WO2024146522A1 - 电子膨胀阀、热管理系统和车辆 - Google Patents

电子膨胀阀、热管理系统和车辆 Download PDF

Info

Publication number
WO2024146522A1
WO2024146522A1 PCT/CN2024/070171 CN2024070171W WO2024146522A1 WO 2024146522 A1 WO2024146522 A1 WO 2024146522A1 CN 2024070171 W CN2024070171 W CN 2024070171W WO 2024146522 A1 WO2024146522 A1 WO 2024146522A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic expansion
valve
expansion valve
rotor
needle assembly
Prior art date
Application number
PCT/CN2024/070171
Other languages
English (en)
French (fr)
Inventor
许敏
叶梅娇
刘乐强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024146522A1 publication Critical patent/WO2024146522A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application aims to solve one of the technical problems in the related art at least to some extent.
  • the present application proposes an electronic expansion valve, which can improve the accuracy of adjusting the opening of the electronic expansion valve while ensuring reliability.
  • the electronic expansion valve of the present application by setting the ratio of the number of pulse steps executed by the drive motor and the movement distance of the valve needle assembly when the electronic expansion valve changes from a fully closed state to a fully open state to 152 ⁇ P/L ⁇ 230, it can not only ensure the reliability of torque transmission between the drive motor and the valve needle assembly, but also effectively improve the accuracy of the opening adjustment of the electronic expansion valve.
  • FIG. 2 is a second structural schematic diagram of an electronic expansion valve according to an embodiment of the present application.
  • FIG3 is a schematic structural diagram of the cooperation between the nut assembly and the stop ring of the electronic expansion valve according to an embodiment of the present application.
  • FIG. 6 is a second structural schematic diagram of a rotor assembly according to an embodiment of the present application.
  • FIG. 8 is a third structural schematic diagram of a rotor assembly according to an embodiment of the present application.
  • FIG. 9 is a partial enlarged view of A in FIG. 1 .
  • the electronic expansion valve 100 according to an embodiment of the present application is described below with reference to FIGS. 1 to 9 .
  • the electronic expansion valve 100 includes a valve seat 10, a valve needle assembly 20 and a drive motor 30.
  • the valve seat 10 is provided with a valve port 11.
  • the drive motor 30 is used to drive the valve needle assembly 20 to move in a direction close to or away from the valve port 11, thereby adjusting the opening of the electronic expansion valve 100; the electronic expansion valve 100 has a fully open state and a fully closed state.
  • the drive motor 30 drives the valve needle assembly 20 to move in a direction away from the valve port 11 so as to separate from the valve port 11. At this time, the valve port 11 is fully open, and the electronic expansion valve 100 is in a fully open state.
  • the flow area of the refrigerant and other fluids through the valve port 11 is the largest, and the flow rate is also the largest; the drive motor 30 drives the valve needle assembly 20 to move in a direction close to the valve port 11 until the valve needle assembly 20 abuts against the valve port 11 to completely close the valve port 11. At this time, the electronic expansion valve 100 is in a fully closed state. As shown in Figure 1, the refrigerant and other fluids cannot flow through the valve port 11.
  • the ratio P/L between the number of pulse steps executed by the drive motor 30 and the moving distance of the valve needle assembly 20 is related to the accuracy of the opening adjustment of the electronic expansion valve 100.
  • the P/L is smaller, the reliability of the torque transmission between the drive motor 30 and the valve needle assembly 20 is higher, but the accuracy of the opening adjustment of the electronic expansion valve 100 is lower.
  • the P/L is larger, the accuracy of the opening adjustment of the electronic expansion valve 100 is higher, but the reliability of the torque transmission between the drive motor 30 and the valve needle assembly 20 is lower.
  • both the opening adjustment accuracy and the reliability of the torque transmission between the drive motor 30 and the valve needle assembly 20 can be maintained. This can ensure the reliability of torque transmission between the drive motor 30 and the valve needle assembly 20, and can also effectively improve the accuracy of opening adjustment of the electronic expansion valve 100. In this way, the control accuracy and reliability of the electronic expansion valve 100 are improved, which is conducive to improving the qualified rate of the product.
  • 158 ⁇ P/L ⁇ 179 or 190 ⁇ P/L ⁇ 215 the comprehensive performance of the control accuracy and reliability of the electronic expansion valve 100 is better.
  • the pulse step number of the drive motor 30 when the electronic expansion valve 100 is in a fully closed state, the pulse step number of the drive motor 30 is 0, when the electronic expansion valve 100 is in a fully closed state, the pulse step number of the drive motor 30 is P, when the pulse step number of the drive motor 30 is from 0 to P/2, the ratio of the pulse step number executed by the drive motor 30 to the moving distance of the valve needle assembly 20 is (P/L) 1 , when the pulse step number of the drive motor 30 is from P/2 to P, the ratio of the pulse step number executed by the drive motor 30 to the moving distance of the valve needle assembly 20 is (P/L) 2 , wherein, (P/L) 1 >(P/L) 2 .
  • the pulse step number of the drive motor 30 is from P/2 to P, that is, from the moment t/2 to the moment t, that is, in the second half of the time period when the electronic expansion valve 100 is in the valve opening
