WO2024136227A1 - 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법 - Google Patents

폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법 Download PDF

Info

Publication number
WO2024136227A1
WO2024136227A1 PCT/KR2023/019932 KR2023019932W WO2024136227A1 WO 2024136227 A1 WO2024136227 A1 WO 2024136227A1 KR 2023019932 W KR2023019932 W KR 2023019932W WO 2024136227 A1 WO2024136227 A1 WO 2024136227A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
heating
unit
reduction device
Prior art date
Application number
PCT/KR2023/019932
Other languages
English (en)
French (fr)
Inventor
이주승
김천
한상우
김완이
박중길
Original Assignee
포스코홀딩스 주식회사
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코홀딩스 주식회사, 주식회사 포스코 filed Critical 포스코홀딩스 주식회사
Publication of WO2024136227A1 publication Critical patent/WO2024136227A1/ko

Links

Images

Definitions

  • This relates to waste batteries, a high-temperature reduction device for waste battery recycling, and a method of heat treating waste battery recycling.
  • lithium secondary batteries which are the main raw materials for the waste batteries, organic solvents, explosive substances, and heavy metal substances such as Ni, Co, Mn, and Fe are contained.
  • Ni, Co, Mn, and Li valuable metals are contained. It has great scarcity value, and the recovery and recycling process after lithium secondary batteries are discarded is emerging as an important research field.
  • black powder is a mixture of positive and negative electrode materials through the process of crushing, pulverizing, specific gravity sorting, and magnetic sorting processes of the spent batteries at the end of their life. is extracted.
  • the black powder contains some impurities such as, for example, oxides of nickel, cobalt, manganese, lithium, aluminum, and oxygen, which are anode materials, and graphite, a mixture thereof, aluminum, and copper, which are cathode materials.
  • Wet processes and dry processes are largely used as methods for recovering valuable metals from the black powder.
  • the wet process produces NiSO 4 , CoSO 4 , MnSO 4 , and Li 2 CO 3 through leaching, solvent extraction, and lithium production.
  • the black powder is treated by a wet process, there is a problem that the graphite, which is a negative electrode material contained in the black powder, does not dissolve in a strong acid atmosphere, so the leaching process takes excessive time.
  • the black powder is separated together with the graphite, There is a problem with the error rate decreasing.
  • the dry process is a process of removing aluminum from slag through a high-temperature dry process of the black powder, and can produce Ni-Co-Mn-C alloy.
  • the dry process utilizes graphite and oxygen blowing at a high temperature, for example, in the range of 1400 to 1600 ° C. to reduce the Ni-Mn-Li-Al-O oxide in the black powder at high temperature to generate CO or CO 2 gas to produce Ni- It can be removed with Co-Mn alloy and lithium and aluminum in slag.
  • NiSO 4 , CoSO 4 , and MnSO 4 are produced through the leaching-solvent extraction process within the wet process, and since the carbon is dissolved in the alloy, the leaching process time is reduced to about 70% compared to the wet process. do.
  • a high-temperature reduction device for recycling waste batteries is environmentally friendly and provides a non-oxidizing dry high-temperature reduction device that can secure the optimal recovery rate of valuable metals in the post-process.
  • a heat treatment method for recycling waste batteries is provided by utilizing a high-temperature reduction device having the above-mentioned advantages.
  • a high-temperature reduction device for recycling waste batteries includes a charging unit for introducing raw materials, a heating unit for heating the raw materials introduced from the charging unit, a cooling unit for cooling the heat-treated product, and It includes a discharge part that discharges the cooled reactant from the cooling part, and the heating part includes a pre-heat treatment part that pre-heats the raw material introduced from the charging part, and a high-temperature heat treatment part that heats the raw material to a higher temperature than the pre-heat treatment part.
  • the high-temperature heat treatment unit may include a heat treatment unit in which heat treatment of the raw material is performed in a temperature range of 1,150 to 1,400 °C.
  • the high-temperature heat treatment unit may include two or more heat treatment units in a vertical or horizontal direction.
  • the high-temperature heat treatment unit may include a heat absorption unit heated to a higher temperature than the preliminary heat treatment unit, and a melt unit heated to a higher temperature range than the heat absorption unit to form at least a portion of the molten layer.
  • the heating unit that increases the temperature may increase the temperature of the raw material at 1 to 10 °C/min.
  • the melted portion may form spherical particles by melting at least one of Ni, Cu, Co, and Mn.
  • the weight ratio of carbon to nickel (C/Ni) of the charged raw material may be 20 or more.
  • the heating unit includes a heating furnace and a heating unit, and when measuring the temperature at any position in the minor axis and major axis directions of the cross section with respect to the center in the cross section of the heating furnace, the center and The temperature difference at the arbitrary location may be 250° C. or less.
  • the cross section of the heating furnace may have a length ratio of the long axis to the minor axis of 2/1 to 4/1.
  • the heating furnace may have a curved portion on the outside of the heating furnace. In one embodiment, the length of the curved portion may be 30 mm or more. In one embodiment, the heating unit includes at least one heating unit, the heating unit has a coil shape, and the distance between pitches of the coil may become narrower as the coil moves away from the center area of the coil.
  • the heating unit may be disposed on at least a portion of the heating unit.
  • the target temperature of the preliminary heat treatment unit within the heating unit may satisfy Equation 1 below.
  • Equation 1 x is the input energy [W]
  • Cp is the specific heat [J/Kg-°C]
  • m is the material transfer amount [Kg/s]
  • the target temperature of the melting portion within the heating portion may satisfy Equation 2 below.
  • the heating unit may be performed in an atmosphere where the oxygen partial pressure is 0.1 atm or less.
  • the preliminary heat treatment unit may be heated in a temperature range of 800° C. or lower.
  • an endothermic reaction may occur in the heat absorption unit through a Boudouard reaction that converts CO 2 gas into 2CO.
  • a heat treatment method for recycling waste batteries is a heat treatment process performed after the shredding process of waste batteries, comprising the steps of charging raw materials, heating the charged raw materials, and heat treatment. Cooling the product, and discharging the cooled reactant, and heating the raw material, preheating the charged raw material to a temperature higher than the preheating step. It includes a high-temperature heat treatment step of heating, and the high-temperature heat treatment step may include a heat treatment step in which heat treatment of the raw material is performed in a temperature range of 1,150 to 1,400 ° C.
  • the high-temperature heat treatment step includes an endothermic step of heating to a higher temperature than the preliminary heat treatment portion, and a melting step of forming a molten portion that forms at least a portion of the molten layer by heating at a temperature range higher than the endothermic step. can do.
  • the step of heating the charged raw material is performed when measuring the temperature at any position in the minor axis and major axis direction of the cross section with respect to the center in the cross section of the heating furnace, which is a heating member.
  • the temperature difference between the center and the arbitrary location may be 250° C. or less.
  • the cross section of the heating furnace may have a length ratio of the long axis to the minor axis of 2/1 to 4/1.
  • the heating furnace may have a curved portion on the outside of the heating furnace.
  • the length of the curved portion may be 60 mm or more.
  • the step of preheating the charged raw material may be performed at the target temperature of Equation 1 below.
  • Equation 1 x is the input energy [W]
  • Cp is the specific heat [J/Kg-°C]
  • m is the material transfer amount [Kg/s]
  • the target temperature of the melting step of forming at least a portion of the molten layer by heating in a higher temperature range than the endothermic step may satisfy Equation 2 below.
  • Equation 2 x is the input energy [W]
  • Cp is the specific heat [J/Kg-°C]
  • m is the material transfer amount [Kg/s]
  • a high-temperature reduction device for recycling waste batteries controls the temperature in the first to third zones within the heating unit and is accompanied by structural features within the heating unit, thereby being environmentally friendly and reducing the cost of post-processing.
  • a dry high-temperature reduction device that can secure the optimal recovery rate of valuable metals is provided.
  • a heat treatment method for recycling waste batteries is provided by utilizing a high-temperature reduction device having the above-mentioned advantages.
  • Figure 1a shows a high-temperature reduction device for recycling waste batteries according to an embodiment of the present invention
  • Figure 1b shows a high-temperature reduction device according to another embodiment of the present invention.
  • FIGS 2a to 2c show photographs of the grain size formation of the alloy according to the C/Ni content of the raw material, according to an embodiment of the present invention.
  • Figures 3a to 3c show the shapes of reactants according to examples and comparative examples of the present invention
  • Figure 3d shows the temperature increase rate and edge distribution according to the comparative examples of the present invention.
  • Figure 4 shows the real yield of reactants according to temperature according to Examples and Comparative Examples of the present invention.
  • Figure 5 shows an arbitrary position relative to the center position in the cross section of a heating furnace, according to an embodiment of the present invention.
  • Figure 6 shows temperature differences within the heating furnace according to examples and comparative examples of the present invention.
  • Figure 7 shows temperature differences within the heating furnace according to examples and comparative examples of the present invention.
  • FIG. 8A is a graph showing a tendency to reduce the temperature difference in the heating furnace according to the length of the bent portion, according to an embodiment of the present invention, and FIG. 8B shows the temperature difference measured along the length of the bent portion using thermal analysis simulation.
  • 9A to 9C show coil arrangements and resulting temperature distributions according to comparative examples and embodiments of the present invention.
  • Figure 10 is a graph of the target temperature of the heating unit according to the required energy of the heating element, according to an embodiment of the present invention.
  • first, second, and third are used to describe, but are not limited to, various parts, components, regions, layers, and/or sections. These terms are used only to distinguish one portion, component, region, layer or section from another portion, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the present invention.
  • Figure 1a shows a high-temperature reduction device for recycling waste batteries, according to an embodiment of the present invention.
  • the high-temperature reduction device 10 for recycling waste batteries includes a charging unit 100 for inputting raw materials, and heating the raw materials input from the charging unit 100. It includes a heating unit 110 that cools the heat-treated product, a cooling unit 120 that cools the heat-treated product, and a discharge unit 130 that discharges the cooled reactant from the cooling unit 120.
  • the high-temperature reduction device 10 of the present invention refers to a furnace used in the step of raising the battery shredded material to a temperature above the melting point by putting the shredded battery material into a heating furnace capable of raising the temperature to a high temperature.
  • the high-temperature reduction device 10 crushes waste batteries, and, if necessary, high-temperature reduces the waste battery shredded material that has undergone specific gravity selection, magnetic separation, or classification to produce oxides of cathode materials such as nickel, cobalt, manganese, lithium aluminum, or oxygen. It may be to manufacture a reactant containing some impurities such as graphite, which is a negative electrode material, a mixture thereof, aluminum, and copper.
