WO2024161990A1 - Electric power storage element, method for manufacturing electric power storage element, and device for manufacturing electric power storage element - Google Patents
Electric power storage element, method for manufacturing electric power storage element, and device for manufacturing electric power storage element Download PDFInfo
- Publication number
- WO2024161990A1 WO2024161990A1 PCT/JP2024/001042 JP2024001042W WO2024161990A1 WO 2024161990 A1 WO2024161990 A1 WO 2024161990A1 JP 2024001042 W JP2024001042 W JP 2024001042W WO 2024161990 A1 WO2024161990 A1 WO 2024161990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pair
- container
- wall portion
- container body
- storage element
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 52
- 238000000034 method Methods 0.000 title claims description 8
- 238000004146 energy storage Methods 0.000 claims description 76
- 238000003780 insertion Methods 0.000 claims description 18
- 230000037431 insertion Effects 0.000 claims description 18
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 230000005489 elastic deformation Effects 0.000 description 11
- 238000004804 winding Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- -1 diesel Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910011157 LiMBO Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 208000004221 Multiple Trauma Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 235000013490 limbo Nutrition 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/10—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/15—Lids or covers characterised by their shape for prismatic or rectangular cells
Definitions
- the present invention relates to an energy storage element, a method for manufacturing an energy storage element, and an apparatus for manufacturing an energy storage element.
- the present invention therefore aims to provide an energy storage element or the like in which the electrode body can be smoothly inserted into a container.
- the energy storage element comprises an electrode body and a container that houses the electrode body, the container comprising a container body that is open at least at both ends in a predetermined direction, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion that extends in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion that are aligned in the predetermined direction and face each other, and the thickness of at least one of the pair of second wall portions is thinner than the thickness of the first wall portion.
- a manufacturing method of an energy storage element is a manufacturing method of an energy storage element comprising an electrode body and a container that houses the electrode body, the container comprising a container body with at least both ends in a predetermined direction that are open, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, and the manufacturing method includes inserting the electrode body between the pair of second wall portions in a state in which at least one of the pair of second wall portions is deformed so as to widen the gap between the pair of second wall portions of the container body.
- the manufacturing apparatus for an energy storage element is an energy storage element manufacturing apparatus comprising an electrode body and a container for housing the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid for closing the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of opposing second wall portions continuing from a pair of edges of the first wall portion along the predetermined direction, the manufacturing apparatus comprising a deformation unit for deforming at least one of the pair of second wall portions of the container body so as to increase the spacing between the pair of second wall portions, and an insertion unit for inserting the electrode body between the pair of second wall portions after deformation by the deformation unit.
- the electrode body can be smoothly inserted into the container during manufacturing.
- FIG. 1 is a perspective view showing the appearance of an energy storage device according to an embodiment.
- FIG. 2 is an exploded perspective view showing the components of the energy storage device according to the embodiment.
- FIG. 3 is a perspective view showing a configuration of an electrode body according to an embodiment.
- FIG. 4 is a block diagram showing the functional parts of the manufacturing apparatus according to the embodiment.
- FIG. 5 is a perspective view showing a schematic configuration of a manufacturing apparatus according to an embodiment.
- FIG. 6 is a diagram showing a state of a container body according to the embodiment before and after elastic deformation.
- FIG. 7 is a perspective view showing a schematic configuration of an energy storage element manufacturing apparatus according to the first modification.
- FIG. 8 is an exploded perspective view showing a container body and a container lid according to the second modification.
- FIG. 9 is a diagram showing a state of a container body according to the second modification before and after elastic deformation.
- FIG. 10 is an explanatory diagram showing an energy storage device including an energy storage element according to an
- An energy storage element comprises an electrode body and a container that houses the electrode body, the container comprising a container body that is open at least at both ends in a predetermined direction, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion that extends in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion that run along the predetermined direction and face each other, and the thickness of at least one of the pair of second wall portions is thinner than the thickness of the first wall portion.
- the thickness of at least one second wall portion is thinner than the thickness of the first wall portion, so that at least one second wall portion can be easily elastically deformed during the manufacture of the energy storage element. Therefore, the electrode body can be inserted between the pair of second wall portions after elastically deforming at least one second wall portion so that the gap between the pair of second wall portions increases. This reduces friction between the pair of second wall portions and the electrode body during insertion, so that the electrode body can be smoothly inserted into the container.
- the container body may have a third wall portion that is continuous with the edge of the pair of second wall portions opposite the first wall portion and faces the first wall portion, and the thickness of at least one of the pair of second wall portions may be thinner than the thickness of the third wall portion.
- the thickness of at least one second wall portion is thinner than the thickness of each of the first wall portion and the third wall portion, so that at least one second wall portion can be easily elastically deformed during the manufacture of the energy storage element.
- the electrode body may have a flat portion, and the pair of second wall portions may overlap with the flat portion.
- At least one of the second walls is elastically deformed so that the gap between the pair of second walls is widened, and then the electrode body is inserted between the pair of second walls with the flat portion facing the second wall. This further reduces friction between the pair of second walls and the electrode body when inserting the electrode body into the container, allowing the electrode body to be inserted into the container more smoothly.
- a manufacturing method of an energy storage element is a manufacturing method of an energy storage element comprising an electrode body and a container that houses the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid that closes the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, and the manufacturing method includes inserting the electrode body between the pair of second wall portions in a state in which at least one of the pair of second wall portions is deformed so as to increase the spacing between the pair of second wall portions of the container body.
- At least one of the pair of second wall portions may be deformed by pulling the at least one second wall portion outward.
- At least one of the pair of second wall portions is deformed by pulling at least one of the pair of second wall portions outward. Therefore, at least one of the second wall portions can be easily deformed so as to increase the distance between the pair of second wall portions.
- the container body may have a third wall portion that is continuous with the edge of the pair of second walls opposite the first wall portion and faces the first wall portion, and the manufacturing method may include deforming the pair of second walls by increasing the internal pressure of the container body to be higher than the external pressure.
- the pair of second wall portions are deformed by increasing the internal pressure of the container body to be higher than the external pressure, so that each second wall portion can be deformed in a well-balanced manner.
- An apparatus for manufacturing an energy storage element is an apparatus for manufacturing an energy storage element comprising an electrode body and a container for housing the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid for closing the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, the manufacturing apparatus comprising a deformation unit that deforms at least one of the pair of second wall portions so as to increase the spacing between the pair of second wall portions of the container body, and an insertion unit that inserts the electrode body between the pair of second wall portions after deformation by the deformation unit.
- the deformation section deforms at least one of the second walls so as to increase the distance between the pair of second walls, and then the insertion section inserts the electrode body between the pair of second walls, thereby reducing friction between the pair of second walls and the electrode body during insertion. This makes it possible to smoothly insert the electrode body into the container.
- the X-axis direction is defined as the direction along the winding axis of the electrode body, the direction in which the electrode body extends, or the direction in which a pair of short sides of the container face each other.
- the X-axis direction is an example of a predetermined direction.
- the Y-axis direction is defined as the stacking direction of the electrode plates in the flat portion of the electrode body, the direction in which the second wall portion of the container body and the flat portion of the electrode body overlap, or the thickness direction of the container.
- the Z-axis direction is defined as the alignment direction of the top and bottom surfaces of the container, or the up-down direction.
- the positive X-axis direction refers to the direction of the X-axis arrow
- the negative X-axis direction refers to the opposite direction to the positive X-axis direction.
- expressions indicating relative directions or attitudes, such as parallel and orthogonal also include cases where the direction or attitude is not strictly speaking the same. For example, saying that two directions are orthogonal does not only mean that the two directions are completely orthogonal, but also means that the directions are substantially orthogonal, that is, that there is a difference of, for example, about a few percent.
- insulation when the word "insulation" is used, it means “electrical insulation”.
- Fig. 1 is a perspective view showing the external appearance of the energy storage element 10 according to the embodiment.
- Fig. 2 is an exploded perspective view showing each component of the energy storage element 10 according to the embodiment.
- the energy storage element 10 is an energy storage element that can be charged with electricity from the outside and can discharge electricity to the outside, and in this embodiment, has a substantially rectangular parallelepiped shape.
- the energy storage element 10 is a battery used for power storage or power supply purposes. Specifically, the energy storage element 10 is used as a battery for driving or starting the engine of a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway.
- a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway.
- AGV automatic guided vehicle
- Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles.
- Examples of the above-mentioned railway vehicles for an electric railway include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor.
- the energy storage element 10 may also be used as a stationary battery for home or business use.
- the energy storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
- the energy storage element 10 may be a primary battery instead of a secondary battery.
- the energy storage element 10 may be a battery using a solid electrolyte.
- the energy storage element 10 may be a pouch-type energy storage element.
- the energy storage element 10 is illustrated as having a flat rectangular parallelepiped shape, but the shape of the energy storage element 10, i.e., the shape of the container 100, is not limited to a rectangular parallelepiped shape, and may be a shape based on a polygonal prism shape other than a rectangular parallelepiped, an elongated cylinder shape, an elliptical cylinder shape, a cylindrical shape, or the like.
- the energy storage element 10 comprises a container 100, a pair of terminals 300, and a pair of external gaskets 400.
- a pair of internal gaskets 500, a pair of current collectors 600, and an electrode body 700 are housed inside the container 100.
- the positive electrode components one terminal 300, one external gasket 400, one internal gasket 500, etc., the same below
- the negative electrode components are arranged at the other end of the container 100 in the negative direction of the X axis.
- An electrolyte (non-aqueous electrolyte) is enclosed inside the container 100, but is not shown in the figure.
- electrolyte non-aqueous electrolyte
- type of electrolyte there are no particular limitations on the type of electrolyte, and various types may be selected as long as they do not impair the performance of the energy storage element 10.
- spacers may be placed on the sides, above, or below the electrode body 700, and insulating films may be placed to encase the electrode body 700, etc.
- the container 100 is a case having an outer shape of a substantially rectangular parallelepiped that is long and flat in the X-axis direction.
- the length of the container 100 in the X-axis direction is three times or more the length of the container 100 in the Z-axis direction.
- the length of the container 100 in the X-axis direction is five times or more the length of the container 100 in the Y-axis direction.
- Each of the two end faces of the container 100 that face each other in the Y-axis direction is a long side surface 130.
- Each long side surface 130 is a flat surface that is parallel to the XZ plane and long in the X-axis direction.
- Each of the two end faces of the container 100 that face each other in the X-axis direction is a short side surface 135.
- Each short side surface 135 is a rectangular flat surface that is parallel to the YZ plane and long in the Z-axis direction.
- the end surface in the positive direction of the Z-axis is the upper surface 140
- the end surface in the negative direction of the Z-axis is the lower surface 150.
- the upper surface 140 and the lower surface 150 are rectangular flat surfaces that are parallel to the XY plane and long in the X-axis direction.
- the container 100 comprises a container body 160 and a pair of container lids 170, and is formed into a substantially rectangular parallelepiped shape by assembling the container body 160 and the pair of container lids 170.
- the container body 160 comprises a pair of long sides 130, an upper surface 140, and a lower surface 150.
- the container body 160 is a rectangular cylindrical member with open portions at both ends in the X-axis direction.
- the container body 160 includes a first wall portion 161, a pair of second wall portions 162, and a third wall portion 163.
- the first wall portion 161 is a rectangular flat portion extending in the X-axis direction.
- the pair of second wall portions 162 are rectangular flat portions extending in the X-axis direction that continue from the edge of the first wall portion 161 along the X-axis direction and face each other in the Y-axis direction.
- the edge of the first wall portion 161 extending in the X-axis direction can also be referred to as the first edge.
- Each second wall portion 162 includes a long side surface 130.
- the third wall portion 163 is a rectangular flat portion extending in the X-direction that continues from the edge of the pair of second wall portions 162 opposite the first wall portion 161 and faces the first wall portion 161 in the Z-axis direction.
- the edge of the pair of second walls 162 opposite the first wall 161 can also be referred to as the second edge, and the second edge can also be referred to as an edge extending in the X-axis direction, separated from the first wall 161.
- the outer surface of the first wall 161 is the lower surface 150
- the outer surface of each second wall 162 is the long side surface 130
- the outer surface of the third wall 163 is the upper surface 140.
- the length between the pair of opposing second walls 162 is shorter than the length between the opposing first wall 161 and third wall 163.
- the pair of container lids 170 are joined to the container body 160 so as to close both ends of the container body 160 in the X-axis direction, which are the open portions of the container body 160.
- Each container lid 170 is a rectangular flat metal plate extending in the Z-axis direction.
- the outer surface of each container lid 170 is the short side 135.
- the container 100 is sealed by having the electrode body 700 and the like housed in the container body 160 and then joining the container body 160 and the container lid 170 by welding or the like.
- the material of the container 100 (container body 160 and container lid 170), but it is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
- At least one of the pair of container lids 170 may be formed with a liquid injection section and a gas exhaust valve.
- the liquid injection section is a section for injecting electrolyte into the container 100 during the manufacture of the energy storage element 10.
- the gas exhaust valve is a safety valve that releases pressure inside the container 100 if the pressure rises excessively.
- the terminals 300 are terminals (positive electrode terminal 310 and negative electrode terminal 320) that are electrically connected to the electrode body 700 via the current collector 600.
- the terminals 300 are metal members that lead out the electricity stored in the electrode body 700 to the external space of the energy storage element 10 and also introduce electricity into the internal space of the energy storage element 10 to store electricity in the electrode body 700.
- the material of the terminals 300 is not particularly limited, but the terminals 300 are formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy.
- the terminals 300 are connected (joined) to the current collector 600 by crimping, welding, or the like, and are attached to the container lid 170.
- the terminal 300 includes a terminal body 330 and a shaft 340 protruding from the terminal body 330.
- the terminal body 330 is a portion that protrudes outward from the short side surface 135.
- Each container lid 170 has a through hole 171 through which the shaft 340 passes.
- the shaft 340 is connected (joined) to the current collector 600 by being crimped while passing through the container lid 170, the external gasket 400, the internal gasket 500, and the current collector 600.
- the current collectors 600 are arranged on both sides of the electrode body 700 in the X-axis direction.
- the current collectors 600 are electrically conductive members (positive electrode current collector 610 and negative electrode current collector 620) that are connected (joined) to the electrode body 700 and the terminal 300 and electrically connect the electrode body 700 and the terminal 300.
- the current collector 600 is integrally provided with a first joint 630 that is connected (joined) to the connection part 720 of the electrode body 700 described later, and a second joint 640 that is connected (joined) to the terminal 300.
- the first joint 630 and the second joint 640 are each flat plate-shaped parts and are formed by bending a single flat plate member.
- the material of the current collectors 600 is not particularly limited, but the positive electrode current collector 610 is formed of a conductive member such as aluminum or an aluminum alloy.
- the negative electrode current collector 620 is formed of a conductive member such as copper or a copper alloy.
- the external gasket 400 is a rectangular plate-shaped insulating sealing member that is disposed between the container lid 170 and the terminal 300 and insulates and seals between the container lid 170 and the terminal 300.
- the internal gasket 500 is a rectangular plate-shaped insulating sealing member that is disposed between the container lid 170 and the first joint 630 or the second joint 640 and insulates and seals between the container lid 170 and the first joint 630 or the second joint 640.
