WO2023048040A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2023048040A1
WO2023048040A1 PCT/JP2022/034362 JP2022034362W WO2023048040A1 WO 2023048040 A1 WO2023048040 A1 WO 2023048040A1 JP 2022034362 W JP2022034362 W JP 2022034362W WO 2023048040 A1 WO2023048040 A1 WO 2023048040A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
axis direction
container
gas discharge
storage element
Prior art date
Application number
PCT/JP2022/034362
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 西山
一弥 岡部
良一 奥山
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023048040A1 publication Critical patent/WO2023048040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device having a plurality of power storage elements.
  • Patent Document 1 a gas discharge portion (gas discharge valve) formed on the top surface of each cell is provided on the top surface of a cell laminate configured by stacking a plurality of cells (electrical storage elements) in the front-rear direction.
  • a battery module power storage device
  • a gas discharge valve is arranged on the top surface of the power storage element (the surface on which the electrode terminals are arranged).
  • the electric storage device having such a configuration there is a problem that it is difficult to dispose the gas discharge valve on the electric storage element because the electrode terminals are an obstacle.
  • the electrode terminals interfere with the formation of the flow path for the gas.
  • the present invention was made by the inventors of the present application by newly paying attention to the above problem, and an object of the present invention is to provide a power storage device capable of discharging gas from a power storage element with a simple configuration.
  • a power storage device includes a plurality of first power storage elements, and each of the plurality of first power storage elements includes a container that is flat in a first direction and a container that intersects the first direction.
  • the container has a first surface facing the first direction and a second surface facing the second direction and on which the electrode terminals are not arranged. and a gas discharge valve provided on at least one of the first surface and the second surface, wherein the plurality of first storage elements are arranged in a third direction intersecting the first direction and the second direction. placed side by side.
  • gas can be discharged from the power storage element with a simple configuration.
  • FIG. 1 is a perspective view showing the configuration of a power storage device according to an embodiment.
  • FIG. 2 is a perspective view showing the configuration of the first storage element according to the embodiment.
  • FIG. 3 is a perspective view showing a configuration of a power storage device according to Modification 1 of the embodiment.
  • FIG. 4 is a perspective view showing a configuration of a power storage device according to Modification 2 of the embodiment.
  • FIG. 5 is a perspective view showing the configuration of a power storage device according to Modification 3 of the embodiment.
  • FIG. 6 is a perspective view showing a configuration of a power storage device according to Modification 4 of the embodiment.
  • FIG. 7 is a perspective view showing the configuration of a power storage device according to Modification 5 of the embodiment.
  • FIG. 8 is a perspective view showing the configuration of a power storage device according to Modification 6 of the embodiment.
  • a power storage device includes a plurality of first power storage elements, and each of the plurality of first power storage elements includes a container that is flat in a first direction and a container that is flat in the first direction. and electrode terminals arranged in a second direction intersecting with the direction, wherein the container has a first surface facing the first direction and a second surface facing the second direction and on which the electrode terminals are not arranged. and a gas discharge valve provided on at least one of the first surface and the second surface. They are arranged in three directions.
  • the container flat in the first direction included in each of the plurality of first power storage elements has the first surface facing the first direction, the first surface facing the second direction, and , a gas discharge valve is provided on at least one of the second surfaces on which the electrode terminals are not arranged, and the plurality of first storage elements are arranged side by side in the third direction.
  • the gas discharge valve can be arranged on the surface on which the electrode terminals are not arranged. Therefore, when the gas discharge valve is arranged on the first storage element, the electrode terminals are less likely to be an obstacle, and the gas discharge valve can be easily arranged.
  • the plurality of gas discharge valves provided on the surface on which the electrode terminals are not arranged are arranged in the third direction. Therefore, the electrode terminals are less likely to interfere with the formation of the flow path for the gas discharged from the gas discharge valve, and the flow path for the gas can be easily formed. As a result, the gas from the first power storage element can be discharged with a simple configuration.
  • the surface of the container on which the gas discharge valve is provided may be part of a flow path for the gas discharged from the gas discharge valve.
  • the surface of the container provided with the gas discharge valve is part of the flow path for the gas discharged from the gas discharge valve,
  • the gas flow path can be formed with a simple configuration.
  • the power storage device may include a cooling unit having a coolant and disposed at least one of positions sandwiching a flow path of the gas discharged from the gas discharge valve. .
  • the gas discharged from the gas discharge valve can be easily cooled by providing the cooling unit at least one of the positions sandwiching the gas flow path.
  • the gas discharge valve may be provided on the bottom surface of the container.
  • first storage elements If a plurality of first storage elements are arranged in the third direction and connected in series, it is necessary to arrange the first storage elements so that the positions of the positive terminals and the negative terminals are alternately reversed. Therefore, when the gas discharge valve is provided on the long side surface (first surface) of the container of the first storage element, in order to arrange the gas discharge valves in the third direction, there are two types of gas discharge valves provided on different long side surfaces. , it is necessary to prepare the first storage element.
  • the gas discharge valve is provided on the bottom surface (second surface) of the container of the first storage element, even when a plurality of first storage elements are arranged in the third direction and connected in series, the first By arranging the electric storage elements, the gas discharge valves can be arranged in the third direction. Thereby, the gas from the first power storage element can be discharged with a simple configuration.
  • the power storage device faces a surface of any one of the containers of the plurality of first power storage elements, the surface being provided with the gas discharge valve.
  • a second storage element having a gas discharge valve provided on the third surface may be further provided.
  • the surface of the first storage element provided with the gas discharge valve faces the surface (third surface) of the second storage element provided with the gas discharge valve.
  • the direction in which the electrode terminals of the storage element protrude, or the direction in which the container body and lid of the container in one storage element are arranged is defined as the X-axis direction.
  • a direction in which a pair of electrode terminals or a pair of current collectors are arranged in one storage element, a direction in which a pair of short sides of a container of one storage element are opposed, or a plurality of storage elements (a plurality of first storage elements or a plurality of The direction in which the second storage elements are arranged is defined as the Y-axis direction.
  • the Z-axis direction is defined as the facing direction of a pair of long sides of a container for one storage element, the thickness direction (flat direction) of the storage element container, or the vertical direction.
  • These X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
  • the positive direction of the X-axis indicates the direction of the arrow on the X-axis
  • the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis.
  • the X-axis direction indicates either or both of the X-axis plus direction and the X-axis minus direction.
  • the Y-axis direction and the Z-axis direction may also be referred to as the first direction
  • the X-axis direction may also be referred to as the second direction
  • the Y-axis direction may also be referred to as the third direction.
  • FIG. 1 is a perspective view showing the configuration of power storage device 10 according to the present embodiment.
  • FIG. 2 is a perspective view showing the configuration of the first storage element 100 according to this embodiment.
  • the configuration inside the container 110 of the first storage element 100 is indicated by broken lines. Since the plurality of first power storage elements 100 included in the power storage device 10 all have the same configuration, one first power storage element 100 is illustrated in FIG. 2 .
  • the power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside.
  • the power storage device 10 is a battery module (assembled battery) used for power storage or power supply.
  • the power storage device 10 is, for example, an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a rolling stock for an electric railway. It is used as a battery etc.
  • the vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fossil fuel (gasoline, light oil, liquefied natural gas, etc.) vehicles.
  • Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors.
  • the power storage device 10 can also be used as a stationary battery or the like for home or business use.
  • the power storage device 10 includes a plurality of first power storage elements 100 and a flow path forming member 200 .
  • the power storage device 10 also includes a bus bar that connects the first power storage elements 100 in series or in parallel, but illustration and description thereof are omitted.
  • the power storage device 10 includes a busbar frame that positions the busbars, an exterior body that houses the components, external terminals that are connected to external busbars, etc., and a space between the first power storage elements 100. It may be provided with spacers arranged in the same manner.
  • the power storage device 10 may further include binding members (end plates and side plates) that bind the plurality of first power storage elements 100 .
  • the restraint member may be configured to press the first power storage element 100 .
  • a flow path forming member 200 which will be described later, may function as a restricting member.
  • the power storage device 10 may include electrical devices such as a circuit board, fuses, relays, connectors, and the like for monitoring or controlling the state of charge and the state of discharge of the first power storage element 100 .
  • the first storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the first power storage element 100 has a rectangular parallelepiped shape (square shape), and a plurality of (four in the present embodiment) first power storage elements 100 are arranged side by side in the Y-axis direction.
  • the size of the first storage element 100, the number of arranged first storage elements 100, and the like are not limited.
  • the first storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the first storage element 100 may be a primary battery that can use stored electricity without being charged by the user, instead of a secondary battery.
  • the first storage element 100 may be a battery using a solid electrolyte.
  • the first storage element 100 may be a pouch-type storage element.
  • the first power storage element 100 has a flat shape, and a plurality of (four) first power storage elements 100 are placed flat (horizontally placed, laid down), and the Y They are arranged side by side in the axial direction (third direction).
  • the plurality of first power storage elements 100 are arranged with the long side surface 111 of the container 110 facing in the positive Z-axis direction (with the long side surface 112 of the container 110 facing in the negative Z-axis direction). be.
  • These first power storage elements 100 are arranged in a state in which the short side surfaces 113 and 114 of the container 110 face the Y-axis direction (a state in which the bottom surface 115 and the terminal arrangement surface 116 of the container 110 face the X-axis direction).
  • first power storage elements 100 are arranged side by side in the Y-axis direction.
  • two adjacent first power storage elements 100 are arranged such that the short side surface 113 of one first power storage element 100 and the short side surface 114 of the other first power storage element 100 are in contact with each other.
  • a spacer may be arranged between two adjacent first power storage elements 100, or two adjacent first power storage elements 100 may be spaced apart.
  • the first storage element 100 includes a container 110 and a pair (positive electrode and negative electrode) of electrode terminals 150. Inside the container 110, an electrode body 160 and a pair (positive electrode and negative electrode) ) and a current collector 170 are housed therein. An electrolytic solution (non-aqueous electrolyte) is also sealed inside the container 110, and a gasket is arranged between the electrode terminal 150 and current collector 170 and the container 110 (cover 130 described later). A detailed description of is omitted. There are no particular restrictions on the type of the electrolyte as long as it does not impair the performance of the first storage element 100, and various electrolytes can be selected.
  • the first storage element 100 may have a spacer disposed on the side or below the electrode body 160, an insulating film wrapping the electrode body 160 and the like, and the like.
  • An insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 .
  • the container 110 is a flat rectangular parallelepiped (square or box-shaped) case having a container body 120 with an opening and a lid 130 closing the opening of the container body 120 .
  • the container main body 120 is a rectangular cylindrical member having a bottom that constitutes the main body of the container 110, and has an opening formed in the positive direction of the X axis.
  • the lid body 130 is a rectangular plate-like member elongated in the Y-axis direction that constitutes the lid portion of the container 110 , and is arranged on the side of the container body 120 in the positive direction of the X-axis.
  • the container 110 may be provided with an injection part for injecting an electrolytic solution into the inside of the container 110 .
  • the material of the container 110 (the container body 120 and the lid 130) is not particularly limited, and can be, for example, a weldable (bondable) metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate. can also be used.
  • the container 110 has a pair of long side surfaces 111 and 112 on both side surfaces in the Z-axis direction, a pair of short side surfaces 113 and 114 on both side surfaces in the Y-axis direction, and a bottom surface 115 on the X-axis minus direction side. , and has a terminal arrangement surface 116 on the positive direction side of the X axis.
  • the container 110 is a container that is flat in the Z-axis direction (first direction) whose thickness direction is the Z-axis direction.
  • Flat in the Z-axis direction (first direction) refers to a shape having the smallest thickness (width) in the Z-axis direction (first direction).
  • the long side surfaces 111 and 112 are rectangular planar portions that form the long side surfaces of the container 110 (the long side surfaces of the container body 120), and are arranged to face each other in the Z-axis direction (first direction).
  • Long sides 111 and 112 are adjacent to short sides 113 and 114 , bottom surface 115 , and terminal placement surface 116 and are larger in area than short sides 113 and 114 .
  • the long side surface 111 is a surface parallel to the XY plane arranged in the positive direction of the Z-axis, and arranged to face the flow path forming member 200 in the Z-axis direction.
  • the long side 111 is an example of a first surface facing the first direction.
  • the long side surface 112 is a surface parallel to the XY plane arranged in a posture facing the negative direction of the Z axis.
  • the short sides 113 and 114 are rectangular planar portions that form the short sides of the container 110 (the short sides of the container body 120), and extend in the Y-axis direction (the third direction intersecting the first direction and the second direction). arranged opposite to each other. Short sides 113 and 114 adjoin long sides 111 and 112 , bottom surface 115 , and terminal placement surface 116 and are smaller in area than long sides 111 and 112 .
  • the short side surface 113 is a surface parallel to the XZ plane arranged in a posture facing the Y-axis minus direction.
  • the short side surface 114 is a surface parallel to the XZ plane arranged in the positive direction of the Y axis. Short side surface 113 or 114 is arranged to face short side surface 114 or 113 of container 110 of adjacent first power storage element 100 in the Y-axis direction.
  • the bottom surface 115 is a rectangular planar portion that forms the bottom surface of the container 110 (the bottom surface of the container body 120), and is arranged facing the X-axis direction (the second direction intersecting the first direction). No electrode terminals 150 are arranged on the bottom surface 115 .
  • Bottom surface 115 is positioned adjacent long sides 111 and 112 and short sides 113 and 114 .
  • the bottom surface 115 is a surface parallel to the YZ plane arranged in a posture facing the negative direction of the X axis.
  • the bottom surface 115 is an example of a second surface facing the second direction and having no electrode terminals.
  • the terminal arrangement surface 116 is a rectangular planar portion that forms the upper surface of the container 110 (the upper surface of the lid 130), and a pair of electrode terminals 150 are arranged thereon.
  • the terminal arrangement surface 116 is arranged facing the X-axis direction (second direction).
  • Terminal placement surface 116 is positioned adjacent long sides 111 and 112 and short sides 113 and 114 .
  • the terminal arrangement surface 116 is a surface parallel to the YZ plane arranged in the positive direction of the X axis.
  • a gas discharge valve 140 is provided on at least one of the long side surface 111 (first surface) and the bottom surface 115 (second surface) of the container 110 .
  • the gas discharge valve 140 is a safety valve that releases the pressure when the pressure inside the container 110 rises excessively.
  • a gas discharge valve 140 is provided on the long side surface 111 (first surface) of the container 110 .
  • the gas exhaust valve 140 is arranged at the center portion of the long side surface 111 in the X-axis direction and the end portion in the negative Y-axis direction.
  • the gas discharge valve 140 is a circular (disk-shaped) portion when viewed from the Z-axis direction, but when viewed from the Z-axis direction, it has an elliptical, oval, square, or triangular shape. , and other polygonal shapes.
  • the material of the gas discharge valve 140 is not particularly limited, it is preferably the same material as the container 110 (container main body 120).
  • a gas discharge valve 140 can be formed on the long side surface 111 by forming a through hole in the long side surface 111 and joining (welding) a separate member (valve body) that becomes the gas discharge valve 140 to the position of the through hole. .
  • the gas exhaust valve 140 can also be formed on the long side surface 111 by pressing the long side surface 111 to form a valve element that becomes the gas exhaust valve 140 . Since it is generally difficult to press the long side 111, it is preferable to form the gas discharge valve 140 on the long side 111 by joining the valve body to the long side 111 by welding such as laser welding.
  • gas discharge valve 140 is arranged at a position where the internal member contacts the container 110 from the inside.
  • gas exhaust valve 140 is arranged at a position where electrode body 160 contacts container 110 from the inside.
  • the electrode terminal 150 is a terminal member (positive terminal and negative terminal) of the first storage element 100 arranged in the X-axis direction (second direction) of the container 110 . Specifically, a pair of electrode terminals 150 aligned in the Y-axis direction are arranged to protrude from the terminal arrangement surface 116 (cover 130) of the container 110 in the X-axis positive direction.
  • the electrode terminal 150 is electrically connected to the positive plate and the negative plate of the electrode body 160 via the current collector 170 . That is, the electrode terminal 150 leads the electricity stored in the electrode body 160 to the external space of the first storage element 100 , and in order to store the electricity in the electrode body 160 , the electricity is transferred to the internal space of the first storage element 100 .
  • the electrode terminal 150 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
  • the electrode body 160 is a storage element (power generation element) capable of storing electricity, and includes a positive electrode plate, a negative electrode plate, and a separator, and is formed by stacking the positive electrode plate, the negative electrode plate, and the separator.
  • a positive electrode plate is an electrode plate in which a positive electrode active material layer is formed on a positive electrode base material, which is a strip-shaped collector foil made of a metal such as aluminum or an aluminum alloy.
  • a negative electrode plate is an electrode plate in which a negative electrode active material layer is formed on a negative electrode substrate, which is a band-shaped collector foil made of a metal such as copper or a copper alloy.
  • the separator is a microporous sheet made of resin.
  • the positive electrode active material used for the positive electrode active material layer and the negative electrode active material used for the negative electrode active material layer known materials can be appropriately used as long as they can intercalate and deintercalate lithium ions.
  • the separator any well-known material can be used as appropriate as long as it does not impair the performance of the first storage element 100 .