  • the charging unit 100 is a member that inputs raw material, and the raw material may be the waste battery shredded material described above.
  • the waste battery shredded material refers to the material that serves as the base material for the shredded battery material, or the material itself that has been shredded.
  • the base material of the battery shredded material may include batteries that have reached the end of their life, waste batteries, and waste materials generated during the manufacturing process of lithium ion batteries.
  • the waste battery may include positive electrode materials such as scrap, jelly roll, and slurry that constitute the waste battery, defective products generated during the manufacturing process, residues within the manufacturing process, and generated debris.
  • the base material of the battery shredded material can then be manufactured into battery shredded material through a crushing process.
  • the shredded material itself may be a shredded product itself, such as black powder. In this way, by recycling waste batteries, there is an environmentally friendly and economical advantage of manufacturing shredded batteries.
  • the weight ratio of C/Ni in the raw material may be 20 or more.
  • the weight ratio of C/Ni specifically means the weight percent of carbon divided by the weight percent of nickel.
  • the size of the powder particles is reduced to a spherical shape in the range of 500 to 3,000 ⁇ m, which is the optimal particle size ratio for acid treatment in the post-process. Reactants may be formed.
  • the charging part 100 may further include a pusher.
  • the pushing portion may be configured to more smoothly administer the raw material charged through the charging portion 100.
  • the heating unit 110 is a member that heats the raw material introduced from the charging unit 100.
  • the heating unit 110 can input raw materials such as waste battery shredded material into a furnace capable of raising the temperature to a high temperature, thereby raising the waste battery shredded material to a temperature above the melting point. In this way, Ni-Co-Mn alloy and Li oxide containing valuable metals are generated through the heating unit 110, and the valuable metals can be recovered in a later process.
  • the heating unit 110 may be characterized in that it raises the temperature of the raw material introduced from the charging unit 100 at a temperature increase rate of 1 to 10 °C/min. Specifically, the temperature increase rate may be performed in the range of 2.0 to 5.0 °C/min.
  • the heating unit 110 may operate at a temperature range of 800 to 1,300 °C. As heating is performed at the temperature increase rate and temperature range, a Ni-based alloy is formed with spherical particles of 100 to 3,000 ⁇ m, thereby increasing the recovery rate of valuable metals and Li.
  • the heating unit 110 may include at least one induction coil.
  • the heating unit 110 may include one induction coil, or more induction coils may be used.
  • one induction coil was used in the preliminary heat treatment section 111, and additional induction coils were used in the heat absorption section 112 and the melting section 113.
  • the heating unit 110 may include a preliminary heat treatment unit 111 that preheats the input raw material and a high temperature heat treatment unit (not shown) that heats the input raw material to a higher temperature than the preliminary heat treatment unit 111.
  • the high-temperature heat treatment unit may be a high-temperature reduction unit that is a member that reduces the raw material by heating to a higher temperature than the preliminary heat treatment unit 111.
  • the high-temperature heat treatment unit may include two or more heat treatment units in a vertical or horizontal direction.
  • the high-temperature heating unit may include a heat absorption unit 112 and a melting unit 113 that is heated to a higher temperature range than the heat absorption unit 112 to form at least a portion of the molten layer.
  • the heating unit 110 has the advantage of increasing the recovery rate of valuable metals by including sections with different temperatures.
  • the preliminary heat treatment unit 111 may be heated in a temperature range of 800° C. or lower. Specifically, the preliminary heat treatment unit 111 may be heated in a temperature range of 700° C. or lower.
  • the main purpose of the preliminary heat treatment unit 111 is to remove the electrolyte and separator of the waste battery shredded material by preheating the waste battery shredded material, which is a raw material, in the above-mentioned range.
  • the heat absorption unit 112 may be heated at a higher temperature range than the preliminary heat treatment unit 111.
  • the endothermic reaction can occur in the range of 700 to 1200 °C, more specifically in the range of 700 to 900 °C, and even more specifically in the range of 800 to 900 °C.
  • an endothermic reaction may occur in the above-described temperature range through the Boudouard Reaction, which converts CO 2 gas into 2CO gas.
  • the high-temperature reduction device 10 can have an environmentally friendly advantage by reducing carbon dioxide.
  • the melted portion 113 may be heated at a higher temperature range than the heat absorbing portion 112. Specifically, it may be heated in a temperature range of 1400°C or lower, more specifically in a temperature range of 1,150 to 1,400°C or lower. In this melting portion 113, any one of nickel, cobalt, manganese, and copper may be melted and disposed in a spherical shape.
  • the molten part 113 is the highest high-temperature reaction section in the heating part 110 and is a member where heat treatment is performed in the above temperature range so that Ni-Co-Mn alloy containing valuable metals and Li oxide can be generated.
  • the crushed material in which the anode, cathode, or separator is reduced to a laminated form reacts in a post-process for extracting valuable metals, for example, a wet process.
  • a post-process for extracting valuable metals for example, a wet process.
  • the Li recovery rate may satisfy the range of 40 to 70%, specifically, 55 to 60%, and the Ni-Co-Mn alloy may satisfy the range of 55 to 95%, specifically. A range of 85 to 95%, more specifically 85 to 90%, may be satisfied.
  • the melted portion 113 is outside the upper limit of the above-mentioned range, there is a problem that the Li recovery rate is excessively low, and when it is outside the lower limit of the above-mentioned range, the recovery rate of the Ni-Co-Mn alloy is excessively low. there is a problem.
  • the melting portion 113 is performed in the above-described temperature range, there is an advantage in that the recovery rate of Ni-Co-Mn alloy can be increased and the recovery rate of Li can be increased at the same time.
  • the heating unit 110 includes a heating furnace 110_F and a heating unit 110_H.
  • the heating furnace 110_F refers to a passage through which the input raw material passes through the heating unit 110.
  • the heating unit 110_H refers to a member that applies heat energy to the heating furnace 110_F.
  • the temperature difference between the center and the arbitrary position is It may be below 250°C.
  • the cross section of the heating furnace 110_F means that it is cut in a direction that is different from the direction in which the raw materials travel, for example, in a direction that intersects or is perpendicular to the direction in which the raw materials travel.
  • the temperature difference may be the difference between the maximum temperature and the minimum temperature. If the temperature difference between the center and the arbitrary location is outside the temperature range, uniform heat transfer to the heating furnace 110_F is not easy, and the recovery rate of valuable metals is reduced.
  • the temperature difference between the center and the arbitrary location may be lower than 10%. Specifically, the temperature difference between the center and the arbitrary location may be as low as 20% or less based on 100%. For a detailed description of this, refer to FIG. 4 described below.
  • the cross section of the heating furnace 110_F may have a length ratio of the long axis to the minor axis of 2/1 to 4/1. Specifically, the length ratio of the long axis to the short axis may be 2.5/1 to 3.5/1.
  • the ratio of the length of the major axis to the minor axis satisfies the above-mentioned range, there is an advantage in that the temperature range variation within the heating furnace 110_F is low and heat transfer is possible evenly. If the length ratio of the major axis to the minor axis is outside the above-described range, the temperature range within the heating furnace 110_F is high, making it difficult to transfer heat uniformly, and thus, there is a problem of low recovery rate of valuable metals in the reactants.
  • the heating furnace 110_F may have a curved portion on the outside of the heating furnace 110_F.
  • the curved part means that the corner portion has a curved shape in the cross section of the square-shaped heating furnace (110_F).
  • the bent portion prevents heat energy from being concentrated at the corners, thereby preventing the problem of the real rate of reactants being low at the corners due to the heat energy being concentrated at the corners in the existing square-shaped heating furnace (110_F). .
  • the length of the bend may be at least 60 mm. Specifically, the length of the bent portion may be between 60 and 110 mm, and more specifically between 75 and 100 mm.
  • the length of the bent portion refers to the radius when a center circle is drawn based on the edge of the heating furnace, and for a detailed description, refer to FIGS. 8A and 8B described later.
  • the heating unit 110_H includes at least one unit within the heating unit 110, and the heating unit 110_H may apply heat energy through a method such as induction heating, gas heat, or resistance heat.
  • the heating unit 110_H is a means for supplying the heat energy and may have a coil shape.
  • the wire of the coil may have a cross-section of any one of circular, square, rectangular, oval, triangular, trapezoidal, diamond, and star shapes, as non-limiting examples.
  • the distance between the pitches of the coils of the heating unit 110_H may become narrower as the distance between the coils moves away from the center area of the coil.
  • the center area of the coil refers to an area containing the middle value based on the longitudinal direction in which the coil is wound.
  • the pitch of the coil refers to the distance between two effective coil sides when the coil is wound.
  • coil inductance is proportional to the number of turns of the coil. Specifically, coil inductance is proportional to the number of turns of the coil. Specifically, when the coil is wound a large number of times, the applied heat energy increases, and when the coil is wound a small number of times, the applied heat energy becomes low.
  • the coil of the heating unit (110_H) of the present invention implemented by It has the advantage of dispersing heat.
  • the heating unit 110_H is disposed in the preliminary heat treatment unit 111, the heat absorption unit 112, and the melting unit 113, respectively, to control the temperature of the heating unit 110.
  • the heating unit 110 may perform heating in a gas atmosphere containing oxygen, and the oxygen may be included in a volume fraction of 5 vol% or less. In one embodiment, the heating unit 110 may be performed in an atmosphere where the oxygen partial pressure is 0.1 atm or less. As heating progresses in a gas atmosphere partially containing oxygen in the above-mentioned range, lithium oxide for lithium recovery can be easily formed, thereby improving the recovery rate of valuable metals.
  • the preliminary heat treatment unit 111 in the heating unit 110 may be performed at a power of 12.0 kW or more. Specifically, the preliminary heat treatment unit 111 may be performed at a power of 12.0 to 15.0 kW. Specifically, the power may be performed at a power of 12.0 to 14 kW.
  • melting 113 in heating 110 may be performed at a power of 16.0 kW or more. Specifically, the power may be performed at a power of 16.0 to 19.0 kW. Specifically, the power may be performed at a power of 17.5 to 18.5 kW.
  • the power applied from the preliminary heat treatment unit 111 and the melting unit 113 may represent the minimum energy required to heat the reactant, and the power satisfies the above range, allowing heat treatment to be performed in the target temperature range. there is.
  • the residence time of the reactants in the heating unit 110 may be 5 to 7 hours.