- the external gasket 400 and the internal gasket 500 are formed from electrically insulating resins such as polypropylene (PP), polyethylene (PE), polystyrene (PS), ABS resin, or composite materials thereof.
- the electrode body 700 is a storage element (power generating element) formed by winding an electrode plate.
- the electrode body 700 has an elongated shape extending in the X-axis direction, and has an elliptical shape when viewed from the X-axis direction.
- the electrode body 700 has a shape in which the length in the X-axis direction is 300 mm or more, specifically, about 500 mm to 1500 mm. Therefore, the length of the electrode body 700 in the X-axis direction is longer than the length of the electrode body 700 in the Z-axis direction.
- the length of the electrode body 700 in the X-axis direction is three times or more the length in the Z-axis direction.
- the electrode body 700 has a main body 710 and a plurality of connection parts 720 protruding from the main body 710. As described above, the connection parts 720 are connected (joined) to the current collector 600.
- connection parts 720 protrude one by one from both end faces in the X-axis direction of the main body part 710.
- a positive electrode connection part 721 is provided on one end face in the positive X-axis direction of the main body part 710 at a predetermined distance from the end face in the positive Z-axis direction.
- a negative electrode connection part 722 is provided on the other end face in the negative X-axis direction of the main body part 710 at a predetermined distance from the end face in the positive Z-axis direction.
- FIG. 3 is a perspective view showing the configuration of an electrode assembly 700 according to an embodiment. Specifically, Fig. 3 shows the configuration in a partially developed state in which the electrode plates in the electrode assembly 700 are wound. As shown in Fig. 3, the electrode assembly 700 includes a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762.
- the positive electrode plate 740 is an electrode plate in which a positive electrode active material layer 742 is formed on the surface of a positive electrode current collector foil 741, which is a strip-shaped metal foil. Aluminum or an aluminum alloy, etc. is used for the positive electrode current collector foil 741.
- the negative electrode plate 750 is an electrode plate in which a negative electrode active material layer 752 is formed on the surface of a negative electrode current collector foil 751, which is a strip-shaped metal foil. Copper or a copper alloy, etc. is used for the negative electrode current collector foil 751.
- any suitable known material can be used as long as it is a positive electrode active material and a negative electrode active material that can absorb and release lithium ions.
- polyanion compounds such as LiMPO 4 , LiMSiO 4 , and LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, spinel-type lithium manganese oxides such as LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 , and lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) may be used.
- lithium metal an alloy capable of absorbing and releasing lithium
- a carbon material graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature baked carbon, amorphous carbon, etc.
- silicon oxide etc.
- Separators 761 and 762 are microporous sheets made of resin. Any known material can be used as the material for separators 761 and 762 as long as it does not impair the performance of energy storage element 10. Separators 761 and 762 may be made of woven fabric or nonwoven fabric that is insoluble in organic solvents, or a synthetic resin microporous film made of polyolefin resin such as polyethylene.
- the electrode body 700 is formed by winding a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762.
- the electrode body 700 is formed by stacking a negative electrode plate 750, a separator 761, a positive electrode plate 740, and a separator 762 in this order and winding them.
- the positive electrode plate 740, the negative electrode plate 750, etc. are wound around a winding axis L extending in the X-axis direction to form a wound electrode body 700.
- the winding axis L is a virtual axis that serves as the central axis when winding the positive electrode plate 740, the negative electrode plate 750, etc.
- the winding axis L is a straight line that passes through the center of the electrode body 700 and is parallel to the X-axis direction.
- protruding pieces 743 are spaced apart on one edge of the positive electrode plate 740 in the winding axis direction (the edge in the positive direction of the X-axis).
- multiple protruding pieces 753 are spaced apart on the other edge of the negative electrode plate 750 in the winding axis direction (the edge in the negative direction of the X-axis).
- Protruding pieces 743 and 753 are portions where no active material layer containing active material is formed and where the metal foil (current collector foil) is exposed (active material layer non-formed portions). The shaded areas in Figure 3 correspond to the active material layer non-formed portions.
- the protruding pieces 743 of the positive electrode plate 740 overlap at one end face of the main body 710 (the end face in the positive direction of the X-axis).
- the portion where the protruding pieces 743 of the positive electrode plate 740 overlap is the positive electrode connection part 721.
- the protruding pieces 753 of the negative electrode plate 750 overlap at the other end face of the main body 710 (the end face in the negative direction of the X-axis).
- the portion where the protruding pieces 753 of the negative electrode plate 750 overlap is the negative electrode connection part 722.
- the main body 710 is an elongated cylindrical portion (active material layer forming portion) formed by winding together a portion where the positive electrode active material layer 742 is formed (coated), a portion where the negative electrode active material layer 752 is formed (coated), and separators 761, 762.
- the main body 710 has a pair of curved portions 711 on both sides in the Z-axis direction, and a flat portion 712 between the pair of curved portions 711. It can also be said that the pair of curved portions 711 are positioned to sandwich the flat portion 712 in the Z-axis direction.
- the curved portion 711 is a curved portion in which the arc shape of the end portion in the Z-axis direction extends in the X-axis direction when viewed from the X-axis direction.
- the pair of curved portions 711 are curved portions that protrude from the flat portion 712 on both sides in the Z-axis direction when viewed from the X-axis direction.
- the flat portion 712 is a rectangular, flat portion extending parallel to the XZ plane, connecting the ends of a pair of curved portions 711.
- multiple wound electrode plates (positive electrode plate 740 and negative electrode plate 750) are stacked in the Y-axis direction.
- the Y-axis direction is the stacking direction of the multiple electrode plates.
- the main stacking direction of the electrode body 700 is defined as the Y-axis direction.
- the electrode plates in the portion that constitutes the flat portion 712 are more likely to bend than the electrode plates in the portion that constitutes the curved portion 711.
- the outer surface of the flat portion 712 (the surface facing the Y-axis direction) is more likely to be slightly recessed or bulged in the Y-axis direction. Therefore, when the electrode body 700 is inserted into the container body 160 from the X-axis direction, the flat portion 712 is more likely to come into contact with the X-axis end, which is the open portion of the container body 160. Therefore, for example, by making it easier to deform the second wall portion 162 of the container body 160 that faces the flat portion 712 of the electrode body 700 outward in the Y-axis direction, it becomes easier to insert the electrode body 700 into the container body 160.
- the curved shape of the curved portion 711 is not limited to a semicircular arc shape, but may be a part of an ellipse, etc., and may be curved in any manner.
- the outer surface of the flat portion 712 facing the Y-axis direction is not limited to being flat, but the outer surface may be slightly concave or slightly bulging.
- FIG. 4 is a block diagram showing the functional parts of the manufacturing apparatus 900 according to the embodiment.
- FIG. 5 is a perspective view showing a schematic configuration of the manufacturing apparatus 900 according to the embodiment. In FIG. 5, a part of the first chamber 911 and the second chamber 912 of the holding part 910 is shown in a cross-sectional view.
- the manufacturing apparatus 900 includes the holding part 910, the deformation part 920, and the insertion part 930.
- the deformation part 920 and the insertion part 930 may operate based on the operation of an operator, or may operate based on the control of a control part such as a microcomputer.
- the holding part 910 is a part that holds the container body 160.
- the holding part 910 includes a first chamber 911 and a second chamber 912.
- the first chamber 911 and the second chamber 912 are arranged side by side in the X-axis direction, and the container body 160 is bridged between them.
- One end of the container body 160 in the negative X-axis direction is detachably fixed to the wall of the first chamber 911 while penetrating the wall.
- the other end of the container body 160 in the positive X-axis direction is detachably fixed to the wall of the second chamber 912 while penetrating the wall of the second chamber 912. This makes the internal space of the first chamber 911, the internal space of the container body 160, and the internal space of the second chamber 912 continuous.
- the first chamber 911 and one end of the container body 160 are sealed, and the second chamber 912 and the other end of the container body 160 are sealed. This prevents the gas in the container body 160 from escaping to the outside.
- the first chamber 911 is provided with a vent 913, and the second chamber 912 is provided with a vent 914.
- the first chamber 911 is provided with a sealed door for inserting and removing the container body 160 and the electrode assembly 700.
- the deformation section 920 elastically deforms the pair of second wall sections 162 of the container body 160 so that the gap between the pair of second wall sections 162 increases.
- the deformation section 920 is a gas pump, and is connected to the vent 913 of the first chamber 911 and the vent 914 of the second chamber 912 via piping (not shown).
- the deformation section 920 supplies gas to each of the first chamber 911 and the second chamber 912, the inside of the container body 160 is pressurized, and the internal pressure of the container body 160 becomes higher than the external pressure. This causes the container body 160 to elastically deform and swell.
- the inside of the container body 160 is pressurized so that the internal pressure of the container body 160 is higher than the external pressure.
- the outside of the container body 160 may be depressurized so that the internal pressure of the container body 160 is higher than the external pressure, thereby inflating the container body 160.
- each second wall portion 162 is thinner than the thickness t1 of the first wall portion 161. This makes each second wall portion 162 more susceptible to elastic deformation than the first wall portion 161. Furthermore, the thickness t2 of each second wall portion 162 is thinner than the thickness t3 of the third wall portion 163. This makes each second wall portion 162 more susceptible to elastic deformation than the third wall portion 163.
- each second wall portion 162 is elastically deformed so that the interval between each second wall portion 162 of the container body 160 increases (see the two-dot chain line in FIG. 6).
- the insertion portion 930 inserts the electrode body 700 between the pair of second wall portions 162 after the elastic deformation of the second wall portions 162 by the deformation portion 920.
- the insertion portion 930 has an arm 931 arranged in the second chamber 912 and slidably driven in the X-axis direction.
- the arm 931 is a rod-shaped body extending in the X-axis direction, and a gripping portion 932 is provided at its end in the negative X-axis direction to grip the end of the electrode body 700 in the positive X-axis direction.
- the arm 931 moves from the second chamber 912 in the negative X-axis direction to enter the container body 160, and brings the gripping portion 932 closer to the end in the positive X-axis direction of the electrode body 700 waiting in the first chamber 911. Thereafter, when the gripping portion 932 grips the end of the electrode body 700 in the positive direction of the X-axis, the arm 931 moves in the positive direction of the X-axis and inserts the electrode body 700 between the pair of second wall portions 162 of the container body 160.
- the worker opens the sealing door of the first chamber 911 of the holding part 910, inserts the container body 160 into the first chamber 911, and then bridges the container body 160 between the first chamber 911 and the second chamber 912.
- the worker fixes one end of the container body 160 in the negative X-axis direction to the wall of the first chamber 911 in a state in which the end penetrates the wall.
- the worker fixes the other end of the container body 160 in the positive X-axis direction to the wall of the second chamber 912 in a state in which the end penetrates the wall.
- the worker inserts the electrode body 700 into the first chamber 911 through the sealing door, places the electrode body 700 at a predetermined position in the first chamber 911, and closes the sealing door.
- the deformation section 920 supplies gas to each of the first chamber 911 and the second chamber 912.
- the container body 160 expands. This causes the pair of second wall sections 162 of the container body 160 to elastically deform so that the distance between them increases.
- the deformation section 920 maintains the container body 160 in an elastically deformed state.
- the insertion part 930 moves the arm 931 from the second chamber 912 in the negative X-axis direction to enter the container body 160, thereby bringing the gripping part 932 closer to the end of the electrode body 700 in the positive X-axis direction waiting in the first chamber 911. Thereafter, when the gripping part 932 grips the end of the electrode body 700 in the positive X-axis direction, the arm 931 moves in the positive X-axis direction to insert the electrode body 700 between the pair of second wall parts 162 of the container body 160. At this time, since the gap between the pair of second wall parts 162 of the container body 160 has widened, the electrode body 700 can be smoothly inserted between the pair of second wall parts 162.
- the deformation portion 920 stops the supply of gas. This causes the container body 160 to elastically return to its original shape.
- the insertion portion 930 releases the grip by the gripping portion 932. The operator then opens the sealed door and removes the container body 160 and the electrode body 700 from the first chamber 911.
- the worker assembles the positive electrode connection part 721 of the electrode body 700, the current collector 600, the positive electrode terminal 310, the container lid body 170 in the positive direction of the X-axis, the external gasket 400, and the internal gasket 500.
- the worker assembles the negative electrode connection part 722 of the electrode body 700, the current collector 600, the negative electrode terminal 320, the container lid body 170 in the negative direction of the X-axis, the external gasket 400, and the internal gasket 500.
- the worker joins (welds) each container lid body 170 to both ends of the container body 160 in the X-axis direction. This completes the production of the energy storage element 10.
- each second wall portion 162 since the thickness t2 of each second wall portion 162 is thinner than the thickness t1 of the first wall portion 161, each second wall portion 162 can be easily deformed during the manufacture of the energy storage element 10. Therefore, each second wall portion 162 can be deformed so that the interval between the pair of second wall portions 162 is widened, and then the electrode body 700 can be inserted between the pair of second wall portions 162. As a result, friction between the pair of second wall portions 162 and the electrode body 700 is reduced during insertion, so that the electrode body 700 can be smoothly inserted into the container body 160.
- each second wall portion 162 is thinner than the thickness t1 of the first wall portion 161 and the thickness t3 of the third wall portion 163, so that each second wall portion 162 can be easily deformed during the manufacture of the energy storage element 10.
- the surfaces of the pair of second wall portions 162 and the surface of the flat portion 712 of the electrode body 700 overlap when viewed from the Y-axis direction. Therefore, the second walls 162 are elastically deformed so that the gap between the pair of second walls 162 widens, and then the electrode body 700 can be inserted between the pair of second walls 162 with the flat portion 712 facing the second wall portion 162. This further reduces friction between the pair of second walls 162 and the electrode body 700 when inserting the electrode body 700 into the container 100, allowing the electrode body 700 to be inserted into the container 100 more smoothly.
- the pair of second wall portions 162 are deformed, allowing each second wall portion 162 to undergo elastic deformation in a balanced manner.
- FIG. 7 is a perspective view showing the schematic configuration of a manufacturing apparatus 900a for the energy storage element 10 according to the first modified example.
- FIG. 7 corresponds to FIG. 5.
- the manufacturing apparatus 900a includes a holding portion 910a, a deformation portion 920a, and an insertion portion 930.
- the holding portion 910a is equipped with a pair of pillars 915a that support the container body 160 from below.
- the pair of pillars 915a are arranged at a predetermined interval in the X-axis direction, with one pillar 915a supporting the end of the container body 160 in the positive X-axis direction, and the other pillar 915a supporting the end of the container body 160 in the negative X-axis direction.
- the deformation portion 920a elastically deforms each second wall portion 162 of the container body 160 by pulling each second wall portion 162 outward.
- the deformation portion 920a has a pair of suction portions 925a.
- the pair of suction portions 925a are arranged at a predetermined interval in the Y-axis direction, and one suction portion 925a is suctioned to the second wall portion 162 in the positive direction of the Y-axis, and the other suction portion 925a is suctioned to the second wall portion 162 in the negative direction of the Y-axis. After suction, the pair of suction portions 925a move away from each other, pulling each second wall portion 162 outward.
