WO2024143493A1 - Dope, optical film and production method for same, and film roll - Google Patents

Dope, optical film and production method for same, and film roll Download PDF

Info

Publication number
WO2024143493A1
WO2024143493A1 PCT/JP2023/047027 JP2023047027W WO2024143493A1 WO 2024143493 A1 WO2024143493 A1 WO 2024143493A1 JP 2023047027 W JP2023047027 W JP 2023047027W WO 2024143493 A1 WO2024143493 A1 WO 2024143493A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
dope
polymer
film
inorganic particles
Prior art date
Application number
PCT/JP2023/047027
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 井本
健介 寳來
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2024143493A1 publication Critical patent/WO2024143493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L37/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • This disclosure relates to a dope, an optical film and its manufacturing method, and a film roll.
  • Patent Document 1 discloses an optical film that contains a copolymer that includes a structural unit derived from a specific ⁇ -methylene lactone. This optical film has excellent transparency.
  • Patent Document 1 does not consider anti-blocking properties.
  • a method for producing an optical film comprising a step of obtaining a film by a solution casting method using the dope according to any one of [1] to [8].
  • An optical film comprising a polymer containing a structural unit derived from ⁇ -methylene lactone and inorganic particles, the inorganic particles being contained in a layer containing the polymer, and the inorganic particles having an average primary particle size of 5 to 100 nm.
  • the optical film according to [10] or [11], wherein the inorganic particles include silica particles.
  • the optical film according to [12], wherein the silica particles are spherical.
  • the optical film according to [12], wherein the silica particles have an irregular shape.
  • the optical film according to any one of [10] to [14], wherein the difference in refractive index between the polymer and the inorganic particles is 0.090 or less.
  • a dope containing a polymer containing a structural unit derived from ⁇ -methylene lactone which can achieve both antiblocking properties and transparency, an optical film, and a film roll using the optical film.
  • a method for producing an optical film using the dope it is possible to provide a method for producing an optical film using the dope.
  • the dope of the present embodiment contains a polymer containing a structural unit derived from ⁇ -methylene lactone, inorganic particles, and a solvent, and the average primary particle size of the inorganic particles is 5 to 100 nm.
  • the polymer contains structural units derived from ⁇ -methylene lactone.
  • ⁇ -Methylene lactone is a general term for compounds in which an exomethylene group is bonded to the ⁇ -carbon atom of a lactone ring.
  • the number of ring members in the lactone ring is not particularly limited, but may be a 4- to 8-membered ring, a 5- or 6-membered ring, or a 5-membered ring.
  • R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms. It is preferable that R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and it is more preferable that all of them are hydrogen atoms.
  • the structural unit derived from ⁇ -methylene lactone is formed by polymerization of ⁇ -methylene lactone.
  • the polymer may contain only one type of structural unit derived from ⁇ -methylene lactone, or may contain two or more types.
  • the structural unit derived from ⁇ -methylene lactone preferably contains a structural unit shown in the following formula (2).
  • the structural unit shown in the following formula (2) is formed, for example, by polymerization of a compound shown in formula (1).
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • aliphatic hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, cyclopentyl, and cyclohexyl groups.
  • aromatic hydrocarbon groups include phenyl, tolyl, and benzyl groups.
  • the content of structural units derived from ⁇ -methylene lactone in the polymer is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass. This allows the heat resistance, transparency, and strength of the optical film obtained from this polymer to be further improved.
  • the polymer preferably contains structural units derived from an alkyl (meth)acrylate.
  • Alkyl (meth)acrylate is a general term for esters of (meth)acrylic acid and monohydric alkyl alcohol.
  • alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, and n-hexyl (meth)acrylate.
  • the structural unit derived from alkyl (meth)acrylate is formed by polymerization of alkyl (meth)acrylate.
  • the polymer may contain only one type of structural unit derived from alkyl (meth)acrylate, or may contain two or more types.
  • the structural unit derived from alkyl (meth)acrylate preferably contains a structural unit derived from alkyl (meth)acrylate having an alkyl group with 1 to 6 carbon atoms, more preferably contains a structural unit derived from alkyl (meth)acrylate having an alkyl group with 1 to 3 carbon atoms, and even more preferably contains a structural unit derived from methyl methacrylate.
  • the content of structural units derived from alkyl (meth)acrylate in the polymer is preferably 50 to 95% by mass, and more preferably 60 to 90% by mass. This allows the heat resistance, transparency, and strength of the optical film obtained from this copolymer to be further improved.
  • the polymer may contain other structural units different from the structural units derived from ⁇ -methylene lactone and the structural units derived from alkyl (meth)acrylate.
  • the other structural units include structural units derived from monomers such as benzyl (meth)acrylate, chloromethyl (meth)acrylate, 2-chloroethyl (meth)acrylate, styrene, vinyl toluene, ⁇ -methylstyrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, and vinyl acetate.
  • the polymer may contain only one type of other structural unit, or may contain two or more types. Of course, the polymer may not contain other structural units.
  • the content of the other structural units in the copolymer may be 0 to 20% by mass, or may be 0 to 10% by mass.
  • the content of each structural unit in the polymer is determined by dissolving the polymer in a deuterated solvent, measuring 1 H-NMR, and calculating the area ratio of the peak corresponding to each structural unit.
  • the weight average molecular weight (Mw) of the polymer is preferably 180,000 to 600,000, more preferably 200,000 to 400,000, and even more preferably 220,000 to 300,000. This can further improve the bending resistance of the optical film obtained from this polymer.
  • the weight average molecular weight (Mw) of the polymer is measured by gel permeation chromatography (GPC).
  • the dope may contain only one type of polymer containing structural units derived from ⁇ -methylene lactone, or may contain two or more types.
  • a polymer containing a structural unit derived from ⁇ -methylene lactone can be obtained, for example, by suspension polymerization of the above-mentioned ⁇ -methylene lactone monomer in a solvent in the presence of a polymerization initiator and an emulsifier.
  • polymerization initiators include organic peroxides such as dilauroyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-amyl peroxypivalate, t-butylperoxyisopropylcarbonate, t-amylperoxy-2-ethylhexanoate, t-amylperoxyisononanoate, and t-butylperoxy-2-ethylhexanoate; and azo compounds such as 2,2'-azobis(isobutyronitrile), 1,1'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and dimethyl-2,2'-azobis(2-methylpropionate).
  • the amount of polymerization initiator added may be adjusted as appropriate, but is preferably 0.01 to
  • emulsifiers include water-soluble polymer dispersion stabilizers such as polyvinyl alcohol (PVA), polyvinylpyrrolidone, cellulose, gelatin, sodium polyacrylate, and sodium polymethacrylate; anionic surfactants such as sodium lauryl sulfate and polyoxyethylene alkylphenyl ether sulfate salts (e.g., polyoxyethylene distyrylphenyl ether sulfate ammonium); cationic surfactants such as alkylamine salts and quaternary ammonium salts; amphoteric surfactants such as lauryl dimethylamine oxide; nonionic surfactants such as polyoxyethylene alkyl ether; and inorganic dispersants such as alginate, zein, and casein; barium sulfate, calcium sulfate, barium carbonate, magnesium carbonate, calcium phosphate, talc, clay, diatomaceous earth, bentonite, titanium hydroxide, thacryl
  • chain transfer agents and additives may be added.
  • chain transfer agents examples include monofunctional thiol compounds such as n-dodecyl mercaptan and ⁇ -mercaptopropionic acid; bifunctional thiol compounds such as polysiloxanes modified at both ends with mercapto groups; and side-chain multifunctional mercapto-modified polysiloxanes in which the side chains are modified with mercapto groups.
  • the amount of chain transfer agent added may be adjusted as appropriate, but is preferably 0.001 to 1 part by mass per 100 parts by mass of monomer.
  • Additives include, for example, non-water-soluble organic solvents such as alkanes, and radical scavengers.
  • the amount of additive added can be adjusted as appropriate, but is preferably 0.001 to 1 part by mass per 100 parts by mass of monomer.
  • the polymerization temperature is preferably 40 to 100°C, more preferably 50 to 95°C, and even more preferably 60 to 90°C.
  • the polymerization time is preferably 0.5 to 20 hours, and more preferably 1 to 10 hours.
  • the resulting polymer may be dried.
  • the solvent (aqueous solvent) used in the suspension polymerization is removed, and the resulting polymer can be obtained as a powder.
  • the resulting polymer may be subjected to solid-liquid separation.
  • Methods for solid-liquid separation include, for example, filtration, centrifugation, and a combination of these.
  • the drying temperature is preferably 80 to 105°C, and more preferably 85 to 100°C.
  • the drying time is preferably 1 to 24 hours, more preferably 3 to 15 hours, and even more preferably 5 to 12 hours.
  • the difference in refractive index between the polymer and the inorganic particles is preferably 0.090 or less.
  • the difference in refractive index between the polymer and the inorganic particles may be 0.060 to 0.090.
  • the difference in refractive index between the polymer and the inorganic particles is measured by the method described in the examples.
  • the prepared dope may be filtered and degassed.
  • filters such as disk filters and pleated filters may be used.
  • rough filtering may be performed using a wire mesh or the like.
  • the filtration accuracy is preferably 0.1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and even more preferably 2 to 10 ⁇ m.
  • degassing known methods such as reduced pressure degassing and ultrasonic degassing may be used.
  • Optical Film 5 Using a coater, the dope 5 was cast on a PET film to form a casting film. The casting film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film having a thickness of 100 ⁇ m.
  • the unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, and an optical film 2c with a thickness of 25 ⁇ m was obtained.
  • MD direction machine direction
  • TD direction transverse direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A dope according to the present invention contains a polymer that has a structural unit derived from an α-methylene lactone, inorganic particles, and a solvent, the average primary particle size of the inorganic particles being 5–100 nm.