  • the residence time may mean the total length of the heating unit 110 divided by the moving distance of the reactant per time. For example, in the heating unit 110 that produces reactants at 65 kg/hr per hour, if the length of the heating unit 110 is 285 cm, the reactants move at about 44 cm per hour, and it takes about 6.5 hours. It stays in the heating unit 110 and then passes through it.
  • the target temperature of the preliminary heat treatment unit 111 within the heating unit 110 may satisfy Equation 1 below.
  • Equation 1 x is the input energy [W]
  • Cp is the specific heat [J/Kg-°C]
  • m is the material transfer amount [Kg/s]
  • the target temperature of the melted portion 113 in the heating portion 110 may satisfy Equation 2 below.
  • Equation 2 x is the input energy [W]
  • Cp is the specific heat [J/Kg-°C]
  • m is the material transfer amount [Kg/s]
  • Equation 1 may be 12,000 W or more. In one embodiment, x in Equation 2 may be 16,000 W or more.
  • the cooling unit 120 includes cooling the reactant generated through the heating unit 110 to 100° C. or lower.
  • the reactant may be a reduction reaction material generated through the heating unit 110.
  • the cooling unit 120 may stabilize the reactant heated in the heating unit 110 as cooling progresses within the above-described range.
  • the discharge unit 130 is a member through which the reactant containing the valuable metal cooled through the cooling unit 120 is discharged.
  • the reactant containing the valuable metal may be composed of a Ni-Co based alloy, a lithium compound, carbon, and other residual impurities.
  • the impurities may include, for example, Al, Cu, P, Na, Mg, and F.
  • the reactants recovered from the raw materials in the high-temperature reduction device 10 may be 60% or more based on the total raw materials.
  • the weight of the waste battery shredded material before being introduced into the heating furnace may have a recovery rate of 60 to 65% or more of the reactants after heat treatment.
  • Ni-Co in the reactant after heat treatment may be 40% or more of the total weight.
  • the high-temperature reduction device 10 may include a magnetic separation unit that magnetically separates the alloy recovered after cooling.
  • the magnetic separation unit may be placed within the discharge unit 130 or may be placed separately from the discharge unit 130.
  • the magnetic sorting unit can magnetically sort the Ni-Co based alloy with a magnetic field strength of 100 Gauss or more. By performing magnetic separation at 100 Gauss or higher, there is an advantage in that the recovery rate of valuable metal alloys can be increased by separately separating magnetic Co-based alloys.
  • the discharge unit 130 may further include a stepper.
  • the stepper is a member with elastic force and may be a means for more precisely and easily discharging the amount of reactants discharged from the discharge unit 130.
  • the high-temperature reduction device 10 may further include at least one suction unit.
  • the inlet may be a member for controlling gas concentration and heat in the heating furnace and for ventilation.
  • the suction unit may be disposed in an input section, which is a front end member of the heating unit 110, or a section of the cooling unit 120, which is a rear end member of the heating unit 110.
  • Figure 1b shows a high temperature reduction device 10', according to another embodiment of the present invention.
  • the high-temperature reduction device 10'' can be implemented in the form of a horizontal rather than vertical furnace, and the configuration of the high-temperature reduction device 10' does not contradict what has been described above. It is the same to the extent that it is not
  • a high-temperature reduction method for recycling waste batteries is a heat treatment process performed after the shredding process of waste batteries, comprising the steps of charging raw materials, heating the charged raw materials, It may include cooling the heat-treated product and discharging the cooled reactant.
  • the step of heating the raw material may be performed by the heating unit 110 of the high-temperature reduction device 10 described above, and the detailed description thereof is the same as that described above to the extent not contradictory. .
  • the step of heating the raw material may include a step of preheating the charged raw material and a high-temperature heat treatment step of heating to a higher temperature than the preheating step.
  • the high-temperature heat treatment step may include the endothermic step and a melting step of forming at least a portion of the molten layer by heating at a temperature range higher than the endothermic step.
  • the preheating step, the endothermic step, and the melting step may be performed by the preheating section 111, the endothermic section 112, and the melting section 113 of the above-described high temperature reduction device 10, respectively.
  • the detailed description thereof is the same as that described above to the extent that it does not contradict.
  • the step of cooling the heat-treated product may be performed by the cooling unit 120 of the above-described high-temperature reduction device 10, and the detailed description thereof is the same as that described above to the extent not contradictory.
  • the step of discharging the cooled reactant may be performed by the discharge unit 130 of the above-described high-temperature reduction device 10, and the detailed description thereof is the same as that described above to the extent not contradictory.
  • the crushed material charged through the charging unit 100 of the present invention used raw materials satisfying the following components and composition ratio.
  • the shredded material composition data is a composition table of the waste battery shredded material used as an example for NCM622. Since the Ni-Co-Mn in the battery shredded material is in an oxide state combined with oxygen, in order to reduce it, a reaction must be performed using the C in the shredded material. Therefore, it was confirmed that the C/Ni ratio should be limited from the initial battery raw materials.
  • Table 2 below shows the results of evaluating the size of the produced alloy according to the C/Ni content.
  • Figures 2a to 2c show photographs of the grain size formation of the alloy according to the C/Ni content of the raw material, according to an embodiment of the present invention.
  • Figures 2a to 2c are shown in order, respectively, with a C/Ni ratio of 100, Shows the grain size formation data of the alloy at 20 and 5.
  • Figures 2a to 2c show that the process temperature was 1,250°C, the average size of the crushed material was 20 mm, the holding time was 60 minutes above 1,050°C, and oxygen was maintained below 0.5%, and then only the ratio of C/Ni was controlled.
  • the optimal particle size ratio is 75 to 3,000 ⁇ m, so it is appropriate that the C/Ni ratio of the raw material in the present invention is 20 or more. If the ratio is less than 20, the C content in the crushed product is excessively small, so even if a Ni-based alloy is formed, it is difficult to form a spherical crushed product of 3,000 ⁇ m or less due to wettability due to C, and it is formed as a lump-like reactant and reduced by carbon. There is a problem that prevents this from being completely achieved.
  • Figure 2d shows XRD data of the reduced reactant according to a comparative example of the present invention.
  • Figure 2d shows XRD data for the reactant reduced at a C/Ni weight ratio of 20 or less. In this case, it was confirmed that some materials could not be reduced, and some of Ni, the base material, was maintained in the form of NiO.
  • Figures 3a to 3c show the shapes of reactants according to examples and comparative examples of the present invention
  • Figure 3d shows the temperature increase rate and edge distribution according to the comparative examples of the present invention.
  • Figure 3a shows the shape of the reactant formed when the temperature at the center of the furnace is at a low temperature of 1,150°C or lower and the temperature increase rate is 3°C/min
  • Figure 2b shows the shape of the reactant formed when the temperature at the center of the furnace is about 1,200°C
  • Figure 2c shows the shape of the reactant formed when the temperature is increased at a temperature increase rate of 1 °C/min
  • Figure 2c shows the shape of the reactant formed when the temperature at the temperature increase rate is 3 °C/min and the central temperature inside the furnace is about 1,250 °C. Show the shape.
  • the temperature increase rate can satisfy the above-mentioned contents, and specifically, the temperature increase rate can satisfy the above-mentioned range when the internal temperature of the heat treatment center is in the range of 700 to 1,250 ° C. It was confirmed that it was possible.
  • Figure 4 shows the real yield of reactants according to temperature according to Examples and Comparative Examples of the present invention.
  • FIG 4 it shows the real yield of Ni-Co-Mn and LiAlO 2 according to temperature, and the real yield of Ni-Co-Mn and LiAlO 2 is excellent at the same time in the range of 1100 to 1500 °C, specifically, 1200 to 1300 °C. confirmed. It was confirmed that there is a problem in which the real yield of LiAlO 2 is excessively reduced in the range of 1500 °C or higher, and that the real yield of Ni-Co-Mn is excessively reduced in the range of 1100 °C or lower.
  • the high-temperature reduction device of the present invention affects the recovery rate of the main constituent materials, Ni-Co-Mn alloy and Li, depending on the temperature conditions of the material produced through heating, especially the temperature conditions in the melting zone or melting stage. Confirmed.
  • Table 3 below shows the lithium recovery rate and NC alloy recovery rate according to the temperature conditions of the melting zone.
  • Figure 5 shows an arbitrary position relative to the center position in the cross section of a heating furnace, according to an embodiment of the present invention.
  • the temperature T(X, Y) at an arbitrary position (X, Y) based on the center position (O) in the cross section of the heating furnace is shown.
  • the cross section of the heating furnace means that it is cut in a direction perpendicular to the direction in which the raw materials travel.
  • the central temperature will appear to be lowest in the cross section of the furnace, and the temperature will be highest at the outer edge of the furnace closest to the heating element.
  • the most common shape of a typical furnace is a circular shape, but in the design of the furnace shape of the present invention, the ratio of the horizontal and vertical lengths of the heating furnace is adjusted to provide a ratio that shows the minimum temperature deviation.
  • Figure 6 shows temperature differences within the heating furnace according to examples and comparative examples of the present invention.
  • the horizontal and vertical length ratio of the heating furnace is the temperature according to the length ratio of the major axis direction (X) and minor axis direction (Y) in the same area, assuming that the temperature deviation of the circular shape is 100%. Indicates change in deviation. Specifically, when the cross-section of the heating furnace is rectangular in shape and the length ratio in the minor axis direction is reduced compared to the length ratio in the major axis direction, the temperature deviation should gradually decrease, but the temperature is high at the corners, which are the corners. There is a problem that the real rate of reactants is low.
  • Figure 7 shows temperature differences within the heating furnace according to examples and comparative examples of the present invention.
  • the corners of the outer surface of the heating furnace are not angular but have bends at a predetermined angle, so that heat is generated at the corners. It was confirmed that concentration was prevented. Accordingly, it was confirmed that in the case of a heating furnace with a length ratio of 3:1 between the major axis and minor axis of the cross section of the heating furnace including the curved portion, the temperature deviation was lower than when it was circular.
  • FIG. 8A is a graph showing a tendency to reduce the temperature difference in the heating furnace according to the length of the bent portion, according to an embodiment of the present invention, and FIG. 8B shows the temperature difference measured along the length of the bent portion using thermal analysis simulation.
  • the temperature deviation decreases as the length of the bent portion increases. Specifically, when the length of the bent portion is 60 mm or more, specifically 80 mm or more, and more specifically 100 mm or more, the outer It can be seen that the temperature difference between the and the center converges to 200 °C.
