JP2011076787A - Secondary battery and method of manufacturing the same - Google Patents

Secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2011076787A
JP2011076787A JP2009225164A JP2009225164A JP2011076787A JP 2011076787 A JP2011076787 A JP 2011076787A JP 2009225164 A JP2009225164 A JP 2009225164A JP 2009225164 A JP2009225164 A JP 2009225164A JP 2011076787 A JP2011076787 A JP 2011076787A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
external terminal
positive
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009225164A
Other languages
Japanese (ja)
Inventor
Ryuji Kono
竜治 河野
Takuro Tsunaki
拓郎 綱木
Yutaka Sato
豊 佐藤
Mitsuru Koseki
満 小関
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009225164A priority Critical patent/JP2011076787A/en
Publication of JP2011076787A publication Critical patent/JP2011076787A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To reduce internal resistance and to facilitate assembly for a battery pack. <P>SOLUTION: In a lithium ion secondary battery, an electric power generation element group 6 is housed inside a flat rectangular solid vessel 10, and external terminals 4A and 4B respectively connected to positive and negative electrode current collection parts 6A and 6B of the electric power generation element group are fixed to the vessel. The positive and negative electrode external terminals are attached to a short band-shaped side wall 110B, and the positive and negative electrode current collection parts of the electric power generation element group are disposed close to the positive and negative electrode external terminals respectively. Since the positive and negative electrode current collection parts are placed across the overall width along the short band-shaped side wall 110B, positive and negative electrode connection members 5A and 5B can be formed to have wide width. Since the positive and negative electrode current collection parts and the positive and negative electrode external terminals are close to each other, the positive and negative electrode connection members can be shortened. Therefore, electric resistance of the positive and negative electrode connection members and the internal resistance of the secondary battery can be reduced, and battery characteristics such as charging and discharging performance can be improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、浅底の電池缶内に発電要素群を収納し、電池缶開口を電池蓋で封止した二次電池およびその製造方法に関する。   The present invention relates to a secondary battery in which a power generation element group is housed in a shallow battery can and the opening of the battery can is sealed with a battery lid, and a method for manufacturing the same.

地域環境保護の社会動向を受け、ハイブリッド車や電気自動車等の車両駆動用二次電池の実用化、普及が急務である。車両駆動用二次電池の構造としては、発電要素たる正極、負極双方のシート(正負極板)と、正負極板間の絶縁用のセパレータと、電解液とが、金属製や樹脂製の密閉容器内に収容され、発電要素の両極とそれぞれ接合された外部端子を設けたものがよく知られている。   In response to social trends in local environmental protection, there is an urgent need to commercialize and popularize secondary batteries for driving vehicles such as hybrid cars and electric cars. The structure of the secondary battery for driving a vehicle is that a sheet for both positive and negative electrodes (positive and negative electrode plates), a separator for insulation between the positive and negative electrode plates, and an electrolytic solution are sealed with metal or resin. It is well known to provide an external terminal that is housed in a container and joined to both electrodes of the power generation element.

これまで実用化された二次電池では、その外部が円柱状をなしたものが殆どであったが、車両駆動用二次電池では、出力や容量の向上を図るために数十から、多いときには百超の個数の二次電池をまとめて組電池とし、ひとつの車両に搭載することが必要であり、実装密度の向上を図る観点から、角形状の二次電池が盛んに実用化されるようになっている。   Most of the secondary batteries that have been put to practical use so far have a cylindrical shape. However, in the case of a secondary battery for driving a vehicle, it is several dozens to increase the output and capacity. More than a hundred secondary batteries need to be assembled into a battery pack and mounted on a single vehicle. From the viewpoint of improving mounting density, square-shaped secondary batteries are actively put into practical use. It has become.

従来知られる角形二次電池は、深絞り法により形成した金属製の深底の電池缶を有し、電池缶の断面は扁平長方形状に形成されている。ここで、発電要素の両極方向をWH方向、発電要素群両極の延在方向をHH方向、発電要素群厚さ方向をDH方向と呼ぶことにする。上記角形二次電池では、HH方向、WH方向、DH方向は、電池缶の深さ方向、扁平断面の長辺方向、扁平断面の短辺方向にそれぞれ対応する。   A conventionally known prismatic secondary battery has a metal deep bottom battery can formed by a deep drawing method, and the cross section of the battery can is formed in a flat rectangular shape. Here, the bipolar direction of the power generation element is referred to as the WH direction, the extension direction of the power generation element group both poles is referred to as the HH direction, and the power generation element group thickness direction is referred to as the DH direction. In the prismatic secondary battery, the HH direction, WH direction, and DH direction correspond to the depth direction of the battery can, the long side direction of the flat cross section, and the short side direction of the flat cross section, respectively.

電池缶には、絶縁ケースを介して発電要素群が収容される。発電要素群は、集電部を有する正負極板が捲回または積層され、WH方向に配置された両端部に正負極活物質合剤の未塗工部がそれぞれ形成される。未塗工部には、超音波接合法等により、接続板(接続部材)が接合部において接合される。電池缶の開口部は金属製の電池蓋をレーザビーム溶接法等で溶接して封止され、電池蓋には、外部と接続するための正負極部が、電池蓋との電気的接触を避け、かつ、電池内部の気密を保つためのシール部材を介して固定される。電池蓋には注液口が設けられ、注液口から電池缶内に電解液が注入される。注入口は、レーザビーム溶接法により気密封止される。   A power generation element group is accommodated in the battery can via an insulating case. In the power generation element group, positive and negative electrode plates each having a current collector are wound or stacked, and uncoated portions of the positive and negative electrode active material mixture are respectively formed at both ends arranged in the WH direction. A connection plate (connection member) is bonded to the uncoated portion at the bonded portion by an ultrasonic bonding method or the like. The opening of the battery can is sealed by welding a metal battery lid with a laser beam welding method, etc. The battery lid has positive and negative electrodes for connection to the outside to avoid electrical contact with the battery lid. And it fixes through the sealing member for keeping airtight inside a battery. The battery lid is provided with a liquid injection port, and an electrolytic solution is injected into the battery can from the liquid injection port. The inlet is hermetically sealed by laser beam welding.

このような二次電池では、接続板は発電要素群のWH方向端部、すなわち電池缶短辺に沿って電池蓋まで伸び、正負極部に接続される。このため、接続板の形状は発電要素群や電池缶の形状によって制限を受け、電流経路幅が狭小となって、電池内部抵抗が大きくなることがある。   In such a secondary battery, the connection plate extends to the battery lid along the WH direction end of the power generation element group, that is, the short side of the battery can, and is connected to the positive and negative electrode parts. For this reason, the shape of the connection plate is limited by the shape of the power generation element group and the battery can, and the current path width becomes narrow, and the battery internal resistance may increase.

そこで特許文献1の二次電池では、扁平な4側面と、これら4側面で画定され各側面に比較して広い底面と、この底面に対向する開口部を設け、開口部を電池蓋で封止している。そして、電池蓋に正負極部を設け、接続板(接続部材)をDH方向に延材させて、その距離を短縮し、内部抵抗を減少している。   Therefore, in the secondary battery of Patent Document 1, four flat side surfaces, a wide bottom surface defined by these four side surfaces and an opening facing the bottom surface are provided, and the opening is sealed with a battery lid. is doing. And the positive / negative electrode part is provided in the battery cover, the connecting plate (connecting member) is extended in the DH direction, the distance is shortened, and the internal resistance is reduced.

特許3997369号公報Japanese Patent No. 3997369

車両用二次電池システムにおいて、多数の二次電池を接続する場合、二次電池は一般にDH方向に密集配列され、特許文献1の二次電池では、正負極端子が隣接二次電池間に隠れてしまうため、接続作業が容易でない。従って特許文献1の二次電池は組電池化が困難となる。   In a vehicular secondary battery system, when a large number of secondary batteries are connected, the secondary batteries are generally densely arranged in the DH direction. In the secondary battery of Patent Document 1, the positive and negative terminals are hidden between adjacent secondary batteries. Therefore, connection work is not easy. Therefore, the secondary battery of Patent Document 1 is difficult to be assembled.

このような問題を回避するために、仮に、WH方向またはHH方向に正負極端子を設けようとすると、電池蓋を電池缶に溶接する際、ビームが正負極端子の近傍を通過することになり、実質的に溶接作業は不可能である。また底面からビームを照射することも考えられるが、底面がビーム源に干渉する可能性が高い。
すなわち、特許文献1の二次電池は組電池化が困難である。
In order to avoid such a problem, if the positive and negative terminals are provided in the WH direction or the HH direction, the beam will pass in the vicinity of the positive and negative terminals when the battery cover is welded to the battery can. The welding operation is virtually impossible. Although it is conceivable to irradiate the beam from the bottom surface, the bottom surface is highly likely to interfere with the beam source.
That is, the secondary battery of Patent Document 1 is difficult to be assembled.