  • the electrode body 160 is a wound electrode body formed by winding a positive electrode plate and a negative electrode plate in which a separator is sandwiched between layers. Specifically, in the electrode assembly 160, the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween while being shifted from each other in the direction of the winding axis (Y-axis direction). Each of the positive electrode plate and the negative electrode plate has a portion where the base material is exposed without being coated with the composite material at the ends in the shifted direction, and the ends are electrically and mechanically connected to the current collector 170.
  • the electrode body 160 may be a wound electrode body formed by winding a positive electrode plate, a negative electrode plate, and a separator around a winding axis parallel to the X-axis direction.
  • the electrode body 160 may be a laminated (stacked) electrode body formed by stacking a plurality of flat plate-like electrode plates, or may be a bellows-shaped electrode body in which the electrode plates are folded into a bellows shape, or the like.
  • the electrode body may be in the form of
  • the current collector 170 is disposed between the electrode body 160 and the container 110, and is a conductive current collecting member (a positive electrode current collector and a negative electrode current collector) electrically connected to the electrode terminal 150 and the electrode body 160. ).
  • the current collector 170 is joined to the electrode body 160 by welding or the like.
  • the positive electrode current collector 170 is made of aluminum, an aluminum alloy, or the like, similar to the positive electrode base material of the positive electrode plate of the electrode body 160
  • the negative electrode current collector 170 is similar to the negative electrode base material of the negative electrode plate of the electrode body 160 . , copper or a copper alloy.
  • the flow path forming member 200 is a member that is arranged above the plurality of first storage elements 100 and forms a flow path for gas discharged from the first storage elements 100 .
  • the flow path forming member 200 extends in the Y-axis direction across the plurality of first storage elements 100 so as to traverse the X-axis direction central portions of the plurality of first storage elements 100 and extends in the Y-axis direction. It is placed in the Z-axis plus direction of one storage element 100 .
  • the flow path forming member 200 is arranged in the Z-axis plus direction of the plurality of gas discharge valves 140 of the plurality of first power storage elements 100 so as to cover the plurality of gas discharge valves 140 .
  • the channel forming member 200 forms a channel 201 for the gas discharged from the gas discharge valve 140 of the first power storage element 100 .
  • the flow path forming member 200 is preferably formed of a nonflammable member with high heat resistance. That is, the flow path forming member 200 is preferably made of a material that does not melt (or deform) at the temperature of the high-temperature gas discharged from the gas discharge valve 140 . Furthermore, the flow path forming member 200 is preferably made of a member having high heat dissipation in order to release the heat of the high-temperature gas to the outside.
  • the flow path forming member 200 is made of, for example, a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or ceramic.
  • the flow path forming member 200 is a rectangular member that is open in the negative Z-axis direction when viewed from the Y-axis direction, and both ends in the Y-axis direction are open.
  • the channel forming member 200 forms a gas channel 201 together with the long side surface 111 of the container 110 of the plurality of first power storage elements 100 . That is, the flow path forming member 200 forms both sides of the flow path 201 in the X-axis direction and a surface in the positive Z-axis direction, and the plurality of long side surfaces 111 aligned in the Y-axis direction form the negative Z-axis direction of the flow path 201 . Forming the plane of direction.
  • the surface (long side surface 111 ) of the container 110 on which the gas discharge valve 140 is provided is part of the flow path 201 for the gas discharged from the gas discharge valve 140 .
  • the flow path 201 is a gas passage extending in the Y-axis direction through which the gas discharged from the gas discharge valves 140 of the first storage elements 100 flows, and extends across the plurality of first storage elements 100 (the plurality of gas discharge valves 140). are placed.
  • the gas discharged from the gas discharge valve 140 flows through the channel 201 in the positive Y-axis direction or the negative Y-axis direction, and is discharged from the end of the channel 201 in the positive Y-axis direction or the negative Y-axis direction.
  • the space inside the flow path 201 has a size that does not prevent the opening of the gas exhaust valve 140 .
  • the flow path forming member 200 is formed in a shape and size that does not come into contact with the gas exhaust valve 140 when the gas exhaust valve 140 is opened.
  • the channel forming member 200 is formed to have the same length as the plurality of first power storage elements 100 in the Y-axis direction.
  • the flow path forming member 200 may be formed longer than the plurality of first storage elements 100 in the Y-axis direction, and the Y-axis direction end portion of the flow path forming member 200 may protrude from the plurality of first storage elements 100. , or vice versa (the flow path forming member 200 is formed shorter than the plurality of first storage elements 100).
  • the flow path forming member 200 may be closed at one end in the Y-axis direction.
  • the flow path forming member 200 may have any shape, such as a semi-circular shape, a semi-elliptical shape, a semi-elliptical shape, a triangular shape, etc., when viewed from the Y-axis direction.
  • the container 110 that is flat in the Z-axis direction (first direction) of each of the plurality of first power storage elements 100 extends in the Z-axis direction (
  • the long side surface 111 (first surface) facing the first direction) has a gas discharge valve 140, and the plurality of first storage elements 100 are arranged side by side in the Y-axis direction (third direction).
  • the electrode terminal 150 is less likely to be an obstacle, and the gas discharge valve 140 can be easily arranged.
  • the plurality of first storage elements 100 By arranging the plurality of first storage elements 100 side by side in the Y-axis direction, the plurality of gas discharge valves 140 provided on the surface on which the electrode terminals 150 are not arranged are arranged in the Y-axis direction. Therefore, the electrode terminal 150 is less likely to interfere with the formation of the flow path 201 for the gas discharged from the gas discharge valve 140, and the flow path 201 for the gas can be easily formed. As a result, the gas from the first power storage element 100 can be discharged with a simple configuration.
  • the gas exhaust valve 140 since the gas exhaust valve 140 is provided on the long side surface 111 of the container 110, the gas exhaust valve 140 can be arranged on a relatively wide surface, making it easy to arrange the gas exhaust valve 140. Most of the long side surface 111 of the container 110 is in contact with the internal members of the first storage element 100 such as the electrode body 160 from the inside. Inward opening of the discharge valve 140 due to external pressure can be effectively suppressed.
  • the long side surfaces 111 having large areas are arranged in the Y-axis direction, so that the flow path 201 for the gas discharged from the gas discharge valve 140 can be easily formed. As a result, the gas from the first power storage element 100 can be discharged with a simple configuration.
  • the surface (long side surface 111) of the container 110 provided with the gas discharge valve 140 is part of the flow path 201 for the gas discharged from the gas discharge valve 140, so that the gas is discharged.
  • the flow path 201 can be formed with a simple (and inexpensive) configuration. Thereby, the gas from the first power storage element 100 can be discharged with a simple configuration.
  • the height of the power storage device 10 can be reduced by arranging the plurality of first power storage elements 100 side by side with the long side 111 of the container 110 facing upward.
  • FIG. 3 is a perspective view showing the configuration of power storage device 11 according to Modification 1 of the present embodiment.
  • FIG. 4 is a perspective view showing the configuration of power storage device 12 according to Modification 2 of the present embodiment. 3 and 4 are diagrams corresponding to FIG.
  • power storage device 11 includes two cooling units 300 at positions sandwiching flow path forming member 200 in addition to the configuration of power storage device 10 in the above-described embodiment.
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • the cooling part 300 is a member that is arranged at least one of the positions sandwiching the flow path 201 of the gas discharged from the gas discharge valve 140 and that cools the gas.
  • two cooling units 300 are arranged at positions sandwiching the flow path forming member 200 in the X-axis direction (both sides of the flow path forming member 200 in the X-axis direction).
  • the cooling part 300 is preferably made of a material having high thermal conductivity.
  • the cooling part 300 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or the like.
  • the cooling unit 300 extends in the Y-axis direction across the plurality of first storage elements 100 so as to cross both ends of the plurality of first storage elements 100 in the X-axis direction in the Y-axis direction. It is mounted in the Z-axis plus direction of the element 100 .
  • the cooling unit 300 is a circular (annular) member (pipe) that extends in the Y-axis direction along the flow path forming member 200 and has a circular (annular) shape when viewed in the Y-axis direction. department is open.
  • a coolant channel 301 is formed inside the cooling unit 300 through which gas such as air or liquid such as water flows.
  • the cooling unit 300 has coolant flowing through the channel 301 . That is, the cooling unit 300 cools the flow path forming member 200 by air cooling, water cooling, or the like, thereby cooling the gas flowing through the flow paths 201 in the flow path forming member 200 .
  • the cooling part 300 is formed to have the same length as the flow path forming member 200 in the Y-axis direction.
  • the cooling part 300 may be formed longer than the flow path forming member 200 in the Y-axis direction, and the Y-axis direction end of the cooling part 300 may protrude from the flow path forming member 200, or vice versa (the cooling part 300 may be It may be formed shorter than the flow path forming member 200).
  • the cooling part 300 may have any shape, such as an elliptical shape, an oval shape, a rectangular shape, a triangular shape, etc., when viewed from the Y-axis direction. One of the two cooling units 300 may not be arranged.
  • a power storage device 12 according to Modification 2 includes a flow path forming member 400 in which flow path forming member 200 and cooling section 300 in Modification 1 are integrated. Since the rest of the configuration of this modification is the same as that of Modification 1, detailed description thereof will be omitted.
  • the flow path forming member 400 has a gas flow path forming portion 410 extending in the Y-axis direction, and two cooling portions 420 extending in the Y-axis direction and disposed at positions sandwiching the gas flow path forming portion 410.
  • Gas channel forming portion 410 corresponds to channel forming member 200 in Modification 1 above, and forms channel 411 for gas discharged from gas discharge valve 140 of first storage element 100 .
  • the cooling unit 420 corresponds to the cooling unit 300 in Modification 1, and forms a coolant channel 421 through which gas such as air or liquid such as water flows.
  • the gas flow path forming portion 410 is an inverted U-shaped portion curved so as to protrude in the positive Z-axis direction when viewed from the Y-axis direction.
  • the cooling portion 420 is a curved U-shaped portion protruding from the gas flow path forming portion 410 in the negative Z-axis direction when viewed from the Y-axis direction. In this way, the cooling unit 420 is arranged at least one of the positions sandwiching the flow path 411 of the gas discharged from the gas discharge valve 140, and cools the gas.
  • the flow path forming member 400 is preferably made of a member having high heat resistance (noncombustibility), heat dissipation, and high thermal conductivity.
  • the flow path forming member 400 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or the like.
  • the shape of the flow path forming member 400 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited.
  • One of the two cooling units 420 may not be arranged.
  • the cooling units 300 and 420 at least one of the positions sandwiching the gas flow path 201, the gas discharged from the gas discharge valve 140 is can be easily cooled. Since the gas discharge valve 140 is provided on the long side surface 111 of the container 110 , the long side surface 111 with a large area is aligned in the Y-axis direction (third direction). Easy to place.
  • the cooling units 300 and 420 are provided on the long side 111 of the container 110 so that the container 110 can be cooled directly.
  • the gas channel forming portion 410 forming the gas channel 411 and the cooling portion 420 forming the coolant channel 421 are integrated, so that the configuration is simple.
  • FIG. 5 is a perspective view showing the configuration of power storage device 13 according to Modification 3 of the present embodiment.
  • FIG. 5 is a diagram corresponding to FIG.
  • a power storage device 13 according to Modification Example 3 includes a plurality of second power storage elements 100a in addition to the configuration of the power storage device 10 in the above embodiment, and the flow path in the above embodiment.
  • a flow path forming member 210 is provided instead of the forming member 200 .
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • a power storage element having the same configuration as the first power storage element 100 is rotated by 180° around the X-axis, and is referred to as a second power storage element 100a.
  • the second power storage element 100a is arranged with the long side surface 111a of the container 110a provided with the gas discharge valve 140a facing in the negative Z-axis direction.
  • the second power storage element 100a is arranged in the positive Z-axis direction of the first power storage element 100 so as to face the first power storage element 100 in the Z-axis direction.
  • a plurality of (four) second power storage elements 100a aligned in the Y-axis direction are arranged in the positive Z-axis direction of the plurality (four) first power storage elements 100 aligned in the Y-axis direction.
  • the long side surface 111 of each first storage element 100 and the long side surface 111a of each second storage element 100a are arranged to face each other in the Z-axis direction.
  • the long side surface 111a of the second storage element 100a is arranged to face the surface (long side surface 111) provided with the gas discharge valve 140 of any one of the containers 110 of the plurality of first storage elements 100.
  • the gas discharge valve 140a is arranged at the center portion in the X-axis direction and the end portion in the positive Y-axis direction of the long side surface 111a.
  • the gas discharge valve 140a of the second storage element 100a is arranged at a position that does not face the gas discharge valve 140 of the first storage element 100 in the Z-axis direction (does not overlap when viewed from the Z-axis direction).
  • the long side surface 111a of the second storage element 100a is an example of the third surface.
  • the flow path forming member 210 is arranged between the long side surface 111 of the first storage element 100 and the long side surface 111a of the second storage element 100a, and serves as the gas discharge valve 140 of the first storage element 100 and the second storage element 100a. It forms a flow path 211 for the gas discharged from the gas discharge valve 140a.
  • the flow path forming member 210 has a structure obtained by removing the walls in the positive Z-axis direction from the flow path forming member 200 in the above embodiment. That is, the flow path forming member 210 is composed of two walls facing each other in the X-axis direction.
  • the channel forming member 210 forms a gas channel 211 together with the long side surfaces 111 of the plurality of first storage elements 100 and the long side surfaces 111a of the plurality of second storage elements 100a. That is, the flow path forming member 210 forms both sides of the flow path 211 in the X-axis direction, and the plurality of long side surfaces 111 aligned in the Y-axis direction form the surface of the flow path 211 in the negative Z-axis direction. A plurality of long side surfaces 111a aligned in the axial direction form the surface of the channel 211 in the positive Z-axis direction.
  • the surface (long side surface 111) of the container 110 provided with the gas discharge valve 140 and the surface (long side surface 111a) of the container 110a provided with the gas discharge valve 140a are the gas discharge valves. It is part of the flow path 211 for gas discharged from 140 and 140a.
  • the surface (long side surface 111) of the first storage element 100 provided with the gas discharge valve 140 and the gas discharge valve 140a of the second storage element 100a is arranged so as to face each other.
  • the flow path 211 for gas discharged from the gas discharge valves 140 and 140a can be shared between the first storage element 100 and the second storage element 100a. Therefore, the gas from the first storage element 100 and the second storage element 100a can be discharged with a simple configuration.
  • the gas exhaust valve 140 and the gas exhaust valve 140a are arranged at positions that do not face each other in the Z-axis direction, the gas exhausted from the gas exhaust valve 140 collides with the gas exhaust valve 140a, and the gas exhaust valve 140a moves toward the inner side. It is possible to suppress the opening of the valve.
  • the shape of the flow path forming member 210 shape viewed from the Y-axis direction, length in the Y-axis direction, etc. is not particularly limited. In this modification, modification 1 or 2 may be applied.
  • FIG. 6 is a perspective view showing the configuration of power storage device 14 according to Modification 4 of the present embodiment.
  • FIG. 6 is a diagram corresponding to FIG.
  • a power storage device 14 according to Modification 4 includes a plurality of first power storage elements 101 instead of the plurality of first power storage elements 100 in the above embodiment.
  • a gas discharge valve 140 is provided at the center position of the long side surface 111 of the container 110 in the first storage element 101 .
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • the gas discharge valve 140 may be provided at any position on the long side surface 111 of the container 110 as in the power storage device 14 according to this modification.
  • the gas discharge valve 140 may be provided on the long side 112 of the container 110 .
  • Modifications 1 to 3 may be applied to this modification.
  • the gas discharge valve 140a of the second storage element 100a faces the gas discharge valve 140 of the first storage element 100 in the Z-axis direction (from the Z-axis direction overlap) position.
  • FIG. 7 is a perspective view showing the configuration of power storage device 15 according to Modification 5 of the present embodiment.
  • FIG. 8 is a perspective view showing the configuration of power storage device 16 according to Modification 6 of the present embodiment. 7 and 8 are diagrams corresponding to FIG.
  • a plurality of first power storage elements 102 and a flow path forming member A member 220 is provided instead of the plurality of first power storage elements 100 and flow path forming member 200 in the above embodiment.
  • Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
  • a gas discharge valve 140 is provided on the bottom surface 115 of the container 110 in the first storage element 102 . Specifically, a gas exhaust valve 140 is provided at the end of the bottom surface 115 in the Y-axis negative direction. A plurality of first power storage elements 102 are arranged side by side in the Y-axis direction.
  • the flow path forming member 220 is arranged at a position facing the bottom surface 115 of the container 110 of the first storage element 102 .
  • the channel forming member 220 forms a channel 221 for the gas discharged from the gas discharge valve 140 of the first power storage element 102 .
  • the channel forming member 220 forms a gas channel 221 together with the bottom surface 115 of the container 110 of the plurality of first power storage elements 102 .
  • the flow path forming member 220 forms both sides of the flow path 221 in the Z-axis direction and a surface in the X-axis negative direction, and the plurality of bottom surfaces 115 aligned in the Y-axis direction form the flow path 221 in the X-axis positive direction.
  • the surface (bottom surface 115 ) of the container 110 on which the gas discharge valve 140 is provided is part of the flow path 221 for the gas discharged from the gas discharge valve 140 .