  • 9A to 9C show coil arrangements and resulting temperature distributions according to comparative examples and embodiments of the present invention.
  • the pitch interval between the coils becomes narrower as the coil moves away from the center of the heating furnace. Specifically, when comparing the central area of the coil and the outer area of the coil, it can be confirmed that the pitch spacing of the coil in the outer area is dense.
  • the pitch spacing of the coil of the heating part is controlled to be different in the central area and the outer area, as shown in Figure 9b, thereby heating. It was confirmed that the problem of large differences in the average temperature of the unit was prevented.
  • Heating element required energy - minimum energy to control the target temperature of the heating element>
  • Heating element supply energy that must be input to reach the target temperature Y (preheating section: 700 °C, melting section: 1,150 to 1,400 °C) of the preheating section and heat treatment section of the reactant moving at 65 kg per hour in the heating section (preheating section: 12 kW, melting area 18 kW) must be satisfied to reach the desired target temperature.
  • the equation below represents the correlation between the minimum energy required for the heating element and the target temperature when increasing the temperature of the furnace.
  • a is a constant for efficiency and is less than 1 at a temperature below 700 degrees before the start of the Boudouard reaction, and changes up to 0.4 at a target above the Boudouard reaction temperature. This has a coefficient of 0.2 to 1 depending on the target temperature condition of Y.
  • Cp is the specific heat (J/Kg-°C)
  • m is the material transfer rate (Kg/s), which ranges from 60 to 70 Kg/s
  • x is the power [W] value, which is the minimum energy to reach the melting temperature.
  • Ti is the initial temperature, which is room temperature in the case of preheating, and high temperature heating for melting is aimed at the final temperature of preheating.
  • Target temperature of preliminary heat treatment section Y a(x/(Cp*m) + Ti)
  • calculating the minimum amount of heat input for the target temperature is as follows.
  • Cp was 800J/Kg-°C
  • m was 65Kg/hr
  • Ti was 25°C.
  • the target temperature of the preliminary heat treatment section was based on the Boudouard reaction start temperature of 700 degrees
  • the target temperature of the melt treatment section was based on the minimum reactor temperature of 1,150 degrees.
  • Target temperature of preliminary heat treatment section Y 0.813 (x/(Cp ⁇ m) + 25);
  • Target temperature of melting zone Y 0.4 (x/(Cp ⁇ m) + 700);
  • Table 4 below shows reactant temperatures according to the minimum energy (kW) required for heating the raw materials of the preheat treatment unit and reactants. Specifically, Table 4 below indicates the minimum theoretical value considered in the heating unit.
  • the core temperature of the reactant must be secured with a target of about 700 degrees as the starting temperature section for the reduction reaction.
  • the power which is the energy required to heat the raw material as a heating element, is 12 kW. It was confirmed that something had to be done.
  • the molten zone because the raw material contains a lot of graphite, an endothermic reaction by the Boudouard reaction that converts carbon dioxide to carbon monoxide must be considered, and it was confirmed that at least 16 kW of power must be applied to reach the target temperature.
  • this is the minimum theoretical value to reach the target temperature, and the actual amount of power to be given to the reactor must be greater than this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 위한 열처리 방법에 관한 것으로, 고온 환원 장치는 원료 물질을 투입하는 장입부, 상기 장입부로부터 투입된 상기 원료 물질을 가열하는 가열부, 열처리된 생성물을 냉각하는 냉각부, 및 상기 냉각부로부터 냉각된 반응물을 배출하는 배출부를 포함하고, 상기 가열부는, 상기 장입부로부터 투입된 상기 원료 물질을 예비 가열하는 예비열처리부, 상기 예비열처리부 보다 높은 온도로 가열하는 고온 열처리부를 포함하며, 상기 고온 열처리부는 1,150 내지 1,400 ℃의 온도 범위에서 수행되는 열처리부를 포함하는 폐배터리 재활용을 위한 고온 환원 장치.

Description

폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법
폐전지에 관한 것으로서, 폐전지 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리하는 방법에 관한 것이다.
전세계적으로 전기차에 대한 수요가 활발해짐에 따라, 상기 전기차로부터 발생하는 폐배터리 처리 문제가 사회적 문제로 대두되고 있다. 상기 폐배터리의 주된 원료가 되는 리튬 이차전지의 경우, 유기용제, 폭발성 물질, 및 Ni, Co, Mn, 및 Fe와 같은 중금속 물질들이 함유되어 있으나, Ni, Co, Mn, 및 Li의 경우 유가 금속으로서의 희소가치가 크고, 리튬 이차전지가 폐기된 이후의 회수 및 재활용 공정이 중요한 연구 분야로 부상하고 있다.
상기 폐배터리의 통상적인 재활용을 위해, 수명이 다한 상기 폐배터리를 파쇄하는 과정, 분쇄하는 과정, 비중 선별하는 과정 및 자력 선별하는 과정을 통해 양극재 및 음극재가 혼합되어 있는 블랙 파우더(Black Powder)를 추출하게 된다. 상기 블랙 파우더는 예를 들어, 양극재인 니켈, 코발트, 망간, 리튬, 알루미늄, 및 산소의 산화물과 음극재인 흑연 및 이의 혼합체, 알루미늄 및 구리와 같은 일부 불순물이 포함된 것이다. 상기 블랙 파우더로부터 유가 금속을 회수하는 방법으로 크게 습식 공정 및 건식 공정이 활용되고 있다.
상기 습식 공정은 침출, 용매추출, 및 리튬 제조를 통해, NiSO4, CoSO4, MnSO4, 및 Li2CO3를 생산하게 된다. 상기 블랙 파우더를 습식공정으로 처리하는 경우, 상기 블랙 파우더 내에 포함된 음극재인 흑연이 강산 분위기에 용해되지 않아 침출 공정 시간이 과도하게 소요되는 문제가 있고, 상기 블랙 파우더가 상기 흑연과 함께 분리됨에 따라 실수율이 저하되는 문제가 있다.
그러나, 상기 건식 공정은 상기 블랙 파우더를 고온 건식 공정을 통해 슬래그 중 알루미늄을 제거하는 공정으로, Ni-Co-Mn-C 합금을 생성할 수 있다. 상기 건식 공정은 고온, 예를 들어 1400 내지 1600 ℃ 범위에서 흑연 및 산소 취입을 활용하여 상기 블랙 파우더 내의 Ni-Mn-Li-Al-O 산화물을 고온 환원하여 CO 또는 CO2 가스를 발생시켜 Ni-Co-Mn 합금과 슬래그 중 리튬 및 알루미늄으로 제거될 수 있다.
이후, 분리된 상기 Ni-Co-Mn 합금은 습식 공정을 동일하게 거칠 수 있다. 상기 습식 공정 내 침출-용매추출 공정을 통해 NiSO4, CoSO4, MnSO4를 생산하고, 카본이 합금 내에 용해되어 있는 상태이기 때문에, 침출 공정 시간이 습식 공정과 대비하여 약 70 % 수준으로 감소하게 된다.
그러나, 상기 공정에서, 유가 금속인 리튬 및 알루미늄이 슬래그로 소진될 뿐만 아니라, 상기 리튬의 회수가 용이하지 못한 문제가 있다. 또한, 고온 건식 공정에 투입되는 상기 블랙 파우더 내의 흑연 제거를 위한 산소 취입으로 인해 이산화탄소가 과다하게 발생하여 환경 문제를 야기시키는 문제가 있다.
상기 환경 문제를 해결하기 위해 이산화탄소 발생을 최소화시키고, 상기 유가 금속인 리튬의 소진을 최소화하며, Ni-Co-Mn 합금 내 탄소 함량이 10 % 이하로 포함되어 제조될 수 있는 무산화 건식 고온 용융환원 공정에 대한 연구가 필요한 실정이다.
본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치는 친환경적이고, 후공정의 유가 금속 회수율에 있어서, 최적의 유가금속 회수율을 확보할 수 있는 무산화 건식 고온 환원 장치를 제공한다.
본 발명의 다른 실시예에 따른, 전술한 이점을 갖는 고온 환원 장치를 활용하여, 폐배터리 재활용을 열처리 방법을 제공한다.
본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치는 원료 물질을 투입하는 장입부, 상기 장입부로부터 투입된 상기 원료 물질을 가열하는 가열부, 열처리된 생성물을 냉각하는 냉각부, 및 상기 냉각부로부터 냉각된 반응물을 배출하는 배출부를 포함하고, 상기 가열부는, 상기 장입부로부터 투입된 상기 원료 물질을 예비 가열하는 예비열처리부, 상기 예비열처리부 보다 높은 온도로 가열하는 고온 열처리부를 포함하며, 상기 고온 열처리부는 1,150 내지 1,400 ℃의 온도 범위에서 상기 원료 물질의 열처리가 수행되는 열처리부를 포함할 수 있다. 일 실시예에서, 상기 고온 열처리부는 수직 또는 수평 방향으로 2 이상의 열처리부를 포함할 수 있다.
일 실시예에서, 상기 고온 열처리부는 상기 예비열처리부 보다 높은 온도로 가열하는 흡열부, 및 상기 흡열부 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융부를 포함할 수 있다. 일 실시예에서, 승온하는 가열부는 상기 원료 물질을 1 내지 10 ℃/min로 승온시킬 수 있다.
일 실시예에서, 상기 용융부는 Ni, Cu, Co, 및 Mn 중 적어도 하나가 용융되어 구형의 입자를 형성할 수 있다. 일 실시예에서, 장입되는 상기 원료 물질의 니켈에 대한 탄소의 무게비(C/Ni)는 20 이상일 수 있다.
일 실시예에서, 상기 가열부는 가열로 및 히팅부를 포함하고, 상기 가열로의 단면에 있어서, 중심부를 기준으로 상기 단면의 단축 및 장축 방향의 임의의 위치에서의 온도를 측정하였을 때, 상기 중심부와 상기 임의의 위치에서의 온도차가 250 ℃ 이하일 수 있다. 일 실시예에서, 상기 가열로의 상기 단면은, 상기 단축에 대한 상기 장축의 길이 비율이 2/1 내지 4/1 일 수 있다.
일 실시예에서, 상기 가열로는 상기 가열로의 외측에 굴곡부를 가질 수 있다. 일 실시예에서, 상기 굴곡부의 길이는 30 mm 이상일 수 있다. 일 실시예에서, 상기 가열부는 적어도 하나 이상의 히팅부를 포함하고, 상기 히팅부는 코일 형상을 갖는 것이며, 상기 코일은 상기 코일의 중심 영역으로부터 멀어질수록 상기 코일의 피치간 이격 거리가 좁아질 수 있다.