  • the ratio of the pulse step number executed by the drive motor 30 to the moving distance of the valve needle assembly 20 is (P/L) 2 , wherein (P/L) 1 >(P/L) 2 , it can be ensured that when the electronic expansion valve 100 is in the fully closed state, the valve needle assembly 20 and the valve port 11 are tightly matched, thereby ensuring that the electronic expansion valve 100 does not leak.
  • valve needle assembly 20 includes a screw 22 and a valve needle 23.
  • the valve needle cooperates with the valve port 11 of the valve seat 10 to adjust the opening of the electronic expansion valve 100.
  • the screw 22 and the valve needle 23 are connected by the middle spring 24.
  • the driving motor 30 drives the valve needle 23 to move axially by driving the screw 22, thereby selectively abutting or separating the valve port 11.
  • the drive motor 30 includes a stator assembly 31 and a rotor assembly 32, the rotor assembly 32 is sleeved on the valve needle assembly 20 and is fixedly connected to the valve needle assembly 20, and the electronic expansion valve 100 also includes The sleeve 40 is sleeved on the outside of the rotor assembly 32 and is located between the stator assembly 31 and the rotor assembly 32; when the electronic expansion valve 100 is in a fully closed state, the distance from the end of the valve needle assembly 20 away from the valve seat 10 to the top wall of the sleeve 40 is d, where d>L.
  • the electronic expansion valve 100 also includes a sleeve 40, which is located between the stator assembly 31 and the rotor assembly 32 and is used to isolate the stator assembly 31 and the rotor assembly 32.
  • the sleeve 40 is a tubular member with an open end. The sleeve 40 is sleeved on the rotor assembly 32 from the end of the valve needle assembly 20 away from the valve seat 10, that is, the upper end in FIG. 1.
  • d 2.7L.
  • the distance from the upper end of the valve needle assembly 20 to the top wall of the sleeve 40 can be set to d ⁇ 2.7L when the electronic expansion valve 100 is in the fully closed state.
  • the above setting can facilitate the standardization of the sleeve 40.
  • valve needle assembly 20 is provided with a positioning portion 21 , and the rotor assembly 32 cooperates with the positioning portion 21 to position the rotor assembly 32 .
  • a positioning portion 21 is provided on the valve needle assembly 20, so that the relative position of the rotor assembly 32 and the valve needle assembly 20 can be conveniently and accurately controlled.
  • the assembly difficulty can be reduced and the assembly efficiency can be improved.
  • the positioning portion 21 can be a boss on the screw 22.
  • the boss can limit the rotor assembly 32, thereby achieving the positioning of the rotor assembly 32, with a simple structure and accurate positioning.
  • the positioning portion 21 is not limited to a boss, but can also be other forms, as long as it can cooperate with the rotor assembly 32 to position the rotor assembly 32.
  • the electronic expansion valve 100 includes a nut assembly 60, which is fixed to the valve seat 10 and sleeved on the outside of the valve needle assembly 20.
  • the valve needle assembly 20 and the nut assembly 60 are threadedly matched to convert the rotational movement of the valve needle assembly 20 into axial movement.
  • a spiral track is provided on the outside of the nut assembly 60, and a first limiting portion 61 and a second limiting portion 62 are respectively provided at both ends of the spiral track along the axial direction of the nut assembly 60.
  • the stop ring 50 moves to the first limit position, and the stop ring 50 cannot move upward by rotating, so that the rotor assembly 32 cannot move upward, and the valve needle assembly 20 fixedly connected to the rotor assembly 32 cannot move upward any more.
  • the electronic expansion valve 100 is in a fully closed state.
  • the stop ring 50 rotates to contact the stop portion 52 with the second limit portion 62 in FIG. 3
  • the stop ring 50 moves to the second limit position, and the stop ring 50 cannot move downward by rotating, so that the rotor assembly 32 cannot move downward, and the valve needle assembly 20 fixedly connected to the rotor assembly 32 cannot move downward any more.
  • the electronic expansion valve 100 is in a fully closed state.
  • the upper limit position and the lower limit position of the axial movement of the valve needle assembly 20 are limited, and the moving distance of the valve needle assembly 20 is also limited.
  • the rotor positioning member 323 is a plastic member
  • the guide member 324 is injection-moldedly connected to the rotor positioning member 323
  • the guide member 324 is welded to the valve needle assembly 20 .
  • the rotor assembly 32 may include a rotor 322 and a guide 324, the guide 324 includes a fixing portion 3242 and a guide portion 3243, the fixing portion 3242 is provided with a fixing hole 3241, the fixing portion 3242 is sleeved on the valve needle assembly 20 through the fixing hole 3241 and is fixedly connected to the valve needle assembly 20, and the fixing portion 3242 is fixedly connected to the rotor 322.
  • the guide 324 may be a metal part, the fixing portion 3242 may be welded to the screw 22, and the fixing portion 3242 may be welded or injection molded to the rotor 322.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种电子膨胀阀、热管理系统和车辆,电子膨胀阀(100)包括阀座(10)、阀针组件(20)和驱动电机(30),阀座(10)设置有阀口(11),驱动电机(30)用于驱动阀针组件(20)沿靠近或远离阀口(11)的方向移动,从而调整电子膨胀阀(100)的开度,电子膨胀阀(100)具有全开状态和全关状态,在全开状态,阀口(11)完全打开,在全关状态,阀针组件(20)和阀口(11)抵接以使阀口(11)完全关闭,电子膨胀阀(100)从全关状态至全开状态,驱动电机执行的脉冲步数为P,阀针组件(20)的移动距离为L,则152≤P/L≤230。