(1)請求項1の発明による二次電池は、上部に開口部を、側部に側壁を有する扁平有底形状の電池缶、および前記開口部を封止する電池蓋とで構成される電池容器と、前記電池容器に収容され、正極、負極、正極集電部、および負極集電部を有する発電要素群と、前記電池缶の前記側壁に装着され、前記電池容器の内側に、前記正極集電部および負極集電部が接続される集電部接続面が形成されている正極外部端子および負極外部端子と、前記正極集電部と正極外部端子とを接続する正極接続部材、および前記負極集電部と負極外部端子とを接続する負極接続部材とを備え、前記正極外部端子と正極接続部材、および前記負極外部端子と負極接続部材は、各外部端子の外側から、または、前記開口部側から溶接により固着されていることを特徴とする。
(2)請求項2の発明は、請求項1記載の二次電池において、前記側壁は一対の長手帯状側壁と一対の短手帯状側壁を連続して形成した長方形枠状をなし、前記外部端子は、前記一対の短手帯状側壁にそれぞれ固着され、前記各接続部材は、前記電池缶の底壁と平行に延在する基部と、前記基部に連続しつつ前記集電部接続面に沿うように形成された接触端部とを備え、前記接続部材と前記接触端部との接触面が溶接により固着されていることを特徴とする。
(3)請求項3の発明は、請求項1乃至3のいずれか1項に記載の二次電池において、前記発電要素群を前記正負極集電部方向に位置決めする水平方向位置決め手段をさらに備えることを特徴とする。
(4)請求項4の発明は、請求項3に記載の二次電池において、前記水平方向位置決め手段は前記接続部材および前記外部端子に設けられ、前記接続部材および前記外部端子には、相互に前記正負極集電部方向に当接する接触面がそれぞれ形成され、前記発電要素群の前記正負極集電部方向の位置決めを行うことを特徴とする。
(5)請求項5の発明は、請求項1乃至3のいずれか1項に記載の二次電池において、前記発電要素群を電池缶深さ方向について位置決めする深さ方向位置決め手段をさらに備えることを特徴とする。
(6)請求項6の発明は、請求項5に記載の二次電池において、前記電池缶深さ方向位置決め手段は前記接続部材および前記外部端子に設けられ、前記接続部材および前記外部端子には、相互に前記電池深さ方向に当接する接触面がそれぞれ形成され、前記発電要素群の前記電池深さ方向の位置決めを行うことを特徴とする。
(7)請求項7の発明は、扁平な側壁と、前記側壁で画定され、かつ側壁に比較して広い底壁と、この底壁に対向する開口部とを有する電池缶と、前記開口部を封止するために、前記電池缶に取り付けられた電池蓋と、前記電池缶内に収容され、正極および負極部が設けられた発電要素群と、前記発電要素群が前記電池缶に収容されたときに、前記正極の集電部および負極の集電部それぞれの近傍に位置する前記側壁に、該側壁を貫通し、かつ封止されつつ前記側壁に固着され、前記電池缶の内部に支持部が形成された正極、負極の外部端子とを備えた二次電池の製造方法であって、前記電池缶の前記側壁に封止材を介して前記外部端子を取り付け固定するステップと、前記発電要素群の正極の集電部および負極の集電部のそれぞれに接続部材を固着するステップと、前記接続部材を前記外部端子の前記支持部によって支持することによって、前記発電要素群を前記電池缶内で位置決めするステップと、前記外部端子と前記接続部材との接触面を、前記開口部から、あるいは、前記外部端子の外側から溶接するステップと、前記電池蓋を前記開口部に取り付けるステップとを備えたことを特徴とする。
(1) A secondary battery according to the invention of claim 1 includes a flat bottomed battery can having an opening at the top and a side wall at the side, and a battery lid for sealing the opening. A container, a power generation element group having a positive electrode, a negative electrode, a positive electrode current collector, and a negative electrode current collector housed in the battery container; and mounted on the side wall of the battery can; A positive electrode external terminal and a negative electrode external terminal on which a current collector connection surface to which the current collector and the negative electrode current collector are connected is formed; a positive electrode connection member that connects the positive electrode current collector and the positive electrode external terminal; and A negative electrode connection member that connects a negative electrode current collector and a negative electrode external terminal, the positive electrode external terminal and the positive electrode connection member, and the negative electrode external terminal and the negative electrode connection member from the outside of each external terminal or the opening It is fixed by welding from the part side And butterflies.
(2) A secondary battery according to a second aspect of the present invention is the secondary battery according to the first aspect, wherein the side wall has a rectangular frame shape in which a pair of long belt-shaped side walls and a pair of short belt-shaped side walls are continuously formed, and the external terminals Are fixed to the pair of short belt-like side walls, respectively, and each connection member extends along the current collector connection surface while continuing to the base and the base extending in parallel with the bottom wall of the battery can. A contact end portion formed on the contact member, and a contact surface between the connection member and the contact end portion is fixed by welding.
(3) The invention of claim 3 is the secondary battery according to any one of claims 1 to 3, further comprising a horizontal direction positioning means for positioning the power generation element group in the direction of the positive and negative electrode current collector. It is characterized by that.
(4) The invention of claim 4 is the secondary battery according to claim 3, wherein the horizontal positioning means is provided on the connection member and the external terminal, and the connection member and the external terminal are connected to each other. Contact surfaces that abut in the direction of the positive and negative current collectors are formed, respectively, and the power generation element group is positioned in the direction of the positive and negative current collectors.
(5) The invention of claim 5 is the secondary battery according to any one of claims 1 to 3, further comprising a depth direction positioning means for positioning the power generation element group in the depth direction of the battery can. It is characterized by.
(6) In the secondary battery according to claim 5, the battery can depth direction positioning means is provided in the connection member and the external terminal, and the connection member and the external terminal include Contact surfaces that contact each other in the battery depth direction are formed, and the power generation element group is positioned in the battery depth direction.
(7) The invention of claim 7 includes a battery can having a flat side wall, a bottom wall defined by the side wall and wider than the side wall, and an opening facing the bottom wall, and the opening. A battery lid attached to the battery can, a power generation element group accommodated in the battery can and provided with a positive electrode and a negative electrode part, and the power generation element group accommodated in the battery can The positive electrode current collector and the negative electrode current collector in the vicinity of each of the side walls penetrating the side wall and being sealed and fixed to the side wall and supported inside the battery can A method of manufacturing a secondary battery comprising a positive electrode and a negative electrode external terminal, wherein the external terminal is attached and fixed to the side wall of the battery can via a sealing material, and the power generation Connected to each of the positive current collector and negative current collector of the element group A step of positioning the power generating element group in the battery can by supporting the connection member by the support portion of the external terminal, and a contact surface between the external terminal and the connection member. And a step of welding from the opening or from the outside of the external terminal, and a step of attaching the battery lid to the opening.

本発明によれば、内部抵抗が小さくかつ組電池化が容易な二次電池および製造方法を提供することができる。   According to the present invention, it is possible to provide a secondary battery and a manufacturing method that have a low internal resistance and can be easily assembled.

本発明による二次電池の第1の実施の形態を示す部分縦断面図。1 is a partial longitudinal sectional view showing a first embodiment of a secondary battery according to the present invention. 図1の二次電池の発電要素群の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the electric power generation element group of the secondary battery of FIG. 図1の二次電池の発電要素群の他の構成を示す斜視図。The perspective view which shows the other structure of the electric power generation element group of the secondary battery of FIG. 図1の二次電池の電池缶および電池蓋を示す部分破断斜視図。The partially broken perspective view which shows the battery can and battery cover of the secondary battery of FIG. 図4のV−V矢視線に沿う部分縦断面図。The fragmentary longitudinal cross-sectional view which follows the VV arrow line of FIG. 本発明による二次電池の第2の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 2nd Embodiment of the secondary battery by this invention. 本発明による二次電池の第2の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 2nd Embodiment of the secondary battery by this invention. 本発明による二次電池の第3の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 3rd Embodiment of the secondary battery by this invention. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 図7の二次電池の製造工程を説明する部分縦断面図。FIG. 8 is a partial vertical cross-sectional view illustrating a manufacturing process of the secondary battery in FIG. 7. 本発明による二次電池の第4の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 4th Embodiment of the secondary battery by this invention. 本発明による二次電池の第4の実施の形態を示す他の部分縦断面図。The other partial longitudinal cross-sectional view which shows 4th Embodiment of the secondary battery by this invention. 本発明による二次電池の第5の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 5th Embodiment of the secondary battery by this invention. 本発明による二次電池の第6の実施の形態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows 6th Embodiment of the secondary battery by this invention.

以下、本発明による二次電池の実施の形態を、添付図面に従って詳細に説明する。
[第1の実施の形態]
Hereinafter, embodiments of a secondary battery according to the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]

図1および図4に示すように、リチウムイオン二次電池30は、扁平直方体状の容器10と、容器10内に収容されている発電要素群6とを有する。発電要素群6は電解液(図示省略)に浸漬され、可撓性の絶縁ケース7(図4)によって容器10から絶縁されている。発電要素群6は、正極集電部6A、負極集電部6Bを有し、正極集電部6A、負極集電部6Bは、正極接続部材5A、負極接続部材5Bをそれぞれ介して、容器10に設けられた正極外部端子4A、負極外部端子4Bに接続されている。正負極外部端子4A、4Bは外部に露出して、二次電池相互、あるいは他の電気機器との接続が可能である。   As shown in FIGS. 1 and 4, the lithium ion secondary battery 30 includes a flat rectangular parallelepiped container 10 and a power generation element group 6 accommodated in the container 10. The power generation element group 6 is immersed in an electrolytic solution (not shown) and insulated from the container 10 by a flexible insulating case 7 (FIG. 4). The power generation element group 6 includes a positive electrode current collector 6A and a negative electrode current collector 6B. The positive electrode current collector 6A and the negative electrode current collector 6B are connected to the container 10 via the positive electrode connection member 5A and the negative electrode connection member 5B, respectively. Are connected to a positive external terminal 4A and a negative external terminal 4B. The positive and negative external terminals 4A and 4B are exposed to the outside and can be connected to each other or to other electrical devices.

なお、図示および説明を簡略化するために、図4以外の図面では、絶縁ケース7を省略する。   In addition, in order to simplify illustration and description, the insulating case 7 is omitted in drawings other than FIG.

以下、説明を簡単にするために、二次電池30における3次元の3方向を次のように定義する。すなわち、容器10の正極外部端子4A、負極外部端子4Bを結ぶ方向(図1の左右方向)をWH方向(正負電極部方向)、容器10の厚さ方向、すなわち電池缶11の底壁111と電池蓋12とを結ぶ方向(図1の上下方向)をDH方向(電池缶深さ方向)、WH方向およびDH方向と直交する方向をHH方向とする。すなわち、容器10は、DH方向(側面高さ方向)に薄く、底壁111がWH方向に長く、HH方向に短い。   Hereinafter, in order to simplify the description, the three-dimensional three directions in the secondary battery 30 are defined as follows. That is, the direction connecting the positive electrode external terminal 4A and the negative electrode external terminal 4B of the container 10 (left-right direction in FIG. 1) is the WH direction (positive and negative electrode part direction), the thickness direction of the container 10, that is, the bottom wall 111 of the battery can 11 The direction connecting the battery lid 12 (the vertical direction in FIG. 1) is the DH direction (battery can depth direction), and the WH direction and the direction orthogonal to the DH direction are HH directions. That is, the container 10 is thin in the DH direction (side surface height direction), and the bottom wall 111 is long in the WH direction and short in the HH direction.

図2に示すように、発電要素群6は、帯状の正極板6P1と負極板6P2とを、帯状の2枚のセパレータ6Cを介して捲回して形成され、DH方向に比較してHH方向が長い扁平コイル状に形成される。   As shown in FIG. 2, the power generation element group 6 is formed by winding a belt-like positive electrode plate 6P1 and a negative electrode plate 6P2 via two belt-like separators 6C, and the HH direction is larger than the DH direction. It is formed in a long flat coil shape.

正極板6P1は、例えば、アルミニウム製の正極集電箔の両面に、マンガン酸リチウム等、リチウム含有遷移金属複合酸化物等の正極活物質を含む正極活物質合剤を略均等かつ略均一に塗着して形成される。正極活物質合剤には、正極活物質以外に炭素材料等の導電剤およびポリフッ化ビニリデン(以下PVDFと略記する。)等のバインダ(結着剤)が配合され、正極集電箔へ正極活物質合剤を塗工する時には、正極活物質合剤は、N−メチルピロリドン(以下NMPと略記する。)等の分散溶媒で粘度調整される。正極活物質合剤を塗工する時、正極集電箔の幅方向一側の側縁に未塗工部6RAが形成される。すなわち未塗工部6RAではアルミニウムが露出している。その後、乾燥させ、ロールプレスで密度が調整されている。   The positive electrode plate 6P1 is applied, for example, to a positive electrode current collector foil made of aluminum with a positive electrode active material mixture containing a positive electrode active material such as lithium manganate or a lithium-containing transition metal composite oxide substantially evenly and substantially uniformly. It is formed by wearing. In addition to the positive electrode active material, the positive electrode active material mixture is blended with a conductive agent such as a carbon material and a binder (binder) such as polyvinylidene fluoride (hereinafter abbreviated as PVDF). When the material mixture is applied, the viscosity of the positive electrode active material mixture is adjusted with a dispersion solvent such as N-methylpyrrolidone (hereinafter abbreviated as NMP). When the positive electrode active material mixture is applied, an uncoated portion 6RA is formed on the side edge on one side in the width direction of the positive electrode current collector foil. That is, aluminum is exposed in the uncoated portion 6RA. Then, it is dried and the density is adjusted with a roll press.

負極板6P2は、例えば、銅製の負極集電箔の両面に、リチウムイオンを可逆に吸蔵、放出可能な黒鉛等の炭素材を含む負極活物質合剤を、略均等かつ略均一に塗着して形成される。負極活物質合剤には、負極活物質以外に、アセチレンブラック等の導電材やPVDF等のバインダが配合されている。銅箔へ負極活物質合剤を塗工する時には、負極活物質合剤は、NMP等の分散溶媒で粘度調整される。負極活物質合剤を塗工する時、銅箔の長寸方向一側の側縁に負極活物質合剤の塗工されない未塗工部6RBが形成される。すなわち、未塗工部6RBでは、銅箔が露出している。その後、乾燥させ、ロールプレスで密度が調整されている。   For example, the negative electrode plate 6P2 is formed by coating a negative electrode active material mixture containing a carbon material such as graphite capable of reversibly occluding and releasing lithium ions on both surfaces of a copper negative electrode current collector foil. Formed. In addition to the negative electrode active material, the negative electrode active material mixture contains a conductive material such as acetylene black and a binder such as PVDF. When the negative electrode active material mixture is applied to the copper foil, the viscosity of the negative electrode active material mixture is adjusted with a dispersion solvent such as NMP. When the negative electrode active material mixture is applied, an uncoated portion 6RB where the negative electrode active material mixture is not applied is formed on the side edge on one side in the longitudinal direction of the copper foil. That is, the copper foil is exposed in the uncoated portion 6RB. Then, it is dried and the density is adjusted with a roll press.