일 실시예에서, 상기 히팅부는 상기 가열부의 적어도 일부에 배치될 수 있다. 일 실시예에서, 상기 가열부 내에 예비열처리부의 목표 온도는 하기 식 1을 만족할 수 있다.
<식 1>
T111 ≥ 0.813(x/(Cp×m) + 25)
(상기 식 1에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
상기 가열부 내에 용융부의 목표 온도는 하기 식 2를 만족할 수 있다.
<식 2>
T113 ≥ 0.4(x/(Cp×m) + 700)(상기 식 2에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
일 실시예에서, 상기 가열부는 산소 분압이 0.1 atm 이하인 분위기에서 수행될 수 있다. 일 실시예에서, 상기 가열부에 있어서, 상기 예비열처리부는 800 ℃ 이하의 온도 범위에서 가열될 수 있다. 일 실시예에서, 상기 가열부에 있어서, 상기 흡열부는 CO2 가스를 2CO로 전환하는 부다반응(Boudouard Reaction)으로 흡열 반응이 발생할 수 있다.
본 발명의 다른 실시예에 따른, 폐배터리 재활용을 위한 열처리 방법은 폐배터리의 파쇄 공정 이후 수행되는 열처리 공정으로서, 원료 물질을 투입하는 장입하는 단계, 장입하여 투입된 상기 원료 물질을 가열하는 단계, 열처리된 생성물을 냉각하는 단계, 및 냉각된 반응물을 배출하는 단계를 포함하고, 상기 원료 물질을 가열하는 단계는, 상기 장입하여 투입된 상기 원료 물질을 예비 가열하는 단계, 상기 예비 가열하는 단계 보다 높은 온도로 가열하는 고온 열처리 단계를 포함하며, 상기 고온 열처리하는 단계는 1,150 내지 1,400 ℃의 온도 범위에서 상기 원료 물질의 열처리가 수행되는 열처리 단계를 포함할 수 있다.
일 실시예에서, 상기 고온 열처리하는 단계는 상기 예비열처리부 보다 높은 온도로 가열하는 흡열 단계, 상기 흡열 단계 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융부를 형성하는 용융 단계를 포함할 수 있다.
일 실시예에서, 상기 장입하여 투입된 상기 원료 물질을 가열하는 단계는, 가열 부재인 가열로의 단면에 있어서, 중심부를 기준으로 상기 단면의 단축 및 장축 방향의 임의의 위치에서의 온도를 측정하였을 때, 상기 중심부와 상기 임의의 위치에서의 온도차가 250 ℃ 이하일 수 있다.
일 실시예에서, 상기 가열로의 상기 단면은, 상기 단축에 대한 상기 장축의 길이 비율이 2/1 내지 4/1 일 수 있다. 일 실시예에서, 상기 가열로는 상기 가열로의 외측에 굴곡부를 가질 수 있다.
일 실시예에서, 상기 굴곡부의 길이는 60 mm 이상일 수 있다. 일 실시예에서, 상기 장입하여 투입된 상기 원료 물질을 예비 가열하는 단계는 하기 식 1의 목표 온도에서 수행될 수 있다.
<식 1>
T111 ≥ 0.813(x/(Cp×m) + 25)
(상기 식 1에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
일 실시예에서, 상기 흡열 단계 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융 단계의 목표 온도는 하기 식 2를 만족할 수 있다.
<식 2>
T113 ≥ 0.4(x/(Cp×m) + 700)
(상기 식 2에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치는 가열부 내의 제1 내지 제3 구역에서의 온도를 제어하고, 가열부 내의 구조적 특징을 수반함으로써, 친환경적이고, 후공정의 유가 금속 회수율에 있어서, 최적의 유가금속 회수율을 확보할 수 있는 건식 고온 환원 장치를 제공한다.
본 발명의 다른 실시예에 따른, 전술한 이점을 갖는 고온 환원 장치를 활용하여, 폐배터리 재활용을 열처리 방법을 제공한다.
도 1a는 본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치를 도시하고, 도 1b는 본 발명의 다른 실시예에 따른, 고온 환원 장치를 도시한다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른, 원료 물질의 C/Ni 함량에 따른 합금의 입도 형성 사진을 나타낸다.
도 3a 내지 도 3c는 본 발명의 실시예 및 비교예에 따른 반응물의 형상을 도시하며, 도 3d는 본 발명의 비교예에 따른 승온 속도와 가장 자리 분포를 도시한다.
도 4는 본 발명의 실시예 및 비교예에 따른, 온도에 따른 반응물의 실수율을 나타낸다.
도 5는 본 발명의 일 실시예에 따른, 가열로의 단면에서 중심 위치를 기준으로 임의의 위치를 나타낸다.
도 6는 본 발명의 실시예 및 비교예에 따른, 가열로 내의 온도 편차를 나타낸다.
도 7은 본 발명의 실시예 및 비교예에 따른, 가열로 내의 온도 편차를 나타낸다.
도 8a는 본 발명의 일 실시예에 따른, 굴곡부의 길이에 따른 가열로 내의 온도 편차 감소 경향을 나타내는 그래프이고, 도 8b는 굴곡부의 길이에 따른 온도 편차를 열해석 시뮬레이션으로 측정한 것이다.
도 9a 내지 도 9c는 본 발명의 비교예 및 실시예에 따른, 코일 배치와 이에 따른 온도 분포를 도시한다.
도 10은 본 발명의 일 실시예에 따른, 발열체 필요 에너지에 따른 가열부 목표 온도에 대한 그래프이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
도 1a는 본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치를 도시한다.
도 1a를 참조하면, 본 발명의 일 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 장치(10)는 원료 물질을 투입하는 장입부(100), 장입부(100)로부터 투입된 상기 원료 물질을 가열하는 가열부(110), 열처리된 생성물을 냉각하는 냉각부(120), 및 냉각부(120)로부터 냉각된 반응물을 배출하는 배출부(130)을 포함한다. 본 발명의 고온 환원 장치(10)는 배터리 파쇄물을 고온으로 상승시킬 수 있는 가열 로(Furnace)에 투입하여 상기 배터리 파쇄물을 용융점 이상의 온도로 상승시키는 단계에서 활용되는 상기 가열로를 의미한다.
고온 환원 장치(10)는 폐배터리를 파쇄하고, 필요에 따라 비중 선별, 자력 선별, 또는 분급 선별을 거친 폐배터리 파쇄물을 고온 환원하여 양극재인 니켈, 코발트, 망간, 리튬 알루미늄, 또는 산소의 산화물과 음극재인 흑연 및 이의 혼합체, 알루미늄 및 구리와 같은 일부 불순물이 포함된 반응물을 제조하는 것일 수 있다.
장입부(100)는 원료 물질을 투입하는 부재로, 상기 원료 물질은 전술하여 설명한 폐배터리 파쇄물일 수 있다. 상기 폐배터리 파쇄물은 배터리 파쇄물의 모재가 되는 물질이거나, 파쇄가 완료된 물질 자체를 의미한다. 상기 배터리 파쇄물의 모재는 수명을 다한 전지, 폐전지, 리튬 이온 전지의 제조 공정 내에서 발생한 폐재를 포함할 수 있다.
구체적으로, 상기 폐전지는 폐배터리를 구성하는 스크랩, 젤리롤, 및 슬러리와 같은 정극재, 제조 공정 상 생긴 불량품, 제조 공정 내부의 잔류물, 및 발생 부스러기를 포함할 수 있다. 상기 배터리 파쇄물의 모재는 이후, 파쇄 공정을 거쳐 배터리 파쇄물로 제조될 수 있다. 상기 파쇄가 완료된 물질 자체는 블랙 파우더와 같이 파쇄가 완료된 제품 그 자체일 수 있다. 이와 같이, 폐배터리를 재활용함으로써, 배터리 파쇄물을 제조하여 친환경적이고, 경제적인 이점이 있다.
일 실시예에서, 상기 원료 물질 내 C/Ni의 무게 비율은 20 이상일 수 있다. 상기 C/Ni의 무게 비율은 구체적으로 탄소에 중량%를 니켈의 중량%로 나눈 값을 의미한다. 일 실시예에서, 상기 원료 물질 내 C/Ni의 무게 비율이 전술한 범위를 만족함으로써, 분말 입자의 크기가 작아져 후 공정에서 산처리를 위한 최적의 입도 비율인 500 내지 3,000 ㎛ 범위의 구형의 반응물이 형성될 수 있다. 상기 원료 물질 내 C/Ni의 무게 비율이 전술한 범위를 벗어나는 경우, 구형의 파쇄물을 형성하기 어렵고, 덩어리 상태의 반응물로 형성됨에 따라 탄소에 의한 환원이 완전히 이루어지지 못하는 문제가 있다.
일 실시예에서, 장입부(100)는 밀림부(Pusher)를 더 포함할 수 있다. 상기 밀림부는 장입부(100)를 통해 장입된 원료 물질의 투여를 더욱 원활하게 하기 위한 구성일 수 있다.
가열부(110)는 장입부(100)로부터 투입된 상기 원료 물질을 가열하는 부재이다. 가열부(110)는 폐배터리 파쇄물과 같은 원료 물질을 고온으로 상승시킬 수 있는 가열로(Furnace)에 투입하여 상기 폐배터리 파쇄물을 용융점 이상의 온도로 상승시킬 수 있다. 이와 같이, 가열부(110)를 통해, 유가 금속을 포함하는 Ni-Co-Mn 합금과 Li 산화물이 생성되어, 후공정에서 상기 유가 금속을 회수할 수 있다.
일 실시예에서, 가열부(110)는 장입부(100)로부터 투입된 원료 물질을 1 내지 10 ℃/min의 승온 속도로 승온하는 것을 특징으로 할 수 있다. 구체적으로, 상기 승온 속도는 2.0 내지 5.0 ℃/min의 범위로 수행될 수 있다.
일 실시예에서, 가열부(110)는 800 내지 1,300 ℃의 온도 범위에서 수행할 수 있다. 상기 승온 속도 및 상기 온도 범위에서 가열을 수행함에 따라, 100 내지 3,000 ㎛의 구형 입자로 Ni 기반 합금이 형성되어 유가 금속 및 Li의 회수율을 높일 수 있다.
