JP5697783B2 - Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device - Google Patents
Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device Download PDFInfo
- Publication number
- JP5697783B2 JP5697783B2 JP2014140839A JP2014140839A JP5697783B2 JP 5697783 B2 JP5697783 B2 JP 5697783B2 JP 2014140839 A JP2014140839 A JP 2014140839A JP 2014140839 A JP2014140839 A JP 2014140839A JP 5697783 B2 JP5697783 B2 JP 5697783B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- acrylic copolymer
- film
- stretched film
- optical film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920006243 acrylic copolymer Polymers 0.000 title claims description 213
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 19
- 239000010408 film Substances 0.000 claims description 282
- 239000000178 monomer Substances 0.000 claims description 74
- 239000012788 optical film Substances 0.000 claims description 31
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 238000001125 extrusion Methods 0.000 claims description 19
- 230000009477 glass transition Effects 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 125000002723 alicyclic group Chemical group 0.000 claims description 10
- 125000004122 cyclic group Chemical group 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 230000004580 weight loss Effects 0.000 claims 1
- BQTPKSBXMONSJI-UHFFFAOYSA-N 1-cyclohexylpyrrole-2,5-dione Chemical group O=C1C=CC(=O)N1C1CCCCC1 BQTPKSBXMONSJI-UHFFFAOYSA-N 0.000 description 60
- 238000004519 manufacturing process Methods 0.000 description 43
- 230000015572 biosynthetic process Effects 0.000 description 33
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 32
- 238000003786 synthesis reaction Methods 0.000 description 29
- 230000001681 protective effect Effects 0.000 description 25
- 229920000058 polyacrylate Polymers 0.000 description 23
- 238000005452 bending Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- -1 N-substituted maleimide unit Chemical group 0.000 description 14
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 13
- 238000010557 suspension polymerization reaction Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 229940119545 isobornyl methacrylate Drugs 0.000 description 10
- NWAHZAIDMVNENC-UHFFFAOYSA-N octahydro-1h-4,7-methanoinden-5-yl methacrylate Chemical compound C12CCCC2C2CC(OC(=O)C(=C)C)C1C2 NWAHZAIDMVNENC-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000012986 chain transfer agent Substances 0.000 description 7
- 238000004817 gas chromatography Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- PILKNUBLAZTESB-UHFFFAOYSA-N (4-tert-butylcyclohexyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCC(C(C)(C)C)CC1 PILKNUBLAZTESB-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000003505 polymerization initiator Substances 0.000 description 6
- 238000005979 thermal decomposition reaction Methods 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 2
- SJLLJZNSZJHXQN-UHFFFAOYSA-N 1-dodecylpyrrole-2,5-dione Chemical group CCCCCCCCCCCCN1C(=O)C=CC1=O SJLLJZNSZJHXQN-UHFFFAOYSA-N 0.000 description 2
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical group CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical group CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CNLVUQQHXLTOTC-UHFFFAOYSA-N (2,4,6-tribromophenyl) prop-2-enoate Chemical compound BrC1=CC(Br)=C(OC(=O)C=C)C(Br)=C1 CNLVUQQHXLTOTC-UHFFFAOYSA-N 0.000 description 1
- NBIYKOUEZOEMMC-UHFFFAOYSA-N 1-(2-methylpropyl)pyrrole-2,5-dione Chemical group CC(C)CN1C(=O)C=CC1=O NBIYKOUEZOEMMC-UHFFFAOYSA-N 0.000 description 1
- FDAOHAAJGZHMKN-UHFFFAOYSA-N 1-ethyl-3-hexylpyrrole-2,5-dione Chemical group CCCCCCC1=CC(=O)N(CC)C1=O FDAOHAAJGZHMKN-UHFFFAOYSA-N 0.000 description 1
- NKVCQMYWYHDOOF-UHFFFAOYSA-N 1-phenoxyethane-1,2-diol Chemical group OCC(O)OC1=CC=CC=C1 NKVCQMYWYHDOOF-UHFFFAOYSA-N 0.000 description 1
- NQDOCLXQTQYUDH-UHFFFAOYSA-N 1-propan-2-ylpyrrole-2,5-dione Chemical group CC(C)N1C(=O)C=CC1=O NQDOCLXQTQYUDH-UHFFFAOYSA-N 0.000 description 1
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical group CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical group CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
- B29C48/914—Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1807—C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
- C08F222/402—Alkyl substituted imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Liquid Crystal (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
本発明は、アクリル系共重合体、二軸延伸フィルム、偏光板および液晶表示装置に関する。 The present invention relates to an acrylic copolymer, a biaxially stretched film, a polarizing plate, and a liquid crystal display device.
各種の光学関連機器で用いられるフィルム状の光学部材(例えば、液晶表示装置で用いられるフィルムや、プリズムシートの基板等)は、一般的に「光学フィルム」と呼ばれている。この光学フィルムの重要な光学特性の一つに複屈折性がある。すなわち、光学フィルムが大きい複屈折性を有することは好ましくない場合がある。特に、IPSモードの液晶表示装置においては、複屈折性の大きなフィルムが存在することで像質に悪影響が生じる可能性があるため、液晶表示装置に用いられる偏光板の保護フィルム等には、複屈折性の低い光学フィルムの使用が望まれる。 A film-like optical member (for example, a film used in a liquid crystal display device or a prism sheet substrate) used in various optical-related devices is generally called an “optical film”. One of the important optical properties of this optical film is birefringence. That is, it may not be preferable that the optical film has a large birefringence. In particular, in an IPS mode liquid crystal display device, the presence of a film having a large birefringence may adversely affect the image quality. It is desired to use an optical film having a low refractive index.
偏光板の保護フィルムに用いられる光学フィルムとして、例えば、特開2011−242754号公報(特許文献1)には、N−置換マレイミド単位および(メタ)アクリル酸エステル単位を構成単位として有する(メタ)アクリル重合体を含む、位相差が小さい光学フィルムが開示されている。 As an optical film used for the protective film of a polarizing plate, for example, Japanese Patent Application Laid-Open No. 2011-242754 (Patent Document 1) has an N-substituted maleimide unit and a (meth) acrylic acid ester unit as constituent units (meth). An optical film having a small retardation including an acrylic polymer is disclosed.
ところで、光学フィルムが示す複屈折には、その主要因が光学フィルムを構成するポリマーの主鎖の配向にある配向複屈折と、フィルムにかかる応力に起因する光弾性複屈折とがある。 By the way, the birefringence exhibited by the optical film includes orientation birefringence whose main factor is the orientation of the main chain of the polymer constituting the optical film, and photoelastic birefringence caused by stress applied to the film.
配向複屈折は、一般に鎖状のポリマーの主鎖が配向することによって発現する複屈折であり、この主鎖の配向は、例えばフィルム製造時の押し出し成形や延伸など材料の流動を伴うプロセスで生じ、それがフィルムに固定されて残る。 Oriented birefringence is birefringence that is generally manifested by the orientation of the main chain of a chain polymer, and this orientation of the main chain occurs, for example, in processes involving the flow of materials such as extrusion and stretching during film production. , It remains fixed to the film.
一方、光弾性複屈折は、フィルムの弾性的な変形に伴って引き起こされる複屈折である。例えば、ポリマーのガラス転移温度付近からそれ以下の温度に冷却された際に生じる体積収縮により、弾性的な応力がフィルム内に残存して、それが光弾性複屈折の原因となる。また、光学フィルムが通常温度で機器に固定した状態で受ける外力によっても、フィルムに応力が発生して光弾性複屈折が発現する。 On the other hand, photoelastic birefringence is birefringence caused by elastic deformation of the film. For example, volumetric shrinkage that occurs when the polymer is cooled from around the glass transition temperature to below it causes elastic stress to remain in the film, which causes photoelastic birefringence. In addition, an external force received when the optical film is fixed to a device at a normal temperature also generates stress in the film and develops photoelastic birefringence.
偏光板、特にIPS用偏光板に適用する光学フィルムには、透明性および耐熱性が良好であることに加えて、この配向複屈折および光弾性複屈折の双方が十分に小さいことが望まれる。 In addition to good transparency and heat resistance, an optical film applied to a polarizing plate, particularly a polarizing plate for IPS, is desired to have both sufficiently small orientation birefringence and photoelastic birefringence.
特許文献1(特開2011−242754号公報)には、位相差が小さい、すなわち配向複屈折が小さい光学フィルムについての開示はあるものの、光弾性複屈折についての記載はなく、特許文献1では透明性、耐熱性、配向複屈折および光弾性複屈折が全て良好な光学フィルムの実現はなされていない。 Patent Document 1 (Japanese Patent Laid-Open No. 2011-242754) discloses an optical film having a small phase difference, that is, a small orientation birefringence, but does not describe photoelastic birefringence. An optical film having good properties, heat resistance, orientation birefringence and photoelastic birefringence has not been realized.
本発明は、フィルム状に成形した場合に配向複屈折および光弾性複屈折がともに小さく、透明性および耐熱性に優れるアクリル系共重合体を提供することを目的とする。また、本発明は、該アクリル系共重合体を含んでなる二軸延伸フィルム、および該二軸延伸フィルムを備える偏光板および液晶表示装置を提供することを目的とする。 An object of the present invention is to provide an acrylic copolymer that has both low orientation birefringence and photoelastic birefringence when formed into a film and is excellent in transparency and heat resistance. Another object of the present invention is to provide a biaxially stretched film comprising the acrylic copolymer, a polarizing plate comprising the biaxially stretched film, and a liquid crystal display device.
本発明によるアクリル系共重合体は、N−アルキルマレイミド単位と、(メタ)アクリル酸鎖状アルキル単位と、下記一般式(1)で表される第三の構成単位と、を含んでなる。
本発明によるアクリル系共重合体は、フィルム状に成形した場合に配向複屈折および光弾性複屈折がともに小さく、また、透明性および耐熱性に優れる。そのため、本発明によるアクリル系共重合体は、液晶表示装置等の光学関連機器に用いられる光学フィルム用として、特に偏光板用保護フィルム用として、好適に用いることができる。 The acrylic copolymer according to the present invention has both small orientation birefringence and photoelastic birefringence when formed into a film, and is excellent in transparency and heat resistance. Therefore, the acrylic copolymer according to the present invention can be suitably used for an optical film used for an optical related device such as a liquid crystal display device, particularly for a protective film for a polarizing plate.
本発明においては、前記N−アルキルマレイミド単位のアルキル基が、炭素原子数1以上、10以下の鎖状または環状の基であることが好ましい。これにより、本発明の効果をより顕著に得ることができる。 In the present invention, the alkyl group of the N-alkylmaleimide unit is preferably a chain or cyclic group having 1 to 10 carbon atoms. Thereby, the effect of this invention can be acquired more notably.
本発明においては、前記(メタ)アクリル酸鎖状アルキル単位における鎖状アルキル基の炭素原子数が1以上6以下であることが好ましい。これにより、本発明の効果をより顕著に得ることができる。 In the present invention, the chain alkyl group in the (meth) acrylic acid chain alkyl unit preferably has 1 to 6 carbon atoms. Thereby, the effect of this invention can be acquired more notably.
本発明においては、前記アクリル系共重合体の全量基準で、前記N−アルキルマレイミド単位の含有量が5質量%以上、30質量%以下、前記(メタ)アクリル酸鎖状アルキル単位の含有量が40質量%以上、90質量%以下、前記第三の構成単位の含有量が1質量%以上、30質量%以下であることが好ましい。これにより、本発明の効果をより顕著に得ることができる。 In the present invention, based on the total amount of the acrylic copolymer, the content of the N-alkylmaleimide unit is 5% by mass or more and 30% by mass or less, and the content of the (meth) acrylic acid chain alkyl unit is It is preferable that the content of the third structural unit is 40% by mass or more and 90% by mass or less and 1% by mass or more and 30% by mass or less. Thereby, the effect of this invention can be acquired more notably.
本発明においては、前記R2が、炭素数6以上、18以下の脂環構造を有する基であることが好ましい。これにより、本発明の効果をより顕著に得ることができる。 In the present invention, R 2 is preferably a group having an alicyclic structure having 6 to 18 carbon atoms. Thereby, the effect of this invention can be acquired more notably.
本発明においては、前記第三の構成単位の含有量が、前記アクリル系共重合体の全量基準で、2質量%以上、23質量%以下であることが好ましい。これにより、本発明の効果をより顕著に得ることができ、偏光板用保護フィルムとして一層好適なフィルムとなる。 In the present invention, the content of the third structural unit is preferably 2% by mass or more and 23% by mass or less based on the total amount of the acrylic copolymer. Thereby, the effect of this invention can be acquired more notably and it becomes a film more suitable as a protective film for polarizing plates.
本発明においては、前記R2が、炭素数6以上、16以下の芳香環を有する基であることが好ましい。これにより、本発明の効果をより顕著に得ることができる。 In the present invention, R 2 is preferably a group having an aromatic ring having 6 to 16 carbon atoms. Thereby, the effect of this invention can be acquired more notably.
本発明においては、前記第三の構成単位の含有量が、前記アクリル系共重合体の全量基準で、1.5質量%以上、20質量%以下であることが好ましい。これにより、本発明の効果をより顕著に得ることができ、偏光板用保護フィルムなどに用いれば一層好適なフィルムとなる。 In the present invention, the content of the third structural unit is preferably 1.5% by mass or more and 20% by mass or less based on the total amount of the acrylic copolymer. Thereby, the effect of this invention can be acquired more notably and if it uses for the protective film for polarizing plates, etc., it will become a more suitable film.
本発明においては、前記アクリル系共重合体のガラス転移温度は、120℃以上であることが好ましい。このようなアクリル系共重合体を用いてフィルムを作製した場合、フィルムの耐熱性が一層向上し、その結果、熱に対するフィルムの寸法安定性が一層向上する。このような寸法安定性に優れるフィルムは、偏光板用保護フィルムとして温度変化の激しい環境や高温環境で使用した場合でも、反りや偏光板からの剥離がより効果的に防止されるため、偏光板用保護フィルムとして一層好適なものとなる。 In this invention, it is preferable that the glass transition temperature of the said acrylic copolymer is 120 degreeC or more. When a film is produced using such an acrylic copolymer, the heat resistance of the film is further improved, and as a result, the dimensional stability of the film against heat is further improved. Such a film having excellent dimensional stability can be more effectively prevented from being warped or peeled off from the polarizing plate even when used in a temperature change environment or a high temperature environment as a protective film for the polarizing plate. It becomes a more suitable thing as a protective film.
本発明においては、前記アクリル系共重合体のメルトフローレートは、1.0g/10分以上であることが好ましい。このようなアクリル系共重合体は流動性に優れるため、溶融押出しによるフィルム成形が容易となり、フィルムの製造効率が向上する。 In the present invention, the acrylic copolymer preferably has a melt flow rate of 1.0 g / 10 min or more. Since such an acrylic copolymer is excellent in fluidity, film formation by melt extrusion becomes easy, and the production efficiency of the film is improved.
本発明においては、前記アクリル系共重合体の残存モノマー量が、5質量%以下であることが好ましい。このようなアクリル系共重合体によれば、配向複屈折および光弾性複屈折に関する要求特性を満たしつつ、二軸延伸フィルムの色相を一層改善することができる。 In the present invention, the residual monomer amount of the acrylic copolymer is preferably 5% by mass or less. According to such an acrylic copolymer, the hue of the biaxially stretched film can be further improved while satisfying the required characteristics relating to orientation birefringence and photoelastic birefringence.
本発明においては、前記アクリル系共重合体の1%質量減少温度は、270℃以上であることが好ましい。このようなアクリル系共重合体は耐熱性に優れるため、溶融押出しによるフィルム成形が容易となり、フィルムの製造効率が向上する。 In the present invention, the 1% mass reduction temperature of the acrylic copolymer is preferably 270 ° C. or higher. Since such an acrylic copolymer is excellent in heat resistance, film formation by melt extrusion becomes easy, and the production efficiency of the film is improved.
本発明の別の態様による二軸延伸フィルムは、上記アクリル系共重合体を含んでなるものである。 A biaxially stretched film according to another aspect of the present invention comprises the above acrylic copolymer.