Description

电子膨胀阀、热管理系统和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2023年01月04日提交的、名称为“电子膨胀阀、热管理系统和车辆”的、中国专利申请号“202320039774.X”的优先权。
技术领域
本申请涉及车辆热管理领域,涉及一种电子膨胀阀及具有其的热管理系统和车辆。
背景技术
电子膨胀阀为车辆热管理系统中的重要部件,电子膨胀阀大体包括阀座、驱动组件和阀针组件等,通过驱动组件的旋转驱动使阀针组件抵接或分离电子膨胀阀的阀口,实现电子膨胀阀的流量调节功能。相关技术中,电子膨胀阀进行开度调节的精确度较低。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种电子膨胀阀,在保证可靠性的前提下,能够提高电子膨胀阀调节开度的精确度。
根据本申请第一方面的电子膨胀阀,包括:阀座,所述阀座设置有阀口;阀针组件;驱动电机,用于驱动所述阀针组件沿靠近或远离所述阀口的方向移动,从而调节所述电子膨胀阀的开度;所述电子膨胀阀具有全开状态和全关状态,在所述全开状态,所述阀口完全打开,在所述全关状态,所述阀针与所述阀口抵接以使所述阀口完全关闭;所述电子膨胀阀从所述全关状态至所述全开状态,所述驱动电机执行的脉冲步数为P,所述阀针的移动距离为L,其中,152≤P/L≤230。
由此,根据本申请的电子膨胀阀,通过将电子膨胀阀从全关状态至全开状态时,驱动电机执行的脉冲步数与阀针组件的移动距离的比值设置为152≤P/L≤230,既能保证驱动电机与阀针组件之间扭矩传递的可靠性,也能有效提高电子膨胀阀开度调节的精确度。
本申请进一步提出了一种热管理系统,包括根据上述的电子膨胀阀。
本申请进一步提出了一种车辆,包括上述的热管理系统。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的电子膨胀阀的结构示意图一。
图2是根据本申请实施例的电子膨胀阀的结构示意图二。
图3是根据本申请实施例的电子膨胀阀的螺母组件与止挡圈配合的结构示意图。
图4是根据本申请实施例的止挡圈的结构示意图。
图5是根据本申请实施例的转子组件的结构示意图一。
图6是根据本申请实施例的转子组件的结构示意图二。
图7是根据本申请实施例的导动件的结构示意图。
图8是根据本申请实施例的转子组件的结构示意图三。
图9是图1中A的局部放大图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图9描述根据本申请实施例的电子膨胀阀100。
如图1和图2所示,电子膨胀阀100包括阀座10、阀针组件20和驱动电机30,阀座10设置有阀口11,驱动电机30用于驱动阀针组件20沿靠近或远离阀口11的方向移动,从而调节电子膨胀阀100的开度;电子膨胀阀100具有全开状态和全关状态,驱动电机30驱动阀针组件20沿远离阀口11的方向移动从而与阀口11分离,此时阀口11完全打开,电子膨胀阀100处于全开状态,如图2所示,冷媒等流体通过阀口11的流通面积最大,流量也最大;驱动电机30驱动阀针组件20沿靠近阀口11的方向移动至阀针组件20与阀口11抵接以使阀口11完全关闭,此时电子膨胀阀100处于全关状态,如图1所示,冷媒等流体无法从阀口11流通。
电子膨胀阀100从全关状态至全开状态,驱动电机30执行的脉冲步数为P,阀针组件20的移动距离为L,如图2所示,实线所示的阀针组件20处于全开状态,虚线所示的部分阀针组件20处于全关状态,其中,152≤P/L≤230。
申请人发现,电子膨胀阀100从全关状态至全开状态,驱动电机30执行的脉冲步数与阀针组件20的移动距离之间的比值P/L与电子膨胀阀100进行开度调节的精确度有关,当P/L越小时,驱动电机30与阀针组件20之间扭矩传递的可靠性越高,但电子膨胀阀100开度调节的精确度越低,当P/L越大时,电子膨胀阀100开度调节的精确度越高,但驱动电机30与阀针组件20之间扭矩传递的可靠性越低,通过研究发现,当152≤P/L≤230时,既能保 证驱动电机30与阀针组件20之间扭矩传递的可靠性,也能有效提高电子膨胀阀100开度调节的精确度。如此,则电子膨胀阀100的控制精度和可靠性提高,有利于提高产品的合格率。