구체적으로, 가열부(110)는 적어도 하나 이상의 유도 코일을 포함할 수 있다. 구체적으로, 상기 가열부(110)는 1개의 유도 코일을 포함할 수 있고, 그 이상의 유도 코일을 사용할 수 있다. 도 1a에서 예비열처리부(111)에 하나의 유도 코일과 흡열부(112) 및 용융부(113)에 추가 유도 코일을 사용하였다.
일 실시예에서, 가열부(110)는 투입된 상기 원료 물질을 예비 가열하는 예비열처리부(111) 및 예비열처리부(111) 보다 높은 온도로 가열하는 고온 열처리부(미도시)를 포함할 수 있다. 상기 고온 열처리부는 예비열처리부(111) 보다 높은 온도로 가열하여 상기 원료 물질을 환원시키는 부재인 고온 환원부일 수 있다. 일 실시예에서, 상기 고온 열처리부는 수직 또는 수평 방향으로 2 이상의 열처리부를 포함할 수 있다.
일 실시예에서, 상기 고온 가열부는 흡열부(112), 및 흡열부(112) 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융부(113)를 포함할 수 있다. 가열부(110)는 온도가 상이한 구간을 포함함으로써, 유가 금속 회수율을 높일 수 있는 이점을 갖는다.
예비열처리부(111)는 800 ℃ 이하의 온도 범위에서 가열될 수 있다. 구체적으로, 예비열처리부(111)는 700 ℃ 이하의 온도 범위에서 가열될 수 있다. 예비열처리부(111)는 전술한 범위에서 원료 물질인 폐배터리 파쇄물을 예열함으로써, 상기 폐배터리 파쇄물의 전해질과 분리막을 제거하는 것을 주된 목적으로 한다.
흡열부(112)는 예비열처리부(111) 보다 높은 온도 범위에서 가열될 수 있다. 구체적으로, 700 내지 1200 ℃, 더욱 구체적으로, 700 내지 900 ℃, 더욱 구체적으로 800 내지 900 ℃ 범위에서 흡열반응을 발생시킬 수 있다. 구체적으로, 흡열부(112)는 전술한 온도 범위에서, CO2 가스를 2CO 가스로 전환하는 부다반응(Boudouard Reaction)으로 흡열반응이 발생할 수 있다. 흡열부(112)를 포함함으로써, 고온 환원 장치(10)는 이산화탄소를 저감시켜 친환경적인 이점을 가질 수 있다.
용융부(113)는 흡열부(112) 보다 높은 온도 범위에서 가열될 수 있다. 구체적으로, 1400 ℃ 이하의 온도 범위, 더욱 구체적으로 1,150 내지 1,400 ℃ 이하의 온도 범위에서 가열될 수 있다. 본 용융부(113)에서는 니켈, 코발트, 망간, 및 구리 중 어느 하나의 금속 물질이 용융되어 구형 형태로 배치될 수 있다. 용융부(113)는 가열부(110) 내에 가장 높은 고열 반응 구간으로 유가 금속을 포함하는 Ni-Co-Mn 합금과 Li 산화물이 생성될 수 있도록 상기 온도 범위에서 열처리가 수행되는 부재이다.
구체적으로, 용융부(113)는 전술한 온도 범위에서 열처리가 수행됨에 따라, 양극, 음극, 또는 분리막이 적층형태로 환원된 파쇄물이 유가 금속을 추출하는 후공정, 예를 들어 습식 공정에 반응하기 좋은 형상인 구 형상의 알갱이(Droplet)로 환원되는 구간이다.
용융부(113)는 전술한 온도 범위에서 가열됨에 따라, Li 회수율이 40 내지 70 %, 구체적으로, 55 내지 60 % 범위를 만족할 수 있고, Ni-Co-Mn 합금은 55 내지 95 %, 구체적으로 85 내지 95%, 더욱 구체적으로 85 내지 90 %의 범위를 만족할 수 있다. 용융부(113)는 전술한 범위의 상한 값을 벗어나는 경우, Li 회수율이 과도하게 낮아지는 문제가 있고, 전술한 범위의 하한 값을 벗어나는 경우, Ni-Co-Mn 합금의 회수율이 과도하게 낮아지는 문제가 있다. 이와 같이, 용융부(113)는 전술한 온도 범위에서 수행됨에 따라, Ni-Co-Mn 합금의 회수율을 높임과 동시에, Li의 회수율을 높일 수 있는 이점이 있다.
일 실시예에서, 가열부(110)는 가열로(110_F) 및 히팅부(110_H)를 포함한다. 가열로(110_F)는 투입된 원료 물질이 가열부(110)를 통과하는 통로를 의미한다. 히팅부(110_H)는 가열로(110_F)에 열 에너지를 가하는 부재를 의미한다.
가열로(110_F)는 가열로(110_F)의 단면에 있어서, 중심부를 기준으로 상기 단면의 단축 및 장축 방향의 임의의 위치에서의 온도를 측정하였을 때, 상기 중심부와 상기 임의의 위치에서의 온도차가 250 ℃ 이하일 수 있다. 상기 가열로(110_F)의 단면은 상기 원료 물질이 진행하는 방향과 어긋나는 방향, 예를 들어 교차 또는 수직하는 방향으로 자른 것을 의미한다.
구체적으로, 상기 온도차는 최대 온도에서 최소 온도의 차이일 수 있다. 상기 중심부와 상기 임의의 위치에서의 온도차가 상기 온도 범위를 벗어나는 경우, 가열로(110_F)에 균일한 열 전달이 용이하지 못하여, 유가 금속 회수율이 저하되는 문제가 있다.
일 실시예에서, 가열로(110_F)의 단면에 있어서, 동일 면적의 원형의 단면을 100 % 기준으로 하였을 때, 상기 중심부와 상기 임의의 위치에서의 온도 편차가 10 % 보다 낮을 수 있다. 구체적으로, 상기 중심부와 상기 임의의 위치에서의 온도 편차는 100 % 기준으로 20 % 이하로 낮을 수 있다. 이에 대한 상세한 설명은 후술한 도 4을 참조한다.
일 실시예에서, 가열로(110_F)의 단면은, 상기 단축에 대한 상기 장축의 길이 비율이 2/1 내지 4/1 일 수 있다. 구체적으로, 상기 단축에 대한 상기 장축의 길이 비율이 2.5/1 내지 3.5/1 일 수 있다.
상기 단축에 대한 상기 장축의 길이 비율이 전술한 범위를 만족함으로써, 가열로(110_F) 내의 온도 범위 편차가 낮아 균일하게 열 전달이 가능한 이점이 있다. 상기 단축에 대한 상기 장축의 길이 비율이 전술한 범위를 벗어나는 경우, 가열로(110_F) 내의 온도 범위 편차가 높아 균일하게 열 전달이 어렵고, 이에 따라, 반응물 내 유가 금속 회수율이 낮은 문제가 있다.
일 실시예에서, 가열로(110_F)는 가열로(110_F)의 외측에 굴곡부를 가질 수 있다. 굴곡부는 사각형 형상의 가열로(110_F)의 단면에 있어서, 모서리 부분이 굴곡이 진 형상을 갖는 것을 의미한다. 굴곡부는 모서리 부분에 열 에너지가 집중되는 것을 방지하여 기존에 사각형 형상의 가열로(110_F)에서 모서리 부분에 열 에너지가 집중됨으로써, 상기 모서리 부분에서 반응물의 실수율이 낮게 나오게 되는 문제를 방지할 수 있다.
일 실시예에서, 굴곡부의 길이는 60 mm 이상일 수 있다. 구체적으로, 굴곡부의 길이는 60 이상 110 mm 이하, 더욱 구체적으로 75 이상 100 mm 일 수 있다. 굴곡부의 길이는 가열로의 모서리 부분을 기준으로 중심원을 그렸을 때의 반경을 의미하고, 이에 대한 상세한 설명은 후술한 도 8a 및 도 8b를 참조한다.
일 실시예에서, 히팅부(110_H)는 가열부(110) 내의 적어도 하나 이상을 포함하고, 히팅부(110_H)는 유도 가열, 가스 열, 또는 저항 열과 같은 방법으로 열 에너지를 가하는 것일 수 있다. 일 실시예에서, 히팅부(110_H)는 상기 열 에너지를 공급하기 위한 수단으로 코일 형상을 가질 수 있다. 일 실시예에서, 상기 코일의 선재는 비제한적인 예시로서, 원형, 정사각형, 직사각형, 타원형, 삼각형, 사다리꼴, 마름모, 및 별모양 중 어느 하나의 단면을 가질 수 있다.
일 실시예에서, 히팅부(110_H)의 상기 코일은 상기 코일의 중심 영역으로부터 멀어질수록 상기 코일의 피치간 이격 거리가 좁아질 수 있다. 상기 코일의 중심 영역은 코일이 감겨진 길이 방향을 기준으로 하였을 때의 중간 값을 포함하는 영역을 의미한다. 상기 코일의 피치는 코일이 권선되었을 때, 두개의 유효한 코일변 사이의 거리를 의미한다.
유도 가열의 경우, 코일 인덕턴스는 코일의 회전 수에 비례한다. 구체적으로, 코일 인덕턴스는 코일이 감겨진 횟수에 비례하는 것이다. 구체적으로, 코일이 다수의 횟수로 감겨져 있는 경우, 가해지는 열 에너지가 높아지고, 코일이 적은 횟수로 감겨져 있는 경우, 가해지는 열 에너지가 낮아지게 된다.
이와 같은 원리를 이용하여, 구현된 본 발명의 히팅부(110_H)의 코일은 상기 코일의 중심 영역으로부터 멀어질수록 상기 코일의 피치간 이격 거리가 좁아짐에 따라, 기존에 열 에너지가 집중되었던 중심 영역의 열을 분산시킬 수 있는 이점이 있다. 일 실시예에서, 히팅부(110_H)는 예비열처리부(111)와 흡열부(112) 및 용융부(113)에 각각 배치되어 가열부(110)의 온도를 제어할 수 있다.
가열부(110)는 산소가 포함된 가스 분위기 하에 가열이 수행될 수 있고, 상기 산소는 부피 분율로 5 vol% 이하로 포함될 수 있다. 일 실시예에서, 가열부(110)는 산소 분압이 0.1 atm 이하인 분위기에서 수행될 수 있다. 전술한 범위의 산소를 일부 포함하는 가스 분위기에서 가열이 진행됨에 따라, 리튬 회수를 위한 리튬 산화물을 용이하게 형성시켜 유가 금속의 회수율을 향상시킬 수 있다.