本発明においては、面内位相差Reの絶対値および厚み方向位相差Rthの絶対値が、いずれも3.0nm以下であることが好ましい。面内位相差Reの絶対値および厚み方向位相差Rthの絶対値が小さいことは、すなわち配向複屈折が小さいことを意味する。これらの絶対値が3.0nm以下である二軸延伸フィルムは、像質に悪影響を生じにくく、偏光板用保護フィルムとして一層好適である。 In the present invention, the absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth are both preferably 3.0 nm or less. A small absolute value of the in-plane retardation Re and a thickness direction retardation Rth mean that the orientation birefringence is small. These biaxially stretched films having an absolute value of 3.0 nm or less are less likely to adversely affect image quality, and are more suitable as protective films for polarizing plates.
本発明においては、光弾性係数Cの絶対値が、3.0×10−12/Pa以下であることが好ましい。光弾性係数Cの絶対値が小さいと、光弾性複屈折が小さくなる。光弾性係数Cの絶対値が3.0×10−12/Pa以下である二軸延伸フィルムは、偏光板用保護フィルムとして一層好適に用いることができる。 In the present invention, the absolute value of the photoelastic coefficient C is preferably 3.0 × 10 −12 / Pa or less. When the absolute value of the photoelastic coefficient C is small, the photoelastic birefringence becomes small. A biaxially stretched film having an absolute value of the photoelastic coefficient C of 3.0 × 10 −12 / Pa or less can be more suitably used as a protective film for a polarizing plate.
本発明においては、JIS P8115に準拠して測定されるMIT耐折度回数が、150以上であることが好ましい。このような二軸延伸フィルムは、偏光板用保護フィルムとして要求される可とう性を十分に満たすものであるため、偏光板用保護フィルムとして一層好適に用いることができる。 In the present invention, the number of MIT folding resistances measured in accordance with JIS P8115 is preferably 150 or more. Such a biaxially stretched film sufficiently satisfies the flexibility required as a protective film for polarizing plates, and therefore can be more suitably used as a protective film for polarizing plates.
本発明においては、上記二軸延伸フィルムを備える、偏光板も提供される。さらに、本発明の別の態様においては、上記偏光板を備える、液晶表示装置も提供される。上記二軸延伸フィルムは、配向複屈折および光弾性複屈折ともに小さいため、液晶表示装置の像質に与える悪影響を十分に低減することができる。そのため、偏光板および液晶表示装置によれば、良好な像質が実現される。 In this invention, a polarizing plate provided with the said biaxially stretched film is also provided. Furthermore, in another aspect of the present invention, a liquid crystal display device including the polarizing plate is also provided. Since the biaxially stretched film is small in both orientation birefringence and photoelastic birefringence, the adverse effect on the image quality of the liquid crystal display device can be sufficiently reduced. Therefore, according to the polarizing plate and the liquid crystal display device, good image quality is realized.
本発明によれば、フィルム状に成形した場合に配向複屈折および光弾性複屈折がともに小さく、透明性および耐熱性に優れるアクリル系共重合体が提供される。また、本発明によれば、該アクリル系共重合体を含んでなる二軸延伸フィルム、並びに、該二軸延伸フィルムを備える偏光板および液晶表示装置が提供される。 According to the present invention, there is provided an acrylic copolymer that has both low orientation birefringence and photoelastic birefringence when molded into a film and is excellent in transparency and heat resistance. Moreover, according to this invention, the polarizing plate and liquid crystal display device provided with the biaxially stretched film which comprises this acrylic copolymer, and this biaxially stretched film are provided.
以下、本発明の実施形態を説明する。 Embodiments of the present invention will be described below.
<アクリル系共重合体>
本発明によるアクリル系共重合体は、N−アルキルマレイミド単位と、(メタ)アクリル酸鎖状アルキル単位と、下記一般式(1)で表される第三の構成単位と、を含んでなる。まず、本発明によるアクリル系共重合体を構成する各モノマー単位について説明する。
<Acrylic copolymer>
The acrylic copolymer according to the present invention comprises an N-alkylmaleimide unit, a (meth) acrylic acid chain alkyl unit, and a third structural unit represented by the following general formula (1). First, each monomer unit constituting the acrylic copolymer according to the present invention will be described.
上記一般式(1)中、R1は水素原子またはメチル基を示し、R2は環状構造を有する炭化水素基を示す。 In the general formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a hydrocarbon group having a cyclic structure.
(N−アルキルマレイミド単位)
N−アルキルマレイミド単位は、N−アルキルマレイミドモノマーから得られる構成単位である。N−アルキルマレイミド単位は、マレイミド単位の窒素原子上にアルキル基が置換した構成単位であり、当該アルキル基は、鎖状アルキル基であっても環状アルキル基であってもよく、環状アルキル基が好ましい。なお、鎖状アルキル基とは、環状構造を有しないアルキル基を示し、環状アルキル基とは、環状構造を有するアルキル基を示す。
(N-alkylmaleimide unit)
The N-alkylmaleimide unit is a structural unit obtained from an N-alkylmaleimide monomer. The N-alkylmaleimide unit is a structural unit in which an alkyl group is substituted on the nitrogen atom of the maleimide unit. The alkyl group may be a chain alkyl group or a cyclic alkyl group. preferable. The chain alkyl group refers to an alkyl group having no cyclic structure, and the cyclic alkyl group refers to an alkyl group having a cyclic structure.
N−アルキルマレイミド単位におけるアルキル基の炭素原子数は、好ましくは1以上、10以下であり、より好ましくは3以上、8以下である。 The number of carbon atoms of the alkyl group in the N-alkylmaleimide unit is preferably 1 or more and 10 or less, more preferably 3 or more and 8 or less.
N−アルキルマレイミド単位におけるアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−へキシル基、2−エチルへキシル基、ドデシル基、ラウリル基、シクロへキシル基等が挙げられ、これらのうちメチル基、エチル基、シクロヘキシル基が好ましく、シクロヘキシル基がより好ましい。 Examples of the alkyl group in the N-alkylmaleimide unit include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, and 2-ethylhexyl group. , A dodecyl group, a lauryl group, a cyclohexyl group, and the like. Among these, a methyl group, an ethyl group, and a cyclohexyl group are preferable, and a cyclohexyl group is more preferable.
すなわち、N−アルキルマレイミド単位としては、N−メチルマレイミド単位、N−エチルマレイミド単位、N−n−プロピルマレイミド単位、N−イソプロピルマレイミド単位、N−nーブチルマレイミド単位、N−イソブチルマレイミド単位、N−t−ブチルマレイミド単位、N−n−へキシルマレイミド単位、N−2−エチルへキシルマレイミド単位、N−ドデシルマレイミド単位、N−ラウリルマレイミド単位、N−シクロヘキシルマレイミド単位等が挙げられ、これらのうちN−メチルマレイミド単位、N−エチルマレイミド単位、N−シクロヘキシルマレイミド単位が好ましく、N−シクロヘキシルマレイミド単位がより好ましい。なお、N−アルキルマレイミド単位はこれらのうちの1種であってもよく、2種以上を含んでいてもよい。 That is, as N-alkylmaleimide units, N-methylmaleimide units, N-ethylmaleimide units, Nn-propylmaleimide units, N-isopropylmaleimide units, Nn-butylmaleimide units, N-isobutylmaleimide units, Nt-butylmaleimide units, Nn-hexylmaleimide units, N-2-ethylhexylmaleimide units, N-dodecylmaleimide units, N-laurylmaleimide units, N-cyclohexylmaleimide units, and the like. Of these, N-methylmaleimide units, N-ethylmaleimide units, and N-cyclohexylmaleimide units are preferable, and N-cyclohexylmaleimide units are more preferable. The N-alkylmaleimide unit may be one of these or may contain two or more.
((メタ)アクリル酸鎖状アルキル単位)
(メタ)アクリル酸鎖状アルキル単位は、(メタ)アクリル酸鎖状アルキルモノマーから得られる構成単位である。なお、本発明において、(メタ)アクリル酸とは、アクリル酸またはメタクリル酸をいうものとする。(メタ)アクリル酸鎖状アルキル単位における鎖状アルキル基は、直鎖状であっても、分岐状であってもよい。
((Meth) acrylic acid chain alkyl unit)
The (meth) acrylic acid chain alkyl unit is a structural unit obtained from a (meth) acrylic acid chain alkyl monomer. In the present invention, (meth) acrylic acid means acrylic acid or methacrylic acid. The chain alkyl group in the (meth) acrylic acid chain alkyl unit may be linear or branched.
(メタ)アクリル酸鎖状アルキル単位における鎖状アルキル基の炭素原子数は、好ましくは1以上、6以下であり、より好ましくは1以上、4以下である。 The number of carbon atoms of the chain alkyl group in the (meth) acrylic acid chain alkyl unit is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less.
(メタ)アクリル酸鎖状アルキル単位における鎖状アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−へキシル基、2−エチルへキシル基等が挙げられ、これらのうちメチル基、エチル基、プロピル基、イソプロピル基が好ましく、メチル基がより好ましい。 As the chain alkyl group in the (meth) acrylic acid chain alkyl unit, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group etc. are mentioned, Among these, a methyl group, an ethyl group, a propyl group, and an isopropyl group are preferable, and a methyl group is more preferable.
すなわち、(メタ)アクリル酸鎖状アルキル単位としては、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸n−プロピル単位、(メタ)アクリル酸イソプロピル単位、(メタ)アクリル酸n−ブチル単位、(メタ)アクリル酸イソブチル単位、(メタ)アクリル酸t−ブチル単位、(メタ)アクリル酸n−へキシル単位、(メタ)アクリル酸2−エチルへキシル単位等が挙げられ、これらのうち、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸プロピル単位、(メタ)アクリル酸イソプロピル単位が好ましく、(メタ)アクリル酸メチル単位がより好ましい。また、(メタ)アクリル酸鎖状アルキル単位としては、メタクリル酸メチル単位が特に好ましい。なお、(メタ)アクリル酸鎖状アルキル単位はこれらのうちの1種であってもよく、2種以上を含んでいてもよい。 That is, as the (meth) acrylic acid chain alkyl unit, (meth) acrylic acid methyl unit, (meth) ethyl acrylate unit, (meth) acrylic acid n-propyl unit, (meth) acrylic acid isopropyl unit, (meth) ) N-butyl acrylate unit, isobutyl (meth) acrylate unit, t-butyl (meth) acrylate unit, n-hexyl (meth) acrylate unit, 2-ethylhexyl unit (meth) acrylate, etc. Of these, methyl (meth) acrylate units, ethyl (meth) acrylate units, propyl (meth) acrylate units, and isopropyl (meth) acrylate units are preferred, and methyl (meth) acrylate units are more preferred. preferable. The (meth) acrylic acid chain alkyl unit is particularly preferably a methyl methacrylate unit. In addition, the (meth) acrylic acid chain alkyl unit may be one of these, or may include two or more.
(第三の構成単位)
上記一般式(1)で表される第三の構成単位は、下記一般式(2)で表されるモノマーから得られる。
(Third component)
The third structural unit represented by the general formula (1) is obtained from a monomer represented by the following general formula (2).
上記一般式(2)において、R1は水素原子またはメチル基を示す。また、R2は、環状構造を有する炭化水素基を示す。環状構造を有する炭化水素基としては、脂環構造または芳香環構造を有する炭化水素基が挙げられる。 In the general formula (2), R 1 represents a hydrogen atom or a methyl group. R 2 represents a hydrocarbon group having a cyclic structure. Examples of the hydrocarbon group having a cyclic structure include a hydrocarbon group having an alicyclic structure or an aromatic ring structure.
脂環構造を有する炭化水素基は、炭素数6以上、18以下の基であることが好ましく、炭素数8以上、12以下の基であることがより好ましい。 The hydrocarbon group having an alicyclic structure is preferably a group having 6 to 18 carbon atoms, and more preferably a group having 8 to 12 carbon atoms.
脂環構造を有する炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ジシクロペンタニル基、イソボルニル基、4−tert−ブチルシクロヘキシル基、ジシクロペンタニルオキシエチル基、3,5−ジヒドロキシ−1−アダマンチル基、3−ヒドロキシ−1−アダマンチル基、2,2,5−トリメチルシクロヘキシル基、ジシクロペンテニル基、2−デカヒドロナフチル基、ジシクロペンテニルオキシエチル基等が挙げられる。これらのうち、脂環式炭化水素基が好ましく、ジシクロペンタニル基、イソボルニル基、4−tert−ブチルシクロヘキシル基がより好ましい。 Examples of the hydrocarbon group having an alicyclic structure include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a dicyclopentanyl group, an isobornyl group, a 4-tert-butylcyclohexyl group, a dicyclopentanyloxyethyl group, 3,5-dihydroxy-1-adamantyl group, 3-hydroxy-1-adamantyl group, 2,2,5-trimethylcyclohexyl group, dicyclopentenyl group, 2-decahydronaphthyl group, dicyclopentenyloxyethyl group, etc. Can be mentioned. Among these, an alicyclic hydrocarbon group is preferable, and a dicyclopentanyl group, an isobornyl group, and a 4-tert-butylcyclohexyl group are more preferable.
芳香環を有する炭化水素基は、炭素数6以上、16以下の基であることが好ましく、炭素数7以上、10以下の基であることがより好ましい。また、芳香環を有する炭化水素基は、置換基を有していてもよく、例えば芳香環の一部の水素がハロゲン原子で置換されていてもよい。 The hydrocarbon group having an aromatic ring is preferably a group having 6 to 16 carbon atoms, and more preferably a group having 7 to 10 carbon atoms. Further, the hydrocarbon group having an aromatic ring may have a substituent, and for example, a part of hydrogen of the aromatic ring may be substituted with a halogen atom.
芳香環を有する炭化水素基としては、フェニル基、トリブロモフェニル基、ベンジル基、フェノキシエチル基、フェノキシエチレングリコール基等が挙げられる。これらのうち、芳香族炭化水素基が好ましく、ベンジル基、フェノキシエチル基がより好ましい。 Examples of the hydrocarbon group having an aromatic ring include a phenyl group, a tribromophenyl group, a benzyl group, a phenoxyethyl group, and a phenoxyethylene glycol group. Of these, an aromatic hydrocarbon group is preferable, and a benzyl group and a phenoxyethyl group are more preferable.
アクリル系共重合体中の各構成単位の含有量は、アクリル系共重合体の全量基準で、N−アルキルマレイミド単位の含有量が5質量%以上、30質量%以下、(メタ)アクリル酸鎖状アルキル単位の含有量が40質量%以上、90質量%以下、第三の構成単位の含有量が1質量%以上、30質量%以下であることが好ましい。 The content of each structural unit in the acrylic copolymer is based on the total amount of the acrylic copolymer, and the content of N-alkylmaleimide units is 5% by mass or more and 30% by mass or less, and a (meth) acrylic acid chain. It is preferable that the content of the alkyl unit is 40% by mass or more and 90% by mass or less and the content of the third structural unit is 1% by mass or more and 30% by mass or less.
ここで、第三の構成単位におけるR2が脂環構造を有する炭化水素基である場合、第三の構成単位の含有量は、2質量%以上が好ましく、7質量%以上がより好ましく、10質量%超えることがさらに好ましく、13質量%以上が特に好ましい。また、第三の構成単位におけるR2が脂環構造を有する炭化水素基である場合、第三の構成単位の含有量は、23質量%以下が好ましく、21質量%以下がより好ましく、20質量%以下でさらに好ましい。 Here, when R 2 in the third structural unit is a hydrocarbon group having an alicyclic structure, the content of the third structural unit is preferably 2% by mass or more, more preferably 7% by mass or more. More preferably, it exceeds 13% by mass, and particularly preferably 13% by mass or more. When R 2 in the third structural unit is a hydrocarbon group having an alicyclic structure, the content of the third structural unit is preferably 23% by mass or less, more preferably 21% by mass or less, and 20% by mass. % Or less is more preferable.
第三の構成単位におけるR2が脂環構造を有する炭化水素基である場合、N−アルキルマレイミド単位の含有量は、5質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。また、このときN−アルキルマレイミド単位の含有量は、30質量%以下が好ましく、27質量%以下がより好ましく、25質量%以下がさらに好ましい。 When R 2 in the third structural unit is a hydrocarbon group having an alicyclic structure, the content of the N-alkylmaleimide unit is preferably 5% by mass or more, more preferably 15% by mass or more, and more preferably 20% by mass or more. Is more preferable. In this case, the content of the N-alkylmaleimide unit is preferably 30% by mass or less, more preferably 27% by mass or less, and further preferably 25% by mass or less.