在本申请的一些实施例中,158≤P/L≤179或190≤P/L≤215。通过研究得出,当158≤P/L≤179或190≤P/L≤215时,电子膨胀阀100控制精度和可靠性的综合性能较优。
在本申请的一些实施例中,P/L=160或P/L=192。通过研究得出,当P/L=160或P/L=192时,电子膨胀阀100控制精度和可靠性的综合性能较优。可以理解的是,由于驱动电机30种类繁多,会影响使得电子膨胀阀100综合性能较优的P/L比值,P/L=160和P/L=192为分别使具有不同种类的驱动电机30的电子膨胀阀100达到综合性能较优的比值。
在本申请的一些实施例中,如图2所示,电子膨胀阀100处于全关状态时,驱动电机30的脉冲步数为0,电子膨胀阀100处于全关状态时,驱动电机30的脉冲步数为P,驱动电机30的脉冲步数从0至P/2时,驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值为(P/L)1,驱动电机30的脉冲步数从P/2至P时,驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值为(P/L)2,其中,(P/L)1>(P/L)2
电子膨胀阀100处于全关状态的时刻为0,驱动电机30的脉冲步数为P,此时调节电子膨胀阀100,使电子膨胀阀100由全关状态转变为全开状态,这时时刻记录为t,驱动电机30的脉冲步数为P,则驱动电机30的脉冲步数从0至P/2时,也即从0时刻至t/2时刻,换句话说,电子膨胀阀100在开阀的前半时间段,驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值为(P/L)1,驱动电机30的脉冲步数从P/2至P时,也即从t/2时刻至t时刻,即电子膨胀阀100在开阀的后半时间段,驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值为(P/L)2,其中(P/L)1>(P/L)2,则可以保证电子膨胀阀100在全关状态下,阀针组件20与阀口11的配合紧密程度,从而保证电子膨胀阀100不漏液。
可以理解的是,阀针组件20包括螺杆22和阀针23,阀针与阀座10的阀口11配合以调节电子膨胀阀100的开度,螺杆22与阀针23通过中间的弹簧24连接,驱动电机30通过驱动螺杆22驱动阀针23沿轴向移动,从而选择性地抵接或分离阀口11。在电子膨胀阀100开阀的前半时间段,驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值(P/L)1,大于电子膨胀阀100开发的后半时间段驱动电机30执行的脉冲步数与阀针组件20的移动距离的比值(P/L)2,则电子膨胀阀100开阀的前半时间段阀针组件20的移动距离相对较小,那么电子膨胀阀100在全光状态下,弹簧24处于压缩状态,则可以保证阀针组件20与阀口11的配合紧密程度。
在本申请的一些实施例中,如图1和图2所示,驱动电机30包括定子组件31和转子组件32,转子组件32套设于阀针组件20且与阀针组件20固定连接,电子膨胀阀100还包括 套管40,套管40套设于转子组件32外部且套管40位于定子组件31和转子组件32之间;电子膨胀阀100处于全关状态时,阀针组件20远离阀座10的一端到套管40顶壁的距离为d,其中,d>L。
可以理解的是,转子组件32套设于阀针组件20且与阀针组件20固定连接,则阀针组件20的至少部分与转子组件32同步转动,电子膨胀阀100还包括套管40,套管40位于定子组件31和转子组件32之间,用于隔离定子组件31和转子组件32,套管40为一端开口的管状件,套管40从阀针组件20远离阀座10的一端也即图1中的上端套设在转子组件32上,当电子膨胀阀100处于全关状态时,阀针组件20的上端到套管40上端的顶壁的距离大于L,也即大于电子膨胀阀100从全关状态至全开状态,阀针组件20的移动距离L,如此,当电子膨胀阀100动作至全开状态时,阀针组件20的上端与套管40之间不接触,从而减小电子膨胀阀100在开度调节的过程中,阀针组件20和套管40之间的损耗,从而提高电子膨胀阀100的使用寿命。