- the pair of second wall portions 162 elastically deform so that the interval between the pair of second wall portions 162 of the container body 160 widens.
- the electrode body 700 is inserted between the pair of second wall portions 162 of the container body 160 by the insertion portion 930.
- the gap between the pair of second walls 162 of the container body 160 has widened, so the electrode body 700 can be smoothly inserted between the pair of second walls 162.
- each second wall portion 162 is deformed by being pulled outward, so that each second wall portion 162 can be easily deformed so that the spacing between each second wall portion 162 increases.
- each second wall portion 162 may be pulled outward while being gripped.
- the pair of adhesion portions 925a are separated from each other to pull each second wall portion 162 outward, but only one of the pair of adhesion portions 925a adhered to the pair of second wall portions 162 may be pulled outward.
- the container 100 is illustrated as including a cylindrical container body 160 having open portions at both ends in the X-axis direction, and a pair of container lids 170 that close the open portions of the container body 160.
- the container body may have any shape as long as both ends in the X-axis direction are open.
- the container lids may have any shape as long as they close the open portions of the container body.
- FIG. 8 is an exploded perspective view showing the container body 160a and the container lid 170a according to the second modification.
- the container body 160a has open portions at both ends in the X-axis direction and at the end in the positive Z-axis direction, and is a U-shaped member as viewed from the X-axis direction.
- the container body 160a has a first wall portion 161a and a pair of second walls 162a.
- the container lid 170a is an inverted U-shaped member as viewed from the Y-axis direction, and is joined to the container body 160a so as to close the open portion of the container body 160a.
- the container lid 170a has a third wall portion 163a and a pair of fourth walls 164a.
- the pair of fourth walls 164a are rectangular flat plate-shaped portions that are continuous from both ends of the third wall portion 163a and extend in the Z-axis direction.
- the electrode body 700 can be inserted from both sides in the X-axis direction (the positive and negative directions of the X-axis) and from the positive direction of the Z-axis.
- the electrode body 700 is inserted from either direction, as exemplified in Modification Example 1, by pulling each second wall portion 162a outward, it is possible to elastically deform each second wall portion 162a.
- FIG. 9 is a diagram showing the state of the container body 160a according to the second modification example before and after elastic deformation.
- FIG. 9 is a diagram corresponding to FIG. 6.
- the thickness t2a of each second wall portion 162a is thinner than the thickness t1a of the first wall portion 161a. This makes each second wall portion 162a more susceptible to elastic deformation than the first wall portion 161a.
- each second wall portion 162a is elastically deformed so that the spacing between each second wall portion 162a of the container body 160a increases (see the two-dot chain line in FIG. 9).
- each of the pair of second wall portions 162 is elastically deformed during manufacturing.
- only one of the second wall portions may be elastically deformed.
- the thickness of only the one of the second wall portions that is elastically deformed may be thinner than the thickness of the first wall portion.
- a wound type electrode body 700 is exemplified.
- the shape of the electrode body is not limited to the wound type, and may be a stack type in which flat electrode plates are stacked, or a shape in which the electrode plates and/or separators are folded in an accordion-like shape (such as a shape in which the separator is folded in an accordion-like shape to sandwich a rectangular electrode plate, or a shape in which the electrode plate and the separator are stacked and then folded in an accordion-like shape).
- the stacking direction of the electrode body is the Y-axis direction.
- a stack type or accordion-like folded electrode body has a tab portion protruding in the X-axis direction, and the tab portion and the current collector 600 are joined.
- the tab portion may be separate from the electrode body 700, or may be integral with it.
- the surfaces at both ends in the stacking direction correspond to a pair of flat portions.
- FIG. 10 is an explanatory diagram showing an energy storage device 800 including an energy storage element 10 according to an embodiment. As shown in FIG. 10, multiple energy storage elements 10 are arranged inside the energy storage device 800.
- the energy storage device 800 may include a bus bar (not shown) that electrically connects the energy storage elements 10.
- the energy storage device 800 may include a status monitoring device (not shown) that monitors the status of one or more energy storage elements 10.
- the present invention can be applied to energy storage elements such as lithium-ion secondary batteries.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
This electric power storage element comprises an electrode body and a container that accommodates the electrode body, wherein: the container is provided with a container main body in which at least both ends in a prescribed direction are open, and a container lid body that covers the open portion of the container main body; and the container main body is provided with a first wall portion that extends in a prescribed direction, and a pair of second wall portions that face each other and are continuous with a pair of edges following the prescribed direction of the first wall portion.
Description
本発明は、蓄電素子、蓄電素子の製造方法及び蓄電素子の製造装置に関する。
The present invention relates to an energy storage element, a method for manufacturing an energy storage element, and an apparatus for manufacturing an energy storage element.
従来、筒状の外装ケースに極板群を収容した二次電池が知られている(例えば特許文献1参照)。
Conventionally, secondary batteries have been known in which a group of electrodes is housed in a cylindrical exterior case (see, for example, Patent Document 1).
外装ケースに極板群を挿入する際においては、極板群が外装ケースの内面に擦れてスムーズに挿入できないおそれがある。
When inserting the electrode group into the outer case, there is a risk that the electrode group will rub against the inner surface of the outer case and will not be able to be inserted smoothly.
このため、本発明は、電極体を容器内にスムーズに挿入可能な蓄電素子等を提供することを目的とする。
The present invention therefore aims to provide an energy storage element or the like in which the electrode body can be smoothly inserted into a container.
本発明の一態様に係る蓄電素子は、電極体と、前記電極体を収容する容器とを備え、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における、前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記一対の第二壁部のうち少なくとも1つの第二壁部の肉厚は、前記第一壁部の肉厚よりも薄い。
The energy storage element according to one embodiment of the present invention comprises an electrode body and a container that houses the electrode body, the container comprising a container body that is open at least at both ends in a predetermined direction, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion that extends in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion that are aligned in the predetermined direction and face each other, and the thickness of at least one of the pair of second wall portions is thinner than the thickness of the first wall portion.
本発明の一態様に係る蓄電素子の製造方法は、電極体と、前記電極体を収容する容器とを備える蓄電素子の製造方法であって、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記製造方法は、前記容器本体の前記一対の第二壁部の間隔が広がるように前記一対の第二壁部のうち少なくとも1つの第二壁部を変形させた状態で、前記電極体を前記一対の第二壁部の間に挿入する。
A manufacturing method of an energy storage element according to one embodiment of the present invention is a manufacturing method of an energy storage element comprising an electrode body and a container that houses the electrode body, the container comprising a container body with at least both ends in a predetermined direction that are open, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, and the manufacturing method includes inserting the electrode body between the pair of second wall portions in a state in which at least one of the pair of second wall portions is deformed so as to widen the gap between the pair of second wall portions of the container body.
本発明の一態様に係る蓄電素子の製造装置は、電極体と、前記電極体を収容する容器とを備える蓄電素子の製造装置であって、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記製造装置は、前記容器本体の一対の第二壁部の間隔が広がるように当該一対の第二壁部のうち少なくとも1つの第二壁部を変形させる変形部と、前記変形部による変形後に前記一対の第二壁部の間に前記電極体を挿入する挿入部とを備える。
The manufacturing apparatus for an energy storage element according to one embodiment of the present invention is an energy storage element manufacturing apparatus comprising an electrode body and a container for housing the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid for closing the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of opposing second wall portions continuing from a pair of edges of the first wall portion along the predetermined direction, the manufacturing apparatus comprising a deformation unit for deforming at least one of the pair of second wall portions of the container body so as to increase the spacing between the pair of second wall portions, and an insertion unit for inserting the electrode body between the pair of second wall portions after deformation by the deformation unit.
本発明によれば、製造時に電極体をスムーズに容器内に挿入できる。
According to the present invention, the electrode body can be smoothly inserted into the container during manufacturing.
(1)発明の一態様に係る蓄電素子は、電極体と、前記電極体を収容する容器とを備え、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記一対の第二壁部のうち少なくとも1つの第二壁部の肉厚は、前記第一壁部の肉厚よりも薄い。
(1) An energy storage element according to one aspect of the invention comprises an electrode body and a container that houses the electrode body, the container comprising a container body that is open at least at both ends in a predetermined direction, and a container lid that closes the open portion of the container body, the container body comprising a first wall portion that extends in the predetermined direction, and a pair of second wall portions that are continuous with a pair of edges of the first wall portion that run along the predetermined direction and face each other, and the thickness of at least one of the pair of second wall portions is thinner than the thickness of the first wall portion.
これによれば、少なくとも1つの第二壁部の肉厚が、第一壁部の肉厚よりも薄いので、蓄電素子の製造時に少なくとも1つの第二壁部を容易に弾性変形させることができる。このため、一対の第二壁部の間隔が広がるように、少なくとも1つの第二壁部を弾性変形させてから、一対の第二壁部間に電極体を挿入できる。これにより、挿入時においては、一対の第二壁部と電極体との摩擦が低減されるので、電極体をスムーズに容器に挿入できる。
As a result, the thickness of at least one second wall portion is thinner than the thickness of the first wall portion, so that at least one second wall portion can be easily elastically deformed during the manufacture of the energy storage element. Therefore, the electrode body can be inserted between the pair of second wall portions after elastically deforming at least one second wall portion so that the gap between the pair of second wall portions increases. This reduces friction between the pair of second wall portions and the electrode body during insertion, so that the electrode body can be smoothly inserted into the container.
(2)上記(1)に記載の蓄電素子において、前記容器本体は、前記一対の第二壁部において前記第一壁部とは反対側の縁辺から連続し、前記第一壁部に対向する第三壁部を有し、前記一対の第二壁部のうち少なくとも1つの第二壁部の肉厚は、前記第三壁部の肉厚よりも薄い、としてもよい。
(2) In the energy storage element described in (1) above, the container body may have a third wall portion that is continuous with the edge of the pair of second wall portions opposite the first wall portion and faces the first wall portion, and the thickness of at least one of the pair of second wall portions may be thinner than the thickness of the third wall portion.
これによれば、第一壁部、一対の第二壁部及び第三壁部を有する容器本体においても、少なくとも1つの第二壁部の肉厚が、第一壁部及び第三壁部のそれぞれの肉厚よりも薄いので、蓄電素子の製造時に少なくとも1つの第二壁部を容易に弾性変形させることができる。
As a result, even in a container body having a first wall portion, a pair of second wall portions, and a third wall portion, the thickness of at least one second wall portion is thinner than the thickness of each of the first wall portion and the third wall portion, so that at least one second wall portion can be easily elastically deformed during the manufacture of the energy storage element.
(3)上記(1)または(2)に記載の蓄電素子において、前記電極体は、平坦状の平坦部を備え、前記一対の第二壁部と前記平坦部とが重なる、としてもよい。
(3) In the energy storage element described in (1) or (2) above, the electrode body may have a flat portion, and the pair of second wall portions may overlap with the flat portion.
これによれば、一対の第二壁部の間隔が広がるように少なくとも1つの第二壁部を弾性変形させてから、平坦状の平坦部を第二壁部に対向させるようにして、一対の第二壁部の間に電極体を挿入できる。これにより、容器に電極体を挿入する際、一対の第二壁部と電極体との摩擦がより低減されるので、電極体をさらにスムーズに容器に挿入できる。
By doing this, at least one of the second walls is elastically deformed so that the gap between the pair of second walls is widened, and then the electrode body is inserted between the pair of second walls with the flat portion facing the second wall. This further reduces friction between the pair of second walls and the electrode body when inserting the electrode body into the container, allowing the electrode body to be inserted into the container more smoothly.
(4)本発明の一態様に係る蓄電素子の製造方法は、電極体と、前記電極体を収容する容器とを備える蓄電素子の製造方法であって、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記製造方法は、前記容器本体の前記一対の第二壁部の間隔が広がるように前記一対の第二壁部のうち少なくとも1つの第二壁部を変形させた状態で、前記電極体を前記一対の第二壁部の間に挿入する。
(4) A manufacturing method of an energy storage element according to one embodiment of the present invention is a manufacturing method of an energy storage element comprising an electrode body and a container that houses the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid that closes the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, and the manufacturing method includes inserting the electrode body between the pair of second wall portions in a state in which at least one of the pair of second wall portions is deformed so as to increase the spacing between the pair of second wall portions of the container body.
これによれば、一対の第二壁部の間隔が広がるように、少なくとも1つの第二壁部を変形させてから、一対の第二壁部間に電極体を挿入することで、挿入時における一対の第二壁部と電極体との摩擦を低減できる。したがって、電極体を容器にスムーズに挿入できる。
By deforming at least one of the second walls so as to widen the gap between the pair of second walls and then inserting the electrode body between the pair of second walls, friction between the pair of second walls and the electrode body during insertion can be reduced. Therefore, the electrode body can be smoothly inserted into the container.
(5)上記(4)に記載の蓄電素子の製造方法において、前記一対の第二壁部のうち少なくとも1つの第二壁部を外方に引っ張ることで、前記少なくとも1つの第二壁部を変形させる、としてもよい。
(5) In the method for manufacturing an energy storage element described in (4) above, at least one of the pair of second wall portions may be deformed by pulling the at least one second wall portion outward.
これによれば、一対の第二壁部のうち少なくとも1つの第二壁部を外方に引っ張ることで、少なくとも1つの第二壁部を変形させている。そのため、一対の第二壁部の間隔が広がるように、少なくとも1つの第二壁部を容易に変形させることができる。
In this way, at least one of the pair of second wall portions is deformed by pulling at least one of the pair of second wall portions outward. Therefore, at least one of the second wall portions can be easily deformed so as to increase the distance between the pair of second wall portions.
(6)上記(4)に記載の蓄電素子の製造方法において、前記容器本体は、前記一対の第二壁部において前記第一壁部とは反対側の縁辺から連続し、前記第一壁部に対向する第三壁部を有し、前記製造方法は、前記容器本体の内圧を外圧よりも高めることで、前記一対の第二壁部を変形させる、としてもよい。
(6) In the manufacturing method of the energy storage element described in (4) above, the container body may have a third wall portion that is continuous with the edge of the pair of second walls opposite the first wall portion and faces the first wall portion, and the manufacturing method may include deforming the pair of second walls by increasing the internal pressure of the container body to be higher than the external pressure.
これによれば、容器本体の内圧を外圧よりも高めることで、一対の第二壁部を変形させるので、各第二壁部をバランスよく変形させることができる。
In this way, the pair of second wall portions are deformed by increasing the internal pressure of the container body to be higher than the external pressure, so that each second wall portion can be deformed in a well-balanced manner.
(7)本発明の一態様に係る蓄電素子の製造装置は、電極体と、前記電極体を収容する容器とを備える蓄電素子の製造装置であって、前記容器は、少なくとも所定の方向の両端部が開放された容器本体と、前記容器本体の開放部分を閉塞する容器蓋体とを備え、前記容器本体は、前記所定の方向に延びる第一壁部と、前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、前記製造装置は、前記容器本体の前記一対の第二壁部の間隔が広がるように前記一対の第二壁部のうち少なくとも1つの第二壁部を変形させる変形部と、前記変形部による変形後に前記一対の第二壁部の間に前記電極体を挿入する挿入部とを備える。
(7) An apparatus for manufacturing an energy storage element according to one embodiment of the present invention is an apparatus for manufacturing an energy storage element comprising an electrode body and a container for housing the electrode body, the container comprising a container body having at least both ends open in a predetermined direction and a container lid for closing the open portion of the container body, the container body comprising a first wall portion extending in the predetermined direction and a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other, the manufacturing apparatus comprising a deformation unit that deforms at least one of the pair of second wall portions so as to increase the spacing between the pair of second wall portions of the container body, and an insertion unit that inserts the electrode body between the pair of second wall portions after deformation by the deformation unit.