また、第三の構成単位におけるR2が脂環構造を有する炭化水素基である場合、(メタ)アクリル酸鎖状アルキル単位の含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましく、57質量%以上が特に好ましい。また、このとき(メタ)アクリル酸鎖状アルキル単位の含有量は、90質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。 Further, when R 2 in the third structural unit is a hydrocarbon group having an alicyclic structure, the content of the (meth) acrylic acid chain alkyl unit is preferably 40% by mass or more, and more preferably 50% by mass or more. Preferably, 55% by mass or more is more preferable, and 57% by mass or more is particularly preferable. In this case, the content of the (meth) acrylic acid chain alkyl unit is preferably 90% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less.
このような含有量の範囲で各構成単位を含んでなる本発明によるアクリル系共重合体によれば、本発明の効果を一層顕著に奏することができる。この結果、本発明によるアクリル系共重合体を用いて得られる二軸延伸フィルムは、偏光板用保護フィルムに好適に使用することができる。 According to the acrylic copolymer according to the present invention comprising each structural unit in such a content range, the effects of the present invention can be more remarkably exhibited. As a result, the biaxially stretched film obtained using the acrylic copolymer according to the present invention can be suitably used for a protective film for a polarizing plate.
また、第三の構成単位におけるR2が芳香環を有する炭化水素基である場合、第三の構成単位の含有量は、1.5質量%以上が好ましく、2質量%以上がさらに好ましい。また、このとき第三の構成単位の含有量は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下であってもよい。第三の構成単位の含有量を上記の範囲とすることにより、フィルムとした場合の光弾性係数を小さくしながら、フィルムの機械的強度および耐熱性をより一層高いレベルで維持することができる。 When R 2 in the third structural unit is a hydrocarbon group having an aromatic ring, the content of the third structural unit is preferably 1.5% by mass or more, and more preferably 2% by mass or more. In this case, the content of the third structural unit is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, and may be 5% by mass or less. By setting the content of the third structural unit in the above range, the mechanical strength and heat resistance of the film can be maintained at a higher level while reducing the photoelastic coefficient in the case of the film.
また、第三の構成単位におけるR2が芳香環を有する炭化水素基である場合、N−アルキルマレイミド単位の含有量は、7質量%以上が好ましく、10質量%以上がより好ましい。また、第三の構成単位におけるR2が芳香環を有する炭化水素基である場合、N−アルキルマレイミド単位の含有量は、25質量%以下が好ましく、20質量%以下がより好ましく、17質量%以下がさらに好ましい。 Further, when R 2 in the third structural unit is a hydrocarbon group having an aromatic ring, the content of the N-alkylmaleimide unit is preferably 7% by mass or more, and more preferably 10% by mass or more. When R 2 in the third structural unit is a hydrocarbon group having an aromatic ring, the content of the N-alkylmaleimide unit is preferably 25% by mass or less, more preferably 20% by mass or less, and 17% by mass. The following is more preferable.
また、第三の構成単位におけるR2が芳香環を有する炭化水素基である場合、(メタ)アクリル酸鎖状アルキル単位の含有量は、65質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上がさらに好ましい。また、第三の構成単位におけるR2が芳香環を有する炭化水素基である場合、(メタ)アクリル酸鎖状アルキル単位の含有量は、90質量%以下が好ましく、85質量%以下がより好ましい。 When R 2 in the third structural unit is a hydrocarbon group having an aromatic ring, the content of the (meth) acrylic acid chain alkyl unit is preferably 65% by mass or more, and more preferably 70% by mass or more. 75 mass% or more is more preferable. When R 2 in the third structural unit is a hydrocarbon group having an aromatic ring, the content of the (meth) acrylic acid chain alkyl unit is preferably 90% by mass or less, and more preferably 85% by mass or less. .
このような含有量の範囲で各構成単位を含んでなる本発明によるアクリル系共重合体によれば、本発明の効果を一層顕著に奏することができる。この結果、本発明によるアクリル系共重合体を用いて得られる二軸延伸フィルムは、偏光板用保護フィルムに好適に使用することができる。 According to the acrylic copolymer according to the present invention comprising each structural unit in such a content range, the effects of the present invention can be more remarkably exhibited. As a result, the biaxially stretched film obtained using the acrylic copolymer according to the present invention can be suitably used for a protective film for a polarizing plate.
本発明によるアクリル系共重合体は、フィルム成形した場合の可とう性およびメルトフローレート(以後、単に「MFR」ともいう。)等のフィルム製造効率の観点から、重量平均分子量Mwが、0.5×105以上、2.6×105以下の範囲であることが好ましく、0.7×105以上、2.4×105以下の範囲であることがより好ましく、0.9×105以上、2.2×105以下の範囲であることが特に好ましい。 The acrylic copolymer according to the present invention has a weight average molecular weight Mw of 0. 0 from the viewpoint of film production efficiency such as flexibility in film forming and melt flow rate (hereinafter also simply referred to as “MFR”). It is preferably in the range of 5 × 10 5 or more and 2.6 × 10 5 or less, more preferably in the range of 0.7 × 10 5 or more and 2.4 × 10 5 or less, and 0.9 × 10 5 A range of 5 or more and 2.2 × 10 5 or less is particularly preferable.
なお、本明細書中、重量平均分子量Mwは、東ソー株式会社製のHLC−8220 GPCにより測定される、標準ポリスチレン分子量換算の値を示す。なお、カラムは東ソー株式会社製のSuper−Multipore HZ−Mを使用し、測定条件は、溶媒HPLC用テトラヒドロフラン(THF)、流量0.35ml/min、カラム温度40℃とすることができる。 In addition, in this specification, the weight average molecular weight Mw shows the value of standard polystyrene molecular weight conversion measured by Tosoh Co., Ltd. HLC-8220 GPC. In addition, Super-Multipore HZ-M manufactured by Tosoh Corporation is used as a column, and measurement conditions can be tetrahydrofuran for solvent HPLC (THF), a flow rate of 0.35 ml / min, and a column temperature of 40 ° C.
本発明によるアクリル系共重合体は、ガラス転移温度Tgが、120℃以上であることが好ましい。これにより、フィルムの耐熱性が一層向上し、偏光板用保護フィルムとして一層好適なものとなる。また、ガラス転移温度Tgの上限に特に制限はないが、二軸延伸フィルムとして用いた場合、二軸延伸フィルムの十分な耐熱性が達成される観点から、160℃以下であってよく、150℃以下であってもよい。 The acrylic copolymer according to the present invention preferably has a glass transition temperature Tg of 120 ° C. or higher. Thereby, the heat resistance of a film improves further and it becomes a more suitable thing as a protective film for polarizing plates. Further, the upper limit of the glass transition temperature Tg is not particularly limited, but when used as a biaxially stretched film, it may be 160 ° C or lower and 150 ° C from the viewpoint of achieving sufficient heat resistance of the biaxially stretched film. It may be the following.
なお、本明細書中、ガラス転移温度Tgは、SIIナノテクノロジー社製の示差走査熱量測定装置DSC7020を使用し、昇温速度10℃/分で昇温させたときのガラス転移点のオンセット温度から求めた値を示す。なお、試料の質量は5mg以上、10mg以下とする。 In the present specification, the glass transition temperature Tg is the onset temperature of the glass transition point when the temperature is raised at a rate of temperature rise of 10 ° C./min using a differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology. The value obtained from The mass of the sample is 5 mg or more and 10 mg or less.
本発明によるアクリル系共重合体は、メルトフローレート(MFR)が、1.0g/10分以上であることが好ましい。このようなアクリル系共重合体は流動性に優れるため、溶融押出しによるフィルム成形が容易となり、フィルムの製造効率が向上する。また、メルトフローレート(MFR)の上限に特に制限はないが、40g/10分以下であってよく、30g/10分以下であってもよい。 The acrylic copolymer according to the present invention preferably has a melt flow rate (MFR) of 1.0 g / 10 min or more. Since such an acrylic copolymer is excellent in fluidity, film formation by melt extrusion becomes easy, and the production efficiency of the film is improved. Moreover, although there is no restriction | limiting in particular in the upper limit of a melt flow rate (MFR), it may be 40 g / 10min or less, and may be 30 g / 10min or less.
なお、本明細書中、メルトフローレート(MFR)は、株式会社東洋精機製のメルトインデックサF−F01を用い、3.8kg重荷重、260℃条件下、JIS K7020に準拠して測定される値を示す。 In the present specification, the melt flow rate (MFR) is measured using a melt indexer F-F01 manufactured by Toyo Seiki Co., Ltd. under a 3.8 kg heavy load and 260 ° C. conditions according to JIS K7020. Indicates the value.
本発明によるアクリル系共重合体の1%質量減少熱分解温度(以後、単に「熱分解温度」ともいう。)は、270℃以上であることが好ましく、280℃以上であることがより好ましく、285℃以上であることがさらに好ましい。これにより、フィルムの耐熱性が一層向上し、偏光板用保護フィルムとして一層好適なものとなる。また、熱分解温度の上限に特に制限はないが、光学フィルムとしての十分な耐熱性が達成される観点から、400℃以下であってもよく、350℃以下であってもよい。 The 1% mass reduction thermal decomposition temperature (hereinafter also simply referred to as “thermal decomposition temperature”) of the acrylic copolymer according to the present invention is preferably 270 ° C. or higher, more preferably 280 ° C. or higher, More preferably, it is 285 ° C. or higher. Thereby, the heat resistance of a film improves further and it becomes a more suitable thing as a protective film for polarizing plates. Moreover, although there is no restriction | limiting in particular in the upper limit of thermal decomposition temperature, 400 degreeC or less may be sufficient from the viewpoint from which sufficient heat resistance as an optical film is achieved, and 350 degrees C or less may be sufficient.
なお、本明細書中、熱分解温度は、SIIナノテクノロジー社製の示差熱熱質量同時測定装置TG/DTA7200を使用し、昇温温度10℃/分で180℃まで昇温させ、60分保持した後、昇温速度10℃/分で450℃まで昇温し、250℃における試料の質量を基準として1%質量減少したときの温度を示す。 In this specification, the thermal decomposition temperature is increased to 180 ° C. at a temperature increase temperature of 10 ° C./min using a differential thermothermal mass simultaneous measurement device TG / DTA7200 manufactured by SII Nano Technology, and held for 60 minutes. Then, the temperature is raised to 450 ° C. at a temperature rising rate of 10 ° C./min, and the temperature when the mass is reduced by 1% based on the mass of the sample at 250 ° C. is shown.
本発明によるアクリル系共重合体は、上記した三種のモノマー単位を共重合することにより得ることができる。重合方法は特に制限されず、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等の方法により製造することができる。これらのうち、重合後の処理が容易であり、重合後の処理において有機溶媒の除去のための加熱等が不要である観点から、懸濁重合が好適である。 The acrylic copolymer according to the present invention can be obtained by copolymerizing the above three types of monomer units. The polymerization method is not particularly limited, and can be produced by, for example, bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, or the like. Among these, suspension polymerization is preferable from the viewpoint that treatment after polymerization is easy and heating for removing the organic solvent is not necessary in the treatment after polymerization.
本発明によるアクリル系共重合体においては、懸濁重合により製造することで特に色相に優れたものとなる。懸濁重合は、溶液重合とは異なり、重合系から高温で有機溶媒を除去する工程を必要としないため、より一層、色相に優れたアクリル系共重合体を得ることができる。 The acrylic copolymer according to the present invention is particularly excellent in hue by being produced by suspension polymerization. Unlike the solution polymerization, the suspension polymerization does not require a step of removing the organic solvent from the polymerization system at a high temperature, so that an acrylic copolymer having an even better hue can be obtained.
ところで、例えば、特許文献1に記載されたメタクリル酸メチルとN−シクロヘキシルマレイミドとの共重合体を製膜してフィルム化した場合、フィルムの色相が悪くなる傾向にある。本発明者らは、色相の悪化の原因が、重合後のアクリル系共重合体における残存モノマー量が多いことが一因であるとの知見を得た。そして、本発明者らは、モノマー単位として、N−アルキルマレイミドモノマーと(メタ)アクリル酸鎖状アルキルモノマーとに加え、第三の構成単位を採用することで、モノマー転化率が向上し、重合後のアクリル系共重合体における残存モノマー量が十分に低減されることがわかった。また、これらの特定のモノマーを特定の比率で含有させることにより、重合後の残存モノマー量がより一層低減されることが分かった。 By the way, for example, when a copolymer of methyl methacrylate and N-cyclohexylmaleimide described in Patent Document 1 is formed into a film, the hue of the film tends to deteriorate. The present inventors have found that the cause of the deterioration of the hue is due to a large amount of residual monomer in the acrylic copolymer after polymerization. And, as a monomer unit, the present inventors employ a third constitutional unit in addition to the N-alkylmaleimide monomer and the (meth) acrylic acid chain alkyl monomer, thereby improving the monomer conversion rate and polymerization. It was found that the residual monomer amount in the later acrylic copolymer was sufficiently reduced. It was also found that the amount of residual monomer after polymerization was further reduced by containing these specific monomers at a specific ratio.
このような効果が奏される理由は、必ずしも明らかではないが、以下のように考えられる。すなわち、N−アルキルマレイミドモノマーと(メタ)アクリル酸鎖状アルキルモノマーとの反応性が必ずしも高くないのに対して、上記一般式(2)で表されるモノマーと両モノマーとの反応性が高いことから、上記一般式(2)で表されるモノマーにより重合反応が促進され、高いモノマー転化率が達成されると考えられる。なお、残存モノマー量が多い場合でも、アクリル系共重合体自体に着色は認められない。本発明者らの知見によれば、残存モノマー量が多い場合には、アクリル系共重合体を含む樹脂材料をフィルム化する工程における加熱等によって黄変が生じる。 The reason for such an effect is not necessarily clear, but is considered as follows. That is, the reactivity between the N-alkylmaleimide monomer and the (meth) acrylic acid chain alkyl monomer is not necessarily high, whereas the reactivity between the monomer represented by the general formula (2) and both monomers is high. Therefore, it is considered that the polymerization reaction is accelerated by the monomer represented by the general formula (2), and a high monomer conversion rate is achieved. Even when the amount of residual monomer is large, the acrylic copolymer itself is not colored. According to the knowledge of the present inventors, when the amount of residual monomer is large, yellowing occurs due to heating or the like in the step of forming a resin material containing an acrylic copolymer into a film.
本発明においては、アクリル系共重合体の残存モノマー量は、好ましくは5質量%以下であり、より好ましくは4質量%以下であり、さらに好ましくは3質量%以下であり、一層好ましくは2質量%以下である。 In the present invention, the residual monomer amount of the acrylic copolymer is preferably 5% by mass or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, and still more preferably 2% by mass. % Or less.
懸濁重合の条件は特に制限されず、公知の懸濁重合の条件を適宜適用することができる。以下に、懸濁重合によるアクリル系共重合体の製造方法の一例を示すが、本発明が下記の一例に限定されるものではない。 The conditions for suspension polymerization are not particularly limited, and known suspension polymerization conditions can be appropriately applied. Although an example of the manufacturing method of the acrylic copolymer by suspension polymerization is shown below, this invention is not limited to the following example.
まず、所望の質量比率となるようにモノマー(N−アルキルマレイミド、(メタ)アクリル酸鎖状アルキル、および上記一般式(2)で表されるモノマー)をそれぞれ計量し、その総量を100質量部とする。モノマー総量100質量部に対して、300質量部の脱イオン水、および0.6質量部の分散剤としてのポリビニルアルコール(株式会社クラレ製のクラレパボール))を懸濁重合装置に投入し、撹拌を開始する。次いで、計量したモノマーと、重合開始剤として日本油脂株式会社製のパーロイルTCPを1質量部と、連鎖移動剤として1−オクタンチオールを0.22質量部とを、懸濁重合装置に投入する。 First, monomers (N-alkylmaleimide, (meth) acrylic acid chain alkyl, and monomer represented by the above general formula (2)) are weighed so as to obtain a desired mass ratio, and the total amount is 100 parts by mass. And With respect to 100 parts by mass of the total amount of monomers, 300 parts by mass of deionized water and 0.6 parts by mass of polyvinyl alcohol as a dispersant (Kuraray Co., Ltd., Kuraray Co., Ltd.) are charged into the suspension polymerization apparatus and stirred. Start. Then, 1 part by mass of the weighed monomer, Nippon Oil & Fats Co., Ltd. Parroyl TCP as a polymerization initiator, and 0.22 part by mass of 1-octanethiol as a chain transfer agent are charged into a suspension polymerization apparatus.