在本申请的一些实施例中,d<2.7L。
可以理解的是,为了减小电子膨胀阀100在阀针组件20轴向上的高度,可以将电子膨胀阀100处于全关状态时,阀针组件20的上端到套管40顶壁的距离设置为d<2.7L,此外,上述设置可以方便套管40的标准化。
在本申请的一些实施例中,如图1和图9所示,阀针组件20设置有定位部21,转子组件32与定位部21配合以对转子组件32定位。
可以理解的是,转子组件32套设在阀针组件20上的位置很大程度上影响电子膨胀阀100的开阀能力,因此在阀针组件20上设置定位部21,从而可以方便准确地控制转子组件32和阀针组件20的相对位置,此外,可以降低装配难度,提高装配效率。
需要说明的是,定位部21可以是螺杆22上的凸台,当转子组件32套设在阀针组件20上时,凸台能够对转子组件32进行限位,从而实现对转子组件32定位,结构简单,定位精确。可以理解的是,定位部21不限于是凸台,也可以是其它形式,只要能够与转子组件32配合以对转子组件32定位即可。
在本申请的一些实施例中,如图5和图6所示,转子组件32包括转子322、转子定位件323和导动件324,转子定位件323套设于阀针组件20,转子定位件323的至少部分外周缘与转子322固定连接,导动件324与转子定位件323固定连接,且导动件324设置于转子322和阀针组件20之间,导动件324用于带动电子膨胀阀100的止挡圈50转动,以使止挡圈50沿阀针组件20的轴向运动,当止挡圈50运动至第一限位时,电子膨胀阀100处于全开状态,当止挡圈50运动至第二限位时,电子膨胀阀100处于全关状态。
可以理解的是,通过转子定位件323套设在阀针组件20上,转子定位件323分别与导 动件324和转子322固定连接,从而实现将转子组件32套设在阀针组件20上。转子定位件323设置有螺杆固定孔,且设置有与上述阀针组件20上的定位部21配合的结构,当转子定位件323通过螺杆固定孔套设在阀针组件20上时,转子定位件323与阀针组件20上的定位部21配合以对转子定位件323定位,转子定位件323与转子322和导动件324分别可以通过焊接、注塑或其它方式连接,这样,通过设置转子定位件323,可以方便实现转子组件32与阀针组件20的连接以及导动件324与转子322的连接等。
需要说明的是,电子膨胀阀100包括螺母组件60,螺母组件60固定于阀座10,且螺母组件60套设于阀针组件20外部,阀针组件20与螺母组件60螺纹配合以将阀针组件20的旋转运动转化为轴向运动,为了对阀针组件20沿轴向移动的范围进行限定,螺母组件60外侧设置有螺旋轨道,且螺旋轨道沿螺母组件60的轴向方向两端分别设置有第一限位部61和第二限位部62,电子膨胀阀100设置有止挡圈50,止挡圈50包括凸出部51、止挡部52和滑动部53,其中滑动部53成与螺旋轨道相配合的螺旋状,凸出部51和止挡部52分别位于滑动部分两端,止挡圈50构造为能够沿螺旋轨道转动的同时沿螺母组件60的轴向移动,导动件324与止挡圈50的凸出部51接触配合,并能够带动止挡圈50转动,当止挡圈50转动至与图3中的第一限位部61接触时,止挡圈50运动至第一限位,止挡圈50无法通过转动向上移动,从而转子组件32无法向上移动,则与转子组件32固定连接的阀针组件20不能再向上移动,此时电子膨胀阀100处于全关状态,当止挡圈50转动至止挡部52与图3中的第二限位部62接触时,止挡圈50运动至第二限位,止挡圈50无法通过转动向下移动,从而转子组件32无法向下移动,则与转子组件32固定连接的阀针组件20不能再向下移动,此时电子膨胀阀100处于全关状态。由此,限定了阀针组件20沿轴向移动的上限位置和下限位置,同时限定了阀针组件20的移动距离。
在本申请的一些实施例中,如图5所示,转子定位件323为金属件,转子定位件323设置有通孔3231,导动件324适于穿过通孔3231与止挡圈50接触,导动件324与转子定位件323焊接,转子定位件323与阀针组件20焊接。