  • the shape of the flow path forming member 220 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited.
  • the container 110 that is flat in the Z-axis direction (first direction) of each of the plurality of first power storage elements 102 extends in the X-axis direction (second direction). ), the bottom surface 115 (second surface) where the electrode terminal 150 is not arranged has a gas exhaust valve 140 .
  • the plurality of first power storage elements 102 are arranged side by side in the Y-axis direction (third direction).
  • the electrode terminal 150 is less likely to be an obstacle, and the gas discharge valve 140 can be easily arranged.
  • the members inside the first storage element 102 such as the electrode body 160 are in contact with the bottom surface 115 of the container 110 from the inside. Inward opening due to external pressure can be suppressed.
  • the electrode terminal 150 is less likely to interfere with the formation of the flow path 221 for the gas discharged from the gas discharge valve 140, and the flow path 221 for the gas can be easily formed.
  • the gas from the first power storage element 102 can be discharged with a simple configuration.
  • first storage elements 102 are arranged in the Y-axis direction (third direction) and connected in series, it is necessary to arrange the first storage elements 102 so that the positions of the positive terminals and the negative terminals are alternately reversed. Therefore, when the gas discharge valve 140 is provided on the long side surface 111 (first surface) of the container 110 of the first storage element 102, the gas discharge valve 140 must be arranged on the long side surface 112 in order to arrange the gas discharge valves 140 in the Y-axis direction. It is also necessary to prepare the first storage element 102 provided with 140 .
  • the gas discharge valve 140 is provided on the bottom surface 115 (second surface) of the container 110 of the first storage element 102, even when the plurality of first storage elements 102 are arranged in the Y-axis direction and connected in series,
  • the gas discharge valves 140 can be arranged in the Y-axis direction. Thereby, the gas from the first power storage element 102 can be discharged with a simple configuration.
  • Modifications 1 to 4 above may be applied to this modification.
  • the power storage device 16 according to modification 6 is configured as shown in FIG. 8 . That is, the second storage element 102a having the gas discharge valve 140a is arranged at a position facing the gas discharge valve 140 of the first storage element 102.
  • a power storage element having the same configuration as the first power storage element 102 is rotated by 180° around the X axis and rotated by 180° around the Y axis to form the second power storage element 102a.
  • the second power storage element 102a is arranged such that the bottom surface 115a of the container 110a provided with the gas discharge valve 140a faces the positive direction of the X axis.
  • the second storage element 102a is arranged in the negative X-axis direction of the first storage element 102 in this posture. Specifically, a plurality of (four) second storage elements 102a arranged in the Y-axis direction are arranged in the negative X-axis direction of the plurality (four) first storage elements 102 arranged in the Y-axis direction.
  • each first storage element 102 and the bottom surface 115a of each second storage element 102a are arranged to face each other in the X-axis direction.
  • the bottom surface 115a of the second storage element 102a is arranged to face the surface (bottom surface 115) of one of the containers 110 of the plurality of first storage elements 102 on which the gas discharge valve 140 is provided.
  • the gas discharge valve 140a is arranged at the Y-axis plus direction end of the bottom surface 115a.
  • the gas discharge valve 140a of the second storage element 102a is arranged at a position that does not face the gas discharge valve 140 of the first storage element 102 in the X-axis direction (does not overlap when viewed from the X-axis direction).
  • Bottom surface 115a of second storage element 102a is an example of a third surface.
  • the flow path forming member 230 is arranged between the bottom surface 115 of the first storage element 102 and the bottom surface 115a of the second storage element 102a, and controls the gas discharge valve 140 of the first storage element 102 and the gas of the second storage element 102a. It forms a flow path 231 for gas discharged from the discharge valve 140a.
  • the flow path forming member 230 has a configuration obtained by removing the wall in the negative direction of the X-axis from the flow path forming member 220 in Modification 5 above. That is, the flow path forming member 230 is composed of two walls facing each other in the Z-axis direction.
  • the flow path forming member 230 forms a gas flow path 231 together with the bottom surfaces 115 of the plurality of first storage elements 102 and the bottom surfaces 115a of the plurality of second storage elements 102a. That is, the flow path forming member 230 forms both sides of the flow path 231 in the Z-axis direction, and the plurality of bottom surfaces 115 aligned in the Y-axis direction form the surfaces of the flow path 231 in the positive direction of the X-axis. A plurality of bottom surfaces 115a aligned in the direction form the surface of the channel 231 in the negative direction of the X axis.
  • the surface (bottom surface 115) of the container 110 provided with the gas exhaust valve 140 and the surface (bottom surface 115a) of the container 110a provided with the gas exhaust valve 140a It is part of the flow path 231 for the gas discharged from 140a.
  • the surface (bottom surface 115) provided with the gas discharge valve 140 of the first storage element 102 and the gas discharge valve 140a of the second storage element 102a are provided.
  • the surface (the third surface, the bottom surface 115a) is arranged so as to face each other.
  • the gas exhaust valve 140 and the gas exhaust valve 140a are arranged at positions that do not face each other in the X-axis direction, the gas exhausted from the gas exhaust valve 140 collides with the gas exhaust valve 140a, and the gas exhaust valve 140a moves toward the inner side. It is possible to suppress the opening of the valve.
  • the shape of the flow path forming member 230 is not particularly limited. Modification 4 above may be applied to this modification, and in this case, the gas discharge valve 140a of the second storage element 102a is positioned to face the gas discharge valve 140 of the first storage element 102 in the X-axis direction. placed.
  • the container 110 of the first power storage element 100 has a rectangular parallelepiped shape that is flat in the Z-axis direction (first direction). , an elliptical columnar shape, or a flat shape such as a polygonal columnar shape other than a rectangular parallelepiped shape.
  • first direction the surface of the container 110 that faces the Z-axis direction (first direction)
  • second direction the surface of the container 110 that forms an angle of 45° or less with the XY plane
  • the first surface is defined as a surface facing in the Z-axis direction (first direction).
  • the angle formed by the YZ plane of the container 110 is 45° or less. is defined as a second surface as a surface facing the X-axis direction (second direction).
  • gas discharge valve 140 may be provided on both long side surface 111 (first surface) and bottom surface 115 (second surface) of container 110 of first storage element 100 . That is, it is sufficient that the gas exhaust valve 140 is provided on at least one of the long side surface 111 (first surface) and the bottom surface 115 (second surface).
  • the surface of the container 110 of the first storage element 100 on which the gas discharge valve 140 is provided is part of the flow path 201 for the gas discharged from the gas discharge valve 140.
  • the channel forming member 200 may have a wall facing the first storage element 100 as part of the channel 201 .
  • a configuration in which the power storage device 10 does not include the flow path forming member 200 and the flow path 201 is not formed may be employed. The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
  • all the first power storage elements 100 included in the power storage device 10 have the above-described configuration. Any first storage element 100 may have a configuration different from that described above. The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
  • the present invention can be applied to a power storage device or the like having a power storage element such as a lithium ion secondary battery.
  • Power storage device 100 101, 102 First power storage element 100a, 102a Second power storage element 110, 110a Container 111, 111a, 112 Long side 113, 114 Short side 115, 115a Bottom surface 116 Terminal arrangement surface 120 Container main body 130 Lid 140, 140a Gas discharge valve 150 Electrode terminal 160 Electrode body 170 Current collector 200, 210, 220, 230, 400 Flow path forming member 201, 211, 221, 231, 301, 411, 421 channel 300, 420 cooling part 410 gas channel forming part

Abstract

A power storage device according to the present invention comprises a plurality of first power-storage elements. Each of the plurality of first power-storage elements comprises a container that is flat in a first direction, and electrode terminals disposed in a second direction intersecting the first direction of the container. The container comprises a first surface facing the first direction, a second surface facing the second direction and on which the electrode terminals are not disposed, and a gas discharge valve provided on the first surface and/or the second surface. The plurality of first power-storage elements are disposed side-by-side in a third direction intersecting the first and second directions.

Description

蓄電装置power storage device
 本発明は、複数の蓄電素子を備える蓄電装置に関する。 The present invention relates to a power storage device having a plurality of power storage elements.
 従来、複数の蓄電素子を備え、それぞれの蓄電素子にガス排出弁が設けられた構成の蓄電装置が知られている。特許文献1には、前後方向に複数のセル(蓄電素子)を積層して構成されたセル積層体の上面に、それぞれのセルの頂面に形成されたガス放出部(ガス排出弁)が設けられたバッテリモジュール(蓄電装置)が開示されている。 Conventionally, there is known a power storage device having a configuration in which a plurality of power storage elements are provided, and each power storage element is provided with a gas discharge valve. In Patent Document 1, a gas discharge portion (gas discharge valve) formed on the top surface of each cell is provided on the top surface of a cell laminate configured by stacking a plurality of cells (electrical storage elements) in the front-rear direction. A battery module (power storage device) is disclosed.
特開2019-16501号公報Japanese Patent Application Laid-Open No. 2019-16501
 上記従来の蓄電装置では、蓄電素子の上面(電極端子が配置される面)にガス排出弁が配置されている。しかしながら、このような構成の蓄電装置では、電極端子が邪魔になって、蓄電素子にガス排出弁を配置しにくいという問題がある。蓄電素子の外方に、ガス排出弁から排出されるガスの流路を形成する際にも、電極端子が邪魔になって、当該ガスの流路を形成しにくいという問題もある。このように、上記従来の蓄電装置では、蓄電素子からのガスを排出する構成を容易に実現しにくい。 In the conventional power storage device described above, a gas discharge valve is arranged on the top surface of the power storage element (the surface on which the electrode terminals are arranged). However, in the electric storage device having such a configuration, there is a problem that it is difficult to dispose the gas discharge valve on the electric storage element because the electrode terminals are an obstacle. When forming a flow path for the gas discharged from the gas discharge valve to the outside of the storage element, there is also the problem that the electrode terminals interfere with the formation of the flow path for the gas. As described above, in the above-described conventional power storage device, it is difficult to easily realize a configuration for discharging gas from the power storage element.
 本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、簡易な構成で、蓄電素子からのガスを排出できる蓄電装置を提供することを目的とする。 The present invention was made by the inventors of the present application by newly paying attention to the above problem, and an object of the present invention is to provide a power storage device capable of discharging gas from a power storage element with a simple configuration.
 本発明の一態様に係る蓄電装置は、複数の第一蓄電素子を備え、前記複数の第一蓄電素子のそれぞれは、第一方向に扁平な容器と、前記容器の、前記第一方向と交差する第二方向に配置される電極端子と、を有し、前記容器は、前記第一方向に向く第一面と、前記第二方向に向き、かつ、前記電極端子が配置されない第二面と、前記第一面及び前記第二面の少なくとも一方に設けられるガス排出弁と、を有し、前記複数の第一蓄電素子は、前記第一方向及び前記第二方向と交差する第三方向に並んで配置される。 A power storage device according to an aspect of the present invention includes a plurality of first power storage elements, and each of the plurality of first power storage elements includes a container that is flat in a first direction and a container that intersects the first direction. the container has a first surface facing the first direction and a second surface facing the second direction and on which the electrode terminals are not arranged. and a gas discharge valve provided on at least one of the first surface and the second surface, wherein the plurality of first storage elements are arranged in a third direction intersecting the first direction and the second direction. placed side by side.
 本発明における蓄電装置によれば、簡易な構成で、蓄電素子からのガスを排出できる。 According to the power storage device of the present invention, gas can be discharged from the power storage element with a simple configuration.
図1は、実施の形態に係る蓄電装置の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of a power storage device according to an embodiment. 図2は、実施の形態に係る第一蓄電素子の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the first storage element according to the embodiment. 図3は、実施の形態の変形例1に係る蓄電装置の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of a power storage device according to Modification 1 of the embodiment. 図4は、実施の形態の変形例2に係る蓄電装置の構成を示す斜視図である。FIG. 4 is a perspective view showing a configuration of a power storage device according to Modification 2 of the embodiment. 図5は、実施の形態の変形例3に係る蓄電装置の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of a power storage device according to Modification 3 of the embodiment. 図6は、実施の形態の変形例4に係る蓄電装置の構成を示す斜視図である。FIG. 6 is a perspective view showing a configuration of a power storage device according to Modification 4 of the embodiment. 図7は、実施の形態の変形例5に係る蓄電装置の構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of a power storage device according to Modification 5 of the embodiment. 図8は、実施の形態の変形例6に係る蓄電装置の構成を示す斜視図である。FIG. 8 is a perspective view showing the configuration of a power storage device according to Modification 6 of the embodiment.
 (1)本発明の一態様に係る蓄電装置は、複数の第一蓄電素子を備え、前記複数の第一蓄電素子のそれぞれは、第一方向に扁平な容器と、前記容器の、前記第一方向と交差する第二方向に配置される電極端子と、を有し、前記容器は、前記第一方向に向く第一面と、前記第二方向に向き、かつ、前記電極端子が配置されない第二面と、前記第一面及び前記第二面の少なくとも一方に設けられるガス排出弁と、を有し、前記複数の第一蓄電素子は、前記第一方向及び前記第二方向と交差する第三方向に並んで配置される。 (1) A power storage device according to an aspect of the present invention includes a plurality of first power storage elements, and each of the plurality of first power storage elements includes a container that is flat in a first direction and a container that is flat in the first direction. and electrode terminals arranged in a second direction intersecting with the direction, wherein the container has a first surface facing the first direction and a second surface facing the second direction and on which the electrode terminals are not arranged. and a gas discharge valve provided on at least one of the first surface and the second surface. They are arranged in three directions.
 本発明の一態様にかかる蓄電装置によれば、複数の第一蓄電素子のそれぞれが有する第一方向に扁平な容器は、第一方向に向く第一面、及び、第二方向に向き、かつ、電極端子が配置されない第二面の少なくとも一方にガス排出弁を有し、複数の第一蓄電素子は、第三方向に並んで配置される。このように、第一蓄電素子の容器の第一面及び第二面の少なくとも一方にガス排出弁を設けることで、電極端子が配置されない面にガス排出弁を配置できる。このため、第一蓄電素子にガス排出弁を配置する際に電極端子が邪魔になりにくく、ガス排出弁を配置しやすい。複数の第一蓄電素子を第三方向に並んで配置することで、電極端子が配置されない面に設けられた複数のガス排出弁が第三方向に並ぶ。このため、ガス排出弁から排出されるガスの流路を形成する際に電極端子が邪魔になりにくく、当該ガスの流路を形成しやすい。これらにより、簡易な構成で、第一蓄電素子からのガスを排出できる。 According to the power storage device according to one aspect of the present invention, the container flat in the first direction included in each of the plurality of first power storage elements has the first surface facing the first direction, the first surface facing the second direction, and , a gas discharge valve is provided on at least one of the second surfaces on which the electrode terminals are not arranged, and the plurality of first storage elements are arranged side by side in the third direction. Thus, by providing the gas discharge valve on at least one of the first surface and the second surface of the container of the first storage element, the gas discharge valve can be arranged on the surface on which the electrode terminals are not arranged. Therefore, when the gas discharge valve is arranged on the first storage element, the electrode terminals are less likely to be an obstacle, and the gas discharge valve can be easily arranged. By arranging the plurality of first storage elements side by side in the third direction, the plurality of gas discharge valves provided on the surface on which the electrode terminals are not arranged are arranged in the third direction. Therefore, the electrode terminals are less likely to interfere with the formation of the flow path for the gas discharged from the gas discharge valve, and the flow path for the gas can be easily formed. As a result, the gas from the first power storage element can be discharged with a simple configuration.
 (2)上記(1)に記載の蓄電装置において、前記容器のうちの前記ガス排出弁が設けられた面は、前記ガス排出弁から排出されるガスの流路の一部であってもよい。 (2) In the power storage device according to (1) above, the surface of the container on which the gas discharge valve is provided may be part of a flow path for the gas discharged from the gas discharge valve. .
 上記(2)に記載の蓄電装置によれば、第一蓄電素子において、ガス排出弁が設けられた容器の面を、ガス排出弁から排出されるガスの流路の一部とすることで、当該ガスの流路を簡易な構成で形成できる。これにより、簡易な構成で、第一蓄電素子からのガスを排出できる。 According to the power storage device described in (2) above, in the first power storage element, the surface of the container provided with the gas discharge valve is part of the flow path for the gas discharged from the gas discharge valve, The gas flow path can be formed with a simple configuration. Thereby, the gas from the first power storage element can be discharged with a simple configuration.
 (3)上記(1)または(2)に記載の蓄電装置は、前記ガス排出弁から排出されるガスの流路を挟む位置の少なくとも一方に配置され、冷媒を有する冷却部を備えてもよい。 (3) The power storage device according to (1) or (2) above may include a cooling unit having a coolant and disposed at least one of positions sandwiching a flow path of the gas discharged from the gas discharge valve. .
 上記(3)に記載の蓄電装置によれば、ガスの流路を挟む位置の少なくとも一方に冷却部を設けることで、ガス排出弁から排出されたガスを容易に冷却できる。 According to the power storage device described in (3) above, the gas discharged from the gas discharge valve can be easily cooled by providing the cooling unit at least one of the positions sandwiching the gas flow path.