その後、懸濁重合装置に窒素を通じつつ、反応系を70℃まで昇温した後、70℃で3時間保持して反応させる。反応後、室温まで冷却し、必要に応じてろ過、洗浄および乾燥等の操作を行い、粒子状のアクリル系共重合体を得ることができる。このような方法によれば、残存モノマー量が5質量%以下であり、重量平均分子量Mwが0.5×105以上、2.6×105以下の範囲にあるアクリル系共重合体を容易に得ることができる。 Thereafter, the temperature of the reaction system is raised to 70 ° C. while passing nitrogen through the suspension polymerization apparatus, and then the reaction is carried out by maintaining at 70 ° C. for 3 hours. After the reaction, the reaction mixture is cooled to room temperature, and if necessary, operations such as filtration, washing and drying can be performed to obtain a particulate acrylic copolymer. According to such a method, an acrylic copolymer having a residual monomer amount of 5% by mass or less and a weight average molecular weight Mw in the range of 0.5 × 10 5 or more and 2.6 × 10 5 or less is easily obtained. Can get to.
なお、上述の重合開始剤、連鎖移動剤および分散剤の種類、ならびに投入量は一例であって、懸濁重合の条件は上記に限定されるものではない。懸濁重合では、残存モノマー量が5質量%以下、および、重量平均分子量Mwが0.5×105以上、2.6×105以下を達成できる範囲で、その条件を適宜変更することができる。例えば、アクリル系共重合体の重量平均分子量Mwは、連鎖移動剤の投入量を変更することにより適宜調整することができる。 The types of polymerization initiator, chain transfer agent, and dispersant described above, and the input amount are merely examples, and the conditions for suspension polymerization are not limited to the above. In the suspension polymerization, the conditions can be appropriately changed within a range where the residual monomer amount is 5% by mass or less and the weight average molecular weight Mw is 0.5 × 10 5 or more and 2.6 × 10 5 or less. it can. For example, the weight average molecular weight Mw of the acrylic copolymer can be appropriately adjusted by changing the input amount of the chain transfer agent.
重合開始剤としては、例えば、日本油脂株式会社製のパーロイルTCP、パーオクタO、ナイパーBW等を用いることができる。また、重合開始剤の使用量は、例えば、モノマー総量100質量部に対して、0.05質量部以上、2.0質量部以下であってよく、0.1質量部以上、1.5質量部以下であってもよい。 As the polymerization initiator, for example, Parroyl TCP, Perocta O, Niper BW, etc. manufactured by Nippon Oil & Fats Co., Ltd. can be used. Moreover, the usage-amount of a polymerization initiator may be 0.05 mass part or more and 2.0 mass parts or less with respect to 100 mass parts of total monomers, for example, 0.1 mass part or more and 1.5 mass parts Or less.
連鎖移動剤としては、例えば、1−オクタンチオール、1−ドデカンチオール、tert−ドデカンチオール等のチオール類を用いることができる。また、連鎖移動剤の使用量は、所望の重量平均分子量Mwに応じて適宜変更できるが、例えば、モノマー総量100質量部に対して、0.05質量部以上、0.6質量部以下とすることができ、0.07質量部以上、0.5質量部以下であってもよい。 As the chain transfer agent, for example, thiols such as 1-octanethiol, 1-dodecanethiol, and tert-dodecanethiol can be used. Moreover, although the usage-amount of a chain transfer agent can be suitably changed according to the desired weight average molecular weight Mw, it shall be 0.05 mass part or more and 0.6 mass part or less with respect to 100 mass parts of monomer total amounts, for example. 0.07 mass part or more and 0.5 mass part or less may be sufficient.
分散剤としては、例えば、株式会社クラレ製のクラレパボール等のPVA、ポリアクリル酸ナトリウム等を用いることができる。また、分散剤の使用量は、例えば、モノマー総量100質量部に対して、0.01質量部以上、0.5質量部以下であってよく、0.02質量部以上、0.3質量部以下であってもよい。 As the dispersant, for example, PVA such as Kuraraypa ball manufactured by Kuraray Co., Ltd., sodium polyacrylate, or the like can be used. Moreover, the usage-amount of a dispersing agent may be 0.01 mass part or more and 0.5 mass part or less with respect to 100 mass parts of monomer total amount, for example, 0.02 mass part or more, 0.3 mass part It may be the following.
懸濁重合の条件は、重合開始剤、連鎖移動剤および分散剤の種類、ならびに使用量等に応じて適宜調整することができる。例えば、反応温度は、50℃以上、90℃以下とすることができ、好ましくは60℃以上、85℃以下であってもよい。また、反応時間は、十分に反応が進行する時間が確保されていればよく、例えば、2時間以上、10時間以下とすることができ、好ましくは3時間以上、8時間以下である。なお、モノマー転化率は反応活性種の寿命、モノマーの反応性等によって決まるため、必ずしも反応時間を延長してもモノマー転化率は向上しない。 The conditions for suspension polymerization can be appropriately adjusted according to the types of polymerization initiator, chain transfer agent and dispersant, and the amount used. For example, the reaction temperature can be 50 ° C. or higher and 90 ° C. or lower, and preferably 60 ° C. or higher and 85 ° C. or lower. Moreover, reaction time should just ensure time for reaction to fully advance, for example, can be 2 hours or more and 10 hours or less, Preferably they are 3 hours or more and 8 hours or less. Since the monomer conversion rate is determined by the lifetime of the reactive species, the reactivity of the monomer, etc., the monomer conversion rate does not necessarily improve even if the reaction time is extended.
上記のような、本発明によるアクリル系共重合体は、二軸延伸フィルム用の樹脂材料として好適に用いることができる。本発明によるアクリル系共重合体によれば、配向複屈折および光弾性複屈折がともに小さく、透明性および耐熱性に優れる二軸延伸フィルムを得ることができる。 The acrylic copolymer according to the present invention as described above can be suitably used as a resin material for a biaxially stretched film. According to the acrylic copolymer of the present invention, it is possible to obtain a biaxially stretched film that has both small orientation birefringence and photoelastic birefringence and is excellent in transparency and heat resistance.
<二軸延伸フィルム>
次に、本発明による二軸延伸フィルムについて説明する。本発明による二軸延伸フィルムは、上記のアクリル系共重合体を含む樹脂を製膜した未延伸フィルムを二軸延伸して得ることができる。本発明による二軸延伸フィルムは、配向複屈折および光弾性複屈折がともに小さく、透明性および耐熱性に優れるため、特に、光学フィルムとして好適に用いることができる。以下、本発明による二軸延伸フィルムの諸特性について詳述する。
<Biaxially stretched film>
Next, the biaxially stretched film according to the present invention will be described. The biaxially stretched film according to the present invention can be obtained by biaxially stretching an unstretched film obtained by forming a resin containing the above acrylic copolymer. The biaxially stretched film according to the present invention has a small orientation birefringence and a photoelastic birefringence, and is excellent in transparency and heat resistance. Hereinafter, various characteristics of the biaxially stretched film according to the present invention will be described in detail.
二軸延伸フィルムの面内位相差Reの絶対値および厚み方向位相差Rthの絶対値は、いずれも3.0nm以下であることが好ましく、2.5nm以下がより好ましく、2.0nm以下がさらに好ましく、1.0nm以下が一層好ましい。面内位相差Reの絶対値および厚み方向位相差Rthの絶対値が小さいと、配向複屈折が小さくなるため、二軸延伸フィルム、特に偏光板用保護フィルムとして、一層好適に用いることができる。 The absolute value of the in-plane retardation Re and the thickness direction retardation Rth of the biaxially stretched film are preferably 3.0 nm or less, more preferably 2.5 nm or less, and further 2.0 nm or less. 1.0 nm or less is more preferable. When the absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth are small, the orientation birefringence becomes small, so that it can be more suitably used as a biaxially stretched film, particularly a polarizing plate protective film.
二軸延伸フィルムの光弾性係数Cの絶対値は、3.0×10−12/Pa以下であることが好ましく、2.0×10−12/Pa以下がより好ましく、1.0×10−12/Pa以下がさらに好ましく、5.0×10−13/Pa以下が一層好ましく、1.0×10−13/Pa以下であってもよい。光弾性係数Cの絶対値が小さいと、光弾性複屈折が小さくなるため、二軸延伸フィルム、特に偏光板用保護フィルムとして、一層好適に用いることができる。 The absolute value of the photoelastic coefficient C of the biaxially stretched film is preferably 3.0 × 10 −12 / Pa or less, more preferably 2.0 × 10 −12 / Pa or less, and 1.0 × 10 − 12 / Pa or less is more preferable, 5.0 × 10 −13 / Pa or less is more preferable, and 1.0 × 10 −13 / Pa or less may be used. When the absolute value of the photoelastic coefficient C is small, the photoelastic birefringence becomes small, so that it can be more suitably used as a biaxially stretched film, particularly a polarizing plate protective film.
二軸延伸フィルムの配向複屈折性は、Axometrics社製Axoscan装置を用いてフィルムの面内位相差値であるレタデーションReと厚み方向位相差値であるRthを測定して評価することができる。 The orientation birefringence of the biaxially stretched film can be evaluated by measuring the retardation Re, which is an in-plane retardation value of the film, and Rth, which is a thickness direction retardation value, using an Axoscan apparatus manufactured by Axometrics.
Re(単位:nm)は、フィルム面内の1方向の屈折率をnx、それと直行する方向の屈折率をny、フィルムの厚みをdnmとしたとき次式(1)で表される。
Re=(nx−ny)×d …(1)
Re (unit: nm) is expressed by the following formula (1), where n x is the refractive index in one direction in the film plane, n y is the refractive index in the direction perpendicular thereto, and d nm is the thickness of the film.
Re = (n x -n y) × d ... (1)
Rth(単位:nm)は、フィルム面内の1方向の屈折率をnx、それと直行する方向の屈折率をny、フィルムの厚み方向の屈折率をnz、フィルムの厚みをdnmとしたとき次式(2)で表される。
Rth=((nx+ny)/2−nz)×d …(2)
Rth (unit: nm) was the one direction of the refractive index in the film plane n x, therewith n y refractive index in a direction perpendicular, the refractive index in the thickness direction of the film n z, the thickness of the film and dnm Sometimes expressed by the following equation (2).
Rth = ((n x + n y ) / 2−n z ) × d (2)
フィルムの位相差値の符号は、ポリマー主鎖の配向方向に屈折率が大きいものを正とし、延伸方向と直行する方向に屈折率が大きいものを負とする。 The sign of the retardation value of the film is positive when the refractive index is large in the orientation direction of the polymer main chain, and negative when the refractive index is large in the direction perpendicular to the stretching direction.
二軸延伸フィルムの光弾性複屈折は、配向複屈折性と同じく、Axometrics社製Axoscan装置を用いてフィルムの位相差値であるレタデーションReのフィルムにかけた応力による変化量を測定し、光弾性係数C(単位:10−12/Pa)として求められる。具体的な光弾性係数Cの算出方法は次式(3)のとおりである。
C=ΔRe/(Δσ×t) …(3)
The photoelastic birefringence of the biaxially stretched film is the same as the orientation birefringence, using the Axoscan device manufactured by Axometrics to measure the amount of change in the retardation Re, which is the retardation value of the film, due to the stress applied to the film. Calculated as C (unit: 10 −12 / Pa). The specific calculation method of the photoelastic coefficient C is as the following equation (3).
C = ΔRe / (Δσ × t) (3)
Δσはフィルムにかかった応力の変化量で単位は[Pa]、tはフィルムの膜厚で単位は[m]、ΔReはΔσの応力の変化量に対応した面内位相差値の変化量で単位は[m]である。光弾性係数Cの符号は、応力をかけた方向に屈折率が大きくなるものを正とし、応力をかけた方向と直行する方向に屈折率が大きくなるものを負とする。 Δσ is the amount of change in stress applied to the film in units of [Pa], t is the film thickness in units of [m], and ΔRe is the amount of change in the in-plane retardation corresponding to the amount of change in stress of Δσ. The unit is [m]. The sign of the photoelastic coefficient C is positive when the refractive index increases in the stressed direction, and negative when the refractive index increases in the direction perpendicular to the stressed direction.
二軸延伸フィルムの膜厚は、10μm以上150μm以下とすることができ、15μm以上120μm以下とすることもできる。膜厚が10μm以上であると、フィルムの取り扱い性が良好となり、150μm以下であると、ヘイズの増加や、単位面積あたりの材料コストの増加等の問題が生じにくくなる。 The film thickness of the biaxially stretched film can be 10 μm or more and 150 μm or less, and can also be 15 μm or more and 120 μm or less. When the film thickness is 10 μm or more, the handleability of the film is improved, and when it is 150 μm or less, problems such as an increase in haze and an increase in material cost per unit area are less likely to occur.
本発明においては、本発明によるアクリル系共重合体を含有する樹脂を製膜して得られた未延伸フィルムを二軸延伸する際、延伸倍率は、適宜調整することができる。例えば、延伸倍率は、面積比で1.3倍以上とすることができ、1.5倍以上とすることもできる。また、延伸倍率は、面積比で6.0倍以下であってよく、4.0倍以下であってもよい。 In the present invention, when the unstretched film obtained by forming the resin containing the acrylic copolymer according to the present invention is biaxially stretched, the stretch ratio can be appropriately adjusted. For example, the draw ratio can be 1.3 times or more by area ratio, and can also be 1.5 times or more. Moreover, the draw ratio may be 6.0 times or less in area ratio, and may be 4.0 times or less.
二軸延伸フィルムは、JIS P8115に準拠して測定されるMIT耐折度回数が、150回以上であることが好ましい。このような二軸延伸フィルムは、偏光板用保護フィルムとして要求される可とう性を十分に満たすものであるため、偏光板用保護フィルムとして一層好適に用いることができる。また、このような二軸延伸フィルムは、耐屈曲性に優れるため、大面積化が要求される用途に一層好適に使用できる。 The biaxially stretched film preferably has a MIT folding resistance number of 150 or more as measured in accordance with JIS P8115. Such a biaxially stretched film sufficiently satisfies the flexibility required as a protective film for polarizing plates, and therefore can be more suitably used as a protective film for polarizing plates. Moreover, since such a biaxially stretched film is excellent in bending resistance, it can be used more suitably for applications that require a large area.
なお、本明細書中、MIT耐折度試験は、テスター産業株式会社製のBE−201 MIT耐屈度試験機を使用して行うことができる。なお、テスター産業株式会社製のBE−201 MIT耐屈度試験機は、MIT耐折度試験機とも呼ばれている。測定条件は加重200g、折り曲げ点先端Rは0.38、屈曲速度は175回/分、屈曲角度は左右135°とし、フィルムサンプルの幅は15mmとする。そして、二軸延伸フィルムの搬送方向に繰り返し屈曲させたときに破断した屈曲回数と、幅方向に繰り返し屈曲させたときに破断した屈曲回数との平均値をMIT耐折度回数とする。 In this specification, the MIT folding resistance test can be performed using a BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. The BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. is also called an MIT folding resistance tester. The measurement conditions are a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, a bending angle of 135 ° on the left and right, and a width of the film sample of 15 mm. The average value of the number of bendings that are broken when the biaxially stretched film is repeatedly bent in the conveyance direction and the number of bendings that are broken when the biaxially stretched film is repeatedly bent in the width direction is defined as the MIT folding resistance number.
MIT耐折度回数が150回以上であれば、延伸工程後の二軸延伸フィルムを搬送して巻き取る工程や、偏光板等に張り合わせるなどの工程で破断するのを防ぐことができる。 If the number of MIT folding resistances is 150 times or more, it is possible to prevent breakage in a process of transporting and winding the biaxially stretched film after the stretching process, or a process of bonding to a polarizing plate or the like.
また、偏光板用保護フィルムの耐ヒートショック性の試験方法として、ガラス基盤にのりを介しフィルムを張り合わせ、−20℃から60℃の範囲で昇温、降温を30分間隔で500サイクル繰り返すヒートショック試験が知られているが、上述のMIT耐折度回数が150回以上であれば、ヒートショック試験中にフィルムにクラックが入るのを防ぐことができる。 In addition, as a test method for heat shock resistance of a protective film for polarizing plate, heat shock is repeated by laminating a film on a glass substrate via a paste, and raising and lowering the temperature in a range of −20 ° C. to 60 ° C. at intervals of 30 minutes for 500 cycles. Although the test is known, if the above-mentioned MIT folding resistance number is 150 times or more, the film can be prevented from cracking during the heat shock test.
二軸延伸フィルムのMIT耐折度回数は、160回以上であることがより好ましく、170回以上であることがさらに好ましい。 The number of MIT folding resistances of the biaxially stretched film is more preferably 160 times or more, and further preferably 170 times or more.