可以理解的是,转子定位件323可以为金属件,转子定位件323设置有螺杆固定孔,转子定位件323通过螺杆22定位孔套设在阀针组件20上,转子定位件323与阀针组件20焊接。转子定位件323上设置有通孔3231,导动件324通过通孔3231从转子定位件323的上部穿设至下部,并与止挡圈50接触配合。导动件324的上端可以弯折并与转子定位件323焊接。此种方式,方便施工焊接,且结构强度好,转子组件32更为耐用。
在本申请的一些实施例中,如图6和图7所示,转子定位件323为塑料件,导动件324与转子定位件323注塑连接,导动件324与阀针组件20焊接。
可以理解的是,转子定位件323可以是塑料件,导动件324与转子定位件323通过注塑 连接,转子定位件323可以通过注塑与转子322连接,导动件324为金属件,导动件324与转子定位件323注塑后的结构件设置有螺杆固定孔,导动件324和转子定位件323通过螺杆固定孔套设在螺杆22上之后,导动件324与阀针组件20焊接,需要说明的是,螺杆固定孔内壁的至少部分为导动件324,从而能够使导动件324与螺杆22接触并焊接。如图7所示,导动件324可以为带有螺杆固定孔的环形结构与杆状结构的结合,转子组件32的装配顺序为,先将导动件324与转子定位件323注塑,再将转子定位件323与转子322注塑,之后将转子组件32套设在螺杆22上,通过定位部21对转子组件32定位,最后通过焊接方式将导动件324与阀针组件20连接固定。
在本申请的一些实施例中,如图8所示,转子组件32包括转子322和导动件324,导动件324包括相互连接的固定部3242和导动部3243,固定部3242设置有固定孔3241,固定部3242通过固定孔3241套设于阀针组件20,且与阀针组件20固定连接,固定部3241与转子322固定连接,导动部3243用于带动电子膨胀阀100的止挡圈50转动,以使止挡圈50沿阀针组件20的轴向运动,当止挡圈50运动至第一限位时,电子膨胀阀100处于全开状态,当止挡圈50运动至第二限位时,电子膨胀阀100处于全关状态。
可以理解的是,止挡圈50的作用和原理已在上文介绍,这里不再赘述。转子组件32可以包括转子322和导动件324,导动件324包括固定部3242和导动部3243,固定部3242设置有固定孔3241,固定部3242通过固定孔3241套设在阀针组件20上且与阀针组件20固定连接,固定部3242与转子322固定连接。其中导动件324可以是金属件,固定部3242可以与螺杆22焊接,固定部3242可以与转子322焊接或注塑连接。
根据本申请第二方面实施例的热管理系统,包括根据本申请第一方面实施例的电子膨胀阀100。通过包括本申请第一方面实施例的电子膨胀阀100,从而具有其所有的有益效果,此处不再赘述。
根据本申请第三方面实施例的车辆,包括根据本申请第二方面实施例的热管理系统,并具有其所有的有益效果,此处不再赘述。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明 确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种电子膨胀阀(100),其中,包括:
    阀座(10),所述阀座设置有阀口(11);
    阀针组件(20);
    驱动电机(30),用于驱动所述阀针组件(20)沿靠近或远离所述阀口(11)的方向移动,从而调节所述电子膨胀阀(100)的开度;
    所述电子膨胀阀(100)具有全开状态和全关状态,在所述全开状态,所述阀口(11)完全打开,在所述全关状态,所述阀针组件(20)与所述阀口(11)抵接以使所述阀口(11)完全关闭;
    所述电子膨胀阀(100)从所述全关状态至所述全开状态,所述驱动电机(30)执行的脉冲步数为P,所述阀针组件(20)的移动距离为L,其中,152≤P/L≤230。
  2. 根据权利要求1所述的电子膨胀阀(100),其中,158≤P/L≤179或190≤P/L≤215。
  3. 根据权利要求1或2所述的电子膨胀阀(100),其中,P/L=160或P/L=192。