 (4)上記(1)から(3)のいずれかひとつに記載の蓄電装置において、前記ガス排出弁は、前記容器の底面に設けられてもよい。 (4) In the power storage device according to any one of (1) to (3) above, the gas discharge valve may be provided on the bottom surface of the container.
 複数の第一蓄電素子を第三方向に並べて直列接続しようとすると、正極端子及び負極端子の位置が交互に逆になるように第一蓄電素子を並べる必要がある。このため、第一蓄電素子の容器の長側面(第一面)にガス排出弁が設けられる場合、ガス排出弁を第三方向に並べるには、違う長側面にガス排出弁を設けた2種類の第一蓄電素子を用意する必要がある。これに対し、第一蓄電素子の容器の底面(第二面)にガス排出弁が設けられる構成では、複数の第一蓄電素子を第三方向に並べて直列接続する場合でも、同じ構成の第一蓄電素子を並べることで、ガス排出弁を第三方向に並べることができる。これにより、簡易な構成で、第一蓄電素子からのガスを排出できる。 If a plurality of first storage elements are arranged in the third direction and connected in series, it is necessary to arrange the first storage elements so that the positions of the positive terminals and the negative terminals are alternately reversed. Therefore, when the gas discharge valve is provided on the long side surface (first surface) of the container of the first storage element, in order to arrange the gas discharge valves in the third direction, there are two types of gas discharge valves provided on different long side surfaces. , it is necessary to prepare the first storage element. On the other hand, in the configuration in which the gas discharge valve is provided on the bottom surface (second surface) of the container of the first storage element, even when a plurality of first storage elements are arranged in the third direction and connected in series, the first By arranging the electric storage elements, the gas discharge valves can be arranged in the third direction. Thereby, the gas from the first power storage element can be discharged with a simple configuration.
 (5)上記(1)から(4)のいずれかひとつに記載の蓄電装置は、前記複数の第一蓄電素子が有するいずれかの容器のうちの前記ガス排出弁が設けられた面に対向する第三面にガス排出弁が設けられた第二蓄電素子をさらに備えてもよい。 (5) The power storage device according to any one of (1) to (4) above faces a surface of any one of the containers of the plurality of first power storage elements, the surface being provided with the gas discharge valve. A second storage element having a gas discharge valve provided on the third surface may be further provided.
 上記(5)に記載の蓄電装置によれば、第一蓄電素子のガス排出弁が設けられた面と、第二蓄電素子のガス排出弁が設けられた面(第三面)とが対向して配置されることで、ガス排出弁から排出されるガスの流路を、第一蓄電素子と第二蓄電素子とで共用できる。これにより、簡易な構成で、第一蓄電素子及び第二蓄電素子からのガスを排出できる。 According to the power storage device described in (5) above, the surface of the first storage element provided with the gas discharge valve faces the surface (third surface) of the second storage element provided with the gas discharge valve. By arranging the first storage element and the second storage element in common, the flow path of the gas discharged from the gas discharge valve can be shared. Thereby, the gas from the first storage element and the second storage element can be discharged with a simple configuration.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序等は、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。 Power storage devices according to embodiments of the present invention (including modifications thereof) will be described below with reference to the drawings. All of the embodiments described below are generic or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, manufacturing processes, order of manufacturing processes, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. In each drawing, dimensions and the like are not strictly illustrated. In each figure, the same reference numerals are given to the same or similar components.
 以下の説明及び図面中において、蓄電素子の電極端子の突出方向、または、1つの蓄電素子における容器の容器本体と蓋体との並び方向を、X軸方向と定義する。1つの蓄電素子における一対の電極端子若しくは一対の集電体の並び方向、1つの蓄電素子の容器における一対の短側面の対向方向、または、複数の蓄電素子(複数の第一蓄電素子若しくは複数の第二蓄電素子)の並び方向を、Y軸方向と定義する。1つの蓄電素子の容器における一対の長側面の対向方向、蓄電素子の容器の厚み方向(扁平方向)、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the direction in which the electrode terminals of the storage element protrude, or the direction in which the container body and lid of the container in one storage element are arranged is defined as the X-axis direction. A direction in which a pair of electrode terminals or a pair of current collectors are arranged in one storage element, a direction in which a pair of short sides of a container of one storage element are opposed, or a plurality of storage elements (a plurality of first storage elements or a plurality of The direction in which the second storage elements are arranged is defined as the Y-axis direction. The Z-axis direction is defined as the facing direction of a pair of long sides of a container for one storage element, the thickness direction (flat direction) of the storage element container, or the vertical direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment). Depending on the mode of use, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。単にX軸方向という場合は、X軸プラス方向及びX軸マイナス方向の双方向またはいずれか一方の方向を示す。Y軸方向及びZ軸方向についても同様である。以下では、Z軸方向を第一方向とも呼び、X軸方向を第二方向とも呼び、Y軸方向を第三方向とも呼ぶ場合がある。平行及び直交等の、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が平行であるとは、当該2つの方向が完全に平行であることを意味するだけでなく、実質的に平行であること、すなわち、例えば数%程度の差異を含むことも意味する。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。 In the following description, the positive direction of the X-axis indicates the direction of the arrow on the X-axis, and the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis. When simply referred to as the X-axis direction, it indicates either or both of the X-axis plus direction and the X-axis minus direction. The same applies to the Y-axis direction and the Z-axis direction. Hereinafter, the Z-axis direction may also be referred to as the first direction, the X-axis direction may also be referred to as the second direction, and the Y-axis direction may also be referred to as the third direction. Strictly speaking, expressions indicating relative directions or orientations such as parallel and orthogonal also include cases where the directions or orientations are not the same. For example, two directions being parallel not only means that the two directions are completely parallel, but also being substantially parallel, that is, including a difference of about several percent, for example. means. In the following description, the expression "insulation" means "electrical insulation".
 (実施の形態)
 [1 蓄電装置10の説明]
 図1は、本実施の形態に係る蓄電装置10の構成を示す斜視図である。図2は、本実施の形態に係る第一蓄電素子100の構成を示す斜視図である。図2では、第一蓄電素子100の容器110の内部の構成を破線で示している。蓄電装置10が備える複数の第一蓄電素子100は、全て同様の構成を有するため、図2では、1つの第一蓄電素子100を図示している。
(Embodiment)
[1 Description of Power Storage Device 10]
FIG. 1 is a perspective view showing the configuration of power storage device 10 according to the present embodiment. FIG. 2 is a perspective view showing the configuration of the first storage element 100 according to this embodiment. In FIG. 2, the configuration inside the container 110 of the first storage element 100 is indicated by broken lines. Since the plurality of first power storage elements 100 included in the power storage device 10 all have the same configuration, one first power storage element 100 is illustrated in FIG. 2 .
 蓄電装置10は、外部からの電気を充電し、外部へ電気を放電できる装置である。例えば、蓄電装置10は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置10は、例えば、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、及び、化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電装置10は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside. For example, the power storage device 10 is a battery module (assembled battery) used for power storage or power supply. Specifically, the power storage device 10 is, for example, an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a rolling stock for an electric railway. It is used as a battery etc. Examples of the vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fossil fuel (gasoline, light oil, liquefied natural gas, etc.) vehicles. Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors. The power storage device 10 can also be used as a stationary battery or the like for home or business use.
 図1に示すように、蓄電装置10は、複数の第一蓄電素子100と、流路形成部材200と、を備えている。蓄電装置10は、第一蓄電素子100同士を直列または並列に接続するバスバーも備えているが、図示及び説明は省略する。蓄電装置10は、上記の構成要素の他、上記バスバーの位置決めを行うバスバーフレーム、上記の構成要素を収容する外装体、外部のバスバー等と接続される外部端子、第一蓄電素子100同士の間等に配置されるスペーサを備えていてもよい。蓄電装置10は、さらに、複数の第一蓄電素子100を拘束する拘束部材(エンドプレート及びサイドプレート)を備えてもよい。当該拘束部材は第一蓄電素子100を圧迫する構成であってもよい。後述する流路形成部材200が拘束部材として機能してもよい。蓄電装置10は、第一蓄電素子100の充電状態及び放電状態等を監視または制御する回路基板、ヒューズ、リレー及びコネクタ等の電気機器等を備えていてもよい。 As shown in FIG. 1 , the power storage device 10 includes a plurality of first power storage elements 100 and a flow path forming member 200 . The power storage device 10 also includes a bus bar that connects the first power storage elements 100 in series or in parallel, but illustration and description thereof are omitted. In addition to the components described above, the power storage device 10 includes a busbar frame that positions the busbars, an exterior body that houses the components, external terminals that are connected to external busbars, etc., and a space between the first power storage elements 100. It may be provided with spacers arranged in the same manner. The power storage device 10 may further include binding members (end plates and side plates) that bind the plurality of first power storage elements 100 . The restraint member may be configured to press the first power storage element 100 . A flow path forming member 200, which will be described later, may function as a restricting member. The power storage device 10 may include electrical devices such as a circuit board, fuses, relays, connectors, and the like for monitoring or controlling the state of charge and the state of discharge of the first power storage element 100 .
 [1.1 第一蓄電素子100の説明]
 まず、第一蓄電素子100の構成について、詳細に説明する。第一蓄電素子100は、電気を充電し、電気を放電できる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。第一蓄電素子100は、直方体形状(角形)を有しており、複数(本実施の形態では4個)の第一蓄電素子100がY軸方向に並んで配列されている。第一蓄電素子100の大きさ、及び、配列される第一蓄電素子100の個数等は限定されない。第一蓄電素子100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。第一蓄電素子100は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。第一蓄電素子100は、固体電解質を用いた電池であってもよい。第一蓄電素子100は、パウチタイプの蓄電素子であってもよい。
[1.1 Description of first storage element 100]
First, the configuration of the first storage element 100 will be described in detail. The first storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The first power storage element 100 has a rectangular parallelepiped shape (square shape), and a plurality of (four in the present embodiment) first power storage elements 100 are arranged side by side in the Y-axis direction. The size of the first storage element 100, the number of arranged first storage elements 100, and the like are not limited. The first storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The first storage element 100 may be a primary battery that can use stored electricity without being charged by the user, instead of a secondary battery. The first storage element 100 may be a battery using a solid electrolyte. The first storage element 100 may be a pouch-type storage element.
 本実施の形態では、第一蓄電素子100は、扁平な形状を有しており、複数(4個)の第一蓄電素子100が、平置き(横置き、横倒し)にされた状態で、Y軸方向(第三方向)に並んで配置されている。具体的には、当該複数の第一蓄電素子100は、容器110の長側面111がZ軸プラス方向に向いた状態(容器110の長側面112がZ軸マイナス方向に向いた状態)で配置される。そして、これらの複数の第一蓄電素子100は、容器110の短側面113及び114がY軸方向に向いた状態(容器110の底面115及び端子配置面116がX軸方向に向いた状態)で、Y軸方向に並んで配列される。本実施の形態では、隣り合う2つの第一蓄電素子100において、一方の第一蓄電素子100の短側面113と、他方の第一蓄電素子100の短側面114とが接触した状態で配置される。隣り合う2つの第一蓄電素子100の間にスペーサが配置されてもよいし、隣り合う2つの第一蓄電素子100が離間して配置されてもよい。 In the present embodiment, the first power storage element 100 has a flat shape, and a plurality of (four) first power storage elements 100 are placed flat (horizontally placed, laid down), and the Y They are arranged side by side in the axial direction (third direction). Specifically, the plurality of first power storage elements 100 are arranged with the long side surface 111 of the container 110 facing in the positive Z-axis direction (with the long side surface 112 of the container 110 facing in the negative Z-axis direction). be. These first power storage elements 100 are arranged in a state in which the short side surfaces 113 and 114 of the container 110 face the Y-axis direction (a state in which the bottom surface 115 and the terminal arrangement surface 116 of the container 110 face the X-axis direction). , are arranged side by side in the Y-axis direction. In the present embodiment, two adjacent first power storage elements 100 are arranged such that the short side surface 113 of one first power storage element 100 and the short side surface 114 of the other first power storage element 100 are in contact with each other. . A spacer may be arranged between two adjacent first power storage elements 100, or two adjacent first power storage elements 100 may be spaced apart.
 図2に示すように、第一蓄電素子100は、容器110と、一対(正極及び負極)の電極端子150とを備え、容器110の内方には、電極体160と、一対(正極及び負極)の集電体170とが収容されている。容器110の内方には電解液(非水電解質)も封入され、電極端子150及び集電体170と容器110(後述の蓋体130)との間にはガスケットが配置されているが、これらの詳細な説明は省略する。当該電解液としては、第一蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。第一蓄電素子100は、上記の構成要素の他、電極体160の側方または下方等に配置されるスペーサ、及び、電極体160等を包み込む絶縁フィルム等を有していてもよい。容器110の周囲には、容器110の外面を覆う絶縁フィルム(シュリンクチューブ等)が配置されていてもよい。 As shown in FIG. 2, the first storage element 100 includes a container 110 and a pair (positive electrode and negative electrode) of electrode terminals 150. Inside the container 110, an electrode body 160 and a pair (positive electrode and negative electrode) ) and a current collector 170 are housed therein. An electrolytic solution (non-aqueous electrolyte) is also sealed inside the container 110, and a gasket is arranged between the electrode terminal 150 and current collector 170 and the container 110 (cover 130 described later). A detailed description of is omitted. There are no particular restrictions on the type of the electrolyte as long as it does not impair the performance of the first storage element 100, and various electrolytes can be selected. In addition to the components described above, the first storage element 100 may have a spacer disposed on the side or below the electrode body 160, an insulating film wrapping the electrode body 160 and the like, and the like. An insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 .
 容器110は、開口が形成された容器本体120と、容器本体120の当該開口を閉塞する蓋体130と、を有する扁平な直方体形状(角形または箱形)のケースである。容器本体120は、容器110の本体部を構成する矩形筒状で底を備える部材であり、X軸プラス方向側に開口が形成されている。蓋体130は、容器110の蓋部を構成するY軸方向に長い矩形状の板状部材であり、容器本体120のX軸プラス方向側に配置されている。容器110には、容器110内方に電解液を注液するための注液部が設けられていてもよい。容器110(容器本体120及び蓋体130)の材質は、特に限定されず、例えばステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能(接合可能)な金属とすることができるが、樹脂を用いることもできる。 The container 110 is a flat rectangular parallelepiped (square or box-shaped) case having a container body 120 with an opening and a lid 130 closing the opening of the container body 120 . The container main body 120 is a rectangular cylindrical member having a bottom that constitutes the main body of the container 110, and has an opening formed in the positive direction of the X axis. The lid body 130 is a rectangular plate-like member elongated in the Y-axis direction that constitutes the lid portion of the container 110 , and is arranged on the side of the container body 120 in the positive direction of the X-axis. The container 110 may be provided with an injection part for injecting an electrolytic solution into the inside of the container 110 . The material of the container 110 (the container body 120 and the lid 130) is not particularly limited, and can be, for example, a weldable (bondable) metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate. can also be used.
 容器110は、電極体160等を容器本体120の内方に収容後、容器本体120と蓋体130とが溶接等によって接合されることにより、内部が密封されている。容器110は、Z軸方向両側の側面に一対の長側面111及び112を有し、Y軸方向両側の側面に一対の短側面113及び114を有し、X軸マイナス方向側に底面115を有し、X軸プラス方向側に端子配置面116を有している。このように、容器110は、厚み方向がZ軸方向となるZ軸方向(第一方向)に扁平な容器である。Z軸方向(第一方向)に扁平とは、Z軸方向(第一方向)における厚み(幅)が最も小さい形状をいう。 After housing the electrode body 160 and the like inside the container body 120, the container body 120 and the lid body 130 are joined by welding or the like to seal the interior of the container 110. The container 110 has a pair of long side surfaces 111 and 112 on both side surfaces in the Z-axis direction, a pair of short side surfaces 113 and 114 on both side surfaces in the Y-axis direction, and a bottom surface 115 on the X-axis minus direction side. , and has a terminal arrangement surface 116 on the positive direction side of the X axis. As described above, the container 110 is a container that is flat in the Z-axis direction (first direction) whose thickness direction is the Z-axis direction. Flat in the Z-axis direction (first direction) refers to a shape having the smallest thickness (width) in the Z-axis direction (first direction).
 長側面111及び112は、容器110の長側面(容器本体120の長側面)を形成する矩形状の平面部であり、Z軸方向(第一方向)において対向して配置される。長側面111及び112は、短側面113及び114、底面115、並びに、端子配置面116に隣接し、短側面113及び114よりも面積が大きい。具体的には、長側面111は、Z軸プラス方向に向く姿勢で配置されるXY平面に平行な面であり、流路形成部材200とZ軸方向において対向して配置される。長側面111は、第一方向に向く第一面の一例である。長側面112は、Z軸マイナス方向に向く姿勢で配置されるXY平面に平行な面である。 The long side surfaces 111 and 112 are rectangular planar portions that form the long side surfaces of the container 110 (the long side surfaces of the container body 120), and are arranged to face each other in the Z-axis direction (first direction). Long sides 111 and 112 are adjacent to short sides 113 and 114 , bottom surface 115 , and terminal placement surface 116 and are larger in area than short sides 113 and 114 . Specifically, the long side surface 111 is a surface parallel to the XY plane arranged in the positive direction of the Z-axis, and arranged to face the flow path forming member 200 in the Z-axis direction. The long side 111 is an example of a first surface facing the first direction. The long side surface 112 is a surface parallel to the XY plane arranged in a posture facing the negative direction of the Z axis.