二軸延伸フィルムの黄色味の指標であるb*値は、1.00以下であることが好ましく、0.50以下であることがより好ましく、0.30以下であることがさらに好ましい。なお、黄色味の指標であるb*値は、二軸延伸フィルムの分光スペクトルを日本電色工業(株)製Spectrophotometer SD6000を用いて測定し、求めることができる。 The b * value, which is a yellowness index of the biaxially stretched film, is preferably 1.00 or less, more preferably 0.50 or less, and even more preferably 0.30 or less. In addition, b * value which is a yellowish parameter | index can be calculated | required by measuring the spectral spectrum of a biaxially stretched film using Nippon Denshoku Industries Co., Ltd. Spectrophotometer SD6000.
本発明による二軸延伸フィルムは、優れた耐光性を有する。耐光性は、光照射前後でのフィルム物性値の変化量によって評価することができる。フィルム物性値としては、黄色味の指標であるb*値、面内位相差Re、厚み方向位相差Rth、光弾性係数C、およびMIT耐折度回数などが用いられる。例えば、キセノンウェザーメーター〔東洋精機製作所 アトラスCi4000〕を用いて、二軸延伸フィルムに光を照射し、下記のようにして耐光性を評価することができる。 The biaxially stretched film according to the present invention has excellent light resistance. Light resistance can be evaluated by the amount of change in film property values before and after light irradiation. As a film physical property value, b * value which is a yellowish index, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, MIT folding resistance frequency, and the like are used. For example, using a xenon weather meter [Toyo Seiki Seisakusho Atlas Ci4000], the biaxially stretched film is irradiated with light, and the light resistance can be evaluated as follows.
耐光性は、光照射後のb*値を光照射前のb*値(b*1)から差し引きした値Δb*(=b*1−b*)、光照射前後における面内位相差Reの差し引き値ΔRe(=光照射前Re−光照射後Re)、光照射前後における厚み方向位相差Rthの差し引き値ΔRth(=光照射前Rth−光照射後Rth)、光照射前後における光弾性係数Cの差し引き値ΔC(=光照射前C−光照射後C)、および光照射前後におけるMIT耐折度回数の差し引き値ΔMIT(=光照射前MIT−光照射後MIT)から評価できる。 Light fastness, the b * value after light irradiation before the light irradiation b * value (b * 1) subtracted from the value Δb * (= b * 1 -b *), in-plane retardation Re before and after light irradiation Subtraction value ΔRe (= Re before light irradiation−Re after light irradiation), Subtraction value ΔRth of thickness direction retardation Rth before and after light irradiation (= Rth before light irradiation−Rth after light irradiation), Photoelastic coefficient C before and after light irradiation The subtraction value ΔC (= C before light irradiation−C after light irradiation) and the subtraction value ΔMIT (= pre-light irradiation MIT−post light irradiation MIT) before and after the light irradiation.
本発明による二軸延伸フィルムは、アクリル系共重合体以外の成分を含有していてもよい。アクリル系共重合体以外の成分としては、酸化防止剤、滑剤、紫外線吸収剤、安定剤等、二軸延伸フィルムに用いられる添加剤を必要に応じて用いることができる。これらの成分の配合量は、本発明の効果が有効に奏される範囲であれば特に制限されないが、樹脂材料の総量基準で、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。すなわち、樹脂材料中のアクリル系共重合体の含有量は、樹脂材料の総量基準で、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であってもよい。 The biaxially stretched film according to the present invention may contain components other than the acrylic copolymer. As components other than the acrylic copolymer, additives used for the biaxially stretched film, such as an antioxidant, a lubricant, an ultraviolet absorber, and a stabilizer, can be used as necessary. The blending amount of these components is not particularly limited as long as the effect of the present invention is effectively exhibited, but it is preferably 10% by mass or less, based on the total amount of the resin material, and is 5% by mass or less. It is more preferable. That is, the content of the acrylic copolymer in the resin material is preferably 90% by mass or more, more preferably 95% by mass or more, and 99% by mass or more based on the total amount of the resin material. May be.
(二軸延伸フィルムの製造方法)
本発明による二軸延伸フィルムの製造方法の一態様について詳述する。本態様において、本発明による二軸延伸フィルムは、上述のとおりアクリル系共重合体を含有する樹脂材料からなる未延伸フィルムを二軸延伸して得ることができる。すなわち、本発明による二軸延伸フィルムの製造方法は、上記アクリル系共重合体を含んでなる樹脂材料を溶融押出して未延伸フィルムを得る工程(溶融押出工程)と、前記未延伸フィルムを二軸延伸して二軸延伸フィルムを得る工程(延伸工程)と、を備える。
(Production method of biaxially stretched film)
One aspect of the method for producing a biaxially stretched film according to the present invention will be described in detail. In this embodiment, the biaxially stretched film according to the present invention can be obtained by biaxially stretching an unstretched film made of a resin material containing an acrylic copolymer as described above. That is, the method for producing a biaxially stretched film according to the present invention includes a step of melt-extruding a resin material containing the acrylic copolymer to obtain an unstretched film (melt-extrusion step), and a biaxially stretching of the unstretched film. A step of stretching to obtain a biaxially stretched film (stretching step).
溶融押出工程は、例えば、ダイリップを備える押出製膜機により行うことができる。このとき、樹脂材料は、押出製膜機内で加熱溶融され、ダイリップから連続的に吐出されることで未延伸フィルムを得ることができる。 The melt extrusion process can be performed by, for example, an extrusion film forming machine including a die lip. At this time, the resin material is heated and melted in an extrusion film forming machine, and is continuously discharged from a die lip, whereby an unstretched film can be obtained.
溶融押出の際の押し出し温度は、130℃以上300℃以下であることが好ましく、150℃以上280℃以下であることがより好ましい。押し出し温度が130℃以上であると、樹脂材料中のアクリル系共重合体が十分に溶融混錬されるため、未溶融物のフィルムへの残存が十分に防止される。また、300℃以下であると、熱分解によるフィルムの着色や、分解物のダイリップへの付着等の問題が生じることが十分に防止される。よって、溶融押出の押し出し温度が上記範囲内であれば、樹脂材料中のアクリル系共重合体が十分に溶融混錬されるため、未溶融物のフィルムへの残存を十分に防止することができると共に、熱分解によるフィルムの着色や、分解物のダイリップへの付着等が生じることを抑制することができる。 The extrusion temperature at the time of melt extrusion is preferably 130 ° C. or higher and 300 ° C. or lower, and more preferably 150 ° C. or higher and 280 ° C. or lower. When the extrusion temperature is 130 ° C. or higher, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that the unmelted product is sufficiently prevented from remaining in the film. Further, when the temperature is 300 ° C. or lower, problems such as coloring of the film due to thermal decomposition and adhesion of the decomposition product to the die lip are sufficiently prevented. Therefore, if the extrusion temperature of the melt extrusion is within the above range, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that it is possible to sufficiently prevent the unmelted product from remaining in the film. At the same time, it is possible to suppress film coloring due to thermal decomposition, adhesion of decomposition products to the die lip, and the like.
Tダイ押し出し装置を用いた溶融製膜法において、Tダイリップから吐出された溶融樹脂が最初に接触する第1ロールの温度T1℃は、溶融樹脂のガラス転移温度をTg℃としたとき、(Tg−24)≦T1≦(Tg+24)の範囲が好ましく(Tg−20)≦T1≦(Tg+20)の範囲がさらに好ましい。T1の温度が(Tg−24)℃以上であれば、Tダイリップから吐出された溶融状態の樹脂フィルムが急冷されることを抑制できるため、収縮ムラにより製膜したフィルムの厚み精度が悪化することを抑制することができる。T1の温度が(Tg+24)℃以下であれば、Tダイリップから吐出された溶融状態の樹脂が第1ロールに貼りついてしまうことを抑制することができる。 In the melt film-forming method using the T-die extrusion device, the temperature T 1 ° C of the first roll with which the molten resin discharged from the T-die lip first comes into contact when the glass transition temperature of the molten resin is Tg ° C. The range of Tg−24) ≦ T 1 ≦ (Tg + 24) is preferable, and the range of (Tg−20) ≦ T 1 ≦ (Tg + 20) is more preferable. If the temperature of T 1 is (Tg−24) ° C. or higher, it is possible to prevent the molten resin film discharged from the T die lip from being rapidly cooled, and therefore the thickness accuracy of the film formed due to shrinkage unevenness deteriorates. This can be suppressed. If the temperature of T 1 is (Tg + 24) ℃ or less, the molten resin discharged from the T die lip can be suppressed that would stick to the first roller.
なお、フィルム厚みムラ(単位:%)は、未延伸フィルム(原反フィルム)の両端の耳を各10mm切り落とした後のロールサンプルを幅方向等間隔に20箇所測定した厚みの最大値をt1μm、最小値をt2μm、平均値をt3μmとしたとき、下記式(4):
厚みムラ(%)=100×(t1―t2)/t3 …(4)
から算出される値を意味するものとする。
In addition, the film thickness unevenness (unit:%) is the maximum value of the thickness measured by measuring 20 roll samples at equal intervals in the width direction after cutting 10 mm each of the ears at both ends of the unstretched film (raw film) at t 1. When μm, the minimum value is t 2 μm, and the average value is t 3 μm, the following formula (4):
Thickness variation (%) = 100 × (t 1 −t 2 ) / t 3 (4)
It means the value calculated from
延伸工程では、溶融押出工程で得られた未延伸フィルム(原反フィルム)を延伸して、二軸延伸フィルムを得る。延伸方法としては、従来公知の二軸延伸法を適宜選択することができる。二軸延伸装置としては、例えば、テンター延伸装置において、フィルム端部を把持するクリップ間隔がフィルムの搬送方向にも拡がる同時二軸延伸装置を用いることができる。また、延伸工程では、周速差を利用したロール間延伸、テンター装置による延伸組み合わせた逐次二軸延伸法も適用できる。 In the stretching process, the unstretched film (raw film) obtained in the melt extrusion process is stretched to obtain a biaxially stretched film. As the stretching method, a conventionally known biaxial stretching method can be appropriately selected. As the biaxial stretching device, for example, in the tenter stretching device, a simultaneous biaxial stretching device in which the clip interval for gripping the film end portion also extends in the film transport direction can be used. Further, in the stretching step, a sequential biaxial stretching method in which stretching between rolls utilizing a peripheral speed difference and stretching by a tenter device are combined can also be applied.
延伸装置は、押出製膜機と一貫ラインであってよい。また、延伸工程は、押出製膜機により巻き取った原反フィルムをオフラインで延伸装置に送り出して延伸する方法で行ってもよい。 The stretching device may be in line with the extrusion film former. Further, the stretching step may be performed by a method in which a raw film wound up by an extrusion film forming machine is sent off-line to a stretching apparatus and stretched.
延伸温度としては、原反フィルムのガラス転移温度をTg℃としたとき、(Tg+2)℃以上、(Tg+20)℃以下が好ましく、(Tg+5)℃以上、(Tg+15)℃以下がさらに好ましい。延伸温度が(Tg+2)℃以上であると、延伸中のフィルムの破断や、フィルムのヘイズの上昇等の問題の発生を十分に防止することができる。また、(Tg+20)℃以下であると、ポリマー主鎖が配向しやすく、一層良好なポリマー主鎖配向度が得られる傾向にある。 The stretching temperature is preferably (Tg + 2) ° C. or higher and (Tg + 20) ° C. or lower, more preferably (Tg + 5) ° C. or higher and (Tg + 15) ° C. or lower, when the glass transition temperature of the raw film is Tg ° C. When the stretching temperature is (Tg + 2) ° C. or higher, problems such as breakage of the film during stretching and an increase in haze of the film can be sufficiently prevented. Further, when it is (Tg + 20) ° C. or lower, the polymer main chain is easily oriented, and a better degree of polymer main chain orientation tends to be obtained.
溶融製膜法で製膜された原反フィルムを延伸することで、ポリマー主鎖が配向してフィルムの耐屈曲性を向上させることができる一方で、複屈折率が小さなポリマー材料からなるフィルムでなければ、フィルムの位相差値が上昇してしまい、液晶表示装置に組み込んだときに像質が悪化してしまう。本態様においては、上述の樹脂材料を用いることで、優れた光学特性と耐屈曲性とを両立した二軸延伸フィルムが得られる。 A film made of a polymer material having a low birefringence while the polymer main chain is oriented to improve the bending resistance of the film by stretching the raw film formed by the melt film formation method. Otherwise, the retardation value of the film increases, and the image quality deteriorates when incorporated in a liquid crystal display device. In this embodiment, a biaxially stretched film having both excellent optical properties and bending resistance can be obtained by using the resin material described above.
上記のように、本発明による二軸延伸フィルムの製造方法を用いれば、配向複屈折および光弾性複屈折がともに小さく、透明性および耐熱性に優れた二軸延伸フィルムを得ることができる。 As described above, by using the method for producing a biaxially stretched film according to the present invention, it is possible to obtain a biaxially stretched film having both small orientation birefringence and photoelastic birefringence and excellent transparency and heat resistance.
(偏光板)
本発明による偏光板は、偏光フィルムの少なくとも一方の面に上記二軸延伸フィルムを保護フィルムとして備えるものである。上記二軸延伸フィルムは、配向複屈折および光弾性複屈折がともに小さいため、保護フィルムとして上記二軸延伸フィルムを備える偏光板によれば、液晶表示装置への適用に際し、保護フィルムによる像質の悪化を十分に抑制することができる。
(Polarizer)
The polarizing plate by this invention equips the at least one surface of a polarizing film with the said biaxially stretched film as a protective film. Since the biaxially stretched film has small orientation birefringence and photoelastic birefringence, according to the polarizing plate comprising the biaxially stretched film as a protective film, the image quality of the protective film can be improved when applied to a liquid crystal display device. Deterioration can be sufficiently suppressed.
本発明による偏光板は、上記二軸延伸フィルム以外の構成要素は、特に制限されず、公知の偏光板と同様の構成とすることができる。例えば、公知の偏光板における保護フィルムの少なくとも一部を、上記二軸延伸フィルムに変更したものであってよい。 In the polarizing plate according to the present invention, the components other than the biaxially stretched film are not particularly limited, and can have the same configuration as a known polarizing plate. For example, you may change at least one part of the protective film in a well-known polarizing plate to the said biaxially stretched film.
(液晶表示装置)
本発明による液晶表示装置は、上記偏光板を備えるものである。上記したように、本発明による偏光板は、保護フィルムとして上記二軸延伸フィルムを備えるものであるため、保護フィルムの光学特性に起因する像質の悪化を十分に抑制することができる。そのため、本発明による液晶表示装置によれば、良好な像質が実現される。
(Liquid crystal display device)
The liquid crystal display device by this invention is equipped with the said polarizing plate. As described above, since the polarizing plate according to the present invention includes the biaxially stretched film as a protective film, it is possible to sufficiently suppress deterioration in image quality due to the optical characteristics of the protective film. Therefore, according to the liquid crystal display device of the present invention, good image quality is realized.
本発明による液晶表示装置において、上記偏光板以外の構成要素は、特に制限されず、公知の液晶表示装置と同様の構成とすることができる。例えば、公知の液晶表示装置における偏光板を、上記偏光板に変更したものであってよい。 In the liquid crystal display device according to the present invention, the constituent elements other than the polarizing plate are not particularly limited, and may have the same configuration as a known liquid crystal display device. For example, the polarizing plate in a known liquid crystal display device may be changed to the polarizing plate.
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to an Example.
<アクリル系共重合体の評価方法>
以下の実施例および比較例において、アクリル系共重合体の重量平均分子量Mw、ガラス転移温度Tg、およびメルトフローレート(MFR)、残存モノマー量、および1%質量減少温度は、以下のようにして測定した。
<Evaluation method of acrylic copolymer>
In the following Examples and Comparative Examples, the weight average molecular weight Mw, glass transition temperature Tg, melt flow rate (MFR), residual monomer amount, and 1% mass reduction temperature of the acrylic copolymer are as follows. It was measured.
重量平均分子量Mwは、東ソー株式会社製のHLC−8220 GPCを使用して測定した、標準ポリスチレン分子量換算の値を示す。また、カラムは東ソー株式会社製のSuper−Multipore HZ−Mを使用し、測定条件は、溶媒HPLC用テトラヒドロフラン(THF)、流量0.35ml/min、カラム温度40℃とした。 The weight average molecular weight Mw shows the value of standard polystyrene molecular weight conversion measured using HLC-8220 GPC made by Tosoh Corporation. The column used was Super-Multipore HZ-M manufactured by Tosoh Corporation, and the measurement conditions were tetrahydrofuran for solvent HPLC (THF), a flow rate of 0.35 ml / min, and a column temperature of 40 ° C.