なお、負極板6P2の長さは、正極板6P1および負極板6P2を捲回したときに、捲回最内周および最外周で捲回方向に正極板6P1が負極板6P2からはみ出すことがないように、正極板6P1の長さより長く設定されている。また、負極活物質合剤の塗着部の幅(WH方向の長さ)は、発電要素群6の正負極集電部方向(WH方向)において正極活物質合剤の塗着部が負極活物質合剤の塗着部からはみ出すことがないように、正極活物質合剤の塗着部の幅より長く設定されている。   The length of the negative electrode plate 6P2 is such that when the positive electrode plate 6P1 and the negative electrode plate 6P2 are wound, the positive electrode plate 6P1 does not protrude from the negative electrode plate 6P2 in the winding direction at the innermost winding and outermost winding. And longer than the length of the positive electrode plate 6P1. In addition, the width (length in the WH direction) of the coating portion of the negative electrode active material mixture is such that the coating portion of the positive electrode active material mixture is in the negative electrode active portion direction (WH direction) of the power generation element group 6. The width is set to be longer than the width of the coated portion of the positive electrode active material mixture so as not to protrude from the coated portion of the material mixture.

正極板6P1、負極板6P2の幅方向端部の活物質合剤が塗布されない未塗工部6RA、6RBは、捲回後に、WH方向端部をDH方向に平坦状にプレス加工され、正極集電部6Aと負極集電部6Bが形成される。   The uncoated portions 6RA and 6RB where the active material mixture at the end portions in the width direction of the positive electrode plate 6P1 and the negative electrode plate 6P2 is not applied are pressed into a flat shape in the DH direction after winding, An electric part 6A and a negative electrode current collector 6B are formed.

発電要素群6は、未塗工部6RA、6RBに比較して、その他の部分(塗工部6C)が活物質合剤の分だけ肉厚となるため、正極集電部6A、負極集電部6Bには、WH方向中央部に向かって厚さが増加する傾斜が生じる。   Since the power generation element group 6 is thicker by the amount of the active material mixture in the other portions (coated portion 6C) compared to the uncoated portions 6RA and 6RB, the positive current collecting portion 6A and the negative current collecting portion In the part 6B, an inclination in which the thickness increases toward the central part in the WH direction is generated.

電池缶11は、たとえばアルミニウム製薄板を浅絞り法により加工して有底扁平形状に形成され、上部には開口部113が設けられている。電池缶11は、長方形枠形状の側壁110と底壁111とを有し、上部開口部113はレーザビーム溶接等(溶接部をW2で示す。)で電池蓋12を溶着して封止される。   The battery can 11 is formed, for example, by processing a thin aluminum plate by a shallow drawing method into a flat shape with a bottom, and an opening 113 is provided at the top. The battery can 11 has a rectangular frame-shaped side wall 110 and a bottom wall 111, and the upper opening 113 is sealed by welding the battery lid 12 by laser beam welding or the like (the welded portion is indicated by W2). .

電池缶11の側壁110は、対向する一対の長手帯状側壁110Aと、対向する一対の短手帯状側壁110Bの4面で形成されている。短手帯状側壁110Bのほぼ中央部に横長の端子取付用開口115が設けられ、一方の短手帯状側壁110Bの端子取付用開口115には正極外部端子4Aが、他方の短手帯状側壁110Bの端子取付用開口115には負極外部端子4Bが取り付けられている。   The side wall 110 of the battery can 11 is formed by four surfaces, ie, a pair of opposed long belt-like side walls 110A and a pair of opposed short belt-like side walls 110B. A laterally long terminal mounting opening 115 is provided at substantially the center of the short belt-shaped side wall 110B, the positive electrode external terminal 4A is provided in the terminal mounting opening 115 of one short belt-shaped side wall 110B, and the other short belt-shaped side wall 110B. The negative electrode external terminal 4B is attached to the terminal attachment opening 115.

正極外部端子4A、負極外部端子4Bの周縁にはトランスファモールドで封止材13が成型され、正極外部端子4A、負極外部端子4Bを端子取付用開口115に封止材13を介して取り付けることにより、端子取付用開口115が封止される。封止材13は、電池缶11に対して正極外部端子4A、負極外部端子4Bを絶縁するとともに、電池缶11に対して正極外部端子4A、負極外部端子4Bを固定する。   The sealing material 13 is formed by transfer molding around the periphery of the positive external terminal 4A and the negative external terminal 4B, and the positive external terminal 4A and the negative external terminal 4B are attached to the terminal mounting opening 115 via the sealing material 13. The terminal mounting opening 115 is sealed. The sealing material 13 insulates the positive electrode external terminal 4A and the negative electrode external terminal 4B from the battery can 11 and fixes the positive electrode external terminal 4A and the negative electrode external terminal 4B to the battery can 11.

上述した発電要素群6は、電池缶11内において、正極集電部6Aと負極集電部6Bがそれぞれ正極外部端子4Aと負極外部端子4Bに対向する向きに配置され、正極接続部材5A、負極接続部材5Bにより、正極集電部6Aと負極集電部6Bがそれぞれ正極外部端子4Aと負極外部端子4Bに接続されている。   In the battery can 11, the power generation element group 6 described above is disposed in a direction in which the positive electrode current collector 6 </ b> A and the negative electrode current collector 6 </ b> B face the positive electrode external terminal 4 </ b> A and the negative electrode external terminal 4 </ b> B, respectively. The connecting member 5B connects the positive current collector 6A and the negative current collector 6B to the positive external terminal 4A and the negative external terminal 4B, respectively.

図1および図4に示すように、短手帯状側壁110Bの端子取付用開口115に取り付けられた正極外部端子4Aは、電池缶11の厚みよりも厚い所定厚さの金属部材で製作され、全体として断面形状が略ハット形状である。正極外部端子4Aには、電池缶11の内部を外部と連通する貫通孔20があけられ、図4(b)に示すように、貫通孔20の周りに座ぐり41が設けられている。座ぐり41は、貫通孔の栓部材のつば部を収容する大きさ、深さである。   As shown in FIGS. 1 and 4, the positive external terminal 4A attached to the terminal attachment opening 115 of the short belt-like side wall 110B is made of a metal member having a predetermined thickness that is thicker than the thickness of the battery can 11, and is entirely The cross-sectional shape is a substantially hat shape. The positive electrode external terminal 4A has a through hole 20 that communicates the inside of the battery can 11 with the outside, and a counterbore 41 is provided around the through hole 20 as shown in FIG. The counterbore 41 has a size and depth to accommodate the collar portion of the plug member of the through hole.

また、負極外部端子4Bも正極外部端子4Aと同様に形成される。すなわち、負極外部端子4Bは、電池缶11の厚みよりも厚い所定厚さの金属部材で製作され、全体として断面形状が略ハット形状である。負極外部端子4Bには、電池缶11の内部を外部と連通する貫通孔20があけられ、図4(b)に示すように、貫通孔20の周りに座ぐり41が設けられている。座ぐり41は、貫通孔の栓部材のつば部を収容する大きさ、深さである。   The negative external terminal 4B is also formed in the same manner as the positive external terminal 4A. That is, the negative electrode external terminal 4B is made of a metal member having a predetermined thickness that is thicker than the thickness of the battery can 11, and the cross-sectional shape as a whole is a substantially hat shape. The negative electrode external terminal 4B has a through hole 20 that communicates the inside of the battery can 11 with the outside, and a counterbore 41 is provided around the through hole 20 as shown in FIG. The counterbore 41 has a size and depth to accommodate the collar portion of the plug member of the through hole.

正極外部端子4Aの容器10内側に突出する支持部4ASの容器内面は正極集電部接触面4ATとされ、負極外部端子4Bの容器10内側に突出する支持部4BSの容器内面は負極集電部接触面4BTとされる。   The container inner surface of the support portion 4AS protruding inside the container 10 of the positive electrode external terminal 4A is a positive electrode current collector contact surface 4AT, and the container inner surface of the support portion 4BS protruding inside the container 10 of the negative electrode external terminal 4B is the negative electrode current collector portion. The contact surface is 4BT.

正極集電部6A、負極集電部6Bのそれぞれには、予め正極接続部材5A、負極接続部材5Bが超音波接合により電気的かつ機械的に接合され、集電部組立体が作製される。略L字状の正極接続部材5Aは、底壁111と平行に延在するとともに、外部端子の幅と略同じ幅に形成された水平基部5AAと、水平基部5AAに連続しつつ支持部4ASに沿うように容器開口部113方向(底壁111に直交する方向)に折曲された垂直接触端部5ASとを備えている。負極接続部材5Bも正極接続部材5Aと同様の水平基部5BAと、垂直接触端部5BSとを備えている。   In each of the positive electrode current collector 6A and the negative electrode current collector 6B, the positive electrode connecting member 5A and the negative electrode connecting member 5B are electrically and mechanically bonded in advance by ultrasonic bonding to produce a current collector assembly. The substantially L-shaped positive electrode connecting member 5A extends in parallel with the bottom wall 111, and has a horizontal base portion 5AA formed to have substantially the same width as the width of the external terminal, and the support portion 4AS while continuing to the horizontal base portion 5AA. A vertical contact end 5AS bent in the direction of the container opening 113 (a direction orthogonal to the bottom wall 111) is provided. The negative electrode connecting member 5B also includes a horizontal base portion 5BA similar to the positive electrode connecting member 5A and a vertical contact end portion 5BS.

正極接続部材5Aの水平基部5AAには正極集電部6Aが固着され、垂直接触端部5ASの接触面5ATは正極外部端子4Aの集電部接触面4ATに当接され、レーザビーム溶接される(溶接部をW1で示す)。正極接続部材5Aと正極外部端子4Aとのレーザビーム溶接は、相互の接触面5AT、4ATに対して、正極外部端子4Aの外側から施される。   A positive electrode current collector 6A is fixed to the horizontal base 5AA of the positive electrode connection member 5A, and a contact surface 5AT of the vertical contact end 5AS is brought into contact with a current collector contact surface 4AT of the positive electrode external terminal 4A and is laser beam welded. (The weld is indicated by W1). Laser beam welding of the positive electrode connection member 5A and the positive electrode external terminal 4A is performed from the outside of the positive electrode external terminal 4A to the mutual contact surfaces 5AT and 4AT.

負極接続部材5Bの水平基部5BAには負極集電部6Bが固着され、垂直接触端部5BSの接触面5BTは負極外部端子4Bの集電部接触面4BTに当接され、レーザビーム溶接される。負極接続部材5Bと負極外部端子4Bとのレーザビーム溶接は、相互の接触面5BT、4BTに対して、負極外部端子4Bの外側から施される。   The negative electrode current collector 6B is fixed to the horizontal base 5BA of the negative electrode connection member 5B, and the contact surface 5BT of the vertical contact end 5BS is brought into contact with the current collector contact surface 4BT of the negative electrode external terminal 4B and is laser beam welded. . Laser beam welding of the negative electrode connection member 5B and the negative electrode external terminal 4B is performed from the outside of the negative electrode external terminal 4B to the mutual contact surfaces 5BT and 4BT.

ここで、正極外部端子4Aの接触面4ATに正極接続部材5Aの垂直接触端部5ASの接触面5ATが、負極外部端子4Bの接触面4BTに負極接続部材5Bの垂直接触端部5BSの接触面5BTがそれぞれ面接触することにより、発電要素群6は正負極集電部方向(WH方向)に位置決めされる。   Here, the contact surface 5AT of the vertical contact end 5AS of the positive electrode connection member 5A is on the contact surface 4AT of the positive electrode external terminal 4A, and the contact surface of the vertical contact end 5BS of the negative electrode connection member 5B is on the contact surface 4BT of the negative electrode external terminal 4B. When the 5BT comes into surface contact with each other, the power generating element group 6 is positioned in the positive and negative current collector direction (WH direction).

図5に示すように、正極外部端子4A、負極外部端子4Bの一方または両方(本実施の形態では正極外部端子4Aとする)には、電池缶11の内外を連通する貫通孔20が座ぐり41の底壁に穿設されている。貫通孔20は容器10内に電解液を注入するための注液口とされる。注液栓22にはつば部26が設けられている。つば部26は座ぐり41に嵌入された後にレーザビーム溶接によって固定される。   As shown in FIG. 5, one or both of the positive electrode external terminal 4 </ b> A and the negative electrode external terminal 4 </ b> B (in this embodiment, the positive electrode external terminal 4 </ b> A) is provided with a through hole 20 that communicates the inside and outside of the battery can 11. 41 is drilled in the bottom wall. The through hole 20 serves as a liquid injection port for injecting the electrolytic solution into the container 10. The liquid injection stopper 22 is provided with a collar portion 26. The collar portion 26 is fixed by laser beam welding after being fitted into the counterbore 41.