これによれば、変形部が一対の第二壁部の間隔が広がるように、少なくとも1つの第二壁部を変形させた後に、挿入部が一対の第二壁部間に電極体を挿入するので、挿入時における一対の第二壁部と電極体との摩擦を低減することができる。したがって、電極体を容器にスムーズに挿入することが可能となる。
In this way, the deformation section deforms at least one of the second walls so as to increase the distance between the pair of second walls, and then the insertion section inserts the electrode body between the pair of second walls, thereby reducing friction between the pair of second walls and the electrode body during insertion. This makes it possible to smoothly insert the electrode body into the container.
(実施の形態)
以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電素子について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。本実施の形態の各構成部材(各構成要素)の名称は、本実施の形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 (Embodiment)
Hereinafter, with reference to the drawings, a description will be given of an energy storage element according to an embodiment (including its modified example) of the present invention. The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, the arrangement and connection forms of the components, the manufacturing process, and the order of the manufacturing process shown in the following embodiments are examples and are not intended to limit the present invention. In each figure, the dimensions are not strictly illustrated. In each figure, the same or similar components are given the same reference numerals. The names of the components (each component) in this embodiment are those in this embodiment and may differ from the names of the components (each component) in the background art.
以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電素子について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。本実施の形態の各構成部材(各構成要素)の名称は、本実施の形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 (Embodiment)
Hereinafter, with reference to the drawings, a description will be given of an energy storage element according to an embodiment (including its modified example) of the present invention. The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, the arrangement and connection forms of the components, the manufacturing process, and the order of the manufacturing process shown in the following embodiments are examples and are not intended to limit the present invention. In each figure, the dimensions are not strictly illustrated. In each figure, the same or similar components are given the same reference numerals. The names of the components (each component) in this embodiment are those in this embodiment and may differ from the names of the components (each component) in the background art.
以下の説明及び図面中において、電極体の巻回軸に沿う方向、電極体の延びる方向、または、容器の一対の短側面の対向方向をX軸方向と定義する。X軸方向は所定の方向の一例である。電極体の平坦部における極板の積層方向、容器本体の第二壁部と電極体の平坦部とが重なる方向、または、容器の厚さ方向をY軸方向と定義する。容器の上面と下面との並び方向、または、上下方向をZ軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。
In the following explanation and drawings, the X-axis direction is defined as the direction along the winding axis of the electrode body, the direction in which the electrode body extends, or the direction in which a pair of short sides of the container face each other. The X-axis direction is an example of a predetermined direction. The Y-axis direction is defined as the stacking direction of the electrode plates in the flat portion of the electrode body, the direction in which the second wall portion of the container body and the flat portion of the electrode body overlap, or the thickness direction of the container. The Z-axis direction is defined as the alignment direction of the top and bottom surfaces of the container, or the up-down direction. These X-axis, Y-axis, and Z-axis directions intersect with each other (orthogonal in this embodiment). Depending on the mode of use, it is possible that the Z-axis direction is not the up-down direction, but for convenience of explanation, the following explanation will be given assuming that the Z-axis direction is the up-down direction.
以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。さらに、平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。例えば、2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、例えば数%程度の差異を含むことも意味する。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。
In the following explanation, the positive X-axis direction refers to the direction of the X-axis arrow, and the negative X-axis direction refers to the opposite direction to the positive X-axis direction. The same applies to the Y-axis and Z-axis directions. Furthermore, expressions indicating relative directions or attitudes, such as parallel and orthogonal, also include cases where the direction or attitude is not strictly speaking the same. For example, saying that two directions are orthogonal does not only mean that the two directions are completely orthogonal, but also means that the directions are substantially orthogonal, that is, that there is a difference of, for example, about a few percent. In the following explanation, when the word "insulation" is used, it means "electrical insulation".
[蓄電素子の全般的な説明]
まず、図1及び図2を用いて、本実施の形態における蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10を分解して各構成要素を示す分解斜視図である。 [General Description of Energy Storage Element]
First, an overall description of anenergy storage element 10 according to the present embodiment will be given with reference to Fig. 1 and Fig. 2. Fig. 1 is a perspective view showing the external appearance of the energy storage element 10 according to the embodiment. Fig. 2 is an exploded perspective view showing each component of the energy storage element 10 according to the embodiment.
まず、図1及び図2を用いて、本実施の形態における蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10を分解して各構成要素を示す分解斜視図である。 [General Description of Energy Storage Element]
First, an overall description of an
蓄電素子10は、外部からの電気を充電し、また外部へ電気を放電できる蓄電素子であり、本実施の形態では、略直方体形状を有している。蓄電素子10は、電力貯蔵用途または電源用途等に使用されるバッテリである。具体的には、蓄電素子10は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、無人搬送車(AGV:Automatic Guided Vehicle)、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、及び、化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電素子10は、家庭用または事業用等に使用される定置用のバッテリ等としても用いてもよい。
The energy storage element 10 is an energy storage element that can be charged with electricity from the outside and can discharge electricity to the outside, and in this embodiment, has a substantially rectangular parallelepiped shape. The energy storage element 10 is a battery used for power storage or power supply purposes. Specifically, the energy storage element 10 is used as a battery for driving or starting the engine of a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, an automatic guided vehicle (AGV), or a railway vehicle for an electric railway. Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles. Examples of the above-mentioned railway vehicles for an electric railway include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor. The energy storage element 10 may also be used as a stationary battery for home or business use.
蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池でもよいし、キャパシタでもよい。蓄電素子10は、二次電池ではなく、一次電池でもよい。さらに、蓄電素子10は、固体電解質を用いた電池でもよい。蓄電素子10は、パウチタイプの蓄電素子でもよい。本実施の形態では、扁平な直方体形状の蓄電素子10を図示しているが、蓄電素子10の形状、つまり容器100の形状は、直方体形状には限定されず、直方体以外の多角柱形状、長円柱形状、楕円柱形状または円柱形状等を基準とした形状でもよい。
The energy storage element 10 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The energy storage element 10 may be a primary battery instead of a secondary battery. Furthermore, the energy storage element 10 may be a battery using a solid electrolyte. The energy storage element 10 may be a pouch-type energy storage element. In this embodiment, the energy storage element 10 is illustrated as having a flat rectangular parallelepiped shape, but the shape of the energy storage element 10, i.e., the shape of the container 100, is not limited to a rectangular parallelepiped shape, and may be a shape based on a polygonal prism shape other than a rectangular parallelepiped, an elongated cylinder shape, an elliptical cylinder shape, a cylindrical shape, or the like.
図1及び図2に示すように、蓄電素子10は、容器100と、一対の端子300と、一対の外部ガスケット400とを備えている。容器100の内方には、一対の内部ガスケット500と、一対の集電体600と、電極体700と、が収容されている。具体的には、容器100におけるX軸プラス方向の一端部に、正極の各部材(一つの端子300、一つの外部ガスケット400、一つの内部ガスケット500等。以下同様)が配置されていて、容器100におけるX軸マイナス方向の他端部に、負極の各部材が配置されている。
As shown in Figures 1 and 2, the energy storage element 10 comprises a container 100, a pair of terminals 300, and a pair of external gaskets 400. A pair of internal gaskets 500, a pair of current collectors 600, and an electrode body 700 are housed inside the container 100. Specifically, the positive electrode components (one terminal 300, one external gasket 400, one internal gasket 500, etc., the same below) are arranged at one end of the container 100 in the positive direction of the X axis, and the negative electrode components are arranged at the other end of the container 100 in the negative direction of the X axis.
容器100の内部には、電解液(非水電解質)が封入されているが、図示は省略する。当該電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択してもよい。上記の構成要素の他、電極体700の側方、上方または下方等に配置されるスペーサ、電極体700等を包み込む絶縁フィルム等が配置されてもよい。
An electrolyte (non-aqueous electrolyte) is enclosed inside the container 100, but is not shown in the figure. There are no particular limitations on the type of electrolyte, and various types may be selected as long as they do not impair the performance of the energy storage element 10. In addition to the above components, spacers may be placed on the sides, above, or below the electrode body 700, and insulating films may be placed to encase the electrode body 700, etc.
容器100は、X軸方向に長尺かつ扁平な略直方体形状の外形を有するケースである。容器100のX軸方向の長さは、容器100のZ軸方向の長さの3倍以上となっている。容器100のX軸方向の長さは、容器100のY軸方向の長さの5倍以上となっている。容器100のY軸方向で対向する両端面のそれぞれは、長側面130である。各長側面130は、XZ面に平行かつX軸方向に長尺な平面である。容器100のX軸方向で対向する両端面のそれぞれは、短側面135である。各短側面135は、YZ面に平行かつZ軸方向に長尺な矩形状の平面である。容器100のZ軸方向で対向する両端面のうち、Z軸プラス方向の端面が上面140であり、Z軸マイナス方向の端面が下面150である。上面140及び下面150は、XY面に平行かつX軸方向に長尺な矩形状の平面である。
The container 100 is a case having an outer shape of a substantially rectangular parallelepiped that is long and flat in the X-axis direction. The length of the container 100 in the X-axis direction is three times or more the length of the container 100 in the Z-axis direction. The length of the container 100 in the X-axis direction is five times or more the length of the container 100 in the Y-axis direction. Each of the two end faces of the container 100 that face each other in the Y-axis direction is a long side surface 130. Each long side surface 130 is a flat surface that is parallel to the XZ plane and long in the X-axis direction. Each of the two end faces of the container 100 that face each other in the X-axis direction is a short side surface 135. Each short side surface 135 is a rectangular flat surface that is parallel to the YZ plane and long in the Z-axis direction. Of the two end faces of the container 100 that face each other in the Z-axis direction, the end surface in the positive direction of the Z-axis is the upper surface 140, and the end surface in the negative direction of the Z-axis is the lower surface 150. The upper surface 140 and the lower surface 150 are rectangular flat surfaces that are parallel to the XY plane and long in the X-axis direction.
容器100は、容器本体160と一対の容器蓋体170とを備えており、容器本体160と一対の容器蓋体170とが組み付けられることで略直方体形状となっている。容器本体160は、一対の長側面130と、上面140と、下面150とを備えている。
The container 100 comprises a container body 160 and a pair of container lids 170, and is formed into a substantially rectangular parallelepiped shape by assembling the container body 160 and the pair of container lids 170. The container body 160 comprises a pair of long sides 130, an upper surface 140, and a lower surface 150.
具体的には、容器本体160は、X軸方向の両端部が開放された開放部分を備える角筒状の部材である。容器本体160は、第一壁部161と、一対の第二壁部162と、第三壁部163とを備えている。第一壁部161は、X軸方向に延びる矩形平板状の部位である。一対の第二壁部162は、第一壁部161におけるX軸方向に沿う縁辺から連続し、互いにY軸方向で対向した、X軸方向に延びる矩形平板状の部位である。第一壁部161におけるX軸方向に延びる縁辺は、第一縁辺とも言い換えられる。各第二壁部162は、長側面130を備えている。第三壁部163は、一対の第二壁部162において第一壁部161とは反対側の縁辺から連続し、第一壁部161に対してZ軸方向で対向する、X方向に延びる矩形平板状の部位である。一対の第二壁部162における第一壁部161とは反対側の縁辺は、第二縁辺とも言い換えられ、第二縁辺は、第一壁部161とは離間した、X軸方向に延びる縁辺ともいえる。第一壁部161の外面は下面150であり、各第二壁部162の外面は長側面130であり、第三壁部163の外面は上面140である。容器本体160が備える、X軸方向に沿った壁部のうち、互いに対向する一対の第二壁部162の間の長さは、互いに対向する第一壁部161と第三壁部163との間の長さよりも短い。
Specifically, the container body 160 is a rectangular cylindrical member with open portions at both ends in the X-axis direction. The container body 160 includes a first wall portion 161, a pair of second wall portions 162, and a third wall portion 163. The first wall portion 161 is a rectangular flat portion extending in the X-axis direction. The pair of second wall portions 162 are rectangular flat portions extending in the X-axis direction that continue from the edge of the first wall portion 161 along the X-axis direction and face each other in the Y-axis direction. The edge of the first wall portion 161 extending in the X-axis direction can also be referred to as the first edge. Each second wall portion 162 includes a long side surface 130. The third wall portion 163 is a rectangular flat portion extending in the X-direction that continues from the edge of the pair of second wall portions 162 opposite the first wall portion 161 and faces the first wall portion 161 in the Z-axis direction. The edge of the pair of second walls 162 opposite the first wall 161 can also be referred to as the second edge, and the second edge can also be referred to as an edge extending in the X-axis direction, separated from the first wall 161. The outer surface of the first wall 161 is the lower surface 150, the outer surface of each second wall 162 is the long side surface 130, and the outer surface of the third wall 163 is the upper surface 140. Of the walls along the X-axis direction that the container body 160 has, the length between the pair of opposing second walls 162 is shorter than the length between the opposing first wall 161 and third wall 163.
一対の容器蓋体170は、容器本体160の開放部分である容器本体160のX軸方向の両端部を、閉塞するように容器本体160に接合されている。各容器蓋体170は、Z軸方向に延びる矩形平板状の板金である。各容器蓋体170の外面は短側面135である。
The pair of container lids 170 are joined to the container body 160 so as to close both ends of the container body 160 in the X-axis direction, which are the open portions of the container body 160. Each container lid 170 is a rectangular flat metal plate extending in the Z-axis direction. The outer surface of each container lid 170 is the short side 135.
このような構成により、容器100は、電極体700等が容器本体160内に収容された後、容器本体160と容器蓋体170とが溶接等によって接合されることで、密封される構造となっている。容器100(容器本体160及び容器蓋体170)の材質は特に限定されないが、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属であるのが好ましい。
With this configuration, the container 100 is sealed by having the electrode body 700 and the like housed in the container body 160 and then joining the container body 160 and the container lid 170 by welding or the like. There are no particular limitations on the material of the container 100 (container body 160 and container lid 170), but it is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
ここで図示は省略するが、一対の容器蓋体170の少なくとも1つに注液部と、ガス排出弁とが形成されてもよい。注液部は、蓄電素子10の製造時に容器100の内方に電解液を注液するための部位である。ガス排出弁は、容器100内方の圧力が過度に上昇した場合に当該圧力を開放する安全弁である。
Although not shown here, at least one of the pair of container lids 170 may be formed with a liquid injection section and a gas exhaust valve. The liquid injection section is a section for injecting electrolyte into the container 100 during the manufacture of the energy storage element 10. The gas exhaust valve is a safety valve that releases pressure inside the container 100 if the pressure rises excessively.