 短側面113及び114は、容器110の短側面(容器本体120の短側面)を形成する矩形状の平面部であり、Y軸方向(第一方向及び第二方向と交差する第三方向)において対向して配置される。短側面113及び114は、長側面111及び112、底面115、並びに、端子配置面116に隣接し、長側面111及び112よりも面積が小さい。具体的には、短側面113は、Y軸マイナス方向に向く姿勢で配置されるXZ平面に平行な面である。短側面114は、Y軸プラス方向に向く姿勢で配置されるXZ平面に平行な面である。短側面113または114は、隣り合う第一蓄電素子100の容器110の短側面114または113と、Y軸方向において対向して配置される。 The short sides 113 and 114 are rectangular planar portions that form the short sides of the container 110 (the short sides of the container body 120), and extend in the Y-axis direction (the third direction intersecting the first direction and the second direction). arranged opposite to each other. Short sides 113 and 114 adjoin long sides 111 and 112 , bottom surface 115 , and terminal placement surface 116 and are smaller in area than long sides 111 and 112 . Specifically, the short side surface 113 is a surface parallel to the XZ plane arranged in a posture facing the Y-axis minus direction. The short side surface 114 is a surface parallel to the XZ plane arranged in the positive direction of the Y axis. Short side surface 113 or 114 is arranged to face short side surface 114 or 113 of container 110 of adjacent first power storage element 100 in the Y-axis direction.
 底面115は、容器110の底面(容器本体120の底面)を形成する矩形状の平面部であり、X軸方向(第一方向と交差する第二方向)に向いて配置される。底面115には、電極端子150は配置されていない。底面115は、長側面111及び112、並びに、短側面113及び114に隣接して配置される。底面115は、X軸マイナス方向に向く姿勢で配置されるYZ平面に平行な面である。底面115は、第二方向に向き、かつ、電極端子が配置されない第二面の一例である。 The bottom surface 115 is a rectangular planar portion that forms the bottom surface of the container 110 (the bottom surface of the container body 120), and is arranged facing the X-axis direction (the second direction intersecting the first direction). No electrode terminals 150 are arranged on the bottom surface 115 . Bottom surface 115 is positioned adjacent long sides 111 and 112 and short sides 113 and 114 . The bottom surface 115 is a surface parallel to the YZ plane arranged in a posture facing the negative direction of the X axis. The bottom surface 115 is an example of a second surface facing the second direction and having no electrode terminals.
 端子配置面116は、容器110の上面(蓋体130の上面)を形成する矩形状の平面部であり、一対の電極端子150が配置される。端子配置面116は、X軸方向(第二方向)に向いて配置される。端子配置面116は、長側面111及び112、並びに、短側面113及び114に隣接して配置される。端子配置面116は、X軸プラス方向に向く姿勢で配置されるYZ平面に平行な面である。 The terminal arrangement surface 116 is a rectangular planar portion that forms the upper surface of the container 110 (the upper surface of the lid 130), and a pair of electrode terminals 150 are arranged thereon. The terminal arrangement surface 116 is arranged facing the X-axis direction (second direction). Terminal placement surface 116 is positioned adjacent long sides 111 and 112 and short sides 113 and 114 . The terminal arrangement surface 116 is a surface parallel to the YZ plane arranged in the positive direction of the X axis.
 容器110の長側面111(第一面)及び底面115(第二面)の少なくとも一方には、ガス排出弁140が設けられている。ガス排出弁140は、容器110内方の圧力が過度に上昇した場合に当該圧力を開放する安全弁である。本実施の形態では、容器110の長側面111(第一面)に、ガス排出弁140が設けられている。具体的には、ガス排出弁140は、長側面111のX軸方向中央部かつY軸マイナス方向端部に配置されている。本実施の形態では、ガス排出弁140は、Z軸方向から見て円形状(円板状)の部位であるが、Z軸方向から見て、楕円形状、長円形状、四角形状、三角形状、その他の多角形状等、どのような形状でもよい。ガス排出弁140の材質は特に限定されないが、容器110(容器本体120)と同じ材質であるのが好ましい。 A gas discharge valve 140 is provided on at least one of the long side surface 111 (first surface) and the bottom surface 115 (second surface) of the container 110 . The gas discharge valve 140 is a safety valve that releases the pressure when the pressure inside the container 110 rises excessively. In this embodiment, a gas discharge valve 140 is provided on the long side surface 111 (first surface) of the container 110 . Specifically, the gas exhaust valve 140 is arranged at the center portion of the long side surface 111 in the X-axis direction and the end portion in the negative Y-axis direction. In the present embodiment, the gas discharge valve 140 is a circular (disk-shaped) portion when viewed from the Z-axis direction, but when viewed from the Z-axis direction, it has an elliptical, oval, square, or triangular shape. , and other polygonal shapes. Although the material of the gas discharge valve 140 is not particularly limited, it is preferably the same material as the container 110 (container main body 120).
 長側面111に貫通孔を形成し、ガス排出弁140となる別体の部材(弁体)を当該貫通孔の位置に接合(溶接)することにより、長側面111にガス排出弁140を形成できる。長側面111をプレス加工してガス排出弁140となる弁体を形成することによっても、長側面111にガス排出弁140を形成できる。一般的に、長側面111をプレス加工するのは困難であるため、長側面111に弁体をレーザ溶接等の溶接により接合することで長側面111にガス排出弁140を形成するのが好ましい。 A gas discharge valve 140 can be formed on the long side surface 111 by forming a through hole in the long side surface 111 and joining (welding) a separate member (valve body) that becomes the gas discharge valve 140 to the position of the through hole. . The gas exhaust valve 140 can also be formed on the long side surface 111 by pressing the long side surface 111 to form a valve element that becomes the gas exhaust valve 140 . Since it is generally difficult to press the long side 111, it is preferable to form the gas discharge valve 140 on the long side 111 by joining the valve body to the long side 111 by welding such as laser welding.
 容器110の内部には、電極体160及びスペーサ(図示せず)等の内部部材が、ほぼ隙間なく配置されているため、容器110の内面(長側面111及び112、短側面113及び114、並びに、底面115の内面)には、当該内部部材が接触している。ガス排出弁140は、当該内部部材が内側から容器110に接触する位置に配置される。本実施の形態では、ガス排出弁140は、電極体160が内側から容器110に接触する位置に配置される。 Inside the container 110, internal members such as the electrode body 160 and spacers (not shown) are arranged with almost no space between them. , the inner surface of the bottom surface 115) is in contact with the internal member. The gas discharge valve 140 is arranged at a position where the internal member contacts the container 110 from the inside. In the present embodiment, gas exhaust valve 140 is arranged at a position where electrode body 160 contacts container 110 from the inside.
 電極端子150は、容器110のX軸方向(第二方向)に配置される第一蓄電素子100の端子部材(正極端子及び負極端子)である。具体的には、Y軸方向に並ぶ一対の電極端子150が、容器110の端子配置面116(蓋体130)からX軸プラス方向に突出して配置されている。電極端子150は、集電体170を介して、電極体160の正極板及び負極板に電気的に接続されている。つまり、電極端子150は、電極体160に蓄えられている電気を第一蓄電素子100の外部空間に導出し、また、電極体160に電気を蓄えるために第一蓄電素子100の内部空間に電気を導入するための金属製の部材である。電極端子150は、アルミニウム、アルミニウム合金、銅、銅合金等で形成されている。 The electrode terminal 150 is a terminal member (positive terminal and negative terminal) of the first storage element 100 arranged in the X-axis direction (second direction) of the container 110 . Specifically, a pair of electrode terminals 150 aligned in the Y-axis direction are arranged to protrude from the terminal arrangement surface 116 (cover 130) of the container 110 in the X-axis positive direction. The electrode terminal 150 is electrically connected to the positive plate and the negative plate of the electrode body 160 via the current collector 170 . That is, the electrode terminal 150 leads the electricity stored in the electrode body 160 to the external space of the first storage element 100 , and in order to store the electricity in the electrode body 160 , the electricity is transferred to the internal space of the first storage element 100 . is a metal member for introducing The electrode terminal 150 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
 電極体160は、電気を蓄えることができる蓄電要素(発電要素)であり、正極板と負極板とセパレータとを備え、正極板、負極板及びセパレータが積層されて形成されている。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる帯状の集電箔である正極基材上に正極活物質層が形成された電極板である。負極板は、銅または銅合金等の金属からなる帯状の集電箔である負極基材上に負極活物質層が形成された電極板である。セパレータは、樹脂からなる微多孔性のシートである。正極活物質層に用いられる正極活物質、及び、負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。セパレータについても、第一蓄電素子100の性能を損なうものでなければ適宜公知の材料を使用できる。 The electrode body 160 is a storage element (power generation element) capable of storing electricity, and includes a positive electrode plate, a negative electrode plate, and a separator, and is formed by stacking the positive electrode plate, the negative electrode plate, and the separator. A positive electrode plate is an electrode plate in which a positive electrode active material layer is formed on a positive electrode base material, which is a strip-shaped collector foil made of a metal such as aluminum or an aluminum alloy. A negative electrode plate is an electrode plate in which a negative electrode active material layer is formed on a negative electrode substrate, which is a band-shaped collector foil made of a metal such as copper or a copper alloy. The separator is a microporous sheet made of resin. As the positive electrode active material used for the positive electrode active material layer and the negative electrode active material used for the negative electrode active material layer, known materials can be appropriately used as long as they can intercalate and deintercalate lithium ions. As for the separator, any well-known material can be used as appropriate as long as it does not impair the performance of the first storage element 100 .
 本実施の形態では、電極体160は、正極板と負極板との間にセパレータが挟み込まれるように層状に配置されたものが巻回されて形成された巻回型の電極体である。具体的には、電極体160は、正極板と負極板とが、セパレータを介して、巻回軸の方向(Y軸方向)に互いにずらして巻回されている。正極板及び負極板は、それぞれのずらされた方向の端部に、合材が塗工されず基材が露出した部分を有し、当該端部が、集電体170と電気的及び機械的に接続される。電極体160は、正極板と負極板とセパレータとが、X軸方向に平行な巻回軸にて巻回されて形成された巻回型の電極体でもよい。電極体160は、複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体でもよいし、極板を蛇腹状に折り畳んだ蛇腹型の電極体でもよいし、その他の形態の電極体でもよい。 In the present embodiment, the electrode body 160 is a wound electrode body formed by winding a positive electrode plate and a negative electrode plate in which a separator is sandwiched between layers. Specifically, in the electrode assembly 160, the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween while being shifted from each other in the direction of the winding axis (Y-axis direction). Each of the positive electrode plate and the negative electrode plate has a portion where the base material is exposed without being coated with the composite material at the ends in the shifted direction, and the ends are electrically and mechanically connected to the current collector 170. connected to The electrode body 160 may be a wound electrode body formed by winding a positive electrode plate, a negative electrode plate, and a separator around a winding axis parallel to the X-axis direction. The electrode body 160 may be a laminated (stacked) electrode body formed by stacking a plurality of flat plate-like electrode plates, or may be a bellows-shaped electrode body in which the electrode plates are folded into a bellows shape, or the like. The electrode body may be in the form of
 集電体170は、電極体160と容器110との間に配置され、電極端子150と電極体160とに電気的に接続される導電性の集電部材(正極集電体及び負極集電体)である。集電体170は、電極体160に溶接等によって接合されている。正極の集電体170は、電極体160の正極板の正極基材と同様、アルミニウムまたはアルミニウム合金等で形成され、負極の集電体170は、電極体160の負極板の負極基材と同様、銅または銅合金等で形成されている。 The current collector 170 is disposed between the electrode body 160 and the container 110, and is a conductive current collecting member (a positive electrode current collector and a negative electrode current collector) electrically connected to the electrode terminal 150 and the electrode body 160. ). The current collector 170 is joined to the electrode body 160 by welding or the like. The positive electrode current collector 170 is made of aluminum, an aluminum alloy, or the like, similar to the positive electrode base material of the positive electrode plate of the electrode body 160 , and the negative electrode current collector 170 is similar to the negative electrode base material of the negative electrode plate of the electrode body 160 . , copper or a copper alloy.
 [1.2 流路形成部材200の説明]
 次に、図1に示した流路形成部材200の構成について、詳細に説明する。流路形成部材200は、複数の第一蓄電素子100の上方に配置され、第一蓄電素子100から排出されるガスの流路を形成する部材である。流路形成部材200は、複数の第一蓄電素子100のX軸方向中央部をY軸方向に横切るように、複数の第一蓄電素子100に亘ってY軸方向に延び、かつ、複数の第一蓄電素子100のZ軸プラス方向に載置されている。具体的には、流路形成部材200は、複数の第一蓄電素子100が有する複数のガス排出弁140を覆うように、当該複数のガス排出弁140のZ軸プラス方向に配置される。これにより、流路形成部材200は、第一蓄電素子100のガス排出弁140から排出されるガスの流路201を形成する。
[1.2 Description of Flow Path Forming Member 200]
Next, the configuration of the flow path forming member 200 shown in FIG. 1 will be described in detail. The flow path forming member 200 is a member that is arranged above the plurality of first storage elements 100 and forms a flow path for gas discharged from the first storage elements 100 . The flow path forming member 200 extends in the Y-axis direction across the plurality of first storage elements 100 so as to traverse the X-axis direction central portions of the plurality of first storage elements 100 and extends in the Y-axis direction. It is placed in the Z-axis plus direction of one storage element 100 . Specifically, the flow path forming member 200 is arranged in the Z-axis plus direction of the plurality of gas discharge valves 140 of the plurality of first power storage elements 100 so as to cover the plurality of gas discharge valves 140 . Thus, the channel forming member 200 forms a channel 201 for the gas discharged from the gas discharge valve 140 of the first power storage element 100 .
 流路形成部材200は、ガス排出弁140から排出される高温のガスが通過するため、耐熱性が高い不燃性の部材で形成されているのが好ましい。つまり、流路形成部材200は、ガス排出弁140から排出される高温のガスが有する温度では溶融しない(または変形しない)材質の部材で形成されているのが好ましい。さらに、流路形成部材200は、当該高温のガスの熱を外部に逃がすために、放熱性が高い部材で形成されているのが好ましい。流路形成部材200は、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板等の金属製の部材、または、セラミック等で形成されている。 Since the high-temperature gas discharged from the gas discharge valve 140 passes through the flow path forming member 200, it is preferably formed of a nonflammable member with high heat resistance. That is, the flow path forming member 200 is preferably made of a material that does not melt (or deform) at the temperature of the high-temperature gas discharged from the gas discharge valve 140 . Furthermore, the flow path forming member 200 is preferably made of a member having high heat dissipation in order to release the heat of the high-temperature gas to the outside. The flow path forming member 200 is made of, for example, a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or ceramic.
 具体的には、流路形成部材200は、Y軸方向から見てZ軸マイナス方向が開放された四角形状の部材であり、Y軸方向両端部が開放されている。これにより、流路形成部材200は、複数の第一蓄電素子100の容器110の長側面111とともに、ガスの流路201を構成している。つまり、流路形成部材200が、流路201のX軸方向両側の面とZ軸プラス方向の面とを形成し、Y軸方向に並ぶ複数の長側面111が、流路201のZ軸マイナス方向の面を形成している。このように、容器110のうちのガス排出弁140が設けられた面(長側面111)は、ガス排出弁140から排出されるガスの流路201の一部である。 Specifically, the flow path forming member 200 is a rectangular member that is open in the negative Z-axis direction when viewed from the Y-axis direction, and both ends in the Y-axis direction are open. Thus, the channel forming member 200 forms a gas channel 201 together with the long side surface 111 of the container 110 of the plurality of first power storage elements 100 . That is, the flow path forming member 200 forms both sides of the flow path 201 in the X-axis direction and a surface in the positive Z-axis direction, and the plurality of long side surfaces 111 aligned in the Y-axis direction form the negative Z-axis direction of the flow path 201 . Forming the plane of direction. Thus, the surface (long side surface 111 ) of the container 110 on which the gas discharge valve 140 is provided is part of the flow path 201 for the gas discharged from the gas discharge valve 140 .
 流路201は、第一蓄電素子100のガス排出弁140から排出されたガスが流れるY軸方向に延びるガスの通り道であり、複数の第一蓄電素子100(複数のガス排出弁140)に亘って配置される。ガス排出弁140から排出されたガスは、流路201をY軸プラス方向またはY軸マイナス方向に向けて流れ、流路201のY軸プラス方向またはY軸マイナス方向の端部から排出される。流路201内の空間は、ガス排出弁140の開弁を妨げない大きさである。つまり、流路形成部材200は、ガス排出弁140が開弁した場合に、ガス排出弁140が接触しない形状及び大きさに形成されている。 The flow path 201 is a gas passage extending in the Y-axis direction through which the gas discharged from the gas discharge valves 140 of the first storage elements 100 flows, and extends across the plurality of first storage elements 100 (the plurality of gas discharge valves 140). are placed. The gas discharged from the gas discharge valve 140 flows through the channel 201 in the positive Y-axis direction or the negative Y-axis direction, and is discharged from the end of the channel 201 in the positive Y-axis direction or the negative Y-axis direction. The space inside the flow path 201 has a size that does not prevent the opening of the gas exhaust valve 140 . In other words, the flow path forming member 200 is formed in a shape and size that does not come into contact with the gas exhaust valve 140 when the gas exhaust valve 140 is opened.
