WO2022158277A1 - Plating solution and method for producing metal-filled structure - Google Patents

Plating solution and method for producing metal-filled structure Download PDF

Info

Publication number
WO2022158277A1
WO2022158277A1 PCT/JP2021/048930 JP2021048930W WO2022158277A1 WO 2022158277 A1 WO2022158277 A1 WO 2022158277A1 JP 2021048930 W JP2021048930 W JP 2021048930W WO 2022158277 A1 WO2022158277 A1 WO 2022158277A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
plating solution
insulating film
filled
filling
Prior art date
Application number
PCT/JP2021/048930
Other languages
French (fr)
Japanese (ja)
Inventor
順二 川口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022576584A priority Critical patent/JPWO2022158277A1/ja
Priority to CN202180090962.9A priority patent/CN116710599A/en
Priority to KR1020237024281A priority patent/KR20230121857A/en
Publication of WO2022158277A1 publication Critical patent/WO2022158277A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a plating solution and a method for manufacturing a metal-filled structure.
  • Metal-filled microstructures in which micropores provided in an insulating substrate are filled with metal, are one of the fields that have been attracting attention in recent years in nanotechnology. is expected.
  • the anisotropic conductive member is inserted between electronic parts such as semiconductor elements and the circuit board, and can be electrically connected between the electronic parts and the circuit board simply by applying pressure. It is widely used as an electrical connection member, a connector for testing when performing a function test, and the like.
  • Patent Document 1 discloses that "a surface of one side of an aluminum substrate is subjected to an anodizing treatment, and a microstructure existing in the thickness direction is formed on the surface of one side of the aluminum substrate.
  • An anodizing process for forming an anodized film having pores and a barrier layer existing at the bottom of the micropores, and an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum is used after the anodizing process.
  • a barrier layer removing step of removing the barrier layer of the anodized film a metal filling step of performing electrolytic plating after the barrier layer removing step to fill the inside of the micropores with metal M2; a substrate removing step of removing the aluminum substrate after the metal filling step to obtain a metal-filled microstructure” ([Claim 1]).
  • the present inventors have studied the known method for manufacturing a metal-filled microstructure described in Patent Document 1, etc., and have found that depending on the conditions of the plating process, the metal filled inside the through-holes such as micropores may have a high density. In some cases, the height (hereinafter also abbreviated as “filling height”) may vary, and it has been clarified that there is room for improvement in the plating conditions.
  • an object of the present invention is to provide a plating solution capable of suppressing variations in filling height of the metal filled in the through-holes, and a method for manufacturing a metal-filled structure using the plating solution.
  • the present inventors have found that when a plating solution containing a salt of a metal to be filled into the through-holes and a compound having a mercapto group is used, the metal filling of the through-holes can be reduced.
  • the inventors have found that it is possible to suppress variations in height, and have completed the present invention. That is, the inventors have found that the above object can be achieved by the following configuration.
  • a plating solution used when filling a through-hole of a structure having a plurality of through-holes with a metal, containing a metal salt to fill the through-holes and a compound having a mercapto group A plating solution containing more than 0.01 mg/L and less than 2000 mg/L of a compound having a mercapto group.
  • [4] The plating solution according to any one of [1] to [3], wherein the compound having a mercapto group contains sodium 3-mercapto-1-propanesulfonate.
  • [5] The plating solution according to any one of [1] to [4], wherein the ratio of depth to opening diameter of the plurality of through holes is 10 or more.
  • [6] A method for manufacturing a metal-filled structure produced by filling a through-hole of a structure having a plurality of through-holes with a metal, A method for producing a metal-filled structure, wherein the plating solution according to any one of [1] to [5] is used when filling the through-holes of the structure with metal.
  • the metal salt is preferably copper sulfate (CuSO 4 ), nickel sulfate, or silver nitrate, more preferably copper sulfate, because of good solubility.
  • the concentration of the metal salt contained in the plating solution is not particularly limited, it is preferably 1 to 300 g/L, more preferably 100 to 200 g/L.
  • the structure 10 shown in FIG. 1 includes an insulating film 12 having electrical insulation properties, and a plurality of conductors 14 that penetrate through the insulating film 12 in the thickness direction Dt and are electrically insulated from each other. have The conductor 14 protrudes from at least one surface of the insulating film 12 in the thickness direction Dt. When the conductor 14 protrudes from at least one surface in the thickness direction Dt of the insulating film 12, it is preferable that the conductor 14 protrudes from the surface 12a or the rear surface 12b.
  • the length of the insulating film 12 in the thickness direction Dt is preferably in the range of 1 to 1000 ⁇ m, more preferably in the range of 5 to 500 ⁇ m, and more preferably in the range of 10 to 300 ⁇ m. More preferably within. When the thickness of the insulating film 12 is within this range, the handleability of the insulating film 12 is improved.
  • the thickness ht of the insulating film 12 is preferably 30 ⁇ m or less, more preferably 5 to 20 ⁇ m, from the viewpoint of ease of winding.
  • the thickness of the anodized film is determined by cutting the anodized film with a focused ion beam (FIB) in the thickness direction Dt, and examining the cross section with a field emission scanning electron microscope (FE-SEM). A photograph (50,000 times magnification) was taken, and the value was calculated as an average value of 10 measurements.
  • the distance between the conductors 14 in the insulating film 12 is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, even more preferably 20 nm to 60 nm. When the distance between the conductors 14 in the insulating film 12 is within the range described above, the insulating film 12 sufficiently functions as an electrically insulating partition between the conductors 14 .
  • the interval between each conductor means the width between adjacent conductors. Mean value measured at points.
  • the average diameter of the pores is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, even more preferably 20 to 400 nm, even more preferably 40 to 200 nm, even more preferably 50 to 100 nm. Most preferably there is.
  • the conductor 14 having the above average diameter can be obtained.
  • the average diameter of the pores 13 is obtained by photographing the surface of the insulating film 12 from directly above with a scanning electron microscope at a magnification of 100 to 10000 times.
  • the diameters of the pores are measured and used as opening diameters, and the average value of these opening diameters is calculated as the average diameter of the pores.
  • the magnification can be appropriately selected within the range described above so that a photographed image from which 20 or more pores can be extracted can be obtained.
  • the aperture diameter measures the maximum distance between the ends of the pore portions. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum distance between the ends of the pore portion is taken as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portion is taken as the opening diameter. .
  • the plurality of conductors 14 are provided in a state of being electrically insulated from each other on the anodized film, as described above.
  • the plurality of conductors 14 have electrical conductivity.
  • the conductor is composed of an electrically conductive material.
  • the conductive substance is not particularly limited, and includes metals. Preferred examples of metals include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), and nickel (Ni). From the viewpoint of electrical conductivity, copper, gold, aluminum and nickel are preferred, copper and gold are more preferred, and copper is most preferred.
  • oxide conductive materials can be mentioned. Examples of conductive oxide materials include indium-doped tin oxide (ITO).
  • the conductor can also be made of, for example, a conductive resin containing nanoparticles such as Cu or Ag.
  • a height H of the conductor 14 in the thickness direction Dt is preferably 10 to 300 ⁇ m, more preferably 20 to 30 ⁇ m.
  • the average diameter d of the conductor 14 is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, even more preferably 20 to 400 nm, even more preferably 40 to 200 nm, even more preferably 50 to 100 nm. is most preferred.
  • the density of the conductors 14 is preferably 20,000/mm 2 or more, more preferably 2,000,000/mm 2 or more, even more preferably 10,000,000/mm 2 or more, and 50,000,000. /mm 2 or more is particularly preferred, and 100 million/mm 2 or more is most preferred.
  • the center-to-center distance p between adjacent conductors 14 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, even more preferably 50 nm to 140 nm.
  • the average diameter of the conductor is obtained by photographing the surface of the anodized film from directly above with a scanning electron microscope at a magnification of 100 to 10000 times. In the photographed image, at least 20 conductors whose circumferences are continuous in a ring are extracted, the diameters thereof are measured and used as opening diameters, and the average value of these opening diameters is calculated as the average diameter of the conductors.
  • the magnification can be appropriately selected within the range described above so that a photographed image from which 20 or more conductors can be extracted can be obtained.
  • the aperture diameter measures the maximum distance between the ends of the conductor portions. That is, since the shape of the opening of the conductor is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the conductor portion is taken as the opening diameter. Therefore, for example, even in the case of a conductor having a shape in which two or more conductors are integrated, this is regarded as one conductor, and the maximum value of the distance between the ends of the conductor portions is taken as the opening diameter.
  • FIGS. 1 and 2 are schematic cross-sectional views showing an example of the manufacturing method of the structure according to the embodiment of the present invention in order of steps. 3 to 9, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the structure 10 shown in FIG. An aluminum substrate is used to form an anodized film of aluminum. Therefore, in one example of the structure manufacturing method, first, as shown in FIG. 3, an aluminum substrate 30 is prepared. The size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the insulating film 12 of the finally obtained structure 10 (see FIG. 1), the processing equipment, and the like.
  • the aluminum substrate 30 is, for example, a rectangular plate. Note that the substrate is not limited to the aluminum substrate, and a metal substrate on which an electrically insulating insulating film 12 can be formed can be used.
  • one surface 30a (see FIG. 3) of the aluminum substrate 30 is anodized.
  • one surface 30a (see FIG. 3) of the aluminum substrate 30 is anodized, and as shown in FIG. That is, an anodized film 15 is formed.
  • a barrier layer 31 is present at the bottom of each pore 13 .
  • the above-described anodizing process is called an anodizing process.
  • the insulating film 12 having the plurality of pores 13 has the barrier layer 31 at the bottom of each of the pores 13, but the barrier layer 31 shown in FIG. 4 is removed.
  • the insulating film 12 (see FIG. 5) without the barrier layer 31 and having the plurality of pores 13 is obtained.
  • the process of removing the barrier layer 31 described above is called a barrier layer removing process.
  • the barrier layer removing step the barrier layer 31 of the insulating film 12 is removed by using an alkaline aqueous solution containing ions of the metal M1 having a hydrogen overvoltage higher than that of aluminum, and at the same time, the bottoms 32c (see FIG. 5) of the pores 13 are removed.
  • a metal layer 35a (see FIG. 5) made of metal (metal M1) is formed on the surface 32d (see FIG. 5). As a result, the aluminum substrate 30 exposed in the pores 13 is covered with the metal layer 35a.
  • the alkaline aqueous solution containing ions of the metal M1 described above may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.).
  • the content of the aluminum ion-containing compound is preferably 0.1 to 20 g/L, more preferably 0.3 to 12 g/L, and even more preferably 0.5 to 6 g/L in terms of the amount of aluminum ions.
  • plating is performed from the surface 12a of the insulating film 12 having a plurality of pores 13 extending in the thickness direction Dt.
  • the metal layer 35a can be used as an electrode for electrolytic plating.
  • a metal 35b is used for plating, and plating progresses from the metal layer 35a formed on the surface 32d (see FIG. 5) of the bottom 32c (see FIG. 5) of the pore 13 as a starting point.
  • the inside of the pores 13 of the insulating film 12 is filled with the metal 35b that constitutes the conductor 14.
  • the conductive conductors 14 are formed.
  • the metal layer 35a and the metal 35b are collectively referred to as the filled metal 35.
  • FIG. The process of filling the pores 13 of the insulating film 12 with the metal 35b is called a metal filling process.
  • the conductor 14 is not limited to being made of metal, but any conductive material can be used. Electroplating is used for the metal filling process, and the metal filling process will be described later in detail.
  • the surface 12 a of the insulating film 12 corresponds to one surface of the insulating film 12 .
  • the surface 12a of the insulating film 12 on the side where the aluminum substrate 30 is not provided is partly removed in the thickness direction Dt after the metal filling step, and filled in the metal filling step.
  • the metal 35 is made to protrude beyond the surface 12 a of the insulating film 12 . That is, the conductor 14 is made to protrude from the surface 12 a of the insulating film 12 . Thereby, the projecting portion 14a is obtained.
  • the step of causing the conductor 14 to protrude from the surface 12a of the insulating film 12 is called a surface metal protruding step.
  • the aluminum substrate 30 is removed as shown in FIG. The process of removing the aluminum substrate 30 is called a substrate removing process.
  • the front metal projecting process and the back metal projecting process correspond to the "projecting process", and both the front metal projecting process and the back metal projecting process are projecting processes.
  • conductors 14 protrude from front surface 12a and back surface 12b of insulating film 12, respectively, and have projecting portions 14a and 14b.
  • a resin layer 20 (see FIG. 1) is partially formed on the front surface 12a and the back surface 12b of the insulating film 12 from which the conductors 14 protrude.
  • the structure 10 shown in FIG. 1 can be obtained.
  • the resin layer 20 for example, the pattern shown in FIG. 3 or 4 can be used. A process for forming the resin layer 20 will be described later.
  • the barrier layer removing step described above the barrier layer is removed using an alkaline aqueous solution containing ions of the metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • a metal layer 35a of the metal M1 which is less likely to generate hydrogen gas than aluminum, is formed.
  • the in-plane uniformity of metal filling is improved. It is considered that this is because generation of hydrogen gas by the plating solution is suppressed, and metal filling by electrolytic plating is facilitated.
  • the metal layer 35a made of metal (metal M1) was formed on the bottom of the pores 13, but the present invention is not limited to this.
  • An aluminum substrate 30 is exposed on the bottom.
  • the aluminum substrate 30 may be used as an electrode for electroplating while the aluminum substrate 30 is exposed.
  • anodized film for example, an anodized aluminum film is used because pores having a desired average diameter are formed and conductors are easily formed, as described above.
  • a valve metal is used for the metal substrate.
  • specific examples of valve metals include aluminum as described above, and tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and the like.
  • the anodized film of aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
  • the thickness of the anodized film is the same as the thickness ht of the insulating film 12 described above.
  • a metal substrate is used for manufacturing a structure, and is a substrate for forming an anodized film.
  • a metal substrate on which an anodized film can be formed is used as described above, and a substrate composed of the valve metal described above can be used.
  • an aluminum substrate is used because it is easy to form an anodized film as an anodized film as described above.
  • the aluminum substrate used to form the insulating film 12 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, Recycled materials) substrates on which high-purity aluminum is vapor-deposited; substrates in which high-purity aluminum is coated on the surface of silicon wafers, quartz, glass, etc. by vapor deposition, sputtering, etc.; resin substrates laminated with aluminum; .
  • one surface on which an anodized film is formed by anodizing treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99% by mass or more. More preferably, it is at least 0.99% by mass. When the aluminum purity is within the above range, the regularity of the micropore arrangement is sufficient.
  • the aluminum substrate is not particularly limited as long as an anodized film can be formed thereon, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
  • One surface of the aluminum substrate to be anodized is preferably preliminarily subjected to heat treatment, degreasing treatment and mirror finish treatment.
  • the heat treatment, the degreasing treatment and the mirror finish treatment can be performed in the same manner as the treatments described in paragraphs [0044] to [0054] of JP-A-2008-270158.
  • the mirror finish treatment before the anodizing treatment is, for example, electropolishing, and for electropolishing, for example, an electropolishing liquid containing phosphoric acid is used.
  • a conventionally known method can be used for the anodizing treatment, but from the viewpoint of increasing the regularity of the micropore array and ensuring the anisotropic conductivity of the structure, it is preferable to use a self-ordering method or a constant voltage treatment. is preferred.
  • the same treatments as those described in paragraphs [0056] to [0108] and [Fig. can apply.
  • the method of manufacturing the structure may have a holding step.
  • the voltage is 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step.
  • the total voltage is 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step.
  • the “voltage in the anodizing treatment” is the voltage applied between the aluminum and the counter electrode. mean value.
  • the voltage in the holding step may be set by dropping continuously or stepwise from the voltage in the anodizing step to the voltage in the holding step. It is preferable to set the voltage to 95% or more and 105% or less of the holding voltage within 1 second after the process is finished.
  • the above-described holding step can also be performed continuously with the above-described anodizing step, for example by lowering the electrolytic potential at the end of the above-described anodizing step.
  • the electrolytic solution and treatment conditions similar to those of the above-described conventionally known anodizing treatment can be employed, except for the electrolytic potential.
  • a barrier layer (not shown) exists at the bottom of the micropores as described above.
  • a barrier layer removing step is provided to remove this barrier layer.
  • Metal M1 having a hydrogen overvoltage higher than that of aluminum and its hydrogen overvoltage value are shown below.
  • ⁇ Metal M1 and hydrogen ( 1N H2SO4 ) overvoltage> ⁇ Platinum (Pt): 0.00V ⁇ Gold (Au): 0.02V ⁇ Silver (Ag): 0.08V ⁇ Nickel (Ni): 0.21V ⁇ Copper (Cu): 0.23V - Tin (Sn): 0.53V ⁇ Zinc (Zn): 0.70V
  • the metal filled as a conductor inside the pores 13 and the metal constituting the metal layer are materials having an electrical resistivity of 10 3 ⁇ cm or less.
  • the metals mentioned above include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn).
  • the conductor copper (Cu), gold (Au), aluminum (Al), and nickel (Ni) are preferable from the viewpoint of electrical conductivity and formation by plating. ) is more preferred, and copper (Cu) is even more preferred.
  • the plating method for filling the inside of the pores with a metal is not particularly limited as long as it is a method using the plating solution of the present invention described above.
  • an electrolytic plating method or an electroless plating method can be used.
  • the pause time should be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to apply ultrasonic waves to promote agitation of the electrolyte.
  • the electrolysis voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte to be used in advance and perform constant potential electrolysis within +1 V of the potential.
  • constant potential electrolysis it is desirable to use cyclic voltammetry together, and a potentiostat device such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
  • the substrate removal step is a step of removing the aluminum substrate described above after the metal filling step.
  • a method for removing the aluminum substrate is not particularly limited, and a suitable method includes, for example, a method of removing by dissolution.
  • the treatment liquid preferably contains at least one metal compound with a lower ionization tendency than aluminum and has a pH (hydrogen ion exponent) of 4 or less or 8 or more, and the pH is 3 or less or It is more preferably 9 or more, and even more preferably 2 or less or 10 or more.
  • a pH hydrogen ion exponent
  • the processing liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, such as manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, and platinum.
  • an acid or alkaline aqueous solution such as manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, and platinum.
  • gold compounds for example, chloroplatinic acid
  • fluorides thereof, chlorides thereof, and the like are preferably blended.
  • an acid aqueous solution base is preferred, and a chloride blend is preferred.
  • a treatment solution obtained by blending mercury chloride with an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution obtained by blending an aqueous hydrochloric acid solution with copper chloride (hydrochloric acid/copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol/L, more preferably 0.05 to 5 mol/L. Furthermore, the treatment temperature using the treatment liquid for dissolving aluminum is preferably -10°C to 80°C, more preferably 0°C to 60°C.
  • the above-described dissolution of the aluminum substrate is performed by bringing the aluminum substrate after the above-described plating process into contact with the above-described treatment liquid.
  • the contacting method is not particularly limited, and includes, for example, an immersion method and a spray method. Among them, the immersion method is preferable.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • the insulating film 12 may be provided with a support, for example.
  • the support preferably has the same outer shape as the insulating film 12 . By attaching the support, the handleability is increased.
  • an aqueous solution When using an acid aqueous solution, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Among them, an aqueous solution containing no chromic acid is preferable because of its excellent safety.
  • the concentration of the acid aqueous solution is preferably 1-10 mass %.
  • the temperature of the acid aqueous solution is preferably 25-60°C.
  • an aqueous alkali solution it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35°C. Specifically, for example, a 50 g/L, 40° C. phosphoric acid aqueous solution, a 0.5 g/L, 30° C. sodium hydroxide aqueous solution, or a 0.5 g/L, 30° C. potassium hydroxide aqueous solution is preferably used. .
  • a heat treatment can be performed for the purpose of reducing distortion in the conductor 14 caused by the metal filling.
  • the heat treatment is preferably performed in a reducing atmosphere from the viewpoint of suppressing metal oxidation.
  • the heat treatment is preferably performed at an oxygen concentration of 20 Pa or less, and more preferably in a vacuum.
  • vacuum means a state of space in which at least one of gas density and atmospheric pressure is lower than atmospheric pressure.
  • the heat treatment is preferably performed while applying stress to the insulating film 12 for the purpose of correction.
  • a method for manufacturing a joined body comprising: joining a conductive member having a conductive portion having electrical conductivity to the structure described above by bringing the conductor of the structure into contact with the conductive portion. It provides As a method of manufacturing a bonded body, a method of manufacturing a laminated device 40 having an anisotropically conductive member 45 shown in FIG. 10 will be described. 12 and 13 are schematic cross-sectional views showing an example of the manufacturing method of the joined body according to the embodiment of the present invention in order of steps. 12 and 13, the same components as those of the laminated device 40 and the semiconductor elements 42 and 44 shown in FIGS. 10 and 11 are denoted by the same reference numerals, and detailed description thereof will be omitted. The manufacturing method of the laminated device 40 shown in FIGS. 12 and 13 relates to chip-on-chip.
  • the semiconductor element 42 is, for example, a semiconductor element portion 50 provided with a plurality of electrodes 52 for exchanging signals with the outside, or for exchanging voltage or current.
  • Each electrode 52 is electrically insulated by an insulating layer 54 .
  • the electrode 52 protrudes from the surface 54a of the insulating layer 54, for example.
  • the semiconductor element 44 has the same configuration as the semiconductor element 42 .
  • the semiconductor element 44 is, for example, an interposer substrate 51 provided with a plurality of electrodes 53 for exchanging signals with the outside, or for exchanging voltage or current.
  • Each electrode 53 is electrically insulated by an insulating layer 55 .
  • the electrode 53 protrudes from the surface 55a of the insulating layer 55, for example.
  • the interposer substrate 51 has, for example, lead wiring layers, and electrodes 53 electrically connect the laminated device 40 to the outside.
  • the resin layer 20 is partially provided on the front surface 12 a and the rear surface 12 b of the insulating film 12 . Therefore, when the anisotropically conductive member 45 is conveyed, charging is suppressed, handling is facilitated, and the anisotropically conductive member 45 can be easily arranged between the semiconductor element 42 and the semiconductor element 44. can. Moreover, since the resin layer 20 is partially provided at the time of bonding, the force required for bonding can be reduced.
  • the semiconductor element 44 is arranged toward c of the first semiconductor wafer 60 .
  • the semiconductor element 44 has electrodes (not shown).
  • the alignment mark of the semiconductor element 44 and the alignment mark of the first semiconductor wafer 60 are used to align the semiconductor element 44 with respect to the first semiconductor wafer 60 .
  • the alignment if digital image data can be obtained for the image or reflected image of the alignment mark of the first semiconductor wafer 60 and the image or reflected image of the alignment mark of the semiconductor element 44, the configuration is particularly limited. A known imaging device can be used as appropriate.
  • the semiconductor element 44 is placed on the anisotropic conductive member 45 provided in the element region of the first semiconductor wafer 60, for example, a predetermined pressure is applied and heated to a predetermined temperature. and held for a predetermined time for temporary bonding. This is performed for all the semiconductor elements 44, and all the semiconductor elements 44 are temporarily bonded to the element regions of the first semiconductor wafer 60, as shown in FIG.
  • a partially provided resin layer 20 see FIG. 1 is used. However, it is not limited to using the resin layer 20 (see FIG. 1).
  • the semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above have element regions (not shown).
  • the element region is as described above.
  • the device region is formed with the device configuration circuit and the like, and the semiconductor device is provided with, for example, a rewiring layer (not shown).
  • a stacked device can be, for example, a combination of a semiconductor element having a logic circuit and a semiconductor element having a memory circuit. Further, all of the semiconductor elements may have memory circuits, or all of them may have logic circuits.
  • the combination of semiconductor elements in the laminated device 40 may be a combination of a sensor, an actuator, an antenna, etc., and a memory circuit and a logic circuit.
  • An electrode area is basically an area that includes all electrodes formed. However, if the electrodes are discretely provided, the area where each electrode is provided is also called the electrode area.
  • the structure may be in the form of individual pieces such as semiconductor chips, in the form of semiconductor wafers, or in the form of wiring layers.
  • the structure is bonded to an object to be bonded, but the object to be bonded is not particularly limited to the above-described semiconductor elements and the like. For example, semiconductor elements in wafer state, semiconductor elements in chip state, printed wiring A plate, a heat sink, and the like are objects to be bonded.
  • the semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above are, in addition to those described above, for example, logic LSI (Large Scale Integration) (for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific Standard Product), etc.), microprocessor (e.g., CPU (Central Processing Unit), GPU (Graphics Processing Unit), etc.), memory (e.g., DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (MagneticRAM), PCM (Phase-Change Memory), ReRAM (Resistive RAM), FeRAM (Ferroelectric RAM), flash memory (NAND (Not AND) flash ), etc.), LEDs (Light Emitting Diodes), (e.g., mobile terminal microflash, automotive, projector light sources, LCD backlights, general lighting, etc.), power devices, analog ICs (Integrated Circuits), (e.
  • acceleration sensor e.g. , GPS (Global Positioning System), FM (Frequency Modulation), NFC (Nearfield communication), RFEM (RF Expansion Module), MMIC (Monolithic Microwave Integrated Circuit), WLAN (Wireless Local Area Network), etc.), discrete elements, BSI (Back Side Illumination) , CIS(C contact image sensor), camera module, CMOS (Complementary Metal Oxide Semiconductor), passive device, SAW (Surface Acoustic Wave) filter, RF (Radio Frequency) filter, RFIPD (Radio Frequency Integrated Passive Devices), BB (Broadband), etc. be done.
  • GPS Global Positioning System
  • FM Frequency Modulation
  • NFC Nearfield communication
  • RFEM RF Expansion Module
  • MMIC Monitoring Microlithic Microwave Integrated Circuit
  • WLAN Wireless Local Area Network
  • Example 1 ⁇ Production of aluminum substrate> Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: 0.03% by mass, and the balance is Al and inevitable impurities.
  • Molten metal is prepared by using an aluminum alloy, and after performing molten metal treatment and filtration, an ingot with a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill ) was produced by the casting method. Next, after scraping off the surface with an average thickness of 10 mm with a chamfer, soaking is held at 550 ° C.
  • NeoCool BD36 manufactured by Yamato Scientific Co., Ltd.
  • Pair Stirrer PS-100 manufactured by EYELA Tokyo Rikakikai Co., Ltd.
  • the flow velocity of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • etching treatment is performed by immersing the anodized film at 30° C. for 150 seconds in an alkaline aqueous solution prepared by dissolving zinc oxide in an aqueous sodium hydroxide solution (50 g/l) to a concentration of 2000 ppm.
  • the barrier layer at the bottom of the micropores was removed and zinc was simultaneously deposited on the exposed surface of the aluminum substrate.
  • the average thickness of the anodized film after the barrier layer removal process (that is, the average depth of the through-holes due to the micropores) was 30 ⁇ m.
  • the aspect ratio average depth/average opening diameter was 500 because the average opening diameter of the micropores was 60 nm.
  • Example 2 A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 10 mg/L in the metal-filling step.
  • Example 3 A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 3 mg/L in the metal-filling step.
  • Example 5 A metal-filled structure was fabricated in the same manner as in Example 1, except that MPS in the composition of the copper plating solution was changed to 3-mercapto-1,2-propanediol in the metal-filling step.
  • Example 6 A metal filling structure was produced in the same manner as in Example 1, except that 50 mg/L of 3,3'-dithiobis(sodium propanesulfonate) was added to the copper plating solution composition in the metal filling step.
  • Example 7 A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 300 mg/L in the metal-filling step.
  • Example 8 A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the copper plating solution composition was changed to 500 mg/L in the metal-filling step.
  • Example 9 A metal-filled structure was fabricated in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 1000 mg/L in the metal-filling step.
  • Example 10 A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 0.1 mg/L in the metal-filling step.
  • Example 11 to 14 A metal filling structure was fabricated in the same manner as in Example 1, except that the contents of MPS and 3,3'-dithiobis(sodium propanesulfonate) in the composition of the copper plating solution in the metal filling step were set to the values shown in Table 1 below. made the body.
  • Example 15 A metal-filled structure was produced in the same manner as in Example 1, except that in the anodizing process, the re-anodizing time was shortened and an anodized film with a thickness of 10 ⁇ m was formed.
  • the average opening diameter of the micropores was 60 nm, so the aspect ratio (average depth/average opening diameter) was 167.
  • Example 1 A metal-filled structure was produced in the same manner as in Example 1, except that MPS in the composition of the copper plating solution was not added in the metal-filling step.
  • Example 2 A metal-filled structure was fabricated in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 2000 mg/L in the metal-filling step.
  • the content of the compound having a mercapto group is more preferably 1 to 500 mg/L, still more preferably 10 to 400 mg/L, and most preferably 20 to 300 mg/L. I found out. Further, from a comparison between Example 1 and Example 15, when the aspect ratio (average depth/average opening diameter) of the through-holes filled with metal is 500 to 5000, the filling height of the metal filled in the through-holes is It was found that the effect of suppressing the variation in thickness became more apparent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The present invention addresses the problem of providing: a plating solution able to suppress variations in the filling height of a metal filled in through holes; and a method for producing a metal-filled structure using the plating solution. This plating solution is used when filling a metal in through holes in a structure having a plurality of through holes, and contains a salt of the metal to be filled in the through holes and a compound having a mercapto group. The content of the compound having a mercapto group is more than 0.01 mg/L and less than 2000 mg/L.