  4. 根据权利要求1-3中任一项所述的电子膨胀阀(100),其中,所述电子膨胀阀(100)处于所述全关状态时,所述驱动电机(30)的脉冲步数为0,所述电子膨胀阀(100)处于所述全开状态时,所述驱动电机(30)的脉冲步数为P,所述驱动电机(30)的脉冲步数从0至P/2时,所述驱动电机(30)执行的脉冲步数与所述阀针组件(20)的移动距离的比值为(P/L)1,所述驱动电机(30)的脉冲步数从P/2至P时,所述驱动电机(30)执行的脉冲步数与所述阀针组件(20)的移动距离的比值为(P/L)2,其中,(P/L)1>(P/L)2
  5. 根据权利要求1-4中任一项所述的电子膨胀阀(100),其中,所述驱动电机(30)包括定子组件(31)和转子组件(32),所述转子组件(32)套设于所述阀针组件(20)且与所述阀针组件(20)固定连接,所述电子膨胀阀(100)还包括套管(40),所述套管(40)套设于所述转子组件(32)外部且所述套管(40)位于所述定子组件(31)和所述转子组件(32)之间;
    所述电子膨胀阀(100)处于所述全关状态时,所述阀针组件(20)远离所述阀座(10)的一端到所述套管(40)顶壁的距离为d,其中,d>L。
  6. 根据权利要求5所述的电子膨胀阀(100),其中,d<2.7L。
  7. 根据权利要求5或6所述的电子膨胀阀(100),其中,所述阀针组件(20)设置有定位部(21),所述转子组件(32)与所述定位部(21)配合以对所述转子组件(32)定位。
  8. 根据权利要求5-7中任一项所述的电子膨胀阀(100),其中,所述转子组件(32)包括转子(322)、转子定位件(323)和导动件(324),所述转子定位件(323)套设于所述 阀针组件(20),所述转子定位件(323)的至少部分外周缘与所述转子(322)固定连接,所述导动件(324)与所述转子定位件(323)固定连接,且所述导动件(324)设置于所述转子(322)和所述阀针组件(20)之间,所述导动件(324)用于带动所述电子膨胀阀(100)的止挡圈(50)转动,以使所述止挡圈(50)沿所述阀针组件(20)的轴向运动,当所述止挡圈(50)运动至第一限位时,所述电子膨胀阀(100)处于所述全开状态,当所述止挡圈(50)运动至第二限位时,所述电子膨胀阀(100)处于所述全关状态。
  9. 根据权利要求8所述的电子膨胀阀(100),其中,所述转子定位件(323)为金属件,所述转子定位件(323)设置有通孔(3231),所述导动件(324)适于穿过所述通孔(3231)与所述止挡圈(50)接触,所述导动件(324)与所述转子定位件(323)焊接,所述转子定位件(323)与所述阀针组件(20)焊接。
  10. 根据权利要求8所述的电子膨胀阀(100),其中,所述转子定位件(323)为塑料件,所述导动件(324)与所述转子定位件(323)注塑连接,所述导动件(324)与所述阀针组件(20)焊接。
  11. 根据权利要求5-10中任一项所述的电子膨胀阀(100),其中,所述转子组件(32)包括转子(322)和导动件(324),所述导动件(324)包括相互连接的固定部(3242)和导动部(3243),所述固定部(3242)设置有固定孔(3241),所述固定部(3242)通过所述固定孔(3241)套设于所述阀针组件(20),且与所述阀针组件(20)固定连接,所述固定部(3242)与所述转子(322)固定连接,所述导动部(3243)用于带动所述电子膨胀阀(100)的止挡圈(50)转动,以使所述止挡圈(50)沿所述阀针组件(20)的轴向运动,当所述止挡圈(50)运动至第一限位时,所述电子膨胀阀(100)处于所述全开状态,当所述止挡圈(50)运动至第二限位时,所述电子膨胀阀(100)处于所述全关状态。
  12. 一种热管理系统,其中,包括权利要求1-11中任一项所述的电子膨胀阀(100)。
  13. 一种车辆,其中,包括权利要求12所述的热管理系统。
PCT/CN2024/070171 2023-01-04 2024-01-02 电子膨胀阀、热管理系统和车辆 WO2024146522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202320039774.XU CN219346852U (zh) 2023-01-04 2023-01-04 电子膨胀阀、热管理系统和车辆
CN202320039774.X 2023-01-04

Publications (1)

Publication Number Publication Date
WO2024146522A1 true WO2024146522A1 (zh) 2024-07-11

Family

ID=87099516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/070171 WO2024146522A1 (zh) 2023-01-04 2024-01-02 电子膨胀阀、热管理系统和车辆

Country Status (2)

Country Link
CN (1) CN219346852U (zh)
WO (1) WO2024146522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219346852U (zh) * 2023-01-04 2023-07-14 比亚迪股份有限公司 电子膨胀阀、热管理系统和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968132A (zh) * 2013-02-04 2014-08-06 杭州三花研究院有限公司 一种电子膨胀阀的控制方法以及控制设备
CN104806774A (zh) * 2014-01-26 2015-07-29 杭州三花研究院有限公司 一种电子膨胀阀
CN107192179A (zh) * 2017-06-05 2017-09-22 广东美的暖通设备有限公司 空调器及电子膨胀阀的控制方法和计算机可读存储介质
CN110220029A (zh) * 2019-07-10 2019-09-10 诸暨市亿霸电子阀门有限公司 一种电子膨胀阀的驱动机构
CN114484733A (zh) * 2022-01-26 2022-05-13 宁波奥克斯电气股份有限公司 膨胀阀控制方法、装置和空调系统
CN219346852U (zh) * 2023-01-04 2023-07-14 比亚迪股份有限公司 电子膨胀阀、热管理系统和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968132A (zh) * 2013-02-04 2014-08-06 杭州三花研究院有限公司 一种电子膨胀阀的控制方法以及控制设备
CN104806774A (zh) * 2014-01-26 2015-07-29 杭州三花研究院有限公司 一种电子膨胀阀
CN107192179A (zh) * 2017-06-05 2017-09-22 广东美的暖通设备有限公司 空调器及电子膨胀阀的控制方法和计算机可读存储介质
CN110220029A (zh) * 2019-07-10 2019-09-10 诸暨市亿霸电子阀门有限公司 一种电子膨胀阀的驱动机构
CN114484733A (zh) * 2022-01-26 2022-05-13 宁波奥克斯电气股份有限公司 膨胀阀控制方法、装置和空调系统
CN219346852U (zh) * 2023-01-04 2023-07-14 比亚迪股份有限公司 电子膨胀阀、热管理系统和车辆

Also Published As

Publication number Publication date
CN219346852U (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2024146522A1 (zh) 电子膨胀阀、热管理系统和车辆
JP3937029B2 (ja) 電動弁
JP4669051B2 (ja) 電動弁
JP5510686B2 (ja) 電動弁及びその止め装置
WO2018137636A1 (zh) 电子膨胀阀
JP3997077B2 (ja) 電動弁
JP2012007683A (ja) 雌ねじ部材、それを用いた電動弁及び電動弁用雌ねじ部材の製造方法
JP2000213660A (ja) 冷凍サイクル用電子膨張弁
WO2021031682A1 (zh) 电子膨胀阀及其安装方法
WO2024114101A1 (zh) 膨胀阀
JPH07310844A (ja) 電動弁
WO2024114104A1 (zh) 控制阀
JP7058744B2 (ja) 電子膨張弁
JPH06241338A (ja) 電動弁用のロータ中心体とロータ送りねじ及びロータの製造方法
WO2021228013A1 (zh) 电子膨胀阀
CN2526754Y (zh) 变频空调器电子膨胀阀
WO2024093742A1 (zh) 膨胀阀
US8209863B2 (en) Methods of manufacturing rotor core for motor-driven valve, rotor feed screw and rotor
JP2004360762A (ja) 電動弁
CN2564804Y (zh) 变频空调电子膨胀阀
JP5778902B2 (ja) 雌ねじ部材、それを用いた電動弁及び電動弁用雌ねじ部材の製造方法
JP4615693B2 (ja) 電動式コントロールバルブ
CN112013575B (zh) 一种电子膨胀阀
JP2004092801A (ja) 電動弁
CN217603469U (zh) 一种便于驱动阀针的电子膨胀阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24738455

Country of ref document: EP

Kind code of ref document: A1