 本実施の形態では、流路形成部材200は、Y軸方向において複数の第一蓄電素子100と同じ長さに形成されている。Y軸方向において流路形成部材200を複数の第一蓄電素子100よりも長く形成して、流路形成部材200のY軸方向端部を複数の第一蓄電素子100から突出させてもよいし、その逆(流路形成部材200を複数の第一蓄電素子100よりも短く形成)でもよい。流路形成部材200は、Y軸方向のいずれか一方の端部が閉塞されていてもよい。流路形成部材200は、Y軸方向から見て、半円形状、半楕円形状、半長円形状、三角形状等、どのような形状でもよい。 In the present embodiment, the channel forming member 200 is formed to have the same length as the plurality of first power storage elements 100 in the Y-axis direction. The flow path forming member 200 may be formed longer than the plurality of first storage elements 100 in the Y-axis direction, and the Y-axis direction end portion of the flow path forming member 200 may protrude from the plurality of first storage elements 100. , or vice versa (the flow path forming member 200 is formed shorter than the plurality of first storage elements 100). The flow path forming member 200 may be closed at one end in the Y-axis direction. The flow path forming member 200 may have any shape, such as a semi-circular shape, a semi-elliptical shape, a semi-elliptical shape, a triangular shape, etc., when viewed from the Y-axis direction.
 [2 効果の説明]
 以上のように、本発明の実施の形態に係る蓄電装置10によれば、複数の第一蓄電素子100のそれぞれが有するZ軸方向(第一方向)に扁平な容器110は、Z軸方向(第一方向)に向く長側面111(第一面)にガス排出弁140を有し、複数の第一蓄電素子100は、Y軸方向(第三方向)に並んで配置される。このように、第一蓄電素子100の容器110の長側面111にガス排出弁140を設けることで、電極端子150が配置されない面にガス排出弁140を配置できる。このため、第一蓄電素子100にガス排出弁140を配置する際に電極端子150が邪魔になりにくく、ガス排出弁140を配置しやすい。複数の第一蓄電素子100をY軸方向に並んで配置することで、電極端子150が配置されない面に設けられた複数のガス排出弁140がY軸方向に並ぶ。このため、ガス排出弁140から排出されるガスの流路201を形成する際に電極端子150が邪魔になりにくく、当該ガスの流路201を形成しやすい。これらにより、簡易な構成で、第一蓄電素子100からのガスを排出できる。
[2 Explanation of effects]
As described above, according to the power storage device 10 according to the embodiment of the present invention, the container 110 that is flat in the Z-axis direction (first direction) of each of the plurality of first power storage elements 100 extends in the Z-axis direction ( The long side surface 111 (first surface) facing the first direction) has a gas discharge valve 140, and the plurality of first storage elements 100 are arranged side by side in the Y-axis direction (third direction). By providing the gas discharge valve 140 on the long side surface 111 of the container 110 of the first storage element 100 in this way, the gas discharge valve 140 can be arranged on the side on which the electrode terminals 150 are not arranged. Therefore, when the gas discharge valve 140 is arranged in the first storage element 100, the electrode terminal 150 is less likely to be an obstacle, and the gas discharge valve 140 can be easily arranged. By arranging the plurality of first storage elements 100 side by side in the Y-axis direction, the plurality of gas discharge valves 140 provided on the surface on which the electrode terminals 150 are not arranged are arranged in the Y-axis direction. Therefore, the electrode terminal 150 is less likely to interfere with the formation of the flow path 201 for the gas discharged from the gas discharge valve 140, and the flow path 201 for the gas can be easily formed. As a result, the gas from the first power storage element 100 can be discharged with a simple configuration.
 特に、ガス排出弁140が、容器110の長側面111に設けられることで、比較的広い面にガス排出弁140を配置できるため、ガス排出弁140を配置しやすい。容器110の長側面111の大部分に、電極体160等の第一蓄電素子100の内部の部材が内側から接しているため、容器110の長側面111にガス排出弁140を設けることで、ガス排出弁140が外部からの圧力で内側に開弁するのを効果的に抑制できる。複数の第一蓄電素子100がY軸方向に並ぶことで、面積が大きい長側面111がY軸方向に並ぶため、ガス排出弁140から排出されるガスの流路201を形成しやすい。これらにより、簡易な構成で、第一蓄電素子100からのガスを排出できる。 In particular, since the gas exhaust valve 140 is provided on the long side surface 111 of the container 110, the gas exhaust valve 140 can be arranged on a relatively wide surface, making it easy to arrange the gas exhaust valve 140. Most of the long side surface 111 of the container 110 is in contact with the internal members of the first storage element 100 such as the electrode body 160 from the inside. Inward opening of the discharge valve 140 due to external pressure can be effectively suppressed. By arranging the plurality of first power storage elements 100 in the Y-axis direction, the long side surfaces 111 having large areas are arranged in the Y-axis direction, so that the flow path 201 for the gas discharged from the gas discharge valve 140 can be easily formed. As a result, the gas from the first power storage element 100 can be discharged with a simple configuration.
 第一蓄電素子100において、ガス排出弁140が設けられた容器110の面(長側面111)を、ガス排出弁140から排出されるガスの流路201の一部とすることで、当該ガスの流路201を簡易(かつ安価)な構成で形成できる。これにより、簡易な構成で、第一蓄電素子100からのガスを排出できる。 In the first power storage element 100, the surface (long side surface 111) of the container 110 provided with the gas discharge valve 140 is part of the flow path 201 for the gas discharged from the gas discharge valve 140, so that the gas is discharged. The flow path 201 can be formed with a simple (and inexpensive) configuration. Thereby, the gas from the first power storage element 100 can be discharged with a simple configuration.
 複数の第一蓄電素子100を、容器110の長側面111を上方に向けた姿勢で並べて配置することで、蓄電装置10の高さを低くできる。 The height of the power storage device 10 can be reduced by arranging the plurality of first power storage elements 100 side by side with the long side 111 of the container 110 facing upward.
 [3 変形例の説明]
 以上、本実施の形態に係る蓄電装置10について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であって制限的なものではなく、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
[3 Description of modified example]
Although power storage device 10 according to the present embodiment has been described above, the present invention is not limited to the above embodiment. The embodiments disclosed this time are illustrative in all respects and are not restrictive, and the scope of the present invention includes all modifications within the meaning and range of equivalents to the claims. .
 (変形例1、2)
 上記実施の形態の変形例1、2について、説明する。本変形例では、ガスの流路の側方に、当該ガスを冷却する冷却部が配置される。図3は、本実施の形態の変形例1に係る蓄電装置11の構成を示す斜視図である。図4は、本実施の形態の変形例2に係る蓄電装置12の構成を示す斜視図である。図3及び図4は、図1に対応する図である。
(Modifications 1 and 2)
Modifications 1 and 2 of the above embodiment will be described. In this modified example, a cooling unit for cooling the gas is arranged on the side of the gas flow path. FIG. 3 is a perspective view showing the configuration of power storage device 11 according to Modification 1 of the present embodiment. FIG. 4 is a perspective view showing the configuration of power storage device 12 according to Modification 2 of the present embodiment. 3 and 4 are diagrams corresponding to FIG.
 図3に示すように、変形例1に係る蓄電装置11は、上記実施の形態における蓄電装置10の構成に加えて、流路形成部材200を挟む位置に、2つの冷却部300を備えている。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 3 , power storage device 11 according to Modification 1 includes two cooling units 300 at positions sandwiching flow path forming member 200 in addition to the configuration of power storage device 10 in the above-described embodiment. . Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 冷却部300は、ガス排出弁140から排出されるガスの流路201を挟む位置の少なくとも一方に配置され、当該ガスを冷却する部材である。本変形例では、流路形成部材200をX軸方向で挟む位置(流路形成部材200のX軸方向両側)に、2つの冷却部300が配置されている。冷却部300は、熱伝導性が高い部材で形成されているのが好ましい。冷却部300は、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板等の金属製の部材で形成されている。 The cooling part 300 is a member that is arranged at least one of the positions sandwiching the flow path 201 of the gas discharged from the gas discharge valve 140 and that cools the gas. In this modified example, two cooling units 300 are arranged at positions sandwiching the flow path forming member 200 in the X-axis direction (both sides of the flow path forming member 200 in the X-axis direction). The cooling part 300 is preferably made of a material having high thermal conductivity. The cooling part 300 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or the like.
 冷却部300は、複数の第一蓄電素子100のX軸方向両端部をY軸方向に横切るように、複数の第一蓄電素子100に亘ってY軸方向に延び、かつ、複数の第一蓄電素子100のZ軸プラス方向に載置されている。冷却部300は、Y軸方向から見て円形状(円環状)、かつ、流路形成部材200に沿ってY軸方向に延びる円筒形状(管状)の部材(パイプ)であり、Y軸方向両端部が開放されている。これにより、冷却部300の内方には、空気等の気体、または、水等の液体が流れる冷媒の流路301が形成されている。冷却部300は当該流路301を流れる冷媒を有する。つまり、冷却部300は、空冷または水冷等によって、流路形成部材200を冷却して、流路形成部材200内の流路201を流れるガスを冷却する。 The cooling unit 300 extends in the Y-axis direction across the plurality of first storage elements 100 so as to cross both ends of the plurality of first storage elements 100 in the X-axis direction in the Y-axis direction. It is mounted in the Z-axis plus direction of the element 100 . The cooling unit 300 is a circular (annular) member (pipe) that extends in the Y-axis direction along the flow path forming member 200 and has a circular (annular) shape when viewed in the Y-axis direction. department is open. As a result, a coolant channel 301 is formed inside the cooling unit 300 through which gas such as air or liquid such as water flows. The cooling unit 300 has coolant flowing through the channel 301 . That is, the cooling unit 300 cools the flow path forming member 200 by air cooling, water cooling, or the like, thereby cooling the gas flowing through the flow paths 201 in the flow path forming member 200 .
 本変形例では、冷却部300は、Y軸方向において流路形成部材200と同じ長さに形成されている。Y軸方向において冷却部300を流路形成部材200よりも長く形成して、冷却部300のY軸方向端部を流路形成部材200から突出させてもよいし、その逆(冷却部300を流路形成部材200よりも短く形成)でもよい。冷却部300は、Y軸方向から見て、楕円形状、長円形状、四角形状、三角形状等、どのような形状でもよい。2つの冷却部300のうちのいずれかの冷却部300が配置されていなくてもよい。 In this modified example, the cooling part 300 is formed to have the same length as the flow path forming member 200 in the Y-axis direction. The cooling part 300 may be formed longer than the flow path forming member 200 in the Y-axis direction, and the Y-axis direction end of the cooling part 300 may protrude from the flow path forming member 200, or vice versa (the cooling part 300 may be It may be formed shorter than the flow path forming member 200). The cooling part 300 may have any shape, such as an elliptical shape, an oval shape, a rectangular shape, a triangular shape, etc., when viewed from the Y-axis direction. One of the two cooling units 300 may not be arranged.
 図4に示すように、変形例2に係る蓄電装置12は、上記変形例1における流路形成部材200と冷却部300とが一体化された流路形成部材400を備えている。本変形例のその他の構成については、上記変形例1と同様であるため、詳細な説明は省略する。 As shown in FIG. 4, a power storage device 12 according to Modification 2 includes a flow path forming member 400 in which flow path forming member 200 and cooling section 300 in Modification 1 are integrated. Since the rest of the configuration of this modification is the same as that of Modification 1, detailed description thereof will be omitted.
 流路形成部材400は、Y軸方向に延びるガス流路形成部410と、ガス流路形成部410を挟む位置に配置される、Y軸方向に延びる2つの冷却部420と、を有している。ガス流路形成部410は、上記変形例1における流路形成部材200に相当し、第一蓄電素子100のガス排出弁140から排出されるガスの流路411を形成する。冷却部420は、上記変形例1における冷却部300に相当し、空気等の気体、または、水等の液体が流れる冷媒の流路421を形成する。 The flow path forming member 400 has a gas flow path forming portion 410 extending in the Y-axis direction, and two cooling portions 420 extending in the Y-axis direction and disposed at positions sandwiching the gas flow path forming portion 410. there is Gas channel forming portion 410 corresponds to channel forming member 200 in Modification 1 above, and forms channel 411 for gas discharged from gas discharge valve 140 of first storage element 100 . The cooling unit 420 corresponds to the cooling unit 300 in Modification 1, and forms a coolant channel 421 through which gas such as air or liquid such as water flows.
 具体的には、ガス流路形成部410は、Y軸方向から見て、Z軸プラス方向に突出するように湾曲した逆U字状の部位である。冷却部420は、Y軸方向から見て、ガス流路形成部410からZ軸マイナス方向に突出するように湾曲したU字状の部位である。このように、冷却部420は、ガス排出弁140から排出されるガスの流路411を挟む位置の少なくとも一方に配置され、当該ガスを冷却する。流路形成部材400は、耐熱性(不燃性)、放熱性、及び、熱伝導性が高い部材で形成されているのが好ましい。流路形成部材400は、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板等の金属製の部材で形成されている。流路形成部材400の形状(Y軸方向から見た形状、及び、Y軸方向の長さ等)は、特に限定されない。2つの冷却部420のうちのいずれかの冷却部420が配置されていなくてもよい。 Specifically, the gas flow path forming portion 410 is an inverted U-shaped portion curved so as to protrude in the positive Z-axis direction when viewed from the Y-axis direction. The cooling portion 420 is a curved U-shaped portion protruding from the gas flow path forming portion 410 in the negative Z-axis direction when viewed from the Y-axis direction. In this way, the cooling unit 420 is arranged at least one of the positions sandwiching the flow path 411 of the gas discharged from the gas discharge valve 140, and cools the gas. The flow path forming member 400 is preferably made of a member having high heat resistance (noncombustibility), heat dissipation, and high thermal conductivity. The flow path forming member 400 is made of a metal member such as stainless steel, aluminum, aluminum alloy, iron, plated steel plate, or the like. The shape of the flow path forming member 400 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited. One of the two cooling units 420 may not be arranged.
 以上のように、本変形例に係る蓄電装置11及び12によれば、ガスの流路201を挟む位置の少なくとも一方に冷却部300及び420を設けることで、ガス排出弁140から排出されたガスを容易に冷却できる。ガス排出弁140が、容器110の長側面111に設けられていることで、面積が大きい長側面111がY軸方向(第三方向)に並ぶため、第一蓄電素子100に冷却部300及び420を配置しやすい。冷却部300及び420が、容器110の長側面111上に設けられていることで、容器110を直接冷却できる。蓄電装置12においては、ガスの流路411を形成するガス流路形成部410と、冷媒の流路421とを形成する冷却部420とを一体化しているため、構成が簡易である。 As described above, according to the power storage devices 11 and 12 according to the present modification, by providing the cooling units 300 and 420 at least one of the positions sandwiching the gas flow path 201, the gas discharged from the gas discharge valve 140 is can be easily cooled. Since the gas discharge valve 140 is provided on the long side surface 111 of the container 110 , the long side surface 111 with a large area is aligned in the Y-axis direction (third direction). Easy to place. The cooling units 300 and 420 are provided on the long side 111 of the container 110 so that the container 110 can be cooled directly. In the power storage device 12, the gas channel forming portion 410 forming the gas channel 411 and the cooling portion 420 forming the coolant channel 421 are integrated, so that the configuration is simple.
 (変形例3)
 次に、上記実施の形態の変形例3について、説明する。本変形例では、第一蓄電素子100のガス排出弁140と対向する位置に、ガス排出弁を有する他の蓄電素子が配置される。図5は、本実施の形態の変形例3に係る蓄電装置13の構成を示す斜視図である。図5は、図1に対応する図である。
(Modification 3)
Next, Modification 3 of the above embodiment will be described. In this modification, another power storage element having a gas discharge valve is arranged at a position facing the gas discharge valve 140 of the first power storage element 100 . FIG. 5 is a perspective view showing the configuration of power storage device 13 according to Modification 3 of the present embodiment. FIG. 5 is a diagram corresponding to FIG.