Description

めっき液、および、金属充填構造体の製造方法Plating solution and method for manufacturing metal-filled structure
 本発明は、めっき液、および、金属充填構造体の製造方法に関するものである。 The present invention relates to a plating solution and a method for manufacturing a metal-filled structure.
 絶縁性基材に設けられた微細孔に金属が充填されてなる金属充填微細構造体(デバイス)は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電部材としての用途が期待されている。
 異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材や機能検査を行う際の検査用コネクタ等として広く使用されている。
Metal-filled microstructures (devices), in which micropores provided in an insulating substrate are filled with metal, are one of the fields that have been attracting attention in recent years in nanotechnology. is expected.
The anisotropic conductive member is inserted between electronic parts such as semiconductor elements and the circuit board, and can be electrically connected between the electronic parts and the circuit board simply by applying pressure. It is widely used as an electrical connection member, a connector for testing when performing a function test, and the like.
 このような金属充填微細構造体の製造方法として、例えば、特許文献1には、「アルミニウム基板の片側の表面に陽極酸化処理を施し、上記アルミニウム基板の片側の表面に、厚み方向に存在するマイクロポアと上記マイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、上記陽極酸化処理工程の後に、アルミニウムよりも水素過電圧の高い金属M1を含むアルカリ水溶液を用いて、上記陽極酸化膜の上記バリア層を除去するバリア層除去工程と、上記バリア層除去工程の後に、電解めっき処理を施して上記マイクロポアの内部に金属M2を充填する金属充填工程と、上記金属充填工程の後に、上記アルミニウム基板を除去し、金属充填微細構造体を得る基板除去工程と、を有する金属充填微細構造体の製造方法。」が記載されている([請求項1])。 As a method for producing such a metal-filled microstructure, for example, Patent Document 1 discloses that "a surface of one side of an aluminum substrate is subjected to an anodizing treatment, and a microstructure existing in the thickness direction is formed on the surface of one side of the aluminum substrate. An anodizing process for forming an anodized film having pores and a barrier layer existing at the bottom of the micropores, and an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum is used after the anodizing process. a barrier layer removing step of removing the barrier layer of the anodized film; a metal filling step of performing electrolytic plating after the barrier layer removing step to fill the inside of the micropores with metal M2; a substrate removing step of removing the aluminum substrate after the metal filling step to obtain a metal-filled microstructure” ([Claim 1]).
国際公開第2017/057150号WO2017/057150
 本発明者は、特許文献1などに記載された公知の金属充填微細構造体の製造方法を検討したところ、めっき処理の条件によっては、マイクロポアなどの貫通孔の内部に充填される金属の高さ(以下、「充填高さ」とも略す。)にバラツキが生じる場合があり、めっき処理の条件について改善の余地があることを明らかとした。 The present inventors have studied the known method for manufacturing a metal-filled microstructure described in Patent Document 1, etc., and have found that depending on the conditions of the plating process, the metal filled inside the through-holes such as micropores may have a high density. In some cases, the height (hereinafter also abbreviated as “filling height”) may vary, and it has been clarified that there is room for improvement in the plating conditions.
 そこで、本発明は、貫通孔に充填される金属の充填高さのバラツキを抑制することができるめっき液、および、それを用いた金属充填構造体の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a plating solution capable of suppressing variations in filling height of the metal filled in the through-holes, and a method for manufacturing a metal-filled structure using the plating solution.
 本発明者は、上記課題を達成すべく鋭意研究した結果、貫通孔に充填する金属の塩と、メルカプト基を有する化合物とを含有するめっき液を用いると、貫通孔に充填される金属の充填高さのバラツキを抑制することができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive research aimed at achieving the above-mentioned problems, the present inventors have found that when a plating solution containing a salt of a metal to be filled into the through-holes and a compound having a mercapto group is used, the metal filling of the through-holes can be reduced. The inventors have found that it is possible to suppress variations in height, and have completed the present invention.
That is, the inventors have found that the above object can be achieved by the following configuration.
 [1] 複数の貫通孔を有する構造体の貫通孔に金属を充填する際に使用するめっき液であって、
 貫通孔に充填する金属の塩と、メルカプト基を有する化合物とを含有し、
 メルカプト基を有する化合物の含有量が、0.01mg/L超2000mg/L未満である、めっき液。
 [2] メルカプト基を有する化合物が、スルホン酸またはその塩を含む、[1]に記載のめっき液。
 [3] メルカプト基を有する化合物の含有量が、0.1~1000mg/Lである、[1]または[2]に記載のめっき液。
 [4] メルカプト基を有する化合物が、3-メルカプト-1-プロパンスルホン酸ナトリウムを含む、[1]~[3]のいずれかに記載のめっき液。
 [5] 複数の貫通孔の開口径に対する深さの比率が10以上である、[1]~[4]のいずれかに記載のめっき液。
 [6] 複数の貫通孔を有する構造体の貫通孔に金属を充填して作製される金属充填構造体の製造方法であって、
 構造体の貫通孔に金属を充填する際に、[1]~[5]のいずれかに記載のめっき液を用いる、金属充填構造体の製造方法。
[1] A plating solution used when filling a through-hole of a structure having a plurality of through-holes with a metal,
containing a metal salt to fill the through-holes and a compound having a mercapto group,
A plating solution containing more than 0.01 mg/L and less than 2000 mg/L of a compound having a mercapto group.
[2] The plating solution according to [1], wherein the compound having a mercapto group contains sulfonic acid or a salt thereof.
[3] The plating solution according to [1] or [2], wherein the content of the compound having a mercapto group is 0.1-1000 mg/L.
[4] The plating solution according to any one of [1] to [3], wherein the compound having a mercapto group contains sodium 3-mercapto-1-propanesulfonate.
[5] The plating solution according to any one of [1] to [4], wherein the ratio of depth to opening diameter of the plurality of through holes is 10 or more.
[6] A method for manufacturing a metal-filled structure produced by filling a through-hole of a structure having a plurality of through-holes with a metal,
A method for producing a metal-filled structure, wherein the plating solution according to any one of [1] to [5] is used when filling the through-holes of the structure with metal.
 本発明によれば、貫通孔に充填される金属の充填高さのバラツキを抑制することができるめっき液、および、それを用いた金属充填構造体の製造方法を提供することができる。 According to the present invention, it is possible to provide a plating solution capable of suppressing variations in filling height of the metal filled in the through-holes, and a method for manufacturing a metal-filled structure using the same.
金属充填構造体の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of a metal-filled structure; FIG. 金属充填構造体の一例を示す模式的平面図である。FIG. 3 is a schematic plan view showing an example of a metal-filled structure; 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の金属充填構造体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a metal-filled structure according to an embodiment of the present invention; FIG. 本発明の実施形態の接合体の一例を示す模式図である。1 is a schematic diagram showing an example of a joined body according to an embodiment of the present invention; FIG. 本発明の実施形態の接合体の他の例を示す模式図である。FIG. 4 is a schematic diagram showing another example of the bonded body according to the embodiment of the present invention; 本発明の実施形態の接合体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a joined body according to an embodiment of the present invention; FIG. 本発明の実施形態の接合体の製造方法の一例の一工程を示す模式的断面図である。1 is a schematic cross-sectional view showing one step of an example of a method for manufacturing a joined body according to an embodiment of the present invention; FIG. 本発明の実施形態の構造体を用いた積層デバイスの製造方法の一例の一工程を示す模式図である。It is a schematic diagram which shows one process of an example of the manufacturing method of the lamination|stacking device using the structure of embodiment of this invention. 本発明の実施形態の構造体を用いた積層デバイスの製造方法の一例の一工程を示す模式図である。It is a schematic diagram which shows one process of an example of the manufacturing method of the lamination|stacking device using the structure of embodiment of this invention. 本発明の実施形態の構造体を用いた積層デバイスの製造方法の一例の一工程を示す模式図である。It is a schematic diagram which shows one process of an example of the manufacturing method of the lamination|stacking device using the structure of embodiment of this invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
[めっき液]
 本発明のめっき液は、複数の貫通孔を有する構造体の貫通孔に金属を充填する際に使用するめっき液であって、貫通孔に充填する金属の塩と、メルカプト基を有する化合物とを含有し、メルカプト基を有する化合物の含有量が0.01mg/L超2000mg/L未満である、めっき液である。
[Plating solution]
The plating solution of the present invention is a plating solution used for filling metal into through-holes of a structure having a plurality of through-holes, wherein a metal salt to be filled into the through-holes and a compound having a mercapto group are combined. and containing more than 0.01 mg/L and less than 2000 mg/L of a compound having a mercapto group.
 本発明においては、上述した通り、貫通孔に充填する金属の塩と、メルカプト基を有する化合物とを含有するめっき液を用いると、貫通孔に充填される金属の充填高さのバラツキを抑制することができる。
 これは、詳細には明らかではないが、およそ以下のとおりと推測される。
 すなわち、メルカプト基を有する化合物を用いると、めっき液中に含まれる金属の塩(金属イオン)がめっき処理によって金属として析出する際に、微細化された結晶として析出するため、初期においては貫通孔の底面の面内方向に均一に析出することになり、また、その後においては結晶の成長速度が均一になりやすくなるため、貫通孔に充填される金属の充填高さのバラツキが抑制できたと考えられる。
In the present invention, as described above, by using a plating solution containing a salt of a metal to be filled in the through-holes and a compound having a mercapto group, variations in filling height of the metal filled in the through-holes can be suppressed. be able to.
Although this is not clear in detail, it is presumed to be roughly as follows.
That is, when a compound having a mercapto group is used, when the metal salt (metal ion) contained in the plating solution is deposited as a metal by the plating process, it is deposited as fine crystals, so the through holes are initially In addition, since the growth rate of the crystal tends to become uniform after that, it is thought that the variation in the filling height of the metal filled in the through-hole was suppressed. be done.
 〔金属の塩〕
 本発明のめっき液が含有する金属の塩は、貫通孔に充填する金属の塩である。
 上記金属としては、例えば、電気抵抗率が10Ω・cm以下の材料が挙げられ、具体的には、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)などが挙げられる。
 また、上記金属の塩としては、例えば、上記金属のオキソ酸塩が挙げられ、具体的には、カルボン酸塩(例えば、蟻酸、酢酸、安息香酸塩など)、リン酸塩、ホスホン酸塩、スルホン酸塩、硫酸塩などが挙げられる。
[Metal salt]
The metal salt contained in the plating solution of the present invention is the metal salt that fills the through-holes.
Examples of the metal include materials having an electrical resistivity of 10 3 Ω·cm or less. Specifically, gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium ( Mg), nickel (Ni), zinc (Zn), and the like.
Examples of the metal salts include oxoacid salts of the above metals, and specific examples include carboxylates (e.g., formic acid, acetic acid, benzoate, etc.), phosphates, phosphonates, sulfonates, sulfates, and the like.
 本発明においては、溶解性が良好である理由から、上記金属の塩が、硫酸銅(CuSO)、硫酸ニッケル、硝酸銀であることが好ましく、硫酸銅であることがより好ましい。 In the present invention, the metal salt is preferably copper sulfate (CuSO 4 ), nickel sulfate, or silver nitrate, more preferably copper sulfate, because of good solubility.
 めっき液に含まれる金属の塩の濃度は特に限定されないが、1~300g/Lであることが好ましく、100~200g/Lであることがより好ましい。 Although the concentration of the metal salt contained in the plating solution is not particularly limited, it is preferably 1 to 300 g/L, more preferably 100 to 200 g/L.
 〔メルカプト基を有する化合物〕
 本発明のめっき液が含有するメルカプト基を有する化合物は、分子内にメルカプト基を1個以上有する化合物であれば特に限定されないが、取り扱い性の観点から、メルカプト基を1個または2個有し、分子量が50~1000の化合物であることが好ましい。
[Compound having a mercapto group]
The compound having a mercapto group contained in the plating solution of the present invention is not particularly limited as long as it is a compound having one or more mercapto groups in the molecule. , a compound having a molecular weight of 50 to 1,000.
 上記メルカプト基を有する化合物としては、具体的には、例えば、3-メルカプト-1-プロパンスルホン酸ナトリウム(以下、「MPS」とも略す。)、2-メルカプトベンズイミダゾール、2-メルカプト-5-メチルベンズイミダゾール、2-チアゾリン-2-チオール、2-メルカプトイミダゾール、3-メルカプト-4-メチル4H-1,2,4-トリアゾール、5-メルカプト-1H-テトラゾールメタンスルホン酸ナトリウム、チオサリチル酸、2-メルカプトベンズチアゾールナトリウム、2-メルカプト-5-ベンズイミダゾールスルホン酸ナトリウム、ナトリウム-3-(5-メルカプト-1H-テトラゾール-1-イル)ベンゼンスルホナート・1水和物、3-メルカプト-1,2-プロパンジオールなどが挙げられる。 Specific examples of the compound having a mercapto group include sodium 3-mercapto-1-propanesulfonate (hereinafter also abbreviated as "MPS"), 2-mercaptobenzimidazole, 2-mercapto-5-methyl benzimidazole, 2-thiazoline-2-thiol, 2-mercaptoimidazole, 3-mercapto-4-methyl 4H-1,2,4-triazole, 5-mercapto-1H-tetrazole sodium methanesulfonate, thiosalicylic acid, 2- Mercaptobenzthiazole sodium, 2-mercapto-5-benzimidazole sodium sulfonate, sodium-3-(5-mercapto-1H-tetrazol-1-yl)benzenesulfonate monohydrate, 3-mercapto-1,2 - Propanediol and the like.
 本発明においては、充填高さのバラツキをより抑制することができる理由から、上記メルカプト基を有する化合物が、スルホン酸またはその塩を含むことが好ましく、3-メルカプト-1-プロパンスルホン酸ナトリウムを含むことがより好ましい。 In the present invention, the compound having a mercapto group preferably contains sulfonic acid or a salt thereof, and sodium 3-mercapto-1-propanesulfonate is used because the variation in filling height can be further suppressed. It is more preferable to include
 また、本発明においては、充填高さのバラツキをより抑制することができる理由から、上記メルカプト基を有する化合物の含有量が、0.1~1000mg/Lであることが好ましく、1~500mg/Lであることがより好ましく、10~400mg/Lであることが更に好ましく、20~300mg/Lであることが最も好ましい。
 また、上記メルカプト基を有する化合物の含有量に関して、上述した金属の塩に対するモル比は、0.0001~0.01であることが好ましく、0.001~0.005であることがより好ましい。
Further, in the present invention, the content of the compound having a mercapto group is preferably 0.1 to 1000 mg/L, more preferably 1 to 500 mg/L, for the reason that variations in filling height can be further suppressed. L is more preferred, 10 to 400 mg/L is even more preferred, and 20 to 300 mg/L is most preferred.
Regarding the content of the compound having a mercapto group, the molar ratio of the metal to the salt is preferably 0.0001 to 0.01, more preferably 0.001 to 0.005.
 本発明のめっき液を用いて金属を充填する貫通孔は、本発明のめっき液を用いた効果が顕在化する理由から、開口径に対する深さの比率(以下、「アスペクト比」とも略す。)が10以上であることが好ましく、500~5000であることがより好ましい。
 ここで、アスペクト比は、貫通孔の平均開口径に対する平均深さの比率として算出する。
 また、貫通孔の平均開口径は、電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)により表面写真(例えば、倍率50000倍)を撮影し、50点測定した平均値として算出することができる。
 また、貫通孔の平均深さは、構造体の平均厚みであり、構造体を厚さ方向に対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)により表面写真(例えば、倍率50000倍)を撮影し、10点測定した平均値として算出することができる。
For through-holes to be filled with metal using the plating solution of the present invention, the ratio of depth to opening diameter (hereinafter also abbreviated as "aspect ratio") is required for the reason that the effect of using the plating solution of the present invention becomes apparent. is preferably 10 or more, more preferably 500 to 5,000.
Here, the aspect ratio is calculated as the ratio of the average depth to the average opening diameter of the through holes.
In addition, the average opening diameter of the through-holes is calculated by taking a surface photograph (for example, a magnification of 50,000 times) with a Field Emission Scanning Electron Microscope (FE-SEM) and measuring 50 points, and calculating the average value. be able to.
The average depth of the through-holes is the average thickness of the structure. A photograph of the surface (for example, a magnification of 50,000 times) is taken with a microscope (Field Emission Scanning Electron Microscope: FE-SEM), and the average value obtained by measuring 10 points can be calculated.
 〔酸〕
 本発明のめっき液は、酸を含有していることが好ましく、酸を含有する水溶液であることがより好ましい。
 このような酸としては、具体的には、例えば、塩酸、硫酸、リン酸などが挙げられる。
 これらのうち、塩酸または硫酸が好ましく、塩酸および硫酸を併用することがより好ましい。
〔acid〕
The plating solution of the present invention preferably contains an acid, more preferably an aqueous solution containing an acid.
Specific examples of such acids include hydrochloric acid, sulfuric acid, and phosphoric acid.
Among these, hydrochloric acid or sulfuric acid is preferable, and it is more preferable to use hydrochloric acid and sulfuric acid in combination.
 〔添加剤〕
 本発明のめっき液は、上述した成分以外に、上述したメルカプト基を有する化合物以外の硫黄系飽和有機化合物、ポリマー成分、界面活性剤などの添加剤を含有していてもよい。
〔Additive〕
In addition to the components described above, the plating solution of the present invention may contain additives such as a sulfur-based saturated organic compound other than the compound having a mercapto group, a polymer component, and a surfactant.
 上記硫黄系飽和有機化合物としては、具体的には、例えば、3,3’-ジチオビス(プロパンスルホン酸ナトリウム)などが挙げられる。
 本発明においては、3,3’-ジチオビス(プロパンスルホン酸ナトリウム)を含有する場合の含有量は、充填高さのバラツキをより抑制することができる理由から、上述したメルカプト基を有する化合物100質量部に対して15~500質量部であることが好ましい。
Specific examples of the sulfur-based saturated organic compounds include 3,3′-dithiobis(sodium propanesulfonate).
In the present invention, the content when 3,3′-dithiobis(sodium propanesulfonate) is contained is 100 mass of the above-mentioned compound having a mercapto group, because the variation in filling height can be further suppressed. It is preferably 15 to 500 parts by mass per part.
 上記ポリマー成分としては、具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体などが挙げられる。 Specific examples of the polymer component include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, and the like.
 上記界面活性剤としては、親水性部分がイオン性(カチオン性・アニオン性・双性)のもの、非イオン性(ノニオン性)のものいずれも利用可能であるが、めっき対象物表面への気泡の発生等を回避する点でカチオン線活性剤が望ましい。 As the above-mentioned surfactant, it is possible to use both those whose hydrophilic part is ionic (cationic, anionic, zwitterionic) and nonionic (nonionic). A cationic ray activator is desirable in terms of avoiding the generation of .
[金属充填構造体の製造方法]
 本発明の金属充填構造体の製造方法は、複数の貫通孔を有する構造体の貫通孔に金属を充填して作製される金属充填構造体の製造方法であって、構造体の貫通孔に金属を充填する際に上述した本発明のめっき液を用いる製造方法である。
 ここで、本発明の金属充填構造体の製造方法は、構造体の貫通孔に金属を充填する際(金属充填工程)に上述した本発明のめっき液を用いる以外は、従来公知の方法を用いることができ、例えば、特開2008-270157号公報に記載された方法、国際公開第2017/057150号に記載された方法、国際公開第2018/155273号に記載された方法、特開2019-153415号公報に記載された方法などを用いることができる。
[Method for producing metal-filled structure]
A method for producing a metal-filled structure according to the present invention is a method for producing a metal-filled structure by filling a metal into the through-holes of a structure having a plurality of through-holes, wherein the through-holes of the structure are filled with a metal. It is a manufacturing method using the plating solution of the present invention described above when filling.
Here, the method for manufacturing the metal-filled structure of the present invention uses a conventionally known method, except that the plating solution of the present invention is used when filling the through holes of the structure with metal (metal filling step). For example, the method described in JP 2008-270157, the method described in WO 2017/057150, the method described in WO 2018/155273, JP 2019-153415 The method described in the publication can be used.
 以下、本発明の金属充填構造体の製造方法で作製される金属充填構造体(以下、単に「構造体」とも略す。)の構成についてより具体的に説明する。
 図1に示す構造体10は、電気的な絶縁性を有する絶縁膜12と、絶縁膜12を厚み方向Dtに貫通し、互いに電気的に絶縁された状態で設けられた、複数の導体14とを有する。導体14は、絶縁膜12の厚み方向Dtにおける少なくとも一方の面から突出している。導体14が、絶縁膜12の厚み方向Dtにおける少なくとも一方の面から突出する場合、片側の面から突出する構成では、表面12aまたは裏面12bから突出することが好ましい。
 構造体10は、導体14が突出している絶縁膜12の面を部分的に覆う樹脂層20を有する。すなわち、樹脂層20は、絶縁膜12の表面12aの全面、および裏面12bの全面に設けられておらず、絶縁膜12の表面12aに部分的に設けられ、絶縁膜12の裏面12bに部分的に設けられている。絶縁膜12は、例えば、陽極酸化膜15で構成されている。
Hereinafter, the configuration of the metal-filled structure (hereinafter also abbreviated simply as "structure") produced by the method for manufacturing a metal-filled structure of the present invention will be described in more detail.
The structure 10 shown in FIG. 1 includes an insulating film 12 having electrical insulation properties, and a plurality of conductors 14 that penetrate through the insulating film 12 in the thickness direction Dt and are electrically insulated from each other. have The conductor 14 protrudes from at least one surface of the insulating film 12 in the thickness direction Dt. When the conductor 14 protrudes from at least one surface in the thickness direction Dt of the insulating film 12, it is preferable that the conductor 14 protrudes from the surface 12a or the rear surface 12b.
The structure 10 has a resin layer 20 partially covering the surface of the insulating film 12 from which the conductors 14 protrude. That is, the resin layer 20 is not provided entirely on the front surface 12a and the rear surface 12b of the insulating film 12, but is provided partially on the front surface 12a of the insulating film 12 and partially on the rear surface 12b of the insulating film 12. is provided in The insulating film 12 is composed of, for example, an anodized film 15 .
 複数の導体14は、絶縁膜12に、互いに電気的に絶縁された状態で配置されている。この場合、例えば、絶縁膜12は、厚み方向Dtに貫通する複数の細孔13を有する。複数の細孔13に導体14が設けられている。導体14は、絶縁膜12の厚み方向Dtにおける表面12aから突出している。
 また、導体14は、絶縁膜12の厚み方向Dtにおける裏面12bから突出している。導体14が突出している絶縁膜12の面を部分的に覆う樹脂層20を有する。
 樹脂層20は、樹脂層部20aとスペース20bとを有する。樹脂層20は、絶縁膜12の表面12aに、スペース20bをあけて樹脂層部20aが部分的に配置されており、樹脂層部20aは導体14の突出部14aを覆う。突出部14aは樹脂層部20aに埋設されている。
 また、絶縁膜12の裏面12bに、スペース20bをあけて樹脂層部20aが部分的に配置されており、樹脂層部20aは導体14の突出部14bを覆う。突出部14bは樹脂層部20aに埋設されている。構造体10は異方導電性を有するものであり、厚み方向Dtに導電性を有するが、絶縁膜12の表面12aに平行な方向における導電性が十分に低い。
A plurality of conductors 14 are arranged in the insulating film 12 while being electrically insulated from each other. In this case, for example, the insulating film 12 has a plurality of pores 13 penetrating in the thickness direction Dt. Conductors 14 are provided in the plurality of pores 13 . The conductor 14 protrudes from the surface 12a of the insulating film 12 in the thickness direction Dt.
The conductor 14 protrudes from the back surface 12b of the insulating film 12 in the thickness direction Dt. It has a resin layer 20 partially covering the surface of the insulating film 12 from which the conductor 14 protrudes.
The resin layer 20 has a resin layer portion 20a and a space 20b. The resin layer 20 has a resin layer portion 20a partially disposed on the surface 12a of the insulating film 12 with a space 20b therebetween. The projecting portion 14a is embedded in the resin layer portion 20a.
A resin layer portion 20a is partially disposed on the rear surface 12b of the insulating film 12 with a space 20b therebetween, and the resin layer portion 20a covers the projecting portion 14b of the conductor 14. As shown in FIG. The projecting portion 14b is embedded in the resin layer portion 20a. The structure 10 has anisotropic conductivity and has conductivity in the thickness direction Dt, but the conductivity in the direction parallel to the surface 12a of the insulating film 12 is sufficiently low.
 構造体10は、図2に示すように、例えば、外形が矩形である。なお、構造体10の外形は、矩形に限定されるものではなく、例えば、円形でもよい。構造体10の外形は、用途、作製しやすさ等に応じた形状とすることができる。 The structure 10 has, for example, a rectangular outer shape, as shown in FIG. In addition, the outer shape of the structure 10 is not limited to a rectangle, and may be, for example, a circle. The outer shape of the structure 10 can be shaped according to the application, the ease of production, and the like.
 構造体10を、上述のように導体14が突出している絶縁膜12の面を部分的に覆う樹脂層20を有する構成とすることにより、樹脂層20にスペース20bがあるため、発生した静電気を逃がすことができ、帯電が抑制される。これにより、構造体10を搬送する等の際に帯電が抑制されて、取扱いが良好になる。
 さらには、樹脂層20が絶縁膜12の面に対して部分的に設けられており、構造体10を半導体素子等の電子部品と回路基板との間に挿入して、加圧して接合する際に、排除する樹脂層20を少なくでき、加圧に大きな力が必要なく、接合に要する力を小さくできる。このため、例えば、接合装置の大型化を抑制できる。
By configuring the structure 10 to have the resin layer 20 partially covering the surface of the insulating film 12 from which the conductor 14 protrudes as described above, the space 20b in the resin layer 20 eliminates the generated static electricity. It can escape, and charging is suppressed. As a result, charging is suppressed when the structure 10 is conveyed, and handling becomes favorable.
Furthermore, the resin layer 20 is partially provided on the surface of the insulating film 12, and when the structure 10 is inserted between an electronic component such as a semiconductor element and a circuit board and is pressed and joined, In addition, the resin layer 20 to be removed can be reduced, a large force is not required for pressurization, and the force required for bonding can be reduced. For this reason, for example, an increase in size of the bonding apparatus can be suppressed.
 以下、構造体の構成についてより具体的に説明する。
〔絶縁膜〕
 絶縁膜12は、導電体で構成された、複数の導体14を互いに電気的に絶縁された状態にするものである、絶縁膜は、電気的な絶縁性を有する。また、絶縁膜12は、導体14が形成される複数の細孔13を有する。
 絶縁膜は、例えば、無機材料からなる。絶縁膜は、例えば、1014Ω・cm程度の電気抵抗率を有するものを用いることができる。
 なお、「無機材料からなり」とは、高分子材料と区別するための規定であり、無機材料のみから構成された絶縁性基材に限定する規定ではなく、無機材料を主成分(50質量%以上)とする規定である。絶縁膜は、上述のように、例えば、陽極酸化膜で構成される。
 また、絶縁膜は、例えば、金属酸化物、金属窒化物、ガラス、シリコンカーバイド、シリコンナイトライド等のセラミックス、ダイヤモンドライクカーボン等のカーボン基材、ポリイミド、これらの複合材料等により構成することもできる。絶縁膜としては、これ以外に、例えば、貫通孔を有する有機素材上に、セラミックス材料またはカーボン材料を50質量%以上含む無機材料で成膜したものであってもよい。
The configuration of the structure will be described in more detail below.
[Insulating film]
The insulating film 12 electrically insulates the plurality of conductors 14 made of a conductor from each other. The insulating film has electrical insulation. Insulating film 12 also has a plurality of pores 13 in which conductors 14 are formed.
The insulating film is made of, for example, an inorganic material. For the insulating film, one having an electrical resistivity of, for example, about 10 14 Ω·cm can be used.
In addition, "made of inorganic material" is a rule for distinguishing from polymer materials, and is not a rule limited to insulating substrates composed only of inorganic materials, but inorganic materials as the main component (50% by mass above). The insulating film is composed of, for example, an anodized film, as described above.
The insulating film can also be made of, for example, metal oxides, metal nitrides, glass, ceramics such as silicon carbide and silicon nitride, carbon base materials such as diamond-like carbon, polyimide, composite materials thereof, and the like. . In addition to this, the insulating film may be, for example, a film formed of an inorganic material containing 50% by mass or more of a ceramic material or a carbon material on an organic material having through holes.
 絶縁膜12の厚み方向Dtにおける長さ、すなわち、絶縁膜12の厚みは、1~1000μmの範囲内であるのが好ましく、5~500μmの範囲内であるのがより好ましく、10~300μmの範囲内であるのが更に好ましい。絶縁膜12の厚みがこの範囲であると、絶縁膜12の取り扱い性が良好となる。
 絶縁膜12の厚みhtは、巻き取りやすさの観点から、30μm以下であることが好ましく、5~20μmであることがより好ましい。
 なお、陽極酸化膜の厚みは、陽極酸化膜を厚み方向Dtに対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出した値である。
 絶縁膜12における各導体14の間隔は、5nm~800nmであることが好ましく、10nm~200nmであることがより好ましく、20nm~60nmであることがさらに好ましい。絶縁膜12における各導体14の間隔が上述の範囲であると、絶縁膜12が、導体14の電気絶縁性の隔壁として十分に機能する。
 ここで、各導体の間隔とは、隣接する導体間の幅をいい、構造体10の断面を電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、隣接する導体間の幅を10点で測定した平均値をいう。
The length of the insulating film 12 in the thickness direction Dt, that is, the thickness of the insulating film 12 is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 500 μm, and more preferably in the range of 10 to 300 μm. More preferably within. When the thickness of the insulating film 12 is within this range, the handleability of the insulating film 12 is improved.
The thickness ht of the insulating film 12 is preferably 30 μm or less, more preferably 5 to 20 μm, from the viewpoint of ease of winding.
The thickness of the anodized film is determined by cutting the anodized film with a focused ion beam (FIB) in the thickness direction Dt, and examining the cross section with a field emission scanning electron microscope (FE-SEM). A photograph (50,000 times magnification) was taken, and the value was calculated as an average value of 10 measurements.
The distance between the conductors 14 in the insulating film 12 is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, even more preferably 20 nm to 60 nm. When the distance between the conductors 14 in the insulating film 12 is within the range described above, the insulating film 12 sufficiently functions as an electrically insulating partition between the conductors 14 .
Here, the interval between each conductor means the width between adjacent conductors. Mean value measured at points.
<細孔の平均直径>
 細孔の平均直径は、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることがさらに好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。細孔13の平均直径dが1μm以下であり、上述の範囲であると、上述の平均直径を有する導体14を得ることができる。
 細孔13の平均直径は、走査型電子顕微鏡を用いて絶縁膜12の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている細孔を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を細孔の平均直径として算出する。
 なお、倍率は、細孔を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、細孔部分の端部間の距離の最大値を測定する。すなわち、細孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、細孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の細孔が一体化したような形状の細孔の場合にも、これを1つの細孔とみなし、細孔部分の端部間の距離の最大値を開口径とする。
<Average diameter of pores>
The average diameter of the pores is preferably 1 μm or less, more preferably 5 to 500 nm, even more preferably 20 to 400 nm, even more preferably 40 to 200 nm, even more preferably 50 to 100 nm. Most preferably there is. When the average diameter d of the pores 13 is 1 μm or less and within the above range, the conductor 14 having the above average diameter can be obtained.
The average diameter of the pores 13 is obtained by photographing the surface of the insulating film 12 from directly above with a scanning electron microscope at a magnification of 100 to 10000 times. In the photographed image, at least 20 pores having a ring-shaped periphery are extracted, the diameters of the pores are measured and used as opening diameters, and the average value of these opening diameters is calculated as the average diameter of the pores.
It should be noted that the magnification can be appropriately selected within the range described above so that a photographed image from which 20 or more pores can be extracted can be obtained. Also, the aperture diameter measures the maximum distance between the ends of the pore portions. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum distance between the ends of the pore portion is taken as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portion is taken as the opening diameter. .
〔導体〕
 複数の導体14は、上述のように、陽極酸化膜において、互いに電気的に絶縁された状態で設けられている。
 複数の導体14は、電気導電性を有する。導体は、導電性物質で構成される。導電性物質は、特に限定されるものではなく、金属が挙げられる。金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、およびニッケル(Ni)等が好適に例示される。電気伝導性の観点から、銅、金、アルミニウム、およびニッケルが好ましく、銅および金がより好ましく、銅が最も好ましい。
 金属以外に、酸化物導電物質が挙げられる。酸化物導電物質としては、例えば、インジウムがドープされたスズ酸化物(ITO)等が例示される。しかしながら、金属は酸化物導電体に比して延性等に優れ変形しやすく、接合際の圧縮でも変形しやすいため、金属で構成することが好ましい。
 また、例えば、CuまたはAg等のナノ粒子を含有する導電性樹脂で導体を構成することもできる。
 厚み方向Dtにおける導体14の高さHは、10~300μmであることが好ましく、20~30μmであることがより好ましい。
〔conductor〕
The plurality of conductors 14 are provided in a state of being electrically insulated from each other on the anodized film, as described above.
The plurality of conductors 14 have electrical conductivity. The conductor is composed of an electrically conductive material. The conductive substance is not particularly limited, and includes metals. Preferred examples of metals include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), and nickel (Ni). From the viewpoint of electrical conductivity, copper, gold, aluminum and nickel are preferred, copper and gold are more preferred, and copper is most preferred.
In addition to metals, oxide conductive materials can be mentioned. Examples of conductive oxide materials include indium-doped tin oxide (ITO). However, the metal is more easily deformed than the oxide conductor due to its ductility and the like, and is easily deformed even when compressed during bonding.
The conductor can also be made of, for example, a conductive resin containing nanoparticles such as Cu or Ag.
A height H of the conductor 14 in the thickness direction Dt is preferably 10 to 300 μm, more preferably 20 to 30 μm.
 <導体の形状>
 導体14の平均直径dは、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることがさらに好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。
 導体14の密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることがさらに好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。
 さらに、隣接する各導体14の中心間距離pは、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることがさらに好ましい。
 導体の平均直径は、走査型電子顕微鏡を用いて陽極酸化膜の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている導体を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を導体の平均直径として算出する。
 なお、倍率は、導体を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、導体部分の端部間の距離の最大値を測定する。すなわち、導体の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、導体部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の導体が一体化したような形状の導体の場合にも、これを1つの導体とみなし、導体部分の端部間の距離の最大値を開口径とする。
<Conductor shape>
The average diameter d of the conductor 14 is preferably 1 μm or less, more preferably 5 to 500 nm, even more preferably 20 to 400 nm, even more preferably 40 to 200 nm, even more preferably 50 to 100 nm. is most preferred.
The density of the conductors 14 is preferably 20,000/mm 2 or more, more preferably 2,000,000/mm 2 or more, even more preferably 10,000,000/mm 2 or more, and 50,000,000. /mm 2 or more is particularly preferred, and 100 million/mm 2 or more is most preferred.
Furthermore, the center-to-center distance p between adjacent conductors 14 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, even more preferably 50 nm to 140 nm.
The average diameter of the conductor is obtained by photographing the surface of the anodized film from directly above with a scanning electron microscope at a magnification of 100 to 10000 times. In the photographed image, at least 20 conductors whose circumferences are continuous in a ring are extracted, the diameters thereof are measured and used as opening diameters, and the average value of these opening diameters is calculated as the average diameter of the conductors.
It should be noted that the magnification can be appropriately selected within the range described above so that a photographed image from which 20 or more conductors can be extracted can be obtained. Also, the aperture diameter measures the maximum distance between the ends of the conductor portions. That is, since the shape of the opening of the conductor is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the conductor portion is taken as the opening diameter. Therefore, for example, even in the case of a conductor having a shape in which two or more conductors are integrated, this is regarded as one conductor, and the maximum value of the distance between the ends of the conductor portions is taken as the opening diameter.
[構造体の製造方法の一例]
 図3~図9は本発明の実施形態の構造体の製造方法の一例を工程順に示す模式的断面図である。なお、図3~図9において、図1および図2に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 構造体の製造方法の一例では、図1に示す構造体10において、絶縁膜12がアルミニウムの陽極酸化膜で構成されるものを例にして説明する。アルミニウムの陽極酸化膜を形成するために、アルミニウム基板を用いる。このため、構造体の製造方法の一例では、まず、図3に示すように、アルミニウム基板30を用意する。
 アルミニウム基板30は、最終的に得られる構造体10(図1参照)の絶縁膜12の厚み、加工する装置等に応じて大きさおよび厚みが適宜決定されるものである。アルミニウム基板30は、例えば、矩形状の板材である。なお、アルミニウム基板に限定されるものではなく、電気的に絶縁な絶縁膜12を形成できる金属基板を用いることができる。
[An example of a method for manufacturing a structure]
3 to 9 are schematic cross-sectional views showing an example of the manufacturing method of the structure according to the embodiment of the present invention in order of steps. 3 to 9, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
As an example of the structure manufacturing method, the structure 10 shown in FIG. An aluminum substrate is used to form an anodized film of aluminum. Therefore, in one example of the structure manufacturing method, first, as shown in FIG. 3, an aluminum substrate 30 is prepared.
The size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the insulating film 12 of the finally obtained structure 10 (see FIG. 1), the processing equipment, and the like. The aluminum substrate 30 is, for example, a rectangular plate. Note that the substrate is not limited to the aluminum substrate, and a metal substrate on which an electrically insulating insulating film 12 can be formed can be used.
 次に、アルミニウム基板30の片側の表面30a(図3参照)を陽極酸化処理する。これにより、アルミニウム基板30の片側の表面30a(図3参照)が陽極酸化されて、図4に示すように、アルミニウム基板30の厚み方向Dtに延在する複数の細孔13を有する絶縁膜12、すなわち、陽極酸化膜15が形成される。各細孔13の底部にはバリア層31が存在する。上述の陽極酸化する工程を陽極酸化処理工程という。
 複数の細孔13を有する絶縁膜12には、上述のようにそれぞれ細孔13の底部にバリア層31が存在するが、図4に示すバリア層31を除去する。これにより、バリア層31のない、複数の細孔13を有する絶縁膜12(図5参照)を得る。なお、上述のバリア層31を除去する工程をバリア層除去工程という。
 バリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いることにより、絶縁膜12のバリア層31を除去すると同時に、細孔13の底部32c(図5参照)の面32d(図5参照)に金属(金属M1)からなる金属層35a(図5参照)を形成する。これにより、細孔13に露出したアルミニウム基板30は金属層35aにより被覆される。これにより、細孔13へめっきによる金属充填の際に、めっきが進行しやすくなり、細孔に金属が十分に充填されないことが抑制され、細孔への金属の未充填等が抑制され、導体14の形成不良が抑制される。
 なお、上述の金属M1のイオンを含むアルカリ水溶液は更にアルミニウムイオン含有化合物(アルミン酸ソーダ、水酸化アルミニウム、酸化アルミニウム等)を含んでもよい。アルミニウムイオン含有化合物の含有量は、アルミニウムイオンの量に換算して0.1~20g/Lが好ましく、0.3~12g/Lがより好ましく、0.5~6g/Lがさらに好ましい。
Next, one surface 30a (see FIG. 3) of the aluminum substrate 30 is anodized. As a result, one surface 30a (see FIG. 3) of the aluminum substrate 30 is anodized, and as shown in FIG. That is, an anodized film 15 is formed. A barrier layer 31 is present at the bottom of each pore 13 . The above-described anodizing process is called an anodizing process.
As described above, the insulating film 12 having the plurality of pores 13 has the barrier layer 31 at the bottom of each of the pores 13, but the barrier layer 31 shown in FIG. 4 is removed. As a result, the insulating film 12 (see FIG. 5) without the barrier layer 31 and having the plurality of pores 13 is obtained. The process of removing the barrier layer 31 described above is called a barrier layer removing process.
In the barrier layer removing step, the barrier layer 31 of the insulating film 12 is removed by using an alkaline aqueous solution containing ions of the metal M1 having a hydrogen overvoltage higher than that of aluminum, and at the same time, the bottoms 32c (see FIG. 5) of the pores 13 are removed. A metal layer 35a (see FIG. 5) made of metal (metal M1) is formed on the surface 32d (see FIG. 5). As a result, the aluminum substrate 30 exposed in the pores 13 is covered with the metal layer 35a. As a result, when the pores 13 are filled with the metal by plating, the plating progresses easily, the pores are prevented from being sufficiently filled with the metal, and the pores are prevented from being not filled with the metal. 14 is suppressed.
The alkaline aqueous solution containing ions of the metal M1 described above may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.). The content of the aluminum ion-containing compound is preferably 0.1 to 20 g/L, more preferably 0.3 to 12 g/L, and even more preferably 0.5 to 6 g/L in terms of the amount of aluminum ions.
 次に、厚み方向Dtに延在する複数の細孔13を有する絶縁膜12の表面12aからめっきを行う。この場合、金属層35aを電解めっきの電極として用いることができる。めっきには金属35bを用い、細孔13の底部32c(図5参照)の面32d(図5参照)に形成された金属層35aを起点にして、めっきが進行する。これにより、図6に示すように、絶縁膜12の細孔13の内部に、導体14を構成する金属35bが充填される。細孔13の内部に金属35bを充填することにより、導電性を有する導体14が形成される。なお、金属層35aと金属35bとをまとめて充填した金属35という。
 絶縁膜12の細孔13に金属35bを充填する工程を、金属充填工程という。上述のように、導体14は金属で構成することに限定されるものではなく、導電性物質を用いることができる。金属充填工程には、電解めっきが用いられ、金属充填工程については後に詳細に説明する。なお、絶縁膜12の表面12aが絶縁膜12の一方の面に相当する。
 金属充填工程の後に、図7に示すように、金属充填工程の後に絶縁膜12のアルミニウム基板30が設けられていない側の表面12aを厚み方向Dtに一部除去し、金属充填工程で充填した金属35を絶縁膜12の表面12aよりも突出させる。すなわち、導体14を絶縁膜12の表面12aよりも突出させる。これにより、突出部14aが得られる。導体14を絶縁膜12の表面12aよりも突出させる工程を、表面金属突出工程という。
 表面金属突出工程の後に、図8に示すようにアルミニウム基板30を除去する。アルミニウム基板30を除去する工程を基板除去工程という。
Next, plating is performed from the surface 12a of the insulating film 12 having a plurality of pores 13 extending in the thickness direction Dt. In this case, the metal layer 35a can be used as an electrode for electrolytic plating. A metal 35b is used for plating, and plating progresses from the metal layer 35a formed on the surface 32d (see FIG. 5) of the bottom 32c (see FIG. 5) of the pore 13 as a starting point. Thereby, as shown in FIG. 6, the inside of the pores 13 of the insulating film 12 is filled with the metal 35b that constitutes the conductor 14. Then, as shown in FIG. By filling the inside of the pores 13 with the metal 35b, the conductive conductors 14 are formed. The metal layer 35a and the metal 35b are collectively referred to as the filled metal 35. FIG.
The process of filling the pores 13 of the insulating film 12 with the metal 35b is called a metal filling process. As mentioned above, the conductor 14 is not limited to being made of metal, but any conductive material can be used. Electroplating is used for the metal filling process, and the metal filling process will be described later in detail. Note that the surface 12 a of the insulating film 12 corresponds to one surface of the insulating film 12 .
After the metal filling step, as shown in FIG. 7, the surface 12a of the insulating film 12 on the side where the aluminum substrate 30 is not provided is partly removed in the thickness direction Dt after the metal filling step, and filled in the metal filling step. The metal 35 is made to protrude beyond the surface 12 a of the insulating film 12 . That is, the conductor 14 is made to protrude from the surface 12 a of the insulating film 12 . Thereby, the projecting portion 14a is obtained. The step of causing the conductor 14 to protrude from the surface 12a of the insulating film 12 is called a surface metal protruding step.
After the surface metal protrusion step, the aluminum substrate 30 is removed as shown in FIG. The process of removing the aluminum substrate 30 is called a substrate removing process.
 次に、図9に示すように、基板除去工程の後に絶縁膜12のアルミニウム基板30が設けられていた側の面、すなわち、裏面12bを厚み方向Dtに一部除去し、金属充填工程で充填した金属35、すなわち、導体14を絶縁膜12の裏面12bよりも突出させる。これにより、突出部14bが得られる。
 上述の表面金属突出工程および裏面金属突出工程は、両方の工程を有する態様であってもよいが、表面金属突出工程および裏面金属突出工程のうち、一方の工程を有する態様であってもよい。表面金属突出工程および裏面金属突出工程が「突出工程」に該当しており、表面金属突出工程および裏面金属突出工程はいずれも突出工程である。
 図9に示すように、絶縁膜12の表面12aおよび裏面12bから、それぞれ導体14が突出しており、突出部14aと突出部14bとを有する。
 次に、導体14が突出している絶縁膜12の表面12aおよび裏面12bに、部分的に樹脂層20(図1参照)を形成する。これにより、図1に示す構造体10を得ることができる。なお、樹脂層20としては、例えば、上述の図3または図4に示すパターンとすることができる。上述の樹脂層20の形成工程については後に説明する。
 なお、絶縁膜12の裏面12bから導体14を突出させない構成の場合、図8に示す状態で、絶縁膜12の表面12aに、樹脂層20を形成することにより、構造体10を得る。
Next, as shown in FIG. 9, after the substrate removing step, the surface of the insulating film 12 on which the aluminum substrate 30 was provided, that is, the back surface 12b is partially removed in the thickness direction Dt, and filled in the metal filling step. The metal 35 , that is, the conductor 14 is made to protrude from the back surface 12 b of the insulating film 12 . Thereby, the projecting portion 14b is obtained.
The above-described front surface metal protruding step and rear surface metal protruding step may include both steps, or may include one of the front surface metal protruding step and the rear surface metal protruding step. The front metal projecting process and the back metal projecting process correspond to the "projecting process", and both the front metal projecting process and the back metal projecting process are projecting processes.
As shown in FIG. 9, conductors 14 protrude from front surface 12a and back surface 12b of insulating film 12, respectively, and have projecting portions 14a and 14b.
Next, a resin layer 20 (see FIG. 1) is partially formed on the front surface 12a and the back surface 12b of the insulating film 12 from which the conductors 14 protrude. Thereby, the structure 10 shown in FIG. 1 can be obtained. As the resin layer 20, for example, the pattern shown in FIG. 3 or 4 can be used. A process for forming the resin layer 20 will be described later.
When the conductor 14 does not protrude from the rear surface 12b of the insulating film 12, the structure 10 is obtained by forming the resin layer 20 on the surface 12a of the insulating film 12 in the state shown in FIG.
 上述のバリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いてバリア層を除去することにより、バリア層31を除去するだけでなく、細孔13の底部に露出したアルミニウム基板30にアルミニウムよりも水素ガスが発生しにくい金属M1の金属層35aが形成される。その結果、金属充填の面内均一性が良好となる。これは、めっき液による水素ガスの発生が抑制され、電解めっきによる金属充填が進行しやすくなったと考えられる。
 また、バリア層除去工程において、陽極酸化処理工程における電圧の30%未満の範囲から選択される電圧(保持電圧)の95%以上105%以下の電圧に通算5分以上保持する保持工程を設け、金属M1のイオンを含むアルカリ水溶液を適用することを組み合わせることにより、めっき処理時の金属充填の均一性が大きく良化することを見出している。このため、保持工程があることが好ましい。
 詳しいメカニズムは不明だが、バリア層除去工程において、金属M1のイオンを含むアルカリ水溶液を用いることでバリア層下部に金属M1の層が形成され、これによりアルミニウム基板と陽極酸化膜との界面がダメージを受けることを抑制することができ、バリア層の溶解の均一性が向上したためと考えられる。
In the barrier layer removing step described above, the barrier layer is removed using an alkaline aqueous solution containing ions of the metal M1 having a hydrogen overvoltage higher than that of aluminum. On the exposed aluminum substrate 30, a metal layer 35a of the metal M1, which is less likely to generate hydrogen gas than aluminum, is formed. As a result, the in-plane uniformity of metal filling is improved. It is considered that this is because generation of hydrogen gas by the plating solution is suppressed, and metal filling by electrolytic plating is facilitated.
Further, in the barrier layer removing step, a holding step is provided in which a voltage (holding voltage) selected from a range of less than 30% of the voltage in the anodizing step is held at a voltage of 95% or more and 105% or less for a total of 5 minutes or more, It has been found that the uniformity of the metal loading during plating is greatly improved by combining with the application of an alkaline aqueous solution containing ions of the metal M1. Therefore, it is preferable that there is a holding step.
Although the detailed mechanism is unknown, in the barrier layer removal process, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum substrate and the anodized film. This is considered to be due to the fact that the dissolution of the barrier layer can be suppressed and the dissolution uniformity of the barrier layer is improved.
 なお、バリア層除去工程において、細孔13の底部に金属(金属M1)からなる金属層35aを形成したが、これに限定されるものではなく、バリア層31だけを除去し、細孔13の底にアルミニウム基板30を露出させる。アルミニウム基板30を露出させた状態で、アルミニウム基板30を電解めっきの電極として用いてもよい。 In the barrier layer removing step, the metal layer 35a made of metal (metal M1) was formed on the bottom of the pores 13, but the present invention is not limited to this. An aluminum substrate 30 is exposed on the bottom. The aluminum substrate 30 may be used as an electrode for electroplating while the aluminum substrate 30 is exposed.
〔陽極酸化膜〕
 陽極酸化膜は、上述のように、所望の平均径を有する細孔が形成され、導体を形成しやすいという理由から、例えば、アルミニウムの陽極酸化膜が用いられる。しかしながら、アルミニウムの陽極酸化膜に限定されるものではなく、バルブ金属の陽極酸化膜を用いることができる。このため、金属基板は、バルブ金属が用いられる。
 ここで、バルブ金属としては、具体的には、例えば、上述のアルミニウム、これ以外に、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化膜であることが好ましい。このため、アルミニウム基板を用いて、構造体を製造することが好ましい。
 陽極酸化膜の厚みは、上述の絶縁膜12の厚みhtと同じである。
[Anodized film]
As the anodized film, for example, an anodized aluminum film is used because pores having a desired average diameter are formed and conductors are easily formed, as described above. However, it is not limited to the anodized film of aluminum, and an anodized film of a valve metal can be used. Therefore, a valve metal is used for the metal substrate.
Here, specific examples of valve metals include aluminum as described above, and tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, and the like. Among these, the anodized film of aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
The thickness of the anodized film is the same as the thickness ht of the insulating film 12 described above.
〔金属基板〕
 金属基板は、構造体の製造に用いられるものであり、陽極酸化膜を形成するための基板である。金属基板は、例えば、上述のように、陽極酸化膜が形成できる金属基板が用いられ、上述のバルブ金属で構成されるものを用いることができる。例えば、金属基板には、上述のように、陽極酸化膜として陽極酸化膜を形成しやすいという理由から、アルミニウム基板が用いられる。
[Metal substrate]
A metal substrate is used for manufacturing a structure, and is a substrate for forming an anodized film. As the metal substrate, for example, a metal substrate on which an anodized film can be formed is used as described above, and a substrate composed of the valve metal described above can be used. For example, as the metal substrate, an aluminum substrate is used because it is easy to form an anodized film as an anodized film as described above.
〔アルミニウム基板〕
 絶縁膜12を形成するために用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
[Aluminum substrate]
The aluminum substrate used to form the insulating film 12 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, Recycled materials) substrates on which high-purity aluminum is vapor-deposited; substrates in which high-purity aluminum is coated on the surface of silicon wafers, quartz, glass, etc. by vapor deposition, sputtering, etc.; resin substrates laminated with aluminum; .
 アルミニウム基板のうち、陽極酸化処理により陽極酸化膜を形成する片側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上述の範囲であると、マイクロポア配列の規則性が十分となる。
 アルミニウム基板は、陽極酸化膜を形成することができれば、特に限定されるものでなく、例えば、JIS(Japanese Industrial Standards) 1050材が用いられる。
Among the aluminum substrates, one surface on which an anodized film is formed by anodizing treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99% by mass or more. More preferably, it is at least 0.99% by mass. When the aluminum purity is within the above range, the regularity of the micropore arrangement is sufficient.
The aluminum substrate is not particularly limited as long as an anodized film can be formed thereon, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
 アルミニウム基板のうち陽極酸化処理される片側の表面は、予め熱処理、脱脂処理および鏡面仕上げ処理が施されていることが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理の前の鏡面仕上げ処理は、例えば、電解研磨であり、電解研磨には、例えば、リン酸を含有する電解研磨液が用いられる。
One surface of the aluminum substrate to be anodized is preferably preliminarily subjected to heat treatment, degreasing treatment and mirror finish treatment.
Here, the heat treatment, the degreasing treatment and the mirror finish treatment can be performed in the same manner as the treatments described in paragraphs [0044] to [0054] of JP-A-2008-270158.
The mirror finish treatment before the anodizing treatment is, for example, electropolishing, and for electropolishing, for example, an electropolishing liquid containing phosphoric acid is used.
〔陽極酸化処理工程〕
 陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、構造体の異方導電性を担保する観点から、自己規則化法または定電圧処理を用いることが好ましい。
 ここで、陽極酸化処理の自己規則化法および定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
[Anodizing process]
A conventionally known method can be used for the anodizing treatment, but from the viewpoint of increasing the regularity of the micropore array and ensuring the anisotropic conductivity of the structure, it is preferable to use a self-ordering method or a constant voltage treatment. is preferred.
Here, with regard to the self-ordering method of the anodizing treatment and the constant voltage treatment, the same treatments as those described in paragraphs [0056] to [0108] and [Fig. can apply.
〔保持工程〕
 構造体の製造方法は保持工程を有してもよい。保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧に通算5分以上保持する工程である。言い換えると、保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧で通算5分以上電解処理を施す工程である。
 ここで、「陽極酸化処理における電圧」とは、アルミニウムと対極間に印加する電圧であり、例えば、陽極酸化処理による電解時間が30分であれば、30分の間に保たれている電圧の平均値をいう。
[Holding process]
The method of manufacturing the structure may have a holding step. In the holding step, after the above-described anodizing treatment step, the voltage is 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step. This is the process of holding. In other words, in the holding step, after the above-described anodizing treatment step, the total voltage is 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step. This is a step of applying electrolytic treatment for 5 minutes or longer.
Here, the “voltage in the anodizing treatment” is the voltage applied between the aluminum and the counter electrode. mean value.
 陽極酸化膜の側壁厚み、すなわち、細孔の深さに対してバリア層の厚みを適切な厚みに制御する観点から、保持工程における電圧が、陽極酸化処理における電圧の5%以上25%以下であることが好ましく、5%以上20%以下であることがより好ましい。 From the viewpoint of controlling the thickness of the barrier layer to an appropriate thickness with respect to the sidewall thickness of the anodized film, that is, the depth of the pores, the voltage in the holding step should be 5% or more and 25% or less of the voltage in the anodization treatment. It is preferably 5% or more and 20% or less.
 また、面内均一性がより向上する理由から、保持工程における保持時間の合計が、5分以上20分以下であることが好ましく、5分以上15分以下であることがより好ましく、5分以上10分以下であることが更に好ましい。
 また、保持工程における保持時間は、通算5分以上であればよいが、連続5分以上であることが好ましい。
In order to further improve the in-plane uniformity, the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
The holding time in the holding step may be 5 minutes or more in total, but preferably 5 minutes or more continuously.
 更に、保持工程における電圧は、陽極酸化処理工程における電圧から保持工程における電圧まで連続的または段階的に降下させて設定してもよいが、面内均一性が更に向上する理由から、陽極酸化処理工程の終了後、1秒以内に、上述の保持電圧の95%以上105%以下の電圧に設定することが好ましい。 Furthermore, the voltage in the holding step may be set by dropping continuously or stepwise from the voltage in the anodizing step to the voltage in the holding step. It is preferable to set the voltage to 95% or more and 105% or less of the holding voltage within 1 second after the process is finished.
 上述の保持工程は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理工程と連続して行うこともできる。
 上述の保持工程は、電解電位以外の条件については、上述の従来公知の陽極酸化処理と同様の電解液および処理条件を採用することができる。
 特に、保持工程と陽極酸化処理工程とを連続して施す場合は、同様の電解液を用いて処理することが好ましい。
The above-described holding step can also be performed continuously with the above-described anodizing step, for example by lowering the electrolytic potential at the end of the above-described anodizing step.
In the holding step described above, the electrolytic solution and treatment conditions similar to those of the above-described conventionally known anodizing treatment can be employed, except for the electrolytic potential.
In particular, when the holding step and the anodizing treatment step are continuously performed, it is preferable to use the same electrolytic solution for treatment.
 複数のマイクロポアを有する陽極酸化膜には、上述のようにマイクロポアの底部にバリア層(図示せず)が存在する。このバリア層を除去するバリア層除去工程を有する。 In the anodized film with multiple micropores, a barrier layer (not shown) exists at the bottom of the micropores as described above. A barrier layer removing step is provided to remove this barrier layer.
〔バリア層除去工程〕
 バリア層除去工程は、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去する工程である。
 上述のバリア層除去工程により、バリア層が除去され、かつ、マイクロポアの底部に、金属M1からなる導電体層が形成されることになる。
 ここで、水素過電圧(hydrogen overvoltage)とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例およびその水素過電圧の値を以下に示す。
 <金属M1および水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
[Barrier layer removal step]
The barrier layer removing step is, for example, a step of removing the barrier layer of the anodized film using an alkaline aqueous solution containing ions of metal M1 having a hydrogen overvoltage higher than that of aluminum.
By the barrier layer removing step described above, the barrier layer is removed and a conductive layer made of metal M1 is formed on the bottom of the micropores.
Here, the hydrogen overvoltage refers to the voltage required to generate hydrogen. For example, the hydrogen overvoltage of aluminum (Al) is −1.66 V (Journal of the Chemical Society of Japan, 1982, (8) , p 1305-1313). An example of metal M1 having a hydrogen overvoltage higher than that of aluminum and its hydrogen overvoltage value are shown below.
<Metal M1 and hydrogen ( 1N H2SO4 ) overvoltage>
・Platinum (Pt): 0.00V
・Gold (Au): 0.02V
・Silver (Ag): 0.08V
・Nickel (Ni): 0.21V
・Copper (Cu): 0.23V
- Tin (Sn): 0.53V
・Zinc (Zn): 0.70V
 細孔13は、マイクロポアを拡径し、かつバリア層を除去して形成することもできる。この場合、マイクロポアの拡径には、ポアワイド処理が用いられる。ポアワイド処理は、陽極酸化膜を、酸水溶液またはアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、マイクロポアの孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液、または水酸化ナトリウム、水酸化カリウムおよび水酸化リチウム等の水溶液を用いることができる。
 なお、ポアワイド処理でも、マイクロポアの底部のバリア層を除去することができ、ポアワイド処理において水酸化ナトリウム水溶液を用いることにより、マイクロポアが拡径され、かつバリア層が除去される。
The pores 13 can also be formed by enlarging the micropores and removing the barrier layer. In this case, pore widening treatment is used to expand the diameter of the micropores. The pore widening treatment is a treatment in which the anodized film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodized film and enlarge the pore diameter of the micropores. Aqueous solutions of inorganic acids such as hydrochloric acid or mixtures thereof, or aqueous solutions of sodium hydroxide, potassium hydroxide and lithium hydroxide can be used.
The pore-widening treatment can also remove the barrier layer at the bottom of the micropores, and by using an aqueous sodium hydroxide solution in the pore-widening treatment, the micropores are enlarged and the barrier layer is removed.
〔金属充填工程〕
 <金属充填工程に用いられる金属>
 金属充填工程において、導体を形成するために、上述の細孔13の内部に導電体として充填される金属、および金属層を構成する金属は、電気抵抗率が103Ω・cm以下の材料であることが好ましい。上述の金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、および亜鉛(Zn)が好適に例示される。
 なお、導電体としては、電気伝導性、およびめっき法による形成の観点から、銅(Cu)、金(Au)、アルミニウム(Al)、ニッケル(Ni)が好ましく、銅(Cu)、金(Au)がより好ましく、銅(Cu)が更に好ましい。
[Metal filling process]
<Metal used in metal filling step>
In the metal filling step, in order to form a conductor, the metal filled as a conductor inside the pores 13 and the metal constituting the metal layer are materials having an electrical resistivity of 10 3 Ω·cm or less. Preferably. Specific examples of the metals mentioned above include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn). .
As the conductor, copper (Cu), gold (Au), aluminum (Al), and nickel (Ni) are preferable from the viewpoint of electrical conductivity and formation by plating. ) is more preferred, and copper (Cu) is even more preferred.
 <めっき法>
 細孔の内部に金属を充填するめっき法としては、上述した本発明のめっき液を用いる方法であれば特に限定されないが、例えば、電解めっき法または無電解めっき法を用いることができる。
 ここで、着色等に用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、電解めっき法により金属を充填する場合は、パルス電解または定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒であることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
<Plating method>
The plating method for filling the inside of the pores with a metal is not particularly limited as long as it is a method using the plating solution of the present invention described above. For example, an electrolytic plating method or an electroless plating method can be used.
Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by the conventionally known electroplating method used for coloring or the like. It is considered that this is because the deposited metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
Therefore, when metal is filled by electroplating, it is necessary to provide a rest time during pulse electrolysis or constant potential electrolysis. The pause time should be 10 seconds or more, preferably 30 to 60 seconds.
It is also desirable to apply ultrasonic waves to promote agitation of the electrolyte.
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS株式会社、北斗電工株式会社、IVIUM社等のポテンショスタット装置を用いることができる。 Furthermore, the electrolysis voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte to be used in advance and perform constant potential electrolysis within +1 V of the potential. When performing constant potential electrolysis, it is desirable to use cyclic voltammetry together, and a potentiostat device such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
〔基板除去工程〕
 基板除去工程は、金属充填工程の後に、上述のアルミニウム基板を除去する工程である。アルミニウム基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。
[Substrate removal step]
The substrate removal step is a step of removing the aluminum substrate described above after the metal filling step. A method for removing the aluminum substrate is not particularly limited, and a suitable method includes, for example, a method of removing by dissolution.
 <アルミニウム基板の溶解>
 上述のアルミニウム基板の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いることが好ましい。
 このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であることが好ましく、3μm/分以上であることがより好ましく、5μm/分以上であることが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となることが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pH(水素イオン指数)が4以下または8以上となる処理液であることが好ましく、そのpHが3以下または9以上であることがより好ましく、2以下または10以上であることが更に好ましい。
<Dissolution of Aluminum Substrate>
For the dissolution of the aluminum substrate described above, it is preferable to use a treatment liquid that does not easily dissolve the anodized film but easily dissolves aluminum.
Such a treatment liquid preferably has a dissolution rate for aluminum of 1 μm/minute or more, more preferably 3 μm/minute or more, and even more preferably 5 μm/minute or more. Similarly, the dissolution rate in the anodized film is preferably 0.1 nm/min or less, more preferably 0.05 nm/min or less, and even more preferably 0.01 nm/min or less.
Specifically, the treatment liquid preferably contains at least one metal compound with a lower ionization tendency than aluminum and has a pH (hydrogen ion exponent) of 4 or less or 8 or more, and the pH is 3 or less or It is more preferably 9 or more, and even more preferably 2 or less or 10 or more.
 アルミニウムを溶解する処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであることが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドすることが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、アルミニウムを溶解する処理液の組成は、特に限定されるものではく、例えば、臭素/メタノール混合物、臭素/エタノール混合物、および王水等を用いることができる。
The processing liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, such as manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, and platinum. , gold compounds (for example, chloroplatinic acid), fluorides thereof, chlorides thereof, and the like are preferably blended.
Among them, an acid aqueous solution base is preferred, and a chloride blend is preferred.
In particular, a treatment solution obtained by blending mercury chloride with an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution obtained by blending an aqueous hydrochloric acid solution with copper chloride (hydrochloric acid/copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, or the like can be used.
 また、アルミニウムを溶解する処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、アルミニウムを溶解する処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
The acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol/L, more preferably 0.05 to 5 mol/L.
Furthermore, the treatment temperature using the treatment liquid for dissolving aluminum is preferably -10°C to 80°C, more preferably 0°C to 60°C.
 また、上述のアルミニウム基板の溶解は、上述のめっき工程後のアルミニウム基板を上述の処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 Further, the above-described dissolution of the aluminum substrate is performed by bringing the aluminum substrate after the above-described plating process into contact with the above-described treatment liquid. The contacting method is not particularly limited, and includes, for example, an immersion method and a spray method. Among them, the immersion method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 なお、絶縁膜12に、例えば、支持体を設けてもよい。支持体は絶縁膜12と同じ外形状であることが好ましい。支持体を取り付けることにより、取扱い性が増す。 Note that the insulating film 12 may be provided with a support, for example. The support preferably has the same outer shape as the insulating film 12 . By attaching the support, the handleability is increased.
〔突出工程〕
 上述の絶縁膜12の一部除去には、例えば、導体14を構成する金属を溶解せず、絶縁膜12、すなわち、酸化アルミニウム(Al)を溶解する酸水溶液またはアルカリ水溶液が用いられる。上述の酸水溶液またはアルカリ水溶液を、金属が充填された細孔13を有する絶縁膜12に接触させることにより、絶縁膜12を一部除去する。上述の酸水溶液またはアルカリ水溶液を絶縁膜12に接触させる方法は、特に限定されず、例えば、浸漬法およびスプレー法が挙げられる。中でも浸漬法が好ましい。
[Ejection process]
For the partial removal of the insulating film 12 described above, for example, an acid aqueous solution or an alkaline aqueous solution that dissolves the insulating film 12, that is, aluminum oxide (Al 2 O 3 ) without dissolving the metal that constitutes the conductor 14 is used. . The insulating film 12 having the metal-filled pores 13 is brought into contact with the acid aqueous solution or alkaline aqueous solution described above, thereby partially removing the insulating film 12 . The method of bringing the above acid aqueous solution or alkaline aqueous solution into contact with the insulating film 12 is not particularly limited, and examples thereof include an immersion method and a spray method. Among them, the immersion method is preferred.
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸および塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。中でもクロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
 また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
When using an acid aqueous solution, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Among them, an aqueous solution containing no chromic acid is preferable because of its excellent safety. The concentration of the acid aqueous solution is preferably 1-10 mass %. The temperature of the acid aqueous solution is preferably 25-60°C.
Moreover, when using an aqueous alkali solution, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35°C.
Specifically, for example, a 50 g/L, 40° C. phosphoric acid aqueous solution, a 0.5 g/L, 30° C. sodium hydroxide aqueous solution, or a 0.5 g/L, 30° C. potassium hydroxide aqueous solution is preferably used. .
 酸水溶液またはアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であるのがより好ましく、15~60分であるのが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。 The immersion time in the acid aqueous solution or alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, even more preferably 15 to 60 minutes. Here, the immersion time refers to the sum of each immersion time when short-time immersion treatments are repeated. In addition, you may perform a washing process between each immersion process.
 また、金属35、すなわち、導体14を絶縁膜12の表面12aまたは裏面12bより突出させる程度であるが、導体14を絶縁膜12の表面12aまたは裏面12bよりも10nm~1000nm突出させることが好ましく、50nm~500nm突出させることがより好ましい。すなわち、突出部14aの表面12aからの突出量、突出部14bの裏面12bからの導体14の突出量は、それぞれ10nm~1000nmが好ましく、より好ましくは50nm~500nmである。
 導体14の突出部14a,14bの高さは、構造体10の断面を電解放出形走査型電子顕微鏡により2万倍の倍率で観察し、導体の突出部の高さを10点で測定した平均値をいう。
In addition, the metal 35, that is, the conductor 14 is protruded from the surface 12a or the back surface 12b of the insulating film 12, but it is preferable that the conductor 14 protrudes from the surface 12a or the back surface 12b of the insulating film 12 by 10 nm to 1000 nm. More preferably, it protrudes from 50 nm to 500 nm. That is, the protrusion amount of the protrusion 14a from the front surface 12a and the protrusion amount of the conductor 14 from the rear surface 12b of the protrusion 14b are preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm.
The heights of the protruding portions 14a and 14b of the conductor 14 are obtained by observing the cross section of the structure 10 with a field emission scanning electron microscope at a magnification of 20,000 times and measuring the height of the protruding portions of the conductor at 10 points. Say the value.
 導体14の突出部の高さを厳密に制御する場合は、細孔13の内部に、金属等の導電性物質を充填した後、絶縁膜12と、金属等の導電性物質の端部とを同一平面状になるように加工した後、陽極酸化膜を選択的に除去することが好ましい。
 また、上述の金属の充填後、または突出工程の後に、金属の充填に伴い発生した導体14内の歪みを軽減する目的で、加熱処理を施すことができる。
 加熱処理は、金属の酸化を抑制する観点から還元性雰囲気で施すことが好ましく、具体的には、酸素濃度が20Pa以下で行うことが好ましく、真空下で行うことがより好ましい。ここで、真空とは、大気よりも、気体密度および気圧のうち、少なくとも一方が低い空間の状態をいう。
 また、加熱処理は、矯正の目的で、絶縁膜12に応力を加えながら行うことが好ましい。
In order to strictly control the height of the protrusion of the conductor 14, after filling the inside of the hole 13 with a conductive material such as metal, the insulating film 12 and the end of the conductive material such as metal are separated. It is preferable to selectively remove the anodic oxide film after processing so as to form the same plane.
In addition, after the above-described metal filling or protrusion step, a heat treatment can be performed for the purpose of reducing distortion in the conductor 14 caused by the metal filling.
The heat treatment is preferably performed in a reducing atmosphere from the viewpoint of suppressing metal oxidation. Specifically, the heat treatment is preferably performed at an oxygen concentration of 20 Pa or less, and more preferably in a vacuum. Here, vacuum means a state of space in which at least one of gas density and atmospheric pressure is lower than atmospheric pressure.
Further, the heat treatment is preferably performed while applying stress to the insulating film 12 for the purpose of correction.
[接合体の製造方法]
 本発明の他の態様は、導電性を有する導電部を有する導電部材と、上述した構造体とを、導電部に構造体の導体を接触させて接合する接合工程をする、接合体の製造方法を提供するものである。
 接合体の製造方法として、図10に示す異方導電性部材45を有する積層デバイス40の製造方法について説明する。
 図12および図13は本発明の実施形態の接合体の製造方法の一例を工程順に示す模式的断面図である。図12および図13において、図10および図11に示す積層デバイス40および半導体素子42、44と同一構成物には同一符号を付してその詳細な説明は省略する。
 なお、図12および図13に示す積層デバイス40の製造方法は、チップオンチップに関するものである。
[Method for producing joined body]
According to another aspect of the present invention, there is provided a method for manufacturing a joined body, comprising: joining a conductive member having a conductive portion having electrical conductivity to the structure described above by bringing the conductor of the structure into contact with the conductive portion. It provides
As a method of manufacturing a bonded body, a method of manufacturing a laminated device 40 having an anisotropically conductive member 45 shown in FIG. 10 will be described.
12 and 13 are schematic cross-sectional views showing an example of the manufacturing method of the joined body according to the embodiment of the present invention in order of steps. 12 and 13, the same components as those of the laminated device 40 and the semiconductor elements 42 and 44 shown in FIGS. 10 and 11 are denoted by the same reference numerals, and detailed description thereof will be omitted.
The manufacturing method of the laminated device 40 shown in FIGS. 12 and 13 relates to chip-on-chip.
 異方導電性部材45を有する積層デバイス40の製造に際して、まず、図12に示す半導体素子42、半導体素子44および異方導電性部材45を用意する。半導体素子42は、例えば、半導体素子部50に、外部との信号のやり取り、または電圧もしくは電流の授受を行うための電極52が複数設けられたものである。各電極52は絶縁層54により電気的に絶縁されている。電極52は、例えば、絶縁層54の表面54aよりも突出している。 When manufacturing the laminated device 40 having the anisotropically conductive member 45, first, the semiconductor element 42, the semiconductor element 44, and the anisotropically conductive member 45 shown in FIG. 12 are prepared. The semiconductor element 42 is, for example, a semiconductor element portion 50 provided with a plurality of electrodes 52 for exchanging signals with the outside, or for exchanging voltage or current. Each electrode 52 is electrically insulated by an insulating layer 54 . The electrode 52 protrudes from the surface 54a of the insulating layer 54, for example.
 半導体素子44は、半導体素子42と同様の構成である。半導体素子44は、例えば、インターポーザー基板51に、外部との信号のやり取り、または電圧もしくは電流の授受を行うための電極53が複数設けられたものである。各電極53は絶縁層55により電気的に絶縁されている。電極53は、例えば、絶縁層55の表面55aよりも突出している。インターポーザー基板51は、例えば、引出配線層を有しており、また、電極53により、積層デバイス40は、外部と電気的に接続される。 The semiconductor element 44 has the same configuration as the semiconductor element 42 . The semiconductor element 44 is, for example, an interposer substrate 51 provided with a plurality of electrodes 53 for exchanging signals with the outside, or for exchanging voltage or current. Each electrode 53 is electrically insulated by an insulating layer 55 . The electrode 53 protrudes from the surface 55a of the insulating layer 55, for example. The interposer substrate 51 has, for example, lead wiring layers, and electrodes 53 electrically connect the laminated device 40 to the outside.
 異方導電性部材45は、導体14を複数備え、導体14は絶縁膜12の表面12aから突出する突出部14aと、裏面12bから突出する突出部14bとを有する。さらに、樹脂層20が、絶縁膜12の表面12aおよび裏面12bにそれぞれ部分的に設けられている。なお、異方導電性部材45は、上述の構造体10と同様の構成であるため、その詳細な説明は省略する。 The anisotropically conductive member 45 includes a plurality of conductors 14, each conductor 14 having a protruding portion 14a protruding from the front surface 12a of the insulating film 12 and a protruding portion 14b protruding from the rear surface 12b. Furthermore, a resin layer 20 is partially provided on each of the front surface 12a and the back surface 12b of the insulating film 12 . Note that the anisotropic conductive member 45 has the same configuration as the structure 10 described above, so detailed description thereof will be omitted.
 図12に示すように、異方導電性部材45を挟んで、半導体素子42と半導体素子44とを、電極53と電極52とを対向して配置する。
 このとき、半導体素子42、44と異方導電性部材45とに、それぞれ設けられたアライメントマーク(図示せず)を用いて位置合せされている。
 なお、アライメントマークを用いた位置合せは、例えば、アライメントマークの画像または反射像を取得し、アライメントマークの位置情報を求めることができれば、特に限定されるものではなく、公知の位置合せの手法を適宜利用可能である。
As shown in FIG. 12, the semiconductor element 42 and the semiconductor element 44 are arranged so that the electrode 53 and the electrode 52 face each other with the anisotropically conductive member 45 interposed therebetween.
At this time, the semiconductor elements 42 and 44 and the anisotropically conductive member 45 are aligned using alignment marks (not shown) respectively provided.
Alignment using alignment marks is not particularly limited as long as it is possible to acquire an image or a reflected image of the alignment marks and obtain position information of the alignment marks, and any known alignment method can be used. Available as appropriate.
 次に、半導体素子42と異方導電性部材45と半導体素子44とを近づけ、図13に示すように半導体素子42と異方導電性部材45と半導体素子44とを積層し、半導体素子42と異方導電性部材45と半導体素子44とを位置合せした状態で、半導体素子42と異方導電性部材45と半導体素子44とを接合する。これにより、半導体素子42と異方導電性部材45と半導体素子44とが接合され、積層デバイス40を得ることができる。
 このように、導電性を有する導電部を有する導電部材と、構造体とを、導電部に構造体の導体を接触させて接合する接合工程を経て接合体を得ることができる。
 なお、異方導電性部材45では、樹脂層20が、絶縁膜12の表面12aおよび裏面12bにそれぞれ部分的に設けられている。このため、異方導電性部材45を搬送する際に帯電が抑制され、ハンドリングが容易になり、半導体素子42と半導体素子44との間に、異方導電性部材45を容易に配置することができる。
 また、接合の際に、樹脂層20が部分的に設けられているため、接合に要する力を小さくできる。
Next, the semiconductor element 42, the anisotropically conductive member 45, and the semiconductor element 44 are brought close to each other, and as shown in FIG. With the anisotropically conductive member 45 and the semiconductor element 44 aligned, the semiconductor element 42, the anisotropically conductive member 45, and the semiconductor element 44 are bonded. As a result, the semiconductor element 42, the anisotropically conductive member 45, and the semiconductor element 44 are joined together, and the laminated device 40 can be obtained.
In this way, a joined body can be obtained through a joining step of joining a conductive member having a conductive portion having electrical conductivity and a structure by bringing the conductor of the structure into contact with the conductive portion.
In addition, in the anisotropically conductive member 45 , the resin layer 20 is partially provided on the front surface 12 a and the rear surface 12 b of the insulating film 12 . Therefore, when the anisotropically conductive member 45 is conveyed, charging is suppressed, handling is facilitated, and the anisotropically conductive member 45 can be easily arranged between the semiconductor element 42 and the semiconductor element 44. can.
Moreover, since the resin layer 20 is partially provided at the time of bonding, the force required for bonding can be reduced.
[積層デバイスの製造方法の一例]
 次に、構造体を用いたデバイスの製造方法の一例について、上述の図10に示す積層デバイス40を例にして説明する。
 構造体を用いた積層デバイスの製造方法の一例は、チップオンウエハに関するものである。
 図14~図16は本発明の実施形態の構造体を用いた積層デバイスの製造方法の一例を工程順に示す模式図である。
 構造体を用いた積層デバイスの製造方法の一例において、第1の半導体ウエハ60の表面60aに複数の素子領域(図示せず)があり、各素子領域に対して異方導電性部材45が設けられている。
 次に、第1の半導体ウエハ60のcに向けて半導体素子44を配置する。半導体素子44は電極(図示せず)を有する。
 次に、半導体素子44のアライメントマークと、第1の半導体ウエハ60のアライメントマークとを用いて、第1の半導体ウエハ60に対して、半導体素子44の位置合せを行う。
 なお、位置合せについては、第1の半導体ウエハ60のアライメントマークの画像または反射像と、半導体素子44のアライメントマークの画像または反射像について、デジタル画像データを得ることができれば、その構成は特に限定されるものではなく、公知の撮像装置を適宜利用可能である。
[Example of manufacturing method of laminated device]
Next, an example of a method of manufacturing a device using a structure will be described by taking the laminated device 40 shown in FIG. 10 as an example.
One example of a method of manufacturing a stacked device using a structure relates to chip-on-wafer.
14 to 16 are schematic diagrams showing, in order of steps, an example of a method for manufacturing a laminated device using the structure of the embodiment of the present invention.
In an example of a method of manufacturing a laminated device using a structure, a surface 60a of a first semiconductor wafer 60 has a plurality of element regions (not shown), and an anisotropically conductive member 45 is provided for each element region. It is
Next, the semiconductor element 44 is arranged toward c of the first semiconductor wafer 60 . The semiconductor element 44 has electrodes (not shown).
Next, the alignment mark of the semiconductor element 44 and the alignment mark of the first semiconductor wafer 60 are used to align the semiconductor element 44 with respect to the first semiconductor wafer 60 .
Regarding the alignment, if digital image data can be obtained for the image or reflected image of the alignment mark of the first semiconductor wafer 60 and the image or reflected image of the alignment mark of the semiconductor element 44, the configuration is particularly limited. A known imaging device can be used as appropriate.
 次に、半導体素子44を、第1の半導体ウエハ60の素子領域に設けられた異方導電性部材45上に載置し、例えば、予め定められた圧力を加え、予め定められた温度に加熱し、予め定められた時間保持して仮接合する。これを全ての半導体素子44について行い、図15に示すように、全ての半導体素子44を第1の半導体ウエハ60の素子領域に仮接合する。
 仮接合は、例えば、部分的に設けられた樹脂層20(図1参照)が利用される。しかしながら、樹脂層20(図1参照)を用いることに限定されるものではない。例えば,封止樹脂等をディスペンサー等で第1の半導体ウエハ60の異方導電性部材45上に供給して、半導体素子44を第1の半導体ウエハ60の素子領域に仮接合してもよいし、第1の半導体ウエハ60上に、事前に供給した絶縁性樹脂フイルム(NCF(Non-conductive Film))を使って半導体素子44を素子領域に仮接合してもよい。
Next, the semiconductor element 44 is placed on the anisotropic conductive member 45 provided in the element region of the first semiconductor wafer 60, for example, a predetermined pressure is applied and heated to a predetermined temperature. and held for a predetermined time for temporary bonding. This is performed for all the semiconductor elements 44, and all the semiconductor elements 44 are temporarily bonded to the element regions of the first semiconductor wafer 60, as shown in FIG.
For temporary bonding, for example, a partially provided resin layer 20 (see FIG. 1) is used. However, it is not limited to using the resin layer 20 (see FIG. 1). For example, a sealing resin or the like may be supplied onto the anisotropic conductive member 45 of the first semiconductor wafer 60 using a dispenser or the like, and the semiconductor element 44 may be temporarily bonded to the element region of the first semiconductor wafer 60. Alternatively, the semiconductor element 44 may be temporarily bonded to the element region of the first semiconductor wafer 60 using an insulating resin film (NCF (Non-conductive Film)) supplied in advance.
 次に、全ての半導体素子44を第1の半導体ウエハ60の素子領域に仮接合した状態で、半導体素子44に対して、予め定められた圧力を加え、予め定められた温度に加熱し、予め定められた時間保持して、複数の半導体素子44を全て一括して、第1の半導体ウエハ60の素子領域に異方導電性部材45を介して接合する。この接合は本接合と呼ばれるものである。これにより、半導体素子44の端子(図示せず)が第1の半導体ウエハ60の異方導電性部材45に接合される。本接合の際には、樹脂層20(図1参照)が部分的に設けられているため、接合に要する力を小さくできる。本接合が、半導体素子44の電極と、異方導電性部材45、すなわち、構造体10とを、半導体素子44の電極に構造体の導体を接触させて接合する接合工程に相当する。
 次に、図16に示すように、半導体素子44が接合された第1の半導体ウエハ60を、素子領域毎に、ダイシングまたはレーザースクライビング等により個片化する。これにより、半導体素子42と半導体素子44とが接合された積層デバイス40を得ることができる。
Next, in a state in which all the semiconductor elements 44 are temporarily bonded to the element regions of the first semiconductor wafer 60, a predetermined pressure is applied to the semiconductor elements 44, the semiconductor elements 44 are heated to a predetermined temperature, and the After holding for a predetermined time, all of the plurality of semiconductor elements 44 are collectively bonded to the element region of the first semiconductor wafer 60 via the anisotropically conductive member 45 . This joining is called the main joining. As a result, the terminals (not shown) of the semiconductor element 44 are joined to the anisotropic conductive member 45 of the first semiconductor wafer 60 . Since the resin layer 20 (see FIG. 1) is partially provided at the time of final bonding, the force required for bonding can be reduced. This bonding corresponds to a bonding step of bonding the electrodes of the semiconductor element 44 and the anisotropically conductive member 45 , that is, the structure 10 by bringing the conductors of the structure into contact with the electrodes of the semiconductor element 44 .
Next, as shown in FIG. 16, the first semiconductor wafer 60 to which the semiconductor elements 44 are bonded is singulated by dicing, laser scribing, or the like for each element region. Thereby, the laminated device 40 in which the semiconductor element 42 and the semiconductor element 44 are joined can be obtained.
 なお、仮接合する際に、仮接合強度が弱いと、搬送工程等および接合する迄の工程で位置ズレが生じてしまうため、仮接合強度は重要となる。
 また、仮接合工程における温度条件および加圧条件は、特に限定されるものではなく、後述の温度条件および加圧条件が例示される。
If the temporary bonding strength is weak during the temporary bonding, positional deviation may occur in the transportation process and the process up to bonding, so the temporary bonding strength is important.
Moreover, the temperature conditions and pressure conditions in the temporary bonding step are not particularly limited, and the temperature conditions and pressure conditions described later are exemplified.
 本接合における温度条件および加圧条件は、特に限定されるものではない。適切な条件で本接合を行うことにより、樹脂層が、半導体素子44の電極間に流動し、接合部に残存し難くなる。上述のように本接合では、複数の半導体素子44の接合を一括して行うことにより、タクトタイムを低減でき、生産性を高くできる。
 なお、図11に示す構成の積層デバイス40も、上述のようにして製造することができる。また、図10および図11に示す積層デバイス40は、いずれもウエハオンウエハを用いた製造方法でも製造することができる。
The temperature conditions and pressure conditions in this bonding are not particularly limited. By performing the main bonding under appropriate conditions, the resin layer flows between the electrodes of the semiconductor element 44 and is less likely to remain at the bonding portion. As described above, in this bonding, by collectively bonding a plurality of semiconductor elements 44, the tact time can be reduced and the productivity can be increased.
Note that the laminated device 40 having the configuration shown in FIG. 11 can also be manufactured as described above. Also, the laminated device 40 shown in FIGS. 10 and 11 can both be manufactured by a manufacturing method using wafer-on-wafer.
 なお、上述の半導体素子42、半導体素子44および半導体素子46は、素子領域(図示せず)を有する。素子領域については上述の通りである。上述のように素子領域は素子構成回路等が形成されており、半導体素子には、例えば、再配線層(図示せず)が設けられている。
 積層デバイスでは、例えば、論理回路を有する半導体素子と、メモリ回路を有する半導体素子の組合せとすることができる。また、半導体素子を全てメモリ回路を有するものとしてもよく、また、全て論理回路を有するものとしてもよい。また、積層デバイス40における半導体素子の組合せとしては、センサー、アクチュエーターおよびアンテナ等と、メモリ回路と論理回路との組み合わせでもよく、積層デバイス40の用途等に応じて適宜決定されるものである。
The semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above have element regions (not shown). The element region is as described above. As described above, the device region is formed with the device configuration circuit and the like, and the semiconductor device is provided with, for example, a rewiring layer (not shown).
A stacked device can be, for example, a combination of a semiconductor element having a logic circuit and a semiconductor element having a memory circuit. Further, all of the semiconductor elements may have memory circuits, or all of them may have logic circuits. The combination of semiconductor elements in the laminated device 40 may be a combination of a sensor, an actuator, an antenna, etc., and a memory circuit and a logic circuit.
〔構造体の接合対象物〕
 構造体の接合対象物は、上述のように半導体素子を例示したが、例えば、電極または素子領域を有するものである。電極を有するものとしては、例えば、単体で特定の機能を発揮する半導体素子等が例示されるが、複数のものが集まって特定の機能を発揮するものも含まれる。さらには、配線部材等の電気信号を伝達するだけのものも含まれ、プリント配線板等も電極を有するものに含まれる。
 素子領域とは、電子素子として機能するための各種の素子構成回路等が形成された領域である。素子領域には、例えば、フラッシュメモリ等のようなメモリ回路、マイクロプロセッサおよびFPGA(field-programmable gate array)等のような論理回路が形成された領域、無線タグ等の通信モジュールならびに配線が形成された領域である。素子領域には、これ以外にMEMS(Micro Electro Mechanical Systems)が形成されてもよい。MEMSとしては、例えば、センサー、アクチュエーターおよびアンテナ等が挙げられる。センサーには、例えば、加速度、音、および光等の各種のセンサーが含まれる。
 上述のように、素子領域は素子構成回路等が形成されており、半導体チップを外部と電気的に接続するために電極(図示せず)が設けられている。素子領域は電極が形成された電極領域を有する。なお、素子領域の電極とは、例えば、Cuポストである。電極領域とは、基本的には、形成された全ての電極を含む領域のことである。しかしながら、電極が離散して設けられていれば、各電極が設けられている領域のことも電極領域という。
 構造体の形態としては、半導体チップのように個片化されたものでも、半導体ウエハのような形態でもよく、配線層の形態でもよい。
 また、構造体は、接合対象物と接合されるが、接合対象物は、上述の半導体素子等に特に限定されるものではなく、例えば、ウエハ状態の半導体素子、チップ状態の半導体素子、プリント配線板、およびヒートシンク等が接合対象物となる。
[Object to be Joined for Structure]
As mentioned above, the semiconductor element is exemplified as the bonding target of the structure, but for example, it has an electrode or an element region. Examples of those having electrodes include, for example, a semiconductor element that performs a specific function by itself, but also includes a semiconductor element that performs a specific function by combining a plurality of elements. Furthermore, wiring members and the like that only transmit electrical signals are included, and printed wiring boards and the like are also included in those having electrodes.
The device region is a region in which various device configuration circuits and the like are formed for functioning as an electronic device. In the element region, for example, memory circuits such as flash memories, regions in which logic circuits such as microprocessors and FPGAs (field-programmable gate arrays) are formed, communication modules such as wireless tags, and wiring are formed. area. In addition to this, MEMS (Micro Electro Mechanical Systems) may be formed in the element region. MEMS include, for example, sensors, actuators and antennas. Sensors include, for example, various sensors such as acceleration, sound, and light.
As described above, in the element region, an element configuration circuit and the like are formed, and electrodes (not shown) are provided for electrically connecting the semiconductor chip to the outside. The element region has an electrode region in which electrodes are formed. The electrodes in the element region are, for example, Cu posts. An electrode area is basically an area that includes all electrodes formed. However, if the electrodes are discretely provided, the area where each electrode is provided is also called the electrode area.
The structure may be in the form of individual pieces such as semiconductor chips, in the form of semiconductor wafers, or in the form of wiring layers.
In addition, the structure is bonded to an object to be bonded, but the object to be bonded is not particularly limited to the above-described semiconductor elements and the like. For example, semiconductor elements in wafer state, semiconductor elements in chip state, printed wiring A plate, a heat sink, and the like are objects to be bonded.
〔半導体素子〕
 上述の半導体素子42、半導体素子44および半導体素子46は、上述のもの以外に、例えば、ロジックLSI(Large Scale Integration)(例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ASSP(Application Specific Standard Product)等)、マイクロプロセッサ(例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等)、メモリ(例えば、DRAM(Dynamic Random Access Memory)、HMC(Hybrid Memory Cube)、MRAM(MagneticRAM:磁気メモリ)とPCM(Phase-Change Memory:相変化メモリ)、ReRAM(Resistive RAM:抵抗変化型メモリ)、FeRAM(Ferroelectric RAM:強誘電体メモリ)、フラッシュメモリ(NAND(Not AND)フラッシュ)等)、LED(Light Emitting Diode)、(例えば、携帯端末のマイクロフラッシュ、車載用、プロジェクタ光源、LCDバックライト、一般照明等)、パワー・デバイス、アナログIC(Integrated Circuit)、(例えば、DC(Direct Current)-DC(Direct Current)コンバータ、絶縁ゲートバイポーラトランジスタ(IGBT)等)、MEMS(Micro Electro Mechanical Systems)、(例えば、加速度センサー、圧力センサー、振動子、ジャイロセンサ等)、ワイヤレス(例えば、GPS(Global Positioning System)、FM(Frequency Modulation)、NFC(Nearfieldcommunication)、RFEM(RF Expansion Module)、MMIC(Monolithic Microwave Integrated Circuit)、WLAN(WirelessLocalAreaNetwork)等)、ディスクリート素子、BSI(Back Side Illumination)、CIS(Contact Image Sensor)、カメラモジュール、CMOS(Complementary Metal Oxide Semiconductor)、Passiveデバイス、SAW(Surface Acoustic Wave)フィルタ、RF(Radio Frequency)フィルタ、RFIPD(Radio Frequency Integrated Passive Devices)、BB(Broadband)等が挙げられる。
 半導体素子は、例えば、1つで完結したものであり、半導体素子単体で、回路またはセンサー等の特定の機能を発揮するものである。半導体素子は、インターポーザー機能を有するものであってもよい。また、例えば、インターポーザー機能を有するデバイス上に、論理回路を有する論理チップ、およびメモリーチップ等の複数のデバイスを積層することも可能である。また、この場合、それぞれのデバイスごとに電極サイズが異なっていても接合することができる。
 なお、積層デバイスとしては、1つの半導体素子に複数の半導体素子を接合する形態である1対複数の形態に限定されるものではなく、複数の半導体素子と複数の半導体素子とを接合する形態である複数対複数の形態でもよい。
[Semiconductor device]
The semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above are, in addition to those described above, for example, logic LSI (Large Scale Integration) (for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific Standard Product), etc.), microprocessor (e.g., CPU (Central Processing Unit), GPU (Graphics Processing Unit), etc.), memory (e.g., DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (MagneticRAM), PCM (Phase-Change Memory), ReRAM (Resistive RAM), FeRAM (Ferroelectric RAM), flash memory (NAND (Not AND) flash ), etc.), LEDs (Light Emitting Diodes), (e.g., mobile terminal microflash, automotive, projector light sources, LCD backlights, general lighting, etc.), power devices, analog ICs (Integrated Circuits), (e.g., DC (Direct Current)-DC (Direct Current) converter, insulated gate bipolar transistor (IGBT), etc.), MEMS (Micro Electro Mechanical Systems), (e.g. acceleration sensor, pressure sensor, vibrator, gyro sensor, etc.), wireless (e.g. , GPS (Global Positioning System), FM (Frequency Modulation), NFC (Nearfield communication), RFEM (RF Expansion Module), MMIC (Monolithic Microwave Integrated Circuit), WLAN (Wireless Local Area Network), etc.), discrete elements, BSI (Back Side Illumination) , CIS(C contact image sensor), camera module, CMOS (Complementary Metal Oxide Semiconductor), passive device, SAW (Surface Acoustic Wave) filter, RF (Radio Frequency) filter, RFIPD (Radio Frequency Integrated Passive Devices), BB (Broadband), etc. be done.
A semiconductor device is, for example, a single device, and a single semiconductor device performs a specific function such as a circuit or a sensor. The semiconductor element may have an interposer function. Also, for example, it is possible to stack a plurality of devices such as a logic chip having a logic circuit and a memory chip on a device having an interposer function. Moreover, in this case, even if the electrode size is different for each device, it can be joined.
The stacked device is not limited to a one-to-plural form in which a plurality of semiconductor elements are joined to one semiconductor element, but a form in which a plurality of semiconductor elements are joined to a plurality of semiconductor elements. There may be some many-to-many form.
 本発明は、基本的に以上のように構成されるものである。以上、めっき液、構造体、構造体の製造方法、接合体の製造方法およびデバイスの製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the plating solution, the structure, the method for manufacturing the structure, the method for manufacturing the bonded body, and the method for manufacturing the device have been described in detail above, the present invention is not limited to the above-described embodiments and does not depart from the gist of the present invention. Of course, various improvements or changes may be made within the scope.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
[実施例1]
 <アルミニウム基板の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS 1050材のアルミニウム基板を得た。
 このアルミニウム基板を幅1030mmにした後、以下に示す各処理を施した。
[Example 1]
<Production of aluminum substrate>
Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: 0.03% by mass, and the balance is Al and inevitable impurities.Molten metal is prepared by using an aluminum alloy, and after performing molten metal treatment and filtration, an ingot with a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill ) was produced by the casting method.
Next, after scraping off the surface with an average thickness of 10 mm with a chamfer, soaking is held at 550 ° C. for about 5 hours, and when the temperature drops to 400 ° C., the thickness is 2.7 mm using a hot rolling mill. It was a rolled plate of
Furthermore, after performing heat treatment at 500° C. using a continuous annealing machine, the aluminum substrate was finished to a thickness of 1.0 mm by cold rolling to obtain an aluminum substrate of JIS 1050 material.
After the width of this aluminum substrate was reduced to 1030 mm, the following treatments were performed.
 <電解研磨処理>
 上記アルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬) 660mL
 ・純水 160mL
 ・硫酸 150mL
 ・エチレングリコール 30mL
<Electropolishing treatment>
The above aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65° C., and a liquid flow rate of 3.0 m/min.
A carbon electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. Further, the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
(Electropolishing liquid composition)
・ 85 mass% phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・Pure water 160mL
・Sulfuric acid 150mL
・Ethylene glycol 30mL
 <陽極酸化処理工程>
 次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で再陽極酸化処理を施し、膜厚30μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Anodizing process>
Next, the electrolytically polished aluminum substrate was anodized by a self-ordering method according to the procedure described in JP-A-2007-204802.
After electropolishing, the aluminum substrate was pre-anodized for 5 hours with an electrolytic solution of 0.50 mol/L oxalic acid under the conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min. .
After that, the pre-anodized aluminum substrate was subjected to film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol/L chromic anhydride and 0.6 mol/L phosphoric acid (liquid temperature: 50° C.) for 12 hours.
After that, it was re-anodized with an electrolytic solution of 0.50 mol/L oxalic acid under the conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min to obtain an anodized film with a thickness of 30 μm.
In both the pre-anodizing treatment and the re-anodizing treatment, a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.) was used as the power source. In addition, NeoCool BD36 (manufactured by Yamato Scientific Co., Ltd.) was used as the cooling device, and Pair Stirrer PS-100 (manufactured by EYELA Tokyo Rikakikai Co., Ltd.) was used as the stirring and heating device. Furthermore, the flow velocity of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
 <バリア層除去工程>
 次いで、陽極酸化処理工程後に、水酸化ナトリウム水溶液(50g/l)に酸化亜鉛を2000ppmとなるように溶解したアルカリ水溶液を用いて、30℃で150秒間浸漬させるエッチング処理を施し、陽極酸化膜のマイクロポアの底部にあるバリア層を除去し、かつ、露出したアルミニウム基板の表面に同時に亜鉛を析出させた。
 また、バリア層除去工程後の陽極酸化膜の平均厚み(すなわち、マイクロポアによる貫通孔の平均深さ)は30μmであった。なお、マイクロポアの平均開口径が60nmであるため、アスペクト比(平均深さ/平均開口径)は、500であった。
<Barrier layer removal step>
Next, after the anodizing treatment step, an etching treatment is performed by immersing the anodized film at 30° C. for 150 seconds in an alkaline aqueous solution prepared by dissolving zinc oxide in an aqueous sodium hydroxide solution (50 g/l) to a concentration of 2000 ppm. The barrier layer at the bottom of the micropores was removed and zinc was simultaneously deposited on the exposed surface of the aluminum substrate.
Also, the average thickness of the anodized film after the barrier layer removal process (that is, the average depth of the through-holes due to the micropores) was 30 μm. The aspect ratio (average depth/average opening diameter) was 500 because the average opening diameter of the micropores was 60 nm.
 <金属充填工程>
 次いで、アルミニウム基板を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、マイクロポアの内部に銅が充填された金属充填構造体を作製した。
 ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(銅めっき液組成および条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・3-メルカプト-1-プロパンスルホン酸ナトリウム(MPS) 50mg/L
 ・温度 25℃
 ・電流密度 10A/dm
<Metal filling process>
Next, electrolytic plating was performed using the aluminum substrate as a cathode and platinum as a positive electrode.
Specifically, a metal-filled structure in which micropores were filled with copper was produced by performing constant-current electrolysis using a copper plating solution having the composition shown below.
Here, the constant current electrolysis uses a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd., a power supply (HZ-3000) manufactured by Hokuto Denko Co., Ltd., and performs cyclic voltammetry in the plating solution to deposit. After confirming the potential, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・Copper sulfate 100g/L
・Sulfuric acid 50g/L
・Hydrochloric acid 15g/L
・ Sodium 3-mercapto-1-propanesulfonate (MPS) 50 mg / L
・Temperature 25℃
・Current density 10A/dm 2
[実施例2]
 金属充填工程において銅めっき液組成におけるMPSの含有量を10mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 2]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 10 mg/L in the metal-filling step.
[実施例3]
 金属充填工程において銅めっき液組成におけるMPSの含有量を3mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 3]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 3 mg/L in the metal-filling step.
[実施例4]
 金属充填工程において銅めっき液組成におけるMPSを2-メルカプト-5-ベンズイミダゾールスルホン酸ナトリウムに変更した以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 4]
A metal-filled structure was produced in the same manner as in Example 1, except that sodium 2-mercapto-5-benzimidazolesulfonate was used instead of MPS in the composition of the copper plating solution in the metal-filling step.
[実施例5]
 金属充填工程において銅めっき液組成におけるMPSを3-メルカプト-1,2-プロパンジオールに変更した以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 5]
A metal-filled structure was fabricated in the same manner as in Example 1, except that MPS in the composition of the copper plating solution was changed to 3-mercapto-1,2-propanediol in the metal-filling step.
[実施例6]
 金属充填工程において銅めっき液組成において、3,3’-ジチオビス(プロパンスルホン酸ナトリウム)を50mg/L追加した以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 6]
A metal filling structure was produced in the same manner as in Example 1, except that 50 mg/L of 3,3'-dithiobis(sodium propanesulfonate) was added to the copper plating solution composition in the metal filling step.
[実施例7]
 金属充填工程において銅めっき液組成におけるMPSの含有量を300mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 7]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 300 mg/L in the metal-filling step.
[実施例8]
 金属充填工程において銅めっき液組成におけるMPSの含有量を500mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 8]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the copper plating solution composition was changed to 500 mg/L in the metal-filling step.
[実施例9]
 金属充填工程において銅めっき液組成におけるMPSの含有量を1000mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 9]
A metal-filled structure was fabricated in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 1000 mg/L in the metal-filling step.
[実施例10]
 金属充填工程において銅めっき液組成におけるMPSの含有量を0.1mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Example 10]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 0.1 mg/L in the metal-filling step.
[実施例11~14]
 金属充填工程において銅めっき液組成におけるMPSと3,3’-ジチオビス(プロパンスルホン酸ナトリウム)との含有量を下記表1に示す値とした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Examples 11 to 14]
A metal filling structure was fabricated in the same manner as in Example 1, except that the contents of MPS and 3,3'-dithiobis(sodium propanesulfonate) in the composition of the copper plating solution in the metal filling step were set to the values shown in Table 1 below. made the body.
[実施例15]
 陽極酸化処理工程において、再陽極酸化処理の時間を短縮し、膜厚10μmの陽極酸化膜を形成した以外は、実施例1と同様の方法で金属充填構造体を作製した。なお、実施例1と同様、マイクロポアの平均開口径が60nmであったため、アスペクト比(平均深さ/平均開口径)は、167であった。
[Example 15]
A metal-filled structure was produced in the same manner as in Example 1, except that in the anodizing process, the re-anodizing time was shortened and an anodized film with a thickness of 10 μm was formed. As in Example 1, the average opening diameter of the micropores was 60 nm, so the aspect ratio (average depth/average opening diameter) was 167.
[実施例16]
 金属充填工程で用いためっき液を以下の組成および条件に変更した以外は、実施例1と同様の方法で金属充填構造体を作製した。
(ニッケルめっき液組成および条件)
 ・硫酸ニッケル 300g/L
 ・塩化ニッケル 60g/L
 ・ホウ酸 40g/L
 ・3-メルカプト-1-プロパンスルホン酸ナトリウム(MPS) 50mg/L
 ・温度 50℃
 ・電流密度 10A/dm
[Example 16]
A metal-filled structure was produced in the same manner as in Example 1, except that the composition and conditions of the plating solution used in the metal-filling step were changed as follows.
(Nickel plating solution composition and conditions)
・Nickel sulfate 300g/L
・Nickel chloride 60g/L
・Boric acid 40g/L
・ Sodium 3-mercapto-1-propanesulfonate (MPS) 50 mg / L
Temperature 50℃
・Current density 10A/dm 2
[比較例1]
 金属充填工程において銅めっき液組成におけるMPSを添加しないこととした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Comparative Example 1]
A metal-filled structure was produced in the same manner as in Example 1, except that MPS in the composition of the copper plating solution was not added in the metal-filling step.
[比較例2]
 金属充填工程において銅めっき液組成におけるMPSの含有量を2000mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Comparative Example 2]
A metal-filled structure was fabricated in the same manner as in Example 1, except that the content of MPS in the composition of the copper plating solution was changed to 2000 mg/L in the metal-filling step.
[比較例3]
 金属充填工程において銅めっき液組成におけるMPSの含有量を0.01mg/Lとした以外は、実施例1と同様の方法で金属充填構造体を作製した。
[Comparative Example 3]
A metal-filled structure was produced in the same manner as in Example 1, except that the content of MPS in the copper plating solution composition was changed to 0.01 mg/L in the metal-filling step.
[評価]
 <充填高さバラツキ>
 実施例1~16および比較例1~3で作製した金属充填構造体を厚さ方向に対してFIBで切削加工し、その断面をFE-SMで撮影し、最も充填高さが高い箇所と最も低い箇所の高さを測定し、差分を算出した。同様の測定と算出を5つの断面で行い、差分の平均値を充填高さのバラツキとした。結果を下記表1に示す。
[evaluation]
<Filling height variation>
The metal-filled structures prepared in Examples 1 to 16 and Comparative Examples 1 to 3 were cut with FIB in the thickness direction, and the cross section was photographed with FE-SM, and the highest filling height and the highest The height of the lower part was measured and the difference was calculated. Similar measurements and calculations were performed on five cross sections, and the average value of the differences was taken as the variation in filling height. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、メルカプト基を有する化合物を含有しないめっき液を用いた場合は、充填高さのバラツキが20μmを超えることが分かった(比較例1)。
 また、メルカプト基を有する化合物の含有量が2000mg/Lであると、充填不良が起こることが分かった(比較例2)。
 また、メルカプト基を有する化合物の含有量が0.01mg/Lであると、充填高さのバラツキが20μmを超えることが分かった(比較例3)。
 これに対し、メルカプト基を有する化合物を含有するめっき液を用いた場合は、充填高さのバラツキが20μm以下となることが分かった(実施例1~16)。
 また、実施例1、4および5の対比から、メルカプト基を有する化合物が、スルホン酸またはその塩であると、充填高さのバラツキをより抑制することができることが分かった。
 また、実施例1と実施例4との対比から、メルカプト基を有する化合物が、3-メルカプト-1-プロパンスルホン酸ナトリウムであると、充填高さのバラツキを更に抑制することができることが分かった。
 また、実施例1~3および7~10の対比から、メルカプト基を有する化合物の含有量が0.1~1000mg/Lであると、充填高さのバラツキをより抑制することができることが分かり、同様の理由から、メルカプト基を有する化合物の含有量が1~500mg/Lであることがより好ましく、10~400mg/Lであることが更に好ましく、20~300mg/Lであることが最も好ましいことが分かった。
 また、実施例1と実施例15との対比から、金属を充填する貫通孔のアスペクト比(平均深さ/平均開口径)が500~5000であると、貫通孔に充填される金属の充填高さのバラツキを抑制効果がより顕在化することが分かった。
From the results shown in Table 1, it was found that when a plating solution containing no compound having a mercapto group was used, the variation in filling height exceeded 20 μm (Comparative Example 1).
It was also found that when the content of the compound having a mercapto group was 2000 mg/L, poor filling occurred (Comparative Example 2).
It was also found that when the content of the compound having a mercapto group was 0.01 mg/L, the variation in filling height exceeded 20 μm (Comparative Example 3).
On the other hand, it was found that when a plating solution containing a compound having a mercapto group was used, the variation in filling height was 20 μm or less (Examples 1 to 16).
Moreover, from the comparison of Examples 1, 4 and 5, it was found that the variation in filling height can be further suppressed when the compound having a mercapto group is sulfonic acid or a salt thereof.
Further, from a comparison between Example 1 and Example 4, it was found that the variation in filling height can be further suppressed when the compound having a mercapto group is sodium 3-mercapto-1-propanesulfonate. .
Further, from a comparison of Examples 1 to 3 and 7 to 10, it was found that when the content of the compound having a mercapto group is 0.1 to 1000 mg/L, the variation in filling height can be further suppressed. For the same reason, the content of the compound having a mercapto group is more preferably 1 to 500 mg/L, still more preferably 10 to 400 mg/L, and most preferably 20 to 300 mg/L. I found out.
Further, from a comparison between Example 1 and Example 15, when the aspect ratio (average depth/average opening diameter) of the through-holes filled with metal is 500 to 5000, the filling height of the metal filled in the through-holes is It was found that the effect of suppressing the variation in thickness became more apparent.
 10 構造体
 12 絶縁膜
 12a 表面
 12b 裏面
 13 細孔
 14 導体
 14a 突出部
 14b 突出部
 15 陽極酸化膜
 20、21、22 樹脂層
 20a、22a 樹脂層部
 20b、22b スペース
 30 アルミニウム基板
 30a 表面
 31 バリア層
 32c 底部
 32d 面
 35 金属
 35a 金属層
 35b 金属
 40 積層デバイス
 41 接合体
 42、44、46 半導体素子
 45 異方導電性部材
 50 半導体素子部
 51 インターポーザー基板
 52、53 電極
 54、55 絶縁層
 54a、55a、60a 表面
 60 第1の半導体ウエハ
 Ds 積層方向
 Dt 厚み方向
 d 平均直径
 H 高さ
 hm 平均厚さ
 ht 厚み
 p 中心間距離
REFERENCE SIGNS LIST 10 structure 12 insulating film 12a front surface 12b rear surface 13 pore 14 conductor 14a protrusion 14b protrusion 15 anodized film 20, 21, 22 resin layer 20a, 22a resin layer portion 20b, 22b space 30 aluminum substrate 30a front surface 31 barrier layer 32c Bottom 32d Surface 35 Metal 35a Metal layer 35b Metal 40 Laminated device 41 Joined body 42, 44, 46 Semiconductor element 45 Anisotropically conductive member 50 Semiconductor element part 51 Interposer substrate 52, 53 Electrode 54, 55 Insulating layer 54a, 55a , 60a surface 60 first semiconductor wafer Ds stacking direction Dt thickness direction d average diameter H height hm average thickness ht thickness p center distance

Claims (6)

  1.  複数の貫通孔を有する構造体の前記貫通孔に金属を充填する際に使用するめっき液であって、
     前記貫通孔に充填する金属の塩と、メルカプト基を有する化合物とを含有し、
     前記メルカプト基を有する化合物の含有量が、0.01mg/L超2000mg/L未満である、めっき液。
    A plating solution used when filling metal into the through-holes of a structure having a plurality of through-holes,
    containing a metal salt to be filled in the through-holes and a compound having a mercapto group,
    A plating solution, wherein the content of the compound having a mercapto group is more than 0.01 mg/L and less than 2000 mg/L.
  2.  前記メルカプト基を有する化合物が、スルホン酸またはその塩を含む、請求項1に記載のめっき液。 The plating solution according to claim 1, wherein the compound having a mercapto group contains sulfonic acid or a salt thereof.
  3.  前記メルカプト基を有する化合物の含有量が、0.1~1000mg/Lである、請求項1または2に記載のめっき液。 The plating solution according to claim 1 or 2, wherein the content of the compound having a mercapto group is 0.1 to 1000 mg/L.
  4.  前記メルカプト基を有する化合物が、3-メルカプト-1-プロパンスルホン酸ナトリウムを含む、請求項1~3のいずれか1項に記載のめっき液。 The plating solution according to any one of claims 1 to 3, wherein the compound having a mercapto group contains sodium 3-mercapto-1-propanesulfonate.
  5.  前記複数の貫通孔の開口径に対する深さの比率が10以上である、請求項1~4のいずれか1項に記載のめっき液。 The plating solution according to any one of claims 1 to 4, wherein the ratio of the depth to the opening diameter of the plurality of through holes is 10 or more.
  6.  複数の貫通孔を有する構造体の前記貫通孔に金属を充填して作製される金属充填構造体の製造方法であって、
     前記構造体の前記貫通孔に金属を充填する際に、請求項1~5のいずれか1項に記載のめっき液を用いる、金属充填構造体の製造方法。
    A method for manufacturing a metal-filled structure manufactured by filling metal into the through-holes of a structure having a plurality of through-holes,
    A method for manufacturing a metal-filled structure, wherein the plating solution according to any one of claims 1 to 5 is used when filling the through holes of the structure with metal.
PCT/JP2021/048930 2021-01-20 2021-12-28 Plating solution and method for producing metal-filled structure WO2022158277A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022576584A JPWO2022158277A1 (en) 2021-01-20 2021-12-28
CN202180090962.9A CN116710599A (en) 2021-01-20 2021-12-28 Plating solution and method for producing metal-filled structure
KR1020237024281A KR20230121857A (en) 2021-01-20 2021-12-28 Plating solution and manufacturing method of metal filled structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006991 2021-01-20
JP2021-006991 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158277A1 true WO2022158277A1 (en) 2022-07-28

Family

ID=82548786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048930 WO2022158277A1 (en) 2021-01-20 2021-12-28 Plating solution and method for producing metal-filled structure

Country Status (5)

Country Link
JP (1) JPWO2022158277A1 (en)
KR (1) KR20230121857A (en)
CN (1) CN116710599A (en)
TW (1) TW202237903A (en)
WO (1) WO2022158277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073182A (en) * 1999-07-15 2001-03-21 Boc Group Inc:The Improved acidic copper electroplating solution
JP2002115090A (en) * 2000-09-27 2002-04-19 Samsung Electronics Co Ltd Electrolytic solution for copper plating and electroplating method for copper wiring of semiconductor device using the same
US20160190007A1 (en) * 2013-08-08 2016-06-30 Shanghai Sinyang Semiconductor Materials Co., Ltd. A method for microvia filling by copper electroplating with tsv technology for 3d copper interconnection at high aspect ratio
WO2017057150A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Method for manufacturing metal-filled microstructure device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073182A (en) * 1999-07-15 2001-03-21 Boc Group Inc:The Improved acidic copper electroplating solution
JP2002115090A (en) * 2000-09-27 2002-04-19 Samsung Electronics Co Ltd Electrolytic solution for copper plating and electroplating method for copper wiring of semiconductor device using the same
US20160190007A1 (en) * 2013-08-08 2016-06-30 Shanghai Sinyang Semiconductor Materials Co., Ltd. A method for microvia filling by copper electroplating with tsv technology for 3d copper interconnection at high aspect ratio
WO2017057150A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Method for manufacturing metal-filled microstructure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Also Published As

Publication number Publication date
KR20230121857A (en) 2023-08-21
CN116710599A (en) 2023-09-05
JPWO2022158277A1 (en) 2022-07-28
TW202237903A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
US9799594B2 (en) Microstructure, multilayer wiring board, semiconductor package and microstructure manufacturing method
JP5752741B2 (en) Multilayer substrate and semiconductor package
US20100206737A1 (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
EP2611950B1 (en) Process for electrodeposition of copper chip to chip chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv), with heated substrate and cooled electrolyte
JPWO2020166240A1 (en) Anodizing method and manufacturing method of anisotropic conductive member
TWI723250B (en) Method for manufacturing metal-filled microstructure
JP2019153415A (en) Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body
JP6976883B2 (en) Anotropically conductive member, manufacturing method of anisotropically conductive member, bonded body and electronic device
WO2022158277A1 (en) Plating solution and method for producing metal-filled structure
JP7394956B2 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
WO2022044585A1 (en) Method for manufacturing metal-filled microstructure
CN116666346A (en) Metal-filled microstructure
JP7220796B2 (en) Structure manufacturing method
JP7506753B2 (en) Method for manufacturing metal-filled microstructures
CN115003864A (en) Method for producing metal-filled microstructure
CN115210410A (en) Method for producing metal-filled microstructure
JP2023013811A (en) Method for manufacturing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576584

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237024281

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090962.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921378

Country of ref document: EP

Kind code of ref document: A1