ガラス転移温度Tgは、SIIナノテクノロジー社製の示差走査熱量測定装置DSC7020を使用し、昇温速度10℃/分で昇温させたときのガラス転移点のオンセット温度から求めた。なお、アクリル系共重合体の試料の質量は5mg以上、10mg以下とした。 The glass transition temperature Tg was determined from the onset temperature of the glass transition point when the temperature was increased at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology. The mass of the acrylic copolymer sample was 5 mg or more and 10 mg or less.
MFRは、株式会社東洋精機製のメルトインデックサF−F01を使用して測定した。 MFR was measured using a melt indexer F-F01 manufactured by Toyo Seiki Co., Ltd.
アクリル系共重合体の残存モノマー量は、以下の装置および方法で測定した。
(装置)
ガスクロマトグラフィー装置:アジレントテクノロジー社製GC 6850
カラム:HP−5 30m
オーブン温度条件:50℃で5分保持した後10℃/分で250℃まで昇温し、10分保持した。
・注入量:0.5μl
・モード:スプリット法
・スプリット比:80/1
・キャリアー:純窒素
・検出器:FID
The residual monomer amount of the acrylic copolymer was measured by the following apparatus and method.
(apparatus)
Gas chromatography device: GC 6850 manufactured by Agilent Technologies
Column: HP-5 30m
Oven temperature condition: held at 50 ° C. for 5 minutes, then heated to 250 ° C. at 10 ° C./minute, and held for 10 minutes.
・ Injection volume: 0.5 μl
・ Mode: Split method ・ Split ratio: 80/1
・ Carrier: Pure nitrogen ・ Detector: FID
(方法)
アクリル系共重合体の粒子約1gを精秤し、アセトン約10mlを加えて撹拌し、当該粒子を完全に溶解させてアセトン溶液とした。撹拌子を入れた100ml容器にメタノール約90mlを量り取り、上記アセトン溶液を滴下してポリマーを析出させて、スラリー液とした。次いで、内部標準物質としてクロロベンゼン約0.1mlを精秤し、上記スラリー液に添加し、激しく振ってよく混ぜた。この溶液を静置し、上澄み液約1.5mlを濾過したものを用いて、GC(ガスクロマトグラフィー)にて各モノマーの検出を行った。なお、各成分の保持時間、面積/質量換算係数は下記表1に記載のとおりであった。
(Method)
About 1 g of acrylic copolymer particles were precisely weighed, about 10 ml of acetone was added and stirred, and the particles were completely dissolved to obtain an acetone solution. About 90 ml of methanol was weighed into a 100 ml container containing a stirrer, and the acetone solution was added dropwise to precipitate a polymer to obtain a slurry solution. Next, about 0.1 ml of chlorobenzene was precisely weighed as an internal standard substance, added to the slurry, and mixed well by shaking vigorously. This solution was allowed to stand, and each monomer was detected by GC (gas chromatography) using a filtrate obtained by filtering about 1.5 ml of the supernatant. In addition, the retention time and area / mass conversion factor of each component were as described in Table 1 below.
各モノマーのGC面積値に面積/質量換算係数を乗じ、以下の比例式より各モノマーの質量を算出した。
式:内部標準物質質量:各モノマー質量=(内部標準物質GC面積値×面積/質量換算係数):(各モノマーGC面積値×面積/質量換算係数)
以上の方法により、精秤したアクリル系共重合体粒子中の各モノマーの残存質量を求め、その総和を、精秤したアクリル系重合体粒子の質量で除することで、残存モノマー量%を算出した。
The GC area value of each monomer was multiplied by an area / mass conversion factor, and the mass of each monomer was calculated from the following proportional expression.
Formula: Internal standard substance mass: Mass of each monomer = (Internal standard substance GC area value × Area / mass conversion coefficient): (Each monomer GC area value × Area / mass conversion coefficient)
By calculating the residual mass of each monomer in the precisely weighed acrylic copolymer particles by the above method and dividing the sum by the mass of the precisely weighed acrylic polymer particles, the remaining monomer amount% is calculated. did.
1%質量減少温度は、SIIナノテクノロジー社製の示差熱熱質量同時測定装置TG/DTA7200を使用し、昇温温度10℃/分で180℃まで昇温させ、60分保持した後、昇温速度10℃/分で450℃まで昇温し、250℃におけるアクリル系共重合体を基準として1%質量減少したときの温度を求めた。 The 1% mass reduction temperature was raised to 180 ° C. at a temperature increase temperature of 10 ° C./min using a differential thermothermal mass simultaneous measurement device TG / DTA7200 manufactured by SII Nano Technology, and held for 60 minutes. The temperature was raised to 450 ° C. at a rate of 10 ° C./min, and the temperature when the mass decreased by 1% based on the acrylic copolymer at 250 ° C. was determined.
<アクリル系共重合体の合成>
以下の通り、アクリル系共重合体(a−1)〜(a−23)、(b−1)〜(b−5)を合成し、得られたアクリル系共重合体の重量平均分子量Mw、ガラス転移温度Tg、およびMFR、残存モノマー量、および1%質量減少温度を測定した。
<Synthesis of acrylic copolymer>
As described below, acrylic copolymers (a-1) to (a-23) and (b-1) to (b-5) were synthesized, and the weight-average molecular weight Mw of the obtained acrylic copolymer, The glass transition temperature Tg, MFR, residual monomer amount, and 1% mass loss temperature were measured.
[アクリル系共重合体(a−1)の合成]
撹拌装置、温度センサー、冷却管および窒素導入管を備えた反応釜に、脱イオン水300質量部と、分散剤としてポリビニルアルコール(株式会社クラレ社製クラレポバール)0.6質量部を合わせて投入し、撹拌を開始した。次に、N−シクロヘキシルマレイミド(以下、場合により「CHMI」と表す。)15質量部と、メタクリル酸メチル(以下、場合により「MMA」と表す。)81質量部と、メタクリル酸ベンジル(以下、場合により「BnMA」と表す。)4質量部と、重合開始剤として日本油脂株式会社製のパーロイルTCPを1質量部と、連鎖移動剤として0.22質量部の1−オクタンチオールとを仕込み、反応釜に窒素を通じつつ、70℃まで昇温させた。70℃に達した状態を3時間保持した後、冷却し、濾過、洗浄、乾燥によって粒子状のアクリル系共重合体(a−1)を得た。
[Synthesis of Acrylic Copolymer (a-1)]
Into a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen introduction pipe, 300 parts by mass of deionized water and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd.) as a dispersant are added. And stirring was started. Next, 15 parts by mass of N-cyclohexylmaleimide (hereinafter, sometimes referred to as “CHMI”), 81 parts by mass of methyl methacrylate (hereinafter, sometimes referred to as “MMA”), and benzyl methacrylate (hereinafter, referred to as “MMA”). In some cases, it is expressed as “BnMA”.) 4 parts by mass, 1 part by mass of Peroyl TCP manufactured by NOF Corporation as a polymerization initiator, and 0.22 parts by mass of 1-octanethiol as a chain transfer agent are prepared. While nitrogen was passed through the reaction kettle, the temperature was raised to 70 ° C. After maintaining the state which reached 70 degreeC for 3 hours, it cooled, and the particulate acrylic copolymer (a-1) was obtained by filtration, washing | cleaning, and drying.
[アクリル系共重合体(a−2)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)15質量部、メタクリル酸メチル(MMA)82質量部、およびアクリル酸フェノキシエチル(以下、場合により「PhOEA」と表す。)3質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−2)を得た。
[Synthesis of acrylic copolymer (a-2)]
Except for using 15 parts by mass of N-cyclohexylmaleimide (CHMI), 82 parts by mass of methyl methacrylate (MMA), and 3 parts by mass of phenoxyethyl acrylate (hereinafter sometimes referred to as “PhOEA”) as monomers. The acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-2).
[アクリル系共重合体(a−3)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)19質量部、メタクリル酸メチル(MMA)70質量部、およびアクリル酸ジシクロペンタニル(以下、場合により「DCPA」と表す。)11質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−3)を得た。
[Synthesis of acrylic copolymer (a-3)]
As the monomer, 19 parts by mass of N-cyclohexylmaleimide (CHMI), 70 parts by mass of methyl methacrylate (MMA), and 11 parts by mass of dicyclopentanyl acrylate (hereinafter sometimes referred to as “DCPA”) were used. Except for the above, an acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-3).
[アクリル系共重合体(a−4)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)23質量部、メタクリル酸メチル(MMA)58質量部、メタクリル酸イソボルニル(以下、場合により「IBMA」と表す。)9質量部、およびメタクリル酸ジシクロペンタニル(以下、場合により「DCPMA」と表す。)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−4)を得た。
[Synthesis of acrylic copolymer (a-4)]
As monomers, 23 parts by mass of N-cyclohexylmaleimide (CHMI), 58 parts by mass of methyl methacrylate (MMA), 9 parts by mass of isobornyl methacrylate (hereinafter sometimes referred to as “IBMA”), and dicyclopentanyl methacrylate (Hereinafter, it is expressed as “DCPMA” in some cases.) The acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) except that 10 parts by mass was used. The union (a-4) was obtained.
[アクリル系共重合体(a−5)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)60質量部、メタクリル酸イソボルニル(IBMA)9質量部、およびアクリル酸ジシクロペンタニル(DCPA)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−5)を得た。
[Synthesis of acrylic copolymer (a-5)]
As the monomer, 21 parts by mass of N-cyclohexylmaleimide (CHMI), 60 parts by mass of methyl methacrylate (MMA), 9 parts by mass of isobornyl methacrylate (IBMA), and 10 parts by mass of dicyclopentanyl acrylate (DCPA) were used. Except for this, the acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-5).
[アクリル系共重合体(a−6)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)69質量部、およびアクリル酸イソボルニル(以下、場合により「IBA」と表す。)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−6)を得た。
[Synthesis of Acrylic Copolymer (a-6)]
Except for using 21 parts by mass of N-cyclohexylmaleimide (CHMI), 69 parts by mass of methyl methacrylate (MMA), and 10 parts by mass of isobornyl acrylate (hereinafter sometimes referred to as “IBA”) as monomers, The acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-6).
[アクリル系共重合体(a−7)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)68質量部、およびメタクリル酸4−tert−ブチルシクロヘキシル(以下、場合により「TBCHMA」と表す。)11質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−7)を得た。
[Synthesis of acrylic copolymer (a-7)]
As monomers, 21 parts by mass of N-cyclohexylmaleimide (CHMI), 68 parts by mass of methyl methacrylate (MMA), and 11 parts by mass of 4-tert-butylcyclohexyl methacrylate (hereinafter sometimes referred to as “TBCHMA”) are used. Except for the above, an acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-7).
[アクリル系共重合体(a−8)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)16質量部、メタクリル酸メチル(MMA)81質量部、およびメタクリル酸ベンジル(BnMA)3質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−8)を得た。
[Synthesis of Acrylic Copolymer (a-8)]
The acrylic copolymer (a-1) was used except that 16 parts by mass of N-cyclohexylmaleimide (CHMI), 81 parts by mass of methyl methacrylate (MMA), and 3 parts by mass of benzyl methacrylate (BnMA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-8).
[アクリル系共重合体(a−9)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)13質量部、メタクリル酸メチル(MMA)81質量部、およびメタクリル酸ベンジル(BnMA)6質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−9)を得た。
[Synthesis of Acrylic Copolymer (a-9)]
An acrylic copolymer (a-1) except that 13 parts by mass of N-cyclohexylmaleimide (CHMI), 81 parts by mass of methyl methacrylate (MMA), and 6 parts by mass of benzyl methacrylate (BnMA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-9).
[アクリル系共重合体(a−10)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)8質量部、メタクリル酸メチル(MMA)82質量部、およびメタクリル酸ベンジル(BnMA)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−10)を得た。
[Synthesis of Acrylic Copolymer (a-10)]
An acrylic copolymer (a-1) except that 8 parts by mass of N-cyclohexylmaleimide (CHMI), 82 parts by mass of methyl methacrylate (MMA), and 10 parts by mass of benzyl methacrylate (BnMA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-10).
[アクリル系共重合体(a−11)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)17質量部、メタクリル酸メチル(MMA)70質量部、およびアクリル酸ジシクロペンタニル(DCPA)13質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−11)を得た。
[Synthesis of Acrylic Copolymer (a-11)]
An acrylic copolymer (except that 17 parts by mass of N-cyclohexylmaleimide (CHMI), 70 parts by mass of methyl methacrylate (MMA) and 13 parts by mass of dicyclopentanyl acrylate (DCPA) were used as monomers. The acrylic copolymer was synthesized in the same manner as in a-1) to obtain an acrylic polymer (a-11).
[アクリル系共重合体(a−12)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)18質量部、メタクリル酸メチル(MMA)74質量部、およびアクリル酸ジシクロペンタニル(DCPA)8質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−12)を得た。
[Synthesis of acrylic copolymer (a-12)]
An acrylic copolymer (except that 18 parts by mass of N-cyclohexylmaleimide (CHMI), 74 parts by mass of methyl methacrylate (MMA), and 8 parts by mass of dicyclopentanyl acrylate (DCPA)) were used as monomers. An acrylic copolymer was synthesized in the same manner as in a-1) to obtain an acrylic polymer (a-12).
[アクリル系共重合体(a−13)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)22質量部、メタクリル酸メチル(MMA)66質量部、およびメタクリル酸ジシクロペンタニル(DCPMA)14質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−13)を得た。
[Synthesis of Acrylic Copolymer (a-13)]
An acrylic copolymer (except that 22 parts by mass of N-cyclohexylmaleimide (CHMI), 66 parts by mass of methyl methacrylate (MMA), and 14 parts by mass of dicyclopentanyl methacrylate (DCPMA)) were used as monomers. An acrylic copolymer was synthesized in the same manner as in a-1) to obtain an acrylic polymer (a-13).
[アクリル系共重合体(a−14)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)20質量部、メタクリル酸メチル(MMA)62質量部、およびメタクリル酸ジシクロペンタニル(DCPMA)18質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−14)を得た。
[Synthesis of acrylic copolymer (a-14)]
Acrylic copolymer (except that 20 parts by mass of N-cyclohexylmaleimide (CHMI), 62 parts by mass of methyl methacrylate (MMA), and 18 parts by mass of dicyclopentanyl methacrylate (DCPMA)) were used as monomers. The acrylic copolymer was synthesized in the same manner as in a-1) to obtain an acrylic polymer (a-14).
[アクリル系共重合体(a−15)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)20質量部、メタクリル酸メチル(MMA)77質量部、およびアクリル酸イソボルニル(IBA)3質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−15)を得た。
[Synthesis of Acrylic Copolymer (a-15)]
An acrylic copolymer (a-1) except that 20 parts by mass of N-cyclohexylmaleimide (CHMI), 77 parts by mass of methyl methacrylate (MMA), and 3 parts by mass of isobornyl acrylate (IBA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-15).
[アクリル系共重合体(a−16)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)69質量部、およびアクリル酸イソボルニル(IBA)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−16)を得た。
[Synthesis of Acrylic Copolymer (a-16)]
The acrylic copolymer (a-1) was used except that 21 parts by mass of N-cyclohexylmaleimide (CHMI), 69 parts by mass of methyl methacrylate (MMA) and 10 parts by mass of isobornyl acrylate (IBA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-16).
[アクリル系共重合体(a−17)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)62質量部、アクリル酸イソボルニル(IBA)2質量部、およびメタクリル酸4−tert−ブチルシクロヘキシル(TBCHMA)17質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−17)を得た。
[Synthesis of Acrylic Copolymer (a-17)]
As monomers, 21 parts by mass of N-cyclohexylmaleimide (CHMI), 62 parts by mass of methyl methacrylate (MMA), 2 parts by mass of isobornyl acrylate (IBA), and 17 parts by mass of 4-tert-butylcyclohexyl methacrylate (TBCHMA) Except that it was used, the acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-17).