 図5に示すように、変形例3に係る蓄電装置13は、上記実施の形態における蓄電装置10の構成に加えて、複数の第二蓄電素子100aを備え、かつ、上記実施の形態における流路形成部材200に代えて、流路形成部材210を備えている。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 5, a power storage device 13 according to Modification Example 3 includes a plurality of second power storage elements 100a in addition to the configuration of the power storage device 10 in the above embodiment, and the flow path in the above embodiment. A flow path forming member 210 is provided instead of the forming member 200 . Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 本変形例では、第一蓄電素子100と同じ構成の蓄電素子を、X軸を中心に180°回転したものを、第二蓄電素子100aと称する。つまり、第二蓄電素子100aは、ガス排出弁140aが設けられた容器110aの長側面111aが、Z軸マイナス方向に向く姿勢で配置される。第二蓄電素子100aは、この姿勢で、第一蓄電素子100とZ軸方向で対向するように、第一蓄電素子100のZ軸プラス方向に配置される。具体的には、Y軸方向に並ぶ複数(4個)の第一蓄電素子100のZ軸プラス方向に、Y軸方向に並ぶ複数(4個)の第二蓄電素子100aが配置される。 In this modified example, a power storage element having the same configuration as the first power storage element 100 is rotated by 180° around the X-axis, and is referred to as a second power storage element 100a. In other words, the second power storage element 100a is arranged with the long side surface 111a of the container 110a provided with the gas discharge valve 140a facing in the negative Z-axis direction. In this posture, the second power storage element 100a is arranged in the positive Z-axis direction of the first power storage element 100 so as to face the first power storage element 100 in the Z-axis direction. Specifically, a plurality of (four) second power storage elements 100a aligned in the Y-axis direction are arranged in the positive Z-axis direction of the plurality (four) first power storage elements 100 aligned in the Y-axis direction.
 これにより、それぞれの第一蓄電素子100の長側面111と、それぞれの第二蓄電素子100aの長側面111aとが、Z軸方向で対向して配置される。つまり、第二蓄電素子100aの長側面111aは、複数の第一蓄電素子100が有するいずれかの容器110のうちのガス排出弁140が設けられた面(長側面111)に対向して配置される。第二蓄電素子100aにおいて、ガス排出弁140aは、長側面111aのX軸方向中央部かつY軸プラス方向端部に配置される。このため、第二蓄電素子100aのガス排出弁140aは、第一蓄電素子100のガス排出弁140とは、Z軸方向で対向しない(Z軸方向から見て重ならない)位置に配置される。第二蓄電素子100aの長側面111aは、第三面の一例である。 Thereby, the long side surface 111 of each first storage element 100 and the long side surface 111a of each second storage element 100a are arranged to face each other in the Z-axis direction. In other words, the long side surface 111a of the second storage element 100a is arranged to face the surface (long side surface 111) provided with the gas discharge valve 140 of any one of the containers 110 of the plurality of first storage elements 100. be. In the second power storage element 100a, the gas discharge valve 140a is arranged at the center portion in the X-axis direction and the end portion in the positive Y-axis direction of the long side surface 111a. Therefore, the gas discharge valve 140a of the second storage element 100a is arranged at a position that does not face the gas discharge valve 140 of the first storage element 100 in the Z-axis direction (does not overlap when viewed from the Z-axis direction). The long side surface 111a of the second storage element 100a is an example of the third surface.
 流路形成部材210は、第一蓄電素子100の長側面111と第二蓄電素子100aの長側面111aとの間に配置されて、第一蓄電素子100のガス排出弁140及び第二蓄電素子100aのガス排出弁140aから排出されるガスの流路211を形成している。流路形成部材210は、上記実施の形態における流路形成部材200から、Z軸プラス方向の壁を取り除いた構成を有している。つまり、流路形成部材210は、X軸方向で対向する2つの壁によって構成されている。 The flow path forming member 210 is arranged between the long side surface 111 of the first storage element 100 and the long side surface 111a of the second storage element 100a, and serves as the gas discharge valve 140 of the first storage element 100 and the second storage element 100a. It forms a flow path 211 for the gas discharged from the gas discharge valve 140a. The flow path forming member 210 has a structure obtained by removing the walls in the positive Z-axis direction from the flow path forming member 200 in the above embodiment. That is, the flow path forming member 210 is composed of two walls facing each other in the X-axis direction.
 これにより、流路形成部材210は、複数の第一蓄電素子100の長側面111及び複数の第二蓄電素子100aの長側面111aとともに、ガスの流路211を構成している。つまり、流路形成部材210が、流路211のX軸方向両側の面を形成し、Y軸方向に並ぶ複数の長側面111が、流路211のZ軸マイナス方向の面を形成し、Y軸方向に並ぶ複数の長側面111aが、流路211のZ軸プラス方向の面を形成している。このように、容器110のうちのガス排出弁140が設けられた面(長側面111)と、容器110aのうちのガス排出弁140aが設けられた面(長側面111a)とは、ガス排出弁140及び140aから排出されるガスの流路211の一部である。 Thus, the channel forming member 210 forms a gas channel 211 together with the long side surfaces 111 of the plurality of first storage elements 100 and the long side surfaces 111a of the plurality of second storage elements 100a. That is, the flow path forming member 210 forms both sides of the flow path 211 in the X-axis direction, and the plurality of long side surfaces 111 aligned in the Y-axis direction form the surface of the flow path 211 in the negative Z-axis direction. A plurality of long side surfaces 111a aligned in the axial direction form the surface of the channel 211 in the positive Z-axis direction. Thus, the surface (long side surface 111) of the container 110 provided with the gas discharge valve 140 and the surface (long side surface 111a) of the container 110a provided with the gas discharge valve 140a are the gas discharge valves. It is part of the flow path 211 for gas discharged from 140 and 140a.
 以上のように、本変形例に係る蓄電装置13によれば、第一蓄電素子100のガス排出弁140が設けられた面(長側面111)と、第二蓄電素子100aのガス排出弁140aが設けられた面(第三面、長側面111a)とが対向して配置されている。これにより、ガス排出弁140及び140aから排出されるガスの流路211を、第一蓄電素子100と第二蓄電素子100aとで共用できる。したがって、簡易な構成で、第一蓄電素子100及び第二蓄電素子100aからのガスを排出できる。ガス排出弁140とガス排出弁140aとがZ軸方向で対向しない位置に配置されているため、ガス排出弁140から排出されたガスが、ガス排出弁140aに衝突し、ガス排出弁140aが内側に開弁したりするのを抑制できる。本変形例において、流路形成部材210の形状(Y軸方向から見た形状、及び、Y軸方向の長さ等)は、特に限定されない。本変形例において、上記変形例1または2を適用してもよい。 As described above, according to the power storage device 13 according to the present modification, the surface (long side surface 111) of the first storage element 100 provided with the gas discharge valve 140 and the gas discharge valve 140a of the second storage element 100a The provided surface (third surface, long side surface 111a) is arranged so as to face each other. As a result, the flow path 211 for gas discharged from the gas discharge valves 140 and 140a can be shared between the first storage element 100 and the second storage element 100a. Therefore, the gas from the first storage element 100 and the second storage element 100a can be discharged with a simple configuration. Since the gas exhaust valve 140 and the gas exhaust valve 140a are arranged at positions that do not face each other in the Z-axis direction, the gas exhausted from the gas exhaust valve 140 collides with the gas exhaust valve 140a, and the gas exhaust valve 140a moves toward the inner side. It is possible to suppress the opening of the valve. In this modified example, the shape of the flow path forming member 210 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited. In this modification, modification 1 or 2 may be applied.
 (変形例4)
 次に、上記実施の形態の変形例4について、説明する。本変形例では、ガス排出弁140は、長側面111の中央位置に配置される。図6は、本実施の形態の変形例4に係る蓄電装置14の構成を示す斜視図である。図6は、図1に対応する図である。
(Modification 4)
Next, Modification 4 of the above embodiment will be described. In this modification, the gas exhaust valve 140 is arranged at the center position of the long side 111 . FIG. 6 is a perspective view showing the configuration of power storage device 14 according to Modification 4 of the present embodiment. FIG. 6 is a diagram corresponding to FIG.
 図6に示すように、変形例4に係る蓄電装置14は、上記実施の形態における複数の第一蓄電素子100に代えて、複数の第一蓄電素子101を備えている。第一蓄電素子101において、容器110の長側面111の中央位置に、ガス排出弁140が設けられている。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 6, a power storage device 14 according to Modification 4 includes a plurality of first power storage elements 101 instead of the plurality of first power storage elements 100 in the above embodiment. A gas discharge valve 140 is provided at the center position of the long side surface 111 of the container 110 in the first storage element 101 . Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 以上のように、本変形例に係る蓄電装置14のように、ガス排出弁140は、容器110の長側面111のどのような位置に設けられていてもよい。本変形例において、ガス排出弁140は、容器110の長側面112に設けられていてもよい。本変形例において、上記変形例1~3を適用してもよい。本変形例に上記変形例3を適用した場合には、第二蓄電素子100aのガス排出弁140aは、第一蓄電素子100のガス排出弁140と、Z軸方向で対向する(Z軸方向から見て重なる)位置に配置される。 As described above, the gas discharge valve 140 may be provided at any position on the long side surface 111 of the container 110 as in the power storage device 14 according to this modification. In this modification, the gas discharge valve 140 may be provided on the long side 112 of the container 110 . Modifications 1 to 3 may be applied to this modification. When Modification 3 is applied to this modification, the gas discharge valve 140a of the second storage element 100a faces the gas discharge valve 140 of the first storage element 100 in the Z-axis direction (from the Z-axis direction overlap) position.
 (変形例5、6)
 次に、上記実施の形態の変形例5、6について、説明する。本変形例では、ガス排出弁140は、容器110の底面115に配置される。図7は、本実施の形態の変形例5に係る蓄電装置15の構成を示す斜視図である。図8は、本実施の形態の変形例6に係る蓄電装置16の構成を示す斜視図である。図7及び図8は、図1に対応する図である。
(Modifications 5 and 6)
Next, modified examples 5 and 6 of the above embodiment will be described. In this modification, the gas exhaust valve 140 is arranged on the bottom surface 115 of the container 110 . FIG. 7 is a perspective view showing the configuration of power storage device 15 according to Modification 5 of the present embodiment. FIG. 8 is a perspective view showing the configuration of power storage device 16 according to Modification 6 of the present embodiment. 7 and 8 are diagrams corresponding to FIG.
 図7に示すように、変形例5に係る蓄電装置15は、上記実施の形態における複数の第一蓄電素子100及び流路形成部材200に代えて、複数の第一蓄電素子102及び流路形成部材220を備えている。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 7 , in a power storage device 15 according to Modification 5, instead of the plurality of first power storage elements 100 and flow path forming member 200 in the above embodiment, a plurality of first power storage elements 102 and a flow path forming member A member 220 is provided. Other configurations of this modified example are the same as those of the above-described embodiment, so detailed description thereof will be omitted.
 第一蓄電素子102において、容器110の底面115に、ガス排出弁140が設けられている。具体的には、底面115のY軸マイナス方向端部に、ガス排出弁140が設けられている。そして、複数の第一蓄電素子102が、Y軸方向に並んで配置されている。 A gas discharge valve 140 is provided on the bottom surface 115 of the container 110 in the first storage element 102 . Specifically, a gas exhaust valve 140 is provided at the end of the bottom surface 115 in the Y-axis negative direction. A plurality of first power storage elements 102 are arranged side by side in the Y-axis direction.
 流路形成部材220は、第一蓄電素子102の容器110の底面115に対向する位置に配置されている。これにより、流路形成部材220は、第一蓄電素子102のガス排出弁140から排出されるガスの流路221を形成する。具体的には、流路形成部材220は、複数の第一蓄電素子102の容器110の底面115とともに、ガスの流路221を構成している。つまり、流路形成部材220が、流路221のZ軸方向両側の面とX軸マイナス方向の面とを形成し、Y軸方向に並ぶ複数の底面115が、流路221のX軸プラス方向の面を形成している。このように、容器110のうちのガス排出弁140が設けられた面(底面115)は、ガス排出弁140から排出されるガスの流路221の一部である。流路形成部材220の形状(Y軸方向から見た形状、及び、Y軸方向の長さ等)は、特に限定されない。 The flow path forming member 220 is arranged at a position facing the bottom surface 115 of the container 110 of the first storage element 102 . Thus, the channel forming member 220 forms a channel 221 for the gas discharged from the gas discharge valve 140 of the first power storage element 102 . Specifically, the channel forming member 220 forms a gas channel 221 together with the bottom surface 115 of the container 110 of the plurality of first power storage elements 102 . In other words, the flow path forming member 220 forms both sides of the flow path 221 in the Z-axis direction and a surface in the X-axis negative direction, and the plurality of bottom surfaces 115 aligned in the Y-axis direction form the flow path 221 in the X-axis positive direction. form the surface of Thus, the surface (bottom surface 115 ) of the container 110 on which the gas discharge valve 140 is provided is part of the flow path 221 for the gas discharged from the gas discharge valve 140 . The shape of the flow path forming member 220 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited.
 以上のように、本変形例に係る蓄電装置15によれば、複数の第一蓄電素子102のそれぞれが有するZ軸方向(第一方向)に扁平な容器110は、X軸方向(第二方向)に向き電極端子150が配置されない底面115(第二面)にガス排出弁140を有している。複数の第一蓄電素子102は、Y軸方向(第三方向)に並んで配置される。このように、第一蓄電素子102の容器110の底面115にガス排出弁140を設けることで、電極端子150が配置されない面にガス排出弁140を配置できる。このため、第一蓄電素子102にガス排出弁140を配置する際に電極端子150が邪魔になりにくく、ガス排出弁140を配置しやすい。容器110の底面115には、電極体160等の第一蓄電素子102の内部の部材が内側から接している場合が多いため、底面115にガス排出弁140を設けることで、ガス排出弁140が外部からの圧力で内側に開弁するのを抑制できる。複数の第一蓄電素子102をY軸方向に並んで配置することで、電極端子150が配置されない底面115に設けられた複数のガス排出弁140がY軸方向に並ぶ。このため、ガス排出弁140から排出されるガスの流路221を形成する際に電極端子150が邪魔になりにくく、当該ガスの流路221を形成しやすい。これらにより、簡易な構成で、第一蓄電素子102からのガスを排出できる。 As described above, according to the power storage device 15 according to the present modification, the container 110 that is flat in the Z-axis direction (first direction) of each of the plurality of first power storage elements 102 extends in the X-axis direction (second direction). ), the bottom surface 115 (second surface) where the electrode terminal 150 is not arranged has a gas exhaust valve 140 . The plurality of first power storage elements 102 are arranged side by side in the Y-axis direction (third direction). By providing the gas discharge valve 140 on the bottom surface 115 of the container 110 of the first storage element 102 in this manner, the gas discharge valve 140 can be arranged on the surface on which the electrode terminals 150 are not arranged. Therefore, when the gas discharge valve 140 is arranged in the first storage element 102, the electrode terminal 150 is less likely to be an obstacle, and the gas discharge valve 140 can be easily arranged. In many cases, the members inside the first storage element 102 such as the electrode body 160 are in contact with the bottom surface 115 of the container 110 from the inside. Inward opening due to external pressure can be suppressed. By arranging the plurality of first storage elements 102 side by side in the Y-axis direction, the plurality of gas discharge valves 140 provided on the bottom surface 115 where the electrode terminals 150 are not arranged are arranged in the Y-axis direction. Therefore, the electrode terminal 150 is less likely to interfere with the formation of the flow path 221 for the gas discharged from the gas discharge valve 140, and the flow path 221 for the gas can be easily formed. As a result, the gas from the first power storage element 102 can be discharged with a simple configuration.
 複数の第一蓄電素子102をY軸方向(第三方向)に並べて直列接続しようとすると、正極端子及び負極端子の位置が交互に逆になるように第一蓄電素子102を並べる必要がある。このため、第一蓄電素子102の容器110の長側面111(第一面)にガス排出弁140が設けられる場合、ガス排出弁140をY軸方向に並べるには、長側面112にガス排出弁140を設けた第一蓄電素子102も用意する必要がある。これに対し、第一蓄電素子102の容器110の底面115(第二面)にガス排出弁140が設けられる構成では、複数の第一蓄電素子102をY軸方向に並べて直列接続する場合でも、同じ構成の第一蓄電素子102を並べることで、ガス排出弁140をY軸方向に並べることができる。これにより、簡易な構成で、第一蓄電素子102からのガスを排出できる。 If a plurality of first storage elements 102 are arranged in the Y-axis direction (third direction) and connected in series, it is necessary to arrange the first storage elements 102 so that the positions of the positive terminals and the negative terminals are alternately reversed. Therefore, when the gas discharge valve 140 is provided on the long side surface 111 (first surface) of the container 110 of the first storage element 102, the gas discharge valve 140 must be arranged on the long side surface 112 in order to arrange the gas discharge valves 140 in the Y-axis direction. It is also necessary to prepare the first storage element 102 provided with 140 . On the other hand, in the configuration in which the gas discharge valve 140 is provided on the bottom surface 115 (second surface) of the container 110 of the first storage element 102, even when the plurality of first storage elements 102 are arranged in the Y-axis direction and connected in series, By arranging the first power storage elements 102 having the same configuration, the gas discharge valves 140 can be arranged in the Y-axis direction. Thereby, the gas from the first power storage element 102 can be discharged with a simple configuration.