端子300は、集電体600を介して、電極体700に電気的に接続される端子(正極端子310及び負極端子320)である。つまり、端子300は、電極体700に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体700に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の部材である。端子300の材質は特に限定されないが、端子300は、アルミニウム、アルミニウム合金、銅または銅合金等の導電部材で形成されている。端子300は、かしめ接合または溶接等によって、集電体600に接続(接合)され、かつ、容器蓋体170に取り付けられる。
The terminals 300 are terminals (positive electrode terminal 310 and negative electrode terminal 320) that are electrically connected to the electrode body 700 via the current collector 600. In other words, the terminals 300 are metal members that lead out the electricity stored in the electrode body 700 to the external space of the energy storage element 10 and also introduce electricity into the internal space of the energy storage element 10 to store electricity in the electrode body 700. The material of the terminals 300 is not particularly limited, but the terminals 300 are formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy. The terminals 300 are connected (joined) to the current collector 600 by crimping, welding, or the like, and are attached to the container lid 170.
本実施の形態では、端子300は、端子本体部330と、端子本体部330から突出した軸部340とを備えている。端子本体部330は、短側面135よりも外方に突出した部位である。各容器蓋体170には、軸部340が貫通する貫通孔171が形成されている。軸部340は、容器蓋体170、外部ガスケット400、内部ガスケット500及び集電体600を貫通した状態でかしめられることで、集電体600に接続(接合)されている。
In this embodiment, the terminal 300 includes a terminal body 330 and a shaft 340 protruding from the terminal body 330. The terminal body 330 is a portion that protrudes outward from the short side surface 135. Each container lid 170 has a through hole 171 through which the shaft 340 passes. The shaft 340 is connected (joined) to the current collector 600 by being crimped while passing through the container lid 170, the external gasket 400, the internal gasket 500, and the current collector 600.
集電体600は、電極体700のX軸方向両側に一つずつ配置されている。集電体600は、電極体700と端子300とに接続(接合)されて、電極体700と端子300とを電気的に接続する導電性を備えた部材(正極集電体610及び負極集電体620)である。具体的には、集電体600は、後述する電極体700の接続部720と接続(接合)される第一接合部630と、端子300と接続(接合)される第二接合部640と、を一体的に備えている。第一接合部630と第二接合部640とは、それぞれ平板状の部位であり、一枚の平板部材を折り曲げることにより形成されている。集電体600の材質は特に限定されないが、正極集電体610は、アルミニウムまたはアルミニウム合金等の導電部材で形成されている。負極集電体620は、銅または銅合金等の導電部材で形成されている。
The current collectors 600 are arranged on both sides of the electrode body 700 in the X-axis direction. The current collectors 600 are electrically conductive members (positive electrode current collector 610 and negative electrode current collector 620) that are connected (joined) to the electrode body 700 and the terminal 300 and electrically connect the electrode body 700 and the terminal 300. Specifically, the current collector 600 is integrally provided with a first joint 630 that is connected (joined) to the connection part 720 of the electrode body 700 described later, and a second joint 640 that is connected (joined) to the terminal 300. The first joint 630 and the second joint 640 are each flat plate-shaped parts and are formed by bending a single flat plate member. The material of the current collectors 600 is not particularly limited, but the positive electrode current collector 610 is formed of a conductive member such as aluminum or an aluminum alloy. The negative electrode current collector 620 is formed of a conductive member such as copper or a copper alloy.
外部ガスケット400は、容器蓋体170と端子300との間に配置され、容器蓋体170と端子300との間を絶縁し、かつシールする矩形板状の絶縁性のシール部材である。内部ガスケット500は、容器蓋体170と、第一接合部630または第二接合部640との間に配置され、容器蓋体170と第一接合部630または第二接合部640との間を絶縁し、かつシールする矩形板状の絶縁性のシール部材である。外部ガスケット400及び内部ガスケット500は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ABS樹脂、若しくは、それらの複合材料等の電気的な絶縁性を有する樹脂等によって形成されている。
The external gasket 400 is a rectangular plate-shaped insulating sealing member that is disposed between the container lid 170 and the terminal 300 and insulates and seals between the container lid 170 and the terminal 300. The internal gasket 500 is a rectangular plate-shaped insulating sealing member that is disposed between the container lid 170 and the first joint 630 or the second joint 640 and insulates and seals between the container lid 170 and the first joint 630 or the second joint 640. The external gasket 400 and the internal gasket 500 are formed from electrically insulating resins such as polypropylene (PP), polyethylene (PE), polystyrene (PS), ABS resin, or composite materials thereof.
電極体700は、極板が巻回されて形成された蓄電要素(発電要素)である。電極体700は、X軸方向に延びる長尺な形状であり、X軸方向から見て長円形状となっている。電極体700は、X軸方向の長さが300mm以上、具体的には、500mm~1500mm程度まで延びる形状をしている。このため、電極体700のX軸方向の長さは、電極体700のZ軸方向の長さよりも長くなっている。電極体700のX軸方向の長さは、Z軸方向の長さの3倍以上となっている。電極体700は、本体部710と、本体部710から突出した複数の接続部720とを備えている。上述の通り、接続部720が集電体600に接続(接合)される。
The electrode body 700 is a storage element (power generating element) formed by winding an electrode plate. The electrode body 700 has an elongated shape extending in the X-axis direction, and has an elliptical shape when viewed from the X-axis direction. The electrode body 700 has a shape in which the length in the X-axis direction is 300 mm or more, specifically, about 500 mm to 1500 mm. Therefore, the length of the electrode body 700 in the X-axis direction is longer than the length of the electrode body 700 in the Z-axis direction. The length of the electrode body 700 in the X-axis direction is three times or more the length in the Z-axis direction. The electrode body 700 has a main body 710 and a plurality of connection parts 720 protruding from the main body 710. As described above, the connection parts 720 are connected (joined) to the current collector 600.
具体的には、複数の接続部720は、本体部710のX軸方向の両端面から一つずつ突出している。本体部710のX軸プラス方向の一端面には、Z軸プラス方向の端部から所定の間隔をあけて正極接続部721が設けられている。一方、本体部710のX軸マイナス方向の他端面には、Z軸プラス方向の端部から所定の間隔をあけて負極接続部722が設けられている。このような電極体700の構成について、以下に詳細に説明する。
Specifically, the multiple connection parts 720 protrude one by one from both end faces in the X-axis direction of the main body part 710. A positive electrode connection part 721 is provided on one end face in the positive X-axis direction of the main body part 710 at a predetermined distance from the end face in the positive Z-axis direction. On the other hand, a negative electrode connection part 722 is provided on the other end face in the negative X-axis direction of the main body part 710 at a predetermined distance from the end face in the positive Z-axis direction. The configuration of such an electrode body 700 will be described in detail below.
[電極体の構成の説明]
図3は、実施の形態に係る電極体700の構成を示す斜視図である。具体的には、図3は、電極体700における極板の巻回状態を一部展開した状態での構成を示している。図3に示すように、電極体700は、正極板740と、負極板750と、セパレータ761、762と、を備えている。 [Explanation of the configuration of the electrode body]
Fig. 3 is a perspective view showing the configuration of anelectrode assembly 700 according to an embodiment. Specifically, Fig. 3 shows the configuration in a partially developed state in which the electrode plates in the electrode assembly 700 are wound. As shown in Fig. 3, the electrode assembly 700 includes a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762.
図3は、実施の形態に係る電極体700の構成を示す斜視図である。具体的には、図3は、電極体700における極板の巻回状態を一部展開した状態での構成を示している。図3に示すように、電極体700は、正極板740と、負極板750と、セパレータ761、762と、を備えている。 [Explanation of the configuration of the electrode body]
Fig. 3 is a perspective view showing the configuration of an
正極板740は、帯状の金属箔である正極集電箔741の表面に、正極活物質層742が形成された極板(電極板)である。正極集電箔741には、アルミニウムまたはアルミニウム合金等が用いられる。負極板750は、帯状の金属箔である負極集電箔751の表面に、負極活物質層752が形成された極板(電極板)である。負極集電箔751には、銅または銅合金等が用いられる。正極活物質層742に用いられる正極活物質、及び、負極活物質層752に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質及び負極活物質であれば、適宜公知の材料を使用できる。
The positive electrode plate 740 is an electrode plate in which a positive electrode active material layer 742 is formed on the surface of a positive electrode current collector foil 741, which is a strip-shaped metal foil. Aluminum or an aluminum alloy, etc. is used for the positive electrode current collector foil 741. The negative electrode plate 750 is an electrode plate in which a negative electrode active material layer 752 is formed on the surface of a negative electrode current collector foil 751, which is a strip-shaped metal foil. Copper or a copper alloy, etc. is used for the negative electrode current collector foil 751. As the positive electrode active material used in the positive electrode active material layer 742 and the negative electrode active material used in the negative electrode active material layer 752, any suitable known material can be used as long as it is a positive electrode active material and a negative electrode active material that can absorb and release lithium ions.
正極活物質として、LiMPO4、LiMSiO4、LiMBO3(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、LiMn2O4、LiMn1.5Ni0.5O4等のスピネル型リチウムマンガン酸化物、LiMO2(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いてもよい。負極活物質としては、リチウム金属、リチウムを吸蔵・放出可能な合金、炭素材料(黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、ケイ素酸化物などが挙げられる。
As the positive electrode active material, polyanion compounds such as LiMPO 4 , LiMSiO 4 , and LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, spinel-type lithium manganese oxides such as LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 , and lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) may be used. As the negative electrode active material, lithium metal, an alloy capable of absorbing and releasing lithium, a carbon material (graphite, non-graphitizable carbon, easily graphitizable carbon, low-temperature baked carbon, amorphous carbon, etc.), silicon oxide, etc. may be used.
セパレータ761、762は、樹脂からなる微多孔性のシートである。セパレータ761、762の素材としては、蓄電素子10の性能を損なわなければ、適宜公知の材料を使用できる。セパレータ761、762として、有機溶剤に不溶な織布、不織布、ポリエチレン等のポリオレフィン樹脂からなる合成樹脂微多孔膜等を用いてもよい。
Separators 761 and 762 are microporous sheets made of resin. Any known material can be used as the material for separators 761 and 762 as long as it does not impair the performance of energy storage element 10. Separators 761 and 762 may be made of woven fabric or nonwoven fabric that is insoluble in organic solvents, or a synthetic resin microporous film made of polyolefin resin such as polyethylene.
電極体700は、正極板740及び負極板750と、セパレータ761、762とが巻回されることで形成されている。電極体700は、負極板750と、セパレータ761と、正極板740と、セパレータ762とがこの順に積層され、巻回されることで形成されている。本実施の形態では、正極板740及び負極板750等がX軸方向に延びる巻回軸Lを中心に巻回されることで巻回型の電極体700が形成される。巻回軸Lとは、正極板740及び負極板750等を巻回する際の中心軸となる仮想的な軸である。本実施の形態の巻回軸Lは、電極体700の中心を通る、X軸方向に平行な直線である。
The electrode body 700 is formed by winding a positive electrode plate 740, a negative electrode plate 750, and separators 761 and 762. The electrode body 700 is formed by stacking a negative electrode plate 750, a separator 761, a positive electrode plate 740, and a separator 762 in this order and winding them. In this embodiment, the positive electrode plate 740, the negative electrode plate 750, etc. are wound around a winding axis L extending in the X-axis direction to form a wound electrode body 700. The winding axis L is a virtual axis that serves as the central axis when winding the positive electrode plate 740, the negative electrode plate 750, etc. In this embodiment, the winding axis L is a straight line that passes through the center of the electrode body 700 and is parallel to the X-axis direction.
正極板740の巻回軸方向の一端縁(X軸プラス方向の端縁)には、複数の突出片743が間隔をあけて配置されている。同様に、負極板750の巻回軸方向の他端縁(X軸マイナス方向の端縁)には、複数の突出片753が間隔をあけて配置されている。突出片743及び突出片753は、活物質を含む活物質層が形成されておらず、金属箔(集電箔)が露出した部分(活物質層非形成部)である。図3の斜線部分が活物質層非形成部に該当する。
Multiple protruding pieces 743 are spaced apart on one edge of the positive electrode plate 740 in the winding axis direction (the edge in the positive direction of the X-axis). Similarly, multiple protruding pieces 753 are spaced apart on the other edge of the negative electrode plate 750 in the winding axis direction (the edge in the negative direction of the X-axis). Protruding pieces 743 and 753 are portions where no active material layer containing active material is formed and where the metal foil (current collector foil) is exposed (active material layer non-formed portions). The shaded areas in Figure 3 correspond to the active material layer non-formed portions.
正極板740と、負極板750と、セパレータ761、762とが巻回されると、本体部710の一端面(X軸プラス方向の端面)で、正極板740の各突出片743が重なり合う。正極板740の各突出片743が重なり合った部分が正極接続部721である。同様に、本体部710の他端面(X軸マイナス方向の端面)で、負極板750の各突出片753同士が重なり合う。負極板750の各突出片753同士が重なり合った部分が負極接続部722である。
When the positive electrode plate 740, the negative electrode plate 750, and the separators 761, 762 are wound, the protruding pieces 743 of the positive electrode plate 740 overlap at one end face of the main body 710 (the end face in the positive direction of the X-axis). The portion where the protruding pieces 743 of the positive electrode plate 740 overlap is the positive electrode connection part 721. Similarly, at the other end face of the main body 710 (the end face in the negative direction of the X-axis), the protruding pieces 753 of the negative electrode plate 750 overlap. The portion where the protruding pieces 753 of the negative electrode plate 750 overlap is the negative electrode connection part 722.
本体部710は、正極活物質層742が形成(塗工)された部分と、負極活物質層752が形成(塗工)された部分と、セパレータ761、762と、が巻回されて形成された長円柱形状の部位(活物質層形成部)である。本体部710は、Z軸方向両側に一対の湾曲部711を備え、この一対の湾曲部711間に、平坦状の平坦部712を備えている。一対の湾曲部711は、Z軸方向で平坦部712を挟む位置に配置されているとも言える。
The main body 710 is an elongated cylindrical portion (active material layer forming portion) formed by winding together a portion where the positive electrode active material layer 742 is formed (coated), a portion where the negative electrode active material layer 752 is formed (coated), and separators 761, 762. The main body 710 has a pair of curved portions 711 on both sides in the Z-axis direction, and a flat portion 712 between the pair of curved portions 711. It can also be said that the pair of curved portions 711 are positioned to sandwich the flat portion 712 in the Z-axis direction.
湾曲部711は、X軸方向から見てZ軸方向の端部の円弧形状がX軸方向に延びる湾曲状の部位である。つまり、一対の湾曲部711は、X軸方向から見て、平坦部712からZ軸方向両側に突出するように湾曲した部位である。
The curved portion 711 is a curved portion in which the arc shape of the end portion in the Z-axis direction extends in the X-axis direction when viewed from the X-axis direction. In other words, the pair of curved portions 711 are curved portions that protrude from the flat portion 712 on both sides in the Z-axis direction when viewed from the X-axis direction.
平坦部712は、一対の湾曲部711の端部同士を繋ぐ、XZ平面に平行に広がる矩形状かつ平坦状の部位である。平坦部712では、巻回された複数の極板(正極板740及び負極板750)がY軸方向に積層されている。つまり、平坦部712では、Y軸方向が複数の極板の積層方向である。本開示では電極体700の主たる積層方向をY軸方向と定義する。湾曲部711を構成する部分の極板よりも、平坦部712を構成する部分の極板の方がたわみやすい。したがって、平坦部712の外面(Y軸方向と対向する面)は、Y軸方向に少し凹んだり、少し膨らんだりしやすい。したがって、電極体700をX軸方向から容器本体160に挿入する際、容器本体160の開放部分であるX軸方向端部に、平坦部712が接触しやすい。したがって、例えば、容器本体160のうち、電極体700の平坦部712と対向する第二壁部162をY軸方向外方に変形させやすくすることで、電極体700を容器本体160に挿入しやすくなる。
The flat portion 712 is a rectangular, flat portion extending parallel to the XZ plane, connecting the ends of a pair of curved portions 711. In the flat portion 712, multiple wound electrode plates (positive electrode plate 740 and negative electrode plate 750) are stacked in the Y-axis direction. In other words, in the flat portion 712, the Y-axis direction is the stacking direction of the multiple electrode plates. In this disclosure, the main stacking direction of the electrode body 700 is defined as the Y-axis direction. The electrode plates in the portion that constitutes the flat portion 712 are more likely to bend than the electrode plates in the portion that constitutes the curved portion 711. Therefore, the outer surface of the flat portion 712 (the surface facing the Y-axis direction) is more likely to be slightly recessed or bulged in the Y-axis direction. Therefore, when the electrode body 700 is inserted into the container body 160 from the X-axis direction, the flat portion 712 is more likely to come into contact with the X-axis end, which is the open portion of the container body 160. Therefore, for example, by making it easier to deform the second wall portion 162 of the container body 160 that faces the flat portion 712 of the electrode body 700 outward in the Y-axis direction, it becomes easier to insert the electrode body 700 into the container body 160.
湾曲部711の湾曲形状は、半円の円弧形状には限定されず、楕円形状の一部等でもよく、どのように湾曲していてもよい。平坦部712は、Y軸方向に向く外面が平面であることには限定されず、当該外面が少し凹んでいたり、少し膨らんでいたりしていてもよい。
The curved shape of the curved portion 711 is not limited to a semicircular arc shape, but may be a part of an ellipse, etc., and may be curved in any manner. The outer surface of the flat portion 712 facing the Y-axis direction is not limited to being flat, but the outer surface may be slightly concave or slightly bulging.
[蓄電素子の製造装置]
次に、蓄電素子10を製造するための製造装置900について説明する。具体的には、製造装置900は、容器本体160に電極体700を挿入する装置である。図4は、実施の形態に係る製造装置900の機能部を示すブロック図である。図5は、実施の形態に係る製造装置900の概略構成を示す斜視図である。図5では、保持部910の第一室911及び第二室912の一部を断面図で示している。図4に示すように、製造装置900は、保持部910と、変形部920と、挿入部930とを備えている。ここで、変形部920及び挿入部930は、作業者の操作に基づいて動作してもよいし、マイコンなどの制御部の制御に基づいて動作してもよい。 [Electricity storage element manufacturing apparatus]
Next, amanufacturing apparatus 900 for manufacturing the energy storage element 10 will be described. Specifically, the manufacturing apparatus 900 is an apparatus for inserting the electrode body 700 into the container body 160. FIG. 4 is a block diagram showing the functional parts of the manufacturing apparatus 900 according to the embodiment. FIG. 5 is a perspective view showing a schematic configuration of the manufacturing apparatus 900 according to the embodiment. In FIG. 5, a part of the first chamber 911 and the second chamber 912 of the holding part 910 is shown in a cross-sectional view. As shown in FIG. 4, the manufacturing apparatus 900 includes the holding part 910, the deformation part 920, and the insertion part 930. Here, the deformation part 920 and the insertion part 930 may operate based on the operation of an operator, or may operate based on the control of a control part such as a microcomputer.
次に、蓄電素子10を製造するための製造装置900について説明する。具体的には、製造装置900は、容器本体160に電極体700を挿入する装置である。図4は、実施の形態に係る製造装置900の機能部を示すブロック図である。図5は、実施の形態に係る製造装置900の概略構成を示す斜視図である。図5では、保持部910の第一室911及び第二室912の一部を断面図で示している。図4に示すように、製造装置900は、保持部910と、変形部920と、挿入部930とを備えている。ここで、変形部920及び挿入部930は、作業者の操作に基づいて動作してもよいし、マイコンなどの制御部の制御に基づいて動作してもよい。 [Electricity storage element manufacturing apparatus]
Next, a
保持部910は、容器本体160を保持する部位である。具体的には、保持部910は、第一室911と、第二室912とを備えている。第一室911と第二室912とは、X軸方向に並んで配置されており、この間に容器本体160が架け渡される。容器本体160のX軸マイナス方向の一端部は、第一室911の壁を貫通した状態で、当該壁に着脱自在に固定されている。容器本体160のX軸プラス方向の他端部は、第二室912の壁を貫通した状態で、着脱自在に固定されている。これにより、第一室911の内部空間と、容器本体160の内部空間と、第二室912の内部空間とが連続することになる。容器本体160の固定時においては、第一室911と容器本体160の一端部とは密閉されるとともに、第二室912と容器本体160の他端部とは密閉されている。このため、容器本体160内の気体が外部に抜けることが防止されている。第一室911には通気口913が設けられ、第二室912には通気口914が設けられている。図示は省略するが、第一室911には、容器本体160及び電極体700を出し入れするための密閉扉が設けられている。
The holding part 910 is a part that holds the container body 160. Specifically, the holding part 910 includes a first chamber 911 and a second chamber 912. The first chamber 911 and the second chamber 912 are arranged side by side in the X-axis direction, and the container body 160 is bridged between them. One end of the container body 160 in the negative X-axis direction is detachably fixed to the wall of the first chamber 911 while penetrating the wall. The other end of the container body 160 in the positive X-axis direction is detachably fixed to the wall of the second chamber 912 while penetrating the wall of the second chamber 912. This makes the internal space of the first chamber 911, the internal space of the container body 160, and the internal space of the second chamber 912 continuous. When the container body 160 is fixed, the first chamber 911 and one end of the container body 160 are sealed, and the second chamber 912 and the other end of the container body 160 are sealed. This prevents the gas in the container body 160 from escaping to the outside. The first chamber 911 is provided with a vent 913, and the second chamber 912 is provided with a vent 914. Although not shown, the first chamber 911 is provided with a sealed door for inserting and removing the container body 160 and the electrode assembly 700.
変形部920では、容器本体160の一対の第二壁部162の間隔が広がるように当該一対の第二壁部162を弾性変形させる。具体的には、変形部920は、気体ポンプであり、図示しない配管を介して第一室911の通気口913及び第二室912の通気口914に繋がっている。変形部920が第一室911及び第二室912のそれぞれに気体を供給すると、容器本体160の内部が加圧され、容器本体160の内圧が外圧よりも高くなる。これにより、容器本体160が膨らむような弾性変形をする。
The deformation section 920 elastically deforms the pair of second wall sections 162 of the container body 160 so that the gap between the pair of second wall sections 162 increases. Specifically, the deformation section 920 is a gas pump, and is connected to the vent 913 of the first chamber 911 and the vent 914 of the second chamber 912 via piping (not shown). When the deformation section 920 supplies gas to each of the first chamber 911 and the second chamber 912, the inside of the container body 160 is pressurized, and the internal pressure of the container body 160 becomes higher than the external pressure. This causes the container body 160 to elastically deform and swell.
ここでは、容器本体160の内部を加圧することで、容器本体160の内圧が外圧よりも高くしている場合を例示した。これ以外にも、容器本体160の外部を減圧することで、容器本体160の内圧を外圧よりも高くして、容器本体160を膨らませてもよい。
Here, an example is shown in which the inside of the container body 160 is pressurized so that the internal pressure of the container body 160 is higher than the external pressure. In addition, the outside of the container body 160 may be depressurized so that the internal pressure of the container body 160 is higher than the external pressure, thereby inflating the container body 160.
図6は、実施の形態に係る容器本体160の弾性変形前と弾性変形後の状態を示す図である。実線が弾性変形前の状態を示し、二点鎖線が弾性変形後の状態を示している。ここで、容器本体160では、各第二壁部162の肉厚t2は、第一壁部161の肉厚t1よりも薄い。これにより、各第二壁部162は、第一壁部161よりも弾性変形しやすくなっている。さらに、各第二壁部162の肉厚t2は、第三壁部163の肉厚t3よりも薄い。これにより、各第二壁部162は、第三壁部163よりも弾性変形しやすくなっている。変形部920によって容器本体160の内圧が外圧よりも高くなると、容器本体160の各第二壁部162の間隔が広がるように各第二壁部162が弾性変形する(図6の二点鎖線参照)。
6 is a diagram showing the state before and after elastic deformation of the container body 160 according to the embodiment. The solid line indicates the state before elastic deformation, and the two-dot chain line indicates the state after elastic deformation. Here, in the container body 160, the thickness t2 of each second wall portion 162 is thinner than the thickness t1 of the first wall portion 161. This makes each second wall portion 162 more susceptible to elastic deformation than the first wall portion 161. Furthermore, the thickness t2 of each second wall portion 162 is thinner than the thickness t3 of the third wall portion 163. This makes each second wall portion 162 more susceptible to elastic deformation than the third wall portion 163. When the internal pressure of the container body 160 becomes higher than the external pressure due to the deformation portion 920, each second wall portion 162 is elastically deformed so that the interval between each second wall portion 162 of the container body 160 increases (see the two-dot chain line in FIG. 6).
挿入部930は、変形部920による第二壁部162の弾性変形後に、一対の第二壁部162の間に電極体700を挿入する。具体的には、挿入部930は、第二室912内に配置された、X軸方向にスライド駆動するアーム931を備えている。アーム931はX軸方向に延びた棒状体であり、そのX軸マイナス方向の端部には、電極体700のX軸プラス方向の端部を把持する把持部932が設けられている。第一室911及び第二室912に容器本体160が架け渡されると、アーム931は第二室912からX軸マイナス方向に移動して容器本体160内に進入し、把持部932を、第一室911内で待機する電極体700のX軸プラス方向の端部に近づける。その後、把持部932が電極体700のX軸プラス方向の端部を把持すると、アーム931はX軸プラス方向に移動して、容器本体160の一対の第二壁部162の間に電極体700を挿入する。
The insertion portion 930 inserts the electrode body 700 between the pair of second wall portions 162 after the elastic deformation of the second wall portions 162 by the deformation portion 920. Specifically, the insertion portion 930 has an arm 931 arranged in the second chamber 912 and slidably driven in the X-axis direction. The arm 931 is a rod-shaped body extending in the X-axis direction, and a gripping portion 932 is provided at its end in the negative X-axis direction to grip the end of the electrode body 700 in the positive X-axis direction. When the container body 160 is spanned across the first chamber 911 and the second chamber 912, the arm 931 moves from the second chamber 912 in the negative X-axis direction to enter the container body 160, and brings the gripping portion 932 closer to the end in the positive X-axis direction of the electrode body 700 waiting in the first chamber 911. Thereafter, when the gripping portion 932 grips the end of the electrode body 700 in the positive direction of the X-axis, the arm 931 moves in the positive direction of the X-axis and inserts the electrode body 700 between the pair of second wall portions 162 of the container body 160.
[蓄電素子の製造方法]
次に、蓄電素子10の製造方法について説明する。まず、作業者は、保持部910の第一室911の密閉扉を開けて、第一室911内に容器本体160を挿入してから、第一室911と第二室912との間に容器本体160を架け渡す。この際、作業者は、容器本体160のX軸マイナス方向の一端部を、第一室911の壁に貫通させた状態で、当該壁に固定する。作業者は、容器本体160のX軸プラス方向の他端部を、第二室912の壁に貫通させた状態で固定する。その後、作業者は、密閉扉から電極体700を第一室911内に挿入してから、第一室911内の所定の位置に電極体700を配置し、密閉扉を閉ざす。 [Method of manufacturing the energy storage element]
Next, a method for manufacturing theenergy storage element 10 will be described. First, the worker opens the sealing door of the first chamber 911 of the holding part 910, inserts the container body 160 into the first chamber 911, and then bridges the container body 160 between the first chamber 911 and the second chamber 912. At this time, the worker fixes one end of the container body 160 in the negative X-axis direction to the wall of the first chamber 911 in a state in which the end penetrates the wall. The worker fixes the other end of the container body 160 in the positive X-axis direction to the wall of the second chamber 912 in a state in which the end penetrates the wall. Thereafter, the worker inserts the electrode body 700 into the first chamber 911 through the sealing door, places the electrode body 700 at a predetermined position in the first chamber 911, and closes the sealing door.
次に、蓄電素子10の製造方法について説明する。まず、作業者は、保持部910の第一室911の密閉扉を開けて、第一室911内に容器本体160を挿入してから、第一室911と第二室912との間に容器本体160を架け渡す。この際、作業者は、容器本体160のX軸マイナス方向の一端部を、第一室911の壁に貫通させた状態で、当該壁に固定する。作業者は、容器本体160のX軸プラス方向の他端部を、第二室912の壁に貫通させた状態で固定する。その後、作業者は、密閉扉から電極体700を第一室911内に挿入してから、第一室911内の所定の位置に電極体700を配置し、密閉扉を閉ざす。 [Method of manufacturing the energy storage element]
Next, a method for manufacturing the
ついで、変形部920は、第一室911及び第二室912のそれぞれに気体を供給する。容器本体160の内圧を外圧よりも高くすることにより、容器本体160が膨らむ。これにより、容器本体160の一対の第二壁部162の間隔が広がるように一対の第二壁部162が弾性変形する。変形部920は、容器本体160が弾性変形した状態を維持する。
Then, the deformation section 920 supplies gas to each of the first chamber 911 and the second chamber 912. By making the internal pressure of the container body 160 higher than the external pressure, the container body 160 expands. This causes the pair of second wall sections 162 of the container body 160 to elastically deform so that the distance between them increases. The deformation section 920 maintains the container body 160 in an elastically deformed state.
この状態で、挿入部930は、アーム931を第二室912からX軸マイナス方向に移動させて容器本体160内に進入することで、把持部932を、第一室911内で待機する電極体700のX軸プラス方向の端部に近づける。その後、把持部932が電極体700のX軸プラス方向の端部を把持すると、アーム931はX軸プラス方向に移動して、容器本体160の一対の第二壁部162の間に電極体700を挿入する。このとき、容器本体160の一対の第二壁部162の間隔が広がっているので、スムーズに電極体700を一対の第二壁部162の間に挿入できる。
In this state, the insertion part 930 moves the arm 931 from the second chamber 912 in the negative X-axis direction to enter the container body 160, thereby bringing the gripping part 932 closer to the end of the electrode body 700 in the positive X-axis direction waiting in the first chamber 911. Thereafter, when the gripping part 932 grips the end of the electrode body 700 in the positive X-axis direction, the arm 931 moves in the positive X-axis direction to insert the electrode body 700 between the pair of second wall parts 162 of the container body 160. At this time, since the gap between the pair of second wall parts 162 of the container body 160 has widened, the electrode body 700 can be smoothly inserted between the pair of second wall parts 162.
挿入が完了すると、変形部920は気体の供給を停止する。これにより容器本体160が弾性復帰し、元の形状に戻る。挿入部930は把持部932による把持を解除する。その後、作業者は、密閉扉を開けて第一室911から、容器本体160及び電極体700を取り出す。
Once the insertion is complete, the deformation portion 920 stops the supply of gas. This causes the container body 160 to elastically return to its original shape. The insertion portion 930 releases the grip by the gripping portion 932. The operator then opens the sealed door and removes the container body 160 and the electrode body 700 from the first chamber 911.
ついで、作業者は、電極体700の正極接続部721と、集電体600と、正極端子310と、X軸プラス方向の容器蓋体170と、外部ガスケット400と、内部ガスケット500とを組み付ける。同様に作業者は、電極体700の負極接続部722と、集電体600と、負極端子320と、X軸マイナス方向の容器蓋体170と、外部ガスケット400と、内部ガスケット500とを組み付ける。その後、作業者は、容器本体160のX軸方向の両端部に、各容器蓋体170を接合(溶接)する。これにより、蓄電素子10が製造される。
Then, the worker assembles the positive electrode connection part 721 of the electrode body 700, the current collector 600, the positive electrode terminal 310, the container lid body 170 in the positive direction of the X-axis, the external gasket 400, and the internal gasket 500. Similarly, the worker assembles the negative electrode connection part 722 of the electrode body 700, the current collector 600, the negative electrode terminal 320, the container lid body 170 in the negative direction of the X-axis, the external gasket 400, and the internal gasket 500. After that, the worker joins (welds) each container lid body 170 to both ends of the container body 160 in the X-axis direction. This completes the production of the energy storage element 10.
[効果の説明]
以上のように、本発明の実施の形態によれば、各第二壁部162の肉厚t2が、第一壁部161の肉厚t1よりも薄いので、蓄電素子10の製造時に各第二壁部162を容易に変形させることができる。このため、一対の第二壁部162の間隔が広がるように、各第二壁部162を変形させてから、一対の第二壁部162間に電極体700を挿入できる。これにより、挿入時においては、一対の第二壁部162と電極体700との摩擦が低減されるので、電極体700をスムーズに容器本体160に挿入することが可能となる。 [Effects]
As described above, according to the embodiment of the present invention, since the thickness t2 of eachsecond wall portion 162 is thinner than the thickness t1 of the first wall portion 161, each second wall portion 162 can be easily deformed during the manufacture of the energy storage element 10. Therefore, each second wall portion 162 can be deformed so that the interval between the pair of second wall portions 162 is widened, and then the electrode body 700 can be inserted between the pair of second wall portions 162. As a result, friction between the pair of second wall portions 162 and the electrode body 700 is reduced during insertion, so that the electrode body 700 can be smoothly inserted into the container body 160.
以上のように、本発明の実施の形態によれば、各第二壁部162の肉厚t2が、第一壁部161の肉厚t1よりも薄いので、蓄電素子10の製造時に各第二壁部162を容易に変形させることができる。このため、一対の第二壁部162の間隔が広がるように、各第二壁部162を変形させてから、一対の第二壁部162間に電極体700を挿入できる。これにより、挿入時においては、一対の第二壁部162と電極体700との摩擦が低減されるので、電極体700をスムーズに容器本体160に挿入することが可能となる。 [Effects]
As described above, according to the embodiment of the present invention, since the thickness t2 of each
第一壁部161、一対の第二壁部162及び第三壁部163を備える容器本体160においても、各第二壁部162の肉厚t2が、第一壁部161の肉厚t1及び第三壁部163の肉厚t3よりも薄いので、蓄電素子10の製造時に各第二壁部162を容易に変形させることができる。
Even in the container body 160 having a first wall portion 161, a pair of second wall portions 162, and a third wall portion 163, the thickness t2 of each second wall portion 162 is thinner than the thickness t1 of the first wall portion 161 and the thickness t3 of the third wall portion 163, so that each second wall portion 162 can be easily deformed during the manufacture of the energy storage element 10.
容器100に電極体700が収容されると、Y軸方向からみて、一対の第二壁部162の面と電極体700の平坦部712の面とが重なる。このため、一対の第二壁部162の間隔が広がるように各第二壁部162を弾性変形させてから、平坦状の平坦部712を第二壁部162に対向させるようにして、一対の第二壁部162の間に電極体700を挿入できる。これにより、容器100に電極体700を挿入する際、一対の第二壁部162と電極体700との摩擦がより低減されるので、電極体700をさらにスムーズに容器100に挿入できる。
When the electrode body 700 is housed in the container 100, the surfaces of the pair of second wall portions 162 and the surface of the flat portion 712 of the electrode body 700 overlap when viewed from the Y-axis direction. Therefore, the second walls 162 are elastically deformed so that the gap between the pair of second walls 162 widens, and then the electrode body 700 can be inserted between the pair of second walls 162 with the flat portion 712 facing the second wall portion 162. This further reduces friction between the pair of second walls 162 and the electrode body 700 when inserting the electrode body 700 into the container 100, allowing the electrode body 700 to be inserted into the container 100 more smoothly.
容器本体160の内圧を外圧よりも高めることで、一対の第二壁部162を変形させるので、各第二壁部162をバランスよく弾性変形させることができる。
By increasing the internal pressure of the container body 160 to be greater than the external pressure, the pair of second wall portions 162 are deformed, allowing each second wall portion 162 to undergo elastic deformation in a balanced manner.
[変形例の説明]
以下に、上記実施の形態の各変形例について説明する。以降の説明において上記実施の形態または他の変形例と同一の部分においては同一の符号を付してその説明を省略する場合がある。 [Description of Modifications]
In the following, various modifications of the above embodiment will be described. In the following description, the same reference numerals will be used to designate the same parts as those in the above embodiment or other modifications, and the description thereof may be omitted.
以下に、上記実施の形態の各変形例について説明する。以降の説明において上記実施の形態または他の変形例と同一の部分においては同一の符号を付してその説明を省略する場合がある。 [Description of Modifications]
In the following, various modifications of the above embodiment will be described. In the following description, the same reference numerals will be used to designate the same parts as those in the above embodiment or other modifications, and the description thereof may be omitted.
(変形例1)
上記実施の形態の変形例1について説明する。上記実施の形態では、容器本体160の内圧を外圧よりも高めることで、一対の第二壁部162を弾性変形させる場合を例示した。この変形例1では、各第二壁部162を外方に引っ張ることで、各第二壁部162を弾性変形させる場合について説明する。 (Variation 1)
A first modification of the above embodiment will be described. In the above embodiment, the case where the pair ofsecond wall portions 162 are elastically deformed by increasing the internal pressure of the container body 160 to be higher than the external pressure has been exemplified. In this first modification, a case where each second wall portion 162 is elastically deformed by pulling each second wall portion 162 outward will be described.
上記実施の形態の変形例1について説明する。上記実施の形態では、容器本体160の内圧を外圧よりも高めることで、一対の第二壁部162を弾性変形させる場合を例示した。この変形例1では、各第二壁部162を外方に引っ張ることで、各第二壁部162を弾性変形させる場合について説明する。 (Variation 1)
A first modification of the above embodiment will be described. In the above embodiment, the case where the pair of
図7は、変形例1に係る蓄電素子10の製造装置900aの概略構成を示す斜視図である。図7は図5に対応する図である。図7に示すように、製造装置900aは、保持部910aと、変形部920aと、挿入部930とを備えている。
FIG. 7 is a perspective view showing the schematic configuration of a manufacturing apparatus 900a for the energy storage element 10 according to the first modified example. FIG. 7 corresponds to FIG. 5. As shown in FIG. 7, the manufacturing apparatus 900a includes a holding portion 910a, a deformation portion 920a, and an insertion portion 930.
保持部910aは、容器本体160を下方から支える一対の柱部915aを備えている。具体的には、一対の柱部915aはX軸方向に所定の間隔をあけて配置されていて、一方の柱部915aが容器本体160のX軸プラス方向の端部を支持し、他方の柱部915aが容器本体160のX軸マイナス方向の端部を支持する。
The holding portion 910a is equipped with a pair of pillars 915a that support the container body 160 from below. Specifically, the pair of pillars 915a are arranged at a predetermined interval in the X-axis direction, with one pillar 915a supporting the end of the container body 160 in the positive X-axis direction, and the other pillar 915a supporting the end of the container body 160 in the negative X-axis direction.
変形部920aは、容器本体160の各第二壁部162を外方に引っ張ることで、各第二壁部162を弾性変形させる。具体的には、変形部920aは一対の吸着部925aを備えている。一対の吸着部925aは、Y軸方向に所定の間隔をあけて配置されていて、一方の吸着部925aがY軸プラス方向の第二壁部162に吸着し、他方の吸着部925aがY軸マイナス方向の第二壁部162に吸着する。吸着後においては、一対の吸着部925aが互いに離れることで、各第二壁部162を外方に引っ張る。これにより、容器本体160の一対の第二壁部162の間隔が広がるように、一対の第二壁部162が弾性変形する。この状態を維持したまま、挿入部930で、容器本体160の一対の第二壁部162の間に電極体700を挿入する。このとき、容器本体160の一対の第二壁部162の間隔が広がっているので、スムーズに電極体700を一対の第二壁部162の間に挿入できる。
The deformation portion 920a elastically deforms each second wall portion 162 of the container body 160 by pulling each second wall portion 162 outward. Specifically, the deformation portion 920a has a pair of suction portions 925a. The pair of suction portions 925a are arranged at a predetermined interval in the Y-axis direction, and one suction portion 925a is suctioned to the second wall portion 162 in the positive direction of the Y-axis, and the other suction portion 925a is suctioned to the second wall portion 162 in the negative direction of the Y-axis. After suction, the pair of suction portions 925a move away from each other, pulling each second wall portion 162 outward. As a result, the pair of second wall portions 162 elastically deform so that the interval between the pair of second wall portions 162 of the container body 160 widens. While maintaining this state, the electrode body 700 is inserted between the pair of second wall portions 162 of the container body 160 by the insertion portion 930. At this time, the gap between the pair of second walls 162 of the container body 160 has widened, so the electrode body 700 can be smoothly inserted between the pair of second walls 162.
このように、各第二壁部162を外方に引っ張ることで変形させているので、各第二壁部162の間隔が広がるように各第二壁部162を容易に変形させることができる。
In this way, each second wall portion 162 is deformed by being pulled outward, so that each second wall portion 162 can be easily deformed so that the spacing between each second wall portion 162 increases.
ここでは、変形部920aが各第二壁部162を吸着した状態で外方に引っ張る場合を例示したが、各第二壁部162を把持した状態で外方に引っ張ってもよい。一対の吸着部925aが互いに離れることで、各第二壁部162を外方に引っ張ることとしたが、一対の第二壁部162に吸着する一対の吸着部925aのうち、一方の吸着部925aのみを外方に引っ張ってもよい。
Here, the case where the deformation portion 920a adheres to each second wall portion 162 and pulls it outward has been exemplified, but each second wall portion 162 may be pulled outward while being gripped. The pair of adhesion portions 925a are separated from each other to pull each second wall portion 162 outward, but only one of the pair of adhesion portions 925a adhered to the pair of second wall portions 162 may be pulled outward.
(変形例2)
上記実施の形態の変形例2について説明する。上記実施の形態では、X軸方向の両端部が開放された開放部分を備える筒状の容器本体160と、容器本体160の各開放部分を閉塞する一対の容器蓋体170とを備える容器100を例示した。しかしながら、容器本体は、X軸方向の両端部が開放されているのであれば如何なる形状でもよい。容器蓋体は、容器本体の開放部分を閉塞するのであれば如何なる形状でもよい。 (Variation 2)
A second modification of the above embodiment will be described. In the above embodiment, thecontainer 100 is illustrated as including a cylindrical container body 160 having open portions at both ends in the X-axis direction, and a pair of container lids 170 that close the open portions of the container body 160. However, the container body may have any shape as long as both ends in the X-axis direction are open. The container lids may have any shape as long as they close the open portions of the container body.
上記実施の形態の変形例2について説明する。上記実施の形態では、X軸方向の両端部が開放された開放部分を備える筒状の容器本体160と、容器本体160の各開放部分を閉塞する一対の容器蓋体170とを備える容器100を例示した。しかしながら、容器本体は、X軸方向の両端部が開放されているのであれば如何なる形状でもよい。容器蓋体は、容器本体の開放部分を閉塞するのであれば如何なる形状でもよい。 (Variation 2)
A second modification of the above embodiment will be described. In the above embodiment, the
図8は、変形例2に係る容器本体160a及び容器蓋体170aを示す分解斜視図である。図8に示すように、容器本体160aは、X軸方向の両端部と、Z軸プラス方向の端部とが開放された開放部分を備え、X軸方向から見てU字状の部材である。容器本体160aは、第一壁部161aと、一対の第二壁部162aとを備えている。容器蓋体170aは、容器本体160aの開放部分を閉塞するように容器本体160aに接合される、Y軸方向から見て逆U字状の部材である。容器蓋体170aは、第三壁部163aと、一対の第四壁部164aとを備えている。一対の第四壁部164aは、第三壁部163aの両端部から連続し、Z軸方向に延びる矩形平板状の部位である。
FIG. 8 is an exploded perspective view showing the container body 160a and the container lid 170a according to the second modification. As shown in FIG. 8, the container body 160a has open portions at both ends in the X-axis direction and at the end in the positive Z-axis direction, and is a U-shaped member as viewed from the X-axis direction. The container body 160a has a first wall portion 161a and a pair of second walls 162a. The container lid 170a is an inverted U-shaped member as viewed from the Y-axis direction, and is joined to the container body 160a so as to close the open portion of the container body 160a. The container lid 170a has a third wall portion 163a and a pair of fourth walls 164a. The pair of fourth walls 164a are rectangular flat plate-shaped portions that are continuous from both ends of the third wall portion 163a and extend in the Z-axis direction.
上記した容器本体160aでは、X軸方向の両側(X軸プラス方向及びX軸マイナス方向)及びZ軸プラス方向から電極体700を挿入できる。いずれの方向から電極体700を挿入する場合においても、変形例1で例示したように、各第二壁部162aを外方に引っ張れば、各第二壁部162aを弾性変形させることが可能である。
In the above-described container body 160a, the electrode body 700 can be inserted from both sides in the X-axis direction (the positive and negative directions of the X-axis) and from the positive direction of the Z-axis. When the electrode body 700 is inserted from either direction, as exemplified in Modification Example 1, by pulling each second wall portion 162a outward, it is possible to elastically deform each second wall portion 162a.