일 실시예에서, 가열부(110) 내의 예비열처리부(111)는 12.0 kW 이상의 전력에서 수행될 수 있다. 구체적으로, 예비열처리부(111)는 12.0 내지 15.0 kW의 전력에서 수행될 수 있다. 구체적으로, 상기 전력은 12.0 내지 14 kW의 전력에서 수행될 수 있다.
일 실시예에서, 가열부(110) 내의 용융부(113)는 16.0 kW 이상의 전력에서 수행될 수 있다. 구체적으로, 상기 전력은 16.0 내지 19.0 kW의 전력에서 수행될 수 있다. 구체적으로, 상기 전력은 17.5 내지 18.5 kW의 전력에서 수행될 수 있다.
상기 예비열처리부(111) 및 용융부(113)에서 가해지는 전력은 반응물 가열에 필요한 최소한의 에너지를 의미할 수 있으며, 상기 전력은 상기 범위를 만족함으로써, 목표한 온도 범위에서 열처리를 수행할 수 있다.
일 실시예에서, 가열부(110)내의 반응물질의 체류 시간은 5 내지 7 시간 수행될 수 있다. 상기 체류 시간은 가열부(110) 전체 길이를 시간당 반응물의 이동거리로 나눈 값을 의미할 수 있다. 예를 들어, 시간당 65 kg/hr로 반응물을 생성하는 가열부(110)에 있어서, 가열부(110)의 길이가 285 cm인 경우, 시간당 약 44 cm로 상기 반응물이 이동하며, 약 6.5 시간을 가열부(110) 내에서 체류한 후 통과하게 된다.
가열부(110)의 상기 체류 시간 내에 수행될 경우, 가열부(110)의 Li 및 Ni, Co, 및 Mn과 같은 유가 금속의 회수율을 향상시키는 이점이 있다. 상기 체류 시간이 전술한 범위를 벗어나는 경우, Li이 소실될 뿐만 아니라, 환원된 유가 금속의 입도 크기가 커지게 되어 후공정 침출시간이 길어지는 문제가 있다.
일 실시예에서, 가열부(110) 내 예비열처리부(111)의 목표 온도는 하기 식 1을 만족할 수 있다.
<식 1>
T111 ≥ 0.813(x/(Cp×m) + 25)
(상기 식 1에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
일 실시예에서, 가열부(110) 내 용융부(113)의 목표 온도는 하기 식 2를 만족할 수 있다.
<식 2>
T113 ≥ 0.4(x/(Cp×m) + 700)
(상기 식 2에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
상기 식 1 및 식 2는 구체적으로, 가열부(110) 내의 예비열처리부(111) 및 용융부(113)의 목표 온도와 투입되는 반응물의 공급 에너지의 최소 값을 나타낸다. 상기 식 1 및 식 2의 최소 에너지를 투입함으로써, 예비열처리부(111) 및 용융부(113)의 목표 온도에 도달할 수 있다. 일 실시예에서, 상기 식 1에서 x는 12,000 W 이상일 수 있다. 일 실시예에서, 상기 식 2에서 x는 16,000 W 이상일 수 있다.
상기 식 1 및 식 2과 같이 반응물의 공급 에너지에 따른 목표 온도를 제어함으로써, Li 및 Ni, Co, Mn 등 유가금속 회수율을 향상시킬 수 있는 이점이 있다. 상기 식 1 및 식 2의 범위를 벗어나는 온도 범위에서 가열을 수행할 경우, 유가 금속 회수율이 저하되는 문제가 있다.
냉각부(120)는 가열부(110)를 통해 생성된 반응물을 100 ℃ 이하로 냉각시키는 단계를 포함한다. 상기 반응물은 가열부(110)를 통해 생성된 환원반응 물질일 수 있다. 냉각부(120)는 전술한 범위에서 냉각이 진행됨에 따라, 가열부(110)에서 가열된 반응물을 안정화시킬 수 있다.
배출부(130)는 냉각부(120)를 통해 냉각된 유가 금속을 포함하는 반응물이 배출되는 부재이다. 상기 유가 금속을 포함하는 반응물은 Ni-Co 기반의 합금과 리튬 화합물, 카본, 및 기타 잔류의 불순물로 구성될 수 있다. 상기 불순물은 예를 들어, Al, Cu, P, Na, Mg, 및 F와 같은 불순물을 포함할 수 있다.
일 실시예에서, 고온 환원 장치(10)는 원료 물질로부터 회수되는 반응물은 전체 원료 물질 기준으로 60 % 이상일 수 있다. 구체적으로, 가열로에 투입 전에 폐배터리 파쇄물 무게는 열처리 후 반응물의 60 내지 65 % 이상의 회수율을 가질 수 있다. 일 실시예에서, 열처리 후 반응물 중 Ni-Co는 전체 무게의 40 % 이상일 수 있다.
고온 환원 장치(10)는 냉각 후 회수된 합금이 자력 선별하는 자력 선별부를 포함할 수 있다. 상기 자력 선별부는 배출부(130) 내에 배치될 수 있고, 배출부(130)와 별개로 배치될 수 있다.
일 실시예에서, 자력 선별부는 자장 강도 100 Gauss 이상의 자력으로 Ni-Co 기반의 합금을 자력 선별할 수 있다. 100 Gauss 이상으로 자력 선별을 수행함으로써, 자성을 갖는 Co 기반의 합금을 별도로 분리하여 유가 금속 합금의 회수율을 높일 수 있는 이점이 있다.
일 실시예에서, 배출부(130)는 스텝퍼(Stepper)를 더 포함할 수 있다. 상기 스텝퍼는 예를 들어, 탄성력을 갖는 부재로, 배출부(130)에서 배출되는 반응물의 양을 더욱 정밀하고, 용이하게 배출하기 위한 수단일 수 있다.
일 실시예에서, 고온 환원 장치(10)는 적어도 하나 이상의 흡입부(Suction)를 더 포함할 수 있다. 상기 흡입구는 가열로 내 가스 농도 및 열을 제어 및 환풍을 위한 부재일 수 있다. 상기 흡입부는 예를 들어, 가열부(110)의 전단 부재인 투입부 또는 가열부(110)의 후단 부재인 냉각부(120) 구간에 배치될 수 있다.
도 1b는 본 발명의 다른 실시예에 따른, 고온 환원 장치(10’)를 도시한다.
도 1b를 참조하면, 도 1a와 달리, 고온 환원 장치(10’’)는 수직로가 아닌 수평로 형태로도 구현될 수 있으며, 고온 환원 장치(10’)의 구성은 전술하여 설명한 바와 모순되지 않는 범위에서 동일하다.
본 발명의 다른 실시예에 따른, 폐배터리 재활용을 위한 고온 환원 방법은 폐배터리의 파쇄 공정 이후 수행되는 열처리 공정으로서, 원료 물질을 투입하는 장입하는 단계, 장입하여 투입된 상기 원료 물질을 가열하는 단계, 열처리된 생성물을 냉각하는 단계, 및 냉각된 반응물을 배출하는 단계를 포함할 수 있다.
일 실시예에서, 원료 물질을 가열하는 단계는 전술하여 설명한 고온 환원 장치(10)의 가열부(110)에 의해 수행될 수 있으며, 이에 대한 상세한 설명은 전술하여 설명한 바와 모순되지 않는 범위에서 동일하다.
상기 원료 물질을 가열하는 단계는, 상기 장입하여 투입된 상기 원료 물질을 예비 가열하는 단계, 상기 예비 가열하는 단계 보다 높은 온도로 가열하는 고온 열처리 단계를 포함할 수 있다.
일 실시예에서, 상기 고온 열처리 단계는 상기 흡열 단계, 및 상기 흡열 단계 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융 단계를 포함할 수 있다. 상기 예비 가열하는 단계, 상기 흡열 단계, 상기 용융 단계는 각각 전술한 고온 환원 장치(10)의 예비열처리부(111), 흡열부(112), 및 용융부(113)에 의해 수행될 수 있으며, 이에 대한 상세한 설명은 전술하여 설명한 바와 모순되지 않는 범위에서 동일하다.
열처리된 생성물을 냉각하는 단계는 전술한 고온 환원 장치(10)의 냉각부(120)에 의해 수행될 수 있으며, 이에 대한 상세한 설명은 전술하여 설명한 바와 모순되지 않는 범위에서 동일하다.
냉각된 반응물을 배출하는 단계는 전술한 고온 환원 장치(10)의 배출부(130)에 의해 수행될 수 있으며, 이에 대한 상세한 설명은 전술하여 설명한 바와 모순되지 않는 범위에서 동일하다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
<실험예>
<장입부에 투입되는 원료 물질의 조건>
본원 발명의 장입부(100)를 통해 장입되는 파쇄물은 하기와 같은 성분과 조성비를 만족하는 원료 물질을 사용하였다.
명칭 성분 조성비
[wt%]
양극재 Cathode 30.8
음극재 Graphite 19.9
도전재 Carbon Black 2.1
바인더 PVDF 2.8
집전체 Copper 15.3
Aluminium 8.0
PE, PP, PET C2H2 4.4
LiPF6 - 2.1
Solvent C3H4O3 12.0
PVDF C2H2F2 2.8
합계 - 100
상기 표 1을 살펴보면, 파쇄물 조성 데이터는 NCM622에 관한 일 예로 사용된 폐배터리 파쇄물의 성분표이다. 배터리 파쇄물내 Ni-Co-Mn은 산소와 결합된 산화물 상태이므로 이를 환원시키기 위해서는 파쇄물내 C을 이용하여 반응을 시켜야 한다. 그러므로 초기 배터리 원재료에서부터 C/Ni의 비율을 제한하여 투입하여야 함을 확인하였다. 하기 표 2는 C/Ni의 함량에 따른 생성된 합금의 크기를 평가한 결과이다.
번호 C/Ni
[-]
공정 온도
[℃]
파쇄물
평균 크기
[mm]
1,050 ℃ 이상
유지 시간
[min]
산소
[%]
합금 크기
[㎛]
비고
1 5 미만 1,250 20 60 <0.5 덩어리(>5000) 비교예
2 5 이상 20 미만 1,250 20 60 <0.5 분말 입자
(500~3000)
비교예
3 20 이상50 미만 1,250 20 60 <0.5 분말 입자
(100~3000)
실시예
4 50 이상150 미만 1,250 20 60 <0.5 분말 입자
(75~1000)
실시예
5 150 이상200 미만 1,250 20 60 <0.5 분말 입자
(75~1000)
실시예
6 200 이상 1,250 20 60 <0.5 분말 입자(75~1000) 실시예
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른, 원료 물질의 C/Ni 함량에 따른 합금의 입도 형성 사진을 나타낸다.도 2a 내지 도 2c는 각각 순서대로, C/Ni의 비율이 100, 20, 5 일 때의 합금의 입도 형성 데이터를 나타낸다. 도 2a 내지 도 2c는 공정 온도는 1,250 ℃, 파쇄물 평균 크기는 20 mm, 1,050 ℃이상 유지 시간 60분, 및 산소는 0.5% 이하로 유지시킨 후, C/Ni의 비율만 제어하였다.도 2c와 같이, C/Ni비율이 5 미만에서는 5,000 ㎛ 이상의 덩어리로 나타났으며, 도 2a 및 도 2b와 같이 C/Ni이 20 이상이 되면 분말과 같은 입자 형태로 나타났다.