 本変形例において、上記変形例1~4を適用してもよい。本変形例に上記変形例3を適用した場合、図8に示すように、変形例6に係る蓄電装置16の構成となる。つまり、第一蓄電素子102のガス排出弁140と対向する位置に、ガス排出弁140aを有する第二蓄電素子102aが配置される。具体的には、第一蓄電素子102と同じ構成の蓄電素子を、X軸を中心に180°回転し、かつ、Y軸を中心に180°回転したものが、第二蓄電素子102aとなる。つまり、第二蓄電素子102aは、ガス排出弁140aが設けられた容器110aの底面115aが、X軸プラス方向に向く姿勢で配置される。第二蓄電素子102aは、この姿勢で、第一蓄電素子102のX軸マイナス方向に配置される。具体的には、Y軸方向に並ぶ複数(4個)の第一蓄電素子102のX軸マイナス方向に、Y軸方向に並ぶ複数(4個)の第二蓄電素子102aが配置される。 Modifications 1 to 4 above may be applied to this modification. When modification 3 is applied to this modification, the power storage device 16 according to modification 6 is configured as shown in FIG. 8 . That is, the second storage element 102a having the gas discharge valve 140a is arranged at a position facing the gas discharge valve 140 of the first storage element 102. As shown in FIG. Specifically, a power storage element having the same configuration as the first power storage element 102 is rotated by 180° around the X axis and rotated by 180° around the Y axis to form the second power storage element 102a. In other words, the second power storage element 102a is arranged such that the bottom surface 115a of the container 110a provided with the gas discharge valve 140a faces the positive direction of the X axis. The second storage element 102a is arranged in the negative X-axis direction of the first storage element 102 in this posture. Specifically, a plurality of (four) second storage elements 102a arranged in the Y-axis direction are arranged in the negative X-axis direction of the plurality (four) first storage elements 102 arranged in the Y-axis direction.
 これにより、それぞれの第一蓄電素子102の底面115と、それぞれの第二蓄電素子102aの底面115aとが、X軸方向で対向して配置される。つまり、第二蓄電素子102aの底面115aは、複数の第一蓄電素子102が有するいずれかの容器110のうちのガス排出弁140が設けられた面(底面115)に対向して配置される。第二蓄電素子102aにおいて、ガス排出弁140aは、底面115aのY軸プラス方向端部に配置される。このため、第二蓄電素子102aのガス排出弁140aは、第一蓄電素子102のガス排出弁140とは、X軸方向で対向しない(X軸方向から見て重ならない)位置に配置される。第二蓄電素子102aの底面115aは、第三面の一例である。 Thereby, the bottom surface 115 of each first storage element 102 and the bottom surface 115a of each second storage element 102a are arranged to face each other in the X-axis direction. In other words, the bottom surface 115a of the second storage element 102a is arranged to face the surface (bottom surface 115) of one of the containers 110 of the plurality of first storage elements 102 on which the gas discharge valve 140 is provided. In the second storage element 102a, the gas discharge valve 140a is arranged at the Y-axis plus direction end of the bottom surface 115a. Therefore, the gas discharge valve 140a of the second storage element 102a is arranged at a position that does not face the gas discharge valve 140 of the first storage element 102 in the X-axis direction (does not overlap when viewed from the X-axis direction). Bottom surface 115a of second storage element 102a is an example of a third surface.
 流路形成部材230は、第一蓄電素子102の底面115と第二蓄電素子102aの底面115aとの間に配置されて、第一蓄電素子102のガス排出弁140及び第二蓄電素子102aのガス排出弁140aから排出されるガスの流路231を形成している。流路形成部材230は、上記変形例5における流路形成部材220から、X軸マイナス方向の壁を取り除いた構成を有している。つまり、流路形成部材230は、Z軸方向で対向する2つの壁によって構成されている。 The flow path forming member 230 is arranged between the bottom surface 115 of the first storage element 102 and the bottom surface 115a of the second storage element 102a, and controls the gas discharge valve 140 of the first storage element 102 and the gas of the second storage element 102a. It forms a flow path 231 for gas discharged from the discharge valve 140a. The flow path forming member 230 has a configuration obtained by removing the wall in the negative direction of the X-axis from the flow path forming member 220 in Modification 5 above. That is, the flow path forming member 230 is composed of two walls facing each other in the Z-axis direction.
 これにより、流路形成部材230は、複数の第一蓄電素子102の底面115及び複数の第二蓄電素子102aの底面115aとともに、ガスの流路231を構成している。つまり、流路形成部材230が、流路231のZ軸方向両側の面を形成し、Y軸方向に並ぶ複数の底面115が、流路231のX軸プラス方向の面を形成し、Y軸方向に並ぶ複数の底面115aが、流路231のX軸マイナス方向の面を形成している。このように、容器110のうちのガス排出弁140が設けられた面(底面115)と、容器110aのうちのガス排出弁140aが設けられた面(底面115a)とは、ガス排出弁140及び140aから排出されるガスの流路231の一部である。 Thus, the flow path forming member 230 forms a gas flow path 231 together with the bottom surfaces 115 of the plurality of first storage elements 102 and the bottom surfaces 115a of the plurality of second storage elements 102a. That is, the flow path forming member 230 forms both sides of the flow path 231 in the Z-axis direction, and the plurality of bottom surfaces 115 aligned in the Y-axis direction form the surfaces of the flow path 231 in the positive direction of the X-axis. A plurality of bottom surfaces 115a aligned in the direction form the surface of the channel 231 in the negative direction of the X axis. Thus, the surface (bottom surface 115) of the container 110 provided with the gas exhaust valve 140 and the surface (bottom surface 115a) of the container 110a provided with the gas exhaust valve 140a It is part of the flow path 231 for the gas discharged from 140a.
 以上のように、本変形例に係る蓄電装置16によれば、第一蓄電素子102のガス排出弁140が設けられた面(底面115)と、第二蓄電素子102aのガス排出弁140aが設けられた面(第三面、底面115a)とが対向して配置されている。これにより、ガス排出弁140及び140aから排出されるガスの流路231を、第一蓄電素子102と第二蓄電素子102aとで共用できる。したがって、簡易な構成で、第一蓄電素子102及び第二蓄電素子102aからのガスを排出できる。ガス排出弁140とガス排出弁140aとがX軸方向で対向しない位置に配置されているため、ガス排出弁140から排出されたガスが、ガス排出弁140aに衝突し、ガス排出弁140aが内側に開弁したりするのを抑制できる。 As described above, according to the power storage device 16 according to the present modification, the surface (bottom surface 115) provided with the gas discharge valve 140 of the first storage element 102 and the gas discharge valve 140a of the second storage element 102a are provided. The surface (the third surface, the bottom surface 115a) is arranged so as to face each other. As a result, the flow path 231 for gas discharged from the gas discharge valves 140 and 140a can be shared by the first storage element 102 and the second storage element 102a. Therefore, the gas from the first storage element 102 and the second storage element 102a can be discharged with a simple configuration. Since the gas exhaust valve 140 and the gas exhaust valve 140a are arranged at positions that do not face each other in the X-axis direction, the gas exhausted from the gas exhaust valve 140 collides with the gas exhaust valve 140a, and the gas exhaust valve 140a moves toward the inner side. It is possible to suppress the opening of the valve.
 本変形例において、流路形成部材230の形状(Y軸方向から見た形状、及び、Y軸方向の長さ等)は、特に限定されない。本変形例に上記変形例4を適用してもよく、この場合、第二蓄電素子102aのガス排出弁140aは、第一蓄電素子102のガス排出弁140と、X軸方向で対向する位置に配置される。 In this modified example, the shape of the flow path forming member 230 (shape viewed from the Y-axis direction, length in the Y-axis direction, etc.) is not particularly limited. Modification 4 above may be applied to this modification, and in this case, the gas discharge valve 140a of the second storage element 102a is positioned to face the gas discharge valve 140 of the first storage element 102 in the X-axis direction. placed.
 (その他の変形例)
 上記実施の形態では、第一蓄電素子100の容器110は、Z軸方向(第一方向)に扁平な直方体形状であることとしたが、Z軸方向(第一方向)に扁平な長円柱形状、楕円柱形状、または、直方体形状以外の多角柱形状等の扁平な形状であってもよい。容器110のうちのZ軸方向(第一方向)に対向する面がXY平面から傾斜したり湾曲したりしている場合、容器110のうちのXY平面とのなす角が45°以下の面を、Z軸方向(第一方向)に対向する面として、第一面を定義する。同様に、容器110のうちのX軸方向(第二方向)に対向する面がYZ平面から傾斜したり湾曲したりしている場合、容器110のうちのYZ平面とのなす角が45°以下の面を、X軸方向(第二方向)に対向する面として、第二面を定義する。上述した各種の変形例についても同様である。変形例3、6においては、第二蓄電素子100a、102aについても同様である。
(Other modifications)
In the above-described embodiment, the container 110 of the first power storage element 100 has a rectangular parallelepiped shape that is flat in the Z-axis direction (first direction). , an elliptical columnar shape, or a flat shape such as a polygonal columnar shape other than a rectangular parallelepiped shape. When the surface of the container 110 that faces the Z-axis direction (first direction) is inclined or curved from the XY plane, the surface of the container 110 that forms an angle of 45° or less with the XY plane is , the first surface is defined as a surface facing in the Z-axis direction (first direction). Similarly, when the surface of the container 110 facing the X-axis direction (second direction) is inclined or curved from the YZ plane, the angle formed by the YZ plane of the container 110 is 45° or less. is defined as a second surface as a surface facing the X-axis direction (second direction). The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
 上記実施の形態において、ガス排出弁140は、第一蓄電素子100の容器110の長側面111(第一面)及び底面115(第二面)の双方に設けられていてもよい。つまり、長側面111(第一面)及び底面115(第二面)の少なくとも一方にガス排出弁140が設けられていればよい。上述した各種の変形例についても同様である。変形例3、6においては、第二蓄電素子100a、102aについても同様である。 In the above embodiment, gas discharge valve 140 may be provided on both long side surface 111 (first surface) and bottom surface 115 (second surface) of container 110 of first storage element 100 . That is, it is sufficient that the gas exhaust valve 140 is provided on at least one of the long side surface 111 (first surface) and the bottom surface 115 (second surface). The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
 上記実施の形態では、第一蓄電素子100の容器110のうちのガス排出弁140が設けられた面を、ガス排出弁140から排出されるガスの流路201の一部としたが、これには限定されない。流路形成部材200が、当該流路201の一部として、第一蓄電素子100に対向する壁を有していてもよい。蓄電装置10が流路形成部材200を備えておらず、流路201が形成されない構成でもよい。上述した各種の変形例についても同様である。変形例3、6においては、第二蓄電素子100a、102aについても同様である。 In the above embodiment, the surface of the container 110 of the first storage element 100 on which the gas discharge valve 140 is provided is part of the flow path 201 for the gas discharged from the gas discharge valve 140. is not limited. The channel forming member 200 may have a wall facing the first storage element 100 as part of the channel 201 . A configuration in which the power storage device 10 does not include the flow path forming member 200 and the flow path 201 is not formed may be employed. The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
 上記実施の形態では、蓄電装置10が備える全ての第一蓄電素子100が上述した構成を有していることとしたが、2つ以上の第一蓄電素子100が上述した構成を有していればよく、いずれかの第一蓄電素子100は上述とは異なる構成であってもよい。上述した各種の変形例についても同様である。変形例3、6においては、第二蓄電素子100a、102aについても同様である。 In the above embodiment, all the first power storage elements 100 included in the power storage device 10 have the above-described configuration. Any first storage element 100 may have a configuration different from that described above. The same applies to the various modified examples described above. In modifications 3 and 6, the same applies to the second storage elements 100a and 102a.
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Forms constructed by arbitrarily combining the constituent elements included in the above embodiments and modifications thereof are also included within the scope of the present invention.
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置等に適用できる。 The present invention can be applied to a power storage device or the like having a power storage element such as a lithium ion secondary battery.
 10、11、12、13、14、15、16 蓄電装置
 100、101、102 第一蓄電素子
 100a、102a 第二蓄電素子
 110、110a 容器
 111、111a、112 長側面
 113、114 短側面
 115、115a 底面
 116 端子配置面
 120 容器本体
 130 蓋体
 140、140a ガス排出弁
 150 電極端子
 160 電極体
 170 集電体
 200、210、220、230、400 流路形成部材
 201、211、221、231、301、411、421 流路
 300、420 冷却部
 410 ガス流路形成部
10, 11, 12, 13, 14, 15, 16 Power storage device 100, 101, 102 First power storage element 100a, 102a Second power storage element 110, 110a Container 111, 111a, 112 Long side 113, 114 Short side 115, 115a Bottom surface 116 Terminal arrangement surface 120 Container main body 130 Lid 140, 140a Gas discharge valve 150 Electrode terminal 160 Electrode body 170 Current collector 200, 210, 220, 230, 400 Flow path forming member 201, 211, 221, 231, 301, 411, 421 channel 300, 420 cooling part 410 gas channel forming part

Claims (5)

  1.  複数の第一蓄電素子を備え、
     前記複数の第一蓄電素子のそれぞれは、
     第一方向に扁平な容器と、
     前記容器の、前記第一方向と交差する第二方向に配置される電極端子と、を有し、
     前記容器は、
     前記第一方向に向く第一面と、
     前記第二方向に向き、かつ、前記電極端子が配置されない第二面と、
     前記第一面及び前記第二面の少なくとも一方に設けられるガス排出弁と、を有し、
     前記複数の第一蓄電素子は、前記第一方向及び前記第二方向と交差する第三方向に並んで配置される
     蓄電装置。
    Equipped with a plurality of first storage elements,
    Each of the plurality of first storage elements,
    a container flattened in a first direction;
    an electrode terminal arranged in a second direction crossing the first direction of the container;
    The container is
    a first surface facing the first direction;
    a second surface facing the second direction and on which the electrode terminal is not arranged;
    a gas discharge valve provided on at least one of the first surface and the second surface;
    The power storage device, wherein the plurality of first power storage elements are arranged side by side in a third direction intersecting the first direction and the second direction.
  2.  前記容器のうちの前記ガス排出弁が設けられた面は、前記ガス排出弁から排出されるガスの流路の一部である
     請求項1に記載の蓄電装置。
    The power storage device according to claim 1, wherein the surface of the container on which the gas discharge valve is provided is part of a flow path for gas discharged from the gas discharge valve.
  3.  前記ガス排出弁から排出されるガスの流路を挟む位置の少なくとも一方に配置され、冷媒を有する冷却部を備える
     請求項1または2に記載の蓄電装置。
    3. The power storage device according to claim 1, further comprising a cooling unit having a coolant and disposed at least one of positions sandwiching a flow path of the gas discharged from the gas discharge valve.
  4.  前記ガス排出弁は、前記容器の底面に設けられる
     請求項1または2に記載の蓄電装置。
    The power storage device according to claim 1 or 2, wherein the gas discharge valve is provided on the bottom surface of the container.
  5.  前記複数の第一蓄電素子が有するいずれかの容器のうちの前記ガス排出弁が設けられた面に対向する第三面にガス排出弁が設けられた第二蓄電素子をさらに備える
     請求項1または2に記載の蓄電装置。
    1 or 2, further comprising a second storage element provided with a gas discharge valve on a third surface opposite to a surface provided with the gas discharge valve of any one of the containers of the plurality of first storage elements. 3. The power storage device according to 2.
PCT/JP2022/034362 2021-09-24 2022-09-14 Power storage device WO2023048040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155909 2021-09-24
JP2021155909 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048040A1 true WO2023048040A1 (en) 2023-03-30

Family

ID=85720651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034362 WO2023048040A1 (en) 2021-09-24 2022-09-14 Power storage device

Country Status (1)

Country Link
WO (1) WO2023048040A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018754A (en) * 2016-07-29 2018-02-01 株式会社デンソー Battery pack
JP2019003881A (en) * 2017-06-19 2019-01-10 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element and power storage module
JP2019212561A (en) * 2018-06-07 2019-12-12 Fdk株式会社 Power storage device and battery pack
WO2020026973A1 (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Battery module and battery pack
JP2021048113A (en) * 2019-09-20 2021-03-25 トヨタ自動車株式会社 Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018754A (en) * 2016-07-29 2018-02-01 株式会社デンソー Battery pack
JP2019003881A (en) * 2017-06-19 2019-01-10 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element and power storage module
JP2019212561A (en) * 2018-06-07 2019-12-12 Fdk株式会社 Power storage device and battery pack
WO2020026973A1 (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Battery module and battery pack
JP2021048113A (en) * 2019-09-20 2021-03-25 トヨタ自動車株式会社 Battery pack

Similar Documents

Publication Publication Date Title
JP2013069417A (en) Secondary battery
WO2023048040A1 (en) Power storage device
US20240047833A1 (en) Energy storage apparatus
CN117397104A (en) Power storage device
WO2023032562A1 (en) Power storage device
WO2024043254A1 (en) Power storage device
WO2022255162A1 (en) Power storage device
JP2020145149A (en) Power storage device
JP2023094757A (en) power storage device
WO2023063328A1 (en) Power storage element
WO2023013466A1 (en) Power storage device
WO2023063332A1 (en) Power storage element
WO2022255017A1 (en) Power storage device
WO2023068029A1 (en) Power storage device and method for manufacturing power storage device
WO2023105987A1 (en) Power storage element
WO2022191231A1 (en) Power storage device
WO2023176568A1 (en) Power storage element and power storage device
WO2023063329A1 (en) Power storage element
WO2023053831A1 (en) Power storage device
WO2023176752A1 (en) Electricity storage device and method for manufacturing electricity storage device
WO2024009930A1 (en) Power storage device
WO2023223961A1 (en) Power storage device
JP2023067618A (en) power storage device
WO2024043253A1 (en) Power storage device
EP4336528A1 (en) Power storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549502

Country of ref document: JP