Description

ドープ、光学フィルム及びその製造方法、並びに、フィルムロールDope, optical film and its manufacturing method, and film roll
 本開示は、ドープ、光学フィルム及びその製造方法、並びに、フィルムロールに関する。 This disclosure relates to a dope, an optical film and its manufacturing method, and a film roll.
 例えば、特許文献1には、所定のα-メチレンラクトン由来の構造単位を含む共重合体を含有する光学フィルムが開示されている。この光学フィルムは透明性に優れる。 For example, Patent Document 1 discloses an optical film that contains a copolymer that includes a structural unit derived from a specific α-methylene lactone. This optical film has excellent transparency.
特開2008-179813号公報JP 2008-179813 A
 ところで、光学フィルムには、透明性以外にもアンチブロッキング性がしばしば求められる。この点について考えると、特許文献1ではアンチブロッキング性が検討されていない。 Incidentally, optical films are often required to have anti-blocking properties in addition to transparency. In this regard, Patent Document 1 does not consider anti-blocking properties.
 本開示は、アンチブロッキング性と透明性とを両立できる、α-メチレンラクトン由来の構造単位を含む重合体を含有するドープ、光学フィルム及び当該光学フィルムを用いたフィルムロールを提供することを目的とする。また、本開示は、上記ドープを用いた光学フィルムの製造方法を提供することを目的とする。 The present disclosure aims to provide a dope containing a polymer containing a structural unit derived from α-methylene lactone, which can achieve both antiblocking properties and transparency, an optical film, and a film roll using the optical film. The present disclosure also aims to provide a method for producing an optical film using the dope.
 本開示は、以下の[1]~[8]に記載のドープ、[9]に記載の光学フィルムの製造方法、[10]~[19]に記載の光学フィルム、及び、[20]に記載のフィルムロールを提供する。
[1] α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子と、溶媒とを含有し、上記無機粒子の平均一次粒子径が5~100nmである、ドープ。
[2] 上記無機粒子の平均一次粒子径が5~80nmである、[1]に記載のドープ。
[3] 上記無機粒子がシリカ粒子を含む、[1]又は[2]に記載のドープ。
[4] 上記シリカ粒子の形状が球状である、[3]に記載のドープ。
[5] 上記シリカ粒子の形状が不定形である、[3]に記載のドープ。
[6] 上記重合体と上記無機粒子との屈折率の差が0.090以下である、[1]~[5]のいずれかに記載のドープ。
[7] 上記溶媒が塩化メチレンとエタノールとを体積比9:1~7:3で混合した合溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドである、[1]~[6]のいずれかに記載のドープ。
[8] 更に、分子量が680以下である紫外線吸収剤を含有する、[1]~[7]のいずれかに記載のドープ。
[9] [1]~[8]のいずれかに記載のドープを用いて、溶液流延法によりフィルムを得る工程を含む、光学フィルムの製造方法。
[10] α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子とを含有し、上記重合体を含む層に上記無機粒子が含まれており、上記無機粒子の平均一次粒子径が5~100nmである、光学フィルム。
[11] 上記無機粒子の平均一次粒子径が5~80nmである、[10]に記載の光学フィルム。
[12] 上記無機粒子がシリカ粒子を含む、[10]又は[11]に記載の光学フィルム。
[13] 上記シリカ粒子の形状が球状である、[12]に記載の光学フィルム。
[14] 上記シリカ粒子の形状が不定形である、[12]に記載の光学フィルム。
[15] 上記重合体と上記無機粒子との屈折率の差が0.090以下である、[10]~[14]のいずれかに記載の光学フィルム。
[16] 更に、溶媒を10~10000質量ppm含有する、[10]~[15]のいずれかに記載の光学フィルム。
[17] 上記溶媒が塩化メチレンとエタノールとを体積比9:1~7:3で混合した溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドである[16]に記載の光学フィルム。
[18] 更に、分子量が680以下である紫外線吸収剤を含有する、[10]~[17]のいずれかに記載の光学フィルム。
[19] 波長380nmの光の透過率が5%以下である、[10]~[18]のいずれかに記載の光学フィルム。
[20] [10]~[19]のいずれかに記載の光学フィルムが巻回されてなる、フィルムロール。
The present disclosure provides a dope according to the following items [1] to [8], a method for producing an optical film according to the following item [9], an optical film according to the following items [10] to [19], and a film roll according to the following item [20].
[1] A dope comprising a polymer containing a structural unit derived from α-methylene lactone, inorganic particles, and a solvent, wherein the inorganic particles have an average primary particle size of 5 to 100 nm.
[2] The dope according to [1], wherein the average primary particle size of the inorganic particles is 5 to 80 nm.
[3] The dope according to [1] or [2], wherein the inorganic particles include silica particles.
[4] The dope according to [3], wherein the silica particles are spherical.
[5] The dope according to [3], wherein the silica particles have an irregular shape.
[6] The dope according to any one of [1] to [5], wherein the difference in refractive index between the polymer and the inorganic particles is 0.090 or less.
[7] The dope according to any one of [1] to [6], wherein the solvent is a mixed solvent of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide.
[8] The dope according to any one of [1] to [7], further comprising an ultraviolet absorbing agent having a molecular weight of 680 or less.
[9] A method for producing an optical film, comprising a step of obtaining a film by a solution casting method using the dope according to any one of [1] to [8].
[10] An optical film comprising a polymer containing a structural unit derived from α-methylene lactone and inorganic particles, the inorganic particles being contained in a layer containing the polymer, and the inorganic particles having an average primary particle size of 5 to 100 nm.
[11] The optical film according to [10], wherein the inorganic particles have an average primary particle size of 5 to 80 nm.
[12] The optical film according to [10] or [11], wherein the inorganic particles include silica particles.
[13] The optical film according to [12], wherein the silica particles are spherical.
[14] The optical film according to [12], wherein the silica particles have an irregular shape.
[15] The optical film according to any one of [10] to [14], wherein the difference in refractive index between the polymer and the inorganic particles is 0.090 or less.
[16] The optical film according to any one of [10] to [15], further comprising 10 to 10,000 ppm by mass of a solvent.
[17] The optical film according to [16], wherein the solvent is a mixture of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide.
[18] The optical film according to any one of [10] to [17], further comprising an ultraviolet absorber having a molecular weight of 680 or less.
[19] The optical film according to any one of [10] to [18], which has a transmittance of light with a wavelength of 380 nm of 5% or less.
[20] A film roll obtained by winding the optical film according to any one of [10] to [19].
 本開示によれば、アンチブロッキング性と透明性とを両立できる、α-メチレンラクトン由来の構造単位を含む重合体を含有するドープ、光学フィルム及び当該光学フィルムを用いたフィルムロールを提供できる。また、本開示によれば、上記ドープを用いた光学フィルムの製造方法を提供できる。 According to the present disclosure, it is possible to provide a dope containing a polymer containing a structural unit derived from α-methylene lactone, which can achieve both antiblocking properties and transparency, an optical film, and a film roll using the optical film. In addition, according to the present disclosure, it is possible to provide a method for producing an optical film using the dope.
 以下、本開示の実施形態を説明する。ただし、本開示は以下の実施形態に限定されるものではない。本開示に明示される数値範囲の上限値又は下限値は、実施例に示されるいずれかの値に置き換えられてもよい。また、個別に記載した上限値及び下限値は任意に組み合わされてもよい。なお、本開示中、「(メタ)アクリル酸」なる用語は、アクリル酸及びメタクリル酸を意味する。X~Yと示される数値範囲は、X以上Y以下を意味する。 Below, an embodiment of the present disclosure will be described. However, the present disclosure is not limited to the following embodiment. The upper or lower limit of the numerical range specified in this disclosure may be replaced with any value shown in the examples. Furthermore, the upper and lower limit values described individually may be combined in any way. In this disclosure, the term "(meth)acrylic acid" means acrylic acid and methacrylic acid. The numerical range shown as X to Y means from X to Y.
[ドープ]
 本実施形態のドープは、α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子と、溶媒とを含有し、無機粒子の平均一次粒子径が5~100nmである。
[Dope]
The dope of the present embodiment contains a polymer containing a structural unit derived from α-methylene lactone, inorganic particles, and a solvent, and the average primary particle size of the inorganic particles is 5 to 100 nm.
(重合体)
 重合体は、α-メチレンラクトン由来の構造単位を含む。
(Polymer)
The polymer contains structural units derived from α-methylene lactone.
(α-メチレンラクトン由来の構造単位)
 α-メチレンラクトンは、ラクトン環のα位の炭素にエキソメチレン基が結合した化合物の総称である。ラクトン環の環員数は、特に限定されないが、4~8員環であってもよく、5~6員環であってもよく、5員環であってもよい。
(Structural unit derived from α-methylene lactone)
α-Methylene lactone is a general term for compounds in which an exomethylene group is bonded to the α-carbon atom of a lactone ring. The number of ring members in the lactone ring is not particularly limited, but may be a 4- to 8-membered ring, a 5- or 6-membered ring, or a 5-membered ring.
 5員環であるα-メチレンラクトンとしては、例えば、以下の式(1)に示すような化合物が挙げられる。 An example of a five-membered α-methylene lactone is the compound shown in formula (1) below.
 式(1)におけるR~Rは、互いに独立して、水素原子又は炭素数1~18の炭化水素基である。R~Rは、互いに独立して、水素原子又は炭素数1~10のアルキル基であることが好ましく、全て水素原子であることがより好ましい。 In formula (1), R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms. It is preferable that R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and it is more preferable that all of them are hydrogen atoms.
 α-メチレンラクトン由来の構造単位は、α-メチレンラクトンの重合により形成される。重合体は、α-メチレンラクトン由来の構造単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。α-メチレンラクトン由来の構造単位は、以下の式(2)に示す構造単位を含むことが好ましい。以下の式(2)に示す構造単位は、例えば、式(1)に示す化合物の重合により形成される。 The structural unit derived from α-methylene lactone is formed by polymerization of α-methylene lactone. The polymer may contain only one type of structural unit derived from α-methylene lactone, or may contain two or more types. The structural unit derived from α-methylene lactone preferably contains a structural unit shown in the following formula (2). The structural unit shown in the following formula (2) is formed, for example, by polymerization of a compound shown in formula (1).
 式(2)におけるR~Rは、式(1)におけるR~Rと同義であり、互いに独立して、水素原子又は炭素数1~18の炭化水素基である。R~Rは、互いに独立して、水素原子又は炭素数1~10のアルキル基であることが好ましく、全て水素原子であることがより好ましい。 R 1 to R 4 in formula (2) have the same meaning as R 1 to R 4 in formula (1) and are each independently a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms. R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and more preferably all are hydrogen atoms.
 炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基が挙げられる。 The hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group. Examples of aliphatic hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, cyclopentyl, and cyclohexyl groups. Examples of aromatic hydrocarbon groups include phenyl, tolyl, and benzyl groups.
 重合体におけるα-メチレンラクトン由来の構造単位の含有量は、5~50質量%であることが好ましく、10~40質量%であることがより好ましい。これにより、この重合体から得られる光学フィルムの耐熱性、透明性及び強度を一層向上させることができる。 The content of structural units derived from α-methylene lactone in the polymer is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass. This allows the heat resistance, transparency, and strength of the optical film obtained from this polymer to be further improved.
((メタ)アクリル酸アルキル由来の構造単位)
 重合体は、(メタ)アクリル酸アルキル由来の構造単位を含むことが好ましい。
(Structural units derived from alkyl (meth)acrylate)
The polymer preferably contains structural units derived from an alkyl (meth)acrylate.
(メタ)アクリル酸アルキルは、(メタ)アクリル酸と1価のアルキルアルコールとのエステルの総称である。(メタ)アクリル酸アルキルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシルが挙げられる。 Alkyl (meth)acrylate is a general term for esters of (meth)acrylic acid and monohydric alkyl alcohol. Examples of alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, and n-hexyl (meth)acrylate.
 (メタ)アクリル酸アルキル由来の構造単位は、(メタ)アクリル酸アルキルの重合により形成される。重合体は、(メタ)アクリル酸アルキル由来の構造単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。(メタ)アクリル酸アルキル由来の構造単位は、炭素数1~6のアルキル基を有する(メタ)アクリル酸アルキル由来の構造単位を含むことが好ましく、炭素数1~3のアルキル基を有する(メタ)アクリル酸アルキル由来の構造単位を含むことがより好ましく、メタクリル酸メチル由来の構造単位を含むことが更に好ましい。 The structural unit derived from alkyl (meth)acrylate is formed by polymerization of alkyl (meth)acrylate. The polymer may contain only one type of structural unit derived from alkyl (meth)acrylate, or may contain two or more types. The structural unit derived from alkyl (meth)acrylate preferably contains a structural unit derived from alkyl (meth)acrylate having an alkyl group with 1 to 6 carbon atoms, more preferably contains a structural unit derived from alkyl (meth)acrylate having an alkyl group with 1 to 3 carbon atoms, and even more preferably contains a structural unit derived from methyl methacrylate.
 重合体における(メタ)アクリル酸アルキル由来の構造単位の含有量は、50~95質量%であることが好ましく、60~90質量%であることがより好ましい。これにより、この共重合体から得られる光学フィルムの耐熱性、透明性及び強度を一層向上させることができる。 The content of structural units derived from alkyl (meth)acrylate in the polymer is preferably 50 to 95% by mass, and more preferably 60 to 90% by mass. This allows the heat resistance, transparency, and strength of the optical film obtained from this copolymer to be further improved.
(その他の構造単位)
 重合体は、α-メチレンラクトン由来の構造単位及び(メタ)アクリル酸アルキル由来の構造単位とは異なるその他の構造単位を含んでいてもよい。その他の構造単位としては、例えば、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニル等の単量体由来の構造単位が挙げられる。重合体は、その他の構造単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。もちろん、重合体は、その他の構造単位を含んでいなくてもよい。共重合体におけるその他の構造単位の含有量は、0~20質量%であってもよく、0~10質量%であってもよい。
(Other structural units)
The polymer may contain other structural units different from the structural units derived from α-methylene lactone and the structural units derived from alkyl (meth)acrylate. Examples of the other structural units include structural units derived from monomers such as benzyl (meth)acrylate, chloromethyl (meth)acrylate, 2-chloroethyl (meth)acrylate, styrene, vinyl toluene, α-methylstyrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, and vinyl acetate. The polymer may contain only one type of other structural unit, or may contain two or more types. Of course, the polymer may not contain other structural units. The content of the other structural units in the copolymer may be 0 to 20% by mass, or may be 0 to 10% by mass.
 なお、重合体における各構造単位の含有量は、重合体を重溶媒に溶解させ、H-NMRを測定し、各構造単位に対応するピークの面積比を算出して求める。 The content of each structural unit in the polymer is determined by dissolving the polymer in a deuterated solvent, measuring 1 H-NMR, and calculating the area ratio of the peak corresponding to each structural unit.
 重合体の重量平均分子量(Mw)は、180000~600000であることが好ましく、200000~400000あることがより好ましく、220000~300000であることが更に好ましい。これにより、この重合体から得られる光学フィルムの耐折り曲げ性を一層向上させることができる。なお、重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定する。 The weight average molecular weight (Mw) of the polymer is preferably 180,000 to 600,000, more preferably 200,000 to 400,000, and even more preferably 220,000 to 300,000. This can further improve the bending resistance of the optical film obtained from this polymer. The weight average molecular weight (Mw) of the polymer is measured by gel permeation chromatography (GPC).
 重合体の数平均分子量(Mn)は、70000~300000であることが好ましく、90000~200000であることがより好ましく、100000~160000であることが更に好ましい。これにより、この重合体から得られる光学フィルムの耐折り曲げ性を一層向上させることができる。なお、重合体の数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定する。 The number average molecular weight (Mn) of the polymer is preferably 70,000 to 300,000, more preferably 90,000 to 200,000, and even more preferably 100,000 to 160,000. This can further improve the bending resistance of the optical film obtained from this polymer. The number average molecular weight (Mn) of the polymer is measured by gel permeation chromatography (GPC).
 重合体の始点法によって測定されるガラス転移温度(Tg)は、115℃以上であることが好ましく、115~180℃であることがより好ましく、120~150℃であることが更に好ましい。これにより、この重合体から得られる光学フィルムの耐熱性を一層向上させることができる。なお、重合体のガラス転移温度(Tg)は、JIS K 7121の規定に準拠して測定する。 The glass transition temperature (Tg) of the polymer measured by the starting point method is preferably 115°C or higher, more preferably 115 to 180°C, and even more preferably 120 to 150°C. This can further improve the heat resistance of the optical film obtained from this polymer. The glass transition temperature (Tg) of the polymer is measured in accordance with the provisions of JIS K 7121.
 ドープは、α-メチレンラクトン由来の構造単位を含む重合体を1種のみ含有していてもよく、2種以上含有していてもよい。 The dope may contain only one type of polymer containing structural units derived from α-methylene lactone, or may contain two or more types.
(α-メチレンラクトン由来の構造単位を含む重合体の製造方法)
