記載の蓄電素子。
    The container has a rectangular shape in a plan view of the bottom wall, the corners of which are cut away,
    The energy storage element according to claim 3 , wherein the terminal is attached to the side wall in the cut-out portion.
  5.  前記電極体接続部は、前記電極体において前記底壁とは反対側に配置されている、
     請求項1~4のいずれか一項に記載の蓄電素子。
    The electrode body connection portion is disposed on the electrode body on the opposite side to the bottom wall.
    The energy storage element according to any one of claims 1 to 4.
  6.  接続部を含む、積層された極板を有する電極体と、
     前記接続部に電気的に接続される集電体と、
     前記電極体及び前記集電体を収容する容器と、
     前記容器に取り付けられて、前記集電体に電気的に接続される端子とを備える蓄電素子の製造方法であって、
     前記容器は、容器本体と、前記容器本体に接合される容器蓋体とを備え、
     前記容器本体は、
     底壁と、
     前記底壁の周縁の少なくとも一部から立ち上がった状態に設けられた側壁とを備え、
     前記製造方法は、
     前記集電体の一端部と前記端子との接合、及び、前記集電体の他端部と前記接続部との接合を行ってから、前記一端部と前記他端部との間で前記集電体を変形させる、
     蓄電素子の製造方法。
    An electrode assembly having stacked electrode plates including a connection portion;
    a current collector electrically connected to the connection portion;
    a container that contains the electrode assembly and the current collector;
    a terminal attached to the container and electrically connected to the current collector,
    The container includes a container body and a container lid body joined to the container body,
    The container body includes:
    The bottom wall and
    a side wall extending upward from at least a portion of the periphery of the bottom wall;
    The manufacturing method includes:
    one end of the current collector is joined to the terminal and the other end of the current collector is joined to the connection portion, and then the current collector is deformed between the one end and the other end.
    A method for manufacturing an energy storage element.
PCT/JP2024/000531 2023-01-13 2024-01-12 Power storage element and method for producing same WO2024150803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-004040 2023-01-13
JP2023004040 2023-01-13

Publications (1)

Publication Number Publication Date
WO2024150803A1 true WO2024150803A1 (en) 2024-07-18

Family

ID=91896977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/000531 WO2024150803A1 (en) 2023-01-13 2024-01-12 Power storage element and method for producing same

Country Status (1)

Country Link
WO (1) WO2024150803A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076787A (en) * 2009-09-29 2011-04-14 Hitachi Vehicle Energy Ltd Secondary battery and method of manufacturing the same
JP2011076786A (en) * 2009-09-29 2011-04-14 Hitachi Vehicle Energy Ltd Secondary battery
WO2016199939A1 (en) * 2015-06-12 2016-12-15 株式会社 東芝 Battery and assembled battery
WO2017208508A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Electricity storage device
WO2019186849A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object
JP2023137007A (en) * 2022-03-17 2023-09-29 株式会社Gsユアサ Power storage element and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076787A (en) * 2009-09-29 2011-04-14 Hitachi Vehicle Energy Ltd Secondary battery and method of manufacturing the same
JP2011076786A (en) * 2009-09-29 2011-04-14 Hitachi Vehicle Energy Ltd Secondary battery
WO2016199939A1 (en) * 2015-06-12 2016-12-15 株式会社 東芝 Battery and assembled battery
WO2017208508A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Electricity storage device
WO2019186849A1 (en) * 2018-03-28 2019-10-03 株式会社 東芝 Battery, battery pack, power storage device, vehicle, and flying object
JP2023137007A (en) * 2022-03-17 2023-09-29 株式会社Gsユアサ Power storage element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2024150803A1 (en) Power storage element and method for producing same
WO2024150804A1 (en) Power storage element
JP7318333B2 (en) Storage element
WO2024161990A1 (en) Electric power storage element, method for manufacturing electric power storage element, and device for manufacturing electric power storage element
JP2024100011A (en) Energy storage element
JP2024100044A (en) Energy storage element
JP2024100006A (en) Electric storage element and manufacturing method thereof
WO2023105987A1 (en) Power storage element
JP2024099859A (en) Energy storage element
WO2023063328A1 (en) Power storage element
WO2023063329A1 (en) Power storage element
WO2023063332A1 (en) Power storage element
WO2022163520A1 (en) Power storage element
WO2024101198A1 (en) Electric power storage device
WO2022163636A1 (en) Power storage element
WO2024101199A1 (en) Power storage device
WO2024101197A1 (en) Power storage device
WO2023048040A1 (en) Power storage device
JP7524551B2 (en) Power storage device
WO2023176109A1 (en) Power storage element
WO2024043254A1 (en) Power storage device
WO2024176746A1 (en) Power storage element
JP2024110169A (en) Energy storage element
WO2024043253A1 (en) Power storage device
JP7528482B2 (en) Energy storage element