電解液は正極外部端子4Aに設けられた注液口(貫通孔)20から注入される。電解液注入後、注液口20に栓部材(注液栓)22が挿入されて容器内部を密封する。   The electrolytic solution is injected from a liquid injection port (through hole) 20 provided in the positive electrode external terminal 4A. After injecting the electrolyte, a stopper member (injection stopper) 22 is inserted into the injection hole 20 to seal the inside of the container.

図5に示すように、正極接続部材5Aの垂直接触端部5ASには、注液口20に対応した位置に、切り欠5ARが形成され、電解液の注入に支障がないようにしている。   As shown in FIG. 5, the vertical contact end 5AS of the positive electrode connecting member 5A is formed with a notch 5AR at a position corresponding to the liquid injection port 20, so that there is no hindrance to the injection of the electrolytic solution.

組電池の組み立てに際しては、正極外部端子4A相互および負極外部端子4B相互をバスバー(図示省略)等によって接続する。正極外部端子4A相互の接続に用いるバスバーは、例えば、アルミニウムで製作される。また、負極外部端子4B相互の接続に用いるバスバーは、例えば、アルミニウム/銅複合材(クラッド材)が用いられる。アルミニウムと銅を超音波接合あるいはかしめにより電気的、機械的に接合した複合材を使用してもよい。   When assembling the assembled battery, the positive external terminals 4A and the negative external terminals 4B are connected by a bus bar (not shown) or the like. The bus bar used for connecting the positive external terminals 4A is made of, for example, aluminum. In addition, for example, an aluminum / copper composite material (clad material) is used for the bus bar used for the mutual connection of the negative electrode external terminals 4B. A composite material in which aluminum and copper are electrically and mechanically joined by ultrasonic joining or caulking may be used.

一般に、電池缶11の材質は例えばアルミニウム、正極外部端子4Aの材質は例えばアルミニウム、負極外部端子4Bの材質は例えば銅、電池蓋12の材質は例えばアルミニウム、封止材13の材質は例えばポリフェニレンサルファイド(以下PPSと略記する。)やポリブチレンテレフタレート(以下PBTと略記する。)等の樹脂である。なお、電池蓋12の厚さ方向の凹凸は、電池缶11の凹凸量よりも小さく設定されている。   In general, the material of the battery can 11 is, for example, aluminum, the material of the positive electrode external terminal 4A is, for example, aluminum, the material of the negative electrode external terminal 4B is, for example, copper, the material of the battery lid 12 is, for example, aluminum, and the material of the sealing material 13 is, for example, polyphenylene sulfide. (Hereinafter abbreviated as PPS) and polybutylene terephthalate (hereinafter abbreviated as PBT). The unevenness in the thickness direction of the battery lid 12 is set to be smaller than the unevenness amount of the battery can 11.

以上説明した第1の実施の形態の電池によれば次のような作用効果を奏することができる。   According to the battery of the first embodiment described above, the following operational effects can be obtained.

(1)電池缶11の短手帯状側壁110Bに設けた端子取付用開口115に、電池缶素材の板厚、電池蓋素材の板厚よりも厚い正極外部端子4A、負極外部端子4Bを設けた。また、正極外部端子4Aに電池容器内と外部とを貫通する容器内外連通貫通孔20を設け、容器内外連通貫通孔20を栓22で封止した。したがって、従来例のように電池缶や電池蓋に開口を設ける場合、栓の装着強度や信頼性を担保するためある程度の板厚が必要であり、電池の軽量化を阻害していた。しかし、本発明によれば、短手帯状側壁110Bに板厚の厚い正極外部端子4Aを設け、その外部端子4Aに容器内外連通貫通孔20を設けるようにしたので、電池缶11や電池蓋12の板厚を従来例に比べて薄くでき、電池の軽量化に寄与する。
これにより、例えば、比較的比重の大きい鉄板を電池缶11、電池蓋12の材料として採用しても、容器10を軽量化することができる。鉄板を用いた場合、電池容器11と電池蓋12の溶接部W2を強固に形成することができる。
(1) The positive electrode external terminal 4A and the negative electrode external terminal 4B which are thicker than the plate thickness of the battery can material and the plate thickness of the battery lid material are provided in the terminal attachment opening 115 provided in the short belt-like side wall 110B of the battery can 11. . Further, a container internal / external communication through hole 20 that penetrates the inside and outside of the battery container was provided in the positive electrode external terminal 4A, and the container internal / external communication through hole 20 was sealed with a plug 22. Therefore, when an opening is provided in a battery can or a battery lid as in the conventional example, a certain plate thickness is required to ensure the mounting strength and reliability of the plug, which has hindered weight reduction of the battery. However, according to the present invention, the thick positive electrode external terminal 4A is provided on the short belt-like side wall 110B, and the container internal / external communication through hole 20 is provided in the external terminal 4A. The plate thickness can be made thinner than the conventional example, which contributes to the weight reduction of the battery.
Thereby, for example, even if an iron plate having a relatively large specific gravity is adopted as the material of the battery can 11 and the battery lid 12, the container 10 can be reduced in weight. When an iron plate is used, the welded portion W2 between the battery container 11 and the battery lid 12 can be formed firmly.

(2)外部端子4Aには、容器内外連通貫通孔20の周囲に座ぐり41を設けた。したがって、容器内外連通貫通孔20を封止する栓のつば部26が座ぐり41に収容されるので、電池容器表面に溶接ビードが盛り上がることがない。また、(1)で述べたように軽量化にも寄与する。従来のように電池缶や電池蓋に容器内外連通貫通孔を設ける場合、座ぐりを設けるためには板厚が大きくなり、電池の軽量化を阻害していた。 (2) A counterbore 41 is provided around the inner and outer communication through holes 20 in the external terminal 4A. Therefore, since the flange portion 26 of the stopper that seals the inside / outside communication through-hole 20 is accommodated in the counterbore 41, the weld bead does not rise on the surface of the battery case. Further, as described in (1), it contributes to weight reduction. When a through hole for connecting the inside and outside of a container is provided in a battery can or a battery lid as in the prior art, the plate thickness is increased in order to provide a counterbore, which hinders weight reduction of the battery.

(3)正極集電部6A、負極集電部6Bが短手帯状側壁110Bの長手方向に沿って配置されているので、正極接続部材5A、負極接続部材5Bを幅広に形成できる。また、正極集電部6Aと正極外部端子4A、負極集電部6Bと負極外部端子4Bがそれぞれ近接しているため、正極接続部材5A、負極接続部材5Bを短くすることができる。
従って、正極接続部材5A、負極接続部材5Bの電気抵抗、ひいては、二次電池の内部抵抗を小さくすることができ、充放電性能等の電池性能を向上することができる。
(3) Since the positive electrode current collector 6A and the negative electrode current collector 6B are arranged along the longitudinal direction of the short belt-like side wall 110B, the positive electrode connection member 5A and the negative electrode connection member 5B can be formed wide. Moreover, since the positive electrode current collector 6A and the positive electrode external terminal 4A and the negative electrode current collector 6B and the negative electrode external terminal 4B are close to each other, the positive electrode connecting member 5A and the negative electrode connecting member 5B can be shortened.
Therefore, the electrical resistance of the positive electrode connecting member 5A and the negative electrode connecting member 5B, and thus the internal resistance of the secondary battery can be reduced, and battery performance such as charge / discharge performance can be improved.

(4)正極集電部6A、負極集電部6Bと正極外部端子4A、負極外部端子4Bとを、それぞれ近接配置したことによって、発電要素群6の大きさ、容器10の形状等に影響されることなく、電流経路を最適化することができる。 (4) The positive electrode current collector 6A, the negative electrode current collector 6B, the positive electrode external terminal 4A, and the negative electrode external terminal 4B are arranged close to each other, thereby being influenced by the size of the power generation element group 6, the shape of the container 10, and the like. Current paths can be optimized.

(5)正極接続部材5A、負極接続部材5B、正極外部端子4A、負極外部端子4Bは短手帯状側壁110Bの長手方向に延在して比較的大きいサイズに設定できるので、相互の接触面5AT、5BTも充分大きく設定でき、溶接部W1を充分なサイズとすることができ、溶接強度を確保することができる。 (5) Since the positive electrode connecting member 5A, the negative electrode connecting member 5B, the positive electrode external terminal 4A, and the negative electrode external terminal 4B extend in the longitudinal direction of the short belt-shaped side wall 110B and can be set to a relatively large size, the mutual contact surface 5AT 5BT can also be set sufficiently large, the welded portion W1 can be made a sufficient size, and the welding strength can be ensured.

(6)正極集電部6A、負極集電部6Bを容器側壁110Bに近接させ、正極接続部材5A、負極接続部材5Bにより正極外部端子4A、負極外部端子4Bに接続した。したがって、従来のように容器10内でWH方向やHH方向に正極接続部材5A、負極接続部材5Bを引き回す必要はなく、WH方向、HH方向の容器寸法を小さくでき、電池サイズを小型化することができる。 (6) The positive electrode current collector 6A and the negative electrode current collector 6B were brought close to the container side wall 110B and connected to the positive electrode external terminal 4A and the negative electrode external terminal 4B by the positive electrode connecting member 5A and the negative electrode connecting member 5B. Therefore, it is not necessary to route the positive electrode connecting member 5A and the negative electrode connecting member 5B in the WH direction or the HH direction in the container 10 as in the conventional case, the container dimensions in the WH direction and the HH direction can be reduced, and the battery size can be reduced. Can do.

(7)正極接続部材5Aの垂直壁5ASを正極外部端子4Aの支持部4ASの接触面4ATに当接して溶接するとともに、負極接続部材5Bの垂直壁5BSを負極外部端子4Bの支持部4BSの接触面4BTに当接して溶接するようにした。溶接前の発電要素群6をWH方向について位置決めし、溶接作業を容易にすることができる。 (7) The vertical wall 5AS of the positive electrode connection member 5A is in contact with and welded to the contact surface 4AT of the support portion 4AS of the positive electrode external terminal 4A, and the vertical wall 5BS of the negative electrode connection member 5B is connected to the support portion 4BS of the negative electrode external terminal 4B. The contact surface 4BT was contacted and welded. The power generation element group 6 before welding can be positioned in the WH direction to facilitate welding work.

(8)正極外部端子4A、負極外部端子4Bは容器10の側壁110Bにおいて露出しているので、二次電池30をDH方向に積層したとき、積層方向(DH方向)に対して直交する方向に正極外部端子4A、負極外部端子4Bが直列して隣接配列されることになる。このため、レーザビームに対する干渉等生じることなく、複数の二次電池の正極外部端子4A相互、負極外部端子4B相互を容易に接続することができる。これによって、組電池の組み立てコストを低減し得る。 (8) Since the positive electrode external terminal 4A and the negative electrode external terminal 4B are exposed on the side wall 110B of the container 10, when the secondary battery 30 is stacked in the DH direction, the positive electrode external terminal 4A and the negative electrode external terminal 4B are orthogonal to the stacking direction (DH direction). The positive external terminal 4A and the negative external terminal 4B are arranged adjacently in series. For this reason, the positive electrode external terminals 4A and the negative electrode external terminals 4B of the plurality of secondary batteries can be easily connected without causing interference with the laser beam. Thereby, the assembly cost of the assembled battery can be reduced.

(9)正極接続部材5Aの垂直接触端部5ASには、注液口20に対応した位置に、切り欠5ARが形成され、正極接続部材5Aを正極外部端子4Aに溶接した後に、垂直接触端部5ASが注液口20からの電解液注入の障害となることが防止されている。 (9) The vertical contact end 5AS of the positive electrode connection member 5A has a notch 5AR at a position corresponding to the liquid injection port 20, and the vertical contact end after the positive electrode connection member 5A is welded to the positive electrode external terminal 4A. The portion 5AS is prevented from becoming an obstacle to the injection of the electrolyte from the liquid injection port 20.

(10)電池缶11を電池蓋12で封止する際に、正極外部端子4A、負極外部端子4Bとの干渉を考慮する必要がないため、電池缶11と電池蓋12とをレーザビーム溶接することができる。これによって、電池缶11、電池蓋12にアルミニウム主材の材料を採用でき、二次電池30全体を軽量化し得る。 (10) When sealing the battery can 11 with the battery lid 12, there is no need to consider interference with the positive external terminal 4A and the negative external terminal 4B, so the battery can 11 and the battery cover 12 are laser beam welded. be able to. Thereby, the material of the aluminum main material can be adopted for the battery can 11 and the battery lid 12, and the entire secondary battery 30 can be reduced in weight.

(11)正負極外部端子4A、4Bは電池缶11の外部に露出し、正負極外部端子4A、4Bにおける接触面5AT、5BTの外側の面(接触面5AT、5BTの裏側の面)は、充分なサイズで電池缶11の外部に露出しているので、溶接作業は容易である。 (11) The positive and negative external terminals 4A and 4B are exposed to the outside of the battery can 11, and the outer surfaces of the contact surfaces 5AT and 5BT in the positive and negative external terminals 4A and 4B (the surfaces on the back of the contact surfaces 5AT and 5BT) are Since it is exposed to the outside of the battery can 11 with a sufficient size, the welding operation is easy.

(12)注液栓22を注液口20に強固に固定しつつ、注液口20を密封することによって、封液性能を高めることができる。 (12) The sealing performance can be enhanced by sealing the liquid injection port 20 while firmly fixing the liquid injection plug 22 to the liquid injection port 20.

(13)電池缶11は開口部113を有する扁平直方体状であって、開口部113から見たとき、WH方向およびHH方向の寸法(開口サイズ)が大きく、DH方向寸法(深さ)が小さい。このため、発電要素群6の電池缶11への挿入作業は容易であり、挿入時に開口部113の縁で発電要素群6を損傷する可能性も低い。従って、二次電池の組み立て工数を節減し、歩留りを向上することができる。 (13) The battery can 11 has a flat rectangular parallelepiped shape having the opening 113, and when viewed from the opening 113, the dimension (opening size) in the WH direction and the HH direction is large, and the dimension (depth) in the DH direction is small. . For this reason, it is easy to insert the power generation element group 6 into the battery can 11, and the possibility of damaging the power generation element group 6 at the edge of the opening 113 at the time of insertion is low. Therefore, the number of steps for assembling the secondary battery can be reduced and the yield can be improved.

(14)電池缶11は従来のような深絞りの工程を必要としないので、その製造原価は安価である。 (14) Since the battery can 11 does not require a conventional deep drawing process, its manufacturing cost is low.

発電要素群6は図2の構成に限定されるものではなく、図3に示すように、正負極板6P1、6P2を積層して形成することも可能である。   The power generation element group 6 is not limited to the configuration shown in FIG. 2, and can be formed by stacking positive and negative electrode plates 6P1 and 6P2 as shown in FIG.

積層式発電要素群6は、長方形状の正極板6P1と、長方形状の負極板6P2とを、長方形状のセパレータ6Cを介して、交互に積層して構成される。このとき、未塗工部6RA、6RBが、反対側(相互に裏側)の面に位置するように正極板6P1、負極板6P2の表裏を設定する。
このように構成した積層式発電要素群6によって、図2の発電要素群6を使用した場合と同様の効果を奏することができる。
The stacked power generation element group 6 is configured by alternately stacking rectangular positive electrode plates 6P1 and rectangular negative electrode plates 6P2 via rectangular separators 6C. At this time, the front and back of the positive electrode plate 6P1 and the negative electrode plate 6P2 are set so that the uncoated portions 6RA and 6RB are positioned on the opposite surfaces (reverse to each other).
The laminated power generation element group 6 configured as described above can achieve the same effects as when the power generation element group 6 of FIG. 2 is used.

[第2の実施の形態]
次に、図6、図7に基づいて、本発明による二次電池の第2の実施の形態を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Second Embodiment]
Next, based on FIG. 6, FIG. 7, 2nd Embodiment of the secondary battery by this invention is described. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2の実施の形態は、正極接続部材5A、負極外部端子5Bの垂直接触端部5AS、5BSの形状を変更したものである。図6、図7は正極端子(外部端子)4A側において、正極接続部材5Aのみを代表的に示す。   In the second embodiment, the shapes of the vertical contact end portions 5AS and 5BS of the positive electrode connection member 5A and the negative electrode external terminal 5B are changed. 6 and 7 typically show only the positive electrode connection member 5A on the positive electrode terminal (external terminal) 4A side.

正極接続部材5Aは、底壁111に平行に延在する水平基部5AAと、基部5AAに連続しつつ支持部4ASに沿うように折曲された垂直接触端部5ASとを備える。垂直接触端部5ASは、接触面4ATに沿いつつ、支持部4ASに対向する対向部5AS1と、対向部5AS1の先端から折曲されて、支持部4ASの開口部113側の側面4ASSに係合して、溶接前の状態で、発電要素群6を支持する荷重支持部5AS2とを備える。接触面5ATは対向部5AS1に形成され、接触面5ATにおいて、接触面4ATとレーザビーム溶接されている。レーザビーム溶接は、開口部113の方向から施される。   The positive electrode connecting member 5A includes a horizontal base portion 5AA extending in parallel with the bottom wall 111, and a vertical contact end portion 5AS that is continuous with the base portion 5AA and bent along the support portion 4AS. The vertical contact end portion 5AS is bent along the contact surface 4AT while facing the support portion 5AS1 facing the support portion 4AS and the side surface 4ASS on the opening 113 side of the support portion 4AS. And it has load supporting part 5AS2 which supports power generation element group 6 in the state before welding. The contact surface 5AT is formed in the facing portion 5AS1, and the contact surface 5AT is laser beam welded to the contact surface 4AT. Laser beam welding is performed from the direction of the opening 113.

正極接続部材5Aは、溶接前の状態の発電要素群6を、垂直接触端部5ASにおける対向部5AS1によって、WH方向について位置決めするばかりでなく、荷重支持部5AS2において電池缶11の深さ方向(DH方向)について位置決めされる。接触面4AT、4BTと対向部5AS1、5BS1とは、発電要素群6の正負極集電部方向を位置決めする機能を有し、側面4ASS、4BSSと荷重支持部5AS2、5BS2とは発電要素群6の電池缶深さ方向を位置決めする機能を有する。   The positive electrode connecting member 5A not only positions the power generating element group 6 in a state before welding in the WH direction by the facing portion 5AS1 in the vertical contact end portion 5AS, but also in the depth direction of the battery can 11 in the load support portion 5AS2 ( DH direction). The contact surfaces 4AT and 4BT and the facing portions 5AS1 and 5BS1 have a function of positioning the direction of the positive and negative current collecting portions of the power generation element group 6, and the side surfaces 4ASS and 4BSS and the load support portions 5AS2 and 5BS2 are the power generation element group 6 The battery can has a function of positioning in the depth direction.

図7に示すように、第1の実施の形態同様、正極外部端子4Aには、座ぐり41を有する注液口20が穿設され、注液口20は注液栓22によって溶接、密封されている。さらに正極接続部材5Aの垂直接触端部5ASには、注液口20に対応した位置に、切り欠5ARが形成され、電解液注入の障害となることが防止されている。   As shown in FIG. 7, as in the first embodiment, the positive electrode external terminal 4A is provided with a liquid injection port 20 having a counterbore 41, and the liquid injection port 20 is welded and sealed by a liquid injection plug 22. ing. Further, a notch 5AR is formed in the vertical contact end portion 5AS of the positive electrode connecting member 5A at a position corresponding to the liquid injection port 20 to prevent an obstacle to electrolyte injection.

第2の実施の形態は、第1の実施の形態の効果に加え、発電要素群部6をより確実に位置設定した上で溶接作業を行うことができ、作業効率、位置決め精度を高めることができる。   In the second embodiment, in addition to the effects of the first embodiment, it is possible to perform a welding operation after more reliably setting the position of the power generation element group portion 6, thereby improving work efficiency and positioning accuracy. it can.

[第3の実施の形態]
次に、図8に基づいて、本発明による二次電池の第3の実施の形態を説明する。なお、図中、第2の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Third Embodiment]
Next, a third embodiment of the secondary battery according to the present invention will be described with reference to FIG. In the figure, the same or corresponding parts as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.

第3の実施の形態は、第2の実施の形態と同様の正極接続部材5A、負極外部端子5Bを採用する一方、レーザ溶接対象である接触面5AT、5BTを荷重支持部5AS2、5BS2に形成したものである。図8は正極外部端子4A側において、正極接続部材5Aのみを代表的に示す。   The third embodiment employs the same positive electrode connecting member 5A and negative electrode external terminal 5B as those of the second embodiment, while the contact surfaces 5AT and 5BT to be laser welded are formed on the load support portions 5AS2 and 5BS2. It is a thing. FIG. 8 representatively shows only the positive electrode connecting member 5A on the positive electrode external terminal 4A side.

正極接続部材5Aは、底壁111に平行に延在する基部5AAと、基部5AAに連続しつつ支持部4ASに沿うように折曲された垂直接触端部5ASとを備え、第2の実施の形態と同様の対向部5AS1、荷重支持部5AS2とを備える。   The positive electrode connecting member 5A includes a base portion 5AA extending in parallel to the bottom wall 111, and a vertical contact end portion 5AS that is continuous with the base portion 5AA and bent along the support portion 4AS. The opposite part 5AS1 and load support part 5AS2 similar to the form are provided.

正極接続部材5Aは、溶接前の状態の発電要素群6を、垂直接触端部5ASにおける対向部5AS1によって、WH方向について位置決めするばかりでなく、荷重支持部5AS2において電池缶11の深さ方向(DH方向)について位置決めされる。   The positive electrode connecting member 5A not only positions the power generating element group 6 in a state before welding in the WH direction by the facing portion 5AS1 in the vertical contact end portion 5AS, but also in the depth direction of the battery can 11 in the load support portion 5AS2 ( DH direction).

接触面4AT、4BTと対向部5AS1、5BS1とは、発電要素群6の正負極集電部方向を位置決めする機能を有し、側面4ASS、4BSSと荷重支持部5AS2、5BS2とは発電要素群6の電池缶深さ方向を位置決めする機能を有する。   The contact surfaces 4AT and 4BT and the facing portions 5AS1 and 5BS1 have a function of positioning the direction of the positive and negative current collecting portions of the power generation element group 6, and the side surfaces 4ASS and 4BSS and the load support portions 5AS2 and 5BS2 are the power generation element group 6 The battery can has a function of positioning in the depth direction.

一方、第2の実施の形態と異なり、接触面5ATは荷重支持部5AS2に形成され、接触面4AT1は支持部4ASの周縁に形成されており、接触面4AT1、5ATにおいて溶接されている。
第2の実施の形態と同様、レーザビーム溶接は、開口部113の方向から施される。
On the other hand, unlike the second embodiment, the contact surface 5AT is formed on the load support portion 5AS2, and the contact surface 4AT1 is formed on the periphery of the support portion 4AS, and is welded to the contact surfaces 4AT1 and 5AT.
As in the second embodiment, laser beam welding is performed from the direction of the opening 113.

第1、第2の実施の形態のように、溶接部W2の位置は変更可能であり、製造効率、電池の耐環境(温度変化)信頼性、電池の内部抵抗への影響等を考慮し決定される。   As in the first and second embodiments, the position of the welded portion W2 can be changed, and is determined in consideration of the manufacturing efficiency, the battery environment resistance (temperature change) reliability, the influence on the internal resistance of the battery, and the like. Is done.

第1、第2の実施の形態と同様、正極外部端子4Aには注液口20、注液栓22が設けられ(図16参照)、注液口20は注液栓22によって密封されている。   As in the first and second embodiments, the positive electrode external terminal 4A is provided with a liquid injection port 20 and a liquid injection plug 22 (see FIG. 16), and the liquid injection port 20 is sealed by the liquid injection plug 22. .

[製造方法]
次に、第3の実施の形態の二次電池の製造方法を図9〜図15を参照して説明する。
リチウムイオン二次電池30の製造工程は、準備工程、固定工程、接続工程、接合工程を含む。
準備工程では、正負極板6P1、6P2を捲回して発電要素群6を形成した後、未塗工部6RA、6RBに正極接続部材5A、負極接続部材5Bをそれぞれ接続する。
固定工程では、電池缶11の側壁110Bの端子取付用開口115に封止部材13を介して正負極外部端子4A、4Bをそれぞれ固定する。
接続工程では、電池缶11内に発電要素群6を挿入、設置し、正負極外部端子4A、4Bを正極接続部材5A、負極接続部材5Bにそれぞれ電気的、機械的に接続する。
接合工程では、電池缶11を電池蓋12で封止する。
[Production method]
Next, a method for manufacturing a secondary battery according to the third embodiment will be described with reference to FIGS.
The manufacturing process of the lithium ion secondary battery 30 includes a preparation process, a fixing process, a connection process, and a joining process.
In the preparation step, the positive and negative electrode plates 6P1 and 6P2 are wound to form the power generation element group 6, and then the positive electrode connection member 5A and the negative electrode connection member 5B are connected to the uncoated portions 6RA and 6RB, respectively.
In the fixing step, the positive and negative external terminals 4A and 4B are fixed to the terminal mounting openings 115 on the side wall 110B of the battery can 11 through the sealing member 13, respectively.
In the connecting step, the power generation element group 6 is inserted and installed in the battery can 11, and the positive and negative external terminals 4A and 4B are electrically and mechanically connected to the positive electrode connecting member 5A and the negative electrode connecting member 5B, respectively.
In the joining step, the battery can 11 is sealed with the battery lid 12.

準備工程をさらに詳細に説明すると、まず、予め作成した正極板6P1と、6P2とをセパレータ6Cを介して捲回する。このとき、正極板6P1の未塗工部6RAと、負極板6P2の未塗工部6RBとが互いに反対側に配置されるように、セパレータ6C、負極板6P2、セパレータ6C、正極板6P1の順に積層し、長手方向の一端から断面略長方形状になるように捲回する。
捲き始め部分および捲き終わり部分には、セパレータ6Cのみを2〜3周程度捲回する。
さらに、未塗工部6RA、6RBをプレス加工して正極集電部6A、負極集電部6Bを形成する。
The preparation process will be described in more detail. First, a positive electrode plate 6P1 and 6P2 prepared in advance are wound through a separator 6C. At this time, the separator 6C, the negative electrode plate 6P2, the separator 6C, and the positive electrode plate 6P1 are arranged in this order so that the uncoated part 6RA of the positive electrode plate 6P1 and the uncoated part 6RB of the negative electrode plate 6P2 are arranged on the opposite sides. They are laminated and wound so as to have a substantially rectangular cross section from one end in the longitudinal direction.
Only the separator 6C is wound around the winding start portion and the winding end portion about 2 to 3 times.
Further, the uncoated portions 6RA and 6RB are pressed to form the positive electrode current collector 6A and the negative electrode current collector 6B.

このように形成された発電要素群6の正極集電部6A、負極集電部6Bに、それぞれ正極接続部材5A、負極接続部材5Bを配置し、図11に示すように、正極接続部材5Aと負極接続部材5B(図示省略)に超音波処理を施し、正極接続部材5Aと正極集電部6A、負極接続部材5Bと負極集電部6Bとを、それぞれ一体となるように接合する。   A positive electrode connection member 5A and a negative electrode connection member 5B are arranged in the positive electrode current collector 6A and the negative electrode current collector 6B of the power generation element group 6 formed in this way, respectively, and as shown in FIG. The negative electrode connection member 5B (not shown) is subjected to ultrasonic treatment, and the positive electrode connection member 5A and the positive electrode current collector 6A, and the negative electrode connection member 5B and the negative electrode current collector 6B are joined together.

固定工程をさらに詳細に説明すると、電池缶11の端子取付用開口115に、シール部材13を介して、正極外部端子4A、負極外部端子4Bをそれぞれ固定する。
図9に示すように、電池缶11の端子取付用開口115内に対して、正極外部端子4Aと、負極外部端子4B(図示省略)とを挿入し、図10に示すように、電池缶11と、正極外部端子4A、負極外部端子4B(図示省略)とを一定の間隔に保持した状態で、隙間にPPSやPBTの樹脂材料をトランスファモールドすることで、封止部材13を形成する。
トランスファモールドにより、電池缶11と正極外部端子4A、負極外部端子4Bとの相対位置が固定され、両者間の絶縁が確保され、かつ気密が確立される。
The fixing process will be described in more detail. The positive electrode external terminal 4A and the negative electrode external terminal 4B are fixed to the terminal mounting opening 115 of the battery can 11 through the seal member 13, respectively.
As shown in FIG. 9, the positive electrode external terminal 4A and the negative electrode external terminal 4B (not shown) are inserted into the terminal mounting opening 115 of the battery can 11, and as shown in FIG. Then, the positive electrode external terminal 4A and the negative electrode external terminal 4B (not shown) are held at a constant interval, and the sealing member 13 is formed by transfer molding a resin material such as PPS or PBT in the gap.
By the transfer mold, the relative positions of the battery can 11 and the positive external terminal 4A and the negative external terminal 4B are fixed, insulation between them is ensured, and airtightness is established.

接続工程をさらに詳細に説明すると、準備工程で得た、正極接続部材5A、負極接続部材5Bが接続された発電要素群6と、固定工程で得た、電池缶11に一体化した正負極外部端子4A、4Bとを電気的、機械的に接続する。   The connection process will be described in further detail. The power generation element group 6 to which the positive electrode connection member 5A and the negative electrode connection member 5B are obtained in the preparation process, and the positive and negative electrode exterior integrated in the battery can 11 obtained in the fixing process. The terminals 4A and 4B are electrically and mechanically connected.

図12、図13に示すように、準備工程で作成した、発電要素群6を正極接続部材5A、負極接続部材5Bとともに、電池缶11内に、絶縁ケース7(図示省略)を介して(発電要素群6および正極接続部材5A、負極接続部材5Bを覆うように)挿入、設置する。
正極接続部材5A、負極接続部材5Bと、正負極外部端子4A、4Bとを、それぞれ、電池缶11の開口部113方向からのレーザビーム溶接で、電気的、機械的に接続する。
なお前述したように、正極接続部材5A、負極接続部材5Bを幅広に形成し得るので、内部抵抗を小さくすることができる。
As shown in FIGS. 12 and 13, the power generation element group 6 created in the preparation process is placed in the battery can 11 together with the positive electrode connection member 5 </ b> A and the negative electrode connection member 5 </ b> B via the insulating case 7 (not shown). The element group 6 and the positive electrode connecting member 5A and the negative electrode connecting member 5B are inserted and installed.
The positive electrode connecting member 5A, the negative electrode connecting member 5B, and the positive and negative electrode external terminals 4A and 4B are electrically and mechanically connected by laser beam welding from the direction of the opening 113 of the battery can 11, respectively.
As described above, since the positive electrode connecting member 5A and the negative electrode connecting member 5B can be formed wide, the internal resistance can be reduced.

なお、第1の実施の形態においては、正極接続部材5A、負極接続部材5Bと、正負極外部端子4A、4Bとの溶接位置および溶接方向が相違するのみで、他の処理は同様である。
また、第2の実施の形態においては、正極接続部材5A、負極接続部材5Bと、正負極外部端子4A、4Bとの溶接位置が相違するのみで、他の処理は同様である。
In the first embodiment, only the welding positions and welding directions of the positive electrode connecting member 5A, the negative electrode connecting member 5B, and the positive and negative electrode external terminals 4A, 4B are different, and the other processes are the same.
In the second embodiment, only the welding positions of the positive electrode connecting member 5A and the negative electrode connecting member 5B and the positive and negative electrode external terminals 4A and 4B are different, and the other processes are the same.

接合工程をさらに詳細に説明すると、図14に示すように、電池蓋12の外周縁を開口部113に合わせ、合わせ面に隙間が生じないように加圧する。電池蓋12の上方から、電池蓋12の外周縁に向けてレーザビームを照射、走査し、電池缶11と電池蓋12とを溶接する。   The joining process will be described in more detail. As shown in FIG. 14, the outer peripheral edge of the battery lid 12 is aligned with the opening 113, and pressurization is performed so that no gap is generated on the mating surface. A laser beam is irradiated and scanned from above the battery lid 12 toward the outer peripheral edge of the battery lid 12, and the battery can 11 and the battery lid 12 are welded.

図15に示すように、注液口20から電解液を注液した後、注液口20を注液栓22で密栓し、外周をレーザビーム溶接して、リチウムイオン二次電池30を完成する。電解液としては、エチレンカーボネート等の炭酸エステル系の有機溶媒に、6フッ化リン酸リチウム(LiPF6)等のリチウム塩が溶解された非水電解液が用いられている。   As shown in FIG. 15, after injecting the electrolyte from the injection port 20, the injection port 20 is sealed with an injection plug 22, and the outer periphery is laser beam welded to complete the lithium ion secondary battery 30. . As the electrolytic solution, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF6) is dissolved in a carbonic acid ester-based organic solvent such as ethylene carbonate is used.

以上説明した二次電池の製造方法は、扁平な側壁110と、側壁110で画定され、かつ側壁110に比較して広い底壁111と、この底壁111に対向する開口部113とを有する電池缶11と、開口部113を封止するために、電池缶11に取り付けられた電池蓋12と、電池缶内に収容され、正極および負極が設けられた発電要素群6と、発電要素群6が電池缶11に収容されたときに、正極集電部6Aおよび負極集電部6Bそれぞれの近傍に位置する側壁110Bに、該側壁110Bを貫通しかつ封止されつつ、側壁110Bに固着され、電池缶11の内部に支持部が形成された正極、負極の外部端子4A,4Bとを備えた二次電池の製造方法であって、
(a)電池缶11の側壁110Bに、封止材13を介して、外部端子4A,4Bを取り付け固定するステップと、
(b)発電要素群6の正極集電部6Aおよび負極集電部6Bのそれぞれに接続部材5A、5Bを固着するステップと、
(c)接続部材5A,5Bを外部端子4A、4Bの支持部4ASによって支持することによって発電要素群6を電池缶11内で位置決めするステップと、
(d)外部端子4A、4Bと接続部材5A,5Bとの接触面を、開口部113から、あるいは、外部端子4A,4Bの外側から、溶接するステップと、
(e)電池蓋12を開口部113に取り付けるステップとを備える。
The secondary battery manufacturing method described above includes a flat side wall 110, a bottom wall 111 defined by the side wall 110 and wider than the side wall 110, and an opening 113 facing the bottom wall 111. In order to seal the can 11 and the opening 113, a battery lid 12 attached to the battery can 11, a power generation element group 6 housed in the battery can and provided with a positive electrode and a negative electrode, and a power generation element group 6 Is housed in the battery can 11, the side wall 110B located in the vicinity of each of the positive electrode current collector 6A and the negative electrode current collector 6B is fixed to the side wall 110B while penetrating and sealing the side wall 110B. A method of manufacturing a secondary battery including a positive electrode having a support portion formed inside a battery can 11 and negative external terminals 4A and 4B,
(A) attaching and fixing the external terminals 4A and 4B to the side wall 110B of the battery can 11 via the sealing material 13;
(B) fixing the connection members 5A and 5B to the positive electrode current collector 6A and the negative electrode current collector 6B of the power generation element group 6;
(C) the step of positioning the power generating element group 6 in the battery can 11 by supporting the connecting members 5A, 5B by the support portions 4AS of the external terminals 4A, 4B;
(D) welding the contact surfaces of the external terminals 4A, 4B and the connection members 5A, 5B from the opening 113 or from the outside of the external terminals 4A, 4B;
(E) attaching the battery lid 12 to the opening 113.

[第4の実施の形態]
次に、図16、図17に基づいて、本発明による二次電池の第4の実施の形態を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Fourth Embodiment]
Next, based on FIG. 16, FIG. 17, 4th Embodiment of the secondary battery by this invention is described. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第4の実施の形態は、第1の実施の形態の正負極外部端子4A、4Bにおける支持部4AS、4BS、正極接続部材5A、負極接続部材5Bにおける垂直接触端部5AS、5BSの形状を変更したものである。
図16、図17は正極外部端子4A側のみを代表的に示す。
In the fourth embodiment, the shapes of the vertical contact end portions 5AS, 5BS in the support portions 4AS, 4BS, the positive electrode connection member 5A, and the negative electrode connection member 5B in the positive and negative external terminals 4A, 4B of the first embodiment are changed. It is a thing.
16 and 17 representatively show only the positive external terminal 4A side.

正極外部端子4Aは、断面略L字状に形成されている。正極外部端子4Aは、容器10内側に、支持部4ASが形成されている。支持部4ASは、深さ方向(DH方向)に沿う支持面4AS1と、支持面4AS1の底部側端部から容器底壁111に沿う方向(HH方向)に延在する突片(荷重支持部)4AS2とを備える。接触面4ATは支持面4AS1に形成されている。正極外部端子4Aは、座ぐり41と貫通孔20とを有する。   The positive external terminal 4A has a substantially L-shaped cross section. The positive external terminal 4A has a support portion 4AS formed inside the container 10. The support portion 4AS includes a support surface 4AS1 along the depth direction (DH direction), and a projecting piece (load support portion) extending from the bottom side end of the support surface 4AS1 in the direction along the container bottom wall 111 (HH direction). 4AS2. The contact surface 4AT is formed on the support surface 4AS1. The positive external terminal 4 </ b> A has a counterbore 41 and a through hole 20.

正極接続部材5Aは、底壁111に平行に延在する基部5AAと、基部5AAに連続しつつDH方向に沿うように底壁111に向かって折曲された立ち上げ部5AS1と、折曲部5AS1の底壁111側端部から突片4AS2の開口部113側の面に沿って伸びる荷重支持部5AS2と、荷重支持部5AS2の側壁110B側端部から支持面4AS1に沿って開口部113方向に延びる対向部5AS3とを備える。   The positive electrode connecting member 5A includes a base portion 5AA extending parallel to the bottom wall 111, a rising portion 5AS1 that is continuous with the base portion 5AA and bent toward the bottom wall 111 along the DH direction, and a bent portion. A load support portion 5AS2 extending from the end portion on the bottom wall 111 side of 5AS1 along the surface on the opening portion 113 side of the projecting piece 4AS2, and a direction of the opening portion 113 along the support surface 4AS1 from the end portion on the side wall 110B side of the load support portion 5AS2 And an opposing portion 5AS3 extending in the direction.

支持部4ASは支持面4AS1(接触面4AT)において、正極接続部材5Aを支持することにより、溶接前の発電要素群6をWH方向について位置決めし、なおかつ、突片4AS2によって荷重支持部5AS2を支持して、電池缶11の深さ方向(DH方向)について位置決めする。   The support portion 4AS supports the positive electrode connection member 5A on the support surface 4AS1 (contact surface 4AT), thereby positioning the power generating element group 6 before welding in the WH direction and supporting the load support portion 5AS2 by the projecting piece 4AS2. Then, the battery can 11 is positioned in the depth direction (DH direction).

支持面4AS1、4BS1と対向部5AS3、5BS3とは発電要素群6の正負極集電部方向を位置決めする機能を有し、突片4AS2、4BS2と荷重支持部5AS2、5BS2とは発電要素群6の電池缶深さ方向を位置決めする機能を有する。
接触面5ATは対向部5AS3において、支持面4AS1に沿って長く形成され、接触面5ATにおいて、接触面4ATと2カ所においてレーザビーム溶接されている。レーザビーム溶接は、正極外部端子4Aの外側から施される。
これによって、発電要素群部6を確実に位置設定した上で溶接作業を行うことができ、作業効率、位置決め精度を高めることができる。
The support surfaces 4AS1, 4BS1 and the opposing portions 5AS3, 5BS3 have a function of positioning the positive and negative current collector portions of the power generation element group 6, and the projecting pieces 4AS2, 4BS2 and the load support portions 5AS2, 5BS2 are power generation element groups 6. The battery can has a function of positioning in the depth direction.
The contact surface 5AT is formed long along the support surface 4AS1 in the facing portion 5AS3, and the contact surface 5AT is laser beam welded to the contact surface 4AT at two locations. Laser beam welding is performed from the outside of the positive electrode external terminal 4A.
As a result, the welding operation can be performed after the position of the power generating element group 6 is reliably set, and the work efficiency and the positioning accuracy can be improved.

第4の実施の形態は、接触面4AT、5ATの接触長さが長いので、複数箇所に溶接を施すことができ、溶接強度を高めることができる。
また、正負極外部端子4A、4Bが第3の実施の形態よりも単純であり、製造原価を節減することができる。
さらに、図17に示すように、栓部材22のつば部26が座ぐり41に収容されるから、外部端子4Aの表面につば部26が突出されないし、溶接ビードも外部端子表面から膨出しない。
In the fourth embodiment, since the contact lengths of the contact surfaces 4AT and 5AT are long, welding can be performed at a plurality of locations, and the welding strength can be increased.
Further, the positive and negative external terminals 4A and 4B are simpler than the third embodiment, and the manufacturing cost can be reduced.
Further, as shown in FIG. 17, since the collar portion 26 of the plug member 22 is accommodated in the counterbore 41, the collar portion 26 does not protrude from the surface of the external terminal 4A, and the weld bead does not bulge from the surface of the external terminal. .

[第5の実施の形態]
次に、図18に基づいて、本発明による二次電池の第5の実施の形態を説明する。なお、図中、第4の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the secondary battery according to the present invention will be described with reference to FIG. In the figure, the same or corresponding parts as those in the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.

第5の実施の形態は、第4の実施の形態における対向部5AS3を短く形成しており、一方、接触面5AT、5BTを荷重支持部5AS2、5BS2の底壁111側の面に形成し、接触面4AT、4BTを突片4AS2、4AS2の開口部113側の面に形成している。
図18は正極端子(外部端子)4A側のみを代表的に示す。
In the fifth embodiment, the facing portion 5AS3 in the fourth embodiment is formed short, while the contact surfaces 5AT, 5BT are formed on the bottom wall 111 side surface of the load support portions 5AS2, 5BS2, The contact surfaces 4AT and 4BT are formed on the surface of the protrusions 4AS2 and 4AS2 on the opening 113 side.
FIG. 18 representatively shows only the positive electrode terminal (external terminal) 4A side.

第5の実施の形態は、開口部113側から接触面4AT、5AT間、4BT、5BT間にレーザビーム溶接を施すことができ、第4の実施の形態のように、外部端子4A、4Bの外側からの溶接が適当でない場合に採用すべきである。
その他の構成、効果は第4の実施の形態と同様である。
In the fifth embodiment, laser beam welding can be performed between the contact surfaces 4AT, 5AT, 4BT, 5BT from the opening 113 side. As in the fourth embodiment, the external terminals 4A, 4B It should be used when welding from the outside is not appropriate.
Other configurations and effects are the same as those of the fourth embodiment.

支持面4AS1、4BS1と対向部5AS3、5BS3とは発電要素群6の正負極集電部方向の位置決めを行う機能を有し、突片4AS2、4BS2と荷重支持部5AS2、5BS2とは発電要素群6の電池缶深さ方向の位置決めを行う機能を有する。   The support surfaces 4AS1, 4BS1 and the facing portions 5AS3, 5BS3 have a function of positioning the power generation element group 6 in the positive and negative current collector direction, and the projecting pieces 4AS2, 4BS2 and the load support portions 5AS2, 5BS2 are power generation element groups. 6 has a function of positioning in the depth direction of the battery can.

[第6の実施の形態]
次に、図19に基づいて、本発明による二次電池の第6の実施の形態を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Sixth Embodiment]
Next, a sixth embodiment of the secondary battery according to the present invention will be described with reference to FIG. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第6の実施の形態は、第1の実施の形態における外部端子4A、4Bの構成を変更するとともに、その溶接位置を変更したものである。
図19は正極端子(外部端子)4A側のみを代表的に示す。
In the sixth embodiment, the configuration of the external terminals 4A and 4B in the first embodiment is changed, and the welding position is changed.
FIG. 19 representatively shows only the positive electrode terminal (external terminal) 4A side.

外部端子4Aは厚肉形成されるとともに、容器10内側に突出する支持部4ASが形成され、支持部4ASは電池缶1の深さ方向(DH方向)に沿う断面形状が略長方形状である。外部端子4Aにおける容器10の外側の部分にはかしめ部4ADが形成され、端子取付用開口115と外部端子4Aとの間には、封止部材132が挿入されている。外部端子4Aは、周囲に封止部材132を嵌装した状態で端子取付用開口115に挿入され、その後かしめ部4ADをかしめることによって、封止部材132を加圧しつつ、外部端子4Aの周囲を封止する。   The external terminal 4A is formed thick, and a support portion 4AS protruding inside the container 10 is formed. The support portion 4AS has a substantially rectangular cross-sectional shape along the depth direction (DH direction) of the battery can 1. A caulking portion 4AD is formed in a portion of the external terminal 4A outside the container 10, and a sealing member 132 is inserted between the terminal mounting opening 115 and the external terminal 4A. The external terminal 4A is inserted into the terminal mounting opening 115 in a state where the sealing member 132 is fitted to the periphery, and then the caulking portion 4AD is caulked to pressurize the sealing member 132 while surrounding the external terminal 4A. Is sealed.

このように加圧、固定された封止部材132による封止性能は、トランスファモールドによる封止(第1〜第4の実施の形態)に比較して強力であり、またかしめによる外部端子4Aの固定強度も上記実施の形態より高い。   The sealing performance by the sealing member 132 thus pressurized and fixed is stronger than the sealing by the transfer mold (first to fourth embodiments), and the external terminal 4A by caulking. The fixing strength is also higher than that of the above embodiment.

接続部材5A、5Bと正負極端子4A、4Bとのレーザビーム溶接は、相互の接触面5AT、4ATと接触面5BT、4BTに対して、開口部113側から施される。   Laser beam welding of the connecting members 5A and 5B and the positive and negative terminals 4A and 4B is performed from the opening 113 side to the mutual contact surfaces 5AT and 4AT and the contact surfaces 5BT and 4BT.

第6の実施の形態は、第1の実施の形態の効果に加え、外部端子4A、4Bの固定強度、封止性能が高いという効果を奏する。また、レーザビーム溶接を開口部113側から施すことができる。接触面4AT、4BTと接触端部5AS、5BSとは、発電要素群6の外部端子間方向の位置決めを行う機能を有する。   In addition to the effects of the first embodiment, the sixth embodiment has an effect that the fixing strength and sealing performance of the external terminals 4A and 4B are high. Further, laser beam welding can be performed from the opening 113 side. The contact surfaces 4AT and 4BT and the contact end portions 5AS and 5BS have a function of positioning the power generation element group 6 in the direction between the external terminals.

本実施形態では、二次電池としてリチウムイオン二次電池30を例示したが、本発明はこれに限定されるものではなく、二次電池一般に適用することができる。また、正極活物質としてマンガン酸リチウム、負極活物質として黒鉛をそれぞれ例示したが、本発明はこれに制限されるものではなく、通常リチウムイオン二次電池に用いられる活物質を用いることもできる。正極活物質としては、リチウムイオンを挿入・脱離可能な材料であり、予め十分な量のリチウムイオンを挿入したリチウム遷移金属複合酸化物を用いればよく、リチウム遷移金属複合酸化物の結晶中のリチウムや遷移金属の一部をそれら以外の元素で置換あるいはドープした材料を使用するようにしてもよい。さらに、結晶構造についても特に制限はなく、スピネル系、層状系、オリビン系のいずれの結晶構造を有していてもよい。   In this embodiment, although the lithium ion secondary battery 30 was illustrated as a secondary battery, this invention is not limited to this, It can apply to a secondary battery generally. Moreover, although lithium manganate was illustrated as a positive electrode active material and graphite was illustrated as a negative electrode active material, respectively, this invention is not restrict | limited to this, The active material normally used for a lithium ion secondary battery can also be used. The positive electrode active material is a material capable of inserting and removing lithium ions, and a lithium transition metal composite oxide in which a sufficient amount of lithium ions has been inserted in advance may be used. A material in which a part of lithium or a transition metal is substituted or doped with an element other than those may be used. Furthermore, there is no restriction | limiting in particular also about crystal structure, You may have any crystal structure of a spinel system, a layer system, and an olivine system.

一方、黒鉛以外の負極活物質としては、例えば、コークスや非晶質炭素等の炭素材を挙げることができ、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   On the other hand, as the negative electrode active material other than graphite, for example, carbon materials such as coke and amorphous carbon can be mentioned, and the particle shape is also particularly limited such as scaly, spherical, fibrous, and massive. It is not a thing.

またさらに、本発明は、本実施形態で例示した導電材やバインダについても特に限定されず、通常リチウムイオン二次電池に用いられているいずれのものも使用可能である。本実施形態以外で用いることのできるバインダとしては、ポリテトラフルオロエチレン、ポリエチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体およびこれらの混合体等を挙げることができる。   Furthermore, the present invention is not particularly limited with respect to the conductive material and binder exemplified in the present embodiment, and any of those normally used in lithium ion secondary batteries can be used. Examples of binders that can be used in other embodiments include polytetrafluoroethylene, polyethylene, polybutadiene, butyl rubber, nitrile rubber, styrene-butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, and vinyl fluoride. , Polymers such as vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof.

さらにまた、本実施形態では、エチレンカーボネート等の炭酸エチレン系有機溶媒にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されるものではない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C,CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また有機溶媒としてはジエチルカーボネート、プロピレンカーボネート、1,2−ジエトキシエタン、γ−ブチロラクトン、スルホラン、プロピオニトリル等、または、これらの2種以上を混合した混合溶媒を用いることができる。
本発明は内部抵抗を低減し、組電池化が容易な二次電池を提供するため、二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。
Furthermore, in the present embodiment, a non-aqueous electrolyte solution in which LiPF 6 is dissolved in an ethylene carbonate-based organic solvent such as ethylene carbonate is exemplified, but a non-aqueous electrolyte in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent. An electrolytic solution may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. As the organic solvent, diethyl carbonate, propylene carbonate, 1,2-diethoxyethane, γ-butyrolactone, sulfolane, propionitrile, or a mixed solvent in which two or more of these are mixed can be used.
Since the present invention provides a secondary battery that reduces internal resistance and can be easily assembled, and contributes to the manufacture and sale of secondary batteries, it has industrial applicability.

4A 正極外部端子 4B 負極外部端子
4AT、4BT 接触面 4AS、4BS 支持部
5A 正極接続部材 5B 負極接続部材
5AT、5BT 接触面 5AS、5BS 垂直接触端部
6 発電要素群 6A 正極集電部
6B 負極集電部 6RA 正極未塗工部
6RB 負極未塗工部 10 容器
11 電池缶 12 電池蓋
20 注液口 22 注液栓(栓部材)
26 つば部 41 座ざぐり
110B 短手帯状側壁
111 底壁 113 開口部
115 端子取付用開口
4A Positive external terminal 4B Negative external terminal 4AT, 4BT Contact surface 4AS, 4BS Support part
5A Positive connection member 5B Negative connection member 5AT, 5BT Contact surface 5AS, 5BS Vertical contact end
6 Power generation element group 6A Cathode current collector
6B Negative electrode current collector 6RA Positive electrode uncoated part 6RB Negative electrode uncoated part 10 Container
11 Battery can 12 Battery cover
20 Injection port 22 Injection plug (plug member)
26 Collar part 41 Counterbore 110B Short belt side wall 111 Bottom wall 113 Opening part 115 Terminal mounting opening

Claims (7)

上部に開口部を、側部に側壁を有する扁平有底形状の電池缶、および前記開口部を封止する電池蓋とで構成される電池容器と、
前記電池容器に収容され、正極、負極、正極集電部、および負極集電部を有する発電要素群と、
前記電池缶の前記側壁に装着され、前記電池容器の内側に、前記正極集電部および負極集電部が接続される集電部接続面が形成されている正極外部端子および負極外部端子と、
前記正極集電部と正極外部端子とを接続する正極接続部材、および前記負極集電部と負極外部端子とを接続する負極接続部材とを備え、
前記正極外部端子と正極接続部材、および前記負極外部端子と負極接続部材は、各外部端子の外側から、または、前記開口部側から溶接により固着されていることを特徴とする二次電池。
A battery container comprising a flat bottomed battery can having an opening at the top and a side wall at the side, and a battery lid for sealing the opening;
A power generation element group housed in the battery container and having a positive electrode, a negative electrode, a positive electrode current collector, and a negative electrode current collector,
A positive electrode external terminal and a negative electrode external terminal that are attached to the side wall of the battery can, and on the inside of the battery container, a current collector connection surface to which the positive electrode current collector and the negative electrode current collector are connected, and
A positive electrode connecting member that connects the positive electrode current collector and the positive electrode external terminal; and a negative electrode connecting member that connects the negative electrode current collector and the negative electrode external terminal;
The secondary battery, wherein the positive electrode external terminal and the positive electrode connecting member, and the negative electrode external terminal and the negative electrode connecting member are fixed by welding from the outside of each external terminal or from the opening side.
請求項1記載の二次電池において、
前記側壁は一対の長手帯状側壁と一対の短手帯状側壁を連続して形成した長方形枠状をなし、前記外部端子は、前記一対の短手帯状側壁にそれぞれ固着され、
前記各接続部材は、前記電池缶の底壁と平行に延在する基部と、前記基部に連続しつつ前記集電部接続面に沿うように形成された接触端部とを備え、
前記接続部材と前記接触端部との接触面が溶接により固着されていることを特徴とする二次電池。
The secondary battery according to claim 1,
The side wall has a rectangular frame shape in which a pair of long belt-shaped side walls and a pair of short belt-shaped side walls are continuously formed, and the external terminals are respectively fixed to the pair of short belt-shaped side walls,
Each connection member includes a base extending in parallel with the bottom wall of the battery can, and a contact end formed along the current collector connection surface while continuing to the base.
A secondary battery, wherein a contact surface between the connection member and the contact end is fixed by welding.
請求項1乃至3のいずれか1項に記載の二次電池において、
前記発電要素群を前記正負極集電部方向に位置決めする水平方向位置決め手段をさらに備えることを特徴とする二次電池。
The secondary battery according to any one of claims 1 to 3,
The secondary battery further comprising a horizontal positioning means for positioning the power generation element group in the direction of the positive and negative current collector.
請求項3に記載の二次電池において、
前記水平方向位置決め手段は前記接続部材および前記外部端子に設けられ、
前記接続部材および前記外部端子には、相互に前記正負極集電部方向に当接する接触面がそれぞれ形成され、前記発電要素群の前記正負極集電部方向の位置決めを行うことを特徴とする二次電池。
The secondary battery according to claim 3,
The horizontal positioning means is provided on the connection member and the external terminal,
The connecting member and the external terminal are respectively formed with contact surfaces that contact each other in the direction of the positive / negative current collector, and position the power generation element group in the direction of the positive / negative current collector. Secondary battery.
請求項1乃至3のいずれか1項に記載の二次電池において、
前記発電要素群を電池缶深さ方向について位置決めする深さ方向位置決め手段をさらに備えることを特徴とする二次電池。
The secondary battery according to any one of claims 1 to 3,
A secondary battery further comprising depth direction positioning means for positioning the power generation element group in the depth direction of the battery can.
請求項5に記載の二次電池において、
前記電池缶深さ方向位置決め手段は前記接続部材および前記外部端子に設けられ、
前記接続部材および前記外部端子には、相互に前記電池深さ方向に当接する接触面がそれぞれ形成され、前記発電要素群の前記電池深さ方向の位置決めを行うことを特徴とする二次電池。
The secondary battery according to claim 5,
The battery can depth direction positioning means is provided on the connection member and the external terminal,
2. The secondary battery according to claim 1, wherein the connecting member and the external terminal are respectively formed with contact surfaces that contact each other in the battery depth direction to position the power generation element group in the battery depth direction.
扁平な側壁と、前記側壁で画定され、かつ側壁に比較して広い底壁と、この底壁に対向する開口部とを有する電池缶と、前記開口部を封止するために、前記電池缶に取り付けられた電池蓋と、前記電池缶内に収容され、正極および負極が設けられた発電要素群と、前記発電要素群が前記電池缶に収容されたときに、前記正極の集電部および負極の集電部それぞれの近傍に位置する前記側壁に、該側壁を貫通しかつ封止されつつ前記側壁に固着され、前記電池缶の内部に支持部が形成された正極、負極の外部端子とを備えた二次電池の製造方法であって、
前記電池缶の前記側壁に封止材を介して前記外部端子を取り付け固定するステップと、
前記発電要素群の正極の集電部および負極の集電部のそれぞれに接続部材を固着するステップと、
前記接続部材を前記外部端子の前記支持部によって支持することによって、前記発電要素群を前記電池缶内で位置決めするステップと、
前記外部端子と前記接続部材との接触面を、前記開口部から、あるいは、前記外部端子の外側から溶接するステップと、
前記電池蓋を前記開口部に取り付けるステップとを備えた二次電池の製造方法。
A battery can having a flat side wall, a bottom wall defined by the side wall and wider than the side wall, and an opening facing the bottom wall, and the battery can for sealing the opening A battery lid attached to the battery can, a power generation element group housed in the battery can and provided with a positive electrode and a negative electrode, and when the power generation element group is housed in the battery can, A positive electrode having a support portion formed inside the battery can and a negative electrode external terminal connected to the side wall located in the vicinity of each of the current collector portions of the negative electrode, being fixed to the side wall while being sealed through the side wall. A method for manufacturing a secondary battery comprising:
Attaching and fixing the external terminal to the side wall of the battery can via a sealing material;
Fixing a connection member to each of the positive electrode current collector and the negative electrode current collector of the power generation element group;
Positioning the power generation element group in the battery can by supporting the connection member by the support portion of the external terminal;
Welding the contact surface between the external terminal and the connecting member from the opening or from the outside of the external terminal;
And a step of attaching the battery lid to the opening.
JP2009225164A 2009-09-29 2009-09-29 Secondary battery and method of manufacturing the same Withdrawn JP2011076787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225164A JP2011076787A (en) 2009-09-29 2009-09-29 Secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225164A JP2011076787A (en) 2009-09-29 2009-09-29 Secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011076787A true JP2011076787A (en) 2011-04-14

Family

ID=44020590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225164A Withdrawn JP2011076787A (en) 2009-09-29 2009-09-29 Secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011076787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219486A (en) * 2013-03-26 2013-07-24 深圳市力可兴电池有限公司 Non-welded secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219486A (en) * 2013-03-26 2013-07-24 深圳市力可兴电池有限公司 Non-welded secondary battery

Similar Documents

Publication Publication Date Title
JP5225805B2 (en) Secondary battery and manufacturing method thereof
JP5830953B2 (en) Secondary battery, battery unit and battery module
US20170125778A1 (en) Rectangular Secondary Battery
KR101233470B1 (en) Rechargeable battery
US20170250388A1 (en) Prismatic secondary battery
KR101675623B1 (en) Secondary Battery and Manufacturing Method Thereof
JP5087110B2 (en) Secondary battery
JP2010020974A (en) Flat rechargeable battery and method of manufacturing the same
US8828596B2 (en) Secondary battery including a lower terminal plate and an upper terminal plate
KR20160042243A (en) Rechargeable battery and method of manufacturing the same
EP3089240B1 (en) Rectangular secondary battery
JP5779562B2 (en) Square battery
KR101222261B1 (en) Rechargeable battery
US20220085421A1 (en) Secondary battery
CN115552688A (en) Secondary battery
JP2011076786A (en) Secondary battery
JP5720946B2 (en) Electricity storage element
KR101233514B1 (en) Secondary battery
JP5888183B2 (en) battery
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP2011076787A (en) Secondary battery and method of manufacturing the same
JP2018081860A (en) Secondary battery
JP6781932B2 (en) Manufacturing method of sealed battery
JP2015204236A (en) Secondary battery and battery module
WO2023026959A1 (en) Secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204