 α-メチレンラクトン由来の構造単位を含む重合体は、例えば、上述のα-メチレンラクトン単量体を、重合開始剤及び乳化剤の存在下、溶媒中で懸濁重合して得る。
(Method for producing polymer containing structural unit derived from α-methylene lactone)
A polymer containing a structural unit derived from α-methylene lactone can be obtained, for example, by suspension polymerization of the above-mentioned α-methylene lactone monomer in a solvent in the presence of a polymerization initiator and an emulsifier.
 懸濁重合における溶媒は水系溶媒である。水系溶媒は、水単独であることが好ましいが、本発明による効果を阻害しない範囲で、非水溶媒(特に、水溶性有機溶媒)を含んでいてもよい。水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、2-メチルプロピルアルコール、2-メチル-2-プロパノール等のアルコール溶媒;アセトン、メチルエチルケトン等のケトン溶媒;酢酸エチル等のエステル溶媒;ジオキサン、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒が挙げられる。水系溶媒中の非水溶媒の含有量は、5質量%以下であってもよく、2質量%以下であってもよく、1質量%以下であってもよい。 The solvent used in suspension polymerization is an aqueous solvent. The aqueous solvent is preferably water alone, but may contain a non-aqueous solvent (particularly a water-soluble organic solvent) to the extent that the effect of the present invention is not impaired. Examples of water-soluble organic solvents include alcohol solvents such as methanol, ethanol, propanol, butanol, 2-methylpropyl alcohol, and 2-methyl-2-propanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate; and ether solvents such as dioxane, diethyl ether, and tetrahydrofuran. The content of the non-aqueous solvent in the aqueous solvent may be 5% by mass or less, 2% by mass or less, or 1% by mass or less.
 重合開始剤としては、例えば、ジラウロイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-アミルパーオキシピバレート、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシイソノナノエート、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)等のアゾ化合物が挙げられる。重合開始剤の添加量は、適宜調整すればよいが、単量体100質量部に対して、0.01~5質量部であることが好ましい。 Examples of polymerization initiators include organic peroxides such as dilauroyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-amyl peroxypivalate, t-butylperoxyisopropylcarbonate, t-amylperoxy-2-ethylhexanoate, t-amylperoxyisononanoate, and t-butylperoxy-2-ethylhexanoate; and azo compounds such as 2,2'-azobis(isobutyronitrile), 1,1'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and dimethyl-2,2'-azobis(2-methylpropionate). The amount of polymerization initiator added may be adjusted as appropriate, but is preferably 0.01 to 5 parts by mass per 100 parts by mass of monomer.
 乳化剤としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン、セルロース、ゼラチン、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム等の水溶性高分子系分散安定剤;ラウリル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩(例えば、ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム)等のアニオン性界面活性剤;アルキルアミン塩、第四級アンモニウム塩等のカチオン性界面活性剤;ラウリルジメチルアミンオキサイド等の両性イオン性界面活性剤;ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤;その他アルギン酸塩、ゼイン、カゼイン;硫酸バリウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、リン酸カルシウム、タルク、粘土、ケイソウ土、ベントナイト、水酸化チタン、水酸化トリウム、金属酸化物粉末等の無機分散剤が挙げられる。乳化剤の添加により、重合反応の安定性を向上させることができる。乳化剤の添加量は、適宜調整すればよいが、単量体100質量部に対して、0.1~4質量部であることが好ましい。 Examples of emulsifiers include water-soluble polymer dispersion stabilizers such as polyvinyl alcohol (PVA), polyvinylpyrrolidone, cellulose, gelatin, sodium polyacrylate, and sodium polymethacrylate; anionic surfactants such as sodium lauryl sulfate and polyoxyethylene alkylphenyl ether sulfate salts (e.g., polyoxyethylene distyrylphenyl ether sulfate ammonium); cationic surfactants such as alkylamine salts and quaternary ammonium salts; amphoteric surfactants such as lauryl dimethylamine oxide; nonionic surfactants such as polyoxyethylene alkyl ether; and inorganic dispersants such as alginate, zein, and casein; barium sulfate, calcium sulfate, barium carbonate, magnesium carbonate, calcium phosphate, talc, clay, diatomaceous earth, bentonite, titanium hydroxide, thorium hydroxide, and metal oxide powder. The addition of an emulsifier can improve the stability of the polymerization reaction. The amount of emulsifier added can be adjusted as appropriate, but is preferably 0.1 to 4 parts by mass per 100 parts by mass of monomer.
 乳化剤は、硫酸アンモニウム塩であることが好ましい。硫酸アンモニウム塩の乳化剤としては、例えば、ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム(ハイテノール(登録商標)NF-08)が挙げられる。 The emulsifier is preferably an ammonium sulfate salt. An example of an ammonium sulfate salt emulsifier is polyoxyethylene distyryl phenyl ether sulfate ester ammonium (Hitenol (registered trademark) NF-08).
 懸濁重合の際、単量体を水系溶媒中に分散させるときは、パドル翼等で撹拌して分散させてもよく、高速せん断タービン型分散機、高圧ジェットホモジナイザー、超音波式乳化分散機、媒体撹拌分散機、強制間隙通過型分散機等の装置を用いて分散させてもよい。 When dispersing the monomer in the aqueous solvent during suspension polymerization, it may be dispersed by stirring with a paddle blade or the like, or it may be dispersed using a device such as a high-speed shear turbine type disperser, a high-pressure jet homogenizer, an ultrasonic emulsifying disperser, a media stirring disperser, or a forced gap passing type disperser.
 単量体を重合させる際には、連鎖移動剤、添加剤を添加してもよい。 When polymerizing the monomers, chain transfer agents and additives may be added.
 連鎖移動剤としては、例えば、n-ドデシルメルカプタン、β-メルカプトプロピオン酸等の単官能チオール化合物;両末端メルカプト変性ポリシロキサン等の2官能チオール化合物;側鎖がメルカプト変性された側鎖多官能メルカプト変性ポリシロキサンが挙げられる。連鎖移動剤の添加量は、適宜調整すればよいが、単量体100質量部に対して、0.001~1質量部であることが好ましい。 Examples of chain transfer agents include monofunctional thiol compounds such as n-dodecyl mercaptan and β-mercaptopropionic acid; bifunctional thiol compounds such as polysiloxanes modified at both ends with mercapto groups; and side-chain multifunctional mercapto-modified polysiloxanes in which the side chains are modified with mercapto groups. The amount of chain transfer agent added may be adjusted as appropriate, but is preferably 0.001 to 1 part by mass per 100 parts by mass of monomer.
 添加剤としては、例えば、アルカン等の非水溶性有機溶媒、ラジカル捕捉剤が挙げられる。添加剤の添加量は、適宜調整すればよいが、単量体100質量部に対して、0.001~1質量部であることが好ましい。 Additives include, for example, non-water-soluble organic solvents such as alkanes, and radical scavengers. The amount of additive added can be adjusted as appropriate, but is preferably 0.001 to 1 part by mass per 100 parts by mass of monomer.
 重合温度は、40~100℃であることが好ましく、50~95℃であることがより好ましく、60~90℃であることが更に好ましい。重合時間は、0.5~20時間であることが好ましく、1~10時間であることがより好ましい。 The polymerization temperature is preferably 40 to 100°C, more preferably 50 to 95°C, and even more preferably 60 to 90°C. The polymerization time is preferably 0.5 to 20 hours, and more preferably 1 to 10 hours.
 重合後に、得られた重合体を乾燥してもよい。乾燥することにより、懸濁重合で使用した溶媒(水系溶媒)を取り除き、得られた重合体を粉体として得ることができる。乾燥する前に、得られた重合体を固液分離してもよい。固液分離の方法としては、例えば、濾取、遠心分離、それらの組み合わせが挙げられる。固液分離を行うことで、その後の乾燥において効率よく水系溶媒を取り除くことができる。 After polymerization, the resulting polymer may be dried. By drying, the solvent (aqueous solvent) used in the suspension polymerization is removed, and the resulting polymer can be obtained as a powder. Before drying, the resulting polymer may be subjected to solid-liquid separation. Methods for solid-liquid separation include, for example, filtration, centrifugation, and a combination of these. By performing solid-liquid separation, the aqueous solvent can be efficiently removed in the subsequent drying.
 乾燥温度は、80~105℃であることが好ましく、85~100℃であることがより好ましい。 The drying temperature is preferably 80 to 105°C, and more preferably 85 to 100°C.
 乾燥時間は、1~24時間であることが好ましく、3~15時間であることがより好ましく、5~12時間であることが更に好ましい。 The drying time is preferably 1 to 24 hours, more preferably 3 to 15 hours, and even more preferably 5 to 12 hours.
(無機粒子)
 無機粒子の平均一次粒子径は5~100nmである。平均一次粒子径は5~80nmであることが好ましく、10~80nmであることがより好ましく、15~70nmであることが更に好ましい。
(Inorganic particles)
The average primary particle size of the inorganic particles is 5 to 100 nm, preferably 5 to 80 nm, more preferably 10 to 80 nm, and even more preferably 15 to 70 nm.
 無機粒子としては、例えば、シリカ、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムが挙げられる。ドープは無機粒子を1種のみ含有していてもよく、2種以上含有していてもよい。 Examples of inorganic particles include silica, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. The dope may contain only one type of inorganic particle, or two or more types.
 無機粒子の形状は、例えば、球状であってもよく、不定形状であってもよい。無機粒子が球状以外の形状である場合には、長軸方向の長さについての平均を平均一次粒子径とする。なお、本実施形態における無機粒子の平均一次粒子径は、実施例に記載の方法で測定する。 The shape of the inorganic particles may be, for example, spherical or irregular. When the inorganic particles have a shape other than spherical, the average length in the major axis direction is taken as the average primary particle size. The average primary particle size of the inorganic particles in this embodiment is measured by the method described in the examples.
 無機粒子はシリカ粒子を含むことが好ましい。シリカ粒子の平均一次粒子径は5~100nmである。平均一次粒子径は5~80nmであることが好ましく、10~80nmであることがより好ましく、15~70nmであることが更に好ましい。 The inorganic particles preferably include silica particles. The average primary particle diameter of the silica particles is 5 to 100 nm. The average primary particle diameter is preferably 5 to 80 nm, more preferably 10 to 80 nm, and even more preferably 15 to 70 nm.
 シリカ粒子としては、例えば、結晶性シリカ、非晶質シリカが挙げられる。シリカ粒子の形状は、例えば、球状であってもよく、不定形状であってもよい。 Examples of silica particles include crystalline silica and amorphous silica. The shape of the silica particles may be, for example, spherical or irregular.
 シリカ粒子は、親水性処理又は疎水性処理されていることが好ましく、疎水性処理されていることがより好ましい。疎水性処理されているシリカ粒子は、表面に任意の置換基を有していてもよい。 The silica particles are preferably treated to be hydrophilic or hydrophobic, and more preferably treated to be hydrophobic. Silica particles that have been treated to be hydrophobic may have any substituent on the surface.
 置換基としては、例えば、炭化水素基、メタクリル基等のエチレン性二重結合含有基が挙げられる。炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシルエチル基、ヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、トルイル基が挙げられる。 Examples of the substituent include a hydrocarbon group and an ethylenic double bond-containing group such as a methacryl group. Examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexylethyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a phenyl group, and a toluyl group.
 なお、炭化水素基には、例えば、エポキシ基、グリシジル基等のオキシラン含有基;フルオロ基、クロロ基等のハロゲノ基;アミノ基;メチルアミノ基、ジメチルアミノ基、フェニルアミノ基、アミノエチルアミノ基、ヘキシリデニルアミノ基等の修飾アミノ基;メルカプト基;イソシアナト基;エステル基、アミド基、チオエステル基、カーボネート基、ウレタン基、ウレア基等の極性基が結合していてもよい。ここで、極性基とは、炭化水素基以外の基であり、窒素原子、酸素原子、硫黄原子、ハロゲン原子等のヘテロ原子を含む基をいう。 The hydrocarbon group may be bonded with polar groups such as oxirane-containing groups, such as epoxy groups and glycidyl groups; halogeno groups, such as fluoro and chloro groups; amino groups; modified amino groups, such as methylamino, dimethylamino, phenylamino, aminoethylamino, and hexylidenylamino groups; mercapto groups; isocyanato groups; ester groups, amide groups, thioester groups, carbonate groups, urethane groups, and urea groups. Here, polar groups are groups other than hydrocarbon groups, and refer to groups containing heteroatoms, such as nitrogen atoms, oxygen atoms, sulfur atoms, and halogen atoms.
 重合体と無機粒子との屈折率の差は0.090以下であることが好ましい。重合体と無機粒子との屈折率の差は0.060~0.090であってもよい。なお、本実施形態における重合体と無機粒子との屈折率の差は、実施例に記載の方法で測定する。 The difference in refractive index between the polymer and the inorganic particles is preferably 0.090 or less. The difference in refractive index between the polymer and the inorganic particles may be 0.060 to 0.090. In this embodiment, the difference in refractive index between the polymer and the inorganic particles is measured by the method described in the examples.
(溶媒)
 溶媒としては、例えば、アセトン、メチルエチルケトン等の鎖状ケトン溶媒;シクロヘキサノン(アノン)、シクロペンタノン等の環状ケトン溶媒;塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,1-ジクロロエタン等の塩化アルキル溶媒;γ-ブチロラクトン(GBL)、γ-バレロラクトン、δ-バレロラクトン等の環状エステル溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン(NMP)、N,N’-ジメチルイミダゾリジノン(DMI)等のアミド溶媒;ジメチルスルホキシド等のスルホキシド溶媒;トルエン、キシレン、ベンゼン等の芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のアルコール溶媒が挙げられる。ドープは、溶媒を1種のみ含有していてもよく、2種以上含有していてもよい。溶媒は、塩化メチレンとエタノールとを体積比9:1~7:3で混合した溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドであることが好ましい。
(solvent)
Examples of the solvent include chain ketone solvents such as acetone and methyl ethyl ketone, cyclic ketone solvents such as cyclohexanone (anone) and cyclopentanone, alkyl chloride solvents such as methylene chloride, chloroform, 1,2-dichloroethane and 1,1-dichloroethane, cyclic ester solvents such as γ-butyrolactone (GBL), γ-valerolactone and δ-valerolactone, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone (NMP) and N,N'-dimethylimidazolidinone (DMI), sulfoxide solvents such as dimethyl sulfoxide, aromatic solvents such as toluene, xylene and benzene, and alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, 2-butanol, methyl cellosolve, ethyl cellosolve and butyl cellosolve. The dope may contain only one type of solvent or two or more types of solvents. The solvent is preferably a mixture of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide.
(紫外線吸収剤)
 本実施形態のドープは、更に紫外線吸収剤を含んでいてもよい。
(Ultraviolet absorber)
The dope of the present embodiment may further contain an ultraviolet absorbing agent.
 紫外線吸収剤としては、例えば、以下のものが挙げられる。 Examples of UV absorbers include:
 ドープは、紫外線吸収剤を1種のみ含有していてもよく、2種以上含有していてもよい。 The dope may contain only one type of UV absorbent, or two or more types.
 紫外線吸収剤の分子量は、680以下であることが好ましく、100~680であることがより好ましく、150~600であることがより好ましく、200~500であることが更に好ましい。 The molecular weight of the UV absorber is preferably 680 or less, more preferably 100 to 680, even more preferably 150 to 600, and even more preferably 200 to 500.
 紫外線吸収剤は、波長が380~430nmの光の透過を抑制する観点で、硫黄原子を有する化合物を含むことが好ましく、以下の式(3)に示す化合物を含むことがより好ましい。 The ultraviolet absorber preferably contains a compound having a sulfur atom, from the viewpoint of suppressing the transmission of light having a wavelength of 380 to 430 nm, and more preferably contains a compound shown in the following formula (3).
 式(3)におけるR~Rは、互いに独立して、水素原子、シアノ基、アシル基、カルボキシル基、カルボン酸エステル基、アミド基、炭化水素基又はヘテロアリール基である。RとRとがともにアシル基、カルボン酸エステル基、又はアミド基である場合、RとRは互いに連結して環を形成していてもよい。Rは、水素原子又はアルキル基である。Lは連結基である。R及びRの一方はシアノ基であり、他方はカルボン酸エステル基であることが好ましい。 In formula (3), R 1 to R 2 are each independently a hydrogen atom, a cyano group, an acyl group, a carboxyl group, a carboxylate group, an amide group, a hydrocarbon group, or a heteroaryl group. When R 1 and R 2 are both acyl groups, carboxylate groups, or amide groups, R 1 and R 2 may be linked to each other to form a ring. R 3 is a hydrogen atom or an alkyl group. L is a linking group. It is preferred that one of R 1 and R 2 is a cyano group, and the other is a carboxylate group.
 式(3)におけるLは、以下の式(4-1)~式(4-9)に示される連結基である。Lは式(4-6)に示される連結基であることが好ましい。 In formula (3), L is a linking group shown in the following formulas (4-1) to (4-9). It is preferable that L is a linking group shown in formula (4-6).
 紫外線吸収剤は、以下の式(5)に示される1,2-ジ[2-{4-(2-イソブトキシカルボニル-2-シアノエテニル)フェニルチオ}エトキシ]エタンを含むことが更に好ましい。 It is further preferable that the ultraviolet absorber contains 1,2-di[2-{4-(2-isobutoxycarbonyl-2-cyanoethenyl)phenylthio}ethoxy]ethane, as shown in the following formula (5).
(耐光安定剤)
 本実施形態のドープは、更に耐光安定剤を含んでいてもよい。
(Light resistance stabilizer)
The dope of the present embodiment may further contain a light resistance stabilizer.
 耐光安定剤としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、セバシン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、ビス[2,2,6,6-テトラメチル-1-(ウンデシルオキシ)ピペリジン-4-イル]カルボナートが挙げられる。ドープは、耐光安定剤を1種のみ含有していてもよく、2種以上含有していてもよい。耐光安定剤は、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートを含むことが好ましい。 Examples of light-resistant stabilizers include tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and bis[2,2,6,6-tetramethyl-1-(undecyloxy)piperidin-4-yl]carbonate. The dope may contain only one type of light-resistant stabilizer, or may contain two or more types. The light-resistant stabilizer preferably contains tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate.