[アクリル系共重合体(a−18)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)17質量部、メタクリル酸メチル(MMA)80質量部、およびメタクリル酸4−tert−ブチルシクロヘキシル(TBCHMA)3質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−18)を得た。
[Synthesis of Acrylic Copolymer (a-18)]
Acrylic copolymer except that 17 parts by mass of N-cyclohexylmaleimide (CHMI), 80 parts by mass of methyl methacrylate (MMA), and 3 parts by mass of 4-tert-butylcyclohexyl methacrylate (TBCHMA) were used as monomers. An acrylic copolymer was synthesized in the same manner as in the polymer (a-1) to obtain an acrylic polymer (a-18).
[アクリル系共重合体(a−19)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)21質量部、メタクリル酸メチル(MMA)74質量部、メタクリル酸ジシクロペンタニル(DCPMA)3質量部、およびメタクリル酸イソボルニル(IBMA)2質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−19)を得た。
[Synthesis of Acrylic Copolymer (a-19)]
As the monomer, 21 parts by mass of N-cyclohexylmaleimide (CHMI), 74 parts by mass of methyl methacrylate (MMA), 3 parts by mass of dicyclopentanyl methacrylate (DCPMA), and 2 parts by mass of isobornyl methacrylate (IBMA) were used. Except for this, the acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-19).
[アクリル系共重合体(a−20)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)27質量部、メタクリル酸メチル(MMA)48質量部、メタクリル酸ジシクロペンタニル(DCPMA)10質量部、およびメタクリル酸イソボルニル(IBMA)15質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−20)を得た。
[Synthesis of Acrylic Copolymer (a-20)]
As a monomer, 27 parts by mass of N-cyclohexylmaleimide (CHMI), 48 parts by mass of methyl methacrylate (MMA), 10 parts by mass of dicyclopentanyl methacrylate (DCPMA), and 15 parts by mass of isobornyl methacrylate (IBMA) were used. Except for this, the acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-20).
[アクリル系共重合体(a−21)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)22質量部、メタクリル酸メチル(MMA)69質量部、およびメタクリル酸イソボルニル(IBMA)9質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−21)を得た。
[Synthesis of Acrylic Copolymer (a-21)]
The acrylic copolymer (a-1) was used except that 22 parts by mass of N-cyclohexylmaleimide (CHMI), 69 parts by mass of methyl methacrylate (MMA), and 9 parts by mass of isobornyl methacrylate (IBMA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-21).
[アクリル系共重合体(a−22)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)10質量部、メタクリル酸メチル(MMA)80質量部、およびアクリル酸2,4,6−トリブロモフェニル(TBPhA)10質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−22)を得た。
[Synthesis of Acrylic Copolymer (a-22)]
Except that 10 parts by mass of N-cyclohexylmaleimide (CHMI), 80 parts by mass of methyl methacrylate (MMA), and 10 parts by mass of 2,4,6-tribromophenyl acrylate (TBPhA) were used as monomers, acrylic was used. The acrylic copolymer was synthesized in the same manner as the acrylic copolymer (a-1) to obtain an acrylic polymer (a-22).
[アクリル系共重合体(a−23)の合成])
モノマーとして、N−シクロヘキシルマレイミド(CHMI)15質量部、メタクリル酸メチル(MMA)81質量部、およびメタクリル酸ベンジル(BnMA)4質量部を用いたこと以外は、アクリル系共重合体(a−1)と同様にしてアクリル系共重合体の合成を行い、アクリル系用重合体(a−23)を得た。
[Synthesis of Acrylic Copolymer (a-23)])
The acrylic copolymer (a-1) was used except that 15 parts by mass of N-cyclohexylmaleimide (CHMI), 81 parts by mass of methyl methacrylate (MMA), and 4 parts by mass of benzyl methacrylate (BnMA) were used as monomers. ), An acrylic copolymer was synthesized to obtain an acrylic polymer (a-23).
[アクリル系共重合体(b−1)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)10質量部、およびメタクリル酸メチル(MMA)90質量部を用いたこと以外は、実施例1と同様にしてアクリル系共重合体の合成を行い、アクリル系共重合体(b−1)を得た。
[Synthesis of acrylic copolymer (b-1)]
An acrylic copolymer was synthesized in the same manner as in Example 1 except that 10 parts by mass of N-cyclohexylmaleimide (CHMI) and 90 parts by mass of methyl methacrylate (MMA) were used as monomers. A copolymer (b-1) was obtained.
[アクリル系共重合体(b−2)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)20質量部、およびメタクリル酸メチル(MMA)80質量部を用いたこと以外は、実施例1と同様にしてアクリル系共重合体の合成を行い、アクリル系共重合体(b−2)を得た。
[Synthesis of acrylic copolymer (b-2)]
An acrylic copolymer was synthesized in the same manner as in Example 1 except that 20 parts by mass of N-cyclohexylmaleimide (CHMI) and 80 parts by mass of methyl methacrylate (MMA) were used as monomers. A copolymer (b-2) was obtained.
[アクリル系共重合体(b−3)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)15質量部、メタクリル酸メチル(MMA)75質量部、およびメタクリル酸イソブチル(以下、場合により「IBuMA」と表す。)10質量部を用いたこと以外は、実施例1と同様にしてアクリル系共重合体の合成を行い、アクリル系共重合体(b−3)を得た。
[Synthesis of acrylic copolymer (b-3)]
Except for using 15 parts by mass of N-cyclohexylmaleimide (CHMI), 75 parts by mass of methyl methacrylate (MMA), and 10 parts by mass of isobutyl methacrylate (hereinafter sometimes referred to as “IBuMA”) as monomers, The acrylic copolymer was synthesized in the same manner as in Example 1 to obtain an acrylic copolymer (b-3).
[アクリル系共重合体(b−4)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)10質量部、メタクリル酸メチル(MMA)90質量部に変更し、メタクリル酸ベンジル(BnMA)を含めなかったこと以外は、実施例1と同様にしてアクリル系共重合体の合成を行い、アクリル系共重合体(b−4)を得た。
[Synthesis of acrylic copolymer (b-4)]
As the monomer, the acrylic type was changed to 10 parts by mass of N-cyclohexylmaleimide (CHMI) and 90 parts by mass of methyl methacrylate (MMA), and benzyl methacrylate (BnMA) was not included. The copolymer was synthesized to obtain an acrylic copolymer (b-4).
[アクリル系共重合体(b−5)の合成]
モノマーとして、N−シクロヘキシルマレイミド(CHMI)20質量部、メタクリル酸メチル(MMA)80質量部に変更し、メタクリル酸ベンジル(BnMA)を含めなかったこと以外は、実施例1と同様にしてアクリル系共重合体の合成を行い、アクリル系共重合体(b−5)を得た。
[Synthesis of acrylic copolymer (b-5)]
As the monomer, the acrylic type was changed to 20 parts by weight of N-cyclohexylmaleimide (CHMI) and 80 parts by weight of methyl methacrylate (MMA) and benzyl methacrylate (BnMA) was not included. The copolymer was synthesized to obtain an acrylic copolymer (b-5).
得られたアクリル系共重合体(a−1)〜(a−23)、(b−1)〜(b−5)の質量平均分子Mw、ガラス転移温度Tg、残存モノマー量、MFR、および1%質量減少温度の測定結果は下記の表2に示される通りであった。 Mass average molecules Mw, glass transition temperature Tg, residual monomer amount, MFR, and 1 of the obtained acrylic copolymers (a-1) to (a-23) and (b-1) to (b-5) The measurement result of the% mass reduction temperature was as shown in Table 2 below.
<二軸延伸フィルムの評価方法>
次に、上記で得られたアクリル系共重合体(a−1)〜(a−23)、(b−1)〜(b−5)を用いて、以下の実施例および比較例の二軸延伸フィルムを製造した。得られた各実施例および比較例の二軸延伸フィルムの厚み、厚みムラ、面内位相差Re、厚み方向位相差Rth、光弾性係数C、MIT耐折度回数、黄色味の指標であるb*値、および耐光性は、以下のようにして測定した。
<Evaluation method of biaxially stretched film>
Next, using the acrylic copolymers (a-1) to (a-23) and (b-1) to (b-5) obtained above, the following examples and comparative examples were biaxial. A stretched film was produced. Thickness, thickness unevenness, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, number of MIT folding resistances, b yellowness index of the obtained biaxially stretched films of Examples and Comparative Examples * Values and light resistance were measured as follows.
二軸延伸フィルム(A−1)の厚みは、デジタル測長機(デジマイクロMF501、ニコン社製)を用いて測定した。また、フィルム厚みムラ(単位:%)は、フィルム原反の両端の耳を各10mm切り落とした後のロールサンプルを幅方向等間隔に20箇所測定した厚みの最大値をt1μm、最小値をt2μm、平均値をt3μmとしたとき、厚みムラ=100×(t1―t2)/t3として計算される値とした。 The thickness of the biaxially stretched film (A-1) was measured using a digital length measuring device (Digimicro MF501, manufactured by Nikon Corporation). In addition, the film thickness unevenness (unit:%) is t 1 μm, the maximum thickness of the roll sample measured at 20 equal intervals in the width direction after tapping 10 mm each of the ears at both ends of the original film, and the minimum value When t 2 μm and the average value is t 3 μm, thickness unevenness = 100 × (t 1 −t 2 ) / t 3 was calculated.
面内位相差Re、および厚み方向位相差Rthは、Axometrics社製Axoscan装置を用いて測定した。 The in-plane retardation Re and the thickness direction retardation Rth were measured using an Axoscan apparatus manufactured by Axometrics.
光弾性係数Cは、Axometrics社製Axoscan装置を用いてフィルムの位相差値であるレタデーション(Re)の二軸延伸フィルムにかけた応力による変化量を測定して求められる。具体的には、次式(3)のとおりである。
C=ΔRe/(Δσ×t) …(3)
Δσはフィルムにかかった応力の変化量(単位:Pa)であり、tはフィルムの膜厚(単位:m)、ΔReはΔσの応力の変化量に対応した面内位相差値の変化量(単位:m)である。
The photoelastic coefficient C is obtained by measuring the amount of change due to the stress applied to the retardation (Re) biaxially stretched film, which is the retardation value of the film, using an Axoscan apparatus manufactured by Axometrics. Specifically, it is as the following formula (3).
C = ΔRe / (Δσ × t) (3)
Δσ is the amount of change in stress applied to the film (unit: Pa), t is the film thickness (unit: m), and ΔRe is the amount of change in the in-plane retardation value corresponding to the amount of change in stress of Δσ ( Unit: m).
MIT耐折度回数の測定は、JIS P8115に準拠し、テスター産業株式会社製のBE−201 MIT耐折度試験機を使用して行った。測定条件は、加重200g、折り曲げ点先端Rは0.38、屈曲速度は175回/分、屈曲角度は左右135°とし、フィルムサンプルの幅は15mmとした。そして、二軸延伸フィルムの搬送方向(MD方向)に繰り返し屈曲させたときに破断した屈曲回数と、幅方向(TD方向)に繰り返し屈曲させたときに破断した屈曲回数との平均値をMIT耐屈度試験回数とした。 The number of times of MIT folding endurance was measured using a BE-201 MIT folding endurance tester manufactured by Tester Sangyo Co., Ltd. according to JIS P8115. The measurement conditions were a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, a bending angle of 135 ° left and right, and a film sample width of 15 mm. Then, the average value of the number of bendings when the biaxially stretched film is repeatedly bent in the conveyance direction (MD direction) and the number of bendings when the biaxially stretched film is repeatedly bent in the width direction (TD direction) is the MIT resistance. The number of bending tests was used.
黄色味の指標であるb*値の測定は、二軸延伸フィルムの分光スペクトルを日本電色工業(株)製Spectrophotometer SD6000を用いて測定して求めた。測定条件は、キセノンウェザーメーター〔東洋精機製作所 アトラスCi4000〕を用いて、二軸延伸フィルムに、放射照度60W/m2、ブラックパネル温度63±3℃、湿度50%RH、600時間光照射として行なった。 The b * value, which is a yellowness index, was determined by measuring the spectrum of a biaxially stretched film using a Spectrophotometer SD6000 manufactured by Nippon Denshoku Industries Co., Ltd. The measurement conditions were as follows: Xenon weather meter [Toyo Seiki Seisakusho Atlas Ci4000], biaxially stretched film, irradiance 60 W / m 2 , black panel temperature 63 ± 3 ° C., humidity 50% RH, light irradiation for 600 hours. It was.
また、耐光性の評価には、キセノンウェザーメーター〔東洋精機製作所 アトラスCi4000〕を用いて、二軸延伸フィルムに、放射照度60W/m2、ブラックパネル温度63±3℃、湿度50%RH、600時間光照射して行った。光照射後のb*値を光照射前のb*値(b*1)から差し引きした値Δb*(=b*1−b*)、光照射前後における面内位相差Reの差し引き値ΔRe(=光照射前Re−光照射後Re)、光照射前後における厚み方向位相差Rthの差し引き値ΔRth(=光照射前Rth−光照射後Rth)、光照射前後における光弾性係数Cの差し引き値ΔC(=光照射前C−光照射後C)、および光照射前後におけるMIT耐折度回数の差し引き値ΔMIT(=光照射前MIT−光照射後MIT)を求め、耐光性を評価した。 For evaluation of light resistance, a xenon weather meter [Toyo Seiki Seisakusho Atlas Ci4000] was used, a biaxially stretched film, irradiance 60 W / m 2 , black panel temperature 63 ± 3 ° C., humidity 50% RH, 600 Performed by light irradiation for hours. The b * value after light irradiation before the light irradiation b * value (b * 1) subtracted from the value Δb * (= b * 1 -b *), in-plane retardation Re before and after light irradiation subtracted value [Delta] Re ( = Re before light irradiation-Re after light irradiation), subtraction value ΔRth of thickness direction retardation Rth before and after light irradiation (= Rth before light irradiation−Rth after light irradiation), and subtraction value ΔC of photoelastic coefficient C before and after light irradiation. (= C before light irradiation−C after light irradiation) and a subtraction value ΔMIT (= MIT before light irradiation−MIT after light irradiation) of the number of MIT folding resistances before and after light irradiation were evaluated to evaluate light resistance.
<二軸延伸フィルムの製造>
[実施例1]
(二軸延伸フィルム(A−1)の製造)
粒子状のアクリル系共重合体(a−1)を、テクノベル社製の2軸スクリュー式押し出し機KZW−30MGを用いてフィルムとした。2軸押し出し機のスクリュー径は15mm、スクリュー有効長(L/D)は30であり、押し出し機にはアダプタを介してハンガーコートタイプのTダイが設置されている。押し出し温度Tp℃は、ガラス転移温度がTg℃である非結晶性ポリマーの場合、次式(5)が最適となることから、238℃とした。
Tp=5(Tg+70)/4 …(5)
<Manufacture of biaxially stretched film>
[Example 1]
(Production of biaxially stretched film (A-1))
The particulate acrylic copolymer (a-1) was made into a film using a twin screw type extruder KZW-30MG manufactured by Technobel. The screw diameter of the biaxial extruder is 15 mm and the effective screw length (L / D) is 30, and a hanger coat type T-die is installed in the extruder via an adapter. In the case of an amorphous polymer having a glass transition temperature of Tg ° C., the extrusion temperature Tp ° C. is set to 238 ° C. because the following formula (5) is optimal.
Tp = 5 (Tg + 70) / 4 (5)
また、Tダイリップから吐出された溶融樹脂が最初に接触する第1ロールの温度T1は、溶融樹脂のガラス転移温度をTgとしたとき、(Tg−24)≦T1≦(Tg+24)の範囲が好ましいことから、第1ロールの温度T1は130℃とした。 Further, the temperature T 1 of the first roll with which the molten resin discharged from the T die lip first contacts is in the range of (Tg−24) ≦ T 1 ≦ (Tg + 24), where Tg is the glass transition temperature of the molten resin. Therefore, the temperature T 1 of the first roll was set to 130 ° C.
得られたフィルム原反(未延伸フィルム)を井元製作所製二軸延伸機にて延伸し(延伸温度:Tg+9℃、延伸倍率:1.5×1.5倍、同時二軸延伸)、二軸延伸フィルム(A−1)を得た。 The obtained film original (unstretched film) was stretched with a biaxial stretching machine manufactured by Imoto Seisakusho (stretching temperature: Tg + 9 ° C., stretching ratio: 1.5 × 1.5 times, simultaneous biaxial stretching), and biaxial A stretched film (A-1) was obtained.
[実施例2]
(二軸延伸フィルム(A−2)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−2)に変更し、第1ロールの温度T1を125℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−2)を得た。
[Example 2]
(Production of biaxially stretched film (A-2))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-2), the temperature T 1 of the first roll except that a 125 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-2).
