WO2015098759A1 - Acrylic copolymer and method for producing same - Google Patents

Acrylic copolymer and method for producing same Download PDF

Info

Publication number
WO2015098759A1
WO2015098759A1 PCT/JP2014/083737 JP2014083737W WO2015098759A1 WO 2015098759 A1 WO2015098759 A1 WO 2015098759A1 JP 2014083737 W JP2014083737 W JP 2014083737W WO 2015098759 A1 WO2015098759 A1 WO 2015098759A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
acrylic copolymer
mass
producing
film
Prior art date
Application number
PCT/JP2014/083737
Other languages
French (fr)
Japanese (ja)
Inventor
小池 康博
多加谷 明広
咲耶子 内澤
彰 松尾
Original Assignee
学校法人慶應義塾
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, Jx日鉱日石エネルギー株式会社 filed Critical 学校法人慶應義塾
Priority to JP2015526781A priority Critical patent/JPWO2015098759A1/en
Publication of WO2015098759A1 publication Critical patent/WO2015098759A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Definitions

  • the present invention relates to a method for producing an acrylic copolymer, and more specifically, an acrylic copolymer is produced by suspension polymerization from a reaction system comprising a dispersed phase containing a monomer mixture and an additive solvent, and a dispersion medium. It relates to a method of manufacturing. The present invention also relates to an acrylic copolymer obtained by the production method.
  • a film-like optical member for example, a film used in a liquid crystal display device or a prism sheet substrate
  • an optical film is generally called an “optical film”.
  • One of the important optical properties of this optical film is birefringence. That is, it may not be preferable that the optical film has a large birefringence. In particular, in an IPS mode liquid crystal display device, the presence of a film having a large birefringence may adversely affect the image quality. Therefore, the protective film for the polarizing plate used in the liquid crystal display device has a birefringence. It is desired to use an optical film with low properties.
  • polymers for forming such optical films have been produced by methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization.
  • the suspension polymerization method is a suitable polymerization method because it is safe and easy to operate.
  • the viscosity of the oil phase (system) increases, the monomer diffusion rate decreases, and it is inevitable that about several percent of the monomer remains. If the polymer remains in the polymer, heat resistance decreases due to the plasticizing effect, the polymer is colored, and when the polymer is melted at a high temperature during processing, the monomer volatilizes and significantly adversely affects work safety. Challenges existed.
  • Patent Document 1 a technical problem that methyl ethyl ketone or toluene used as an organic solvent in the suspension polymerization method dissolves the produced polymer. Further, in Patent Document 2, since the amount of radical polymerization initiator added is excessive, there is a possibility of gelation or discoloration of the produced polymer, and the amount of heat generated during the polymerization reaction is large and the risk is high. I knew the problem.
  • the present invention has been made in view of the above technical problems, and its purpose is to produce an acrylic copolymer that can reduce the amount of monomer remaining in the polymer produced by the suspension polymerization method. It is to provide a method.
  • a dispersion phase containing a monomer mixture containing a (meth) acrylic acid alkyl monomer as a first monomer and a monomer other than the (meth) acrylic acid alkyl monomer as a second monomer, and a dispersion medium.
  • a method for producing an acrylic copolymer by polymerization Production of an acrylic copolymer, wherein the dispersed phase comprises a saturated hydrocarbon solvent that is a good solvent for the monomer mixture and a poor solvent for the acrylic copolymer. A method is provided.
  • the reactivity ratios r 1 and r 2 of the first monomer and the second monomer satisfy 1 ⁇ r 1 ⁇ 10 and 0 ⁇ r 2 ⁇ 1.
  • the boiling point of the saturated hydrocarbon solvent is preferably 60 to 180 ° C.
  • the saturated hydrocarbon solvent is preferably a C6 to C10 alkane.
  • the content of the saturated hydrocarbon solvent in the dispersed phase is preferably 1 to 50% by mass with respect to the total amount of the monomer mixture.
  • the dispersed phase preferably contains N-substituted maleimide as the second monomer.
  • the dispersed phase further includes a monomer other than the first monomer and the second monomer as the third monomer, and the third monomer is benzyl (meth) acrylate and the following general formula (1) It is preferable that it comprises at least one selected from the group consisting of monomers represented by [In General Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkanediyl group, and R 3 represents an aryl group. ]
  • the content of the first monomer in the dispersed phase is preferably 30 to 99% by mass with respect to the total amount of the monomer mixture.
  • the content of the second monomer in the dispersed phase is preferably 1 to 50% by mass with respect to the total amount of the monomer mixture.
  • the content of the third monomer in the dispersed phase is preferably 0 to 30% by mass with respect to the total amount of the monomer mixture.
  • an acrylic copolymer obtained by the above production method wherein the acrylic monomer has a residual monomer amount of 2.0% by mass or less.
  • an acrylic copolymer obtained by the above production method wherein the acrylic copolymer has a glass transition temperature of 110 ° C. or higher.
  • an acrylic copolymer obtained by the above production method wherein the optical film containing the acrylic copolymer has a longitudinal shrinkage of 1.0% or less. Provided.
  • an acrylic copolymer obtained by the above production method wherein the optical film containing the acrylic copolymer has a lateral shrinkage of 1.0% or less. Provided.
  • a method for producing an acrylic copolymer that can reduce the amount of monomer remaining in a polymer produced by a suspension polymerization method. Thereby, the hue of the acrylic copolymer obtained by the present invention is suppressed, and the shrinkage rate of the optical film containing the acrylic copolymer is reduced.
  • the method for producing an acrylic copolymer according to the present invention comprises a reaction comprising a monomer mixture containing a first monomer and a second monomer, a dispersed phase containing a specific saturated hydrocarbon solvent as an additive solvent, and a dispersion medium. From the system, an acrylic copolymer is produced by suspension polymerization. Unlike suspension polymerization, suspension polymerization does not require a step of removing the organic solvent from the reaction system at a high temperature. Therefore, by producing an acrylic copolymer by suspension polymerization, an acrylic copolymer excellent in hue can be obtained. A polymer can be obtained.
  • the dispersed phase in the reaction system in suspension polymerization includes a monomer mixture and an additive solvent, and the monomer mixture comprises a first monomer and a second monomer. Comprising.
  • the first monomer, the second monomer, and the additive solvent will be described in detail.
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • the alkyl group in the (meth) acrylic acid alkyl monomer may be a chain alkyl group or a cyclic alkyl group.
  • the chain alkyl group refers to an alkyl group having no cyclic structure
  • the cyclic alkyl group refers to an alkyl group having a cyclic structure.
  • the number of carbon atoms of the chain alkyl group in the (meth) acrylic acid alkyl monomer is preferably 1 to 6, more preferably 1 to 4, and the number of carbon atoms of the cyclic alkyl group in the (meth) acrylic acid alkyl monomer. Is preferably 5 to 18, more preferably 6 to 16.
  • Examples of such (meth) acrylic acid chain alkyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate, and cyclic alkyl (meth) acrylate.
  • Examples of the monomer include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, ethyl adamantyl (meth) acrylate, methyl adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. Of these, (meth) acrylic acid chain alkyl monomers are preferred, methyl acrylate and methyl methacrylate are more preferred, and methyl methacrylate is more preferred. As the first monomer, one or more alkyl (meth) acrylate monomers may be used.
  • the content of the first monomer in the dispersed phase is preferably 30 to 99% by mass, more preferably 40 to 95% by mass, still more preferably 50 to 90% by mass, based on the total amount of the monomer mixture. Even more preferably, it is 65 to 90% by mass. If the content of the first monomer is about the above numerical range, the monomer reacts sufficiently and the amount of monomer remaining in the produced polymer can be further reduced.
  • (Second monomer) As the second monomer, a monomer other than the (meth) acrylic acid alkyl monomer is used.
  • the second monomer those in which the reactivity ratios r 1 and r 2 of the first monomer and the second monomer satisfy 1 ⁇ r 1 ⁇ 10 and 0 ⁇ r 2 ⁇ 1 are preferably used.
  • the reactivity ratios r 1 and r 2 of the first monomer and the second monomer are more preferably 1 ⁇ r 1 ⁇ 5, 0 ⁇ r 2 ⁇ 0.8, and 1 ⁇ r 1 ⁇ 4, 0 ⁇ r. More preferably, 2 ⁇ 0.5.
  • An example of such reactivity ratios r 1 and r 2 is shown in Table 1.
  • N-substituted maleimide it is preferable to use N-substituted maleimide as the second monomer.
  • N-substituted maleimide include N-aromatic substituted maleimide, N-alkyl substituted maleimide, and N-aromatic alkyl substituted maleimide.
  • N-aromatic substituted maleimide is a compound in which an aromatic group is substituted on the nitrogen atom of maleimide.
  • the aromatic group may be a monocyclic aromatic group or a polycyclic aromatic group.
  • the number of carbon atoms of the aromatic group in the N-aromatic substituted maleimide is preferably 6-18, more preferably 6-14.
  • Examples of the aromatic group in the N-aromatic substituted maleimide include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group. Among these, a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
  • N-aromatic substituted maleimide examples include N-phenylmaleimide, N-naphthylmaleimide, N-anthrylmaleimide, N-phenanthrylmaleimide and the like, and among these, N-phenylmaleimide and N-naphthylmaleimide N-phenylmaleimide is more preferable.
  • the acrylic copolymer may have one or more N-aromatic substituted maleimides.
  • N-alkyl-substituted maleimide is a compound in which an alkyl group is substituted on the nitrogen atom of maleimide.
  • the alkyl group may be a chain alkyl group or a cyclic alkyl group, and a cyclic alkyl group is preferred.
  • the chain alkyl group represents an alkyl group having no ring structure
  • the cyclic alkyl group represents an alkyl group having an alicyclic structure.
  • the number of carbon atoms of the alkyl group in the N-alkyl-substituted maleimide is preferably 1 to 10, more preferably 3 to 8.
  • alkyl group in the N-alkyl-substituted maleimide examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, and 2-ethylhexyl group.
  • a dodecyl group, a lauryl group, a cyclohexyl group, and the like Among these, a methyl group, an ethyl group, and a cyclohexyl group are preferable, and a cyclohexyl group is more preferable.
  • N-alkyl-substituted maleimide N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, Nt-butylmaleimide Nn-hexylmaleimide, N-2-ethylhexylmaleimide, N-dodecylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide and the like, among which N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide is preferred, and N-cyclohexylmaleimide is more preferred.
  • the N-alkyl-substituted maleimide may be one of these or may contain two or more.
  • N-aromatic alkyl-substituted maleimide is a compound in which an aromatic alkyl group is substituted on the nitrogen atom of maleimide.
  • the aromatic group may be a monocyclic aromatic group or a polycyclic aromatic group.
  • the alkyl group may be a chain alkyl group or a cyclic alkyl group.
  • a benzyl group is preferable. That is, as the N-aromatic alkyl-substituted maleimide, N-benzylmaleimide is preferable.
  • the content of the second monomer in the dispersed phase is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 10 to 30% by mass with respect to the total amount of the monomer mixture. is there. If the content of the second monomer is about the above numerical range, the monomer reacts sufficiently and the amount of monomer remaining in the produced polymer can be further reduced.
  • the monomer mixture in the dispersed phase may further contain a monomer other than the first monomer and the second monomer as the third monomer.
  • the third monomer it is preferable to further use at least one selected from the group consisting of benzyl (meth) acrylate, a monomer represented by the following general formula (1), and styrene.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkanediyl group
  • R 3 represents an aryl group.
  • R 1 in the general formula (1) represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 2 represents an alkanediyl group, preferably an alkanediyl group having 1 to 4 carbon atoms, more preferably an alkanediyl group having 1 to 3 carbon atoms. It is.
  • the alkanediyl group may be linear or branched, but is preferably linear (that is, a linear alkanediyl group).
  • alkanediyl group examples include a methylene group, an ethylene group, a propane-1,3-diyl group, and a butane-1,4-diyl group.
  • an ethylene group and a methylene group are preferable, and an ethylene group is particularly preferable.
  • R 3 represents an aryl group, preferably an aryl group having 6 to 15 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.
  • aryl group examples include a phenyl group, a methylphenyl group, a benzyl group, a xylyl group, and a cumenyl group.
  • a phenyl group, a methylphenyl group, and a benzyl group are preferable, and a phenyl group is particularly preferable.
  • phenoxyethyl (meth) acrylate is preferable, and phenoxyethyl acrylate is more preferable.
  • Benzyl (meth) acrylate includes benzyl acrylate and benzyl methacrylate, among which benzyl methacrylate is preferred.
  • the content of the third monomer in the dispersed phase is preferably 0 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 1 to 15% by mass with respect to the total amount of the monomer mixture. %. If the content of the third monomer is about the above numerical range, the monomer reacts sufficiently and the amount of the monomer remaining in the produced polymer can be further reduced.
  • a specific saturated hydrocarbon solvent is used as a solvent to be added to the dispersion phase of suspension polymerization.
  • a solvent that is a good solvent for the monomer mixture and a poor solvent for the acrylic copolymer to be produced is used.
  • the saturated hydrocarbon solvent is a good solvent for the monomer mixture. After mixing 100 parts by mass of the saturated hydrocarbon solvent and 100 parts by mass of the monomer mixture, the mixture is at 25 ° C. and 100 rpm for 1 minute. No two-phase separation or the like is observed even when the stirring operation is performed.
  • a saturated hydrocarbon solvent is a poor solvent for an acrylic copolymer when solid precipitation is observed when a 10% solution of the acrylic copolymer is dropped into the saturated hydrocarbon solvent. is there.
  • the boiling point of the saturated hydrocarbon solvent is preferably 60 to 180 ° C, more preferably 70 to 170 ° C, and further preferably 80 to 160 ° C. If the boiling point of the saturated hydrocarbon solvent is 60 ° C. or higher, volatilization during the polymerization reaction can be suppressed. Moreover, if the boiling point of the saturated hydrocarbon solvent is 180 ° C. or less, it is easy to remove the saturated hydrocarbon solvent in a later step.
  • the saturated hydrocarbon solvent is preferably at least one selected from the group consisting of C6 to C10 alkanes, more preferably at least one selected from the group consisting of C7 to C9 alkanes. N-heptane and / or n-octane is more preferable. By using such a saturated hydrocarbon solvent as the additive solvent, the amount of monomer remaining in the produced polymer can be further reduced.
  • the content of the saturated hydrocarbon solvent in the dispersed phase is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and further preferably 5 to 30% by mass with respect to the total amount of the monomer mixture. %.
  • the content of the saturated hydrocarbon solvent is 50% by mass or less, it is easy to remove the saturated hydrocarbon solvent in a later step.
  • Dispersion medium In the method for producing an acrylic copolymer according to the present invention, a conventionally known dispersion medium for suspension polymerization can be used as the dispersion medium in the suspension polymerization reaction system. As a dispersion medium for suspension polymerization, water is usually used.
  • suspension polymerization The conditions for suspension polymerization are not particularly limited, and known suspension polymerization conditions can be appropriately applied.
  • a method for producing an acrylic copolymer by suspension polymerization is shown, but the present invention is not limited to the following example.
  • the first monomer and the second monomer are weighed so that a desired mass ratio is obtained, and the total amount is 100 parts by mass.
  • To 100 parts by mass of the total amount of monomers 300 parts by mass of deionized water and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd.) as a dispersant are charged into the suspension polymerization apparatus and stirring is started. To do.
  • the temperature of the reaction system is raised to 70 ° C. while passing nitrogen through the suspension polymerization apparatus, and then the reaction is carried out by maintaining at 70 ° C. for 3 hours.
  • the mixture is cooled to room temperature, and if necessary, operations such as filtration, washing and drying can be performed to obtain a particulate acrylic copolymer. According to such a method, an acrylic copolymer having a residual monomer amount of 2% by mass or less can be easily obtained.
  • the types and input amounts of the polymerization initiator, chain transfer agent, and dispersant described above are examples, and the conditions for suspension polymerization are not limited to the above.
  • the conditions can be appropriately changed within a range in which the residual monomer amount of 2% by mass or less can be achieved.
  • the weight average molecular weight of the acrylic copolymer can be appropriately adjusted by changing the input amount of the chain transfer agent.
  • polymerization initiator for example, Parroyl TCP, Perocta O, Niper BW, etc. manufactured by Nippon Oil & Fats Co., Ltd.
  • the amount of the polymerization initiator used may be, for example, 0.05 to 2.0 parts by mass, or 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. Good.
  • chain transfer agent for example, thiols such as 1-octanethiol, 1-dodecanethiol, and tert-dodecanethiol can be used.
  • amount of the chain transfer agent used can be appropriately changed according to the desired weight average molecular weight. For example, it can be 0.05 to 0.6 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. 0.07 to 0.5 parts by mass.
  • the dispersant for example, PVA such as Kuraray Poval manufactured by Kuraray Co., Ltd., sodium polyacrylate, or the like can be used.
  • the amount of the dispersant used may be, for example, 0.01 to 0.5 parts by mass, or 0.02 to 0.3 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. .
  • the conditions for suspension polymerization can be appropriately adjusted according to the types and amounts of polymerization initiators, chain transfer agents and dispersants.
  • the reaction temperature can be 50 to 95 ° C., preferably 60 to 85 ° C.
  • the reaction time may be sufficient if the reaction proceeds sufficiently.
  • the reaction time may be 2 to 10 hours, and preferably 3 to 8 hours. Since the monomer conversion rate is determined by the lifetime of the reactive species, the reactivity of the monomer, etc., the monomer conversion rate does not necessarily improve even if the reaction time is extended.
  • the acrylic copolymer according to the present invention is obtained by the above production method, and includes a structural unit obtained from the first monomer and a structural unit obtained from the second monomer.
  • the acrylic copolymer has a constitutional unit obtained from the second monomer, preferably 30 to 99% by mass, more preferably 40 to 95% by mass, and still more preferably 50 to 85% by mass.
  • the unit preferably comprises 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass.
  • the acrylic copolymer may further contain a constituent unit obtained from the third monomer, preferably 0 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 1 to 10% by mass.
  • the glass transition temperature of the acrylic copolymer is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, and further preferably 120 ° C. or higher. If the glass transition temperature is 110 ° C. or higher, the heat resistance of the film formed using the acrylic copolymer is further improved, and the dimensional stability of the film against heat is further improved. It will be something. Moreover, although there is no restriction
  • the glass transition temperature is determined from the onset temperature of the glass transition point when the differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology is used and the temperature is raised at a rate of temperature increase of 10 ° C./min. Indicates the obtained value.
  • the sample mass is 5 mg to 10 mg.
  • the residual monomer amount of the acrylic copolymer is preferably 2% by mass or less, more preferably 1.5% by mass or less, and further preferably 1% by mass or less. If the amount of residual monomers is 2% or less, deterioration of the hue of the produced copolymer can be suppressed.
  • the optical film according to the present invention comprises the acrylic copolymer according to the present invention.
  • the optical film is preferably a biaxially stretched film, and such a film can be obtained by biaxially stretching an unstretched film obtained by forming a resin containing the above acrylic copolymer.
  • the optical film according to the present invention can be suitably used as an optical film because both the orientation birefringence and the photoelastic birefringence are small and the properties such as transparency and heat resistance are excellent.
  • the present invention since the amount of monomer remaining in the acrylic polymer produced by the suspension polymerization method is reduced, the hue of the optical film containing the acrylic polymer is suppressed, and the optical film shrinks. The rate is reduced.
  • various properties of the optical film according to the present invention will be described in detail.
  • the content of the acrylic copolymer is preferably 90% by mass or more, more preferably 95% by mass or more, and 99% by mass or more based on the total amount of the resin material. It may be.
  • the optical film may contain a component other than the acrylic copolymer. That is, when the optical film is obtained by biaxially stretching an unstretched film made of a resin material containing an acrylic copolymer, the resin material contains a component other than the acrylic copolymer. May be.
  • additives used for optical films such as antioxidants, lubricants, ultraviolet absorbers, stabilizers and the like can be used as necessary.
  • the blending amount of these components is not particularly limited as long as the effect of the present invention is effectively exhibited, but it is preferably 10% by mass or less, based on the total amount of the resin material, and is 5% by mass or less. It is more preferable.
  • the absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth of the optical film are both preferably 3.5 nm or less, more preferably 3.0 nm or less, and 2.5 nm or less. More preferably, 2.0 nm or less is even more preferable, and 1.0 nm or less is even more preferable. If the absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth are small, the orientation birefringence becomes small, so that it can be more suitably used as an optical film, particularly a protective film for a polarizing plate.
  • the absolute value of the photoelastic coefficient C of the optical film is preferably 3.0 ⁇ 10 ⁇ 12 (/ Pa) or less, more preferably 2.0 ⁇ 10 ⁇ 12 (/ Pa) or less, and 1.0 ⁇ More preferably, it is 10 ⁇ 12 (/ Pa) or less.
  • the absolute value of the photoelastic coefficient C is small, the photoelastic birefringence becomes small, so that it can be more suitably used as an optical film, particularly as a protective film for a polarizing plate.
  • the orientation birefringence of the optical film can be evaluated by measuring retardation (Re) which is an in-plane retardation value of the film and Rth which is a thickness direction retardation value using an Axoscan apparatus manufactured by Axometrics.
  • the sign of the retardation value of the film is positive when the refractive index is large in the orientation direction of the polymer main chain, and negative when the refractive index is large in the direction perpendicular to the stretching direction.
  • the photoelastic birefringence of the optical film is measured by measuring the amount of change due to the stress applied to the film of retardation (Re), which is the retardation value of the film, with an Axoscan apparatus manufactured by Axometrics, as with the orientation birefringence. (Unit: 10 ⁇ 12 / Pa).
  • the specific calculation method of the photoelastic coefficient C is as the following mathematical formula (3).
  • C ⁇ Re / ( ⁇ ⁇ t) (3)
  • is the amount of change in stress applied to the film in units of [Pa]
  • t is the film thickness in units of [m]
  • ⁇ Re is the amount of change in the in-plane retardation corresponding to the amount of change in stress of ⁇ .
  • the unit is [m].
  • the sign of the photoelastic coefficient C is positive when the refractive index increases in the stressed direction, and negative when the refractive index increases in the direction perpendicular to the stressed direction.
  • the number of MIT folding resistances measured in accordance with JIS P8115 is preferably 100 times or more, more preferably 120 times or more, and further preferably 150 times or more. Since such an optical film sufficiently satisfies the flexibility required as a protective film for polarizing plates, it can be more suitably used as a protective film for polarizing plates. Moreover, since such an optical film is excellent in bending resistance, it can be used more suitably for applications that require a large area. Furthermore, if the MIT folding endurance number is 100 times or more, the optical film after the stretching process is prevented from being broken in the process of transporting and winding, or being bonded to a polarizing plate or the like. be able to.
  • the MIT folding resistance test can be performed using a BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd.
  • the BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. is also called an MIT folding resistance tester.
  • the measurement conditions are a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, a bending angle of 135 ° on the left and right, and a width of the film sample of 15 mm.
  • the average value of the number of bendings that are broken when the optical film is repeatedly bent in the conveyance direction and the number of bendings that are broken when the optical film is repeatedly bent in the width direction is defined as the MIT folding resistance number.
  • heat shock is repeated by laminating a film on a glass substrate through a paste, raising the temperature in the range of ⁇ 20 ° C. to 60 ° C., and lowering the temperature for 500 cycles at 30 minute intervals.
  • the test is known, if the above-mentioned MIT folding resistance number is 100 times or more, the film can be prevented from cracking during the heat shock test.
  • the film thickness of the optical film can be 10 ⁇ m or more and 150 ⁇ m or less, and can be 15 ⁇ m or more and 120 ⁇ m or less.
  • the film thickness is 10 ⁇ m or more, the handleability of the film is improved, and when it is 150 ⁇ m or less, problems such as an increase in haze and an increase in material cost per unit area are less likely to occur.
  • the optical film according to the present invention may be a film obtained by stretching an unstretched film made of a resin material containing the acrylic copolymer according to the present invention in at least one direction, and a film obtained by stretching in two directions. (Biaxially stretched film) is preferable.
  • the draw ratio can be adjusted as appropriate so that the above-mentioned number of MIT folding resistances can be achieved.
  • the area ratio can be 1.3 times or more, and can also be 1.5 times or more.
  • the draw ratio may be 6.0 times or less in area ratio, and may be 4.0 times or less.
  • the b * value which is an index of yellowness of the optical film, is preferably 1.00 or less, more preferably 0.50 or less, and even more preferably 0.30 or less.
  • index can be calculated
  • the optical film according to the present invention has excellent light resistance.
  • Light resistance can be evaluated by the amount of change in film property values before and after light irradiation.
  • b * value which is a yellowish index, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, MIT folding resistance frequency, and the like are used.
  • b * value which is a yellowish index, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, MIT folding resistance frequency, and the like are used.
  • b * value which is a yellowish index, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, MIT folding resistance frequency, and the like are used.
  • the optical film is irradiated with light, and the light resistance can be evaluated as follows.
  • the shrinkage ratio of the optical film according to the present invention can be calculated as follows. First, an unstretched film (raw film) obtained in the melt extrusion step described below is stretched twice in the longitudinal direction and then stretched twice in the transverse direction to obtain a biaxially stretched film of 15 cm ⁇ 15 cm. The length in the machine direction and the transverse direction of the obtained biaxially stretched film is measured with a vernier caliper capable of measuring up to 100 ⁇ m effective figures, and put into a 100 ° C. thermostat. The length in the vertical direction obtained at this time is LMD1 , and the length in the horizontal direction is LTD1 . The film which has passed 240 hours after being put into the thermostatic chamber is allowed to cool to room temperature, and the lengths in the vertical and horizontal directions are measured.
  • the length in the vertical direction obtained at this time is LMD2 , and the length in the horizontal direction is LTD2 .
  • the shrinkage rate of the optical film according to the present invention is preferably 1.0% or less, and more preferably 0.7% or less, in both the vertical direction shrinkage rate and the horizontal direction shrinkage rate.
  • the shrinkage rate is 1.0% or less, peeling or cracking due to shrinkage can be prevented when the optical film is used as a member of an optical display by being laminated with another film, a glass substrate or the like.
  • the optical film according to the present invention can be obtained from the resin material containing the acrylic copolymer according to the present invention. Furthermore, it is preferable to obtain an unstretched film made of the resin material by biaxial stretching. That is, the method for producing an optical film according to the present invention includes a step (melt-extrusion step) for obtaining an unstretched film by melt-extruding a resin material comprising the acrylic copolymer according to the present invention. It is preferable to further include a step (stretching step) of biaxially stretching the film to obtain an optical film.
  • a step melt-extrusion step
  • a step stretch-extruding step
  • the melt extrusion process can be performed by, for example, an extrusion film forming machine including a die lip. At this time, the resin material is heated and melted in an extrusion film forming machine and continuously discharged from a die lip, whereby a film-like unstretched film can be obtained.
  • the extrusion temperature during melt extrusion is preferably 130 ° C. or higher and 300 ° C. or lower, and more preferably 150 ° C. or higher and 280 ° C. or lower.
  • the extrusion temperature is 130 ° C. or higher, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that the unmelted product is sufficiently prevented from remaining in the film.
  • the temperature is 300 ° C. or lower, problems such as coloring of the film due to thermal decomposition and adhesion of the decomposition product to the die lip are sufficiently prevented.
  • the extrusion temperature of the melt extrusion is within the above range, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that it is possible to sufficiently prevent the unmelted product from remaining in the film. At the same time, it is possible to suppress film coloring due to thermal decomposition, adhesion of decomposition products to the die lip, and the like.
  • the range of Tg ⁇ 24) ⁇ T 1 ⁇ (Tg + 24) is preferable, and the range of (Tg ⁇ 20) ⁇ T 1 ⁇ (Tg + 20) is more preferable. If the temperature of T 1 is (Tg ⁇ 24) ° C. or higher, the molten resin film discharged from the T die lip can be prevented from being rapidly cooled, so the thickness accuracy of the film formed due to shrinkage unevenness deteriorates. This can be suppressed. If the temperature of T 1 is (Tg + 24) °C or less, the molten resin discharged from the T die lip can be suppressed that would stick to the first roller.
  • the film thickness unevenness (unit:%) is the maximum value of the thickness measured by measuring 20 roll samples at equal intervals in the width direction after cutting 10 mm each of the ears at both ends of the unstretched film (raw film) at t 1.
  • the minimum value is t 2 ⁇ m
  • the average value is t 3 ⁇ m
  • Thickness variation (%) 100 ⁇ (t 1 ⁇ t 2 ) / t 3 (4) It means the value calculated from
  • the unstretched film (raw film) obtained in the melt extrusion process is stretched to obtain an optical film.
  • a conventionally known uniaxial stretching method or biaxial stretching method can be appropriately selected.
  • the biaxial stretching device for example, in the tenter stretching device, a simultaneous biaxial stretching device in which the clip interval for gripping the film end portion also extends in the film transport direction can be used.
  • a sequential biaxial stretching method in which stretching between rolls utilizing a peripheral speed difference, stretching by a tenter device, or the like is combined can also be applied.
  • the stretching device may be an integrated line with the extrusion film forming machine. Further, the stretching step may be performed by a method in which a raw film wound up by an extrusion film forming machine is sent off-line to a stretching apparatus and stretched.
  • the stretching temperature is preferably (Tg + 2) ° C. or more and (Tg + 20) ° C. or less, more preferably (Tg + 5) ° C. or more and (Tg + 15) ° C. or less when the glass transition temperature of the raw film is Tg ° C.
  • the stretching temperature is (Tg + 2) ° C. or higher, problems such as breakage of the film during stretching and an increase in haze of the film can be sufficiently prevented.
  • it is (Tg + 20) ° C. or lower, the polymer main chain is easily oriented, and a better degree of polymer main chain orientation tends to be obtained.
  • a film made of a polymer material having a low birefringence while the polymer main chain is oriented to improve the bending resistance of the film by stretching the raw film formed by the melt film formation method. Otherwise, the retardation value of the film increases, and the image quality deteriorates when incorporated in a liquid crystal display device.
  • an optical film having both excellent optical properties and flex resistance can be obtained by using the resin material described above.
  • an optical film having both small orientation birefringence and photoelastic birefringence and excellent properties such as transparency and heat resistance can be obtained.
  • the polarizing plate according to the present invention comprises the optical film as a protective film on at least one surface of the polarizing film. Since the optical film has both small orientation birefringence and photoelastic birefringence, according to the polarizing plate according to the present invention having the optical film as a protective film, image quality deteriorates due to the protective film when applied to a liquid crystal display device. Can be sufficiently suppressed.
  • the constituent elements other than the optical film are not particularly limited, and may have the same configuration as a known polarizing plate.
  • the polarizing plate according to the present invention may be obtained by changing at least a part of a protective film in a known polarizing plate to the optical film.
  • the polarizing plate may have a configuration in which the optical film, the polarizing layer, the polarizing layer protective film, and the adhesive layer are laminated in this order.
  • the liquid crystal display device by this invention is equipped with the said polarizing plate. Since the polarizing plate according to the present invention includes the optical film as a protective film, it is possible to sufficiently suppress deterioration in image quality due to the optical characteristics of the protective film. Therefore, according to the liquid crystal display device of the present embodiment, good image quality is realized.
  • the components other than the polarizing plate are not particularly limited, and can be configured in the same manner as a known liquid crystal display device.
  • the polarizing plate in the known liquid crystal display device may be changed to the polarizing plate.
  • the liquid crystal display device may have, for example, a configuration in which the polarizing plate, the backlight, the color filter, the liquid crystal layer, the transparent electrode, and the glass substrate are laminated in this order.
  • the glass transition temperature of the acrylic copolymer is obtained from the onset temperature of the glass transition point when the differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology is used and the temperature is raised at a rate of temperature increase of 10 ° C./min. It was.
  • the mass of the acrylic copolymer sample was 5 mg to 10 mg.
  • the residual monomer amount of the acrylic copolymer was measured by the following apparatus and method.
  • Gas chromatography device GC 6850 manufactured by Agilent Technologies Column: HP-5 30m Oven temperature condition: held at 50 ° C. for 5 minutes, then heated to 250 ° C. at 10 ° C./minute, and held for 10 minutes.
  • Injection volume 0.5 ⁇ l Mode: Split method Split ratio: 80/1
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • n-heptane an additive solvent 5 parts by mass
  • Perocta O manufactured by NOF Corporation
  • 1-octanethiol as a chain transfer agent
  • Example 2 The monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (hereinafter sometimes referred to as “PhMI”) and added. Suspension polymerization was performed in the same manner as in Example 1 except that the solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Example 3 The monomer was changed to 80 parts by mass of methyl methacrylate (MMA), 10 parts by mass of N-cyclohexylmaleimide (CHMI), and 10 parts by mass of N-phenylmaleimide (PhMI), and the additive solvent was changed to 30 parts by mass of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Example 4 Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 5 parts by mass of n-octane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • Example 5 The monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI), and the additive solvent was changed to 10 parts by weight of n-octane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Example 6 Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 30 parts by mass of n-octane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • Example 7 The monomer was changed to 81 parts by mass of methyl methacrylate (MMA), 15 parts by mass of N-cyclohexylmaleimide (CHMI), and 4 parts by mass of benzyl methacrylate (hereinafter, sometimes referred to as “BnMA”), and an additive solvent was changed to 10 parts by mass of n-heptane, and suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • BnMA benzyl methacrylate
  • Example 8 The monomer was changed to 82 parts by weight of methyl methacrylate (MMA), 15 parts by weight of N-cyclohexylmaleimide (CHMI), and 3 parts by weight of phenoxyethyl acrylate (hereinafter sometimes referred to as “PhOEA”) and added. Suspension polymerization was performed in the same manner as in Example 1 except that the solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhOEA phenoxyethyl acrylate
  • Example 9 The monomer was changed to 65 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 15 parts by weight of styrene (hereinafter sometimes referred to as “St”), and the additive solvent was changed to n -Suspension polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 10 parts by mass of heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • St styrene
  • Example 10 The monomer was changed to 81 parts by weight of methyl methacrylate (MMA), 12 parts by weight of N-cyclohexylmaleimide (CHMI), 2 parts by weight of N-phenylmaleimide (PhMI), and 5 parts by weight of benzyl methacrylate (BnMA), and Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • BnMA benzyl methacrylate
  • Example 11 The monomer was changed to 80 parts by mass of methyl methacrylate (MMA), 13 parts by mass of N-cyclohexylmaleimide (CHMI), and 7 parts by mass of N-phenylmaleimide (PhMI), and the additive solvent was changed to 15 parts by mass of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Example 12 The monomer was changed to 76 parts by weight of methyl methacrylate (MMA), 23 parts by weight of N-cyclohexylmaleimide (CHMI), and 1 part by weight of styrene (St), and the additive solvent was changed to 15 parts by weight of n-heptane.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • St styrene
  • Example 13 The monomer was changed to 80 parts by mass of methyl methacrylate (MMA) and 20 parts by mass of N-cyclohexylmaleimide (CHMI), and the additive solvent was changed to 10 parts by mass of n-heptane and 10 parts by mass of n-octane. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • Example 14 The monomer was changed to 90 parts by weight of methyl methacrylate (MMA) and 10 parts by weight of N-benzylmaleimide (hereinafter referred to as “BnMI”), and the additive solvent was changed to 10 parts by weight of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
  • MMA methyl methacrylate
  • BnMI N-benzylmaleimide
  • Example 1 Example except that the monomer was changed to 80 parts by weight of methyl methacrylate (MMA), 10 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI), and no n-heptane was added. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was light yellow in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Comparative Example 2 Suspension polymerization in the same manner as in Comparative Example 1 except that the monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI). And an acrylic copolymer was obtained. The obtained acrylic copolymer was yellow in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • PhMI N-phenylmaleimide
  • Comparative Example 7 Comparative Example 1 except that the monomers were changed to 65 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 15 parts by weight of styrene (hereinafter, sometimes referred to as “St”). Similarly, suspension polymerization was performed to obtain an acrylic copolymer. The obtained acrylic copolymer was yellow in visual inspection.
  • MMA methyl methacrylate
  • CHMI N-cyclohexylmaleimide
  • St styrene
  • the acrylic copolymers obtained in the above Examples and Comparative Examples were melt-extruded using a twin screw extruder KZW-30MG manufactured by Technobel to form an unstretched film.
  • the screw diameter of the biaxial extruder is 15 mm and the effective screw length (L / D) is 30, and a hanger coat type T-die is installed in the extruder via an adapter.
  • the extrusion temperature Tp ° C. is the temperature calculated by the equation (7) since the equation (7) is optimal in the case of an amorphous polymer having a glass transition temperature of Tg ° C.
  • Tp 5 (Tg + 70) / 4 (7)
  • the temperature T 1 of the first roll with which the molten resin discharged from the T die lip first contacts is in the range of (Tg ⁇ 24) ⁇ T 1 ⁇ (Tg + 24), where Tg is the glass transition temperature of the molten resin. Therefore, the temperature T 1 of the first roll was set to 130 ° C.
  • the unstretched film (raw film) obtained in the melt extrusion step was stretched twice in the machine direction and then stretched twice in the transverse direction to obtain a 15 cm ⁇ 15 cm biaxially stretched film.
  • the length in the machine direction and the transverse direction of the obtained biaxially stretched film was measured with a vernier caliper capable of measuring up to 100 ⁇ m effective figures, and placed in a thermostat at 100 ° C.
  • the longitudinal length obtained at this time was L MD 1, the lateral length and L TD 1.
  • the film which passed 240 hours after putting into the thermostat was allowed to cool to room temperature, and the lengths in the vertical and horizontal directions were measured.
  • the longitudinal length obtained at this time was L MD 2, of the lateral length and L TD 2.

Abstract

[Problem] To provide a method for producing an acrylic copolymer, which is capable of reducing the amount of monomers remaining in a polymer that is produced by a suspension polymerization method. [Solution] A method for producing an acrylic copolymer according to the present invention is a method for producing an acrylic copolymer by suspension polymerization from a reaction system which is composed of a dispersion medium and a dispersed phase that contains a monomer mixture containing an alkyl (meth)acrylate monomer, which serves as a first monomer, and a monomer other than alkyl (meth)acrylate monomers, which serves as a second monomer. The dispersed phase contains a saturated hydrocarbon-based solvent that is a good solvent for the monomer mixture but a poor solvent for the acrylic copolymer.

Description

アクリル系共重合体およびその製造方法Acrylic copolymer and process for producing the same
 本発明は、アクリル系共重合体の製造方法に関し、より詳細には、モノマー混合物と添加溶媒とを含む分散相と、分散媒とからなる反応系から、懸濁重合によりアクリル系共重合体を製造する方法に関する。また、本発明は、該製造方法により得られるアクリル系共重合体に関する。 The present invention relates to a method for producing an acrylic copolymer, and more specifically, an acrylic copolymer is produced by suspension polymerization from a reaction system comprising a dispersed phase containing a monomer mixture and an additive solvent, and a dispersion medium. It relates to a method of manufacturing. The present invention also relates to an acrylic copolymer obtained by the production method.
 各種の光学関連機器で用いられるフィルム状の光学部材(例えば、液晶表示装置で用いられるフィルムや、プリズムシートの基板等)は、一般的に「光学フィルム」と呼ばれている。この光学フィルムの重要な光学特性の一つに複屈折性がある。すなわち、光学フィルムが大きい複屈折性を有することは好ましくない場合がある。特に、IPSモードの液晶表示装置においては、複屈折性の大きなフィルムが存在することで像質に悪影響が生じるおそれがあるため、液晶表示装置に用いられる偏光板の保護フィルム等には、複屈折性の低い光学フィルムの使用が望まれる。 A film-like optical member (for example, a film used in a liquid crystal display device or a prism sheet substrate) used in various optical-related devices is generally called an “optical film”. One of the important optical properties of this optical film is birefringence. That is, it may not be preferable that the optical film has a large birefringence. In particular, in an IPS mode liquid crystal display device, the presence of a film having a large birefringence may adversely affect the image quality. Therefore, the protective film for the polarizing plate used in the liquid crystal display device has a birefringence. It is desired to use an optical film with low properties.
 従来、このような光学フィルムを成形するための重合体は、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等の方法により製造されてきた。特に、懸濁重合法は安全かつ操作の簡便であるため、好適な重合方法である。しかし、懸濁重合法では、反応の後半においては油相(系)の粘度が高くなることによりモノマー拡散速度が低下し、モノマーが数%程度残存することが避けられなかった。重合体にモノマーが残っていると可塑化効果により耐熱性が低下する、重合体が着色する、加工時に高温で溶融させた際にモノマーが揮発して作業安全性に著しく悪影響を与えるなどの技術的課題が存在していた。 Conventionally, polymers for forming such optical films have been produced by methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization. In particular, the suspension polymerization method is a suitable polymerization method because it is safe and easy to operate. However, in the suspension polymerization method, in the latter half of the reaction, the viscosity of the oil phase (system) increases, the monomer diffusion rate decreases, and it is inevitable that about several percent of the monomer remains. If the polymer remains in the polymer, heat resistance decreases due to the plasticizing effect, the polymer is colored, and when the polymer is melted at a high temperature during processing, the monomer volatilizes and significantly adversely affects work safety. Challenges existed.
 上記の技術的課題を解決すために、懸濁重合法において、重合開始剤として油溶性アゾ系重合触媒と、沸点75から130℃のハロゲンを含有しない有機溶媒とを添加することが提案されている(特許文献1参照)。また、モノマーおよび重合必要量の2~10倍量のラジカル重合開始剤を用い、ラジカル開始剤の10時間半減期温度より5~40℃低い温度で重合率50~99%まで重合させた後、ラジカル重合開始剤の99モル%が2-5時間で熱分解する温度±5℃でさらに重合させることが提案されている(特許文献2参照)。 In order to solve the above technical problem, it has been proposed to add an oil-soluble azo polymerization catalyst as a polymerization initiator and an organic solvent having a boiling point of 75 to 130 ° C. that does not contain a halogen in the suspension polymerization method. (See Patent Document 1). In addition, using a monomer and a radical polymerization initiator in an amount 2 to 10 times the amount required for polymerization, after polymerizing to a polymerization rate of 50 to 99% at a temperature 5 to 40 ° C. lower than the 10-hour half-life temperature of the radical initiator, It has been proposed to further polymerize 99 mol% of the radical polymerization initiator at a temperature ± 5 ° C. at which pyrolysis takes 2-5 hours (see Patent Document 2).
特開平5-5015号公報Japanese Patent Laid-Open No. 5-5015 特開2008-266555号公報JP 2008-266555 A
 しかしながら、発明者らは、特許文献1では、懸濁重合法において有機溶媒として用いたメチルエチルケトンやトルエンが、生成した重合体を溶解してしまうという技術的課題を知見した。また、特許文献2では、ラジカル重合開始剤の添加量が過剰なため、生成した重合体のゲル化や変色の可能性があり、また重合反応中の発熱量が大きく危険性が高いという技術的課題を知見した。 However, the inventors have found in Patent Document 1 a technical problem that methyl ethyl ketone or toluene used as an organic solvent in the suspension polymerization method dissolves the produced polymer. Further, in Patent Document 2, since the amount of radical polymerization initiator added is excessive, there is a possibility of gelation or discoloration of the produced polymer, and the amount of heat generated during the polymerization reaction is large and the risk is high. I knew the problem.
 本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、懸濁重合法によって生成した重合体中に残存するモノマーの量を低減することができるアクリル系共重合体の製造方法を提供することにある。 The present invention has been made in view of the above technical problems, and its purpose is to produce an acrylic copolymer that can reduce the amount of monomer remaining in the polymer produced by the suspension polymerization method. It is to provide a method.
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、懸濁重合法において特定の飽和炭化水素系溶媒を添加することによって、上記の技術的課題を解決できることを知見した。本発明は、かかる知見に基づいて完成されたものである。 As a result of intensive studies to solve the above technical problem, the present inventors have found that the above technical problem can be solved by adding a specific saturated hydrocarbon solvent in the suspension polymerization method. . The present invention has been completed based on such findings.
 すなわち、本発明の一態様によれば、
 第1モノマーとして(メタ)アクリル酸アルキルモノマーと、第2モノマーとして前記(メタ)アクリル酸アルキルモノマー以外のモノマーとを含むモノマー混合物を含む分散相と、分散媒とからなる反応系から、懸濁重合によりアクリル系共重合体を製造する方法であって、
 前記分散相が、前記モノマー混合物に対しては良溶媒であり、かつ、前記アクリル系共重合体に対しては貧溶媒である飽和炭化水素系溶媒を含んでなる、アクリル系共重合体の製造方法が提供される。
That is, according to one aspect of the present invention,
Suspended from a reaction system comprising a dispersion phase containing a monomer mixture containing a (meth) acrylic acid alkyl monomer as a first monomer and a monomer other than the (meth) acrylic acid alkyl monomer as a second monomer, and a dispersion medium. A method for producing an acrylic copolymer by polymerization,
Production of an acrylic copolymer, wherein the dispersed phase comprises a saturated hydrocarbon solvent that is a good solvent for the monomer mixture and a poor solvent for the acrylic copolymer. A method is provided.
 本発明の態様においては、第1モノマーおよび第2モノマーの反応性比rおよびrが、1≦r<10、0<r<1を満たすことが好ましい。 In the embodiment of the present invention, it is preferable that the reactivity ratios r 1 and r 2 of the first monomer and the second monomer satisfy 1 ≦ r 1 <10 and 0 <r 2 <1.
 本発明の態様においては、前記飽和炭化水素系溶媒の沸点が、60~180℃であることが好ましい。 In the embodiment of the present invention, the boiling point of the saturated hydrocarbon solvent is preferably 60 to 180 ° C.
 本発明の態様においては、前記飽和炭化水素系溶媒が、C6~C10のアルカンであることが好ましい。 In the embodiment of the present invention, the saturated hydrocarbon solvent is preferably a C6 to C10 alkane.
 本発明の態様においては、前記分散相中の前記飽和炭化水素系溶媒の含有量が、前記モノマー混合物の総量に対して、1~50質量%であることが好ましい。 In the embodiment of the present invention, the content of the saturated hydrocarbon solvent in the dispersed phase is preferably 1 to 50% by mass with respect to the total amount of the monomer mixture.
 本発明の態様においては、前記分散相が、第2モノマーとしてN-置換マレイミドを含んでなることが好ましい。 In the embodiment of the present invention, the dispersed phase preferably contains N-substituted maleimide as the second monomer.
 本発明の態様においては、前記分散相が、第3モノマーとして、第1モノマーおよび第2モノマー以外のモノマーをさらに含んでなり、第3モノマーが、(メタ)アクリル酸ベンジルおよび下記一般式(1)で表されるモノマーからなる群から選択される少なくとも1種を含んでなることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[一般式(1)中、Rは水素原子またはメチル基を示し、Rはアルカンジイル基を示し、Rはアリール基を示す。]
In the aspect of the present invention, the dispersed phase further includes a monomer other than the first monomer and the second monomer as the third monomer, and the third monomer is benzyl (meth) acrylate and the following general formula (1) It is preferable that it comprises at least one selected from the group consisting of monomers represented by
Figure JPOXMLDOC01-appb-C000002
[In General Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkanediyl group, and R 3 represents an aryl group. ]
 本発明の態様においては、前記分散相中の第1モノマーの含有量は、モノマー混合物の総量に対し30~99質量%であることが好ましい。 In the embodiment of the present invention, the content of the first monomer in the dispersed phase is preferably 30 to 99% by mass with respect to the total amount of the monomer mixture.
 本発明の態様においては、前記分散相中の第2モノマーの含有量は、モノマー混合物の総量に対して1~50質量%あることが好ましい。 In the embodiment of the present invention, the content of the second monomer in the dispersed phase is preferably 1 to 50% by mass with respect to the total amount of the monomer mixture.
 本発明の態様においては、前記分散相中の第3モノマーの含有量は、モノマー混合物の総量に対して0~30質量%であることが好ましい。 In the embodiment of the present invention, the content of the third monomer in the dispersed phase is preferably 0 to 30% by mass with respect to the total amount of the monomer mixture.
 本発明の他の態様においては、上記の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体の残存モノマー量が2.0質量%以下であるものが提供される。 In another aspect of the present invention, there is provided an acrylic copolymer obtained by the above production method, wherein the acrylic monomer has a residual monomer amount of 2.0% by mass or less.
 本発明の他の態様においては、上記の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体のガラス転移温度が110℃以上であるものが提供される。 In another aspect of the present invention, there is provided an acrylic copolymer obtained by the above production method, wherein the acrylic copolymer has a glass transition temperature of 110 ° C. or higher.
 本発明の他の態様においては、上記の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体を含む光学フィルムの縦方向収縮率が1.0%以下であるものが提供される。 In another aspect of the present invention, an acrylic copolymer obtained by the above production method, wherein the optical film containing the acrylic copolymer has a longitudinal shrinkage of 1.0% or less. Provided.
 本発明の他の態様においては、上記の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体を含む光学フィルムの横方向収縮率が1.0%以下であるものが提供される。 In another aspect of the present invention, an acrylic copolymer obtained by the above production method, wherein the optical film containing the acrylic copolymer has a lateral shrinkage of 1.0% or less. Provided.
 本発明によれば、懸濁重合法によって生成した重合体中に残存するモノマーの量を低減することができるアクリル系共重合体の製造方法が提供される。これにより、本発明によって得られたアクリル系共重合体は色相が抑制され、アクリル系共重合体を含む光学フィルムの収縮率が低減される。 According to the present invention, there is provided a method for producing an acrylic copolymer that can reduce the amount of monomer remaining in a polymer produced by a suspension polymerization method. Thereby, the hue of the acrylic copolymer obtained by the present invention is suppressed, and the shrinkage rate of the optical film containing the acrylic copolymer is reduced.
<アクリル系共重合体の製造方法>
 本発明によるアクリル系共重合体の製造方法は、第1モノマーと第2モノマーとを含むモノマー混合物と、添加溶媒として特定の飽和炭化水素系溶媒とを含む分散相と、分散媒とからなる反応系から、懸濁重合によりアクリル系共重合体を製造するものである。懸濁重合は、溶液重合とは異なり、反応系から有機溶媒を高温で除去する工程を必要としないため、懸濁重合によりアクリル系共重合体を製造することで、色相に優れたアクリル系共重合体を得ることができる。
<Method for producing acrylic copolymer>
The method for producing an acrylic copolymer according to the present invention comprises a reaction comprising a monomer mixture containing a first monomer and a second monomer, a dispersed phase containing a specific saturated hydrocarbon solvent as an additive solvent, and a dispersion medium. From the system, an acrylic copolymer is produced by suspension polymerization. Unlike suspension polymerization, suspension polymerization does not require a step of removing the organic solvent from the reaction system at a high temperature. Therefore, by producing an acrylic copolymer by suspension polymerization, an acrylic copolymer excellent in hue can be obtained. A polymer can be obtained.
(分散相)
 本発明によるアクリル系共重合体の製造方法において、懸濁重合における反応系中の分散相は、モノマー混合物と添加溶媒とを含んでなり、モノマー混合物は、第1モノマーと、第2モノマーとを含んでなる。以下、第1モノマー、第2モノマー、および添加溶媒について、詳述する。
(Dispersed phase)
In the method for producing an acrylic copolymer according to the present invention, the dispersed phase in the reaction system in suspension polymerization includes a monomer mixture and an additive solvent, and the monomer mixture comprises a first monomer and a second monomer. Comprising. Hereinafter, the first monomer, the second monomer, and the additive solvent will be described in detail.
(第1モノマー)
 第1モノマーとしては、(メタ)アクリル酸アルキルモノマーが用いられる。なお、本発明において、(メタ)アクリル酸とは、アクリル酸またはメタクリル酸をいうものとする。
(First monomer)
As the first monomer, an alkyl (meth) acrylate monomer is used. In the present invention, (meth) acrylic acid means acrylic acid or methacrylic acid.
 (メタ)アクリル酸アルキルモノマーにおけるアルキル基は、鎖状アルキル基であってもよいし、環状アルキル基であってもよい。なお、鎖状アルキル基とは、環状構造を有しないアルキル基を示し、環状アルキル基とは、環状構造を有するアルキル基を示す。 The alkyl group in the (meth) acrylic acid alkyl monomer may be a chain alkyl group or a cyclic alkyl group. The chain alkyl group refers to an alkyl group having no cyclic structure, and the cyclic alkyl group refers to an alkyl group having a cyclic structure.
 (メタ)アクリル酸アルキルモノマーにおける鎖状アルキル基の炭素原子数は、好ましくは1~6であり、より好ましくは1~4であり、(メタ)アクリル酸アルキルモノマーにおける環状アルキル基の炭素原子数は、好ましくは5~18であり、より好ましくは6~16である。このような(メタ)アクリル酸鎖状アルキルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、および(メタ)アクリル酸n-ブチル等が挙げられ、(メタ)アクリル酸環状アルキルモノマーとしては、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸エチルアダマンチル、および(メタ)アクリル酸メチルアダマンチル、(メタ)アクリル酸シクロヘキシル等が挙げられる。これらのうち、(メタ)アクリル酸鎖状アルキルモノマーが好ましく、アクリル酸メチルおよびメタクリル酸メチルがより好ましく、メタクリル酸メチルがさらに好ましい。なお、第1モノマーとしては、(メタ)アクリル酸アルキルモノマーを1種又は2種以上用いてもよい。 The number of carbon atoms of the chain alkyl group in the (meth) acrylic acid alkyl monomer is preferably 1 to 6, more preferably 1 to 4, and the number of carbon atoms of the cyclic alkyl group in the (meth) acrylic acid alkyl monomer. Is preferably 5 to 18, more preferably 6 to 16. Examples of such (meth) acrylic acid chain alkyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate, and cyclic alkyl (meth) acrylate. Examples of the monomer include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, ethyl adamantyl (meth) acrylate, methyl adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. Of these, (meth) acrylic acid chain alkyl monomers are preferred, methyl acrylate and methyl methacrylate are more preferred, and methyl methacrylate is more preferred. As the first monomer, one or more alkyl (meth) acrylate monomers may be used.
 分散相中の第1モノマーの含有量は、モノマー混合物の総量に対して、好ましくは30~99質量%であり、より好ましくは40~95質量%であり、さらに好ましくは50~90質量%、よりさらに好ましくは、65~90質量%である。第1モノマーの含有量が上記数値範囲程度であれば、モノマーが十分に反応して、生成した重合体中に残存するモノマーの量をより低減することができる。 The content of the first monomer in the dispersed phase is preferably 30 to 99% by mass, more preferably 40 to 95% by mass, still more preferably 50 to 90% by mass, based on the total amount of the monomer mixture. Even more preferably, it is 65 to 90% by mass. If the content of the first monomer is about the above numerical range, the monomer reacts sufficiently and the amount of monomer remaining in the produced polymer can be further reduced.
(第2モノマー)
 第2モノマーとしては、(メタ)アクリル酸アルキルモノマー以外のモノマーが用いられる。 
(Second monomer)
As the second monomer, a monomer other than the (meth) acrylic acid alkyl monomer is used.
 第2モノマーとしては、第1モノマーおよび第2モノマーの反応性比rおよびrが、1≦r<10、0<r<1を満たすものが好適に用いられる。第1モノマーおよび第2モノマーの反応性比rおよびrは、1<r<5、0<r<0.8であることがより好ましく、1<r<4、0<r<0.5であることがさらに好ましい。このような反応性比rおよびrの一例を表1に示す。 As the second monomer, those in which the reactivity ratios r 1 and r 2 of the first monomer and the second monomer satisfy 1 ≦ r 1 <10 and 0 <r 2 <1 are preferably used. The reactivity ratios r 1 and r 2 of the first monomer and the second monomer are more preferably 1 <r 1 <5, 0 <r 2 <0.8, and 1 <r 1 <4, 0 <r. More preferably, 2 <0.5. An example of such reactivity ratios r 1 and r 2 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ここで、第1モノマーおよび第2モノマーの反応性比rおよびrとは、以下のように示すことができる。まず、第1モノマーおよび第2モノマーをそれぞれMおよびMと表示し、MおよびMの反応速度を以下のように表示する。
・M末端の高分子鎖にMが結合する反応速度をk11と表示する。
・M末端の高分子鎖にMが結合する反応速度をk12と表示する。
・M末端の高分子鎖にMが結合する反応速度をk21と表示する。
・M末端の高分子鎖にMが結合する反応速度をk22と表示する。
このとき、r=k11/k12、r=k22/k21と示すことができる。
Here, the reactivity ratios r 1 and r 2 of the first monomer and the second monomer can be expressed as follows. First, a first monomer and a second monomer displayed as M 1 and M 2, respectively, and displays as follows kinetics of M 1 and M 2.
The reaction rate at which M 1 binds to the polymer chain at the M 1 end is expressed as k 11 .
The reaction rate at which M 2 binds to the polymer chain at the M 1 end is expressed as k 12 .
The reaction rate at which M 1 binds to the polymer chain at the M 2 end is expressed as k 21 .
· M 2 end M 2 in the polymer chain of the displays the kinetics of binding to k 22.
At this time, r 1 = k 11 / k 12 and r 2 = k 22 / k 21 can be shown.
 第2モノマーとしては、N-置換マレイミドを用いることが好ましい。N-置換マレイミドとしては、例えば、N-芳香族置換マレイミド、N-アルキル置換マレイミド、およびN-芳香族アルキル置換マレイミドが挙げられる。 It is preferable to use N-substituted maleimide as the second monomer. Examples of the N-substituted maleimide include N-aromatic substituted maleimide, N-alkyl substituted maleimide, and N-aromatic alkyl substituted maleimide.
 N-芳香族置換マレイミドは、マレイミドの窒素原子上に芳香族基が置換した化合物である。ここで、芳香族基は、単環芳香族基であっても多環芳香族基であってもよい。 N-aromatic substituted maleimide is a compound in which an aromatic group is substituted on the nitrogen atom of maleimide. Here, the aromatic group may be a monocyclic aromatic group or a polycyclic aromatic group.
 N-芳香族置換マレイミドにおける芳香族基の炭素原子数は、好ましくは6~18であり、より好ましくは6~14である。 The number of carbon atoms of the aromatic group in the N-aromatic substituted maleimide is preferably 6-18, more preferably 6-14.
 N-芳香族置換マレイミドにおける芳香族基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられ、これらのうち好ましくはフェニル基及びナフチル基であり、より好ましくはフェニル基である。 Examples of the aromatic group in the N-aromatic substituted maleimide include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group. Among these, a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
 すなわち、N-芳香族置換マレイミドとしては、N-フェニルマレイミド、N-ナフチルマレイミド、N-アントリルマレイミド、N-フェナントリルマレイミド等が挙げられ、これらのうちN-フェニルマレイミド及びN-ナフチルマレイミドが好ましく、N-フェニルマレイミドがより好ましい。なお、アクリル系共重合体は、N-芳香族置換マレイミドを1種又は2種以上有していてよい。 That is, examples of the N-aromatic substituted maleimide include N-phenylmaleimide, N-naphthylmaleimide, N-anthrylmaleimide, N-phenanthrylmaleimide and the like, and among these, N-phenylmaleimide and N-naphthylmaleimide N-phenylmaleimide is more preferable. The acrylic copolymer may have one or more N-aromatic substituted maleimides.
 N-アルキル置換マレイミドは、マレイミドの窒素原子上にアルキル基が置換した化合物である。ここで、アルキル基は、鎖状アルキル基であっても環状アルキル基であってもよく、環状アルキル基が好ましい。なお、鎖状アルキル基は、環構造を有しないアルキル基を示し、環状アルキル基は、脂環式構造を有するアルキル基を示す。 N-alkyl-substituted maleimide is a compound in which an alkyl group is substituted on the nitrogen atom of maleimide. Here, the alkyl group may be a chain alkyl group or a cyclic alkyl group, and a cyclic alkyl group is preferred. The chain alkyl group represents an alkyl group having no ring structure, and the cyclic alkyl group represents an alkyl group having an alicyclic structure.
 N-アルキル置換マレイミドにおけるアルキル基の炭素原子数は、好ましくは1~10であり、より好ましくは3~8である。 The number of carbon atoms of the alkyl group in the N-alkyl-substituted maleimide is preferably 1 to 10, more preferably 3 to 8.
 N-アルキル置換マレイミドにおけるアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-へキシル基、2-エチルへキシル基、ドデシル基、ラウリル基、シクロへキシル基等が挙げられ、これらのうちメチル基、エチル基、シクロヘキシル基が好ましく、シクロヘキシル基がより好ましい。 Examples of the alkyl group in the N-alkyl-substituted maleimide include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, and 2-ethylhexyl group. , A dodecyl group, a lauryl group, a cyclohexyl group, and the like. Among these, a methyl group, an ethyl group, and a cyclohexyl group are preferable, and a cyclohexyl group is more preferable.
 すなわち、N-アルキル置換マレイミドとしては、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-nーブチルマレイミド、N-イソブチルマレイミド、N-t-ブチルマレイミド、N-n-へキシルマレイミド、N-2-エチルへキシルマレイミド、N-ドデシルマレイミド、N-ラウリルマレイミド、N-シクロヘキシルマレイミド等が挙げられ、これらのうちN-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミドが好ましく、N-シクロヘキシルマレイミドがより好ましい。なお、N-アルキル置換マレイミドはこれらのうちの1種であってもよく、2種以上を含んでいてよい。 That is, as N-alkyl-substituted maleimide, N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, Nt-butylmaleimide Nn-hexylmaleimide, N-2-ethylhexylmaleimide, N-dodecylmaleimide, N-laurylmaleimide, N-cyclohexylmaleimide and the like, among which N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide is preferred, and N-cyclohexylmaleimide is more preferred. The N-alkyl-substituted maleimide may be one of these or may contain two or more.
 N-芳香族アルキル置換マレイミドは、マレイミドの窒素原子上に芳香族アルキル基が置換した化合物である。ここで、芳香族基は、単環芳香族基であっても多環芳香族基であってもよい。また、アルキル基は、鎖状アルキル基であっても環状アルキル基であってもよい。芳香族アルキルとしては、ベンジル基が好ましい。すなわち、N-芳香族アルキル置換マレイミドとしては、N-ベンジルマレイミドが好ましい。 N-aromatic alkyl-substituted maleimide is a compound in which an aromatic alkyl group is substituted on the nitrogen atom of maleimide. Here, the aromatic group may be a monocyclic aromatic group or a polycyclic aromatic group. The alkyl group may be a chain alkyl group or a cyclic alkyl group. As the aromatic alkyl, a benzyl group is preferable. That is, as the N-aromatic alkyl-substituted maleimide, N-benzylmaleimide is preferable.
 分散相中の第2モノマーの含有量は、モノマー混合物の総量に対して、好ましくは1~50質量%であり、より好ましくは5~40質量%であり、さらに好ましくは10~30質量%である。第2モノマーの含有量が上記数値範囲程度であれば、モノマーが十分に反応して、生成した重合体中に残存するモノマーの量をより低減することができる。 The content of the second monomer in the dispersed phase is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 10 to 30% by mass with respect to the total amount of the monomer mixture. is there. If the content of the second monomer is about the above numerical range, the monomer reacts sufficiently and the amount of monomer remaining in the produced polymer can be further reduced.
(第3モノマー)
 分散相中のモノマー混合物は、第3モノマーとして、第1モノマーおよび第2モノマー以外のモノマーをさらに含んでもよい。第3モノマーとしては、(メタ)アクリル酸ベンジル、下記一般式(1)で表されるモノマー、およびスチレンからなる群から選択される少なくとも1種をさらに用いることが好ましい。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、Rは水素原子またはメチル基を示し、Rはアルカンジイル基を示し、Rはアリール基を示す。]
(Third monomer)
The monomer mixture in the dispersed phase may further contain a monomer other than the first monomer and the second monomer as the third monomer. As the third monomer, it is preferable to further use at least one selected from the group consisting of benzyl (meth) acrylate, a monomer represented by the following general formula (1), and styrene.
Figure JPOXMLDOC01-appb-C000004
[In General Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkanediyl group, and R 3 represents an aryl group. ]
 上記一般式(1)で表されるモノマーとしては、上記一般式(1)中のRは、水素原子またはメチル基を示し、好ましくは水素原子である。 As a monomer represented by the general formula (1), R 1 in the general formula (1) represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
 上記一般式(1)において、Rは、アルカンジイル基を示し、好ましくは炭素原子数1以上、4以下のアルカンジイル基であり、より好ましくは炭素原子数1以上、3以下のアルカンジイル基である。アルカンジイル基は、直鎖状でも分岐状であってもよいが、直鎖状(すなわち直鎖アルカンジイル基)であることが好ましい。 In the general formula (1), R 2 represents an alkanediyl group, preferably an alkanediyl group having 1 to 4 carbon atoms, more preferably an alkanediyl group having 1 to 3 carbon atoms. It is. The alkanediyl group may be linear or branched, but is preferably linear (that is, a linear alkanediyl group).
 アルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基が挙げられ、これらのうちエチレン基、メチレン基が好ましく、エチレン基が特に好ましい。 Examples of the alkanediyl group include a methylene group, an ethylene group, a propane-1,3-diyl group, and a butane-1,4-diyl group. Among these, an ethylene group and a methylene group are preferable, and an ethylene group is particularly preferable.
 上記一般式(1)において、Rは、アリール基を示し、好ましくは炭素原子数6以上15以下のアリール基であり、より好ましくは炭素原子数6以上10以下のアリール基である。 In the general formula (1), R 3 represents an aryl group, preferably an aryl group having 6 to 15 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.
 アリール基としては、フェニル基、メチルフェニル基、ベンジル基、キシリル基、クメニル基等が挙げられ、これらのうち、フェニル基、メチルフェニル基、ベンジル基が好ましく、フェニル基が特に好ましい。 Examples of the aryl group include a phenyl group, a methylphenyl group, a benzyl group, a xylyl group, and a cumenyl group. Among these, a phenyl group, a methylphenyl group, and a benzyl group are preferable, and a phenyl group is particularly preferable.
 上記一般式(1)で表されるモノマーとしては、(メタ)アクリル酸フェノキシエチルが好ましく、アクリル酸フェノキシエチルがより好ましい。 As the monomer represented by the general formula (1), phenoxyethyl (meth) acrylate is preferable, and phenoxyethyl acrylate is more preferable.
 (メタ)アクリル酸ベンジルとしては、アクリル酸ベンジルおよびメタクリル酸ベンジルが挙げられ、このうちメタクリル酸ベンジルが好ましい。 Benzyl (meth) acrylate includes benzyl acrylate and benzyl methacrylate, among which benzyl methacrylate is preferred.
 分散相中の第3モノマーの含有量は、モノマー混合物の総量に対して、好ましくは0~30質量%であり、より好ましくは0.1~20質量%であり、さらに好ましくは1~15質量%である。第3モノマーの含有量が上記数値範囲程度であれば、モノマーが十分に反応して、生成した重合体中に残存するモノマーの量をより低減することができる。 The content of the third monomer in the dispersed phase is preferably 0 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 1 to 15% by mass with respect to the total amount of the monomer mixture. %. If the content of the third monomer is about the above numerical range, the monomer reacts sufficiently and the amount of the monomer remaining in the produced polymer can be further reduced.
(添加溶媒)
 本発明によるアクリル系共重合体の製造方法において、懸濁重合の分散相に添加する溶媒としては特定の飽和炭化水素系溶媒が用いられる。飽和炭化水素系溶媒は、上記モノマー混合物に対しては良溶媒であり、かつ、生成するアクリル系共重合体に対しては貧溶媒であるものを用いる。懸濁重合の分散相にこのような飽和炭化水素系溶媒を加えることで、生成した重合体中に残存するモノマーの量を低減することができる。
(Addition solvent)
In the method for producing an acrylic copolymer according to the present invention, a specific saturated hydrocarbon solvent is used as a solvent to be added to the dispersion phase of suspension polymerization. As the saturated hydrocarbon solvent, a solvent that is a good solvent for the monomer mixture and a poor solvent for the acrylic copolymer to be produced is used. By adding such a saturated hydrocarbon solvent to the dispersed phase of suspension polymerization, the amount of monomer remaining in the produced polymer can be reduced.
 ここで、飽和炭化水素系溶媒がモノマー混合物に対しては良溶媒であるとは、飽和炭化水素系溶媒100質量部とモノマー混合物100質量部とを混合した後、25℃で、100rpmで1分間の撹拌操作を行っても二相分離等が認められないことである。飽和炭化水素系溶媒がアクリル系共重合体に対しては貧溶媒であるとは、飽和炭化水素系溶媒にアクリル系共重合体の10%溶液を滴下した際、固体の沈殿が認められるものである。 Here, the saturated hydrocarbon solvent is a good solvent for the monomer mixture. After mixing 100 parts by mass of the saturated hydrocarbon solvent and 100 parts by mass of the monomer mixture, the mixture is at 25 ° C. and 100 rpm for 1 minute. No two-phase separation or the like is observed even when the stirring operation is performed. A saturated hydrocarbon solvent is a poor solvent for an acrylic copolymer when solid precipitation is observed when a 10% solution of the acrylic copolymer is dropped into the saturated hydrocarbon solvent. is there.
 飽和炭化水素系溶媒の沸点は、好ましくは60~180℃であり、より好ましくは70~170℃であり、さらに好ましくは80~160℃である。飽和炭化水素系溶媒の沸点が60℃以上であれば、重合反応中に揮発するのを抑制することができる。また、飽和炭化水素系溶媒の沸点が180℃以下であれば、後の工程で飽和炭化水素系溶媒を除去し易い。 The boiling point of the saturated hydrocarbon solvent is preferably 60 to 180 ° C, more preferably 70 to 170 ° C, and further preferably 80 to 160 ° C. If the boiling point of the saturated hydrocarbon solvent is 60 ° C. or higher, volatilization during the polymerization reaction can be suppressed. Moreover, if the boiling point of the saturated hydrocarbon solvent is 180 ° C. or less, it is easy to remove the saturated hydrocarbon solvent in a later step.
 飽和炭化水素系溶媒としては、C6~C10のアルカンからなる群から選択される少なくとも1種であることが好ましく、C7~C9のアルカンからなる群から選択される少なくとも1種であることがより好ましく、n-ヘプタンおよび/またはn-オクタンであることがさらに好ましい。添加溶媒としてこのような飽和炭化水素系溶媒を用いることで、生成した重合体中に残存するモノマーの量をより低減することができる。 The saturated hydrocarbon solvent is preferably at least one selected from the group consisting of C6 to C10 alkanes, more preferably at least one selected from the group consisting of C7 to C9 alkanes. N-heptane and / or n-octane is more preferable. By using such a saturated hydrocarbon solvent as the additive solvent, the amount of monomer remaining in the produced polymer can be further reduced.
 分散相中の飽和炭化水素系溶媒の含有量は、モノマー混合物の総量に対して、好ましくは1~50質量%であり、より好ましくは3~40質量%であり、さらに好ましくは5~30質量%である。飽和炭化水素系溶媒の含有量が50質量%以下であれば、後の工程で飽和炭化水素系溶媒を除去し易い。 The content of the saturated hydrocarbon solvent in the dispersed phase is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and further preferably 5 to 30% by mass with respect to the total amount of the monomer mixture. %. When the content of the saturated hydrocarbon solvent is 50% by mass or less, it is easy to remove the saturated hydrocarbon solvent in a later step.
(分散媒)
 本発明によるアクリル系共重合体の製造方法において、懸濁重合の反応系における分散媒としては、従来公知の懸濁重合用の分散媒を用いることができる。懸濁重合用の分散媒としては、通常、水が用いられる。
(Dispersion medium)
In the method for producing an acrylic copolymer according to the present invention, a conventionally known dispersion medium for suspension polymerization can be used as the dispersion medium in the suspension polymerization reaction system. As a dispersion medium for suspension polymerization, water is usually used.
(懸濁重合)
 懸濁重合の条件は特に制限されず、公知の懸濁重合の条件を適宜適用することができる。以下に、懸濁重合によるアクリル系共重合体の製造方法の一態様を示すが、本発明が下記の一例に限定されるものではない。
(Suspension polymerization)
The conditions for suspension polymerization are not particularly limited, and known suspension polymerization conditions can be appropriately applied. Hereinafter, one embodiment of a method for producing an acrylic copolymer by suspension polymerization is shown, but the present invention is not limited to the following example.
 まず、所望の質量比率となるように第1モノマーと第2モノマーとをそれぞれ計量し、その総量を100質量部とする。モノマー総量100質量部に対して、300質量部の脱イオン水及び0.6質量部の分散剤としてのポリビニルアルコール(株式会社クラレ製のクラレポバール)を懸濁重合装置に投入し、撹拌を開始する。次いで、計量したモノマーと、添加溶媒としてn-ヘプタン5質量部と、重合開始剤としてパーロイルTCP(日本油脂株式会社製)1質量部と、連鎖移動剤として1-オクタンチオール0.22質量部とを、懸濁重合装置に投入する。 First, the first monomer and the second monomer are weighed so that a desired mass ratio is obtained, and the total amount is 100 parts by mass. To 100 parts by mass of the total amount of monomers, 300 parts by mass of deionized water and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd.) as a dispersant are charged into the suspension polymerization apparatus and stirring is started. To do. Subsequently, the weighed monomer, 5 parts by mass of n-heptane as an additive solvent, 1 part by mass of perloyl TCP (manufactured by NOF Corporation) as a polymerization initiator, and 0.22 parts by mass of 1-octanethiol as a chain transfer agent To the suspension polymerization apparatus.
 その後、懸濁重合装置に窒素を通じつつ、反応系を70℃まで昇温した後、70℃で3時間保持して反応させる。反応後、室温まで冷却し、必要に応じてろ過、洗浄及び乾燥等の操作を行い、粒子状のアクリル系共重合体を得ることができる。このような方法によれば、残存モノマー量が2質量%以下であるアクリル系共重合体を容易に得ることができる。 Thereafter, the temperature of the reaction system is raised to 70 ° C. while passing nitrogen through the suspension polymerization apparatus, and then the reaction is carried out by maintaining at 70 ° C. for 3 hours. After the reaction, the mixture is cooled to room temperature, and if necessary, operations such as filtration, washing and drying can be performed to obtain a particulate acrylic copolymer. According to such a method, an acrylic copolymer having a residual monomer amount of 2% by mass or less can be easily obtained.
 なお、上述の重合開始剤、連鎖移動剤及び分散剤の種類及び投入量は一例であって、懸濁重合の条件は上記に限定されるものではない。懸濁重合では、残存モノマー量2質量%以下を達成できる範囲で、その条件を適宜変更することができる。例えば、アクリル系共重合体の重量平均分子量は、連鎖移動剤の投入量を変更することにより適宜調整することができる。 The types and input amounts of the polymerization initiator, chain transfer agent, and dispersant described above are examples, and the conditions for suspension polymerization are not limited to the above. In the suspension polymerization, the conditions can be appropriately changed within a range in which the residual monomer amount of 2% by mass or less can be achieved. For example, the weight average molecular weight of the acrylic copolymer can be appropriately adjusted by changing the input amount of the chain transfer agent.
 重合開始剤としては、例えば、日本油脂株式会社製のパーロイルTCP、パーオクタO、ナイパーBW等を用いることができる。また、重合開始剤の使用量は、例えば、モノマー混合物の総量100質量部に対して、0.05~2.0質量部であってよく、0.1~1.5質量部であってもよい。 As the polymerization initiator, for example, Parroyl TCP, Perocta O, Niper BW, etc. manufactured by Nippon Oil & Fats Co., Ltd. can be used. The amount of the polymerization initiator used may be, for example, 0.05 to 2.0 parts by mass, or 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. Good.
 連鎖移動剤としては、例えば、1-オクタンチオール、1-ドデカンチオール、tert-ドデカンチオール等のチオール類を用いることができる。また、連鎖移動剤の使用量は、所望の重量平均分子量に応じて適宜変更できるが、例えば、モノマー混合物の総量100質量部に対して、0.05~0.6質量部とすることができ、0.07~0.5質量部であってもよい。 As the chain transfer agent, for example, thiols such as 1-octanethiol, 1-dodecanethiol, and tert-dodecanethiol can be used. Further, the amount of the chain transfer agent used can be appropriately changed according to the desired weight average molecular weight. For example, it can be 0.05 to 0.6 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. 0.07 to 0.5 parts by mass.
 分散剤としては、例えば、株式会社クラレ製のクラレポバール等のPVA、ポリアクリル酸ナトリウム等を用いることができる。また、分散剤の使用量は、例えば、モノマー混合物の総量100質量部に対して、0.01~0.5質量部であってよく、0.02~0.3質量部であってもよい。 As the dispersant, for example, PVA such as Kuraray Poval manufactured by Kuraray Co., Ltd., sodium polyacrylate, or the like can be used. The amount of the dispersant used may be, for example, 0.01 to 0.5 parts by mass, or 0.02 to 0.3 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture. .
 懸濁重合の条件は、重合開始剤、連鎖移動剤及び分散剤の種類及び使用量等に応じて適宜調整することができる。例えば、反応温度は、50~95℃とすることができ、好ましくは60~85℃である。また、反応時間は、十分に反応が進行する時間が確保されていればよく、例えば、2時間~10時間とすることができ、好ましくは3時間~8時間である。なお、モノマー転化率は反応活性種の寿命、モノマーの反応性等によって決まるため、必ずしも反応時間を延長してもモノマー転化率は向上しない。 The conditions for suspension polymerization can be appropriately adjusted according to the types and amounts of polymerization initiators, chain transfer agents and dispersants. For example, the reaction temperature can be 50 to 95 ° C., preferably 60 to 85 ° C. The reaction time may be sufficient if the reaction proceeds sufficiently. For example, the reaction time may be 2 to 10 hours, and preferably 3 to 8 hours. Since the monomer conversion rate is determined by the lifetime of the reactive species, the reactivity of the monomer, etc., the monomer conversion rate does not necessarily improve even if the reaction time is extended.
<アクリル系共重合体>
 本発明によるアクリル系共重合体は、上記の製造方法により得られるものであり、第1モノマーから得られる構成単位と、第2モノマーから得られる構成単位と、を含んでなる。
<Acrylic copolymer>
The acrylic copolymer according to the present invention is obtained by the above production method, and includes a structural unit obtained from the first monomer and a structural unit obtained from the second monomer.
 アクリル系共重合体は、第1モノマーから得られる構成単位を好ましくは30~99質量%、より好ましくは40~95質量%、さらに好ましくは50~85質量%と、第2モノマーから得られる構成単位を好ましくは1~50質量%、より好ましくは5~40質量%、さらに好ましくは10~30質量%と、を含んでなる。アクリル系共重合体は、第3モノマーから得られる構成単位を好ましくは0~30質量%、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%、をさらに含んでもよい。 The acrylic copolymer has a constitutional unit obtained from the second monomer, preferably 30 to 99% by mass, more preferably 40 to 95% by mass, and still more preferably 50 to 85% by mass. The unit preferably comprises 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass. The acrylic copolymer may further contain a constituent unit obtained from the third monomer, preferably 0 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 1 to 10% by mass.
 アクリル系共重合体のガラス転移温度は、110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。ガラス転移温度が110℃以上であれば、アクリル系共重合体を用いて成形したフィルムの耐熱性が一層向上し、熱に対するフィルムの寸法安定性が向上するため、偏光板用保護フィルムとして一層好適なものとなる。また、ガラス転移温度の上限に特に制限はないが、光学フィルムとしての十分な耐熱性が達成される観点から、140℃以下であってよく、135℃以下であってもよい。たとえば好ましくは、110℃~140℃であり、より好ましくは115℃~135℃である。 The glass transition temperature of the acrylic copolymer is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, and further preferably 120 ° C. or higher. If the glass transition temperature is 110 ° C. or higher, the heat resistance of the film formed using the acrylic copolymer is further improved, and the dimensional stability of the film against heat is further improved. It will be something. Moreover, although there is no restriction | limiting in particular in the upper limit of glass transition temperature, from a viewpoint with which sufficient heat resistance as an optical film is achieved, it may be 140 degrees C or less, and may be 135 degrees C or less. For example, it is preferably 110 ° C. to 140 ° C., more preferably 115 ° C. to 135 ° C.
 なお、本明細書中、ガラス転移温度は、SIIナノテクノロジー社製の示差走査熱量測定装置DSC7020を使用し、昇温速度10℃/分で昇温させたときのガラス転移点のオンセット温度から求めた値を示す。なお、試料質量は5mg~10mgとする。 In the present specification, the glass transition temperature is determined from the onset temperature of the glass transition point when the differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology is used and the temperature is raised at a rate of temperature increase of 10 ° C./min. Indicates the obtained value. The sample mass is 5 mg to 10 mg.
 アクリル系共重合体の残存モノマー量は、好ましくは2質量%以下であり、より好ましくは1.5質量%以下であり、さらに好ましくは1質量%以下である。残存モノマー量が2%以下であれば、生成した共重合体の色相が悪化するのを抑制することができる。 The residual monomer amount of the acrylic copolymer is preferably 2% by mass or less, more preferably 1.5% by mass or less, and further preferably 1% by mass or less. If the amount of residual monomers is 2% or less, deterioration of the hue of the produced copolymer can be suppressed.
<光学フィルム>
 本発明による光学フィルムは、本発明によるアクリル系共重合体を含んでなる。光学フィルムは、好適には二軸延伸フィルムであり、このようなフィルムは、上記のアクリル系共重合体を含む樹脂を製膜した未延伸フィルムを二軸延伸して得ることができる。本発明による光学フィルムは、配向複屈折および光弾性複屈折がともに小さく、かつ透明性および耐熱性などの特性に優れるため、光学フィルムとして好適に用いることができる。さらに、本発明においては、懸濁重合法によって生成したアクリル系重合体中に残存するモノマーの量が低減されているため、アクリル系重合体を含む光学フィルムの色相が抑制され、光学フィルムの収縮率が低減される。以下、本発明による光学フィルムの諸特性について詳述する。
<Optical film>
The optical film according to the present invention comprises the acrylic copolymer according to the present invention. The optical film is preferably a biaxially stretched film, and such a film can be obtained by biaxially stretching an unstretched film obtained by forming a resin containing the above acrylic copolymer. The optical film according to the present invention can be suitably used as an optical film because both the orientation birefringence and the photoelastic birefringence are small and the properties such as transparency and heat resistance are excellent. Furthermore, in the present invention, since the amount of monomer remaining in the acrylic polymer produced by the suspension polymerization method is reduced, the hue of the optical film containing the acrylic polymer is suppressed, and the optical film shrinks. The rate is reduced. Hereinafter, various properties of the optical film according to the present invention will be described in detail.
 光学フィルムを構成する樹脂材料中、アクリル系共重合体の含有量は、樹脂材料の総量基準で90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であってもよい。 In the resin material constituting the optical film, the content of the acrylic copolymer is preferably 90% by mass or more, more preferably 95% by mass or more, and 99% by mass or more based on the total amount of the resin material. It may be.
 光学フィルムは、アクリル系共重合体以外の成分を含有していてもよい。すなわち、光学フィルムが、アクリル系共重合体を含有する樹脂材料からなる未延伸フィルムを二軸延伸して得られるものであるとき、樹脂材料は、アクリル系共重合体以外の成分を含有していてもよい。 The optical film may contain a component other than the acrylic copolymer. That is, when the optical film is obtained by biaxially stretching an unstretched film made of a resin material containing an acrylic copolymer, the resin material contains a component other than the acrylic copolymer. May be.
 アクリル系共重合体以外の成分としては、酸化防止剤、滑剤、紫外線吸収剤、安定剤等、光学フィルムに用いられる添加剤を必要に応じて用いることができる。これらの成分の配合量は、本発明の効果が有効に奏される範囲であれば特に制限されないが、樹脂材料の総量基準で、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。 As components other than the acrylic copolymer, additives used for optical films such as antioxidants, lubricants, ultraviolet absorbers, stabilizers and the like can be used as necessary. The blending amount of these components is not particularly limited as long as the effect of the present invention is effectively exhibited, but it is preferably 10% by mass or less, based on the total amount of the resin material, and is 5% by mass or less. It is more preferable.
 光学フィルムの面内位相差Reの絶対値及び厚み方向位相差Rthの絶対値は、いずれも3.5nm以下であることが好ましく、3.0nm以下であることがより好ましく、2.5nm以下がさらに好ましく、2.0nm以下がさらにより好ましく、1.0nm以下が一層好ましい。面内位相差Reの絶対値及び厚み方向位相差Rthの絶対値が小さいと、配向複屈折が小さくなるため、光学フィルム、特に偏光板用保護フィルムとして、一層好適に用いることができる。 The absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth of the optical film are both preferably 3.5 nm or less, more preferably 3.0 nm or less, and 2.5 nm or less. More preferably, 2.0 nm or less is even more preferable, and 1.0 nm or less is even more preferable. If the absolute value of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth are small, the orientation birefringence becomes small, so that it can be more suitably used as an optical film, particularly a protective film for a polarizing plate.
 光学フィルムの光弾性係数Cの絶対値は、3.0×10-12(/Pa)以下であることが好ましく、2.0×10-12(/Pa)以下がより好ましく、1.0×10-12(/Pa)以下がさらに好ましい。光弾性係数Cの絶対値が小さいと、光弾性複屈折が小さくなるため、光学フィルム、特に偏光板用保護フィルムとして、一層好適に用いることができる。 The absolute value of the photoelastic coefficient C of the optical film is preferably 3.0 × 10 −12 (/ Pa) or less, more preferably 2.0 × 10 −12 (/ Pa) or less, and 1.0 × More preferably, it is 10 −12 (/ Pa) or less. When the absolute value of the photoelastic coefficient C is small, the photoelastic birefringence becomes small, so that it can be more suitably used as an optical film, particularly as a protective film for a polarizing plate.
 光学フィルムの配向複屈折性は、Axometrics社製Axoscan装置を用いてフィルムの面内位相差値であるレタデーション(Re)と厚み方向位相差値であるRthを測定して評価することができる。 The orientation birefringence of the optical film can be evaluated by measuring retardation (Re) which is an in-plane retardation value of the film and Rth which is a thickness direction retardation value using an Axoscan apparatus manufactured by Axometrics.
 Re(単位:nm)は、フィルム面内の1方向の屈折率をnx、それと直行する方向の屈折率をny、フィルムの厚みをd(nm)としたとき、下記の数式(1)で表される。
   Re=(nx-ny)×d   ・・・(1)
Re (unit: nm) is expressed by the following formula (1), where nx is the refractive index in one direction in the film plane, ny is the refractive index in the direction perpendicular thereto, and d (nm) is the thickness of the film. Is done.
Re = (nx−ny) × d (1)
 Rth(単位:nm)は、フィルム面内の1方向の屈折率をnx、それと直行する方向の屈折率をny、フィルムの厚み方向の屈折率をnz、フィルムの厚みをd(nm)としたとき、下記の数式(2)で表される。
   Rth=((nx+ny)/2-nz)×d  ・・・(2)
Rth (unit: nm) is nx as the refractive index in one direction in the film plane, ny as the refractive index in the direction perpendicular thereto, nz as the refractive index in the thickness direction of the film, and d (nm) as the thickness of the film. Is represented by the following mathematical formula (2).
Rth = ((nx + ny) / 2−nz) × d (2)
 フィルムの位相差値の符号は、ポリマー主鎖の配向方向に屈折率が大きいものを正とし、延伸方向と直行する方向に屈折率が大きいものを負とする。 The sign of the retardation value of the film is positive when the refractive index is large in the orientation direction of the polymer main chain, and negative when the refractive index is large in the direction perpendicular to the stretching direction.
 光学フィルムの光弾性複屈折は、配向複屈折性と同じくAxometrics社製Axoscan装置にてフィルムの位相差値であるレタデーション(Re)のフィルムにかけた応力による変化量を測定し、光弾性係数C(単位:10-12/Pa)として求められる。具体的な光弾性係数Cの算出方法は、下記の数式(3)のとおりである。
   C=ΔRe/(Δσ×t)  ・・・(3)
The photoelastic birefringence of the optical film is measured by measuring the amount of change due to the stress applied to the film of retardation (Re), which is the retardation value of the film, with an Axoscan apparatus manufactured by Axometrics, as with the orientation birefringence. (Unit: 10 −12 / Pa). The specific calculation method of the photoelastic coefficient C is as the following mathematical formula (3).
C = ΔRe / (Δσ × t) (3)
 Δσはフィルムにかかった応力の変化量で単位は[Pa]、tはフィルムの膜厚で単位は[m]、ΔReはΔσの応力の変化量に対応した面内位相差値の変化量で単位は[m]である。光弾性係数Cの符号は、応力をかけた方向に屈折率が大きくなるものを正とし、応力をかけた方向と直行する方向に屈折率が大きくなるものを負とする。 Δσ is the amount of change in stress applied to the film in units of [Pa], t is the film thickness in units of [m], and ΔRe is the amount of change in the in-plane retardation corresponding to the amount of change in stress of Δσ. The unit is [m]. The sign of the photoelastic coefficient C is positive when the refractive index increases in the stressed direction, and negative when the refractive index increases in the direction perpendicular to the stressed direction.
 光学フィルムは、JIS P8115に準拠して測定されるMIT耐折度回数が、100回以上であることが好ましく、120回以上であることがより好ましく、150回以上であることがさらに好ましい。このような光学フィルムは、偏光板用保護フィルムとして要求される可とう性を十分に満たすものであるため、偏光板用保護フィルムとして一層好適に用いることができる。また、このような光学フィルムは、耐屈曲性に優れるため、大面積化が要求される用途に一層好適に使用できる。さらに、MIT耐折度回数が100回以上であれば、延伸工程後の光学フィルムを搬送して巻き取る工程で破断したり、偏光板等に張り合わせるなどの工程で破断したりするのを防ぐことができる。 In the optical film, the number of MIT folding resistances measured in accordance with JIS P8115 is preferably 100 times or more, more preferably 120 times or more, and further preferably 150 times or more. Since such an optical film sufficiently satisfies the flexibility required as a protective film for polarizing plates, it can be more suitably used as a protective film for polarizing plates. Moreover, since such an optical film is excellent in bending resistance, it can be used more suitably for applications that require a large area. Furthermore, if the MIT folding endurance number is 100 times or more, the optical film after the stretching process is prevented from being broken in the process of transporting and winding, or being bonded to a polarizing plate or the like. be able to.
 なお、本明細書中、MIT耐折度試験は、テスター産業株式会社製のBE-201 MIT耐屈度試験機を使用して行うことができる。なお、テスター産業株式会社製のBE-201 MIT耐屈度試験機は、MIT耐折度試験機とも呼ばれている。測定条件は加重200g、折り曲げ点先端Rは0.38、屈曲速度は175回/分、屈曲角度は左右135°とし、フィルムサンプルの幅は15mmとする。そして、光学フィルムの搬送方向に繰り返し屈曲させたときに破断した屈曲回数と、幅方向に繰り返し屈曲させたときに破断した屈曲回数との平均値をMIT耐折度回数とする。 In the present specification, the MIT folding resistance test can be performed using a BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. The BE-201 MIT bending resistance tester manufactured by Tester Sangyo Co., Ltd. is also called an MIT folding resistance tester. The measurement conditions are a load of 200 g, a bending point tip R of 0.38, a bending speed of 175 times / minute, a bending angle of 135 ° on the left and right, and a width of the film sample of 15 mm. The average value of the number of bendings that are broken when the optical film is repeatedly bent in the conveyance direction and the number of bendings that are broken when the optical film is repeatedly bent in the width direction is defined as the MIT folding resistance number.
 また、偏光板用保護フィルムの耐ヒートショック性の試験方法として、ガラス基盤にのりを介しフィルムを張り合わせ、-20℃から60℃の範囲で昇温、降温を30分間隔で500サイクル繰り返すヒートショック試験が知られているが、上述のMIT耐折度回数が100回以上であれば、ヒートショック試験中にフィルムにクラックが入るのを防ぐことができる。 In addition, as a test method for heat shock resistance of a protective film for polarizing plate, heat shock is repeated by laminating a film on a glass substrate through a paste, raising the temperature in the range of −20 ° C. to 60 ° C., and lowering the temperature for 500 cycles at 30 minute intervals. Although the test is known, if the above-mentioned MIT folding resistance number is 100 times or more, the film can be prevented from cracking during the heat shock test.
 光学フィルムの膜厚は、10μm以上150μm以下とすることができ、15μm以上120μm以下とすることもできる。膜厚が10μm以上であると、フィルムの取り扱い性が良好となり、150μm以下であると、ヘイズの増加や、単位面積あたりの材料コストの増加等の問題が生じにくくなる。 The film thickness of the optical film can be 10 μm or more and 150 μm or less, and can be 15 μm or more and 120 μm or less. When the film thickness is 10 μm or more, the handleability of the film is improved, and when it is 150 μm or less, problems such as an increase in haze and an increase in material cost per unit area are less likely to occur.
 本発明による光学フィルムは、本発明によるアクリル系共重合体を含有する樹脂材料からなる未延伸フィルムを少なくとも一方向に延伸して得られるフィルムであってよく、二方向に延伸して得られるフィルム(二軸延伸フィルム)であることが好ましい。例えば、延伸倍率は、上述のMIT耐折度回数を達成できるように適宜調整することができる。面積比で1.3倍以上とすることができ、1.5倍以上とすることもできる。また、延伸倍率は、面積比で6.0倍以下であってよく、4.0倍以下であってもよい。 The optical film according to the present invention may be a film obtained by stretching an unstretched film made of a resin material containing the acrylic copolymer according to the present invention in at least one direction, and a film obtained by stretching in two directions. (Biaxially stretched film) is preferable. For example, the draw ratio can be adjusted as appropriate so that the above-mentioned number of MIT folding resistances can be achieved. The area ratio can be 1.3 times or more, and can also be 1.5 times or more. Moreover, the draw ratio may be 6.0 times or less in area ratio, and may be 4.0 times or less.
 光学フィルムの黄色味の指標であるb値は、1.00以下であることが好ましく、0.50以下であることがより好ましく、0.30以下であることがさらに好ましい。なお、黄色味の指標であるb値は、光学フィルムの分光スペクトルを日本電色工業(株)製Spectrophotometer SD6000を用いて測定し、求めることができる。 The b * value, which is an index of yellowness of the optical film, is preferably 1.00 or less, more preferably 0.50 or less, and even more preferably 0.30 or less. In addition, b * value which is a yellowish parameter | index can be calculated | required by measuring the spectral spectrum of an optical film using Nippon Denshoku Industries Co., Ltd. Spectrophotometer SD6000.
 本発明による光学フィルムは、優れた耐光性を有する。耐光性は、光照射前後でのフィルム物性値の変化量によって評価することができる。フィルム物性値としては、黄色味の指標であるb値、面内位相差Re、厚み方向位相差Rth、光弾性係数C、およびMIT耐折度回数などが用いられる。例えば、キセノンウェザーメーター〔東洋精機製作所 アトラスCi4000〕を用いて、光学フィルムに光を照射し、下記のようにして耐光性を評価することができる。 The optical film according to the present invention has excellent light resistance. Light resistance can be evaluated by the amount of change in film property values before and after light irradiation. As a film physical property value, b * value which is a yellowish index, in-plane retardation Re, thickness direction retardation Rth, photoelastic coefficient C, MIT folding resistance frequency, and the like are used. For example, using an xenon weather meter [Toyo Seiki Seisakusho Atlas Ci4000], the optical film is irradiated with light, and the light resistance can be evaluated as follows.
 耐光性は、光照射後のb値を光照射前のb値(b*1)から差し引きした値Δb(=b*1-b)、光照射前後における面内位相差Reの差し引き値ΔRe(=光照射前Re-光照射後Re)、光照射前後における厚み方向位相差Rthの差し引き値ΔRth(=光照射前Rth-光照射後Rth)、光照射前後における光弾性係数Cの差し引き値ΔC(=光照射前C-光照射後C)、および光照射前後におけるMIT耐折度回数の差し引き値ΔMIT(=光照射前MIT-光照射後MIT)から評価できる。 Light fastness, the b * value after light irradiation before the light irradiation b * value (b * 1) subtracted from the value Δb * (= b * 1 -b *), in-plane retardation Re before and after light irradiation Subtraction value ΔRe (= Re before light irradiation−Re after light irradiation), Subtraction value ΔRth of thickness direction retardation Rth before and after light irradiation (= Rth before light irradiation−Rth after light irradiation), Photoelastic coefficient C before and after light irradiation The subtraction value ΔC (= C before light irradiation−C after light irradiation) and the subtraction value ΔMIT (= MIT before light irradiation−MIT after light irradiation) of the number of MIT folding resistances before and after light irradiation can be evaluated.
 本発明による光学フィルムの収縮率は、以下のようにして算出することができる。まず、下記の溶融押出工程で得られた未延伸フィルム(原反フィルム)を縦方向に2倍延伸した後、横方向に2倍延伸し、15センチ×15センチの二軸延伸フィルムを得る。得られた二軸延伸フィルムの縦方向及び横方向の長さを、有効数字100μm単位まで測定可能なノギスにて測定し、100℃の恒温槽に投入とする。このとき得られた縦方向長さをLMD1、横方向の長さをLTD1とする。恒温槽に投入後240時間経過したフィルムを室温まで放冷し、縦方向及び横方向の長さを測定する。このとき得られた縦方向長さをLMD2、横方向の長さをLTD2とする。これらを用いて収縮率は下記の数式(5)、(6):
  縦方向収縮率(%)=(LMD1-LMD2)÷LMD1×100   ・・・(5)
  横方向収縮率(%)=(LTD1-LTD2)÷LTD1×100   ・・・(6)
により算出することができる。
The shrinkage ratio of the optical film according to the present invention can be calculated as follows. First, an unstretched film (raw film) obtained in the melt extrusion step described below is stretched twice in the longitudinal direction and then stretched twice in the transverse direction to obtain a biaxially stretched film of 15 cm × 15 cm. The length in the machine direction and the transverse direction of the obtained biaxially stretched film is measured with a vernier caliper capable of measuring up to 100 μm effective figures, and put into a 100 ° C. thermostat. The length in the vertical direction obtained at this time is LMD1 , and the length in the horizontal direction is LTD1 . The film which has passed 240 hours after being put into the thermostatic chamber is allowed to cool to room temperature, and the lengths in the vertical and horizontal directions are measured. The length in the vertical direction obtained at this time is LMD2 , and the length in the horizontal direction is LTD2 . Using these, the shrinkage rate is expressed by the following mathematical formulas (5) and (6):
Longitudinal shrinkage rate (%) = (L MD 1−L MD 2) ÷ L MD 1 × 100 (5)
Lateral shrinkage (%) = (L TD 1−L TD 2) ÷ L TD 1 × 100 (6)
Can be calculated.
 本発明による光学フィルムの収縮率は、縦方向収縮率、横方向収縮率ともに1.0%以下であることが好ましく、0.7%以下であることがさらに好ましい。収縮率が1.0%以下であれば、上記光学フィルムを他のフィルム、ガラス基板等と張り合わせて光学ディスプレイの部材として用いた際、収縮による剥離や割れ等が生じるのを防ぐことができる。 The shrinkage rate of the optical film according to the present invention is preferably 1.0% or less, and more preferably 0.7% or less, in both the vertical direction shrinkage rate and the horizontal direction shrinkage rate. When the shrinkage rate is 1.0% or less, peeling or cracking due to shrinkage can be prevented when the optical film is used as a member of an optical display by being laminated with another film, a glass substrate or the like.
<光学フィルムの製造方法>
 本発明による光学フィルムの製造方法の一態様について詳述する。
<Method for producing optical film>
One embodiment of the method for producing an optical film according to the present invention will be described in detail.
 本発明による光学フィルムは、上述のように、本発明によるアクリル系共重合体を含有する樹脂材料から得ることができる。さらに、該樹脂材料からなる未延伸フィルムを二軸延伸して得ることが好ましい。すなわち、本発明による光学フィルムの製造方法は、本発明によるアクリル系共重合体を含んでなる樹脂材料を溶融押出して未延伸フィルムを得る工程(溶融押出工程)を備えるものであり、該未延伸フィルムを二軸延伸して光学フィルムを得る工程(延伸工程)をさらに備えることが好ましい。  As described above, the optical film according to the present invention can be obtained from the resin material containing the acrylic copolymer according to the present invention. Furthermore, it is preferable to obtain an unstretched film made of the resin material by biaxial stretching. That is, the method for producing an optical film according to the present invention includes a step (melt-extrusion step) for obtaining an unstretched film by melt-extruding a resin material comprising the acrylic copolymer according to the present invention. It is preferable to further include a step (stretching step) of biaxially stretching the film to obtain an optical film. *
 溶融押出工程は、例えば、ダイリップを備える押出製膜機により行うことができる。このとき、樹脂材料は、押出製膜機内で加熱溶融され、ダイリップから連続的に吐出されることでフィルム状の未延伸フィルムを得ることができる。 The melt extrusion process can be performed by, for example, an extrusion film forming machine including a die lip. At this time, the resin material is heated and melted in an extrusion film forming machine and continuously discharged from a die lip, whereby a film-like unstretched film can be obtained.
 溶融押出の際の押し出し温度は、130℃以上300℃以下であることが好ましく、150℃以上280℃以下であることがさらに好ましい。押し出し温度が130℃以上であると、樹脂材料中のアクリル系共重合体が十分に溶融混錬されるため、未溶融物のフィルムへの残存が十分に防止される。また、300℃以下であると、熱分解によるフィルムの着色や、分解物のダイリップへの付着等の問題が生じることが十分に防止される。よって、溶融押出の押し出し温度が上記範囲内であれば、樹脂材料中のアクリル系共重合体が十分に溶融混錬されるため、未溶融物のフィルムへの残存を十分に防止することができると共に、熱分解によるフィルムの着色や、分解物のダイリップへの付着等が生じることを抑制することができる。 The extrusion temperature during melt extrusion is preferably 130 ° C. or higher and 300 ° C. or lower, and more preferably 150 ° C. or higher and 280 ° C. or lower. When the extrusion temperature is 130 ° C. or higher, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that the unmelted product is sufficiently prevented from remaining in the film. Further, when the temperature is 300 ° C. or lower, problems such as coloring of the film due to thermal decomposition and adhesion of the decomposition product to the die lip are sufficiently prevented. Therefore, if the extrusion temperature of the melt extrusion is within the above range, the acrylic copolymer in the resin material is sufficiently melted and kneaded, so that it is possible to sufficiently prevent the unmelted product from remaining in the film. At the same time, it is possible to suppress film coloring due to thermal decomposition, adhesion of decomposition products to the die lip, and the like.
 Tダイ押し出し装置を用いた溶融製膜法において、Tダイリップから吐出された溶融樹脂が最初に接触する第1ロールの温度T℃は、溶融樹脂のガラス転移温度をTg℃としたとき、(Tg-24)≦T≦(Tg+24)の範囲が好ましく(Tg-20)≦T≦(Tg+20)の範囲がさらに好ましい。Tの温度が(Tg-24)℃以上であれば、Tダイリップから吐出された溶融状態の樹脂フィルムが急冷されることを抑制できるため、収縮ムラにより製膜したフィルムの厚み精度が悪化することを抑制することができる。Tの温度が(Tg+24)℃以下であれば、Tダイリップから吐出された溶融状態の樹脂が第1ロールに貼りついてしまうことを抑制することができる。 In the melt film-forming method using the T-die extrusion device, the temperature T 1 ° C of the first roll with which the molten resin discharged from the T-die lip first comes into contact when the glass transition temperature of the molten resin is Tg ° C. The range of Tg−24) ≦ T 1 ≦ (Tg + 24) is preferable, and the range of (Tg−20) ≦ T 1 ≦ (Tg + 20) is more preferable. If the temperature of T 1 is (Tg−24) ° C. or higher, the molten resin film discharged from the T die lip can be prevented from being rapidly cooled, so the thickness accuracy of the film formed due to shrinkage unevenness deteriorates. This can be suppressed. If the temperature of T 1 is (Tg + 24) ℃ or less, the molten resin discharged from the T die lip can be suppressed that would stick to the first roller.
 なお、フィルム厚みムラ(単位:%)は、未延伸フィルム(原反フィルム)の両端の耳を各10mm切り落とした後のロールサンプルを幅方向等間隔に20箇所測定した厚みの最大値をtμm、最小値をtμm、平均値をtμmとしたとき、下記の数式(4):
  厚みムラ(%)=100×(t―t)/t   ・・・(4)
から算出される値を意味するものとする。
In addition, the film thickness unevenness (unit:%) is the maximum value of the thickness measured by measuring 20 roll samples at equal intervals in the width direction after cutting 10 mm each of the ears at both ends of the unstretched film (raw film) at t 1. When μm, the minimum value is t 2 μm, and the average value is t 3 μm, the following formula (4):
Thickness variation (%) = 100 × (t 1 −t 2 ) / t 3 (4)
It means the value calculated from
 延伸工程では、溶融押出工程で得られた未延伸フィルム(原反フィルム)を延伸して、光学フィルムを得る。延伸方法としては、従来公知の一軸延伸法または二軸延伸法を適宜選択することができる。二軸延伸装置としては、例えば、テンター延伸装置において、フィルム端部を把持するクリップ間隔がフィルムの搬送方向にも拡がる同時二軸延伸装置を用いることができる。また、延伸工程では、周速差を利用したロール間延伸、テンター装置による延伸等を組み合わせた逐次二軸延伸法も適用できる。 In the stretching process, the unstretched film (raw film) obtained in the melt extrusion process is stretched to obtain an optical film. As the stretching method, a conventionally known uniaxial stretching method or biaxial stretching method can be appropriately selected. As the biaxial stretching device, for example, in the tenter stretching device, a simultaneous biaxial stretching device in which the clip interval for gripping the film end portion also extends in the film transport direction can be used. Further, in the stretching step, a sequential biaxial stretching method in which stretching between rolls utilizing a peripheral speed difference, stretching by a tenter device, or the like is combined can also be applied.
 延伸装置は、押出製膜機と一貫ラインであってよい。また、延伸工程は、押出製膜機により巻き取った原反フィルムをオフラインで延伸装置に送り出して延伸する方法で行ってもよい。 The stretching device may be an integrated line with the extrusion film forming machine. Further, the stretching step may be performed by a method in which a raw film wound up by an extrusion film forming machine is sent off-line to a stretching apparatus and stretched.
 延伸温度としては、原反フィルムのガラス転移温度をTg℃としたときに(Tg+2)℃以上、(Tg+20)℃以下が好ましく、(Tg+5)℃以上、(Tg+15)℃以下がさらに好ましい。延伸温度が(Tg+2)℃以上であると、延伸中のフィルムの破断や、フィルムのヘイズの上昇等の問題の発生を十分に防止することができる。また、(Tg+20)℃以下であると、ポリマー主鎖が配向しやすく、一層良好なポリマー主鎖配向度が得られる傾向にある。 The stretching temperature is preferably (Tg + 2) ° C. or more and (Tg + 20) ° C. or less, more preferably (Tg + 5) ° C. or more and (Tg + 15) ° C. or less when the glass transition temperature of the raw film is Tg ° C. When the stretching temperature is (Tg + 2) ° C. or higher, problems such as breakage of the film during stretching and an increase in haze of the film can be sufficiently prevented. Further, when it is (Tg + 20) ° C. or lower, the polymer main chain is easily oriented, and a better degree of polymer main chain orientation tends to be obtained.
 溶融製膜法で製膜された原反フィルムを延伸することで、ポリマー主鎖が配向してフィルムの耐屈曲性を向上させることができる一方で、複屈折率が小さなポリマー材料からなるフィルムでなければ、フィルムの位相差値が上昇してしまい、液晶表示装置に組み込んだときに像質が悪化してしまう。本態様においては、上述の樹脂材料を用いることで、優れた光学特性と耐屈曲性とを両立した光学フィルムが得られる。 A film made of a polymer material having a low birefringence while the polymer main chain is oriented to improve the bending resistance of the film by stretching the raw film formed by the melt film formation method. Otherwise, the retardation value of the film increases, and the image quality deteriorates when incorporated in a liquid crystal display device. In this embodiment, an optical film having both excellent optical properties and flex resistance can be obtained by using the resin material described above.
 上記のように、本発明による光学フィルムの製造方法を用いれば、配向複屈折および光弾性複屈折がともに小さく、かつ透明性および耐熱性などの特性に優れた光学フィルムを得ることができる。 As described above, when the method for producing an optical film according to the present invention is used, an optical film having both small orientation birefringence and photoelastic birefringence and excellent properties such as transparency and heat resistance can be obtained.
<偏光板>
 本発明による偏光板は、偏光フィルムの少なくとも一方の面に上記光学フィルムを保護フィルムとして備えるものである。上記光学フィルムは、配向複屈折及び光弾性複屈折がともに小さいため、保護フィルムとして上記光学フィルムを備える本発明による偏光板によれば、液晶表示装置への適用に際し、保護フィルムによる像質の悪化を十分に抑制することができる。
<Polarizing plate>
The polarizing plate according to the present invention comprises the optical film as a protective film on at least one surface of the polarizing film. Since the optical film has both small orientation birefringence and photoelastic birefringence, according to the polarizing plate according to the present invention having the optical film as a protective film, image quality deteriorates due to the protective film when applied to a liquid crystal display device. Can be sufficiently suppressed.
 本発明による偏光板において、上記光学フィルム以外の構成要素は、特に制限されず、公知の偏光板と同様の構成とすることができる。例えば、本発明による偏光板は、公知の偏光板における保護フィルムの少なくとも一部を、上記光学フィルムに変更したものであってよい。偏光板は、例えば、上記光学フィルム、偏光層、偏光層保護フィルム及び粘着層がこの順で積層した構成を備えるものであってもよい。 In the polarizing plate according to the present invention, the constituent elements other than the optical film are not particularly limited, and may have the same configuration as a known polarizing plate. For example, the polarizing plate according to the present invention may be obtained by changing at least a part of a protective film in a known polarizing plate to the optical film. For example, the polarizing plate may have a configuration in which the optical film, the polarizing layer, the polarizing layer protective film, and the adhesive layer are laminated in this order.
<液晶表示装置>
 本発明による液晶表示装置は、上記偏光板を備えるものである。本発明による偏光板は、保護フィルムとして上記光学フィルムを備えるものであるため、保護フィルムの光学特性に起因する像質の悪化を十分に抑制することができる。そのため、本実施形態の液晶表示装置によれば、良好な像質が実現される。
<Liquid crystal display device>
The liquid crystal display device by this invention is equipped with the said polarizing plate. Since the polarizing plate according to the present invention includes the optical film as a protective film, it is possible to sufficiently suppress deterioration in image quality due to the optical characteristics of the protective film. Therefore, according to the liquid crystal display device of the present embodiment, good image quality is realized.
 本発明による液晶表示装置において、上記偏光板以外の構成要素は、特に制限されず、公知の液晶表示装置と同様の構成とすることができる。例えば、本発明による液晶表示装置は、公知の液晶表示装置における偏光板を、上記偏光板に変更したものであってよい。 In the liquid crystal display device according to the present invention, the components other than the polarizing plate are not particularly limited, and can be configured in the same manner as a known liquid crystal display device. For example, in the liquid crystal display device according to the present invention, the polarizing plate in the known liquid crystal display device may be changed to the polarizing plate.
 液晶表示装置は、例えば、上記偏光板、バックライト、カラーフィルター、液晶層、透明電極及びガラス基板がこの順で積層した構成を備えるものであってもよい。 The liquid crystal display device may have, for example, a configuration in which the polarizing plate, the backlight, the color filter, the liquid crystal layer, the transparent electrode, and the glass substrate are laminated in this order.
 以下、実施例と比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not construed as being limited to the following examples.
<アクリル系共重合体の評価方法>
 以下のアクリル系共重合体の評価において、アクリル系共重合体の残存モノマー量およびガラス転移温度(Tg)は、以下のようにして測定した。
<Evaluation method of acrylic copolymer>
In the evaluation of the acrylic copolymer below, the residual monomer amount and glass transition temperature (Tg) of the acrylic copolymer were measured as follows.
 アクリル系共重合体のガラス転移温度は、SIIナノテクノロジー社製の示差走査熱量測定装置DSC7020を使用し、昇温速度10℃/分で昇温させたときのガラス転移点のオンセット温度から求めた。なお、アクリル系共重合体の試料の質量は5mg~10mgとした。 The glass transition temperature of the acrylic copolymer is obtained from the onset temperature of the glass transition point when the differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology is used and the temperature is raised at a rate of temperature increase of 10 ° C./min. It was. The mass of the acrylic copolymer sample was 5 mg to 10 mg.
 アクリル系共重合体の残存モノマー量は、以下の装置及び方法で測定した。
(装置)
ガスクロマトグラフィー装置:アジレントテクノロジー社製GC 6850
カラム:HP-5 30m
オーブン温度条件:50℃で5分保持した後10℃/分で250℃まで昇温し、10分保持した。
注入量:0.5μl
モード:スプリット法
スプリット比:80/1
キャリアー:純窒素
検出器:FID
The residual monomer amount of the acrylic copolymer was measured by the following apparatus and method.
(apparatus)
Gas chromatography device: GC 6850 manufactured by Agilent Technologies
Column: HP-5 30m
Oven temperature condition: held at 50 ° C. for 5 minutes, then heated to 250 ° C. at 10 ° C./minute, and held for 10 minutes.
Injection volume: 0.5 μl
Mode: Split method Split ratio: 80/1
Carrier: Pure nitrogen detector: FID
(方法)
 アクリル系共重合体の粒子約1gを精秤し、アセトン約10mlを加えて撹拌し、当該粒子を完全に溶解させてアセトン溶液とした。撹拌子を入れた100ml容器にメタノール約90mlを量り取り、上記アセトン溶液を滴下してポリマーを析出させて、スラリー液とした。次いで、内部標準物質としてクロロベンゼン約0.1mlを精秤し、上記スラリー液に添加し、激しく振ってよく混ぜた。この溶液を静置し、上澄み液約1.5mlを濾過したものを用いて、GC(ガスクロマトグラフィー)にて各モノマーの検出を行った。なお、各成分の保持時間、面積/質量換算係数は下記表2に記載のとおりであった。
(Method)
About 1 g of acrylic copolymer particles were precisely weighed, about 10 ml of acetone was added and stirred, and the particles were completely dissolved to obtain an acetone solution. About 90 ml of methanol was weighed into a 100 ml container containing a stirrer, and the acetone solution was added dropwise to precipitate a polymer to obtain a slurry solution. Next, about 0.1 ml of chlorobenzene was precisely weighed as an internal standard substance, added to the slurry, and mixed well by shaking vigorously. This solution was allowed to stand, and each monomer was detected by GC (gas chromatography) using a filtrate obtained by filtering about 1.5 ml of the supernatant. The retention time and area / mass conversion factor of each component were as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各モノマーのGC面積値に面積/質量換算係数を乗じ、以下の比例式により各モノマーの質量を算出した。
式:内部標準物質質量:各モノマー質量=(内部標準物質GC面積値×面積/質量換算係数):(各モノマーGC面積値×面積/質量換算係数)
 以上の方法により、精秤したアクリル系共重合体粒子中の各モノマーの残存質量を求め、その総和を、精秤したアクリル系共重合体粒子の質量で除することで、残存モノマー量(%)を算出した。
The GC area value of each monomer was multiplied by an area / mass conversion factor, and the mass of each monomer was calculated by the following proportional expression.
Formula: Internal standard substance mass: Mass of each monomer = (Internal standard substance GC area value × Area / mass conversion coefficient): (Each monomer GC area value × Area / mass conversion coefficient)
By the above method, the residual mass of each monomer in the precisely weighed acrylic copolymer particles was determined, and the total amount was divided by the mass of the accurately weighed acrylic copolymer particles to obtain the residual monomer amount (% ) Was calculated.
<アクリル系共重合体の合成>
[実施例1]
 撹拌装置、温度センサー、冷却管及び窒素導入管を備えた反応釜に、脱イオン水300質量部と、分散剤としてポリビニルアルコール(株式会社クラレ社製クラレポバール)0.6質量部を合わせて投入し、撹拌を開始した。次に、モノマーとしてメタクリル酸メチル(以下、場合により「MMA」と表す。)80質量部およびN-シクロヘキシルマレイミド(以下、場合により「CHMI」と表す。)20質量部、添加溶媒としてn-ヘプタン5質量部、重合開始剤としてパーオクタO(日本油脂株式会社製)1質量部、ならびに連鎖移動剤として1-オクタンチオール0.22質量部を仕込み、反応釜に窒素を通じつつ、70℃まで昇温させた。70℃に達した状態を2時間保持した後、冷却し、濾過、洗浄、乾燥によって粒子状のアクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
<Synthesis of acrylic copolymer>
[Example 1]
Into a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen introduction pipe, 300 parts by mass of deionized water and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd.) are added as a dispersant. And stirring was started. Next, 80 parts by mass of methyl methacrylate (hereinafter, sometimes referred to as “MMA”) as monomers and 20 parts by mass of N-cyclohexylmaleimide (hereinafter, sometimes referred to as “CHMI”), n-heptane as an additive solvent 5 parts by mass, 1 part by mass of Perocta O (manufactured by NOF Corporation) as a polymerization initiator, and 0.22 parts by mass of 1-octanethiol as a chain transfer agent were added, and the temperature was raised to 70 ° C. while passing nitrogen through the reaction kettle I let you. After maintaining the state which reached 70 degreeC for 2 hours, it cooled, and the particulate acrylic copolymer was obtained by filtration, washing | cleaning, and drying. The obtained acrylic copolymer was colorless in visual inspection.
[実施例2]
 モノマーを、メタクリル酸メチル(MMA)70質量部、N-シクロヘキシルマレイミド(CHMI)20質量部、およびN-フェニルマレイミド(以下、場合により「PhMI」と表す。)10質量部に変更し、かつ添加溶媒をn-ヘプタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 2]
The monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (hereinafter sometimes referred to as “PhMI”) and added. Suspension polymerization was performed in the same manner as in Example 1 except that the solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例3]
 モノマーを、メタクリル酸メチル(MMA)80質量部、N-シクロヘキシルマレイミド(CHMI)10質量部、およびN-フェニルマレイミド(PhMI)10質量部に変更し、かつ添加溶媒をn-ヘプタン30質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 3]
The monomer was changed to 80 parts by mass of methyl methacrylate (MMA), 10 parts by mass of N-cyclohexylmaleimide (CHMI), and 10 parts by mass of N-phenylmaleimide (PhMI), and the additive solvent was changed to 30 parts by mass of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例4]
 添加溶媒をn-オクタン5質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 4]
Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 5 parts by mass of n-octane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例5]
 モノマーを、メタクリル酸メチル(MMA)70質量部、N-シクロヘキシルマレイミド(CHMI)20質量部、およびN-フェニルマレイミド(PhMI)10質量部に変更し、かつ添加溶媒をn-オクタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 5]
The monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI), and the additive solvent was changed to 10 parts by weight of n-octane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例6]
 添加溶媒をn-オクタン30質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 6]
Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 30 parts by mass of n-octane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例7]
 モノマーを、メタクリル酸メチル(MMA)81質量部、N-シクロヘキシルマレイミド(CHMI)15質量部、およびメタクリル酸ベンジル(以下、場合により「BnMA」と表す。)4質量部に変更し、かつ添加溶媒をn-ヘプタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 7]
The monomer was changed to 81 parts by mass of methyl methacrylate (MMA), 15 parts by mass of N-cyclohexylmaleimide (CHMI), and 4 parts by mass of benzyl methacrylate (hereinafter, sometimes referred to as “BnMA”), and an additive solvent Was changed to 10 parts by mass of n-heptane, and suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例8]
 モノマーを、メタクリル酸メチル(MMA)82質量部、N-シクロヘキシルマレイミド(CHMI)15質量部、およびアクリル酸フェノキシエチル(以下、場合により「PhOEA」と表す。)3質量部に変更し、かつ添加溶媒をn-ヘプタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 8]
The monomer was changed to 82 parts by weight of methyl methacrylate (MMA), 15 parts by weight of N-cyclohexylmaleimide (CHMI), and 3 parts by weight of phenoxyethyl acrylate (hereinafter sometimes referred to as “PhOEA”) and added. Suspension polymerization was performed in the same manner as in Example 1 except that the solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例9]
 モノマーを、メタクリル酸メチル(MMA)65質量部、N-シクロヘキシルマレイミド(CHMI)20質量部、およびスチレン(以下、場合により「St」と表す。)15質量部に変更し、かつ添加溶媒をn-ヘプタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 9]
The monomer was changed to 65 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 15 parts by weight of styrene (hereinafter sometimes referred to as “St”), and the additive solvent was changed to n -Suspension polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 10 parts by mass of heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例10]
 モノマーを、メタクリル酸メチル(MMA)81質量部、N-シクロヘキシルマレイミド(CHMI)12質量部、N-フェニルマレイミド(PhMI)2質量部、およびメタクリル酸ベンジル(BnMA)5質量部に変更し、かつ添加溶媒をn-ヘプタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 10]
The monomer was changed to 81 parts by weight of methyl methacrylate (MMA), 12 parts by weight of N-cyclohexylmaleimide (CHMI), 2 parts by weight of N-phenylmaleimide (PhMI), and 5 parts by weight of benzyl methacrylate (BnMA), and Suspension polymerization was performed in the same manner as in Example 1 except that the additive solvent was changed to 10 parts by mass of n-heptane to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例11]
 モノマーを、メタクリル酸メチル(MMA)80質量部、N-シクロヘキシルマレイミド(CHMI)13質量部、およびN-フェニルマレイミド(PhMI)7質量部に変更し、かつ添加溶媒をn-ヘプタン15質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 11]
The monomer was changed to 80 parts by mass of methyl methacrylate (MMA), 13 parts by mass of N-cyclohexylmaleimide (CHMI), and 7 parts by mass of N-phenylmaleimide (PhMI), and the additive solvent was changed to 15 parts by mass of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 except for changing to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例12]
 モノマーを、メタクリル酸メチル(MMA)76質量部およびN-シクロヘキシルマレイミド(CHMI)23質量部、およびスチレン(St)1質量部に変更し、かつ添加溶媒をn-ヘプタン15質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 12]
The monomer was changed to 76 parts by weight of methyl methacrylate (MMA), 23 parts by weight of N-cyclohexylmaleimide (CHMI), and 1 part by weight of styrene (St), and the additive solvent was changed to 15 parts by weight of n-heptane. Was suspension-polymerized in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例13]
 モノマーを、メタクリル酸メチル(MMA)80質量部およびN-シクロヘキシルマレイミド(CHMI)20質量部に変更し、かつ添加溶媒を、n-ヘプタン10質量部およびn-オクタン10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 13]
The monomer was changed to 80 parts by mass of methyl methacrylate (MMA) and 20 parts by mass of N-cyclohexylmaleimide (CHMI), and the additive solvent was changed to 10 parts by mass of n-heptane and 10 parts by mass of n-octane. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[実施例14]
 モノマーを、メタクリル酸メチル(MMA)90質量部およびN-ベンジルマレイミド(以下、「BnMI」と表す。)10質量部に変更し、かつ添加溶媒をn-ヘプタンを10質量部に変更した以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において無色であった。
[Example 14]
The monomer was changed to 90 parts by weight of methyl methacrylate (MMA) and 10 parts by weight of N-benzylmaleimide (hereinafter referred to as “BnMI”), and the additive solvent was changed to 10 parts by weight of n-heptane. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was colorless in visual inspection.
[比較例1]
 モノマーを、メタクリル酸メチル(MMA)80質量部、N-シクロヘキシルマレイミド(CHMI)10質量部、N-フェニルマレイミド(PhMI)10質量部に変更し、かつn-ヘプタンを加えなかった以外は実施例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 1]
Example except that the monomer was changed to 80 parts by weight of methyl methacrylate (MMA), 10 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI), and no n-heptane was added. Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was light yellow in visual inspection.
[比較例2]
 モノマーを、メタクリル酸メチル(MMA)70質量部、N-シクロヘキシルマレイミド(CHMI)20質量部、およびN-フェニルマレイミド(PhMI)10質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において黄色であった。
[Comparative Example 2]
Suspension polymerization in the same manner as in Comparative Example 1 except that the monomer was changed to 70 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 10 parts by weight of N-phenylmaleimide (PhMI). And an acrylic copolymer was obtained. The obtained acrylic copolymer was yellow in visual inspection.
[比較例3]
 モノマーを、メタクリル酸メチル(MMA)90質量部およびN-シクロヘキシルマレイミド(CHMI)10質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 3]
Suspension polymerization was performed in the same manner as in Comparative Example 1 except that the monomers were changed to 90 parts by mass of methyl methacrylate (MMA) and 10 parts by mass of N-cyclohexylmaleimide (CHMI) to obtain an acrylic copolymer. The obtained acrylic copolymer was light yellow in visual inspection.
[比較例4]
 モノマーを、メタクリル酸メチル(MMA)80質量部およびN-フェニルマレイミド(PhMI)20質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において黄色であった。
[Comparative Example 4]
Suspension polymerization was performed in the same manner as in Comparative Example 1 except that the monomers were changed to 80 parts by mass of methyl methacrylate (MMA) and 20 parts by mass of N-phenylmaleimide (PhMI) to obtain an acrylic copolymer. The obtained acrylic copolymer was yellow in visual inspection.
[比較例5]
 モノマーを、メタクリル酸メチル(MMA)81質量部、N-シクロヘキシルマレイミド(CHMI)15質量部、およびメタクリル酸ベンジル(BnMA)4質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 5]
Suspension polymerization was carried out in the same manner as in Comparative Example 1 except that the monomers were changed to 81 parts by mass of methyl methacrylate (MMA), 15 parts by mass of N-cyclohexylmaleimide (CHMI), and 4 parts by mass of benzyl methacrylate (BnMA). And an acrylic copolymer was obtained. The obtained acrylic copolymer was light yellow in visual inspection.
[比較例6]
 モノマーを、メタクリル酸メチル(MMA)82質量部、N-シクロヘキシルマレイミド(CHMI)15質量部、およびアクリル酸フェノキシエチル(以下、場合により「PhOEA」と表す。)3質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 6]
Comparison except that the monomers were changed to 82 parts by mass of methyl methacrylate (MMA), 15 parts by mass of N-cyclohexylmaleimide (CHMI), and 3 parts by mass of phenoxyethyl acrylate (hereinafter sometimes referred to as “PhOEA”). Suspension polymerization was performed in the same manner as in Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was light yellow in visual inspection.
[比較例7]
 モノマーを、メタクリル酸メチル(MMA)65質量部、N-シクロヘキシルマレイミド(CHMI)20質量部、およびスチレン(以下、場合により「St」と表す。)15質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において黄色であった。
[Comparative Example 7]
Comparative Example 1 except that the monomers were changed to 65 parts by weight of methyl methacrylate (MMA), 20 parts by weight of N-cyclohexylmaleimide (CHMI), and 15 parts by weight of styrene (hereinafter, sometimes referred to as “St”). Similarly, suspension polymerization was performed to obtain an acrylic copolymer. The obtained acrylic copolymer was yellow in visual inspection.
[比較例8]
 モノマーを、メタクリル酸メチル(MMA)81質量部、N-シクロヘキシルマレイミド(CHMI)12質量部、N-フェニルマレイミド(PhMI)2質量部、およびメタクリル酸ベンジル(BnMA)5質量部に変更した以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 8]
The monomer was changed to 81 parts by mass of methyl methacrylate (MMA), 12 parts by mass of N-cyclohexylmaleimide (CHMI), 2 parts by mass of N-phenylmaleimide (PhMI), and 5 parts by mass of benzyl methacrylate (BnMA). Suspension polymerization was performed in the same manner as in Comparative Example 1 to obtain an acrylic copolymer. The obtained acrylic copolymer was light yellow in visual inspection.
[比較例9]
 モノマーを、メタクリル酸メチル(MMA)80質量部およびN-フェニルマレイミド(PhMI)20質量部に変更し、かつ添加溶媒としてトルエン10質量を加えた以外は比較例1と同様にして懸濁重合を行い、アクリル系共重合体を得た。得られたアクリル系共重合体は、トルエンを含有しており、ゼリー状の弾力性を有する粒子であり、乾燥工程において粒子の凝集が認められた。また、アクリル系共重合体は、目視検査において淡黄色であった。
[Comparative Example 9]
Suspension polymerization was carried out in the same manner as in Comparative Example 1 except that the monomer was changed to 80 parts by mass of methyl methacrylate (MMA) and 20 parts by mass of N-phenylmaleimide (PhMI) and 10 mass of toluene was added as an additive solvent. And an acrylic copolymer was obtained. The obtained acrylic copolymer contains toluene and has jelly-like elasticity, and aggregation of the particles was observed in the drying step. Further, the acrylic copolymer was light yellow in visual inspection.
 上記のようにして得られたアクリル系共重合体の残存モノマー量およびガラス転移温度(Tg)の測定結果は、下記の表3に示される通りであった。 The measurement results of the residual monomer amount and glass transition temperature (Tg) of the acrylic copolymer obtained as described above were as shown in Table 3 below.
<光学フィルムの製造>
 上記の実施例および比較例で得られたアクリル系共重合体を、テクノベル社製の2軸スクリュー式押し出し機KZW-30MGを用いて溶融押出して、未延伸フィルムを製膜した。2軸押し出し機のスクリュー径は15mm、スクリュー有効長(L/D)は30であり、押し出し機にはアダプタを介してハンガーコートタイプのTダイが設置されている。押し出し温度Tp℃は、ガラス転移温度がTg℃である非結晶性ポリマーの場合、数式(7)が最適となることから、数式(7)で算出される温度とした。
   Tp=5(Tg+70)/4   …(7)
<Manufacture of optical film>
The acrylic copolymers obtained in the above Examples and Comparative Examples were melt-extruded using a twin screw extruder KZW-30MG manufactured by Technobel to form an unstretched film. The screw diameter of the biaxial extruder is 15 mm and the effective screw length (L / D) is 30, and a hanger coat type T-die is installed in the extruder via an adapter. The extrusion temperature Tp ° C. is the temperature calculated by the equation (7) since the equation (7) is optimal in the case of an amorphous polymer having a glass transition temperature of Tg ° C.
Tp = 5 (Tg + 70) / 4 (7)
 また、Tダイリップから吐出された溶融樹脂が最初に接触する第1ロールの温度Tは、溶融樹脂のガラス転移温度をTgとしたとき、(Tg-24)≦T≦(Tg+24)の範囲が好ましいことから、第1ロールの温度Tは130℃とした。 The temperature T 1 of the first roll with which the molten resin discharged from the T die lip first contacts is in the range of (Tg−24) ≦ T 1 ≦ (Tg + 24), where Tg is the glass transition temperature of the molten resin. Therefore, the temperature T 1 of the first roll was set to 130 ° C.
<光学フィルムの評価方法>
 溶融押出工程で得られた未延伸フィルム(原反フィルム)を縦方向に2倍延伸した後、横方向に2倍延伸し、15センチ×15センチの二軸延伸フィルムを得た。得られた二軸延伸フィルムの縦方向及び横方向の長さを、有効数字100μm単位まで測定可能なノギスにて測定し、100℃の恒温槽に投入した。このとき得られた縦方向長さをLMD1、横方向の長さをLTD1とした。恒温槽に投入後240時間経過したフィルムを室温まで放冷し、縦方向及び横方向の長さを測定した。このとき得られた縦方向長さをLMD2、横方向の長さをLTD2とした。これらを用いて収縮率は下記の数式(5)、(6):
  縦方向収縮率(%)=(LMD1-LMD2)÷LMD1×100   ・・・(5)
  横方向収縮率(%)=(LTD1-LTD2)÷LTD1×100   ・・・(6)
により算出した。このようにして得られた光学フィルムの収縮率は、下記の表3に示される通りであった。
<Evaluation method of optical film>
The unstretched film (raw film) obtained in the melt extrusion step was stretched twice in the machine direction and then stretched twice in the transverse direction to obtain a 15 cm × 15 cm biaxially stretched film. The length in the machine direction and the transverse direction of the obtained biaxially stretched film was measured with a vernier caliper capable of measuring up to 100 μm effective figures, and placed in a thermostat at 100 ° C. The longitudinal length obtained at this time was L MD 1, the lateral length and L TD 1. The film which passed 240 hours after putting into the thermostat was allowed to cool to room temperature, and the lengths in the vertical and horizontal directions were measured. The longitudinal length obtained at this time was L MD 2, of the lateral length and L TD 2. Using these, the shrinkage rate is expressed by the following formulas (5) and (6)
Longitudinal shrinkage rate (%) = (L MD 1−L MD 2) ÷ L MD 1 × 100 (5)
Lateral shrinkage (%) = (L TD 1−L TD 2) ÷ L TD 1 × 100 (6)
Calculated by The shrinkage rate of the optical film thus obtained was as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (14)

  1.  第1モノマーとして(メタ)アクリル酸アルキルモノマーと、第2モノマーとして前記(メタ)アクリル酸アルキルモノマー以外のモノマーとを含むモノマー混合物を含む分散相と、分散媒とからなる反応系から、懸濁重合によりアクリル系共重合体を製造する方法であって、
     前記分散相が、前記モノマー混合物に対しては良溶媒であり、かつ、前記アクリル系共重合体に対しては貧溶媒である飽和炭化水素系溶媒を含んでなる、アクリル系共重合体の製造方法。
    Suspended from a reaction system comprising a dispersion phase containing a monomer mixture containing a (meth) acrylic acid alkyl monomer as a first monomer and a monomer other than the (meth) acrylic acid alkyl monomer as a second monomer, and a dispersion medium. A method for producing an acrylic copolymer by polymerization,
    Production of an acrylic copolymer, wherein the dispersed phase comprises a saturated hydrocarbon solvent that is a good solvent for the monomer mixture and a poor solvent for the acrylic copolymer. Method.
  2.  第1モノマーおよび第2モノマーの反応性比rおよびrが、1≦r<10、0<r<1を満たす、請求項1に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to claim 1, wherein the reactivity ratios r 1 and r 2 of the first monomer and the second monomer satisfy 1 ≦ r 1 <10, 0 <r 2 <1.
  3.  前記飽和炭化水素系溶媒の沸点が、60~180℃である、請求項 請求項1または2に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to claim 1 or 2, wherein the boiling point of the saturated hydrocarbon solvent is 60 to 180 ° C.
  4.  前記飽和炭化水素系溶媒が、C6~C10のアルカンからなる群から選択される少なくとも1種である、請求項1~3のいずれか一項に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to any one of claims 1 to 3, wherein the saturated hydrocarbon solvent is at least one selected from the group consisting of C6 to C10 alkanes.
  5.  前記分散相中の前記飽和炭化水素系溶媒の含有量が、前記モノマー混合物の総量に対して、1~50質量%である、請求項1~4のいずれか一項に記載のアクリル系共重合体の製造方法。 The acrylic copolymer according to any one of claims 1 to 4, wherein a content of the saturated hydrocarbon solvent in the dispersed phase is 1 to 50 mass% with respect to a total amount of the monomer mixture. Manufacturing method of coalescence.
  6.  前記分散相が、第2モノマーとしてN-置換マレイミドを含んでなる、請求項1~5のいずれか一項に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to any one of claims 1 to 5, wherein the dispersed phase comprises N-substituted maleimide as the second monomer.
  7.  前記分散相が、第3モノマーとして、第1モノマーおよび第2モノマー以外のモノマーをさらに含んでなり、第3モノマーが、メタクリル酸ベンジル、下記一般式(1)で表されるモノマー、およびスチレンからなる群から選択される少なくとも1種を含んでなる、請求項1~6に記載のアクリル系共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Rは水素原子またはメチル基を示し、Rはアルカンジイル基を示し、Rはアリール基を示す。]
    The dispersed phase further includes a monomer other than the first monomer and the second monomer as the third monomer, and the third monomer is composed of benzyl methacrylate, a monomer represented by the following general formula (1), and styrene. The method for producing an acrylic copolymer according to any one of claims 1 to 6, comprising at least one selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkanediyl group, and R 3 represents an aryl group. ]
  8.  前記分散相中の第1モノマーの含有量は、モノマー混合物の総量に対し30~99質量%である、請求項1~7に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to any one of claims 1 to 7, wherein the content of the first monomer in the dispersed phase is 30 to 99 mass% with respect to the total amount of the monomer mixture.
  9.  前記分散相中の第2モノマーの含有量は、モノマー混合物の総量に対して1~50質量%ある、請求項1~8に記載のアクリル系共重合体の製造方法。 The method for producing an acrylic copolymer according to any one of claims 1 to 8, wherein the content of the second monomer in the dispersed phase is 1 to 50 mass% with respect to the total amount of the monomer mixture.
  10.  前記分散相中の第3モノマーの含有量は、モノマー混合物の総量に対して0~30質量%である、請求項1~9に記載のアクリル系共重合体の製造方法。 10. The method for producing an acrylic copolymer according to claim 1, wherein the content of the third monomer in the dispersed phase is 0 to 30% by mass with respect to the total amount of the monomer mixture.
  11.  請求項1~10のいずれか一項に記載の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体の残存モノマー量が2.0質量%以下である、アクリル系共重合体。 The acrylic copolymer obtained by the production method according to any one of claims 1 to 10, wherein the residual monomer amount of the acrylic copolymer is 2.0% by mass or less. Polymer.
  12.  請求項1~10のいずれか一項に記載の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体のガラス転移温度が110℃以上である、アクリル系共重合体。 11. An acrylic copolymer obtained by the production method according to any one of claims 1 to 10, wherein the acrylic copolymer has a glass transition temperature of 110 ° C. or higher.
  13.  請求項1~10のいずれか一項に記載の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体を含む光学フィルムの縦方向収縮率が1.0%以下である、アクリル系共重合体。 The acrylic copolymer obtained by the production method according to any one of claims 1 to 10, wherein an optical film containing the acrylic copolymer has a longitudinal shrinkage of 1.0% or less. , Acrylic copolymer.
  14.  請求項1~10のいずれか一項に記載の製造方法により得られるアクリル系共重合体であって、前記アクリル系共重合体を含む光学フィルムの横方向収縮率が1.0%以下である、アクリル系共重合体。 An acrylic copolymer obtained by the production method according to any one of claims 1 to 10, wherein the optical film containing the acrylic copolymer has a lateral shrinkage of 1.0% or less. , Acrylic copolymer.
PCT/JP2014/083737 2013-12-26 2014-12-19 Acrylic copolymer and method for producing same WO2015098759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526781A JPWO2015098759A1 (en) 2013-12-26 2014-12-19 Acrylic copolymer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013269969 2013-12-26
JP2013-269969 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098759A1 true WO2015098759A1 (en) 2015-07-02

Family

ID=53478616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083737 WO2015098759A1 (en) 2013-12-26 2014-12-19 Acrylic copolymer and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2015098759A1 (en)
TW (1) TW201533065A (en)
WO (1) WO2015098759A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152706A (en) * 1984-12-26 1986-07-11 Mitsubishi Chem Ind Ltd Production of chelate resin
JPS61250010A (en) * 1985-04-30 1986-11-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine particle of heat-resistant resin
JPS63191806A (en) * 1987-02-04 1988-08-09 Fuji Xerox Co Ltd Manufacture of finely divided particle of monodisperse vinyl polymer
JPH11193310A (en) * 1997-12-27 1999-07-21 Arakawa Chem Ind Co Ltd Alkyl-group-containing porous polymer, manufacture thereof and application thereof
JP2006028309A (en) * 2004-07-14 2006-02-02 Nippon Shokubai Co Ltd Resin particle dispersion, its production method, and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152706A (en) * 1984-12-26 1986-07-11 Mitsubishi Chem Ind Ltd Production of chelate resin
JPS61250010A (en) * 1985-04-30 1986-11-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine particle of heat-resistant resin
JPS63191806A (en) * 1987-02-04 1988-08-09 Fuji Xerox Co Ltd Manufacture of finely divided particle of monodisperse vinyl polymer
JPH11193310A (en) * 1997-12-27 1999-07-21 Arakawa Chem Ind Co Ltd Alkyl-group-containing porous polymer, manufacture thereof and application thereof
JP2006028309A (en) * 2004-07-14 2006-02-02 Nippon Shokubai Co Ltd Resin particle dispersion, its production method, and its application

Also Published As

Publication number Publication date
TW201533065A (en) 2015-09-01
JPWO2015098759A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5758530B2 (en) Acrylic copolymer, optical film, polarizing plate and liquid crystal display device
KR101785485B1 (en) Fumarate diester resin for retardation film, and retardation film comprising same
JP5697783B2 (en) Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device
US9321870B2 (en) Diisopropyl fumarate-cinnamic acid derivative copolymer and retardation film using the same
JP5740971B2 (en) Fumaric acid diester resin and retardation film using the same
JP2015101707A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP5697784B2 (en) Acrylic copolymer, biaxially stretched film, polarizing plate and liquid crystal display device
WO2015098759A1 (en) Acrylic copolymer and method for producing same
JP2014133883A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014111748A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014111751A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP6515503B2 (en) Fumaric acid diester-alkoxycinnamic acid ester copolymer and retardation film using the same
JP2014133885A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014111749A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014111747A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP5664736B2 (en) Optical compensation film
JP2016035029A (en) Method for producing acrylic copolymer and acrylic copolymer obtained by the same
JP2014133884A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014133882A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP5958516B2 (en) Fumaric acid diester resin and retardation film using the same
JP2014111750A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
WO2014184950A1 (en) Optical film and image display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015526781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874036

Country of ref document: EP

Kind code of ref document: A1