(その他の重合体)
 ドープは、上述の重合体とは異なるその他の重合体を含有していてもよい。その他の重合体としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリメタクリル酸メチル等のアクリル系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴム等の弾性有機微粒子;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂、ASA樹脂等のゴム質重合体が挙げられる。ドープは、その他の重合体を1種のみ含有していてもよく、2種以上含有していてもよい。もちろん、ドープはその他の重合体を含有していなくてもよい。ドープにおけるその他の重合体の含有量は、得るべき光学フィルムの組成に合わせて適宜調整すればよい。
(Other polymers)
The dope may contain other polymers different from the above-mentioned polymers. Examples of other polymers include olefin-based polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly(4-methyl-1-pentene), etc.; halogen-containing polymers such as vinyl chloride and chlorinated vinyl resin; acrylic polymers such as polymethyl methacrylate; styrene-based polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, and acrylonitrile-butadiene-styrene block copolymer; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon 6, nylon 66, and nylon 610; polyacetal; polycarbonate; polyphenylene oxide; polyphenylene sulfide; polyether ether ketone; polysulfone; polyether sulfone; polyoxybenzylene; polyamide imide; elastic organic fine particles such as polybutadiene rubber and acrylic rubber; and rubber-like polymers such as ABS resin and ASA resin mixed with polybutadiene rubber and acrylic rubber. The dope may contain only one kind of other polymer, or may contain two or more kinds. Of course, the dope may not contain other polymer. The content of other polymer in the dope may be appropriately adjusted according to the composition of the optical film to be obtained.
(添加剤)
 ドープは、添加剤(紫外線吸収剤、耐光安定剤を除く)を含有していてもよい。添加剤としては、例えば、酸化防止剤;耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;紫外線吸収剤;近赤外線吸収剤;難燃剤;帯電防止剤;無機顔料、有機顔料、染料等の着色剤;樹脂改質剤;可塑剤;滑剤;流動化剤;相溶化剤が挙げられる。ドープは、添加剤を1種のみ含有していてもよく、2種以上含有していてもよい。もちろん、ドープは添加剤を含有していなくてもよい。ドープにおける添加剤の含有量は、得るべき光学フィルムの組成に合わせて適宜調整すればよい。なお、これらの添加剤は、α-メチレンラクトン単量体を懸濁重合する際に反応系に添加してもよい。
(Additive)
The dope may contain additives (except ultraviolet absorbers and light resistance stabilizers). Examples of additives include antioxidants; stabilizers such as weather stabilizers and heat stabilizers; reinforcing materials such as glass fibers and carbon fibers; ultraviolet absorbers; near-infrared absorbers; flame retardants; antistatic agents; colorants such as inorganic pigments, organic pigments, and dyes; resin modifiers; plasticizers; lubricants; fluidizing agents; and compatibilizers. The dope may contain only one type of additive, or may contain two or more types. Of course, the dope may not contain any additives. The content of the additives in the dope may be appropriately adjusted according to the composition of the optical film to be obtained. These additives may be added to the reaction system when the α-methylene lactone monomer is suspension polymerized.
 ドープの粘度は、1~500000cPであることが好ましく、100~100000cPであることがより好ましく、1000~50000cPであることが更に好ましい。 The viscosity of the dope is preferably 1 to 500,000 cP, more preferably 100 to 100,000 cP, and even more preferably 1,000 to 50,000 cP.
 ドープにおける固形分の含有量は5~60質量%であることが好ましく、10~50質量%であることがより好ましく、15~40質量%であることが更に好ましい。 The solid content in the dope is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and even more preferably 15 to 40% by mass.
 ドープの固形分において、α-メチレンラクトン由来の構造単位を含む重合体の含有量は、90~99.99質量%であることが好ましく、92~99.95質量%であることがより好ましく、95~99.9質量%であることが更に好ましい。これにより、十分な耐熱性、透明性及び強度を有する光学フィルムを得ることができる。 In the solid content of the dope, the content of the polymer containing a structural unit derived from α-methylene lactone is preferably 90 to 99.99 mass%, more preferably 92 to 99.95 mass%, and even more preferably 95 to 99.9 mass%. This makes it possible to obtain an optical film with sufficient heat resistance, transparency, and strength.
 ドープの固形分において、無機粒子の含有量は、0.01~10質量%であることが好ましく、0.05~8質量%であることがより好ましく、0.1~5質量%であることが更に好ましい。 In the solid content of the dope, the content of inorganic particles is preferably 0.01 to 10 mass%, more preferably 0.05 to 8 mass%, and even more preferably 0.1 to 5 mass%.
 ドープの固形分において、紫外線吸収剤の含有量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましい。 In the solid content of the dope, the content of the ultraviolet absorber is preferably 0.1 to 10 mass %, and more preferably 0.2 to 5 mass %.
 ドープの固形分において、耐光安定剤の含有量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましい。 In the solid content of the dope, the content of the light resistance stabilizer is preferably 0.1 to 10 mass %, and more preferably 0.2 to 5 mass %.
[ドープの製造方法]
 ドープは、α-メチレンラクトン由来の構造単位を含む重合体、平均一次粒子径が5~100nmである無機粒子を溶媒に混合することにより調製できる。
[Dope manufacturing method]
The dope can be prepared by mixing a polymer containing a structural unit derived from α-methylene lactone and inorganic particles having an average primary particle size of 5 to 100 nm in a solvent.
 調製されたドープをろ過したり脱泡したりしてもよい。ろ過においては、ディスクフィルタ―、プリーツフィルター等の公知のフィルターを採用できる。ろ過前に金網等で荒濾ししてもよい。ろ過精度は0.1~20μmであることが好ましく、1~15μmであることがより好ましく、2~10μmであることが更に好ましい。脱泡においては、減圧脱泡、超音波脱泡等の公知の方法を採用できる。 The prepared dope may be filtered and degassed. For filtration, known filters such as disk filters and pleated filters may be used. Before filtration, rough filtering may be performed using a wire mesh or the like. The filtration accuracy is preferably 0.1 to 20 μm, more preferably 1 to 15 μm, and even more preferably 2 to 10 μm. For degassing, known methods such as reduced pressure degassing and ultrasonic degassing may be used.
[光学フィルムの製造方法]
 本実施形態の光学フィルムの製造方法は、いわゆる溶液流延法であり、上述のドープを支持体上に流延して流延膜を形成する流延工程と、流延膜から溶媒を揮発させる揮発工程と、を備える。
[Method of manufacturing optical film]
The method for producing the optical film of the present embodiment is a so-called solution casting method, and includes a casting step of casting the above-mentioned dope onto a support to form a casting film, and a volatilization step of volatilizing the solvent from the casting film.
 支持体としては、例えば、ステンレス鋼のエンドレスベルト;回転する金属ドラム;アルミニウムや銅箔等の金属シート;ポリイミドフィルム、ポリエステルフィルム(ポリエチレンテレフタレートフィルム)等のプラスチックフィルムが挙げられる。 Examples of the support include a stainless steel endless belt; a rotating metal drum; a metal sheet such as aluminum or copper foil; and a plastic film such as a polyimide film or a polyester film (polyethylene terephthalate film).
 ドープを塗工する方法は、従来公知の方法を適用できる。ドープを塗工する方法としては、例えば、ダイコーター、ドクターブレードコーター、ロールコーター、コンマコーター、リップコーターを用いる方法が挙げられる。 The dope can be applied by a conventional method. Examples of methods for applying the dope include a method using a die coater, a doctor blade coater, a roll coater, a comma coater, and a lip coater.
 流延膜から溶媒を揮発させる方法としては、例えば、光学フィルムに発泡痕が生じない温度範囲で、流延膜を加熱する方法が挙げられる。 One method for volatilizing the solvent from the cast film is, for example, to heat the cast film within a temperature range in which no foaming marks are formed on the optical film.
 流延膜から溶媒を揮発させる際の加熱温度は、20~300℃であることが好ましく、20~150℃であることがより好ましく、20~50℃であることが更に好ましい。 The heating temperature when volatilizing the solvent from the casting film is preferably 20 to 300°C, more preferably 20 to 150°C, and even more preferably 20 to 50°C.
 流延膜から溶媒を揮発させる際の加熱時間は、5~120分間であることが好ましく、10~80分間であることがより好ましい。 The heating time for volatilizing the solvent from the casting film is preferably 5 to 120 minutes, and more preferably 10 to 80 minutes.
 流延膜から溶媒を揮発させた後、光学フィルムを支持体から剥離することができる。支持体から剥離された光学フィルムは、巻取機によってフィルムロールとされる。 After the solvent has evaporated from the cast film, the optical film can be peeled off from the support. The optical film peeled off from the support is wound into a film roll by a winder.
 なお、支持体から剥離された光学フィルムは、フィルムロールとされる前に、再度乾燥されることが好ましい。 It is preferable that the optical film peeled off from the support be dried again before being made into a film roll.
 光学フィルムの乾燥温度は、100~300℃であることが好ましく、120~250℃であることがより好ましい。 The drying temperature for the optical film is preferably 100 to 300°C, and more preferably 120 to 250°C.
 光学フィルムの乾燥時間は、5~120分間であることが好ましく、10~80分間であることがより好ましい。 The drying time for the optical film is preferably 5 to 120 minutes, and more preferably 10 to 80 minutes.
 光学フィルムは延伸されることが好ましい。これにより、十分な強度を有する光学フィルムを得ることができる。光学フィルムの延伸は、光学フィルムを支持体から剥離した後であればいつでもよく、例えば、再度乾燥された後且つフィルムロールとされる前であってもよく、一度フィルムロールとされた後であってもよい。 The optical film is preferably stretched. This makes it possible to obtain an optical film with sufficient strength. The optical film may be stretched at any time after it has been peeled off from the support, for example, after it has been dried again and before it has been made into a film roll, or after it has been made into a film roll once.
 光学フィルムの延伸方法としては、例えば、自由幅一軸延伸、定幅一軸延伸等の一軸延伸;逐次二軸延伸、同時二軸延伸等の二軸延伸等が挙げられる。 Methods for stretching optical films include, for example, uniaxial stretching such as free width uniaxial stretching and fixed width uniaxial stretching; and biaxial stretching such as sequential biaxial stretching and simultaneous biaxial stretching.
 光学フィルムの延伸における延伸温度は、上述の重合体のガラス転移温度(Tg)近辺であり、より具体的には、(Tg-30)℃~(Tg+100)℃であることが好ましく、(Tg-20)℃~(Tg+50)℃であることがより好ましく、(Tg-10)℃~(Tg+30)℃であることが更に好ましい。 The stretching temperature for stretching the optical film is near the glass transition temperature (Tg) of the above-mentioned polymer, and more specifically, it is preferably (Tg-30)°C to (Tg+100)°C, more preferably (Tg-20)°C to (Tg+50)°C, and even more preferably (Tg-10)°C to (Tg+30)°C.
 光学フィルムの延伸における延伸速度は、5~500%/minであることが好ましい。 The stretching speed for stretching the optical film is preferably 5 to 500%/min.
 光学フィルムの延伸における延伸倍率は、例えば、縦横方向それぞれ1.05~10倍の範囲であることが好ましい。 The stretching ratio for the optical film is preferably in the range of 1.05 to 10 times in both the longitudinal and transverse directions.
 延伸後の光学フィルムの厚さは、1~350μmであることが好ましく、10~300μmであることがより好ましい。 The thickness of the optical film after stretching is preferably 1 to 350 μm, and more preferably 10 to 300 μm.
 本実施形態におけるドープを用いて、溶液流延法によりフィルムを得ることにより、フィルムは、平均一次粒子径が5~100nmのような粒径が小さい無機粒子を含有していても、十分なアンチブロッキング性を有する。これは、ドープ中に含まれる無機粒子が、溶媒の揮発に伴ってフィルムの表面側に押し上げられて、フィルムの表面側に偏在するからだと推察される。また、無機粒子の平均一次粒子径が十分小さいので、透明性にも優れる。 By using the dope of this embodiment to obtain a film by solution casting, the film has sufficient anti-blocking properties even if it contains inorganic particles with a small particle size, such as an average primary particle size of 5 to 100 nm. This is presumably because the inorganic particles contained in the dope are pushed up to the surface side of the film as the solvent evaporates, and are unevenly distributed on the surface side of the film. In addition, since the average primary particle size of the inorganic particles is sufficiently small, the film also has excellent transparency.
[光学フィルム]
 本実施形態の光学フィルムは、α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子とを含有し、重合体を含む層に無機粒子が含まれており、無機粒子の平均一次粒子径が5~100nmである。
[Optical film]
The optical film of the present embodiment contains a polymer containing a structural unit derived from α-methylene lactone and inorganic particles, and the inorganic particles are contained in the layer containing the polymer, and the average primary particle diameter of the inorganic particles is 5 to 100 nm.
 本実施形態の光学フィルムは、上述のドープを用いて、上述の光学フィルムの製造方法により得ることができる。そのため、本実施形態の光学フィルムは、重合体を含む層に無機粒子が含まれている。 The optical film of this embodiment can be obtained by the above-mentioned optical film manufacturing method using the above-mentioned dope. Therefore, the optical film of this embodiment contains inorganic particles in the layer containing the polymer.
 α-メチレンラクトン由来の構造単位を含む重合体としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、α-メチレンラクトン由来の構造単位を含む重合体を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、α-メチレンラクトン由来の構造単位を含む重合体の含有量は、90~99.99質量%であることが好ましく、92~99.95質量%であることがより好ましく、95~99.9質量%であることが更に好ましい。これにより、十分な耐熱性、透明性及び強度を有する光学フィルムを得ることができる。 As the polymer containing a structural unit derived from α-methylene lactone, the same one as that contained in the dope described above can be used. The optical film may contain only one type of polymer containing a structural unit derived from α-methylene lactone, or may contain two or more types. In the optical film, the content of the polymer containing a structural unit derived from α-methylene lactone is preferably 90 to 99.99 mass%, more preferably 92 to 99.95 mass%, and even more preferably 95 to 99.9 mass%. This makes it possible to obtain an optical film with sufficient heat resistance, transparency, and strength.
 無機粒子としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、無機粒子を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、無機粒子の含有量は、0.01~10質量%であることが好ましく、0.05~8質量%であることがより好ましく、0.01~5質量%であることが更に好ましい。 The inorganic particles may be the same as those contained in the dope described above. The optical film may contain only one type of inorganic particles, or may contain two or more types. In the optical film, the content of inorganic particles is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass, and even more preferably 0.01 to 5% by mass.
 光学フィルムは、更に、溶媒を含有していてもよい。溶媒は、上述のドープの調製時に使用した溶媒に由来するものである。光学フィルムは、溶媒を1種のみ含有していてもよく、2種以上含有していてもよい。溶媒は、塩化メチレンとエタノールとを体積比9:1~7:3で混合した溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドであることが好ましい。光学フィルムにおいて、溶媒の含有量は、10~10000質量ppmであることが好ましく、15~5000質量ppmであることがより好ましく、20~3000質量ppmであることが更に好ましく、25~1000質量ppmであることが特に好ましい。なお、本実施形態における光学フィルムにおける溶媒の含有量は、ガスクロマトグラフィー(島津製作所製;装置名:GC-2014)を用いて求めることができる。具体的には、質量を測定したフィルムをN,N-ジメチルアセトアミドに溶解させた後に、ガスクロマトグラフィーで溶媒量を定量することで、光学フィルム中の溶媒の含有量を算出できる。 The optical film may further contain a solvent. The solvent is derived from the solvent used in preparing the dope described above. The optical film may contain only one type of solvent, or may contain two or more types of solvents. The solvent is preferably a mixture of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide. In the optical film, the solvent content is preferably 10 to 10,000 ppm by mass, more preferably 15 to 5,000 ppm by mass, even more preferably 20 to 3,000 ppm by mass, and particularly preferably 25 to 1,000 ppm by mass. The solvent content in the optical film in this embodiment can be determined using gas chromatography (manufactured by Shimadzu Corporation; device name: GC-2014). Specifically, the film whose mass has been measured is dissolved in N,N-dimethylacetamide, and the amount of solvent is then quantified by gas chromatography to calculate the solvent content in the optical film.
 光学フィルムは、更に、紫外線吸収剤を含有していてもよい。紫外線吸収剤としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、紫外線吸収剤を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、紫外線吸収剤の含有量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましい。 The optical film may further contain an ultraviolet absorbing agent. The ultraviolet absorbing agent may be the same as that contained in the dope described above. The optical film may contain only one type of ultraviolet absorbing agent, or may contain two or more types. In the optical film, the content of the ultraviolet absorbing agent is preferably 0.1 to 10 mass %, and more preferably 0.2 to 5 mass %.