[実施例3]
(二軸延伸フィルム(A−3)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−3)に変更し、第1ロールの温度T1を129℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−3)を得た。
[Example 3]
(Production of biaxially stretched film (A-3))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-3), except that the temperature T 1 of the first roll and 129 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-3).
[実施例4]
(二軸延伸フィルム(A−4)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−4)に変更し、第1ロールの温度T1を147℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−4)を得た。
[Example 4]
(Production of biaxially stretched film (A-4))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-4), except that the temperature T 1 of the first roll and 147 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-4).
[実施例5]
(二軸延伸フィルム(A−5)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−5)に変更し、第1ロールの温度T1を138℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−5)を得た。
[Example 5]
(Production of biaxially stretched film (A-5))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-5), except that the temperature T 1 of the first roll and 138 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-5).
[実施例6]
(二軸延伸フィルム(A−6)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−6)に変更し、第1ロールの温度T1を134℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−6)を得た。
[Example 6]
(Production of biaxially stretched film (A-6))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-6), except that the temperature T 1 of the first roll and 134 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-6).
[実施例7]
(二軸延伸フィルム(A−7)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−7)に変更し、第1ロールの温度T1を141℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−7)を得た。
[Example 7]
(Production of biaxially stretched film (A-7))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-7), except that the temperature T 1 of the first roll and 141 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-7).
[実施例8]
(二軸延伸フィルム(A−8)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−8)に変更し、第1ロールの温度T1を126℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−8)を得た。
[Example 8]
(Production of biaxially stretched film (A-8))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-8), except that the temperature T 1 of the first roll and 126 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-8).
[実施例9]
(二軸延伸フィルム(A−9)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−9)に変更し、第1ロールの温度T1を125℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−9)を得た。
[Example 9]
(Production of biaxially stretched film (A-9))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-9), the temperature T 1 of the first roll except that a 125 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-9).
[実施例10]
(二軸延伸フィルム(A−10)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−10)に変更し、第1ロールの温度T1を125℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−10)を得た。
[Example 10]
(Production of biaxially stretched film (A-10))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-10), the temperature T 1 of the first roll except that a 125 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-10).
[実施例11]
(二軸延伸フィルム(A−11)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−11)に変更し、第1ロールの温度T1を125℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−11)を得た。
[Example 11]
(Production of biaxially stretched film (A-11))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-11), the temperature T 1 of the first roll except that a 125 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-11).
[実施例12]
(二軸延伸フィルム(A−12)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−12)に変更し、第1ロールの温度T1を125℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−12)を得た。
[Example 12]
(Production of biaxially stretched film (A-12))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-12), the temperature T 1 of the first roll except that a 125 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-12).
[実施例13]
(二軸延伸フィルム(A−13)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−13)に変更し、第1ロールの温度T1を136℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−13)を得た。
[Example 13]
(Production of biaxially stretched film (A-13))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-13), except that the temperature T 1 of the first roll and 136 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-13).
[実施例14]
(二軸延伸フィルム(A−14)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−14)に変更し、第1ロールの温度T1を137℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−14)を得た。
[Example 14]
(Production of biaxially stretched film (A-14))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-14), except that the temperature T 1 of the first roll and 137 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-14).
[実施例15]
(二軸延伸フィルム(A−15)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−15)に変更し、第1ロールの温度T1を127℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−15)を得た。
[Example 15]
(Production of biaxially stretched film (A-15))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-15), except that the temperature T 1 of the first roll and 127 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-15).
[実施例16]
(二軸延伸フィルム(A−16)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−16)に変更し、第1ロールの温度T1を127℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−16)を得た。
[Example 16]
(Production of biaxially stretched film (A-16))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-16), except that the temperature T 1 of the first roll and 127 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-16).
[実施例17]
(二軸延伸フィルム(A−17)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−17)に変更し、第1ロールの温度T1を137℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−17)を得た。
[Example 17]
(Production of biaxially stretched film (A-17))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-17), except that the temperature T 1 of the first roll and 137 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-17).
[実施例18]
(二軸延伸フィルム(A−18)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−18)に変更し、第1ロールの温度T1を129℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−18)を得た。
[Example 18]
(Production of biaxially stretched film (A-18))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-18), except that the temperature T 1 of the first roll and 129 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-18).
[実施例19]
(二軸延伸フィルム(A−19)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−19)に変更し、第1ロールの温度T1を136℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−19)を得た。
[Example 19]
(Production of biaxially stretched film (A-19))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-19), except that the temperature T 1 of the first roll and 136 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-19).
[実施例20]
(二軸延伸フィルム(A−20)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−20)に変更し、第1ロールの温度T1を150℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−20)を得た。
[Example 20]
(Production of biaxially stretched film (A-20))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-20), the temperature T 1 of the first roll except that a 0.99 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-20).
[実施例21]
(二軸延伸フィルム(A−21)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−21)に変更し、第1ロールの温度T1を138℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−21)を得た。
[Example 21]
(Production of biaxially stretched film (A-21))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-21), except that the temperature T 1 of the first roll and 138 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-21).
[実施例22]
(二軸延伸フィルム(A−22)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−22)に変更し、第1ロールの温度T1を132℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−22)を得た。
[Example 22]
(Production of biaxially stretched film (A-22))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-22), except that the temperature T 1 of the first roll and 132 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-22).
[実施例23]
(二軸延伸フィルム(A−23)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(a−23)に変更し、第1ロールの温度T1を145℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−23)を得た。
[Example 23]
(Production of biaxially stretched film (A-23))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (a-23), except that the temperature T 1 of the first roll and 145 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (A-23).
[実施例24]
(二軸延伸フィルム(A−24)の製造)
第1ロールの温度T1を105℃に変更したこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(A−24)を得た。
[Example 24]
(Production of biaxially stretched film (A-24))
Except for changing the temperature T 1 of the first roll 105 ° C., subjected to production of biaxially oriented film in the same manner as in Example 1 to obtain a biaxially oriented film (A-24).
[比較例1]
(二軸延伸フィルム(B−1)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(b−1)に変更し、第1ロールの温度T1を122℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(B−1)を得た。
[Comparative Example 1]
(Production of biaxially stretched film (B-1))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (b-1), except that the temperature T 1 of the first roll and 122 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (B-1).
[比較例2]
(二軸延伸フィルム(B−2)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(b−2)に変更し、第1ロールの温度T1を134℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(B−2)を得た。
[Comparative Example 2]
(Manufacture of biaxially stretched film (B-2))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (b-2), except that the temperature T 1 of the first roll and 134 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (B-2).
[比較例3]
(二軸延伸フィルム(B−3)の製造)
アクリル系共重合体(a−1)をアクリル系共重合体(b−3)に変更し、第1ロールの温度T1を113℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(B−3)を得た。
[Comparative Example 3]
(Production of biaxially stretched film (B-3))
Acrylic copolymer (a-1) was changed to the acrylic copolymer (b-3), except that the temperature T 1 of the first roll and 113 ° C., biaxially in the same manner as in Example 1 A stretched film was produced to obtain a biaxially stretched film (B-3).
[比較例4]
アクリル系共重合体(a−1)をアクリル系共重合体(b−4)に変更し、第1ロールの温度T1を142℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行ったが、第1ロールにフィルムが貼りついて製膜できなかった。
[Comparative Example 4]
Acrylic copolymer (a-1) was changed to the acrylic copolymer (b-4), except that the temperature T 1 of the first roll and 142 ° C., biaxially in the same manner as in Example 1 Although a stretched film was produced, the film was stuck to the first roll and could not be formed.
[比較例5]
(二軸延伸フィルム(B−4)の製造)
第1ロールの温度T1を92℃に変更したこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(B−4)を得た。
[Comparative Example 5]
(Production of biaxially stretched film (B-4))
Except for changing the temperature T 1 of the first roll 92 ° C., subjected to production of biaxially oriented film in the same manner as in Example 1 to obtain a biaxially oriented film (B-4).
[比較例6]
アクリル系共重合体(a−1)をアクリル系共重合体(b−5)に変更し、第1ロールの温度T1を154℃としたこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行ったが、第1ロールにフィルムが貼りついて製膜できなかった。
[Comparative Example 6]
Acrylic copolymer (a-1) was changed to the acrylic copolymer (b-5), except that the temperature T 1 of the first roll and 154 ° C., biaxially in the same manner as in Example 1 Although a stretched film was produced, the film was stuck to the first roll and could not be formed.
[比較例7]
(二軸延伸フィルム(B−5)の製造)
第1ロールの温度T1を104℃に変更したこと以外は、実施例1と同様にして二軸延伸フィルムの製造を行い、二軸延伸フィルム(B−5)を得た。
[Comparative Example 7]
(Production of biaxially stretched film (B-5))
Except for changing the temperature T 1 of the first roll 104 ° C., subjected to production of biaxially oriented film in the same manner as in Example 1 to obtain a biaxially oriented film (B-5).
上記のようにして得られた二軸延伸フィルム(A−1)〜(A−24)、(B−1)〜(B−7)の厚み、厚みムラ、面内位相差Re、厚み方向位相差Rth、光弾性係数C、MIT耐折度回数、黄色味の指標であるb*値、および耐光性を測定した。測定結果は、下記の表3に示されるとおりであった。 The thickness, thickness unevenness, in-plane retardation Re, thickness direction position of the biaxially stretched films (A-1) to (A-24) and (B-1) to (B-7) obtained as described above. The phase difference Rth, the photoelastic coefficient C, the number of MIT folding resistances, the b * value that is a yellowish index, and the light resistance were measured. The measurement results were as shown in Table 3 below.
Claims (17)
を含んでなるアクリル系共重合体、を含んでなる光学フィルムであって、前記光学フィルムが、
前記アクリル系共重合体を含んでなる樹脂材料を溶融押出してフィルムを形成する、Tダイ押し出し装置を用いた溶融製膜法により製造され、Tダイリップから吐出された溶融樹脂が最初に接触する第1ロールの温度T1℃は、溶融樹脂のガラス転移温度をTg℃としたとき、(Tg+5)≦T1≦(Tg+24)を満たし、前記溶融製膜法が、製膜された未延伸フィルムを二軸延伸する工程を備える、光学フィルム。 An N-alkylmaleimide unit, a (meth) acrylic acid chain alkyl unit, a third structural unit represented by the following general formula (1),
An acrylic copolymer comprising: an optical film comprising:
A resin material comprising the acrylic copolymer is melt-extruded to form a film, and is manufactured by a melt film-forming method using a T-die extrusion device. temperature T 1 ° C. of the first roll, when the glass transition temperature of the molten resin was Tg ℃, (Tg +5) meets ≦ T 1 ≦ (Tg + 24 ), the melt film method, unstretched formed as a film An optical film comprising a step of biaxially stretching a film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014140839A JP5697783B2 (en) | 2012-10-12 | 2014-07-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012227304 | 2012-10-12 | ||
JP2012227304 | 2012-10-12 | ||
JP2014140839A JP5697783B2 (en) | 2012-10-12 | 2014-07-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014510568A Division JP5680792B2 (en) | 2012-10-12 | 2013-10-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014205853A JP2014205853A (en) | 2014-10-30 |
JP5697783B2 true JP5697783B2 (en) | 2015-04-08 |
Family
ID=50477406
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014510568A Active JP5680792B2 (en) | 2012-10-12 | 2013-10-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
JP2014140839A Active JP5697783B2 (en) | 2012-10-12 | 2014-07-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014510568A Active JP5680792B2 (en) | 2012-10-12 | 2013-10-08 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP5680792B2 (en) |
TW (1) | TW201431939A (en) |
WO (1) | WO2014057938A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5680792B2 (en) * | 2012-10-12 | 2015-03-04 | 学校法人慶應義塾 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
JP2016048363A (en) * | 2014-06-03 | 2016-04-07 | 株式会社クラレ | Resin film |
JP6761301B2 (en) * | 2016-08-19 | 2020-09-23 | 旭化成株式会社 | Methacrylic resin and methacrylic resin composition |
CN109716182B (en) * | 2016-09-30 | 2021-05-14 | 日本瑞翁株式会社 | Optical film, method for producing same, and polarizing plate |
WO2020206108A1 (en) * | 2019-04-04 | 2020-10-08 | Arkema France | Impact resistant hydrophobic high heat optical acrylic copolymers |
WO2020206113A1 (en) * | 2019-04-04 | 2020-10-08 | Arkema France | Hydrophobic high heat optical acrylic copolymers |
US11891466B2 (en) | 2022-03-04 | 2024-02-06 | Trinseo Europe Gmbh | Heat resistant PMMA copolymers having high temperature and high humidity environmental stability for electronic component applications |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241011A (en) * | 1987-03-28 | 1988-10-06 | Japan Synthetic Rubber Co Ltd | Optical resin material |
JPH0625231B2 (en) * | 1987-04-03 | 1994-04-06 | 株式会社クラレ | Method for producing copolymer for optical element |
JP2584632B2 (en) * | 1987-07-07 | 1997-02-26 | 三菱レイヨン株式会社 | Base material for information recording medium |
JP2856794B2 (en) * | 1989-11-29 | 1999-02-10 | 株式会社クラレ | Methacrylic resin for optical |
JPH03244608A (en) * | 1990-02-23 | 1991-10-31 | Hitachi Chem Co Ltd | Production of methacrylate copolymer and optical disc base |
JPH04106113A (en) * | 1990-08-27 | 1992-04-08 | Kuraray Co Ltd | Heat-resistant methacrylic resin |
JPH0625359A (en) * | 1992-07-07 | 1994-02-01 | Kuraray Co Ltd | Molding material having low birefringence |
US6277938B1 (en) * | 1996-07-30 | 2001-08-21 | Hitachi Chemical Co., Ltd. | Process for the preparation of non-birefringent optical resin and optical elements made by using the resin prepared by the process |
JPH10130568A (en) * | 1996-10-29 | 1998-05-19 | Toray Ind Inc | Acrylic resin composition having weather resistance |
JP2004018710A (en) * | 2002-06-18 | 2004-01-22 | Hitachi Chem Co Ltd | Non-birefringent optical resin composition and optical element using this |
JP2004346199A (en) * | 2003-05-22 | 2004-12-09 | Tosoh Corp | Method for producing optical film |
JP2007031537A (en) * | 2005-07-26 | 2007-02-08 | Teijin Dupont Films Japan Ltd | Oriented film and polarizing plate using the same |
JP5429759B2 (en) * | 2009-02-18 | 2014-02-26 | エルジー・ケム・リミテッド | Resin composition, optical film, and liquid crystal display device |
CN102985454B (en) * | 2010-06-30 | 2015-11-25 | Lg化学株式会社 | Acrylic copolymer and comprise the blooming of this acrylic copolymer |
KR101497183B1 (en) * | 2011-08-09 | 2015-03-02 | 주식회사 엘지화학 | Acryl-based copolymer and optical film comprising the same |
JP5680792B2 (en) * | 2012-10-12 | 2015-03-04 | 学校法人慶應義塾 | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device |
-
2013
- 2013-10-08 JP JP2014510568A patent/JP5680792B2/en active Active
- 2013-10-08 WO PCT/JP2013/077351 patent/WO2014057938A1/en active Application Filing
- 2013-10-11 TW TW102136844A patent/TW201431939A/en unknown
-
2014
- 2014-07-08 JP JP2014140839A patent/JP5697783B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW201431939A (en) | 2014-08-16 |
JP5680792B2 (en) | 2015-03-04 |
WO2014057938A1 (en) | 2014-04-17 |
JP2014205853A (en) | 2014-10-30 |
JPWO2014057938A1 (en) | 2016-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5758530B2 (en) | Acrylic copolymer, optical film, polarizing plate and liquid crystal display device | |
JP5697783B2 (en) | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device | |
JP2015101707A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP5731054B2 (en) | Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device | |
JP2015205997A (en) | acrylic copolymer, optical film, polarizing plate and liquid crystal display device | |
JP2014111748A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014111751A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014133883A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014111749A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014111747A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014133885A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP5912007B1 (en) | Ionomer resin composition, optical film, polarizing plate and liquid crystal display device | |
JP2014111750A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014133884A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP2014133882A (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP5664736B2 (en) | Optical compensation film | |
WO2014092156A1 (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
WO2015098759A1 (en) | Acrylic copolymer and method for producing same | |
JP2016035029A (en) | Method for producing acrylic copolymer and acrylic copolymer obtained by the same | |
WO2014073640A1 (en) | Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device | |
JP5440108B2 (en) | Optical compensation film | |
WO2014184950A1 (en) | Optical film and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5697783 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |