WO2024142895A1 - Heat transfer member and device - Google Patents

Heat transfer member and device Download PDF

Info

Publication number
WO2024142895A1
WO2024142895A1 PCT/JP2023/044322 JP2023044322W WO2024142895A1 WO 2024142895 A1 WO2024142895 A1 WO 2024142895A1 JP 2023044322 W JP2023044322 W JP 2023044322W WO 2024142895 A1 WO2024142895 A1 WO 2024142895A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
heat
acid
mass
conductive member
Prior art date
Application number
PCT/JP2023/044322
Other languages
French (fr)
Japanese (ja)
Inventor
健夫 木戸
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024142895A1 publication Critical patent/WO2024142895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive member and device.
  • a heat dissipation member e.g., a heat spreader, a heat sink, a thermal diffusion sheet, etc.
  • a method for bonding a heat source (heat generating element) of the device and the heat dissipation member with a thermally conductive member in order to efficiently transfer heat to the heat dissipation member.
  • the present invention aims to provide a thermally conductive member that maintains good adhesion to a heat dissipation member even after being exposed to repeated heating and cooling processes, and a device that uses the same.
  • a device comprising a heat generating body, the heat conducting member according to any one of [1] to [5], and a heat dissipating member.
  • the device according to [6] comprising a heat generating element, a thermally conductive member, and a heat dissipating member adjacent to each other in this order.
  • the heat conductive member of the present invention preferably satisfies at least one of the following requirements 1-1 and 2-1, and more preferably satisfies at least one of the following requirements 1-2 and 2-2. Furthermore, it is more preferable that the heat conductive member of the present invention satisfy both of the following requirements 1-1 and 2-1, and it is particularly preferable that the heat conductive member of the present invention satisfy both of the following requirements 1-2 and 2-2. Furthermore, the thermally conductive member of the present invention preferably contains more than 50 volume % and not more than 99 volume % of metal nanowires, for the reason that this provides better adhesion to the heat dissipation member. Requirement 1-1: The metal nanowires are contained at 45 to 90 volume %.
  • Requirement 2-1 The metal nanowires are contained in an amount of 75 to 99 mass %.
  • Requirement 1-2 The metal nanowires are contained at 50 to 80 volume %.
  • Requirement 2-2 The metal nanowires are contained in an amount of 80 to 98 mass %.
  • the metal nanowires contained in the heat conducting member of the present invention are conductive substances made of metal, having a needle-like or thread-like shape, and having a diameter on the order of nanometers.
  • the metal nanowires may be either straight or curved.
  • the material of the metal nanowires is not particularly limited as long as it contains a metal, and may contain components other than metals in addition to the metal.
  • the specific surface area per unit mass of the metal nanowires is preferably 100 to 50,000 m 2 /kg, more preferably more than 100 m 2 /kg and not more than 50,000 m 2 /kg, even more preferably more than 1,000 m 2 /kg and not more than 50,000 m 2 /kg, particularly preferably more than 2,000 m 2 /kg and not more than 30,000 m 2 /kg, and most preferably more than 3,000 m 2 /kg and not more than 20,000 m 2 /kg.
  • the specific surface area per unit mass of the obtained metal nanowires can be measured by known analytical methods, but in the present invention, a value measured by a krypton gas adsorption method is used.
  • the metal constituting the above-mentioned metal nanowires is not particularly limited, but it is preferable that the metal be a material having an electrical resistivity of 10 3 ⁇ cm or less, and specific examples of such metals include gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni), cobalt (Co), etc.
  • Au gold
  • Ag silver
  • Cu copper
  • Al aluminum
  • Ti titanium
  • Ni nickel
  • Co cobalt
  • at least one metal selected from the group consisting of Ag and Cu is preferable, and Cu is more preferable, because of its particularly high thermal conductivity.
  • the diameter (arithmetic mean value) of the metal nanowires is preferably 10 to 200 nm, more preferably 10 to 100 nm, and even more preferably 10 to 50 nm.
  • the length (arithmetic mean value) of the metal nanowires is preferably 0.3 to 300 ⁇ m, more preferably 0.5 to 200 ⁇ m, and even more preferably 1 ⁇ m to 100 ⁇ m.
  • the diameter and length of the metal nanowire can be determined, for example, by observing an SEM image at a magnification of 100 to 500 times using a field emission scanning electron microscope (FE-SEM).
  • the diameter and length of the metal nanowire are determined by observing 10 metal nanowires randomly selected from an SEM image taken at a magnification of 100 to 500 times, measuring their diameters and lengths, and performing this in 10 fields of view, and averaging the measured values of the diameters and lengths of a total of 100 metal nanowires.
  • the ratio of the length to the diameter (length/diameter) of the metal nanowire (hereinafter also abbreviated as "aspect ratio”) is preferably 10 or more, and more preferably 100 to 1000.
  • the surface of a valve metal substrate 1 is anodized to form an anodized film 3 having pores (micropores) 2 on the surface of the valve metal substrate 1.
  • the pores 2 are filled with a metal 4.
  • the isolation step the filled metal 4 is isolated from the anodized film 3 and the valve metal substrate 1.
  • the embodiment shown in Fig. 1D shows the state in which the isolated metal 5 obtained in the isolation step is collected (a part of the isolated metal is adhered).
  • metal nanowires 10 in which the isolated metal 5 is crushed can be obtained.
  • the valve metal substrate used in the manufacturing method of the present invention is not particularly limited as long as it is a substrate containing a valve metal.
  • the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, etc.
  • aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, in the manufacturing method of the present invention, it is preferable to use a base material containing aluminum (hereinafter, abbreviated as "aluminum base material”) as the valve metal base material.
  • the aluminum substrate is not particularly limited, and specific examples include pure aluminum plates; alloy plates containing aluminum as the main component and trace amounts of other elements; substrates in which high-purity aluminum is vapor-deposited onto low-purity aluminum (e.g., recycled materials); substrates in which the surfaces of silicon wafers, quartz, glass, etc. are coated with high-purity aluminum by methods such as vapor deposition and sputtering; and resin substrates laminated with aluminum.
  • the surface of the valve metal substrate that is anodized in the anodizing process described below preferably has a valve metal purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and even more preferably 99.99% by mass or more.
  • the valve metal purity is within the above-mentioned range, the arrangement of the through passages is sufficiently regular.
  • the surface of the valve metal base material that is to be anodized in the anodizing step described below is preferably previously subjected to a heat treatment, a degreasing treatment and a mirror finish treatment.
  • the heat treatment, degreasing treatment and mirror finish treatment can be the same as those described in paragraphs [0044] to [0054] of JP-A-2008-270158.
  • the anodizing step is a step of forming a porous anodized film on the surface of the valve metal base by subjecting the surface of the valve metal base to an anodizing treatment.
  • the anodizing treatment carried out in the anodizing step can be a conventionally known method, but it is preferable to use a self-ordering method or a constant voltage treatment because this makes it possible to isolate the filled metal with less variation in diameter in the isolation step described below.
  • the self-ordering method of the anodizing treatment and the constant voltage treatment can be the same as the treatments described in paragraphs [0056] to [0108] and in FIG. 3 of JP-A-2008-270158.
  • the anodizing treatment can be carried out, for example, by passing a current through a valve metal substrate as an anode in a solution having an acid concentration of 1 to 10% by mass.
  • the solution used in the anodizing treatment is preferably an acid solution, more preferably sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartaric acid, malic acid, citric acid, etc., and among these, sulfuric acid, phosphoric acid, and oxalic acid are further preferable, and oxalic acid is particularly preferable.
  • These acids can be used alone or in combination of two or more kinds.
  • the conditions for the anodizing treatment vary depending on the electrolyte used and cannot be determined in general, but generally, the electrolyte concentration is preferably 0.1 to 20% by mass, the solution temperature is -10 to 30°C, the current density is 0.01 to 20 A/ dm2 , the voltage is 3 to 300 V, and the electrolysis time is 0.5 to 30 hours, more preferably the electrolyte concentration is 0.5 to 15% by mass, the solution temperature is -5 to 25°C, the current density is 0.05 to 15 A/ dm2 , the voltage is 5 to 250 V, and the electrolysis time is 1 to 25 hours, and even more preferably the electrolyte concentration is 1 to 10% by mass, the solution temperature is 0 to 20°C, the current density is 0.1 to 10 A/ dm2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours.
  • the thickness of the anodized film formed by the anodization process is not particularly limited, but from the viewpoint of adjusting the length of the metal nanowires, it is preferably 0.3 to 300 ⁇ m, more preferably 0.5 to 120 ⁇ m, and even more preferably 0.5 to 100 ⁇ m.
  • the thickness of the anodic oxide film can be calculated as the average value of 10 measurements taken by cutting the anodic oxide film in the thickness direction with a focused ion beam (FIB), taking surface photographs (magnification: 50,000 times) of the cross section with a field emission scanning electron microscope (FE-SEM).
  • the density of the pores formed by the anodization process is not particularly limited, but is preferably 2 million pores/ mm2 or more, more preferably 10 million pores/ mm2 or more, even more preferably 50 million pores/mm2 or more, and particularly preferably 100 million pores/ mm2 or more.
  • the density of the pores can be measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
  • the metal filling step is a step of filling the inside of the pores with a metal after the anodization step.
  • Methods for filling the interior of the pores with the metal include, for example, methods similar to those described in paragraphs [0123] to [0126] and [ Figure 4] of JP 2008-270158 A.
  • the metal filling step includes a plating step, because this makes it difficult for the produced metal nanowires to contain hollow portions.
  • an electrolytic plating method as a method for filling the inside of the pores with the metal, and for example, an electrolytic plating method or an electroless plating method can be used.
  • an electrolytic plating method or an electroless plating method can be used.
  • the manufacturing method of the present invention when filling metal by electrolytic plating, it is necessary to provide a rest period during pulse electrolysis or constant potential electrolysis.
  • the rest period must be 10 seconds or more, and is preferably 30 to 60 seconds. It is also preferable to apply ultrasonic waves to promote stirring of the electrolyte.
  • the electrolysis voltage is usually 20 V or less, and preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte solution to be used in advance and perform constant-potential electrolysis at a potential within +1 V of that potential.
  • a device that can also be used with cyclic voltammetry, and a potentiostat device manufactured by Solartron, BAS, Hokuto Denko, IVIUM, etc. can be used.
  • the plating solution a conventionally known plating solution can be used. Specifically, when copper is precipitated, an aqueous solution of copper sulfate is generally used, and the concentration of the copper sulfate is preferably 1 to 300 g/L, and more preferably 100 to 200 g/L. Precipitation can be promoted by adding hydrochloric acid to the electrolyte. In this case, the concentration of hydrochloric acid is preferably 10 to 20 g/L. When gold is to be deposited, it is preferable to use a sulfuric acid solution of gold tetrachloride and to perform plating by AC electrolysis.
  • the electrolytic plating method a treatment method in which AC electrolytic plating and DC electrolytic plating are combined in this order.
  • a voltage is applied modulated into a sine wave at a predetermined frequency.
  • the waveform of the voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or an inverse sawtooth wave.
  • the DC electrolytic plating method can appropriately use the treatment methods in the electrolytic plating method described above.
  • the metal filling step is a process that is performed on the region from the bottom of the hole to halfway through the opening, out of the entire region from the bottom of the hole to the opening.
  • the isolation step is a step of isolating the filled metal from the anodized film and the valve metal substrate after the metal filling step.
  • the method of isolating the filled metal from the anodized film and the valve metal base material is not particularly limited, and for example, the method of removing (for example, dissolving, peeling, etc.) the anodized film and the valve metal base material and isolating the filled metal can be preferably mentioned.
  • the embodiment after the above-mentioned isolation process also includes, for example, the embodiment in which the filled metal is dispersed in an isolated state in the treatment liquid used in the dissolution process (dissolution treatment) described later.
  • the method for removing the anodic oxide film and the valve metal substrate is not particularly limited, and may be, for example, by polishing.
  • the isolation process includes a dissolution process, that is, that at least a portion of the anodic oxide film and the valve metal substrate is removed by a dissolution process.
  • the isolation process includes a one-step removal process of removing the anodic oxide film and the valve metal substrate, and it is more preferable that the removal of the anodic oxide film is a process in which the anodic oxide film is removed by a dissolution treatment.
  • the isolation step may include a two-step removal step of removing the valve metal base material and then removing the anodic oxide film, and in this case, it is more preferable that both of the two removal steps are performed by dissolution treatment.
  • the removal of the valve metal substrate is preferably carried out by a dissolution treatment using a treatment liquid which does not easily dissolve the anodized film but easily dissolves the valve metal.
  • the dissolution rate of such a treatment solution for valve metal is preferably 1 ⁇ m/min or more, more preferably 3 ⁇ m/min or more, and even more preferably 5 ⁇ m/min or more.
  • the dissolution rate of anodized film is preferably 0.1 nm/min or less, more preferably 0.05 nm/min or less, and even more preferably 0.01 nm/min or less.
  • the treatment liquid preferably contains at least one metal compound having a lower ionization tendency than the valve metal, and has a pH of 4 or less or 8 or more, more preferably a pH of 3 or less or 9 or more, and even more preferably a pH of 2 or less or 10 or more.
  • Such a treatment liquid is preferably based on an acid or alkaline aqueous solution and contains, for example, compounds of manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, and gold (e.g., chloroplatinic acid), their fluorides, or their chlorides.
  • an acid aqueous solution base is preferred, and a chloride blend is preferred.
  • a treatment solution in which mercury chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution in which copper chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/copper chloride) are preferred from the viewpoint of treatment latitude.
  • the composition of such a treatment liquid is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, etc. can be used.
  • the acid or alkali concentration of such a treatment solution is preferably from 0.01 to 10 mol/L, and more preferably from 0.05 to 5 mol/L.
  • the processing temperature when using such a processing solution is preferably from -10°C to 80°C, and more preferably from 0°C to 60°C.
  • the valve metal substrate is removed by contacting the valve metal substrate after the metal filling step with the treatment liquid described above.
  • the contact method is not particularly limited, and examples include the immersion method and the spray method. Of these, the immersion method is preferred.
  • the contact time is preferably 10 seconds to 5 hours, and more preferably 1 minute to 3 hours.
  • a solvent that does not dissolve the metal filled in the pores but selectively dissolves the anodic oxide film can be used, and either an alkaline aqueous solution or an acid aqueous solution can be used.
  • an alkaline aqueous solution When an alkaline aqueous solution is used, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide, and it is more preferable to use an aqueous solution of potassium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 1 to 30 mass %.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60°C, more preferably 20 to 60°C, and even more preferably 30 to 60°C.
  • an aqueous acid solution it is preferable to use an aqueous solution of an inorganic acid such as chromic acid, sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, oxalic acid, or a mixture thereof, and it is more preferable to use an aqueous solution of chromic acid.
  • the concentration of the aqueous acid solution is preferably 1 to 30 mass %.
  • the temperature of the aqueous acid solution is preferably 15 to 80°C, more preferably 20 to 60°C, and even more preferably 30 to 50°C.
  • the anodic oxide film is removed by contacting the above-mentioned alkaline aqueous solution and acid aqueous solution after the metal filling step (preferably after the valve metal substrate is removed).
  • the contacting method is not particularly limited, and examples include immersion and spraying. Of these, the immersion method is preferred.
  • the immersion time in the alkaline aqueous solution and acid aqueous solution is preferably 1 to 120 minutes, more preferably 2 to 90 minutes, even more preferably 3 to 60 minutes, and particularly preferably 3 to 30 minutes. Of these, 3 to 20 minutes is preferred, and 3 to 10 minutes is more preferred.
  • the crushing step is preferably carried out in water or in an aqueous solution having an alkali or acid concentration of less than 1 mass %, from the viewpoint of producing metal nanowires having higher bonding strength when bonded.
  • the crushing treatment include a crushing treatment using cavitation and a crushing treatment using ceramic balls, and devices such as an ultrasonic cleaner, an ultrasonic homogenizer, a jet mill, a wet type micronizer, etc.
  • a crushing treatment using cavitation or a crushing treatment using ceramic balls is preferred, and a crushing treatment using cavitation is more preferred.
  • the manufacturing method of the present invention further includes a step of reducing or removing the surface oxide layer of the isolated metal between the isolation step and the crushing step (or before the drying step, if the drying step is included).
  • the reduction or removal step may be, for example, a step of carrying out an immersion treatment using an aqueous alkaline solution or an aqueous acid solution as described above in the removal treatment of the anodic oxide film.
  • the modifying group is preferably at least one group selected from the group consisting of a carboxy group or a salt thereof, and an acetoacetyl group, and more preferably at least one group selected from the group consisting of a carboxy group or a salt thereof, and an acetoacetyl group.
  • a metal salt of the carboxy group is preferred, and a sodium salt of the carboxy group is more preferred.
  • the modified polyvinyl alcohol can be obtained, for example, by saponifying a polymer obtained by copolymerizing a monomer having a modifying group with a vinyl ester (e.g., vinyl acetate, etc.).
  • the modified polyvinyl alcohol may also be obtained by reacting a hydroxyl group or acetate group in unmodified polyvinyl alcohol with a compound having a modifying group.
  • polyvinyl alcohol examples include the Kuraray Poval series manufactured by Kuraray Co., Ltd. (e.g., Kuraray Poval PVA-217E, Kuraray Poval KL-318, etc.), the Gohsenx series manufactured by Mitsubishi Chemical Corporation (e.g., Gohsenx Z-320, etc.), and the A series manufactured by Nippon Vinyl Acetate & Poval Co., Ltd. (e.g., AP-17, etc.).
  • the polymerization degree of polyvinyl alcohol is preferably from 500 to 5,000, more preferably from 1,000 to 3,000, and even more preferably from 2,000 to 3,000.
  • the measurement conditions are a sample concentration of 0.45 mass%, a flow rate of 0.35 ml/min, a sample injection amount of 10 ⁇ l, and a measurement temperature of 40° C., and the measurement is performed using an RI (differential refractive index) detector.
  • the calibration curve is prepared from eight samples of "Standard Sample TSK standard, polystyrene" from Tosoh Corporation: "F-40", “F-20”, “F-4", “F-1”, "A-5000”, “A-2500”, "A-1000", and "n-propylbenzene".
  • the thermally conductive member of the present invention contains an epoxy resin and an epoxy resin curing agent
  • the total content of these is preferably 50 mass% or less, more preferably 30 mass% or less, and even more preferably 10 to 20 mass%, relative to the total mass of the thermally conductive member of the present invention.
  • the heat conductive member of the present invention may further contain an elastomer.
  • the elastomer include acrylic rubber (e.g., a copolymer of (meth)acrylate and acrylonitrile), SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), SEBS (polystyrene-polyethylene/polybutylene-polystyrene), ABS (acrylonitrile butadiene styrene copolymer), ACM (acrylic acid ester rubber), ACS (acrylonitrile chlorinated polyethylene styrene copolymer), acrylonitrile styrene copolymer, syndiotactic 1,2-polybutadiene, polymethyl methacrylate-pol
  • the heat conductive member of the present invention may further contain a curing accelerator.
  • the curing accelerator include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts, etc. These may be used alone or in combination of two or more. Among these, imidazoles and derivatives thereof are preferred from the viewpoint of reactivity. Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, etc. These may be used alone or in combination of two or more.
  • the shape of the metal particles is not particularly limited, and they may be either solid or hollow.
  • the average major axis of the minimum enclosing ellipsoid of the metal particle is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average major axis of the minimum enclosing ellipsoid of the metal particles is preferably 1 to 10 times the average minor axis, for the reason of selecting a shape that efficiently fills the space.
  • the shape of the heat conductive member of the present invention is not particularly limited, but a sheet-like shape is preferable because it can make the heat transfer uniform within the contact surface and also improves the adhesion with the heat dissipation member.
  • the sheet-like heat conductive member will be abbreviated as "heat conductive sheet”.
  • the size of the heat conductive sheet is not particularly limited, and can be processed to a size according to the size of the heat generating member.
  • the thickness is not particularly limited, but is preferably 20 to 200 ⁇ m, and more preferably 30 to 150 ⁇ m.
  • the method for producing the sheet may include a step of drying the coating liquid supplied onto the substrate. By drying the coating liquid, the sheet can be separated from the substrate as a free-standing sheet.
  • the drying method may be drying at room temperature, drying by heating, or drying under reduced pressure.
  • a hot plate, a hot air dryer, a hot air heating furnace, a nitrogen dryer, an infrared ray dryer, an infrared heating furnace, a far-infrared heating furnace, a microwave heating device, a laser heating device, an electromagnetic heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like may be used.
  • drying may be performed in a non-oxidizing atmosphere or a reducing atmosphere, for example, by substitution or blowing with a non-oxidizing gas such as argon, nitrogen, or water vapor, or with hydrogen or formic acid.
  • a non-oxidizing gas such as argon, nitrogen, or water vapor, or with hydrogen or formic acid.
  • the heat conductive sheet is preferably stored in a sealed container or bag containing an oxygen scavenger to prevent oxidation.
  • the sheet may also be stored with an easily peelable protective film attached to one or both sides.
  • the thermally conductive sheet can be mounted on, for example, electronic components such as semiconductor devices, or various heat dissipation components such as heat spreaders.
  • the thermally conductive sheet alone or the thermally conductive sheet with a protective film attached thereto is cut to a predetermined size.
  • the sheet may be cut either before or after the protective film is peeled off.
  • a thermally conductive sheet that has been cut to a specified size, or a thermally conductive sheet with the protective film removed, is used to bring each side of the thermally conductive sheet into contact with an electronic component such as a semiconductor device, which is a heat generating body, and a heat spreader, which is a heat dissipating body.
  • the method of contacting the heat generating body with one side of the heat conductive sheet and the method of contacting the heat dissipating body with the other side of the heat conductive sheet are not particularly limited as long as they can be fixed in a state of sufficient adhesion.
  • a method of placing a heat conductive sheet between the heat generating body and the heat dissipating body, fixing them with a pressurizable jig, and causing the heat generating body to generate heat in this state; a method of heating with an oven, etc.; and the like can be mentioned.
  • Another example is a method of using a press machine that can apply heat and pressure.
  • the device of the present invention can also be applied to wireless elements such as Global Positioning System (GPS), Frequency Modulation (FM), Near field communication (NFC), RF Expansion Module (RFEM), Monolithic Microwave Integrated Circuit (MMIC), Wireless Local Area Network (WLAN), discrete elements, Complementary Metal Oxide Semiconductor (CMOS), CMOS image sensors, camera modules, passive devices, Surface Acoustic Wave (SAW) filters, Radio Frequency (RF) filters, Integrated Passive Devices (IPDs), and the like.
  • wireless elements such as Global Positioning System (GPS), Frequency Modulation (FM), Near field communication (NFC), RF Expansion Module (RFEM), Monolithic Microwave Integrated Circuit (MMIC), Wireless Local Area Network (WLAN), discrete elements, Complementary Metal Oxide Semiconductor (CMOS), CMOS image sensors, camera modules, passive devices, Surface Acoustic Wave (SAW) filters, Radio Frequency (RF) filters, Integrated Passive Devices (IPDs), and the like.
  • the final products in which the device of the present invention is mounted are not particularly limited, and examples include smart TVs, mobile communication terminals, mobile phones, smartphones, tablet terminals, desktop PCs (Personal Computers), notebook PCs, network equipment (routers, switching), wired infrastructure equipment, digital cameras, game consoles, controllers, data centers, servers, mining PCs, HPCs (High Performance Computing), graphic cards, network servers, storage, chipsets, in-vehicle equipment (electronic control equipment, driving assistance systems), car navigation systems, PNDs (Portable Navigation Devices), lighting (general lighting, in-vehicle lighting, LED lighting, OLED (Organic Light Emitting Diode) lighting), televisions, displays, display panels (liquid crystal panels, organic EL (Electro Luminescence) panels, electronic paper), music playback terminals, industrial equipment, industrial robots, inspection equipment, medical equipment, white goods, space or aircraft equipment, wearable devices, etc.
  • the device of the present invention can also be used in applications such as building materials (e.g., flooring, roofing, wall materials, etc.) suitable for temperature control during sudden daytime temperature increases or indoor heating and cooling; clothing (e.g., underwear, jackets, winter clothing, gloves, etc.) suitable for temperature control in response to changes in environmental temperature or changes in body temperature during exercise or at rest; bedding; and exhaust heat utilization systems that store unnecessary exhaust heat and use it as thermal energy.
  • building materials e.g., flooring, roofing, wall materials, etc.
  • clothing e.g., underwear, jackets, winter clothing, gloves, etc.
  • exhaust heat utilization systems that store unnecessary exhaust heat and use it as thermal energy.
  • a molten metal was prepared using an aluminum alloy containing 0.06 mass% Si, 0.30 mass% Fe, 0.005 mass% Cu, 0.001 mass% Mn, 0.001 mass% Mg, 0.001 mass% Zn, 0.001 mass% Ti, and the remainder being Al and unavoidable impurities.
  • the molten metal was treated and filtered, and an ingot having a thickness of 500 mm and a width of 1,200 mm was produced by a DC (Direct Chill) casting method. Next, the surface was scraped off by an average thickness of 10 mm using a facing machine, and then the plate was soaked at 550°C for about 5 hours.
  • the plate When the temperature was lowered to 400°C, the plate was rolled into a 2.7 mm thick plate using a hot rolling machine. Further, the sheet was heat-treated at 500° C. using a continuous annealing machine, and then cold-rolled to a thickness of 1.0 mm to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material. The aluminum substrate was formed into a wafer having a diameter of 200 mm (8 inches) and then subjected to the following treatments.
  • JIS Japanese Industrial Standards
  • Electrolytic polishing treatment The above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing solution having the following composition under conditions of a voltage of 25 V, a solution temperature of 65° C., and a solution flow rate of 3.0 m/min.
  • the cathode was a carbon electrode
  • the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.)
  • the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • (Electrolytic polishing solution composition) 85% by weight phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ 160mL of pure water ⁇ 150mL sulfuric acid ⁇ 30mL ethylene glycol
  • the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-ordering method according to the procedure described in JP-A-2007-204802.
  • the aluminum substrate after electrolytic polishing was subjected to a pre-anodizing treatment for 5 hours in an electrolytic solution of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min.
  • the aluminum substrate after the pre-anodizing treatment was subjected to a coating removal treatment by immersing it in a mixed aqueous solution of 0.2 mol/L chromic anhydride and 0.6 mol/L phosphoric acid (liquid temperature: 50° C.) for 12 hours. Thereafter, re-anodization was performed for 5 hours in an electrolyte of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a liquid temperature of 16° C., and a liquid flow rate of 3.0 m/min, to obtain an anodized film with a thickness of 40 ⁇ m.
  • the cathode was a stainless steel electrode, and the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.).
  • the cooling device was NeoCool BD36 (manufactured by Yamato Scientific Co., Ltd.), and the stirring and heating device was Pair Stirrer PS-100 (manufactured by EYELA Tokyo Rikakikai Co., Ltd.).
  • the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • Component (A) Resin Bisphenol F type epoxy resin (product name: EXA-830CRP, manufactured by DIC Corporation)
  • the CTE (coefficient of linear expansion) in the in-plane direction of the sheets produced in Examples 1 to 5 and Comparative Examples 1 and 2 was measured using a thermal mechanical analyzer (TMA, manufactured by Shimadzu Corporation). Specifically, a sample cut to a width of 4 mm and a length of 14 mm was set on a measuring jig so that the chuck distance was 10 mm, and the temperature was raised and lowered while a tensile load of 1 gf was applied, and the amount of expansion of the sample was measured. The temperature control for heating and cooling was performed by heating from 25° C. to 200° C. at a rate of 5° C./min, then cooling to 25° C.
  • TMA thermal mechanical analyzer
  • Example 1 and 2 In particular, by comparing Examples 1 and 2 with Examples 3 and 4, it was found that when the content of metal nanowires satisfies both requirements 1 and 2, the adhesion between the thermal conduction member and the heat dissipation member is better. Furthermore, a comparison between Example 1 and Example 2 revealed that when the content of metal nanowires was more than 50% by volume, the adhesion between the heat conducting member and the heat dissipating member was further improved. Furthermore, a comparison between Example 1 and Example 5 reveals that the adhesion between the heat conducting member and the heat dissipating member is improved when a resin other than a fluororesin is used.
  • Valve metal substrate Porous (micropore) 3 Anodic oxide film 4 Metal 5 Isolated metal 10 Metal nanowire

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention addresses the problem of providing a heat transfer member and a device using the same, the heat transfer member exhibiting excellent adhesion to a heat-dissipating member even when exposed to a process in which heating and cooling are repeated. The heat transfer member according to the present invention satisfies at least one of requirements 1 and 2. Requirement 1: Contains 40 to 99% by volume of metal nanowire. Requirement 2: Contains 70 to 99 % by mass of metal nanowire.

Description

熱伝導部材およびデバイスThermal Conductive Materials and Devices
 本発明は、熱伝導部材およびデバイスに関する。 The present invention relates to a thermally conductive member and device.
 近年、半導体素子を用いたデバイスは、急速に高機能化および小型化が進んでいる。これに伴って、デバイスにおける半導体素子からの発熱量が多くなっており、発生した熱を外部に放出する必要性が高まっている。
 デバイスの内部で生じた熱を外部に放出する方法としては、放熱部材(例えば、ヒートスプレッダ、ヒートシンク、熱拡散シートなど)を使用する方法が知られている。また、熱を放熱部材に効率的に伝えるため、デバイスの熱源(発熱体)と放熱部材とを、熱伝導部材で接着する方法が知られている。
In recent years, devices using semiconductor elements have rapidly become more functional and smaller. As a result, the amount of heat generated by the semiconductor elements in the devices has increased, and there is an increasing need to dissipate the generated heat to the outside.
Known methods for dissipating heat generated inside a device to the outside include using a heat dissipation member (e.g., a heat spreader, a heat sink, a thermal diffusion sheet, etc.) Also known is a method for bonding a heat source (heat generating element) of the device and the heat dissipation member with a thermally conductive member in order to efficiently transfer heat to the heat dissipation member.
 このような熱伝導部材として、例えば、特許文献1には、熱伝導性粒子および熱伝導性繊維などを含む易変形性凝集体と、バインダー樹脂と、溶剤とを含有する熱伝導性樹脂組成物を用いた、溶剤を除去して得られる熱伝導部材が記載されている([請求項1][請求項4][請求項7]など)。 For example, Patent Document 1 describes such a thermally conductive member that uses a thermally conductive resin composition containing easily deformable aggregates including thermally conductive particles and thermally conductive fibers, a binder resin, and a solvent, and is obtained by removing the solvent ([Claim 1], [Claim 4], [Claim 7], etc.).
特開2014-201687号公報JP 2014-201687 A
 本発明者は、特許文献1に記載された熱伝導部材について検討を行った結果、放熱部材と発熱体との間に熱伝導部材を設置した後、半導体製造工程などにおいて加熱と冷却を繰り返す工程に曝されると、放熱部材と熱伝導部材との密着性が低下することを明らかとした。また、本発明者は、上述した密着性の低下は、熱伝導性繊維として金属ナノワイヤを用いた場合に顕在化する問題であることも明らかとした。これは、金属ナノワイヤが、径がマイクロメートルまたはミリメートルサイズの金属繊維と比較して凝集しやすいことが原因であると考えられる。 The inventors have studied the thermally conductive member described in Patent Document 1 and have found that after the thermally conductive member is placed between the heat dissipation member and the heat generating body, the adhesion between the heat dissipation member and the thermally conductive member decreases when the member is exposed to repeated heating and cooling processes in a semiconductor manufacturing process or the like. The inventors have also found that the aforementioned decrease in adhesion is a problem that becomes apparent when metal nanowires are used as the thermally conductive fibers. This is believed to be because metal nanowires are more likely to aggregate than metal fibers with diameters on the order of micrometers or millimeters.
 そこで、本発明は、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好な熱伝導部材、および、それを用いたデバイスを提供することを課題とする。 The present invention aims to provide a thermally conductive member that maintains good adhesion to a heat dissipation member even after being exposed to repeated heating and cooling processes, and a device that uses the same.
 本発明者は、上記課題を解決すべく鋭意研究した結果、金属ナノワイヤを所定の要件で含有する熱伝導部材が、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好となることを見出し、本発明を完成させた。
 すなわち、本発明者は、以下の構成により上記課題を解決できることを見出した。
As a result of intensive research to solve the above problems, the inventors discovered that a thermally conductive member containing metal nanowires in accordance with certain requirements maintains good adhesion to a heat dissipation member even after being exposed to repeated heating and cooling processes, and thus completed the present invention.
That is, the present inventors have found that the above problems can be solved by the following configuration.
 [1] 下記要件1および2の少なくとも一方を満たす、熱伝導部材。
 要件1:金属ナノワイヤを40~99体積%含有する。
 要件2:金属ナノワイヤを70~99質量%含有する。
 [2] 金属ナノワイヤを構成する金属が、銀および銅からなる群から選択される少なくとも1種の金属である、[1]に記載の熱伝導部材。
 [3] 更に樹脂を含有する、[1]または[2]に記載の熱伝導部材。
 [4] 樹脂が架橋樹脂である、[3]に記載の熱伝導部材。
 [5] シート状である、[3]または[4]に記載の熱伝導部材。
 [6] 発熱体と、[1]~[5]のいずれかに記載の熱伝導部材と、放熱部材とを有する、デバイス。
 [7] 発熱体と、熱伝導部材と、放熱部材とをこの順に隣接して有する、[6]に記載のデバイス。
[1] A thermally conductive member satisfying at least one of the following requirements 1 and 2:
Requirement 1: The metal nanowires are contained at 40 to 99 volume %.
Requirement 2: The metal nanowires are contained in an amount of 70 to 99 mass %.
[2] The heat conductive member according to [1], wherein the metal constituting the metal nanowires is at least one metal selected from the group consisting of silver and copper.
[3] The thermal conductive member according to [1] or [2], further comprising a resin.
[4] The heat conductive member according to [3], wherein the resin is a crosslinked resin.
[5] The heat conductive member according to [3] or [4], which is in a sheet form.
[6] A device comprising a heat generating body, the heat conducting member according to any one of [1] to [5], and a heat dissipating member.
[7] The device according to [6], comprising a heat generating element, a thermally conductive member, and a heat dissipating member adjacent to each other in this order.
 本発明によれば、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好な熱伝導部材、および、それを用いたデバイスを提供することができる。 The present invention provides a thermally conductive member that has good adhesion to a heat dissipation member even after being exposed to repeated heating and cooling processes, and a device using the same.
図1Aは、金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程前のバルブ金属基材の模式的断面図である。FIG. 1A is a schematic cross-sectional view of a valve metal substrate prior to an anodization step in a procedure showing an example of a method for producing metal nanowires. 図1Bは、金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程後の構造体の模式的断面図である。FIG. 1B is a schematic cross-sectional view of a structure after an anodization step in the procedure showing an example of a method for producing metal nanowires. 図1Cは、金属ナノワイヤの製造方法の一例を示す手順のうち、金属充填工程後の構造体の模式的断面図である。FIG. 1C is a schematic cross-sectional view of a structure after a metal filling step in the procedure showing an example of a method for producing metal nanowires. 図1Dは、金属ナノワイヤの製造方法の一例を示す手順のうち、単離工程後の構造体の模式的断面図である。FIG. 1D is a schematic cross-sectional view of the structure after the isolation step in the procedure showing one example of a method for producing metal nanowires. 図1Eは、金属ナノワイヤの製造方法の一例を示す手順のうち、解砕工程後の構造体(金属ナノワイヤ)の模式的断面図である。FIG. 1E is a schematic cross-sectional view of a structure (metal nanowires) after a crushing step in the procedure showing an example of a method for producing metal nanowires.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記である。
The present invention will be described in detail below.
The following description of the components may be based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In addition, in this specification, "(meth)acrylic" is a notation representing "acrylic" or "methacrylic".
[熱伝導部材]
 本発明の熱伝導部材は、下記要件1および2の少なくとも一方を満たす熱伝導部材であり、少なくとも下記要件2を満たす熱伝導部材であることが好ましく、放熱部材との密着性がより良好となる理由から、下記要件1および2をいずれも満たす熱伝導部材であることがより好ましい。
 要件1:金属ナノワイヤを40~99体積%含有する。
 要件2:金属ナノワイヤを70~99質量%含有する。
 ここで、要件1における「体積%」は、熱伝導部材に含まれる各成分の質量を計測し、(各成分の質量÷各成分の比重)を計算して各成分の体積を算出することによって求めることができる。
[Heat conductive material]
The thermally conductive member of the present invention is a thermally conductive member that satisfies at least one of the following requirements 1 and 2, and is preferably a thermally conductive member that satisfies at least the following requirement 2, and is more preferably a thermally conductive member that satisfies both of the following requirements 1 and 2, because this provides better adhesion to the heat dissipation member.
Requirement 1: The metal nanowires are contained at 40 to 99 volume %.
Requirement 2: The metal nanowires are contained in an amount of 70 to 99 mass %.
Here, the "volume percentage" in requirement 1 can be determined by measuring the mass of each component contained in the thermal conductive member and calculating the volume of each component by dividing the mass of each component by the specific gravity of each component.
 本発明においては、上述した通り、要件1および2の少なくとも一方を満たす熱伝導部材が、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好となる。
 ここで、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好となる理由は、詳細には明らかではないが、およそ以下のとおりと推測される。
 すなわち、要件1および2の少なくとも一方を満たすことにより、金属ナノワイヤ同士が絡み合うことにより強度が向上し、また、金属ナノワイヤ以外の成分(例えば、樹脂、金属粒子など)の含有量が少なくなり、その結果、放熱部材(例えば、銅板などからなるヒートスプレッダ)との熱膨張差が小さくなったため、加熱と冷却を繰り返す工程に曝された後においても放熱部材との密着性が良好となったと考えられる。
In the present invention, as described above, a thermally conductive member that satisfies at least one of requirements 1 and 2 maintains good adhesion to a heat dissipating member even after being subjected to a process in which heating and cooling are repeated.
Here, the reason why the adhesion to the heat dissipation member is good even after exposure to the process of repeated heating and cooling is not clear in detail, but is presumed to be as follows.
In other words, by satisfying at least one of requirements 1 and 2, the strength is improved by the metal nanowires becoming entangled with each other, and the content of components other than the metal nanowires (e.g., resin, metal particles, etc.) is reduced. As a result, the thermal expansion difference with the heat dissipation member (e.g., a heat spreader made of a copper plate, etc.) is reduced, and it is believed that the adhesion to the heat dissipation member is good even after being exposed to repeated heating and cooling processes.
 本発明の熱伝導部材は、下記要件1-1および2-1の少なくとも一方を満たすことが好ましく、下記要件1-2および2-2の少なくとも一方を満たすことがより好ましい。
 また、本発明の熱伝導部材は、下記要件1-1および2-1をいずれも満たすことが更に好ましく、下記要件1-2および2-2をいずれも満たすことが特に好ましい。
 更に、本発明の熱伝導部材は、放熱部材との密着性がより良好となる理由から、金属ナノワイヤを50体積%超99体積%以下含有していることが好ましい。
 要件1-1:金属ナノワイヤを45~90体積%含有する。
 要件2-1:金属ナノワイヤを75~99質量%含有する。
 要件1-2:金属ナノワイヤを50~80体積%含有する。
 要件2-2:金属ナノワイヤを80~98質量%含有する。
The heat conductive member of the present invention preferably satisfies at least one of the following requirements 1-1 and 2-1, and more preferably satisfies at least one of the following requirements 1-2 and 2-2.
Furthermore, it is more preferable that the heat conductive member of the present invention satisfy both of the following requirements 1-1 and 2-1, and it is particularly preferable that the heat conductive member of the present invention satisfy both of the following requirements 1-2 and 2-2.
Furthermore, the thermally conductive member of the present invention preferably contains more than 50 volume % and not more than 99 volume % of metal nanowires, for the reason that this provides better adhesion to the heat dissipation member.
Requirement 1-1: The metal nanowires are contained at 45 to 90 volume %.
Requirement 2-1: The metal nanowires are contained in an amount of 75 to 99 mass %.
Requirement 1-2: The metal nanowires are contained at 50 to 80 volume %.
Requirement 2-2: The metal nanowires are contained in an amount of 80 to 98 mass %.
 〔金属ナノワイヤ〕
 本発明の熱伝導部材に含まれる金属ナノワイヤは、材質が金属であり、形状が針状または糸状の導電性物質であって、径がナノメートルサイズである導電性物質である。
 なお、金属ナノワイヤは直線状であってもよく、曲線状であってもよい。
 また、金属ナノワイヤの材質は、金属を含むものであれば特に限定されず、金属とともに金属以外の成分を含むものであってもよい。
[Metal Nanowires]
The metal nanowires contained in the heat conducting member of the present invention are conductive substances made of metal, having a needle-like or thread-like shape, and having a diameter on the order of nanometers.
The metal nanowires may be either straight or curved.
Furthermore, the material of the metal nanowires is not particularly limited as long as it contains a metal, and may contain components other than metals in addition to the metal.
 上記金属ナノワイヤの単位質量あたりの比表面積は、100~50000m/kgであることが好ましく、100m/kg超50000m/kg以下であることがより好ましく、1000m/kg超50000m/kg以下であることが更に好ましく、2000m/kg超30000m/kg以下であることが特に好ましく、3000m/kg超20000m/kg以下であることが最も好ましい。
 ここで、単位質量あたりの比表面積は、得られた金属ナノワイヤの比表面積は既知の解析手法により測定可能であるが、本発明においては、クリプトンガス吸着法による測定値を採用する。
The specific surface area per unit mass of the metal nanowires is preferably 100 to 50,000 m 2 /kg, more preferably more than 100 m 2 /kg and not more than 50,000 m 2 /kg, even more preferably more than 1,000 m 2 /kg and not more than 50,000 m 2 /kg, particularly preferably more than 2,000 m 2 /kg and not more than 30,000 m 2 /kg, and most preferably more than 3,000 m 2 /kg and not more than 20,000 m 2 /kg.
Here, the specific surface area per unit mass of the obtained metal nanowires can be measured by known analytical methods, but in the present invention, a value measured by a krypton gas adsorption method is used.
 本発明においては、上記金属ナノワイヤを構成する金属は特に限定されないが、電気抵抗率が10Ω・cm以下の材料であることが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)等が好適に例示される。
 これらのうち、特に熱伝導率が高い理由から、AgおよびCuからなる群から選択される少なくとも1種の金属であることが好ましく、Cuであることがより好ましい。
In the present invention, the metal constituting the above-mentioned metal nanowires is not particularly limited, but it is preferable that the metal be a material having an electrical resistivity of 10 3 Ω·cm or less, and specific examples of such metals include gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni), cobalt (Co), etc.
Among these, at least one metal selected from the group consisting of Ag and Cu is preferable, and Cu is more preferable, because of its particularly high thermal conductivity.
 上記金属ナノワイヤの直径(相加平均値)は、10~200nmであることが好ましく、10~100nmであることがより好ましく、10~50nmであることが更に好ましい。
 上記金属ナノワイヤの長さ(相加平均値)は、0.3~300μmであることが好ましく、0.5~200μmであることがより好ましく、1μm~100μmであることが更に好ましい。
 ここで、上記金属ナノワイヤの直径および長さは、例えば、電界放射型走査型電子顕微鏡(FE-SEM)を用い、100~500倍の倍率でSEM像を観察することにより求めることができる。具体的には、金属ナノワイヤの直径および長さは、100~500倍の倍率で撮影されたSEM像からランダムに10本選択した金属ナノワイヤを観察して直径および長さを測定し、それを10視野で行い、計100本の金属ナノワイヤの直径および長さの測定値の平均値をいう。
The diameter (arithmetic mean value) of the metal nanowires is preferably 10 to 200 nm, more preferably 10 to 100 nm, and even more preferably 10 to 50 nm.
The length (arithmetic mean value) of the metal nanowires is preferably 0.3 to 300 μm, more preferably 0.5 to 200 μm, and even more preferably 1 μm to 100 μm.
Here, the diameter and length of the metal nanowire can be determined, for example, by observing an SEM image at a magnification of 100 to 500 times using a field emission scanning electron microscope (FE-SEM). Specifically, the diameter and length of the metal nanowire are determined by observing 10 metal nanowires randomly selected from an SEM image taken at a magnification of 100 to 500 times, measuring their diameters and lengths, and performing this in 10 fields of view, and averaging the measured values of the diameters and lengths of a total of 100 metal nanowires.
 上記金属ナノワイヤの直径に対する長さの比(長さ/直径)(以下、「アスペクト比」とも略す。)は、10以上であることが好ましく、100~1000であるのがより好ましい。 The ratio of the length to the diameter (length/diameter) of the metal nanowire (hereinafter also abbreviated as "aspect ratio") is preferably 10 or more, and more preferably 100 to 1000.
 <金属ナノワイヤの作製方法>
 本発明の熱伝導部材に含まれる金属ナノワイヤの製造方法(以下、形式的に「本発明の製造方法」とも略す。)は、単位質量あたりの比表面積を100~50000m/kgに調整することが容易となる理由から、ポーラスを有する陽極酸化膜をバルブ金属基材の表面に形成する陽極酸化工程と、ポーラスに金属を充填する金属充填工程と、充填した金属を陽極酸化膜およびバルブ金属基材から単離する単離工程と、単離した金属(以下、「単離金属」とも略す。)を解砕して金属ナノワイヤを得る解砕工程とを有する方法であることが好ましい。
<Method of Producing Metal Nanowires>
The method for producing the metal nanowires contained in the heat conduction member of the present invention (hereinafter also formally abbreviated as "the production method of the present invention") is preferably a method having an anodization process for forming an anodized film having pores on the surface of a valve metal substrate, a metal filling process for filling the pores with metal, an isolation process for isolating the filled metal from the anodized film and the valve metal substrate, and a crushing process for crushing the isolated metal (hereinafter also abbreviated as "isolated metal") to obtain metal nanowires, because this makes it easy to adjust the specific surface area per unit mass to 100 to 50,000 m2/kg.
 次に、図1A~図1Eを用いて、本発明の製造方法における各工程の概要を説明した後に、各処理工程について詳述する。 Next, we will use Figures 1A to 1E to provide an overview of each step in the manufacturing method of the present invention, and then provide a detailed description of each processing step.
 図1Aおよび図1Bに示すように、陽極酸化工程において、バルブ金属基材1の表面に陽極酸化処理を施し、バルブ金属基材1の表面に、ポーラス(マイクロポア)2を有する陽極酸化膜3を形成する。
 次いで、図1Cに示す通り、金属充填工程において、ポーラス2に金属4を充填する。
 次いで、図1Dに示す通り、単離工程において、充填した金属4を陽極酸化膜3およびバルブ金属基材1から単離する。なお、図1Dに示す態様は、単離工程によって得られた単離金属5を回収した状態(単離金属の一部が凝着している状態)を示すものである。
 次いで、図1Eに示す通り、解砕工程において、単離金属5が解砕された金属ナノワイヤ10を得ることができる。
As shown in FIGS. 1A and 1B, in the anodizing step, the surface of a valve metal substrate 1 is anodized to form an anodized film 3 having pores (micropores) 2 on the surface of the valve metal substrate 1.
Next, as shown in FIG. 1C, in a metal filling step, the pores 2 are filled with a metal 4.
Next, as shown in Fig. 1D, in the isolation step, the filled metal 4 is isolated from the anodized film 3 and the valve metal substrate 1. The embodiment shown in Fig. 1D shows the state in which the isolated metal 5 obtained in the isolation step is collected (a part of the isolated metal is adhered).
Next, as shown in FIG. 1E, in a crushing step, metal nanowires 10 in which the isolated metal 5 is crushed can be obtained.
 (バルブ金属基材)
 本発明の製造方法に用いられるバルブ金属基材は、バルブ金属を含有する基材であれば特に限定されない。
 ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
 そのため、本発明の製造方法においては、バルブ金属基材としてアルミニウムを含む基材(以下、「アルミニウム基材」と略す。)を用いることが好ましい。
(Valve metal substrate)
The valve metal substrate used in the manufacturing method of the present invention is not particularly limited as long as it is a substrate containing a valve metal.
Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, etc. Among these, aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
Therefore, in the manufacturing method of the present invention, it is preferable to use a base material containing aluminum (hereinafter, abbreviated as "aluminum base material") as the valve metal base material.
 アルミニウム基材は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基材;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基材;アルミニウムをラミネートした樹脂基材;等が挙げられる。 The aluminum substrate is not particularly limited, and specific examples include pure aluminum plates; alloy plates containing aluminum as the main component and trace amounts of other elements; substrates in which high-purity aluminum is vapor-deposited onto low-purity aluminum (e.g., recycled materials); substrates in which the surfaces of silicon wafers, quartz, glass, etc. are coated with high-purity aluminum by methods such as vapor deposition and sputtering; and resin substrates laminated with aluminum.
 バルブ金属基材のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、バルブ金属純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。バルブ金属純度が上述の範囲であると、貫通路の配列の規則性が十分となる。 The surface of the valve metal substrate that is anodized in the anodizing process described below preferably has a valve metal purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and even more preferably 99.99% by mass or more. When the valve metal purity is within the above-mentioned range, the arrangement of the through passages is sufficiently regular.
 また、バルブ金属基材のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されることが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の段落[0044]~[0054]に記載された各処理と同様の処理を施すことができる。
In addition, the surface of the valve metal base material that is to be anodized in the anodizing step described below is preferably previously subjected to a heat treatment, a degreasing treatment and a mirror finish treatment.
Here, the heat treatment, degreasing treatment and mirror finish treatment can be the same as those described in paragraphs [0044] to [0054] of JP-A-2008-270158.
 (陽極酸化工程)
 上記陽極酸化工程は、上記バルブ金属基材の表面に陽極酸化処理を施すことにより、上記バルブ金属基材の表面に、ポーラスを有する陽極酸化膜を形成する工程である。
(Anodizing process)
The anodizing step is a step of forming a porous anodized film on the surface of the valve metal base by subjecting the surface of the valve metal base to an anodizing treatment.
 上記陽極酸化工程で行う陽極酸化処理は、従来公知の方法を用いることができるが、後述する単離工程において、直径にバラツキの少ない充填した金属を単離することができる理由から、自己規則化法や定電圧処理を用いるのが好ましい。
 ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
The anodizing treatment carried out in the anodizing step can be a conventionally known method, but it is preferable to use a self-ordering method or a constant voltage treatment because this makes it possible to isolate the filled metal with less variation in diameter in the isolation step described below.
Here, the self-ordering method of the anodizing treatment and the constant voltage treatment can be the same as the treatments described in paragraphs [0056] to [0108] and in FIG. 3 of JP-A-2008-270158.
 陽極酸化処理は、例えば、酸濃度1~10質量%の溶液中で、バルブ金属基材を陽極として通電する方法を用いることができる。
 陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が更に好ましく、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
The anodizing treatment can be carried out, for example, by passing a current through a valve metal substrate as an anode in a solution having an acid concentration of 1 to 10% by mass.
The solution used in the anodizing treatment is preferably an acid solution, more preferably sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartaric acid, malic acid, citric acid, etc., and among these, sulfuric acid, phosphoric acid, and oxalic acid are further preferable, and oxalic acid is particularly preferable. These acids can be used alone or in combination of two or more kinds.
 極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.1~20質量%、液温-10~30℃、電流密度0.01~20A/dm、電圧3~300V、電解時間0.5~30時間であるのが好ましく、電解液濃度0.5~15質量%、液温-5~25℃、電流密度0.05~15A/dm、電圧5~250V、電解時間1~25時間であるのがより好ましく、電解液濃度1~10質量%、液温0~20℃、電流密度0.1~10A/dm、電圧10~200V、電解時間2~20時間であるのが更に好ましい。 The conditions for the anodizing treatment vary depending on the electrolyte used and cannot be determined in general, but generally, the electrolyte concentration is preferably 0.1 to 20% by mass, the solution temperature is -10 to 30°C, the current density is 0.01 to 20 A/ dm2 , the voltage is 3 to 300 V, and the electrolysis time is 0.5 to 30 hours, more preferably the electrolyte concentration is 0.5 to 15% by mass, the solution temperature is -5 to 25°C, the current density is 0.05 to 15 A/ dm2 , the voltage is 5 to 250 V, and the electrolysis time is 1 to 25 hours, and even more preferably the electrolyte concentration is 1 to 10% by mass, the solution temperature is 0 to 20°C, the current density is 0.1 to 10 A/ dm2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours.
 陽極酸化処理の処理時間は、0.5分~16時間であるのが好ましく、1分~12時間であるのがより好ましく、2分~8時間であるのが更に好ましい。 The anodizing treatment time is preferably 0.5 minutes to 16 hours, more preferably 1 minute to 12 hours, and even more preferably 2 minutes to 8 hours.
 上記陽極酸化工程により形成される陽極酸化膜の厚みは特に限定されないが、金属ナノワイヤの長さを調整する観点から、0.3~300μmであることが好ましく、0.5~120μmであることがより好ましく、0.5~100μmであることが更に好ましい。
 なお、陽極酸化膜の厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(FIB)で切削加工し、その断面を電界放射型走査型電子顕微鏡(FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出することができる。
The thickness of the anodized film formed by the anodization process is not particularly limited, but from the viewpoint of adjusting the length of the metal nanowires, it is preferably 0.3 to 300 μm, more preferably 0.5 to 120 μm, and even more preferably 0.5 to 100 μm.
The thickness of the anodic oxide film can be calculated as the average value of 10 measurements taken by cutting the anodic oxide film in the thickness direction with a focused ion beam (FIB), taking surface photographs (magnification: 50,000 times) of the cross section with a field emission scanning electron microscope (FE-SEM).
 上記陽極酸化工程により形成されるポーラスの密度は特に限定されないが、200万個/mm以上であることが好ましく、1000万個/mm以上であることがより好ましく、5000万個/mm以上であるのが更に好ましく、1億個/mm以上であるのが特に好ましい。
 なお、ポーラスの密度は、特開2008-270158号公報の[0168]および[0169]段落に記載された方法で測定し、算出することができる。
The density of the pores formed by the anodization process is not particularly limited, but is preferably 2 million pores/ mm2 or more, more preferably 10 million pores/ mm2 or more, even more preferably 50 million pores/mm2 or more, and particularly preferably 100 million pores/ mm2 or more.
The density of the pores can be measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
 上記陽極酸化工程により形成されるポーラスの平均開口径は特に限定されないが、金属ナノワイヤの直径を調整する観点から、5~500nmであることが好ましく、20~400nmであることがより好ましく、40~200nmであることが更に好ましく、50~100nmであることが特に好ましい。
 なお、ポーラスの平均開口径は、FE-SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出することができる。
The average opening diameter of the pores formed by the above-mentioned anodization process is not particularly limited, but from the viewpoint of adjusting the diameter of the metal nanowires, it is preferably 5 to 500 nm, more preferably 20 to 400 nm, even more preferably 40 to 200 nm, and particularly preferably 50 to 100 nm.
The average opening diameter of the pores can be calculated as the average value of measurements taken at 50 points on a surface photograph (magnification: 50,000 times) taken with an FE-SEM.
 (金属充填工程)
 上記金属充填工程は、上記陽極酸化工程の後に、ポーラスの内部に金属を充填する工程である。
(Metal filling process)
The metal filling step is a step of filling the inside of the pores with a metal after the anodization step.
 上記金属は、上記金属ナノワイヤを構成する金属として説明したものと同様のものが挙げられる。 The above metals can be the same as those described above as the metals that make up the metal nanowires.
 上記金属をポーラスの内部に充填する方法としては、例えば、特開2008-270158号公報の段落[0123]~[0126]および[図4]に記載された各方法と同様の方法等が挙げられる。 Methods for filling the interior of the pores with the metal include, for example, methods similar to those described in paragraphs [0123] to [0126] and [Figure 4] of JP 2008-270158 A.
 本発明の製造方法においては、作製される金属ナノワイヤに空洞部分が含まれ難くなる理由から、上記金属充填工程がめっき工程を含むことが好ましい。
 具体的には、上記金属をポーラスの内部に充填する方法として、電解めっき処理方法を用いることが好ましく、例えば、電解めっき法または無電解めっき法を用いることができる。
 ここで、着色などに用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、本発明の製造方法においては、電解めっき法により金属を充填する場合は、パルス電解または定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒あることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
In the manufacturing method of the present invention, it is preferable that the metal filling step includes a plating step, because this makes it difficult for the produced metal nanowires to contain hollow portions.
Specifically, it is preferable to use an electrolytic plating method as a method for filling the inside of the pores with the metal, and for example, an electrolytic plating method or an electroless plating method can be used.
Here, it is difficult to selectively deposit (grow) a metal in a hole with a high aspect ratio using a conventional electrolytic plating method used for coloring, etc. This is thought to be because the deposited metal is consumed in the hole and the plating does not grow even if electrolysis is performed for a certain period of time or more.
Therefore, in the manufacturing method of the present invention, when filling metal by electrolytic plating, it is necessary to provide a rest period during pulse electrolysis or constant potential electrolysis. The rest period must be 10 seconds or more, and is preferably 30 to 60 seconds.
It is also preferable to apply ultrasonic waves to promote stirring of the electrolyte.
Furthermore, the electrolysis voltage is usually 20 V or less, and preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte solution to be used in advance and perform constant-potential electrolysis at a potential within +1 V of that potential. When performing constant-potential electrolysis, it is preferable to use a device that can also be used with cyclic voltammetry, and a potentiostat device manufactured by Solartron, BAS, Hokuto Denko, IVIUM, etc. can be used.
 めっき液は、従来公知のめっき液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであるのが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであるのが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
As the plating solution, a conventionally known plating solution can be used.
Specifically, when copper is precipitated, an aqueous solution of copper sulfate is generally used, and the concentration of the copper sulfate is preferably 1 to 300 g/L, and more preferably 100 to 200 g/L. Precipitation can be promoted by adding hydrochloric acid to the electrolyte. In this case, the concentration of hydrochloric acid is preferably 10 to 20 g/L.
When gold is to be deposited, it is preferable to use a sulfuric acid solution of gold tetrachloride and to perform plating by AC electrolysis.
 なお、無電解めっき法では、アスペクトの高いポーラスからなる孔中に金属を完全に充填には長時間を要するので、本発明の製造方法においては、電解めっき法により金属を充填するのが望ましい。 In addition, since it takes a long time to completely fill the pores of high aspect ratio pores with metal using electroless plating, it is preferable to fill the metal using electrolytic plating in the manufacturing method of the present invention.
 本発明の製造方法においては、電解めっき処理方法として、交流電解めっき法と直流電解めっき法とをこの順で組み合わせた処理方法を用いることが好ましい。
 ここで、交流電解めっき法は、例えば、電圧を予め定めた周波数で正弦波状に変調させて印加する。なお、電圧の変調の際の波形は正弦波に限定されるものではなく、例えば、矩形波、三角波、のこぎり波、または逆のこぎり波とすることもできる。
 また、直流電解めっき法は、上述した電解めっき法における処理方法を適宜用いることができる。
In the manufacturing method of the present invention, it is preferable to use, as the electrolytic plating method, a treatment method in which AC electrolytic plating and DC electrolytic plating are combined in this order.
Here, in the AC electrolytic plating method, for example, a voltage is applied modulated into a sine wave at a predetermined frequency. Note that the waveform of the voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or an inverse sawtooth wave.
In addition, the DC electrolytic plating method can appropriately use the treatment methods in the electrolytic plating method described above.
 本発明の製造方法においては、金属ナノワイヤを製造する時間を短縮できる理由から、図1Cにも示す通り、上記金属充填工程における金属の充填が、ポーラスの底部から開口部までの全領域のうち、ポーラスの底部から開口部の途中までの領域に対して施される処理であることが好ましい。 In the manufacturing method of the present invention, because it is possible to shorten the time required to manufacture metal nanowires, as shown in FIG. 1C, it is preferable that the metal filling step is a process that is performed on the region from the bottom of the hole to halfway through the opening, out of the entire region from the bottom of the hole to the opening.
 (単離工程)
 上記単離工程は、上記金属充填工程の後に、充填した金属を上記陽極酸化膜および上記バルブ金属基材から単離する工程である。
 ここで、充填した金属を上記陽極酸化膜および上記バルブ金属基材から単離する方法は特に限定されず、例えば、上記陽極酸化膜および上記バルブ金属基材を除去(例えば、溶解、剥離など)し、充填した金属を単離する方法が好適に挙げられる。そのため、上記単離工程後の態様としては、例えば、後述する溶解工程(溶解処理)に用いた処理液中に、充填した金属が単離された状態で分散している態様も含まれる。
(Isolation step)
The isolation step is a step of isolating the filled metal from the anodized film and the valve metal substrate after the metal filling step.
Here, the method of isolating the filled metal from the anodized film and the valve metal base material is not particularly limited, and for example, the method of removing (for example, dissolving, peeling, etc.) the anodized film and the valve metal base material and isolating the filled metal can be preferably mentioned.Therefore, the embodiment after the above-mentioned isolation process also includes, for example, the embodiment in which the filled metal is dispersed in an isolated state in the treatment liquid used in the dissolution process (dissolution treatment) described later.
 本発明の製造方法においては、上記陽極酸化膜および上記バルブ金属基材を除去する方法は特に限定されず、例えば、研摩により除去する態様であってもよいが、作製される金属ナノワイヤの長さが均一になる理由から、上記単離工程が溶解工程を含むこと、すなわち、溶解処理によって上記陽極酸化膜および上記バルブ金属基材の少なくとも一部を除去することが好ましい。 In the manufacturing method of the present invention, the method for removing the anodic oxide film and the valve metal substrate is not particularly limited, and may be, for example, by polishing. However, in order to ensure that the length of the produced metal nanowires is uniform, it is preferable that the isolation process includes a dissolution process, that is, that at least a portion of the anodic oxide film and the valve metal substrate is removed by a dissolution process.
 本発明の製造方法においては、作製される金属ナノワイヤの形状やサイズが維持される理由から、上記単離工程が、上記陽極酸化膜を除去するとともに、上記バルブ金属基材を除去する1段階の除去工程を含むことが好ましく、上記陽極酸化膜の除去が溶解処理によって除去される工程であることがより好ましい。
 また、同様の理由から、上記単離工程が、上記バルブ金属基材を除去し、その後に上記陽極酸化膜を除去する2段階の除去工程を含む工程であってもよく、この場合、2段階の除去工程がいずれも溶解処理によって除去される工程であることがより好ましい。
In the manufacturing method of the present invention, in order to maintain the shape and size of the metal nanowires produced, it is preferable that the isolation process includes a one-step removal process of removing the anodic oxide film and the valve metal substrate, and it is more preferable that the removal of the anodic oxide film is a process in which the anodic oxide film is removed by a dissolution treatment.
For the same reason, the isolation step may include a two-step removal step of removing the valve metal base material and then removing the anodic oxide film, and in this case, it is more preferable that both of the two removal steps are performed by dissolution treatment.
 上記バルブ金属基材の除去は、陽極酸化膜を溶解しにくく、バルブ金属を溶解しやすい処理液を用いた溶解処理が好ましい。
 このような処理液は、バルブ金属に対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、バルブ金属よりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。
The removal of the valve metal substrate is preferably carried out by a dissolution treatment using a treatment liquid which does not easily dissolve the anodized film but easily dissolves the valve metal.
The dissolution rate of such a treatment solution for valve metal is preferably 1 μm/min or more, more preferably 3 μm/min or more, and even more preferably 5 μm/min or more.Similarly, the dissolution rate of anodized film is preferably 0.1 nm/min or less, more preferably 0.05 nm/min or less, and even more preferably 0.01 nm/min or less.
Specifically, the treatment liquid preferably contains at least one metal compound having a lower ionization tendency than the valve metal, and has a pH of 4 or less or 8 or more, more preferably a pH of 3 or less or 9 or more, and even more preferably a pH of 2 or less or 10 or more.
 このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。
Such a treatment liquid is preferably based on an acid or alkaline aqueous solution and contains, for example, compounds of manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, and gold (e.g., chloroplatinic acid), their fluorides, or their chlorides.
Among these, an acid aqueous solution base is preferred, and a chloride blend is preferred.
In particular, a treatment solution in which mercury chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution in which copper chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/copper chloride) are preferred from the viewpoint of treatment latitude.
The composition of such a treatment liquid is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, etc. can be used.
 また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃がより好ましい。
The acid or alkali concentration of such a treatment solution is preferably from 0.01 to 10 mol/L, and more preferably from 0.05 to 5 mol/L.
Furthermore, the processing temperature when using such a processing solution is preferably from -10°C to 80°C, and more preferably from 0°C to 60°C.
 また、上記バルブ金属基材の除去は、上記金属充填工程後のバルブ金属基材を上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 The valve metal substrate is removed by contacting the valve metal substrate after the metal filling step with the treatment liquid described above. The contact method is not particularly limited, and examples include the immersion method and the spray method. Of these, the immersion method is preferred. The contact time is preferably 10 seconds to 5 hours, and more preferably 1 minute to 3 hours.
 上記陽極酸化膜の除去は、ポーラスに充填した金属を溶解せず、陽極酸化膜を選択的に溶解する溶媒を用いることができ、アルカリ水溶液および酸水溶液のいずれも用いることができる。 To remove the anodic oxide film, a solvent that does not dissolve the metal filled in the pores but selectively dissolves the anodic oxide film can be used, and either an alkaline aqueous solution or an acid aqueous solution can be used.
 ここで、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも1つのアルカリの水溶液を用いることが好ましく、水酸化カリウムの水溶液を用いることがより好ましい。また、アルカリ水溶液の濃度は1~30質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、20~60℃がより好ましく、30~60℃であるのが更に好ましい。
 一方、酸水溶液を用いる場合は、クロム酸、硫酸、リン酸、硝酸、塩酸、シュウ酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましく、クロム酸の水溶液を用いることがより好ましい。また、酸水溶液の濃度は1~30質量%であるのが好ましい。酸水溶液の温度は、15~80℃が好ましく、20~60℃がより好ましく、30~50℃が更に好ましい。
When an alkaline aqueous solution is used, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide, and it is more preferable to use an aqueous solution of potassium hydroxide. The concentration of the alkaline aqueous solution is preferably 1 to 30 mass %. The temperature of the alkaline aqueous solution is preferably 10 to 60°C, more preferably 20 to 60°C, and even more preferably 30 to 60°C.
On the other hand, when an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as chromic acid, sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, oxalic acid, or a mixture thereof, and it is more preferable to use an aqueous solution of chromic acid. The concentration of the aqueous acid solution is preferably 1 to 30 mass %. The temperature of the aqueous acid solution is preferably 15 to 80°C, more preferably 20 to 60°C, and even more preferably 30 to 50°C.
 また、上記陽極酸化膜の除去は、上記金属充填工程後(好ましくはバルブ金属基材を除去した後)に上述したアルカリ水溶液および酸水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。アルカリ水溶液および酸水溶液への浸せき時間は、1~120分であるのが好ましく、2~90分であるのがより好ましく、3~60分であるのが更に好ましく、3~30分であるのが特に好ましい。なかでも、3~20分であるのが好ましく、3~10分であるのがより好ましい。 The anodic oxide film is removed by contacting the above-mentioned alkaline aqueous solution and acid aqueous solution after the metal filling step (preferably after the valve metal substrate is removed). The contacting method is not particularly limited, and examples include immersion and spraying. Of these, the immersion method is preferred. The immersion time in the alkaline aqueous solution and acid aqueous solution is preferably 1 to 120 minutes, more preferably 2 to 90 minutes, even more preferably 3 to 60 minutes, and particularly preferably 3 to 30 minutes. Of these, 3 to 20 minutes is preferred, and 3 to 10 minutes is more preferred.
 (解砕工程)
 上記解砕工程は、上記単離工程の後に、単離金属を解砕する工程である。
 単離金属を解砕する方法は特に限定されないが、例えば、液中で単離金属に衝撃与えて解砕する方法が好適に挙げられる。
 解砕に用いる液体(溶媒)としては、単離金属を変質および溶解させなければ特に限定されないが、例えば、水、エタノール、メタノール、アセトン、メチルエチルケトン、ブタノール、酢酸エチル、酢酸ブチル、テトラヒドロフラン、トルエン、ジメチルホルムアミド、シクロヘキサン、シクロヘキサノンなどが挙げられる。これらのうち、安全性の観点から水であることが好ましい。
 また、上記解砕工程は、接合時により高い接合強度を有する金属ナノワイヤを作製できる観点から、水中、または、アルカリもしくは酸の濃度が1質量%未満となる水溶液中で行われることが好ましい。
 解砕処理としては、例えば、キャビテーションを利用した解砕処理や、セラミックスボールを衝突させた解砕処理などが挙げられ、超音波洗浄機、超音波ホモジナイザー、ジェットミル、湿式微粒化装置などの装置を用いることができる。これらのうち、キャビテーションを利用した解砕処理、または、セラミックスボールを衝突させた解砕処理が好ましく、キャビテーションを利用した解砕処理がより好ましい。
(Crushing process)
The crushing step is a step of crushing the isolated metal after the isolation step.
The method for crushing the isolated metal is not particularly limited, but a suitable example is a method in which the isolated metal is crushed by applying an impact to the isolated metal in a liquid.
The liquid (solvent) used for disintegration is not particularly limited as long as it does not alter or dissolve the isolated metal, and examples thereof include water, ethanol, methanol, acetone, methyl ethyl ketone, butanol, ethyl acetate, butyl acetate, tetrahydrofuran, toluene, dimethylformamide, cyclohexane, cyclohexanone, etc. Among these, water is preferred from the viewpoint of safety.
In addition, the crushing step is preferably carried out in water or in an aqueous solution having an alkali or acid concentration of less than 1 mass %, from the viewpoint of producing metal nanowires having higher bonding strength when bonded.
Examples of the crushing treatment include a crushing treatment using cavitation and a crushing treatment using ceramic balls, and devices such as an ultrasonic cleaner, an ultrasonic homogenizer, a jet mill, a wet type micronizer, etc. Among these, a crushing treatment using cavitation or a crushing treatment using ceramic balls is preferred, and a crushing treatment using cavitation is more preferred.
 本発明においては、液中で圧力を解砕する際の液中での単離金属の濃度は、処理が均一となり、生産性が向上する理由から、0.1~50質量%が好ましい。
 また、液中で圧力を解砕する際の液中での単離金属の濃度は、接合時により高い接合強度を有する金属ナノワイヤを得ることができる理由から、0.5~30質量%がより好ましく、1~10質量%が更に好ましい。
In the present invention, the concentration of the isolated metal in the liquid during pressure disintegration in the liquid is preferably 0.1 to 50 mass % because this makes the treatment uniform and improves productivity.
Furthermore, the concentration of the isolated metal in the liquid when the pressure is released in the liquid is more preferably 0.5 to 30 mass%, and even more preferably 1 to 10 mass%, because this allows for the production of metal nanowires having higher bonding strength upon bonding.
 (乾燥工程)
 本発明の製造方法は、接合時に高い接合強度を有する金属ナノワイヤを得ることができるという本発明の効果が顕在化する理由から、上記単離工程と上記解砕工程との間に、更に、単離金属を乾燥する乾燥工程を有していることが好ましい。
 ここで、単離金属を乾燥する方法は特に限定されないが、上記陽極酸化膜および上記バルブ金属基材を除去した後に、フィルター等を用いた濾過、遠心分離などの分離操作を行うことにより、単離金属を回収することにより乾燥することができる。
(Drying process)
The manufacturing method of the present invention preferably further includes a drying step for drying the isolated metal between the isolation step and the crushing step, since this makes apparent the effect of the present invention, that is, the ability to obtain metal nanowires having high bonding strength when bonded.
Here, the method for drying the isolated metal is not particularly limited, but after removing the anodized film and the valve metal substrate, the isolated metal can be recovered and dried by performing a separation operation such as filtration using a filter or centrifugation.
 (保護層形成工程)
 本発明の製造方法は、接続抵抗の低い金属ナノワイヤを得ることができる理由から、上記単離工程の後(上記乾燥工程を有している場合には上記乾燥工程の後)に、更に、上記単離金属に腐食防止剤を含有する保護層を形成する工程を有していることが好ましい。
(Protective layer forming process)
Because the manufacturing method of the present invention can obtain metal nanowires with low connection resistance, it is preferable that the manufacturing method of the present invention further includes a step of forming a protective layer containing a corrosion inhibitor on the isolated metal after the isolation step (or after the drying step if the drying step is included).
 上記腐食防止剤は特に限定されず、公知の腐食防止剤を適用できる。
 腐食防止剤としては、例えば、窒素原子、酸素原子および硫黄原子の少なくとも1つを含有する化合物等が挙げられる。
 腐食防止剤は、耐久性の観点から、窒素原子および酸素原子の少なくとも1つを含有する複素環式化合物であることが好ましく、1つ以上の窒素原子を含有する5員環構造を含む化合物であることがより好ましく、トリアゾール構造を含む化合物、ベンゾイミダゾール構造を含む化合物、および、チアジアゾール構造を含む化合物からなる群より選択される少なくとも1種の化合物であることが特に好ましい。1つ以上の窒素原子を含有する5員環構造は、単環の構造であってもよく、縮合環を構成する部分構造であってもよい。
The corrosion inhibitor is not particularly limited, and any known corrosion inhibitor can be used.
Examples of the corrosion inhibitor include compounds containing at least one of a nitrogen atom, an oxygen atom, and a sulfur atom.
From the viewpoint of durability, the corrosion inhibitor is preferably a heterocyclic compound containing at least one of a nitrogen atom and an oxygen atom, more preferably a compound containing a five-membered ring structure containing one or more nitrogen atoms, and particularly preferably at least one compound selected from the group consisting of a compound containing a triazole structure, a compound containing a benzimidazole structure, and a compound containing a thiadiazole structure. The five-membered ring structure containing one or more nitrogen atoms may be a monocyclic structure or a partial structure constituting a condensed ring.
 また、腐食防止剤は、単離金属の表面に吸着しやすくなる理由から、極性基含有酸および極性基含有塩基の少なくとも一方を含む化合物であることが好ましい。
 極性基含有酸および極性基含有塩基が有する極性基としては、例えば、カルボン酸基(カルボキシ基)、スルホン酸基(スルホ基)、ホスホン酸基、リン酸基、第一級~第四級アンモニウム塩基、カルボン酸塩基、スルホン酸塩基、ホスホン酸塩基、リン酸塩基などが挙げられる。
In addition, the corrosion inhibitor is preferably a compound containing at least one of a polar group-containing acid and a polar group-containing base, because this makes it easier for the corrosion inhibitor to be adsorbed onto the surface of the isolated metal.
Examples of the polar group contained in the polar group-containing acid and the polar group-containing base include a carboxylic acid group (carboxy group), a sulfonic acid group (sulfo group), a phosphonic acid group, a phosphoric acid group, a primary to quaternary ammonium base, a carboxylate group, a sulfonate group, a phosphonate group, and a phosphate group.
 また、腐食防止剤は、金属イオンと結合して錯イオンを形成し、単離金属の表面が保護されやすくなる理由から、カルボキシ基を含む化合物であることが好ましい。 In addition, the corrosion inhibitor is preferably a compound containing a carboxy group, because it bonds with metal ions to form complex ions, which makes it easier to protect the surface of the isolated metal.
 上記腐食防止剤の具体例としては、イミダゾール、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール(BTA)、トリルトリアゾール(TTA)、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール(DMTDA)、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾイミダゾール等が挙げられる。 Specific examples of the corrosion inhibitors include imidazole, benzimidazole, 1,2,4-triazole, benzotriazole (BTA), tolyltriazole (TTA), butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole (DMTDA), 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole (MBT), 2-mercaptobenzimidazole, etc.
 上記腐食防止剤の他の具体例としては、酢酸、プロピオン酸、パルミチン酸、ステアリン酸、ラウリン酸、アラキジン酸、テレフタル酸、オレイン酸などの脂肪族カルボン酸;グリコール酸、乳酸、シュウ酸、リンゴ酸、酒石酸、クエン酸などのカルボン酸;エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(EDDA)、エチレングリコールジエチルエーテルジアミン四酢酸(GEDA)などのアミノポリカルボン酸;尿酸;没食子酸;などが挙げられる。 Other specific examples of the corrosion inhibitors include aliphatic carboxylic acids such as acetic acid, propionic acid, palmitic acid, stearic acid, lauric acid, arachidic acid, terephthalic acid, and oleic acid; carboxylic acids such as glycolic acid, lactic acid, oxalic acid, malic acid, tartaric acid, and citric acid; aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediaminediacetic acid (EDDA), and ethylene glycol diethyl ether diaminetetraacetic acid (GEDA); uric acid; and gallic acid.
 腐食防止剤は、1種単独でも2種類以上適宜組み合わせて用いてもよい。
 また、経時安定性が良好となる理由から、上記腐食防止剤が窒素原子を含有する化合物(窒素含有化合物)を含むことが好ましく、窒素含有化合物であることがより好ましく、窒素原子および硫黄原子の少なくとも1つを含有する複素環式化合物であることが更に好ましい。
The corrosion inhibitors may be used alone or in appropriate combination of two or more kinds.
In addition, for the reason that the stability over time is good, the corrosion inhibitor preferably contains a compound containing a nitrogen atom (nitrogen-containing compound), more preferably is a nitrogen-containing compound, and further preferably is a heterocyclic compound containing at least one of a nitrogen atom and a sulfur atom.
 このような腐食防止剤を含有する保護層を形成する方法は特に限定されず、例えば、腐食防止剤を含有する水溶液に、上記乾燥工程で回収された単離金属を添加し、撹拌する方法;上記乾燥工程で回収された単離金属を洗浄する洗浄溶媒に腐食防止剤を添加する方法;などが挙げられる。 The method for forming such a protective layer containing a corrosion inhibitor is not particularly limited, and examples include a method in which the isolated metal recovered in the drying process is added to an aqueous solution containing a corrosion inhibitor and stirred; a method in which the corrosion inhibitor is added to a washing solvent that washes the isolated metal recovered in the drying process; etc.
 (還元または除去する工程)
 本発明の製造方法は、接続抵抗の低い金属ナノワイヤを得ることができる理由から、上記単離工程と上記解砕工程との間(上記乾燥工程を有している場合には上記乾燥工程の前)に、更に、上記単離金属の表面酸化層を還元または除去する工程を有していることが好ましい。
 還元または除去する工程としては、例えば、上述した陽極酸化膜の除去処理に記載したアルカリ水溶液および酸水溶液を用いた浸漬処理を施す工程などが挙げられる。
(Reduction or Removal Step)
Because the manufacturing method of the present invention can obtain metal nanowires with low connection resistance, it is preferable that the manufacturing method of the present invention further includes a step of reducing or removing the surface oxide layer of the isolated metal between the isolation step and the crushing step (or before the drying step, if the drying step is included).
The reduction or removal step may be, for example, a step of carrying out an immersion treatment using an aqueous alkaline solution or an aqueous acid solution as described above in the removal treatment of the anodic oxide film.
 〔樹脂〕
 本発明の熱伝導部材は、金属ナノワイヤ同士の空隙を埋めることにより、空隙がある場合と比較して熱伝導率を高めることができる理由から、更に樹脂を含有していることが好ましい。
 樹脂としては、フッ素樹脂以外の樹脂が好ましく、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、マレイミド樹脂、イタコンイミド樹脂、ナジイミド樹脂などが挙げられる。
 これらのうち、金属ナノワイヤ同士の絡み合いに加えて、樹脂の架橋によって熱伝導部材の強度が向上する理由から、架橋樹脂であることが好ましく、エポキシ樹脂であることがより好ましい。
 エポキシ樹脂としては、具体的には、例えば、ナフタレン骨格を有するエポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、シロキサン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 特に、エポキシ樹脂は、フィルムの成形性の観点から、ナフタレン骨格を有するエポキシ樹脂、ビスフェノールA型エポキシ樹脂、または、ビスフェノールF型エポキシ樹脂であって、常温で液状であるものが好ましい。
〔resin〕
It is preferable that the heat conductive member of the present invention further contains a resin, because by filling the gaps between the metal nanowires, the heat conductivity can be increased compared to when there are gaps.
The resin is preferably a resin other than a fluororesin, and examples thereof include an epoxy resin, an acrylic resin, a urethane resin, a maleimide resin, an itaconimide resin, and a nadimide resin.
Among these, a crosslinked resin is preferable, and an epoxy resin is more preferable, because the strength of the heat conductive member is improved by crosslinking of the resin in addition to entanglement of the metal nanowires.
Specific examples of the epoxy resin include epoxy resins having a naphthalene skeleton, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins, siloxane type epoxy resins, biphenyl type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, and hydantoin type epoxy resins. These may be used alone or in combination of two or more.
In particular, from the viewpoint of film formability, the epoxy resin is preferably an epoxy resin having a naphthalene skeleton, a bisphenol A type epoxy resin, or a bisphenol F type epoxy resin that is liquid at room temperature.
 上述したエポキシ樹脂など以外の樹脂としては、水溶性ポリマーおよび油溶性ポリマーが挙げられる。
 ここで、水溶性ポリマーにおける「水溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%以上であることを意味し、より好適な水溶性ポリマーは、溶解量が10質量%以上であることを意味する。
 また、油溶性ポリマーにおける「油溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%未満であることを意味する。
Resins other than the above-mentioned epoxy resins include water-soluble polymers and oil-soluble polymers.
Here, "water-soluble" in the case of a water-soluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25°C is 5% by mass or more, and a more preferred water-soluble polymer means that the amount dissolved is 10% by mass or more.
Moreover, the term "oil-soluble" in the context of an oil-soluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25°C is less than 5% by mass.
 水溶性ポリマーとしては、ポリビニルアルコール(未変性のポリビニルアルコールおよび変性ポリビニルアルコール)、ポリアクリル酸アミドおよびその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カルボキシメチルセルロース、メチルセルロース、カゼイン、ゼラチン、澱粉誘導体、アラビアゴム、および、アルギン酸ナトリウムが挙げられる。 Water-soluble polymers include polyvinyl alcohol (unmodified polyvinyl alcohol and modified polyvinyl alcohol), polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethylcellulose, methylcellulose, casein, gelatin, starch derivatives, gum arabic, and sodium alginate.
 油溶性ポリマーとしては、例えば、国際公開第2018/207387号の段落[0009]~[0051]に記載の炭素数12~30のアルキル基を側鎖に有する(メタ)アクリル酸エステル重合体、および、特開2007-031610号公報に記載の、蓄熱性を有するポリマー、並びに、国際公開第2018/066605号の段落[0019]~[0021]に記載のオレフィン系共重合体が挙げられ、これらの記載は本明細書に組み込まれる。特に、炭素数が3~8のオレフィン共重合体が好ましく、エチレンと炭素数が3~8のオレフィン共重合体がより好ましい。 Examples of oil-soluble polymers include (meth)acrylic acid ester polymers having an alkyl group having 12 to 30 carbon atoms in the side chain described in paragraphs [0009] to [0051] of WO 2018/207387, polymers having heat storage properties described in JP 2007-031610 A, and olefin copolymers described in paragraphs [0019] to [0021] of WO 2018/066605, the descriptions of which are incorporated herein. In particular, olefin copolymers having 3 to 8 carbon atoms are preferred, and copolymers of ethylene and olefins having 3 to 8 carbon atoms are more preferred.
 上述した水溶性ポリマーおよび油溶性ポリマーのうち、水溶性ポリマーが好ましく、ポリオールがより好ましく、ポリビニルアルコールが更に好ましく、変性ポリビニルアルコールが特に好ましい。 Among the water-soluble polymers and oil-soluble polymers described above, water-soluble polymers are preferred, polyols are more preferred, polyvinyl alcohol is even more preferred, and modified polyvinyl alcohol is particularly preferred.
 ポリビニルアルコールのうち、未変性のポリビニルアルコールは、例えば、ポリ酢酸ビニルの酢酸基の少なくとも一部を、けん化反応によって水酸基に置換して得られる。ポリビニルアルコールは、ポリ酢酸ビニルの酢酸基の一部のみが水酸基に置換されたポリビニルアルコール(部分ケン化ポリビニルアルコール)であってもよいし、ポリ酢酸ビニルの酢酸基の全部が水酸基に置換されたポリビニルアルコール(完全ケン化ポリビニルアルコール)であってもよい。
 変性ポリビニルアルコールとは、変性基を有するポリビニルアルコールを意味する。変性基は、カルボキシ基またはその塩、および、アセトアセチル基からなる群より選択される少なくとも1種の基が好ましく、カルボキシ基またはその塩、および、アセトアセチル基からなる群より選択される少なくとも1種の基がより好ましい。
 カルボキシ基の塩としては、カルボキシ基の金属塩が好ましく、カルボキシ基のナトリウム塩がより好ましい。
 変性ポリビニルアルコールは、例えば、変性基を有する単量体と、ビニルエステル(例えば、酢酸ビニル等)と、を共重合して得たポリマーを、けん化することによって得ることができる。また、変性ポリビニルアルコールは、未変性のポリビニルアルコールにおける水酸基または酢酸基と、変性基を有する化合物と、を反応させることで得られたものであってもよい。
 ポリビニルアルコールとしては、例えば、株式会社クラレ製のクラレポバールシリーズ(例:クラレポバールPVA-217E、クラレポバールKL-318等)、三菱ケミカル株式会社製のゴーセネックスシリーズ(例:ゴーセネックスZ-320等)、日本酢ビ・ポバール株式会社製のAシリーズ(例:AP-17等)が挙げられる。
 ポリビニルアルコールの重合度は、500~5000が好ましく、1000~3000がより好ましく、2000~3000が更に好ましい。
Among polyvinyl alcohols, unmodified polyvinyl alcohol is obtained, for example, by substituting at least a part of the acetate groups of polyvinyl acetate with hydroxyl groups by a saponification reaction. The polyvinyl alcohol may be polyvinyl alcohol in which only a part of the acetate groups of polyvinyl acetate are substituted with hydroxyl groups (partially saponified polyvinyl alcohol), or polyvinyl alcohol in which all of the acetate groups of polyvinyl acetate are substituted with hydroxyl groups (fully saponified polyvinyl alcohol).
The modified polyvinyl alcohol means polyvinyl alcohol having a modifying group. The modifying group is preferably at least one group selected from the group consisting of a carboxy group or a salt thereof, and an acetoacetyl group, and more preferably at least one group selected from the group consisting of a carboxy group or a salt thereof, and an acetoacetyl group.
As the salt of the carboxy group, a metal salt of the carboxy group is preferred, and a sodium salt of the carboxy group is more preferred.
The modified polyvinyl alcohol can be obtained, for example, by saponifying a polymer obtained by copolymerizing a monomer having a modifying group with a vinyl ester (e.g., vinyl acetate, etc.). The modified polyvinyl alcohol may also be obtained by reacting a hydroxyl group or acetate group in unmodified polyvinyl alcohol with a compound having a modifying group.
Examples of polyvinyl alcohol include the Kuraray Poval series manufactured by Kuraray Co., Ltd. (e.g., Kuraray Poval PVA-217E, Kuraray Poval KL-318, etc.), the Gohsenx series manufactured by Mitsubishi Chemical Corporation (e.g., Gohsenx Z-320, etc.), and the A series manufactured by Nippon Vinyl Acetate & Poval Co., Ltd. (e.g., AP-17, etc.).
The polymerization degree of polyvinyl alcohol is preferably from 500 to 5,000, more preferably from 1,000 to 3,000, and even more preferably from 2,000 to 3,000.
 上述した水溶性ポリマーおよび油溶性ポリマーの数平均分子量(Mn)は特に制限されないが、膜強度の点で、20,000~300,000が好ましく、20,000~150,000がより好ましい。
 分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される値である。
 ゲルパーミエーションクロマトグラフィー(GPC)による測定は、測定装置として、HLC(登録商標)-8020GPC(東ソー(株))を用い、カラムとして、TSKgel(登録商標)Super Multipore HZ-H(4.6mmID×15cm、東ソー(株))を3本用い、溶離液として、THF(テトラヒドロフラン)を用いる。また、測定条件としては、試料濃度を0.45質量%、流速を0.35ml/min、サンプル注入量を10μl、および、測定温度を40℃とし、RI(示差屈折)検出器を用いて行う。
 検量線は、東ソー(株)の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、および、「n-プロピルベンゼン」の8サンプルから作製する。
The number average molecular weight (Mn) of the water-soluble polymer and oil-soluble polymer described above is not particularly limited, but from the viewpoint of film strength, it is preferably from 20,000 to 300,000, and more preferably from 20,000 to 150,000.
The molecular weight is a value measured by gel permeation chromatography (GPC).
Measurement by gel permeation chromatography (GPC) is performed using an HLC (registered trademark)-8020GPC (Tosoh Corporation) as a measuring device, three TSKgel (registered trademark) Super Multipore HZ-H (4.6 mm ID x 15 cm, Tosoh Corporation) as columns, and THF (tetrahydrofuran) as an eluent. The measurement conditions are a sample concentration of 0.45 mass%, a flow rate of 0.35 ml/min, a sample injection amount of 10 μl, and a measurement temperature of 40° C., and the measurement is performed using an RI (differential refractive index) detector.
The calibration curve is prepared from eight samples of "Standard Sample TSK standard, polystyrene" from Tosoh Corporation: "F-40", "F-20", "F-4", "F-1", "A-5000", "A-2500", "A-1000", and "n-propylbenzene".
 本発明の熱伝導部材が樹脂を含有する場合、樹脂の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して1~50質量部であることが好ましく、2~30質量部であることがより好ましい。 When the thermally conductive member of the present invention contains a resin, the amount of resin contained is not particularly limited, but is preferably 1 to 50 parts by mass, and more preferably 2 to 30 parts by mass, per 100 parts by mass of the metal nanowires.
 〔エポキシ樹脂硬化剤〕
 本発明の熱伝導部材がエポキシ樹脂を含有する場合、本発明の熱伝導部材は、エポキシ樹脂硬化剤、すなわち、エポキシ樹脂の硬化反応を促進する触媒を含有することが好ましい。
 エポキシ樹脂硬化剤としては、例えば、イミダゾール系、フェノール系、アミン系、酸無水物系、有機過酸化物系等を用いることができる。特に、エポキシ樹脂硬化剤は、本発明の組成物の常温での保管性(ライフ)の観点から、潜在性をもった硬化剤であることが好ましく、カプセル化されて潜在性をもったイミダゾール系の硬化剤であることがより好ましい。常温での保管性が良好となることにより、本発明の熱伝導部材の供給や使用における管理をより簡便にすることができる。具体的には、エポキシ樹脂硬化剤としては、潜在性イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることができる。市販品としては、例えば、ノバキュア3941(旭化成イーマテリアルズ社製)を用いることができる。エポキシ樹脂硬化剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
[Epoxy resin hardener]
When the heat conductive member of the present invention contains an epoxy resin, it is preferable that the heat conductive member of the present invention contains an epoxy resin curing agent, that is, a catalyst that promotes the curing reaction of the epoxy resin.
As the epoxy resin curing agent, for example, imidazole-based, phenol-based, amine-based, acid anhydride-based, organic peroxide-based, etc. can be used. In particular, the epoxy resin curing agent is preferably a latent curing agent from the viewpoint of the storage stability (life) of the composition of the present invention at room temperature, and more preferably an encapsulated imidazole-based curing agent with latent properties. By improving the storage stability at room temperature, it is possible to more easily manage the supply and use of the heat conductive member of the present invention. Specifically, as the epoxy resin curing agent, a microencapsulated latent curing agent in which a latent imidazole modified body is used as a core and the surface is coated with polyurethane can be used. As a commercially available product, for example, Novacure 3941 (manufactured by Asahi Kasei E-Materials Corporation) can be used. The epoxy resin curing agent may be used alone or in combination of two or more types.
 本発明の熱伝導部材が、エポキシ樹脂およびエポキシ樹脂硬化剤を含有する場合、これらの含有量の合計は、本発明の熱伝導部材の総質量に対して、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10~20質量%であることが更に好ましい。 When the thermally conductive member of the present invention contains an epoxy resin and an epoxy resin curing agent, the total content of these is preferably 50 mass% or less, more preferably 30 mass% or less, and even more preferably 10 to 20 mass%, relative to the total mass of the thermally conductive member of the present invention.
 〔エラストマー〕
 本発明の熱伝導部材は、更にエラストマーを含有していてもよい。
 エラストマーとしては、例えば、アクリルゴム(例えば、(メタ)アクリレートとアクリルニトリルとの共重合体など)、SB(ポリスチレン-ポリブタジエン)、SBS(ポリスチレン-ポリブタジエン-ポリスチレン)、SIS(ポリスチレン-ポリイソプレン-ポリスチレン)、SEBS(ポリスチレン-ポリエチレン/ポリブチレン-ポリスチレン)、ABS(アクリロニトリルブタジエンスチレン共重合体)、ACM(アクリル酸エステルゴム)、ACS(アクリロニトリル塩素化ポリエチレンスチレン共重合体)、アクリロニトリルスチレン共重合体、シンジオタクチック1,2-ポリブタジエン、ポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルなどが挙げられる。
 本発明の熱伝導部材がエラストマーを含有する場合、エラストマーの含有量は特に限定されないが、金属ナノワイヤ100質量部に対して0.5~15質量部であることが好ましく、1~10質量部であることがより好ましい。
[Elastomer]
The heat conductive member of the present invention may further contain an elastomer.
Examples of the elastomer include acrylic rubber (e.g., a copolymer of (meth)acrylate and acrylonitrile), SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), SEBS (polystyrene-polyethylene/polybutylene-polystyrene), ABS (acrylonitrile butadiene styrene copolymer), ACM (acrylic acid ester rubber), ACS (acrylonitrile chlorinated polyethylene styrene copolymer), acrylonitrile styrene copolymer, syndiotactic 1,2-polybutadiene, polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate, and the like.
When the thermal conductive member of the present invention contains an elastomer, the content of the elastomer is not particularly limited, but is preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass, per 100 parts by mass of the metal nanowires.
 〔カップリング剤〕
 本発明の熱伝導部材は、更にカップリング剤を含有していてもよい。
 カップリング剤としては、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等のシランカップリング剤が好適に挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の熱伝導部材がカップリング剤を含有する場合、カップリング剤の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して0.01~0.2質量部であることが好ましく、0.015~0.15質量部であることがより好ましい。
[Coupling Agent]
The heat conductive member of the present invention may further contain a coupling agent.
Suitable examples of the coupling agent include silane coupling agents such as γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, etc. These may be used alone or in combination of two or more.
When the thermally conductive member of the present invention contains a coupling agent, the content of the coupling agent is not particularly limited, but is preferably 0.01 to 0.2 parts by mass, and more preferably 0.015 to 0.15 parts by mass, per 100 parts by mass of the metal nanowires.
 〔硬化促進剤〕
 本発明の熱伝導部材は、更に硬化促進剤を含有していてもよい。
 硬化促進剤としては、例えば、イミダゾール類およびその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、反応性の観点からイミダゾール類およびその誘導体であることが好ましい。
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の熱伝導部材が硬化促進剤を含有する場合、硬化促進剤の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して0.001~0.1質量部であることが好ましく、0.005~0.05質量部であることがより好ましい。
[Curing Accelerator]
The heat conductive member of the present invention may further contain a curing accelerator.
Examples of the curing accelerator include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts, etc. These may be used alone or in combination of two or more.
Among these, imidazoles and derivatives thereof are preferred from the viewpoint of reactivity.
Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, etc. These may be used alone or in combination of two or more.
When the thermal conductive member of the present invention contains a curing accelerator, the content of the curing accelerator is not particularly limited, but is preferably 0.001 to 0.1 parts by mass, and more preferably 0.005 to 0.05 parts by mass, per 100 parts by mass of the metal nanowires.
 〔金属粒子〕
 本発明の熱伝導部材は、上記金属ナノワイヤ以外に、更に金属粒子を含有していてもよい。
 ここで、金属粒子は、金、銀、銅、アルミニウム、ニッケル、亜鉛およびコバルトからなる群から選択される少なくとも1種の金属を含むことが好ましい。
 また、金属粒子は、金属以外の導電成分を1種または2種以上含んでもよい。
[Metal Particles]
The heat conducting member of the present invention may further contain metal particles in addition to the metal nanowires.
Here, the metal particles preferably contain at least one metal selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc and cobalt.
The metal particles may also contain one or more conductive components other than metals.
 本発明においては、金属粒子の形状は特に限定されず、中実および中空のいずれであってもよい。
 また、金属粒子の最小包囲楕円体における平均長径は、0.01μm以上50μm以下であることが好ましく、0.1μm以上20μm以下であることがより好ましい。
 また、金属粒子の最小包囲楕円体における平均長径は、効率的に空間を埋める形状を選択する理由から、平均短径に対して1~10倍であることが好ましい。
 ここで、最小包囲楕円体とは、金属粒子を内部に包含する楕円体の中で体積が最少となるものをいい、長径と短径とが一致する楕円体(すなわち球体)も含むものである。
 また、最小包囲楕円体における平均長径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の長径を測定して、それらを算出平均して求めることができる。同様に、最小包囲楕円体における平均短径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の短径を測定して、それらを算出平均して求めることができる。
In the present invention, the shape of the metal particles is not particularly limited, and they may be either solid or hollow.
The average major axis of the minimum enclosing ellipsoid of the metal particle is preferably 0.01 μm or more and 50 μm or less, and more preferably 0.1 μm or more and 20 μm or less.
In addition, the average major axis of the minimum enclosing ellipsoid of the metal particles is preferably 1 to 10 times the average minor axis, for the reason of selecting a shape that efficiently fills the space.
Here, the minimum enclosing ellipsoid refers to the ellipsoid that has the smallest volume among the ellipsoids that enclose a metal particle therein, and includes an ellipsoid whose major axis and minor axis are the same (i.e., a sphere).
The average major axis of the minimum enclosing ellipsoid can be obtained by observing the cross section of the layer formed using the dispersion in the thickness direction with a microscope (e.g., electron microscope), measuring the major axis of 100 arbitrary fine particles, and calculating and averaging them. Similarly, the average minor axis of the minimum enclosing ellipsoid can be obtained by observing the cross section of the layer formed using the dispersion in the thickness direction with a microscope (e.g., electron microscope), measuring the minor axis of 100 arbitrary fine particles, and calculating and averaging them.
 本発明の熱伝導部材が金属粒子を含有する場合、金属粒子の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して1~30質量部であることが好ましく、2~20質量部であることがより好ましい。 When the heat conductive member of the present invention contains metal particles, the content of the metal particles is not particularly limited, but is preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass, per 100 parts by mass of the metal nanowires.
 本発明の熱伝導部材の形状は特に限定されないが、接触面の面内の伝熱性を均一にでき、また、放熱部材との密着性がより良好となる理由から、シート状であることが好ましい。以下、シート状の熱伝導部材を「熱伝導性シート」と略す。
 また、熱伝導部シートの大きさは特に限定されず、発熱部材の大きさに応じたサイズに加工することができる。同様に、厚みも特に限定されないが、20~200μmであることが好ましく、30~150μmであることがより好ましい。
The shape of the heat conductive member of the present invention is not particularly limited, but a sheet-like shape is preferable because it can make the heat transfer uniform within the contact surface and also improves the adhesion with the heat dissipation member. Hereinafter, the sheet-like heat conductive member will be abbreviated as "heat conductive sheet".
The size of the heat conductive sheet is not particularly limited, and can be processed to a size according to the size of the heat generating member. Similarly, the thickness is not particularly limited, but is preferably 20 to 200 μm, and more preferably 30 to 150 μm.
 <シートの作製方法>
 本発明の熱伝導部材をシート状に作製する方法は特に限定されないが、本発明の熱伝導部材に含まれる上述した各成分と、有機溶媒とを含有する塗布液を調製し、基材上に供給する方法などが挙げられる。
<Method of manufacturing the sheet>
The method for producing the thermal conductive member of the present invention in sheet form is not particularly limited, but examples include a method in which a coating liquid containing each of the above-mentioned components contained in the thermal conductive member of the present invention and an organic solvent is prepared and supplied onto a substrate.
 上記塗布液に含まれる有機溶媒としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサンなどの環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ブチルカルビトールアセテート、エチルカルビトールアセテート等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド;ブチルカルビトール、エチルカルビトール等のアルコール:などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 The organic solvent contained in the coating liquid may be, for example, aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone, butyl carbitol acetate, and ethyl carbitol acetate; carbonates such as ethylene carbonate and propylene carbonate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone; and alcohols such as butyl carbitol and ethyl carbitol. These may be used alone or in combination of two or more.
 上記塗布液を供給する基材は特に限定されないが、その材質としては、例えば、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリイミド、PEEK(ポリエーテルエーテルケトン)、アルミニウム、ガラス、アルミナ、窒化ケイ素、ステンレススチールなどが挙げられる。なお、クロスに上記材質をコートまたは含浸したものを、基材として用いてもよい。また、上記基材は、組成物の供給後に剥離できる仮支持体であってもよい。 The substrate to which the coating liquid is applied is not particularly limited, but examples of the material include polyethylene terephthalate, polytetrafluoroethylene, polyimide, PEEK (polyether ether ketone), aluminum, glass, alumina, silicon nitride, and stainless steel. Note that cloth coated or impregnated with the above material may be used as the substrate. The substrate may also be a temporary support that can be peeled off after the composition is applied.
 上記塗布液を基材上に供給する方法としては、例えば、インクジェット印刷、スクリーン印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、バーコート、アプリケータ、スプレーコータ、電着塗装等を用いることができる。 Methods for supplying the coating liquid onto the substrate include, for example, inkjet printing, screen printing, jet printing, dispenser, jet dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, bar coating, applicator, spray coater, and electrocoating.
 シートの作製方法においては、基材上に供給された塗布液を乾燥させる工程を有していてもよい。なお、塗布液を乾燥させることにより、自立シートとして基材から分離することができる。
 上記の乾燥方法は、常温放置による乾燥、加熱乾燥または減圧乾燥を用いることができる。加熱乾燥または減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度および時間は、使用した分散媒の種類および量に合わせて適宜調整することが好ましく、例えば、50~300℃で1~180分間乾燥させることが好ましい。
 また、金属の酸化抑制の観点から、非酸化雰囲気や還元性雰囲気で乾燥してもよい。アルゴン、窒素、水蒸気などの非酸化性ガス、水素、ギ酸による置換、吹きつけ、が挙げられる。
The method for producing the sheet may include a step of drying the coating liquid supplied onto the substrate. By drying the coating liquid, the sheet can be separated from the substrate as a free-standing sheet.
The drying method may be drying at room temperature, drying by heating, or drying under reduced pressure. For drying by heating or drying under reduced pressure, a hot plate, a hot air dryer, a hot air heating furnace, a nitrogen dryer, an infrared ray dryer, an infrared heating furnace, a far-infrared heating furnace, a microwave heating device, a laser heating device, an electromagnetic heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like may be used. It is preferable to appropriately adjust the temperature and time of drying according to the type and amount of the dispersion medium used, and for example, it is preferable to dry at 50 to 300° C. for 1 to 180 minutes.
From the viewpoint of suppressing oxidation of the metal, drying may be performed in a non-oxidizing atmosphere or a reducing atmosphere, for example, by substitution or blowing with a non-oxidizing gas such as argon, nitrogen, or water vapor, or with hydrogen or formic acid.
 <保管方法>
 熱伝導部シートは、酸化を抑制するために、脱酸素剤を入れた密閉容器や袋の中に保管することが望ましい。また、シートの片面または両面に易剥離性の保護フィルムを貼合した状態で保管してもよい。
<Storage method>
The heat conductive sheet is preferably stored in a sealed container or bag containing an oxygen scavenger to prevent oxidation. The sheet may also be stored with an easily peelable protective film attached to one or both sides.
 <実装工程への持ち込み>
 熱伝導性シートを実装工程へ持ち込む際の形態は、熱伝導性シート単体の形態、熱伝導性シートの片面に易剥離性の保護フィルムを貼合した形態、熱伝導性シートの両面に易剥離性の保護フィルムを貼合した形態、および、支持体の上に粘着剤層を設けて熱伝導性シートと貼合した形態、のいずれの形態であってもよい。
<Bringing to the mounting process>
The thermally conductive sheet may be brought into the mounting process in any of the following forms: a thermally conductive sheet alone; a thermally conductive sheet having an easily peelable protective film attached to one side thereof; a thermally conductive sheet having an easily peelable protective film attached to both sides thereof; or a support having an adhesive layer provided on top thereof and attached to the thermally conductive sheet.
 <熱伝導性シートの実装工程1>
 実使用時においては、熱伝導性シートは、例えば、半導体装置等の電子部品や、ヒートスプレッダ等の各種放熱部材に実装することができる。
 熱伝導性シート単体または保護フィルムを貼合してある熱伝導性シートを所定のサイズに切断加工する。保護フィルムを貼合してある熱伝導性シートの場合には、保護フィルムを剥がす前に切断してもよいし、剥がした後に切断するのでもよい。
 所定のサイズに切断加工された熱伝導性シート単体または保護フィルムを剥がした熱伝導性シートを用いて、発熱体である半導体装置等の電子部品と放熱体であるヒートスプレッダとに熱伝導シートの各々の面を接触させる。
 発熱体と熱伝導シートの一方の面とを接触させる方法、および、放熱体と熱伝導シートの他方の面とを接触させる方法は、それぞれを十分に密着させた状態で固定できる方法であれば特に制限されない。例えば、発熱体と放熱体との間に熱伝導シートを配置し、加圧可能な治具で固定し、この状態で発熱体を発熱させる方法;オーブン等により加熱する方法;などが挙げられる。また、加熱加圧できるプレス機を用いる方法が挙げられる。
<Thermal conductive sheet mounting process 1>
In actual use, the thermally conductive sheet can be mounted on, for example, electronic components such as semiconductor devices, or various heat dissipation components such as heat spreaders.
The thermally conductive sheet alone or the thermally conductive sheet with a protective film attached thereto is cut to a predetermined size. In the case of a thermally conductive sheet with a protective film attached thereto, the sheet may be cut either before or after the protective film is peeled off.
A thermally conductive sheet that has been cut to a specified size, or a thermally conductive sheet with the protective film removed, is used to bring each side of the thermally conductive sheet into contact with an electronic component such as a semiconductor device, which is a heat generating body, and a heat spreader, which is a heat dissipating body.
The method of contacting the heat generating body with one side of the heat conductive sheet and the method of contacting the heat dissipating body with the other side of the heat conductive sheet are not particularly limited as long as they can be fixed in a state of sufficient adhesion. For example, a method of placing a heat conductive sheet between the heat generating body and the heat dissipating body, fixing them with a pressurizable jig, and causing the heat generating body to generate heat in this state; a method of heating with an oven, etc.; and the like can be mentioned. Another example is a method of using a press machine that can apply heat and pressure.
 <熱伝導性シートの実装工程2>
 別の実装方法としては、支持体の上に粘着剤層を設けて熱伝導性シートと貼合した形態の熱伝導性シートを用いて、ダイシング・ダイボンディングする方法が挙げられる。
 上記の熱伝導性シートに半導体ウェハを貼り付け、ダイシングすることによって複数の個片化された熱伝導性シート片付き半導体チップを作製し、これをヒートスプレッダ等の放熱部材に熱伝導性シートを介して貼り合わせる。
<Thermal conductive sheet mounting process 2>
Another mounting method includes a dicing/die bonding method using a thermally conductive sheet in a form in which an adhesive layer is provided on a support and the thermally conductive sheet is attached to the adhesive layer.
A semiconductor wafer is attached to the above-mentioned thermally conductive sheet, and then diced to produce a plurality of individual semiconductor chips with thermally conductive sheet pieces. These are then attached to a heat dissipation member such as a heat spreader via the thermally conductive sheet.
[デバイス]
 本発明のデバイスは、発熱体と、上述した本発明の熱伝導部材と、放熱部材とを有するデバイスであり、発熱体と、上述した本発明の熱伝導部材と、放熱部材とをこの順に隣接して有するデバイスであることが好ましい。
 ここで、「この順に隣接して有する」とは、発熱体と熱伝導部材との間に他の層が存在せず、互いに接していることを意図しており、同様に、熱伝導部材と放熱部材との間に他の層が存在せず、互いに接していることを意図している。
[device]
The device of the present invention is a device having a heat generating body, the heat conductive member of the present invention described above, and a heat dissipation member, and it is preferable that the device has a heat generating body, the heat conductive member of the present invention described above, and a heat dissipation member adjacent to each other in this order.
Here, "adjacent in this order" means that there are no other layers between the heat generating element and the heat conducting member, and that they are in contact with each other; similarly, it means that there are no other layers between the heat conducting member and the heat dissipation member, and that they are in contact with each other.
 〔発熱体〕
 本発明のデバイスが有する発熱体は、デバイスにおける発熱する場合がある部材であれば特に限定されず、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、SRAM(Static Random Access Memory)、および、RF(Radio Frequency)デバイス等のSoC(Systems on a Chip)、カメラ、LED(Light Emitting Diode)パッケージ、パワーエレクトロニクス、ならびに、バッテリー(特にリチウムイオン二次電池)などが挙げられる。
[Heater]
The heating element of the device of the present invention is not particularly limited as long as it is a component in the device that may generate heat, and examples thereof include a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an SRAM (Static Random Access Memory), an SoC (Systems on a Chip) such as an RF (Radio Frequency) device, a camera, an LED (Light Emitting Diode) package, power electronics, and a battery (particularly a lithium ion secondary battery).
 〔放熱部材〕
 本発明のデバイスが有する放熱部材としては、例えば、ヒートスプレッダ、ヒートシンク、熱拡散シートなどが挙げられる。
 また、放熱部材は、熱伝導材料によって形成されていることが好ましい。
 熱伝導材料としては、熱伝導率が10Wm-1-1以上である材料が好ましい。熱伝導率(単位:Wm-1-1)は、フラッシュ法にて25℃の温度下、日本工業規格(JIS)R1611に準拠した方法により測定される値である。
 このような熱伝導材料としては、例えば、炭素材料(例えば、グラファイト)、金属(例えば、銀、銅、アルミニウム、鉄、白金、ステンレス、ニッケル)、シリコンなどが挙げられる。
[Heat dissipation member]
Examples of the heat dissipation member included in the device of the present invention include a heat spreader, a heat sink, and a thermal diffusion sheet.
Moreover, the heat dissipation member is preferably made of a heat conductive material.
The thermally conductive material is preferably a material having a thermal conductivity of 10 Wm −1 K −1 or more. The thermal conductivity (unit: Wm −1 K −1 ) is a value measured by a flash method at a temperature of 25° C. according to a method in accordance with Japanese Industrial Standards (JIS) R1611.
Examples of such thermally conductive materials include carbon materials (eg, graphite), metals (eg, silver, copper, aluminum, iron, platinum, stainless steel, nickel), and silicon.
 本発明においては、放熱部材が、金属で構成されたヒートスプレッダであることが好ましい。
 また、放熱部材は、シート状であることが好ましく、その厚みは、10~500μmであることが好ましく、20~300μmであることがより好ましい。
In the present invention, the heat dissipation member is preferably a heat spreader made of metal.
The heat dissipation member is preferably in the form of a sheet, and the thickness thereof is preferably from 10 to 500 μm, and more preferably from 20 to 300 μm.
 本発明のデバイスは、例えば、携帯電話(特に、スマートフォン)、携帯情報端末、パーソナルコンピューター(特に、携帯用のパーソナルコンピューター)、カメラ、ゲーム機、および、リモコン等の電子デバイス用途に用いられることが好ましい。
 具体的には、本発明のデバイスは、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ASSP(Application Specific Standard Product)等のロジック集積回路に適用可能である。
 また、本発明のデバイスは、例えば、CPU、GPU等のマイクロプロセッサにも適用可能である。
 また、本発明のデバイスは、例えば、DRAM(Dynamic Random Access Memory)、HMC(Hybrid Memory Cube)、MRAM(Magnetoresistive Random Access Memory)、PCM(Phase-Change Memory)、ReRAM(Resistance Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、フラッシュメモリ等のメモリにも適用可能である。
 また、本発明のデバイスは、例えば、LED、パワーデバイス、DC(Direct Current)-DC(Direct Current)コンバータ、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)等のアナログ集積回路にも適用可能である。
 また、本発明のデバイスは、例えば、加速度センサ、圧力センサ、振動子、ジャイロセンサ等のMEMS(Micro Electro Mechanical Systems)にも適用可能である。
 また、本発明のデバイスは、例えば、GPS(Global Positioning System)、FM(Frequency Modulation)、NFC(Near field communication)、RFEM(RF Expansion Module)、MMIC(Monolithic Microwave Integrated Circuit)、WLAN(Wireless Local Area Network)等のワイヤレス素子、ディスクリート素子、CMOS(Complementary Metal Oxide Semiconductor)、CMOSイメージセンサー、カメラモジュール、Passiveデバイス、SAW(Surface Acoustic Wave)フィルタ、RF(Radio Frequency)フィルタ、IPD(Integrated Passive Devices)等にも適用可能である。
The device of the present invention is preferably used in electronic devices such as mobile phones (particularly smartphones), personal digital assistants, personal computers (particularly portable personal computers), cameras, game consoles, and remote controls.
Specifically, the device of the present invention is applicable to logic integrated circuits such as application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and application specific standard products (ASSPs).
The device of the present invention is also applicable to microprocessors such as CPUs and GPUs.
In addition, the device of the present invention can also be applied to memories such as dynamic random access memory (DRAM), hybrid memory cube (HMC), magnetoresistive random access memory (MRAM), phase-change memory (PCM), resistance random access memory (ReRAM), ferroelectric random access memory (FeRAM), and flash memory.
The device of the present invention can also be applied to analog integrated circuits such as LEDs, power devices, DC (Direct Current)-DC (Direct Current) converters, and insulated gate bipolar transistors (IGBTs).
Furthermore, the device of the present invention can also be applied to MEMS (Micro Electro Mechanical Systems) such as acceleration sensors, pressure sensors, vibrators, and gyro sensors.
In addition, the device of the present invention can also be applied to wireless elements such as Global Positioning System (GPS), Frequency Modulation (FM), Near field communication (NFC), RF Expansion Module (RFEM), Monolithic Microwave Integrated Circuit (MMIC), Wireless Local Area Network (WLAN), discrete elements, Complementary Metal Oxide Semiconductor (CMOS), CMOS image sensors, camera modules, passive devices, Surface Acoustic Wave (SAW) filters, Radio Frequency (RF) filters, Integrated Passive Devices (IPDs), and the like.
 本発明のデバイスが搭載される最終製品は特に限定されず、例えば、スマートTV、移動体通信端末、携帯電話、スマートフォン、タブレット端末、デスクトップPC(Personal Computer)、ノートPC、ネットワーク機器(ルーター、スイッチング)、有線インフラ機器、デジタルカメラ、ゲーム機、コントローラ、データセンター、サーバー、マイニング用PC、HPC(High Performance Computing)、グラフィックカード、ネットワークサーバ、ストレージ、チップセット、車載機器(電子制御機器、運転支援システム)、カーナビ、PND(Portable Navigation Device)、照明(一般照明、車載照明、LED照明、OLED(Organic Light Emitting Diode)照明)、テレビ、ディスプレイ、ディスプレイ用パネル(液晶パネル、有機EL(Electro Luminescence)パネル、電子ペーパー)、音楽再生端末、産業用機器、産業用ロボット、検査装置、医療機器、白物家電、宇宙または航空機用機器、ウェアラブルデバイス等が挙げられる。 The final products in which the device of the present invention is mounted are not particularly limited, and examples include smart TVs, mobile communication terminals, mobile phones, smartphones, tablet terminals, desktop PCs (Personal Computers), notebook PCs, network equipment (routers, switching), wired infrastructure equipment, digital cameras, game consoles, controllers, data centers, servers, mining PCs, HPCs (High Performance Computing), graphic cards, network servers, storage, chipsets, in-vehicle equipment (electronic control equipment, driving assistance systems), car navigation systems, PNDs (Portable Navigation Devices), lighting (general lighting, in-vehicle lighting, LED lighting, OLED (Organic Light Emitting Diode) lighting), televisions, displays, display panels (liquid crystal panels, organic EL (Electro Luminescence) panels, electronic paper), music playback terminals, industrial equipment, industrial robots, inspection equipment, medical equipment, white goods, space or aircraft equipment, wearable devices, etc.
 また、本発明のデバイスは、電子デバイス用途以外に、日中の急激な温度上昇または室内での暖冷房時の温調に適した建材(例えば、床材、屋根材、壁材等);環境温度の変化または運動時もしくは安静時の体温変化に応じた温度調整に適した衣類(例えば、下着、上着、防寒着、手袋等);寝具;不要な排出熱を蓄えて熱エネルギーとして利用する排熱利用システム等の用途に用いることもできる。 In addition to electronic device applications, the device of the present invention can also be used in applications such as building materials (e.g., flooring, roofing, wall materials, etc.) suitable for temperature control during sudden daytime temperature increases or indoor heating and cooling; clothing (e.g., underwear, jackets, winter clothing, gloves, etc.) suitable for temperature control in response to changes in environmental temperature or changes in body temperature during exercise or at rest; bedding; and exhaust heat utilization systems that store unnecessary exhaust heat and use it as thermal energy.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the examples shown below.
 〔金属ナノワイヤの作製〕
 <アルミニウム基材の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(日本工業規格) 1050材のアルミニウム基材を得た。
 アルミニウム基材を、直径200mm(8インチ)のウエハ状に形成した後、以下に示す各処理を施した。
[Fabrication of Metal Nanowires]
<Preparation of Aluminum Substrate>
A molten metal was prepared using an aluminum alloy containing 0.06 mass% Si, 0.30 mass% Fe, 0.005 mass% Cu, 0.001 mass% Mn, 0.001 mass% Mg, 0.001 mass% Zn, 0.001 mass% Ti, and the remainder being Al and unavoidable impurities. The molten metal was treated and filtered, and an ingot having a thickness of 500 mm and a width of 1,200 mm was produced by a DC (Direct Chill) casting method.
Next, the surface was scraped off by an average thickness of 10 mm using a facing machine, and then the plate was soaked at 550°C for about 5 hours. When the temperature was lowered to 400°C, the plate was rolled into a 2.7 mm thick plate using a hot rolling machine.
Further, the sheet was heat-treated at 500° C. using a continuous annealing machine, and then cold-rolled to a thickness of 1.0 mm to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material.
The aluminum substrate was formed into a wafer having a diameter of 200 mm (8 inches) and then subjected to the following treatments.
 <電解研磨処理>
 上述のアルミニウム基材に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/分の条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
<Electrolytic polishing treatment>
The above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing solution having the following composition under conditions of a voltage of 25 V, a solution temperature of 65° C., and a solution flow rate of 3.0 m/min.
The cathode was a carbon electrode, and the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.) The flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
(Electrolytic polishing solution composition)
85% by weight phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・160mL of pure water
・150mL sulfuric acid
・30mL ethylene glycol
 <陽極酸化工程>
 次いで、電解研磨処理後のアルミニウム基材に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基材に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基材を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間の再陽極酸化処理を施し、膜厚40μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Anodizing process>
Next, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-ordering method according to the procedure described in JP-A-2007-204802.
The aluminum substrate after electrolytic polishing was subjected to a pre-anodizing treatment for 5 hours in an electrolytic solution of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min.
Thereafter, the aluminum substrate after the pre-anodizing treatment was subjected to a coating removal treatment by immersing it in a mixed aqueous solution of 0.2 mol/L chromic anhydride and 0.6 mol/L phosphoric acid (liquid temperature: 50° C.) for 12 hours.
Thereafter, re-anodization was performed for 5 hours in an electrolyte of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a liquid temperature of 16° C., and a liquid flow rate of 3.0 m/min, to obtain an anodized film with a thickness of 40 μm.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless steel electrode, and the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.). The cooling device was NeoCool BD36 (manufactured by Yamato Scientific Co., Ltd.), and the stirring and heating device was Pair Stirrer PS-100 (manufactured by EYELA Tokyo Rikakikai Co., Ltd.). Furthermore, the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
 <金属充填工程>
 次いで、アルミニウム基材を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、ポーラス(マイクロポア)の内部に銅が充填された金属充填微細構造体を作製した。
 ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
 (銅めっき液組成および条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・温度 25℃
 ・電流密度 10A/dm
<Metal filling process>
Next, electrolytic plating was carried out using the aluminum substrate as the cathode and platinum as the anode.
Specifically, a copper plating solution having the composition shown below was used and constant current electrolysis was carried out to produce a metal-filled microstructure in which the inside of the pores (micropores) was filled with copper.
Here, the constant current electrolysis was performed using a plating device manufactured by Yamamoto Plating Tester Co., Ltd. and a power supply (HZ-3000) manufactured by Hokuto Denko Corporation. After confirming the deposition potential by carrying out cyclic voltammetry in the plating solution, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・Copper sulfate 100g/L
Sulfuric acid 50g/L
Hydrochloric acid 15g/L
Temperature: 25℃
Current density 10A/ dm2
 ポーラスに金属を充填した後の陽極酸化膜の表面をFE-SEMで観察し、1000個のポーラスにおける金属による封孔の有無を観察して封孔率(封孔ポーラスの個数/1000個)を算出したところ、96%であった。
 また、ポーラスに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、ポーラスの内部を確認したところ、封孔されたポーラスにおいては、ポーラスの底部からの充填高さが35μmであることが分かった。
The surface of the anodized film after the pores were filled with metal was observed with an FE-SEM to determine whether 1,000 pores were sealed with metal. The sealing rate (number of sealed pores/1,000) was calculated to be 96%.
In addition, after filling the holes with metal, the anodized film was cut in the thickness direction using an FIB, and the cross section was photographed with an FE-SEM (magnification 50,000x) to check the inside of the holes. It was found that the filling height from the bottom of the sealed holes was 35 μm.
 <単離工程>
 60℃の水酸化カリウムの水溶液(濃度:5mol/L)に300秒浸漬させることにより、充填した金属を陽極酸化膜およびアルミニウム基材から単離し、単離金属を得た。具体的には、60℃の水酸化カリウムの水溶液(濃度:5mol/L)に300秒浸漬させることにより、陽極酸化膜を溶解し、陽極酸化膜の溶解と同時に(300秒経過した時点で)アルミニウム基材を剥離することにより、充填した金属を単離した。
<Isolation step>
The filled metal was isolated from the anodized film and the aluminum base material by immersing the aluminum base material in an aqueous potassium hydroxide solution (concentration: 5 mol/L) at 60° C. for 300 seconds, to obtain an isolated metal. Specifically, the anodized film was dissolved by immersing the aluminum base material in an aqueous potassium hydroxide solution (concentration: 5 mol/L) at 60° C. for 300 seconds, and the filled metal was isolated by peeling off the aluminum base material at the same time as the anodized film was dissolved (after 300 seconds had elapsed).
 <乾燥工程>
 次いで、メンブレン(0.4μm、PTFE、Omnipore社製)を用いた吸引ろ過により、単離金属を回収し、単離金属を乾燥させた。
<Drying process>
Next, the isolated metal was recovered by suction filtration using a membrane (0.4 μm, PTFE, manufactured by Omnipore), and the isolated metal was dried.
 <洗浄/保護層形成工程/還元または除去する工程>
 次いで、メンブレン上に回収された単離金属に対して、以下に示す洗浄溶媒を用いて1分間洗浄した。なお、実施例1においては、洗浄溶媒に防食防止剤を添加しているため、洗浄と同時に、保護層の形成を行っている。また、実施例1においては、腐食防止剤としてクエン酸を用いているため、保護層の形成と同時に、単離金属の表面酸化層の除去も行っている。
 その後、メンブレン上の単離金属を回収した。
 (洗浄溶媒)
 クエン酸を1質量%含有する水溶液
<Cleaning/Protective Layer Forming Step/Reduction or Removal Step>
Next, the isolated metal recovered on the membrane was washed for 1 minute using the washing solvent shown below. In Example 1, since a corrosion inhibitor was added to the washing solvent, a protective layer was formed at the same time as washing. In Example 1, since citric acid was used as the corrosion inhibitor, the surface oxide layer of the isolated metal was also removed at the same time as the protective layer was formed.
The isolated metals on the membrane were then collected.
(Washing Solvent)
An aqueous solution containing 1% by weight of citric acid
 <解砕工程>
 次いで、回収した単離金属を水中に1質量%添加し、スギノマシン社製スターバーストミニを使用し、キャビテーションによる解砕処理(圧力:50MPa)を1回施した。
 その後、メンブレン(0.4μm、PTFE、Omnipore社製)を用いた吸引ろ過により、解砕処理を施した単離金属を回収し、12時間、減圧乾燥させることにより、金属ナノワイヤを製造した。
 ここで、マイクロトラック・ベル製BELSORP-maxを用い、50℃で60分間減圧処理を行なった後にクリプトンガス吸着法により比表面積を測定したところ7000m/kgであった。
<Crushing process>
Next, the recovered isolated metal was added to water at 1 mass %, and the mixture was subjected once to a cavitation-based crushing treatment (pressure: 50 MPa) using a Starburst Mini manufactured by Sugino Machine Ltd.
Thereafter, the crushed isolated metal was collected by suction filtration using a membrane (0.4 μm, PTFE, manufactured by Omnipore Corporation) and dried under reduced pressure for 12 hours to produce metal nanowires.
Here, after carrying out a reduced pressure treatment at 50° C. for 60 minutes using a BELSORP-max manufactured by Microtrac-Bel, the specific surface area was measured by a krypton gas adsorption method and found to be 7000 m 2 /kg.
[実施例1~4]
 〔ワニスの調製〕
 下記表1に示す記号および組成比(単位:質量部)で、(A)成分、(B)成分、(C)成分、(D)成分、および、(E)成分を加え、原料ワニスを調製した。
 次いで、調製した原料ワニスをミックスローター(アズワン株式会社製、VMR-3R)を用いて、室温で100回転/分で12時間の撹拌を行い、ワニスを調製した。
[Examples 1 to 4]
[Preparation of Varnish]
A raw varnish was prepared by adding components (A), (B), (C), (D), and (E) according to the symbols and composition ratios (unit: parts by mass) shown in Table 1 below.
Next, the prepared raw varnish was stirred at 100 rpm for 12 hours at room temperature using a mix rotor (VMR-3R, manufactured by AS ONE Corporation) to prepare a varnish.
 〔塗布液の調製〕
 次いで、調製したワニスに、下記表1に示す組成比(質量部)の(F)成分と、有機溶剤としてのシクロヘキサノンとを添加し、あわとり練太郎(ARE-400TWIN、シンキー社製)を用いて、室温で800回転/分で2分の撹拌を2回行い、実施例1~4の固形分61質量%の塗布液を調製した。
[Preparation of Coating Solution]
Next, component (F) in the composition ratio (parts by mass) shown in Table 1 below and cyclohexanone as an organic solvent were added to the prepared varnish, and the mixture was stirred twice for 2 minutes at room temperature at 800 rpm using a Thinky Mixer (ARE-400TWIN, manufactured by Thinky Corporation), to prepare coating solutions with solid contents of 61% by mass for Examples 1 to 4.
 なお、下記表1に示す各成分の記号は下記のものを意味する。
(A)成分:樹脂
 ビスフェノールF型エポキシ樹脂(商品名:EXA-830CRP、DIC株式会社製)
(B)成分:硬化剤
 フェノール樹脂(商品名:SKレジン HE100C-30、エア・ウォーター・パフォーマンスケミカル株式会社製)
(C)成分:エラストマー
 アクリルゴム(商品名:SG-P3、ナガセケムテックス株式会社製)
(D)成分:カップリング剤
 γ-ウレイドプロピルトリエトキシシラン(商品名:KBE-585A、信越化学株式会社製)
(E)成分:硬化促進剤
 1-シアノエチル-2-フェニルイミダゾール(商品名:2PZ-CN、四国化成工業株式会社製)
(F)成分:金属ナノワイヤ
 上記で作製した金属ナノワイヤ
The symbols of the components shown in Table 1 below have the following meanings.
Component (A): Resin Bisphenol F type epoxy resin (product name: EXA-830CRP, manufactured by DIC Corporation)
Component (B): Hardener Phenolic resin (product name: SK Resin HE100C-30, manufactured by Air Water Performance Chemicals Inc.)
Component (C): Elastomer acrylic rubber (product name: SG-P3, manufactured by Nagase ChemteX Corporation)
Component (D): Coupling agent γ-ureidopropyltriethoxysilane (product name: KBE-585A, manufactured by Shin-Etsu Chemical Co., Ltd.)
Component (E): Curing accelerator 1-cyanoethyl-2-phenylimidazole (product name: 2PZ-CN, manufactured by Shikoku Chemical Industry Co., Ltd.)
Component (F): Metal Nanowire The metal nanowire prepared above
 〔熱伝導部材の作製〕
 調製した塗布液を、支持フィルムとしての離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚さ100μm)上に塗布した。
 次いで、塗布サンプルを、90℃で10分間、続いて140℃で10分間の2段階で加熱乾燥し、支持フィルム上に、Bステージ 状態のシート(厚さ330μm)を形成した。
 次いで、支持フィルムから剥離したシートを2枚のポリイミドフィルム(50μm)に挟んで180℃で5分間の熱プレスを行い、プレス後にポリイミドフィルムを取り除いて、厚さ100μmの実施例1~4の熱伝導部材をシート形状で作製した。
[Preparation of thermally conductive member]
The prepared coating solution was applied onto a polyethylene terephthalate (PET) film (thickness: 100 μm) that had been subjected to a release treatment as a support film.
The coated sample was then dried by heating in two stages, first at 90° C. for 10 minutes and then at 140° C. for 10 minutes, to form a sheet (thickness 330 μm) in a B-stage state on the support film.
Next, the sheet peeled off from the support film was sandwiched between two polyimide films (50 μm) and subjected to heat pressing at 180° C. for 5 minutes. After pressing, the polyimide films were removed to produce the thermal conductive members of Examples 1 to 4 in sheet form with a thickness of 100 μm.
[比較例1]
 特許文献1(特開2014-201687号公報)の段落[0078]、[0081]、[0085]および[0101]に記載された方法で、熱伝導性接着シートを作製した。
[Comparative Example 1]
A thermally conductive adhesive sheet was produced by the method described in paragraphs [0078], [0081], [0085] and [0101] of Patent Document 1 (JP 2014-201687 A).
[比較例2]
 (F)成分を、径15μmφ、長さ40μmの銅マイクロワイヤに変更し、下記表1に示す組成比(質量部)で配合して調製した塗布液を用いた以外は、実施例1と同様の方法で熱伝導部材を作製した。
[Comparative Example 2]
A thermally conductive member was produced in the same manner as in Example 1, except that the (F) component was changed to copper microwires having a diameter of 15 μmφ and a length of 40 μm, and a coating liquid prepared by blending the components in the composition ratio (parts by mass) shown in Table 1 below was used.
[実施例5]
 ワニスの調製時に用いた(A)成分を、ポリフッ化ビニリデン(PVDF)(商品名:ソレフ1006、ソルベイスペシャルティポリマーズジャパン株式会社社製)に変更し、塗布液の調製時に用いた(F)成分を、ジメチルホルムアミドとメチルエチルケトンとの混合溶媒(混合比は体積%で38:62)に変更した以外は、実施例1と同様の方法で熱伝導部材を作製した。
[Example 5]
A thermally conductive member was produced in the same manner as in Example 1, except that the component (A) used in preparing the varnish was changed to polyvinylidene fluoride (PVDF) (product name: Solef 1006, manufactured by Solvay Specialty Polymers Japan, Inc.) and the component (F) used in preparing the coating liquid was changed to a mixed solvent of dimethylformamide and methyl ethyl ketone (mixing ratio by volume: 38:62).
[密着性の評価]
 実施例1~5および比較例1および2で作製したシートの面内方向のCTE(線膨張係数)を、熱機械分析装置(TMA:Thermal Mechanical Analysis、島津製作所社製)を用いて測定した。
 具体的には、幅4mm×長さ14mmに切り出した試料をチャック間距離10mmとなるように測定治具にセットし、1gfの引張荷重をかけながら昇温および降温を行い、試料の膨張量を測定した。
 昇温および降温の温度制御は、5℃/minの速度で25℃から200℃まで昇温し、その後25℃になるまで2℃/minの速度で降温し、再度5℃/minの速度で25℃から200℃まで昇温する方法で実施した。
 線膨張係数は、TMA曲線上で2回目の昇温時の温度2点(50℃、150℃)での試料の伸び量(L50、L150)を測定して、下記の式で算出した。結果を下記表1に示す。
 線膨張係数[ppm/℃]=(L150-L50)/Lo/(150-50)
 Lo:初期のサンプルの長さ(=チャック間距離)
 次いで、以下の基準で、密着性を評価した。結果を下記表1に示す。
 <基準>
 算出した各シートの線膨張係数と、銅板からなるヒートスプレッダ(放熱部材)の線膨張係数(18.0ppm/℃)との差分を算出し、以下のようにして密着性を判定した。
 AAA:3.0以内
 AA:3.0超7.0以内
 A:差分が7.0超10.0以内
 B:差分が10.0超30.0以内
 C:差分が30.0超
[Evaluation of Adhesion]
The CTE (coefficient of linear expansion) in the in-plane direction of the sheets produced in Examples 1 to 5 and Comparative Examples 1 and 2 was measured using a thermal mechanical analyzer (TMA, manufactured by Shimadzu Corporation).
Specifically, a sample cut to a width of 4 mm and a length of 14 mm was set on a measuring jig so that the chuck distance was 10 mm, and the temperature was raised and lowered while a tensile load of 1 gf was applied, and the amount of expansion of the sample was measured.
The temperature control for heating and cooling was performed by heating from 25° C. to 200° C. at a rate of 5° C./min, then cooling to 25° C. at a rate of 2° C./min, and then heating again from 25° C. to 200° C. at a rate of 5° C./min.
The linear expansion coefficient was calculated by measuring the elongation (L50, L150) of the sample at two temperatures (50° C., 150° C.) during the second heating on the TMA curve and using the following formula. The results are shown in Table 1 below.
Linear expansion coefficient [ppm/°C] = (L150-L50)/Lo/(150-50)
Lo: Initial sample length (= chuck distance)
The adhesion was then evaluated according to the following criteria, and the results are shown in Table 1 below.
<Standards>
The difference between the calculated linear expansion coefficient of each sheet and the linear expansion coefficient (18.0 ppm/° C.) of a heat spreader (heat dissipation member) made of a copper plate was calculated, and the adhesion was evaluated as follows.
AAA: Within 3.0 AA: Over 3.0 and within 7.0 A: Difference is over 7.0 and within 10.0 B: Difference is over 10.0 and within 30.0 C: Difference is over 30.0
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、金属ナノワイヤの含有量が要件1および2をいずれも満たさない場合には、熱伝導部材と放熱部材との線膨張係数の差が大きくなり、加熱と冷却を繰り返す工程に曝された場合に、熱伝導部材と放熱部材との密着性が劣ることになることが分かった(比較例1~2)。
 これに対し、金属ナノワイヤの含有量が要件1および2の少なくとも一方を満たす場合には、熱伝導部材と放熱部材との線膨張係数の差が小さくなり、加熱と冷却を繰り返す工程に曝された場合に、熱伝導部材と放熱部材との密着性が良好となることが分かった(実施例1~5)。
 特に、実施例1および2と実施例3および4との対比から、金属ナノワイヤの含有量が要件1および2をいずれも満たす場合には、熱伝導部材と放熱部材との密着性がより良好となることが分かった。
 また、実施例1と実施例2との対比から、金属ナノワイヤの含有量が50体積%超であると、熱伝導部材と放熱部材との密着性が更に良好となることが分かった。
 また、実施例1と実施例5との対比から、フッ素樹脂以外の樹脂を用いると、熱伝導部材と放熱部材との密着性がより良好となることが分かった。
From the results shown in Table 1, it was found that when the content of metal nanowires does not satisfy either requirement 1 or 2, the difference in the linear expansion coefficient between the heat conduction member and the heat dissipation member becomes large, and when exposed to a process of repeated heating and cooling, the adhesion between the heat conduction member and the heat dissipation member becomes poor (Comparative Examples 1 to 2).
In contrast, when the content of metal nanowires satisfies at least one of requirements 1 and 2, the difference in the linear expansion coefficient between the heat conduction member and the heat dissipation member becomes small, and it was found that the adhesion between the heat conduction member and the heat dissipation member becomes good when exposed to a process of repeated heating and cooling (Examples 1 to 5).
In particular, by comparing Examples 1 and 2 with Examples 3 and 4, it was found that when the content of metal nanowires satisfies both requirements 1 and 2, the adhesion between the thermal conduction member and the heat dissipation member is better.
Furthermore, a comparison between Example 1 and Example 2 revealed that when the content of metal nanowires was more than 50% by volume, the adhesion between the heat conducting member and the heat dissipating member was further improved.
Furthermore, a comparison between Example 1 and Example 5 reveals that the adhesion between the heat conducting member and the heat dissipating member is improved when a resin other than a fluororesin is used.
 1 バルブ金属基材
 2 ポーラス(マイクロポア)
 3 陽極酸化膜
 4 金属
 5 単離金属
 10 金属ナノワイヤ
1 Valve metal substrate 2 Porous (micropore)
3 Anodic oxide film 4 Metal 5 Isolated metal 10 Metal nanowire

Claims (7)

  1.  下記要件1および2の少なくとも一方を満たす、熱伝導部材。
     要件1:金属ナノワイヤを40~99体積%含有する。
     要件2:金属ナノワイヤを70~99質量%含有する。
    A thermally conductive member that satisfies at least one of the following requirements 1 and 2:
    Requirement 1: The metal nanowires are contained at 40 to 99 volume %.
    Requirement 2: The metal nanowires are contained in an amount of 70 to 99 mass %.
  2.  前記金属ナノワイヤを構成する金属が、銀および銅からなる群から選択される少なくとも1種の金属である、請求項1に記載の熱伝導部材。 The heat conducting member according to claim 1, wherein the metal constituting the metal nanowires is at least one metal selected from the group consisting of silver and copper.
  3.  更に樹脂を含有する、請求項1に記載の熱伝導部材。 The heat conductive member according to claim 1, further comprising a resin.
  4.  前記樹脂が架橋樹脂である、請求項3に記載の熱伝導部材。 The thermal conductive member according to claim 3, wherein the resin is a cross-linked resin.
  5.  シート状である、請求項3に記載の熱伝導部材。 The thermally conductive member according to claim 3, which is in sheet form.
  6.  発熱体と、請求項1~5のいずれか1項に記載の熱伝導部材と、放熱部材とを有する、デバイス。 A device having a heating element, a heat conduction member according to any one of claims 1 to 5, and a heat dissipation member.
  7.  前記発熱体と、前記熱伝導部材と、前記放熱部材とをこの順に隣接して有する、請求項6に記載のデバイス。 The device according to claim 6, comprising the heat generating element, the heat conducting member, and the heat dissipating member, arranged adjacent to each other in this order.
PCT/JP2023/044322 2022-12-26 2023-12-12 Heat transfer member and device WO2024142895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-207983 2022-12-26
JP2022207983 2022-12-26