 光学フィルムは、更に、耐光安定剤を含有していてもよい。耐光安定剤としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、耐光安定剤を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、耐光安定剤の含有量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましい。 The optical film may further contain a light-resistant stabilizer. The light-resistant stabilizer may be the same as that contained in the dope described above. The optical film may contain only one type of light-resistant stabilizer, or may contain two or more types. The content of the light-resistant stabilizer in the optical film is preferably 0.1 to 10 mass %, and more preferably 0.2 to 5 mass %.
 光学フィルムはα-メチレンラクトン由来の構造単位を含む重合体とは異なるその他の重合体を含有していてもよい。その他の重合体としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、その他の重合体を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、その他の重合体の含有量は、0~20質量%であってもよく、0~10質量%であってもよい。 The optical film may contain other polymers different from the polymer containing a structural unit derived from α-methylene lactone. As the other polymers, the same ones contained in the dope described above can be used. The optical film may contain only one type of other polymer, or may contain two or more types. In the optical film, the content of the other polymers may be 0 to 20% by mass, or may be 0 to 10% by mass.
 光学フィルムは添加剤(紫外線吸収剤、耐光安定剤を除く)を含有していてもよい。添加剤としては、上述のドープに含まれるものと同様のものを用いることができる。光学フィルムは、添加剤を1種のみ含有していてもよく、2種以上含有していてもよい。光学フィルムにおいて、添加剤の含有量は、0~20質量%であってもよく、0~10質量%であってもよい。 The optical film may contain additives (excluding ultraviolet absorbers and light-resistant stabilizers). The additives may be the same as those contained in the dope described above. The optical film may contain only one type of additive, or may contain two or more types. The content of the additive in the optical film may be 0 to 20% by mass, or may be 0 to 10% by mass.
 本実施形態の光学フィルムは、全光線透過率が91%以上であることが好ましく、92~94%であることがより好ましい。なお、本実施形態における光学フィルムの全光線透過率は、実施例に記載の方法で測定する。 The optical film of this embodiment preferably has a total light transmittance of 91% or more, and more preferably 92 to 94%. The total light transmittance of the optical film of this embodiment is measured by the method described in the examples.
 本実施形態の光学フィルムは、内部ヘイズが1.0以下であることが好ましく、0.01~0.6であることがより好ましく、0.05~0.3であることが更に好ましい。なお、本実施形態における光学フィルムの内部ヘイズは、実施例に記載の方法で測定する。 The optical film of this embodiment preferably has an internal haze of 1.0 or less, more preferably 0.01 to 0.6, and even more preferably 0.05 to 0.3. The internal haze of the optical film of this embodiment is measured by the method described in the examples.
 本実施形態の光学フィルムは、波長380nmの光の透過率が5%以下であることが好ましく、0.1~4%であることがより好ましく、0.2~3%以下であることが更に好ましい。なお、本実施形態における光学フィルムの波長380nmの光に対する透過率は、実施例に記載の方法で測定する。 The optical film of this embodiment preferably has a transmittance of 5% or less for light with a wavelength of 380 nm, more preferably 0.1 to 4%, and even more preferably 0.2 to 3% or less. The transmittance of the optical film of this embodiment for light with a wavelength of 380 nm is measured by the method described in the examples.
 本実施形態の光学フィルムは、波長400nmの光の透過率が15%以下であることが好ましく、5~12%であることがより好ましく、7~10%であることが更に好ましい。 なお、本実施形態における光学フィルムの波長380nmの光に対する透過率は、実施例に記載の方法で測定する。 The optical film of this embodiment preferably has a transmittance of 15% or less for light with a wavelength of 400 nm, more preferably 5 to 12%, and even more preferably 7 to 10%. The transmittance of the optical film of this embodiment for light with a wavelength of 380 nm is measured by the method described in the examples.
 本実施形態の光学フィルムは、例えば、カバーフィルムとして好適に利用できる。また、耐折り曲げ性が要求されるフォルダブルディスプレイ用のフィルムとして好適に利用できる。 The optical film of this embodiment can be suitably used, for example, as a cover film. It can also be suitably used as a film for foldable displays that require resistance to bending.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明する。ただし、本発明は実施例によって限定されるものではない。また、各種物性は、次のようにして測定・評価した。 The present invention will be explained in more detail below with reference to examples and comparative examples. However, the present invention is not limited to these examples. In addition, various physical properties were measured and evaluated as follows.
[重合体の重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置及び測定条件は以下のとおりである。
 装置名:東ソー社製、GPCシステムHLC-8220
 測定側カラム構成:
 ・ガードカラム:東ソー社製、TSKgel guardcolumn SuperHZ-L)
 ・分離カラム:東ソー社製、TSKgel SuperHZM-M) 2本直列接続
 リファレンス側カラム構成:
 ・リファレンスカラム:東ソー社製、TSKgel SuperH-RC
 展開溶媒:クロロホルム(和光純薬工業製;特級)
 展開溶媒の流量:0.6mL/分
 標準試料:TSK標準ポリスチレン(東ソー社製;PS-オリゴマーキット)
 カラム温度:40℃
[Weight average molecular weight (Mw) and number average molecular weight (Mn) of polymer]
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined in terms of polystyrene using gel permeation chromatography (GPC) using the following apparatus and conditions:
Device name: Tosoh Corporation, GPC system HLC-8220
Measurement column configuration:
Guard column: Tosoh Corporation, TSKgel guard column Super HZ-L)
Separation column: Tosoh Corporation, TSKgel SuperHZM-M) 2 columns connected in series Reference column configuration:
Reference column: Tosoh Corporation, TSKgel Super H-RC
Developing solvent: Chloroform (Wako Pure Chemical Industries, Ltd.; special grade)
Flow rate of developing solvent: 0.6 mL/min. Standard sample: TSK standard polystyrene (manufactured by Tosoh Corporation; PS-oligomer kit)
Column temperature: 40°C
[重合体のガラス転移温度(Tg)]
 重合体のガラス転移温度(Tg)は、JIS K 7121の規定に準拠して測定した。具体的には、示差走査熱量計(リガク社製;Thermo plus EVO DSC-8230)を用いて、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により測定した。リファレンスには、α-アルミナを用いた。
[Polymer glass transition temperature (Tg)]
The glass transition temperature (Tg) of the polymer was measured in accordance with the provisions of JIS K 7121. Specifically, the glass transition temperature (Tg) was measured by the starting point method from a DSC curve obtained by heating about 10 mg of a sample from room temperature to 200° C. (heating rate: 20° C./min) in a nitrogen gas atmosphere using a differential scanning calorimeter (Rigaku Corporation; Thermo plus EVO DSC-8230). α-Alumina was used as a reference.
[重合体の屈折率]
 重合体の屈折率は、JIS K 7142に準拠して測定した。具体的には、熱プレス成形機を用いて、重合体(粉体)を厚さ200μmのフィルムに成形した後、このフィルムについて、屈折率計(アタゴ社製;アッベ屈折計DR-M2)を用いて、測定波長550nmに対する平均屈折率を23℃で測定した。測定結果を重合体の屈折率とした。
[Refractive index of polymer]
The refractive index of the polymer was measured in accordance with JIS K 7142. Specifically, the polymer (powder) was molded into a film having a thickness of 200 μm using a heat press molding machine, and then the average refractive index of this film at a measurement wavelength of 550 nm was measured at 23° C. using a refractometer (Abbe refractometer DR-M2 manufactured by Atago Co., Ltd.). The measurement result was regarded as the refractive index of the polymer.
[無機粒子の屈折率]
 無機粒子の屈折率は、JIS K 7142に準拠して測定した。具体的には次の通りである。無機粒子0.5gを二硫化炭素40gに分散させた分散液を調製した。スターラー用いて分散液を撹拌しながら、分散液が目視で透明と判断されるまでエタノールを滴下し、分散液が透明になるまでに滴下したエタノールの質量を求めた。この質量をXgとして、エタノールと二硫化炭素質量とを質量比X:40で混合したエタノール‐二酸化硫黄混合液を調製した後、この混合液について、屈折率計(アタゴ社製;アッベ屈折計DR-M2)を用いて、測定波長550nmに対する平均屈折率を23℃で測定した。測定結果を無機粒子の屈折率とした。
[Refractive index of inorganic particles]
The refractive index of the inorganic particles was measured in accordance with JIS K 7142. Specifically, the following procedure was followed. A dispersion liquid was prepared by dispersing 0.5 g of inorganic particles in 40 g of carbon disulfide. While stirring the dispersion liquid using a stirrer, ethanol was dropped until the dispersion liquid was judged to be transparent by visual inspection, and the mass of ethanol dropped until the dispersion liquid became transparent was determined. This mass was taken as Xg, and an ethanol-sulfur dioxide mixed liquid was prepared by mixing ethanol and carbon disulfide mass at a mass ratio of X:40. Then, the average refractive index of this mixed liquid was measured at 23°C using a refractometer (manufactured by Atago Co., Ltd.; Abbe refractometer DR-M2) at a measurement wavelength of 550 nm. The measurement result was taken as the refractive index of the inorganic particles.
[ドープの粘度]
 ドープの粘度は、BHII型粘度計(東機産業社製)を用いて、25℃にて測定した。
[Dope Viscosity]
The viscosity of the dope was measured at 25° C. using a BHII type viscometer (manufactured by Toki Sangyo Co., Ltd.).
[無機粒子の平均一次粒子径]
 無機粒子の平均一次粒子径は、透過型電子顕微鏡(日立ハイテクノロジーズ社製;H-7650)で観察して測定した。倍率20万倍で無機粒子を観察して、任意の100個の無機粒子について、それぞれ長軸方向の長さを測定した。その平均値を平均一次粒子径とした。
[Average primary particle size of inorganic particles]
The average primary particle size of the inorganic particles was measured by observation with a transmission electron microscope (Hitachi High-Technologies Corporation; H-7650). The inorganic particles were observed at a magnification of 200,000 times, and the length in the major axis direction of each of 100 randomly selected inorganic particles was measured. The average value was taken as the average primary particle size.
[光学フィルムの全光線透過率]
 光学フィルムの全光線透過率は、JIS K 7361の規定に準拠して求めた。具体的には、ヘイズメーター(日本電色工業社製;NDH-1001DP )を用いて測定した。
[Total light transmittance of optical film]
The total light transmittance of the optical film was determined in accordance with the provisions of JIS K 7361. Specifically, the measurement was performed using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd.; NDH-1001DP).
[光学フィルムの内部ヘイズ]
 光学フィルムの内部ヘイズは、JIS K 7136の規定に準拠して測定した。具体的には、ヘイズメーター(日本電色工業社製;NDH-1001DP)を用いて、光路長10mmの石英セルに1,2,3,4-テトラヒドロナフタリンを満たし、その中に光学フィルムを浸漬して、ヘイズを測定した。実測値を厚さ100μmあたりの内部ヘイズに換算した。
[Internal haze of optical film]
The internal haze of the optical film was measured in accordance with the provisions of JIS K 7136. Specifically, a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd.; NDH-1001DP) was used to measure the haze by filling a quartz cell with an optical path length of 10 mm with 1,2,3,4-tetrahydronaphthalene and immersing the optical film therein. The measured value was converted into the internal haze per 100 μm thickness.
[光学フィルムの易滑性]
 光学フィルムの易滑性は、JIS K 7125の規定に準拠して測定した。具体的には次の通りである。作製された光学フィルムから80mm×100mmの光学フィルム(フィルムA)と、70mm×100mmの光学フィルム(フィルムB)を切り出した。表面を水平に保ったステンレス板の上に、光学フィルムAを固定した。フィルムAの上に、短辺に補助板を取り付けたフィルムBを置き、さらにフィルムBの上に、厚さ2mmの緩衝材を貼った円柱状のおもり(540g、直径62mm)を置いた。補助板にばねばかりを取り付け、ばねばかりを水平方向に300mm/分の速度で引っ張って、おもりが動き始めたときのばねばかりが示した荷重を測定し、これを光学フィルムの易滑性とした。
[Slipperiness of optical film]
The slipperiness of the optical film was measured in accordance with the provisions of JIS K 7125. Specifically, it is as follows. An optical film (film A) of 80 mm x 100 mm and an optical film (film B) of 70 mm x 100 mm were cut out from the prepared optical film. The optical film A was fixed on a stainless steel plate whose surface was kept horizontal. Film B with an auxiliary plate attached to its short side was placed on film A, and a cylindrical weight (540 g, diameter 62 mm) with a 2 mm thick cushioning material attached was placed on film B. A spring scale was attached to the auxiliary plate, and the spring scale was pulled horizontally at a speed of 300 mm/min. The load indicated by the spring scale when the weight started to move was measured, and this was taken as the slipperiness of the optical film.
[光学フィルムの波長380nmの光の透過率]
 光学フィルムの波長380nmの光の透過率は、分光光度計(島津製作所製;UV-3600)を用いて測定した。
[Transmittance of light with a wavelength of 380 nm through optical film]
The transmittance of the optical film at a wavelength of 380 nm was measured using a spectrophotometer (Shimadzu Corporation; UV-3600).
[光学フィルムの波長400nmの光の透過率]
 光学フィルムの波長400nmの光の透過率は、分光光度計(島津製作所製;UV-3600)を用いて測定した。
[Transmittance of light with a wavelength of 400 nm through optical film]
The transmittance of the optical film at a wavelength of 400 nm was measured using a spectrophotometer (Shimadzu Corporation; UV-3600).
 メタクリル酸メチルは東京化成工業社から入手した。α-メチレン-γ-ブチロラクトンは、東京化成工業社から入手した。ジラウロイルパーオキサイド(パーロイルL)は、日油社から入手した。ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム(ハイテノール(登録商標)NF-08)は、第一工業製薬社から入手した。 Methyl methacrylate was obtained from Tokyo Chemical Industry Co., Ltd. α-Methylene-γ-butyrolactone was obtained from Tokyo Chemical Industry Co., Ltd. Dilauroyl peroxide (Peroyl L) was obtained from NOF Corporation. Ammonium polyoxyethylene distyryl phenyl ether sulfate (Hitenol (registered trademark) NF-08) was obtained from Daiichi Kogyo Seiyaku Co., Ltd.
 以下の説明では、化合物名を次のように省略して表記する。
 MMA  :メタクリル酸メチル
 MBL  :α-メチレン-γ-ブチロラクトン
 LPO  :ジラウロイルパーオキサイド(パーロイルL)
 NF-08:ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム(ハイテノール(登録商標)NF-08)
In the following description, compound names are abbreviated as follows:
MMA: Methyl methacrylate MBL: α-methylene-γ-butyrolactone LPO: Dilauroyl peroxide (Peroyl L)
NF-08: Ammonium polyoxyethylene distyryl phenyl ether sulfate (Hitenol (registered trademark) NF-08)
<重合体1の調製>
 撹拌装置、温度センサー、冷却管及び窒素導入管を備えた反応器を用意した。別容器にNF-08を1質量部溶解した脱イオン水75質量部を仕込んだ。そこへ、あらかじめ調製しておいたMMA37.5質量部、ML12.5質量部、LPO(0.25質量部)を混合した液を加えた。そして、容器内の混合物を分散機(プライミクス社製;ホモミクサーMARK II model2.5)を用いて、3000rpmで15分間撹拌した。これに脱イオン水125質量部を追加してから反応器に移した。
<Preparation of Polymer 1>
A reactor equipped with a stirring device, a temperature sensor, a cooling tube, and a nitrogen inlet tube was prepared. 75 parts by mass of deionized water in which 1 part by mass of NF-08 was dissolved was charged in a separate vessel. A previously prepared mixture of 37.5 parts by mass of MMA, 12.5 parts by mass of ML, and LPO (0.25 parts by mass) was added thereto. The mixture in the vessel was then stirred at 3000 rpm for 15 minutes using a disperser (manufactured by Primix Corporation; homomixer MARK II model 2.5). 125 parts by mass of deionized water was added to this and then transferred to the reactor.
 反応器では、撹拌と窒素ガスの供給を続けながら、反応液が65℃になるまで加熱した。内温65℃になった時点を重合開始とみなした。反応器を65℃に保温して自己発熱により液温がピーク温度に到達した後、反応液を75℃まで昇温して撹拌した。さらに重合開始2時間後に反応液を90℃まで昇温して4時間撹拌した。このようにして重合反応を完了させた。 In the reactor, the reaction liquid was heated to 65°C while continuing to stir and supply nitrogen gas. The polymerization was considered to have started when the internal temperature reached 65°C. The reactor was kept at 65°C until the liquid temperature reached its peak temperature due to self-heating, after which the reaction liquid was heated to 75°C and stirred. Two hours after the start of polymerization, the reaction liquid was further heated to 90°C and stirred for four hours. In this way, the polymerization reaction was completed.
 その後、反応液を冷却し、重合体を濾取し、さらに熱風乾燥機を用いて乾燥して重合体1(粉体)を得た。重合体1の重量平均分子量(Mw)は283000、数平均分子量(Mn)は129000、ガラス転移温度(Tg)は127℃、屈折率は1.511であった。 Then, the reaction solution was cooled, the polymer was filtered, and further dried using a hot air dryer to obtain Polymer 1 (powder). Polymer 1 had a weight average molecular weight (Mw) of 283,000, a number average molecular weight (Mn) of 129,000, a glass transition temperature (Tg) of 127°C, and a refractive index of 1.511.
<重合体2の調製>
 MMAを30質量部、MLを20質量部とした以外は、重合体1の調製と同様にして、重合体2(粉体)を得た。重合体2の重量平均分子量(Mw)は263000、数平均分子量(Mn)は117000、ガラス転移温度(Tg)は136℃、屈折率は1.521あった。
<Preparation of Polymer 2>
Except for using 30 parts by mass of MMA and 20 parts by mass of ML, polymer 2 (powder) was obtained in the same manner as in the preparation of polymer 1. Polymer 2 had a weight average molecular weight (Mw) of 263,000, a number average molecular weight (Mn) of 117,000, a glass transition temperature (Tg) of 136° C., and a refractive index of 1.521.
<シリカ粒子のメタノール分散体T1の調製>
 撹拌機、滴下口、温度計を備えたSUS製容器にメタノール820質量部、水161質量部、25%アンモニア67.5質量部、ピリジン9質量部加え、30分撹拌することで均一な溶液を得た。この溶液を49~51℃に調整し撹拌しながら、テトラメチルオルトシリケート284質量部とメタノール124質量部とをあらかじめ混合した液を、滴下口から1時間かけて滴下した。滴下終了後も引き続き1時間加水分解を行うことで、シリカ粒子のアルコール性溶液分散体1を得た。得られたシリカ粒子(表面処理前のシリカ粒子)の平均一次粒子径は22nmであった。
<Preparation of Methanol Dispersion T1 of Silica Particles>
820 parts by mass of methanol, 161 parts by mass of water, 67.5 parts by mass of 25% ammonia, and 9 parts by mass of pyridine were added to a SUS container equipped with a stirrer, a dropping port, and a thermometer, and stirred for 30 minutes to obtain a uniform solution. While adjusting this solution to 49 to 51°C and stirring, a liquid in which 284 parts by mass of tetramethyl orthosilicate and 124 parts by mass of methanol were mixed in advance was dropped from the dropping port over 1 hour. After the end of the dropping, hydrolysis was continued for 1 hour to obtain an alcoholic solution dispersion 1 of silica particles. The average primary particle diameter of the obtained silica particles (silica particles before surface treatment) was 22 nm.
 シリカ粒子のアルコール性溶液分散体1を50℃に加温し、フェニルトリメトキシシラン(信越化学工業社製;KBM-103)13.1質量部、ヘキサメチルジシラザン(信越化学工業社製;SZ-31)21.1質量部を、滴下口から6時間かけて滴下した。滴下終了後も引き続き1時間熟成を行うことで、表面にメタクリル基を有するシリカ粒子のアルコール性溶液分散体2を得た。 The alcoholic solution dispersion 1 of silica particles was heated to 50°C, and 13.1 parts by mass of phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.; KBM-103) and 21.1 parts by mass of hexamethyldisilazane (manufactured by Shin-Etsu Chemical Co., Ltd.; SZ-31) were dripped into the drip inlet over a period of 6 hours. After the dripping was completed, the mixture was allowed to age for 1 hour, yielding an alcoholic solution dispersion 2 of silica particles having methacryl groups on the surface.
 シリカ粒子のアルコール性溶液分散体2を、分画分子量約10000のセラミック製の管状限外濾過膜が装着された市販の限外濾過膜を用いて、室温でメタノールを適宜加えながら、溶媒置換を行い、SiO濃度約11%になるまで濃縮することで、表面にメタクリル基を有するシリカ粒子のメタノール分散体T1を得た。シリカ粒子の屈折率は1.440であった。 The alcoholic solution dispersion 2 of silica particles was subjected to solvent replacement at room temperature while adding methanol appropriately using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000, and concentrated to a SiO2 concentration of about 11%, thereby obtaining a methanol dispersion T1 of silica particles having methacrylic groups on the surface. The refractive index of the silica particles was 1.440.
<シリカ粒子のメタノール分散体T2の調製>
 撹拌機、滴下口、温度計を備えたSUS製容器にメタノール161質量部、水22質量部、25%アンモニア水27質量部、アセトン1.1質量部加え、30分撹拌することで均一な溶液を得た。この溶液を49~51℃に調整し撹拌しながら、テトラメチルオルトシリケート57部を、滴下口から90分間かけて滴下した。滴下終了後も引き続き30分間加水分解を行うことで、シリカ粒子のアルコール性溶液分散体3を得た。得られたシリカ粒子(表面処理前のシリカ粒子)の平均一次粒子径は70nmであった。
<Preparation of Methanol Dispersion T2 of Silica Particles>
161 parts by mass of methanol, 22 parts by mass of water, 27 parts by mass of 25% aqueous ammonia, and 1.1 parts by mass of acetone were added to a stainless steel vessel equipped with a stirrer, a dropping port, and a thermometer, and stirred for 30 minutes to obtain a uniform solution. While adjusting the temperature of this solution to 49 to 51°C and stirring, 57 parts of tetramethyl orthosilicate were dropped from the dropping port over 90 minutes. After the dropping was completed, hydrolysis was continued for 30 minutes to obtain an alcoholic solution dispersion 3 of silica particles. The average primary particle diameter of the obtained silica particles (silica particles before surface treatment) was 70 nm.
 シリカ粒子のアルコール性溶液分散体3を50℃に加温し、フェニルトリメトキシシラン(信越化学工業社製;KBM-103)1.9質量部、ヘキサメチルジシラザン(信越化学工業社製;SZ-31)0.8質量部を、滴下口から1時間かけて滴下した。滴下終了後も引き続き15時間熟成を行うことで、表面にフェニル基及びメチル基を有するシリカ粒子のアルコール性溶液分散体4を得た。 The alcoholic solution dispersion 3 of silica particles was heated to 50°C, and 1.9 parts by mass of phenyltrimethoxysilane (KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.8 parts by mass of hexamethyldisilazane (SZ-31, manufactured by Shin-Etsu Chemical Co., Ltd.) were dripped into the drip inlet over a period of 1 hour. After the dripping was completed, the mixture was allowed to continue maturing for 15 hours, yielding an alcoholic solution dispersion 4 of silica particles having phenyl and methyl groups on the surface.
 シリカ粒子のアルコール性溶液分散体4を、分画分子量約10000のセラミック製の管状限外濾過膜が装着された市販の限外濾過膜を用いて、室温でメタノールを適宜加えながら、溶媒置換を行い、SiO濃度約11%になるまで濃縮することで、表面にフェニル基及びメチル基を有するシリカ粒子のメタノール分散体T2を得た。シリカ粒子の屈折率は1.442であった。 The alcoholic solution dispersion 4 of silica particles was subjected to solvent replacement at room temperature while adding methanol appropriately using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000, and concentrated to a SiO2 concentration of about 11%, thereby obtaining a methanol dispersion T2 of silica particles having phenyl groups and methyl groups on the surface. The refractive index of the silica particles was 1.442.
(実施例1)
<ドープ1の調製>
 重合体1と、シリカ粒子のメタノール分散体T1と、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(ADEKA社製;アデカスタブ(登録商標)LA-32)とを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ1を調製した。ドープ1の粘度は10000cPであった。
 重合体1:96.4質量部
 シリカ粒子のメタノール分散体T1:シリカ粒子換算で0.9質量部
 2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール:3.5質量部
Example 1
<Preparation of Dope 1>
Polymer 1, methanol dispersion T1 of silica particles, and 2-(2H-benzotriazol-2-yl)-p-cresol (ADEKA CORPORATION; Adeka STAB (registered trademark) LA-32) were added in the following mass ratio to a solvent in which methylene chloride and ethanol were mixed in a volume ratio of 9:1 so that the solid content was 25 mass%, to prepare dope 1. The viscosity of dope 1 was 10,000 cP.
Polymer 1: 96.4 parts by weight Methanol dispersion T1 of silica particles: 0.9 parts by weight calculated as silica particles 2-(2H-benzotriazol-2-yl)-p-cresol: 3.5 parts by weight
<光学フィルム1の作製>
 コーターを用いて、ドープ1をPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が4.0倍となるように逐次二軸延伸して、厚さ25μmの光学フィルム1を得た。
<Preparation of Optical Film 1>
Using a coater, the dope 1 was cast on a PET film to form a cast film. The cast film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film with a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, thereby obtaining an optical film 1 with a thickness of 25 μm.
(実施例2)
<ドープ2の調製>
 重合体1と、平均一次粒子径16nmのシリカ粒子(エボニック社製;AEROSIL(登録商標)R972)(屈折率1.446)と、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(ADEKA社製;アデカスタブ(登録商標)LA-24)とを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ2を調製した。ドープ2の粘度は10000cPであった。
 重合体1:97.4質量部
 シリカ粒子:0.1質量部
 2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール:2.5質量部
Example 2
<Preparation of Dope 2>
Polymer 1, silica particles having an average primary particle size of 16 nm (manufactured by Evonik; AEROSIL (registered trademark) R972) (refractive index 1.446), and 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (manufactured by ADEKA; Adeka STAB (registered trademark) LA-24) were added in the following mass ratio to a solvent in which methylene chloride and ethanol were mixed in a volume ratio of 9:1 so that the solid content was 25 mass%, to prepare dope 2. The viscosity of dope 2 was 10,000 cP.
Polymer 1: 97.4 parts by weight Silica particles: 0.1 parts by weight 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol: 2.5 parts by weight
<光学フィルム2の作製>
 コーターを用いて、ドープ2をPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃で乾燥することで厚さ150μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製、X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が3.0倍となるように逐次二軸延伸して、厚さ50μmの光学フィルム2を得た。
<Preparation of Optical Film 2>
Using a coater, the dope 2 was cast on a PET film to form a casting film. The casting film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film with a thickness of 150 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, X6-S) so that the area ratio before and after stretching was 3.0 times, thereby obtaining an optical film 2 with a thickness of 50 μm.
(実施例3)
<ドープ3の調製>
 重合体2と、平均一次粒子径50nmのシリカ粒子(エボニック社製;AEROSIL(登録商標)R812)(屈折率1.437)と、紫外線吸収剤(エバーライトケミカル社製;Eversorb(登録商標)BL4)(分子量263)とを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ3を調製した。ドープ3の粘度は15000cPであった。
 重合体2:98.9質量部
 シリカ粒子:0.1質量部
 紫外線吸収剤:1.0質量部
Example 3
<Preparation of Dope 3>
Polymer 2, silica particles having an average primary particle size of 50 nm (manufactured by Evonik; AEROSIL (registered trademark) R812) (refractive index 1.437), and an ultraviolet absorber (manufactured by Everlight Chemical Co.; Eversorb (registered trademark) BL4) (molecular weight 263) were added in the following mass ratio to a solvent in which methylene chloride and ethanol were mixed at a volume ratio of 9:1 so that the solid content was 25 mass%, to prepare dope 3. The viscosity of dope 3 was 15000 cP.
Polymer 2: 98.9 parts by weight Silica particles: 0.1 parts by weight UV absorber: 1.0 parts by weight
<光学フィルム3の作製>
 コーターを用いて、ドープ3をPETフィルム上に流延して流延膜を形成した。流延膜を25℃ で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃ で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が4.0倍となるように逐次二軸延伸して、厚さ25μmの光学フィルム3を得た。
<Preparation of Optical Film 3>
Using a coater, the dope 3 was cast on a PET film to form a cast film. The cast film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film having a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, thereby obtaining an optical film 3 having a thickness of 25 μm.
(実施例4)
<ドープ4の調製>
 重合体1と、シリカ粒子のメタノール分散体T2と、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(ADEKA社製;アデカスタブ(登録商標)LA-32)とを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ4を調製した。ドープ4の粘度は10000cPであった。
 重合体1:96.4質量部
 シリカ粒子のメタノール分散体T2:シリカ粒子換算で0.9質量部
 2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール:3.5質量部
Example 4
<Preparation of Dope 4>
Polymer 1, methanol dispersion T2 of silica particles, and 2-(2H-benzotriazol-2-yl)-p-cresol (ADEKA CORPORATION; Adeka STAB (registered trademark) LA-32) were added in the following mass ratio to a solvent in which methylene chloride and ethanol were mixed in a volume ratio of 9:1 so that the solid content was 25 mass%, to prepare dope 4. The viscosity of dope 4 was 10,000 cP.
Polymer 1: 96.4 parts by weight Methanol dispersion T2 of silica particles: 0.9 parts by weight calculated as silica particles 2-(2H-benzotriazol-2-yl)-p-cresol: 3.5 parts by weight
<光学フィルム4の作製>
 コーターを用いて、ドープ4をPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃ で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が2.5倍となるように逐次二軸延伸して、厚さ40μmの光学フィルム4を得た。
<Preparation of Optical Film 4>
Using a coater, the dope 4 was cast on a PET film to form a cast film. The cast film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film having a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 2.5 times, thereby obtaining an optical film 4 having a thickness of 40 μm.
<ドープ5の調製>
 重合体1と、平均一次粒子径16nmのシリカ粒子(エボニック社製;AEROSIL(登録商標)R972)と、1,2-ジ[2-{4-(2-イソブトキシカルボニル-2-シアノエテニル)フェニルチオ}エトキシ]エタンと、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラートとを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ5を調製した。ドープ5の粘度は10000cPであった。
 重合体1:97.4質量部
 シリカ粒子:0.1質量部
 1,2-ジ[2-{4-(2-イソブトキシカルボニル-2-シアノエテニル)フェニルチオ}エトキシ]エタン:2.4質量部
 テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート:0.8質量部
<Preparation of Dope 5>
Polymer 1, silica particles having an average primary particle size of 16 nm (manufactured by Evonik; AEROSIL (registered trademark) R972), 1,2-di[2-{4-(2-isobutoxycarbonyl-2-cyanoethenyl)phenylthio}ethoxy]ethane, and tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate were added in the following mass ratio to a solvent in which methylene chloride and ethanol were mixed in a volume ratio of 9:1 so that the solid content was 25 mass%, to prepare dope 5. The viscosity of dope 5 was 10,000 cP.
Polymer 1: 97.4 parts by weight Silica particles: 0.1 parts by weight 1,2-di[2-{4-(2-isobutoxycarbonyl-2-cyanoethenyl)phenylthio}ethoxy]ethane: 2.4 parts by weight Tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate: 0.8 parts by weight
<光学フィルム5の作製>
 コーターを用いて、ドープ5をPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃ で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が4.0倍となるように逐次二軸延伸して、厚さ25μmの光学フィルム5を得た。波長400nmの光の透過率は4.0%であった。
<Preparation of Optical Film 5>
Using a coater, the dope 5 was cast on a PET film to form a casting film. The casting film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film having a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, thereby obtaining an optical film 5 having a thickness of 25 μm. The transmittance of light having a wavelength of 400 nm was 4.0%.
(比較例1)
<ドープ1cの調製>
 重合体1を、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ1cを調製した。ドープ1の粘度は10000cPであった。
 重合体1:96.4質量部
(Comparative Example 1)
<Preparation of Dope 1c>
Polymer 1 was added to a solvent in which methylene chloride and ethanol were mixed at a volume ratio of 9:1 so that the solid content was 25% by mass, to prepare dope 1c. The viscosity of dope 1 was 10,000 cP.
Polymer 1: 96.4 parts by mass
<光学フィルム1cの作製>
 コーターを用いて、ドープ1cをPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が4.0倍となるように逐次二軸延伸して、厚さ25μmの光学フィルム1cを得た。
<Preparation of Optical Film 1c>
Using a coater, the dope 1c was cast on a PET film to form a casting film. The casting film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film with a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, and an optical film 1c with a thickness of 25 μm was obtained.
(比較例2)
<ドープ2cの調製>
 重合体1と、平均一次粒子径300nmのシリカ粒子(日本触媒社製;シーホスター(登録商標)KE-P30)(屈折率1.437)とを、以下の質量比で、固形分が25質量%となるように、塩化メチレンとエタノールとを体積比9:1で混合した溶媒に添加してドープ2cを調製した。ドープ2cの粘度は10000cPであった。
 重合体1:96.4質量部
 シリカ粒子:0.1質量部
(Comparative Example 2)
<Preparation of Dope 2c>
Polymer 1 and silica particles having an average primary particle size of 300 nm (manufactured by Nippon Shokubai Co., Ltd.; Sea Hoster (registered trademark) KE-P30) (refractive index 1.437) were added to a solvent in which methylene chloride and ethanol were mixed at a volume ratio of 9:1 so that the solid content was 25% by mass, to prepare dope 2c. The viscosity of dope 2c was 10,000 cP.
Polymer 1: 96.4 parts by weight Silica particles: 0.1 parts by weight
<光学フィルム2cの作製>
 コーターを用いて、ドープ2cをPETフィルム上に流延して流延膜を形成した。流延膜を25℃で加熱して膜状物を得た。PETフィルムから膜状物を剥離した後、膜状物に幅100cmあたり3kgの張力をかけながら80~150℃で乾燥することで厚さ100μmの未延伸の光学フィルムを得た。未延伸の光学フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所製;X6-S)を用いて、重合体のTg+18℃の温度で、300%/分の延伸速度で、縦方向(MD方向)及び横方向(TD方向)の順に、延伸前後の面積比率が4.0倍となるように逐次二軸延伸して、厚さ25μmの光学フィルム2cを得た。
<Preparation of Optical Film 2c>
Using a coater, the dope 2c was cast on a PET film to form a cast film. The cast film was heated at 25°C to obtain a film-like material. After peeling the film-like material from the PET film, the film-like material was dried at 80 to 150°C while applying a tension of 3 kg per 100 cm width to obtain an unstretched optical film with a thickness of 100 μm. The unstretched optical film was cut into a size of 96 mm x 96 mm, and sequentially biaxially stretched in the machine direction (MD direction) and the transverse direction (TD direction) in this order at a temperature of Tg+18°C of the polymer and a stretching speed of 300%/min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho; X6-S) so that the area ratio before and after stretching was 4.0 times, and an optical film 2c with a thickness of 25 μm was obtained.
 光学フィルム1~5(実施例1~5)、1c~2c(比較例1~2)について、シリカ粒子の含有量及び平均一次粒子径、重合体と上位無機粒子との屈折率の差、全光線透過率、内部ヘイズ、易滑性並びに波長380nmの光の透過率の測定結果を表2に示す。 For optical films 1-5 (Examples 1-5) and 1c-2c (Comparative Examples 1-2), the silica particle content and average primary particle size, the difference in refractive index between the polymer and the upper inorganic particles, total light transmittance, internal haze, slipperiness, and the transmittance of light with a wavelength of 380 nm are shown in Table 2.

Claims (20)

  1.  α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子と、溶媒とを含有し、
     前記無機粒子の平均一次粒子径が5~100nmである、
    ドープ。
    The composition comprises a polymer including a structural unit derived from α-methylene lactone, inorganic particles, and a solvent,
    The average primary particle size of the inorganic particles is 5 to 100 nm.
    Dope.
  2.  前記無機粒子の平均一次粒子径が5~80nmである、請求項1に記載のドープ。 The dope according to claim 1, wherein the inorganic particles have an average primary particle size of 5 to 80 nm.
  3.  前記無機粒子がシリカ粒子を含む、請求項1に記載のドープ。 The dope of claim 1, wherein the inorganic particles include silica particles.
  4.  前記シリカ粒子の形状が球状である、請求項3に記載のドープ。 The dope according to claim 3, wherein the silica particles are spherical in shape.
  5.  前記シリカ粒子の形状が不定形である、請求項3に記載のドープ。 The dope according to claim 3, wherein the silica particles have an irregular shape.
  6.  前記重合体と前記無機粒子との屈折率の差が0.090以下である、請求項1に記載のドープ。 The dope according to claim 1, wherein the difference in refractive index between the polymer and the inorganic particles is 0.090 or less.
  7.  前記溶媒が塩化メチレンとエタノールとを体積比9:1~7:3で混合した溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドである、請求項1に記載のドープ。 The dope according to claim 1, wherein the solvent is a mixture of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide.
  8.  更に、分子量が680以下である紫外線吸収剤を含有する、請求項1に記載のドープ。 The dope according to claim 1 further contains an ultraviolet absorber having a molecular weight of 680 or less.
  9.  請求項1~8のいずれか一項に記載のドープを用いて、溶液流延法によりフィルムを得る工程を含む、光学フィルムの製造方法。 A method for producing an optical film, comprising a step of obtaining a film by a solution casting method using the dope according to any one of claims 1 to 8.
  10.  α-メチレンラクトン由来の構造単位を含む重合体と、無機粒子とを含有し、
     前記重合体を含む層に前記無機粒子が含まれており、
     前記無機粒子の平均一次粒子径が5~100nmである、
    光学フィルム。
    The composition contains a polymer containing a structural unit derived from α-methylene lactone and inorganic particles,
    the inorganic particles are contained in the layer containing the polymer,
    The average primary particle size of the inorganic particles is 5 to 100 nm.
    Optical film.
  11.  前記無機粒子の平均一次粒子径が5~80nmである、請求項10に記載の光学フィルム。 The optical film according to claim 10, wherein the inorganic particles have an average primary particle size of 5 to 80 nm.
  12.  前記無機粒子がシリカ粒子を含む、請求項10に記載の光学フィルム。 The optical film of claim 10, wherein the inorganic particles include silica particles.
  13.  前記シリカ粒子の形状が球状である、請求項12に記載の光学フィルム。 The optical film according to claim 12, wherein the silica particles are spherical in shape.
  14.  前記シリカ粒子の形状が不定形である、請求項12に記載の光学フィルム。 The optical film according to claim 12, wherein the silica particles have an irregular shape.
  15.  前記重合体と前記無機粒子との屈折率の差が0.090以下である、請求項10に記載の光学フィルム。 The optical film according to claim 10, wherein the difference in refractive index between the polymer and the inorganic particles is 0.090 or less.
  16.  更に、溶媒を10~10000質量ppm含有する、請求項10に記載の光学フィルム。 The optical film according to claim 10, further comprising 10 to 10,000 ppm by mass of a solvent.
  17.  前記溶媒が塩化メチレンとエタノールとを体積比9:1~7:3で混合した溶媒、メチルエチルケトン又はN,N-ジメチルアセトアミドである請求項16に記載の光学フィルム。 The optical film according to claim 16, wherein the solvent is a mixture of methylene chloride and ethanol in a volume ratio of 9:1 to 7:3, methyl ethyl ketone, or N,N-dimethylacetamide.
  18.  更に、分子量が680以下である紫外線吸収剤を含有する、請求項10に記載の光学フィルム。 The optical film according to claim 10, further comprising an ultraviolet absorber having a molecular weight of 680 or less.
  19.  波長380nmの光の透過率が5%以下である、請求項10に記載の光学フィルム。 The optical film according to claim 10, having a transmittance of 5% or less for light with a wavelength of 380 nm.
  20.  請求項10~19のいずれか一項に記載の光学フィルムが巻回されてなる、フィルムロール。 A film roll formed by winding the optical film according to any one of claims 10 to 19.
PCT/JP2023/047027 2022-12-28 2023-12-27 Dope, optical film and production method for same, and film roll WO2024143493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022212407 2022-12-28
JP2022-212407 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024143493A1 true WO2024143493A1 (en) 2024-07-04

Family

ID=91717722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/047027 WO2024143493A1 (en) 2022-12-28 2023-12-27 Dope, optical film and production method for same, and film roll

Country Status (1)

Country Link
WO (1) WO2024143493A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078636A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Optical film, method for producing the same, and polarizing plate and liquid crystal display using optical film
JP2013210414A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Optical film, method for manufacturing optical film, polarizer using optical film, glass scattering prevention film for image display device, touch panel, and liquid crystal display device
JP2020529316A (en) * 2017-09-04 2020-10-08 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップNouryon Chemicals International B.V. Thermally expandable microspheres prepared from biomonomers
WO2021033768A1 (en) * 2019-08-22 2021-02-25 株式会社日本触媒 Copolymer and method for producing same, copolymer mixture, dope resin composition, and resin molded body and method for producing same
JP2021031587A (en) * 2019-08-23 2021-03-01 株式会社日本触媒 Method for producing (meth) acrylic resin and (meth) acrylic resin
JP2022083035A (en) * 2020-11-24 2022-06-03 株式会社日本触媒 Method for producing copolymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078636A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Optical film, method for producing the same, and polarizing plate and liquid crystal display using optical film
JP2013210414A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Optical film, method for manufacturing optical film, polarizer using optical film, glass scattering prevention film for image display device, touch panel, and liquid crystal display device
JP2020529316A (en) * 2017-09-04 2020-10-08 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップNouryon Chemicals International B.V. Thermally expandable microspheres prepared from biomonomers
WO2021033768A1 (en) * 2019-08-22 2021-02-25 株式会社日本触媒 Copolymer and method for producing same, copolymer mixture, dope resin composition, and resin molded body and method for producing same
JP2021031587A (en) * 2019-08-23 2021-03-01 株式会社日本触媒 Method for producing (meth) acrylic resin and (meth) acrylic resin
JP2022083035A (en) * 2020-11-24 2022-06-03 株式会社日本触媒 Method for producing copolymer

Similar Documents

Publication Publication Date Title
JPWO2015079694A1 (en) Optical resin composition and film
JP5697783B2 (en) Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device
JP6587165B2 (en) Resin composition for optical material and optical film containing the same
WO2015098980A1 (en) Optical thermoplastic resin and formed body
JP6594207B2 (en) Optical resin composition and film
JP2024086901A (en) Resin molding and use thereof, and flexible display
JP6667933B2 (en) Optical film and polarizing plate containing the same
JP2019509518A (en) Optical film excellent in slip property and ultraviolet blocking function, and polarizing plate including the same
JP2022083035A (en) Method for producing copolymer
JP2010054750A (en) Method for manufacturing retardation film
JP6331680B2 (en) Resin composition and film
WO2024143493A1 (en) Dope, optical film and production method for same, and film roll
WO2020203833A1 (en) Optical film, polarizing plate, and production method for optical film
JP2022140384A (en) Copolymer particles and method for producing the same
WO2022124402A1 (en) Acrylic resin composition and resin film
JPWO2020027085A1 (en) Optical film, polarizing plate, and method for manufacturing optical film
TW202436400A (en) Viscous substance, optical film and method for manufacturing the same, and film roll
JP2009041007A (en) Optically isotropic acrylic resin film and its manufacturing method
TW201816003A (en) Optical film with high adhesiveness and excellent property of blocking UV light, and polarizing plate comprising the same
JP2023044845A (en) Copolymer and method for producing the same, dope liquid, and film
JP2023151103A (en) Method for producing film and dope liquid
JP2023131125A (en) Stretched film and manufacturing method thereof
JPWO2020026960A1 (en) Optical film, polarizing plate protective film and polarizing plate
JP6940013B2 (en) Resin compositions for optical materials, optical films and display devices
JP6859026B2 (en) Lactone ring-containing polymer, resin composition containing it, and resin molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23912271

Country of ref document: EP

Kind code of ref document: A1