図9は、変形例2に係る容器本体160aの弾性変形前と弾性変形後の状態を示す図である。図9は図6に対応する図である。容器本体160aでは、各第二壁部162aの肉厚t2aは、第一壁部161aの肉厚t1aよりも薄い。これにより、各第二壁部162aは、第一壁部161aよりも弾性変形しやすくなっている。つまり、変形部920aによって各第二壁部162aが外方に引っ張られると、容器本体160aの各第二壁部162aの間隔が広がるように各第二壁部162aが弾性変形する(図9の二点鎖線参照)。
FIG. 9 is a diagram showing the state of the container body 160a according to the second modification example before and after elastic deformation. FIG. 9 is a diagram corresponding to FIG. 6. In the container body 160a, the thickness t2a of each second wall portion 162a is thinner than the thickness t1a of the first wall portion 161a. This makes each second wall portion 162a more susceptible to elastic deformation than the first wall portion 161a. In other words, when each second wall portion 162a is pulled outward by the deformation portion 920a, each second wall portion 162a is elastically deformed so that the spacing between each second wall portion 162a of the container body 160a increases (see the two-dot chain line in FIG. 9).
(その他)
以上、本発明の実施の形態(その変形例も含む。以下同様)に係る蓄電素子について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であり、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。 (others)
Although the energy storage element according to the embodiment of the present invention (including its modified examples, the same applies below) has been described above, the present invention is not limited to the above-mentioned embodiment. The embodiment disclosed here is illustrative in all respects, and the scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
以上、本発明の実施の形態(その変形例も含む。以下同様)に係る蓄電素子について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であり、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。 (others)
Although the energy storage element according to the embodiment of the present invention (including its modified examples, the same applies below) has been described above, the present invention is not limited to the above-mentioned embodiment. The embodiment disclosed here is illustrative in all respects, and the scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
例えば、上記実施の形態では、製造時においては一対の第二壁部162のそれぞれが弾性変形される場合を例示した。しかしながら、一方の第二壁部のみが弾性変形されてもよい。この場合、弾性変形される一方の第二壁部のみの肉厚を第一壁部の肉厚よりも薄くしてもよい。
For example, in the above embodiment, a case has been exemplified in which each of the pair of second wall portions 162 is elastically deformed during manufacturing. However, only one of the second wall portions may be elastically deformed. In this case, the thickness of only the one of the second wall portions that is elastically deformed may be thinner than the thickness of the first wall portion.
上記実施の形態では、容器100内に電極体700が1つのみ収容されている場合を例示したが、複数の電極体が容器内に収容されてもよい。
In the above embodiment, a case in which only one electrode body 700 is contained in the container 100 is illustrated, but multiple electrode bodies may be contained in the container.
上記実施の形態では、巻回型の電極体700を例示した。しかし、電極体の形状は巻回型に限らず、平板状極板を積層したスタック型や、極板及び/またはセパレータを蛇腹状に折り畳んだ形状(セパレータを蛇腹状に折り畳んで矩形の極板を挟む形態、極板とセパレータとを重ねた後に蛇腹状に折り畳む形態等)などでもよい。いずれにおいても、電極体の積層方向はY軸方向とするのが好ましい。スタック型や蛇腹状に折り畳んだ形状の電極体はX軸方向に突出したタブ部を備え、タブ部と集電体600とが接合される。タブ部は電極体700と別体であってもよいし、一体でもよい。スタック型の電極体において、積層方向の両端の面が一対の平坦部に該当する。
In the above embodiment, a wound type electrode body 700 is exemplified. However, the shape of the electrode body is not limited to the wound type, and may be a stack type in which flat electrode plates are stacked, or a shape in which the electrode plates and/or separators are folded in an accordion-like shape (such as a shape in which the separator is folded in an accordion-like shape to sandwich a rectangular electrode plate, or a shape in which the electrode plate and the separator are stacked and then folded in an accordion-like shape). In either case, it is preferable that the stacking direction of the electrode body is the Y-axis direction. A stack type or accordion-like folded electrode body has a tab portion protruding in the X-axis direction, and the tab portion and the current collector 600 are joined. The tab portion may be separate from the electrode body 700, or may be integral with it. In a stack type electrode body, the surfaces at both ends in the stacking direction correspond to a pair of flat portions.
上記実施の形態等の蓄電素子は、蓄電装置に用いられてもよい。この場合、蓄電装置が備える少なくとも1つの蓄電素子に対して、本発明の技術が適用されればよい。図10は、実施の形態に係る蓄電素子10を備えた蓄電装置800を示す説明図である。図10に示すように、複数の蓄電素子10は、蓄電装置800の内部に配置される。蓄電装置800は、各蓄電素子10を電気的に接続するバスバー(図示省略)を備えてもよい。蓄電装置800は、一以上の蓄電素子10の状態を監視する状態監視装置(図示省略)を備えてもよい。
The energy storage elements of the above embodiments may be used in an energy storage device. In this case, the technology of the present invention may be applied to at least one energy storage element included in the energy storage device. FIG. 10 is an explanatory diagram showing an energy storage device 800 including an energy storage element 10 according to an embodiment. As shown in FIG. 10, multiple energy storage elements 10 are arranged inside the energy storage device 800. The energy storage device 800 may include a bus bar (not shown) that electrically connects the energy storage elements 10. The energy storage device 800 may include a status monitoring device (not shown) that monitors the status of one or more energy storage elements 10.
上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。
Any combination of the components included in the above embodiment and its variations is also included within the scope of the present invention.
本発明は、リチウムイオン二次電池などの蓄電素子に適用できる。
The present invention can be applied to energy storage elements such as lithium-ion secondary batteries.
10 蓄電素子
100 容器
160、160a 容器本体
161、161a 第一壁部
162、162a 第二壁部
163、163a 第三壁部
164a 第四壁部
170、170a 容器蓋体
300 端子
330 端子本体部
340 軸部
400 外部ガスケット
500 内部ガスケット
600 集電体
630 第一接合部
640 第二接合部
700 電極体
710 本体部
711 湾曲部
712 平坦部
720 接続部
800 蓄電装置
900、900a 製造装置
910、910a 保持部
911 第一室
912 第二室
913、914 通気口
915a 柱部
920、920a 変形部
925a 吸着部
930 挿入部
931 アーム
932 把持部
L 巻回軸
t1、t1a、t2、t2a、t3 肉厚 10Energy storage element 100 Container 160, 160a Container body 161, 161a First wall portion 162, 162a Second wall portion 163, 163a Third wall portion 164a Fourth wall portion 170, 170a Container lid body 300 Terminal 330 Terminal body portion 340 Shaft portion 400 External gasket 500 Internal gasket 600 Current collector 630 First bonding portion 640 Second bonding portion 700 Electrode body 710 Body portion 711 Curved portion 712 Flat portion 720 Connection portion 800 Energy storage device 900, 900a Manufacturing device 910, 910a Holding portion 911 First chamber 912 Second chamber 913, 914 Vent 915a Column portion 920, 920a Deformation portion 925a Adsorption portion 930 Insertion portion 931 Arm 932 Grip portion L Winding axis t1, t1a, t2, t2a, t3 Wall thickness
100 容器
160、160a 容器本体
161、161a 第一壁部
162、162a 第二壁部
163、163a 第三壁部
164a 第四壁部
170、170a 容器蓋体
300 端子
330 端子本体部
340 軸部
400 外部ガスケット
500 内部ガスケット
600 集電体
630 第一接合部
640 第二接合部
700 電極体
710 本体部
711 湾曲部
712 平坦部
720 接続部
800 蓄電装置
900、900a 製造装置
910、910a 保持部
911 第一室
912 第二室
913、914 通気口
915a 柱部
920、920a 変形部
925a 吸着部
930 挿入部
931 アーム
932 把持部
L 巻回軸
t1、t1a、t2、t2a、t3 肉厚 10
Claims (7)
- 電極体と、
前記電極体を収容する容器とを備え、
前記容器は、
少なくとも所定の方向の両端部が開放された容器本体と、
前記容器本体の開放部分を閉塞する容器蓋体とを備え、
前記容器本体は、
前記所定の方向に延びる第一壁部と、
前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、
前記一対の第二壁部のうち少なくとも1つの第二壁部の肉厚は、前記第一壁部の肉厚よりも薄い
蓄電素子。 An electrode body;
A container for accommodating the electrode assembly,
The container comprises:
A container body having at least both ends in a predetermined direction open;
a container lid for closing an open portion of the container body,
The container body includes:
A first wall portion extending in the predetermined direction;
a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other;
a thickness of at least one of the pair of second wall portions is thinner than a thickness of the first wall portion. - 前記容器本体は、
前記一対の第二壁部において前記第一壁部とは反対側の縁辺から連続し、前記第一壁部に対向する第三壁部を有し、
前記一対の第二壁部のうち少なくとも1つの第二壁部の肉厚は、前記第三壁部の肉厚よりも薄い
請求項1に記載の蓄電素子。 The container body includes:
a third wall portion that is continuous with an edge of the pair of second wall portions opposite to the first wall portion and faces the first wall portion,
The energy storage element according to claim 1 , wherein a thickness of at least one of the pair of second wall portions is thinner than a thickness of the third wall portion. - 前記電極体は、平坦状の平坦部を備え、
前記一対の第二壁部と前記平坦部とが重なる
請求項1または2に記載の蓄電素子。 The electrode body has a flat portion,
The energy storage element according to claim 1 , wherein the pair of second wall portions and the flat portion overlap each other. - 電極体と、前記電極体を収容する容器とを備える蓄電素子の製造方法であって、
前記容器は、
少なくとも所定の方向の両端部が開放された容器本体と、
前記容器本体の開放部分を閉塞する容器蓋体とを備え、
前記容器本体は、
前記所定の方向に延びる第一壁部と、
前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、
前記製造方法は、
前記容器本体の前記一対の第二壁部の間隔が広がるように前記一対の第二壁部のうち少なくとも1つの第二壁部を変形させた状態で、前記電極体を前記一対の第二壁部の間に挿入する
蓄電素子の製造方法。 A method for manufacturing an electric storage element including an electrode assembly and a container for accommodating the electrode assembly,
The container comprises:
A container body having at least both ends in a predetermined direction open;
a container lid for closing an open portion of the container body,
The container body includes:
A first wall portion extending in the predetermined direction;
a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other;
The manufacturing method includes:
A method for manufacturing an energy storage element, comprising: inserting the electrode body between the pair of second wall portions while deforming at least one of the pair of second wall portions of the container body so as to widen the gap between the pair of second wall portions. - 前記一対の第二壁部のうち少なくとも1つの第二壁部を外方に引っ張ることで、前記少なくとも1つの第二壁部を変形させる
請求項4に記載の蓄電素子の製造方法。 The method for manufacturing an energy storage element according to claim 4 , further comprising the step of: pulling outwardly at least one of the pair of second wall portions, thereby deforming the at least one second wall portion. - 前記容器本体は、
前記一対の第二壁部において前記第一壁部とは反対側の縁辺から連続し、前記第一壁部に対向する第三壁部を有し、
前記製造方法は、
前記容器本体の内圧を外圧よりも高めることで、前記一対の第二壁部を変形させる
請求項4に記載の蓄電素子の製造方法。 The container body includes:
a third wall portion that is continuous with an edge of the pair of second wall portions opposite to the first wall portion and faces the first wall portion,
The manufacturing method includes:
The method for manufacturing an energy storage element according to claim 4 , wherein the pair of second walls are deformed by increasing an internal pressure of the container body to be higher than an external pressure. - 電極体と、前記電極体を収容する容器とを備える蓄電素子の製造装置であって、
前記容器は、
少なくとも所定の方向の両端部が開放された容器本体と、 前記容器本体の開放部分を閉塞する容器蓋体とを備え、
前記容器本体は、
前記所定の方向に延びる第一壁部と、
前記第一壁部における前記所定の方向に沿う一対の縁辺から連続し、互いに対向する一対の第二壁部とを備え、
前記製造装置は、
前記容器本体の前記一対の第二壁部の間隔が広がるように前記一対の第二壁部のうち少なくとも1つの第二壁部を変形させる変形部と、
前記変形部による変形後に前記一対の第二壁部の間に前記電極体を挿入する挿入部とを備える
蓄電素子の製造装置。 An apparatus for manufacturing an electric storage element comprising an electrode body and a container for accommodating the electrode body,
The container comprises:
A container body having at least both ends in a predetermined direction open, and a container lid for closing the open portion of the container body,
The container body includes:
A first wall portion extending in the predetermined direction;
a pair of second wall portions that are continuous with a pair of edges of the first wall portion along the predetermined direction and face each other;
The manufacturing apparatus includes:
a deformation portion that deforms at least one of the pair of second wall portions of the container body so that the interval between the pair of second wall portions is increased;
an insertion portion that inserts the electrode body between the pair of second wall portions after deformation by the deformation portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-014424 | 2023-02-02 | ||
JP2023014424 | 2023-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024161990A1 true WO2024161990A1 (en) | 2024-08-08 |
Family
ID=92146461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001042 WO2024161990A1 (en) | 2023-02-02 | 2024-01-17 | Electric power storage element, method for manufacturing electric power storage element, and device for manufacturing electric power storage element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024161990A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008084559A (en) * | 2006-09-26 | 2008-04-10 | Toyota Motor Corp | Battery, and manufacturing method of battery |
JP2008311193A (en) * | 2007-06-18 | 2008-12-25 | Toyota Motor Corp | Battery and its manufacturing method |
JP2014192053A (en) * | 2013-03-27 | 2014-10-06 | Gs Yuasa Corp | Power storage element |
-
2024
- 2024-01-17 WO PCT/JP2024/001042 patent/WO2024161990A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008084559A (en) * | 2006-09-26 | 2008-04-10 | Toyota Motor Corp | Battery, and manufacturing method of battery |
JP2008311193A (en) * | 2007-06-18 | 2008-12-25 | Toyota Motor Corp | Battery and its manufacturing method |
JP2014192053A (en) * | 2013-03-27 | 2014-10-06 | Gs Yuasa Corp | Power storage element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11050092B2 (en) | Method for manufacturing prismatic secondary battery | |
US11316235B2 (en) | Prismatic secondary battery, assembled battery using the same and method of producing the same | |
EP2953186B1 (en) | Electricity storage device | |
WO2024161990A1 (en) | Electric power storage element, method for manufacturing electric power storage element, and device for manufacturing electric power storage element | |
US11990628B2 (en) | Secondary battery | |
JP6752691B2 (en) | Rechargeable battery | |
CN111886738A (en) | Electric storage element | |
WO2024150803A1 (en) | Power storage element and method for producing same | |
WO2024150804A1 (en) | Power storage element | |
JP2022110189A (en) | Power storage element | |
JP2024110169A (en) | Energy storage element | |
WO2022163636A1 (en) | Power storage element | |
JP7567364B2 (en) | Energy storage element | |
JP2024100044A (en) | Power storage device | |
WO2023063328A1 (en) | Power storage element | |
JP2024100006A (en) | Power storage element and manufacturing method thereof | |
WO2023063332A1 (en) | Power storage element | |
JP2024100011A (en) | Power storage element | |
WO2023105987A1 (en) | Power storage element | |
WO2022163520A1 (en) | Power storage element | |
WO2023063329A1 (en) | Power storage element | |
US20240154179A1 (en) | Energy storage device | |
JP7528482B2 (en) | Energy storage element | |
WO2022163790A1 (en) | Electricity storage element | |
WO2023112766A1 (en) | Power source system and control method for power source system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24749944 Country of ref document: EP Kind code of ref document: A1 |