Publications (1)

Publication Number Publication Date
WO2024142895A1 true WO2024142895A1 (en) 2024-07-04

Family

ID=91717593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044322 WO2024142895A1 (en) 2022-12-26 2023-12-12 Heat transfer member and device

Country Status (1)

Country Link
WO (1) WO2024142895A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member
WO2013175744A1 (en) * 2012-05-21 2013-11-28 東洋インキScホールディングス株式会社 Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet
JP2021515385A (en) * 2018-03-02 2021-06-17 ノースロップ グラマン システムズ コーポレーション Thermal gasket with high lateral thermal conductivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member
WO2013175744A1 (en) * 2012-05-21 2013-11-28 東洋インキScホールディングス株式会社 Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet
JP2021515385A (en) * 2018-03-02 2021-06-17 ノースロップ グラマン システムズ コーポレーション Thermal gasket with high lateral thermal conductivity

Similar Documents

Publication Publication Date Title
JP6818707B2 (en) Metal film, structure, composite material, method of manufacturing structure, and method of manufacturing composite material
TWI758510B (en) Structure, method for producing structure, laminate, and semiconductor package
JP2011225856A (en) Adhesive composition for electronic device and adhesive sheet for electronic device using the same
TWI723250B (en) Method for manufacturing metal-filled microstructure
JP2019153415A (en) Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body
WO2022163260A1 (en) Structure, method for producing anisotropic conductive member and composition for forming protective layer
JP2019149448A (en) Anisotropic conductive member, manufacturing method of anisotropic conductive member, joint body, and electronic device
WO2018216433A1 (en) Method for producing treated member and laminate
JP7394956B2 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
WO2024142895A1 (en) Heat transfer member and device
WO2021177013A1 (en) Filled microstructure and conveyance method
WO2021176847A1 (en) Method for manufacturing metal-filled microstructure
TW202434676A (en) Heat conducting member and device
JP7506753B2 (en) Method for manufacturing metal-filled microstructures
WO2022158277A1 (en) Plating solution and method for producing metal-filled structure
JP7493039B2 (en) STRUCTURE, METHOD FOR MANUFACTURING ... JOINT BODY, AND METHOD FOR MANUFACTURING DEVICE
JP7369797B2 (en) Method for manufacturing metal-filled microstructures
WO2015045469A1 (en) Multilayer structure, interposer and method for producing interposer
WO2024154463A1 (en) Composition, conductive joining material, device and production method of conductive joining material
WO2014077076A1 (en) Resin sheet
WO2024070339A1 (en) Conductive adhesive material-forming composition, conductive adhesive material, device, and method for producing conductive adhesive material
TW202305839A (en) Method of manufacturing the structure
JP2018028144A (en) Method for producing metal-filled fine structure
KR102723699B1 (en) Method for manufacturing metal-filled microstructures
TWI774841B (en) Manufacturing method and bonding member of semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23911676

Country of ref document: EP

Kind code of ref document: A1