구체적으로, C/Ni이 높을수록 분말 입자의 크기가 작아지는 것을 확인하였다. 후 공정에서 산처리를 하기 위해, 최적의 입도 비는 75 내지 3,000 ㎛이기 때문에, 본 발명에서의 원료 물질의 C/Ni의 비율은 20 이상인 것이 적절하다. 상기 비율이 20 미만인 경우, 파쇄물에서는 C 함량이 과도하게 적어 Ni 기반의 합금이 형성되더라도 C에 의한 젖음성으로 3,000 ㎛ 이하의 구형의 파쇄물을 형성하기 어렵고, 덩어리 상태의 반응물로 형성되며 탄소에 의해서 환원이 완전히 이루어지지 못하는 문제가 있다.
도 2d는 본 발명의 비교예에 따른, 환원된 반응물의 XRD 데이터를 나타낸다.
도 2d를 참조하면, 도 2d는 C/Ni의 무게비가 20 이하에서 환원된 반응물에 대한 XRD 데이터를 나타낸다. 이 경우, 일부 물질이 환원되지 못하고, 기반 물질인 Ni의 일부 NiO 형태로 유지되는 것을 확인하였다.
<가열로 내부 중심부 온도 상승량 및 온도 조건에 따른 반응물 형상>
도 3a 내지 도 3c는 본 발명의 실시예 및 비교예에 따른 반응물의 형상을 도시하며, 도 3d는 본 발명의 비교예에 따른 승온 속도와 가장 자리 분포를 도시한다.
도 3a는 가열로 내부의 중심부 온도가 1,150 ℃ 이하의 저온이고, 승온 속도가 3 ℃/min일 때 형성되는 반응물의 형상을 도시하고, 도 2b는 가열로 내부의 중심부 온도가 약 1,200 ℃ 에서, 승온 속도가 1 ℃/min로 승온되었을 때 형성되는 반응물의 형상을 도시하며, 도 2c는 가열로 내부의 중심부 온도가 약 1,250 ℃ 에서, 승온 속도가 3 ℃/min로 승온되었을 때 형성되는 반응물의 형상을 도시한다.
도 3a를 참조하면, 가열로 내부의 중심부 온도가 1,150 ℃ 이하의 저온에서는 NCM 합금과 내부 Li-Al-O 형성물이 함께 뭉쳐 3000 ㎛ 이상의 Flake 형태로 존재하였. 이 경우, NCM과 Li-Al-O를 분리하여 회수하는 것이 용이하지 못하였다.
도 3b 및 도 3c를 참조하면, 가열로 내부의 중심부 온도가 Cu 또는 Ni의 용융 온도인 1,150 내지 1,400 ℃ 범위인 경우, 상기 Flake가 분말 또는 구형의 합금으로 존재하는 것을 확인하였다.
구체적으로, 도 3b를 참조하면, 이 경우, 1,200 ℃ 이하에서 승온 속도가 1 ℃/min 이하로 승온하였을 때, Flake에서 구형으로 형성되지 못하고, 100 ㎛ 이하의 분말로 형성된 것을 확인하였다.
이때, NCM과 Li-Al-O가 함께 존재한 후, Li-Al-O이 산화물로 장시간 머무르면서 작은 크기로 조각나는데, 이때, NCM이 함께 붙어서 존재하는 것으로 판단하고 있다. 이로 인해, NCM이 뭉치지 못하고 분말 형태로 존재하게 된다. 상기 NCM이 분말 형태로 할 경우, 이후 자력 선별 과정에서 C 또는 Li-Al-O 미립자가 함께 선별되는 문제가 있고, 상기 문제는 실수율 하락에 기인하게 된다.
도 3c를 참조하면, 가열로 내부의 중심부 온도가 1,250 ℃ 범위이고, 승온 속도가 10 ℃/min 이하, 구체적으로 약 3 ℃/min인 승온 패턴으로 하였을 때, 100 내지 3,000 ㎛의 구형 입자로 Ni 기반 합금이 형성되는 것을 확인하였다.
도 3d를 참조하면, 10 ℃/min 이상의 승온 속도에서는 고전력을 사용해야 하기 때문에, 가열부 굴곡 부위에 온도가 1,400 ℃ 이상으로 승온되는 문제가 있음을 확인하였다. 이와 같이, 본 발명의 예비열처리부 및 고온 열처리부에 있어서, 승온 속도는 전술한 내용을 만족할 수 있고, 구체적으로, 열처리 중심부의 내부 온도가 700 내지 1,250 ℃ 범위에서 승온 속도가 전술한 범위를 만족할 수 있음을 확인하였다.
<가열로 내부 온도에 따른 반응물의 Li 및 NCM 합금 회수율>
도 4는 본 발명의 실시예 및 비교예에 따른, 온도에 따른 반응물의 실수율을 나타낸다.
도 4를 참조하면, 온도에 따른 Ni-Co-Mn 및 LiAlO2 의 실수율을 나타내는 것으로, 1100 내지 1500 ℃, 구체적으로, 1200 내지 1300 ℃ 범위에서 Ni-Co-Mn 및 LiAlO2 의 실수율이 동시에 우수한 것을 확인하였다. 1500 ℃ 이상의 범위에서는 LiAlO2 의 실수율이 과도하게 저하되는 문제가 있고, 1100 ℃ 이하의 범위에서는 Ni-Co-Mn의 실수율이 과도하게 저하되는 문제가 있음을 확인하였다.
본원 발명의 고온 환원 장치는 가열을 통해 생성되는 물질은 온도 조건, 특히 전술한 용융부 또는 용융 단계에서의 온도 조건에 따라 주요 구성 물질인 Ni-Co-Mn 합금 및 Li의 회수율에 영향을 주는 것을 확인하였다.
하기 표 3은 용융부의 온도 조건에 따른 리튬 회수율 및 NC 합금 회수율을 나탄내다.
온도[℃] Li 회수율[%] NCM 합금 회수율[%] 비고
1,100 80 5 비교예
1,150 70 55 실시예
1,200 60 85 실시예
1,300 55 90 실시예
1,400 40 95 실시예
1,500 15 95 비교예
표 3을 살펴보면, 용융부 또는 용융 단계에서의 온도가 1,150 내지 1,400 ℃ 범위, 구체적으로, 1,200 내지 1,300 ℃ 범위에서 유가 금속인 NCM 합금 회수율 뿐만 아니라, Li의 회수율도 우수한 것을 확인하였다.<가열로의 단면에서 위치별 온도 편차>
도 5는 본 발명의 일 실시예에 따른, 가열로의 단면에서 중심 위치를 기준으로 임의의 위치를 나타낸다.
도 5를 참고하면, 가열로의 단면에서 중심 위치(O)를 기준으로 임의의 위치(X, Y)에서의 온도 T(X, Y)를 나타낸다. 구체적으로, 상기 가열로의 단면은 원료 물질이 진행하는 방향과 수직한 방향으로 자른 것을 의미한다.
상기 외부의 발열체로 가열되기 때문에, 중심부 온도가 로의 단면에서 가장 낮게 나타날 것이며, 발열체와 가장 가까운 로의 외곽에서 가장 높은 온도를 갖는 것으로 나타난다. 통상의 로의 형상은 원형 형상이 가장 일반적이나, 본 발명의 로 형상 설계에 있어서, 상기 가열로의 가로 및 세로의 길이 비율을 조정하여 최소한의 온도 편차를 보이는 비율을 제시한다.
도 6는 본 발명의 실시예 및 비교예에 따른, 가열로 내의 온도 편차를 나타낸다.
도 6을 참고하면, 상기 가열로의 가로 및 세로의 길이 비율은 원형 형태의 온도 편차를 100 %로 가정하였을 때, 동일면적에서 장축 방향(X)과 단축 방향(Y)의 길이 비율에 따른 온도 편차의 변화를 나타낸다. 구체적으로, 가열로의 단면이 사각형의 형상인 경우, 상기 단축 방향의 길이 비율이 상기 장축 방향의 길이 비율보다 줄어드는 경우, 온도 편차가 점점 감소해야 하나, 코너 부분인 모서리에 온도가 높게 발생하여 모서리에서 반응물의 실수율이 낮게 나오는 문제가 있다.
도 7은 본 발명의 실시예 및 비교예에 따른, 가열로 내의 온도 편차를 나타낸다.
도 7을 참조하면, 가열로 단면의 장축 : 단축의 길이비가 3 : 1 인 경우에 있어서, 상기 가열로 외측면 중 모서리가 각진 형상이 아닌, 소정 각도의 굴곡부를 가짐으로써, 상기 모서리에 열이 집중되는 것을 방지하는 것을 확인하였다. 이에 따라, 상기 굴곡부를 포함하는 가열로 단면의 장축 : 단축의 길이비가 3 : 1 인 가열로의 경우, 온도 편차가 원형일 때와 비교하여 더욱 낮은 것을 확인하였다.
도 8a는 본 발명의 일 실시예에 따른, 굴곡부의 길이에 따른 가열로 내의 온도 편차 감소 경향을 나타내는 그래프이고, 도 8b는 굴곡부의 길이에 따른 온도 편차를 열해석 시뮬레이션으로 측정한 것이다.
도 8a를 참조하면, 굴곡부의 길이가 길어짐에 따라, 온도 편차가 감소하는 것을 확인할 수 있고, 구체적으로 상기 굴곡부의 길이가 60 mm 이상, 구체적으로 80 mm 이상, 더욱 구체적으로 100 mm 이상일 때, 외곽과 중심부의 온도차가 200 ℃에 수렴하는 것을 확인할 수 있다.
도 8b를 참조하면, 굴곡부의 길이가 50 mm 이하일 때, 굴곡부 부근에 열이 집중되는 것을 확인할 수 있고, 굴곡부의 길이가 100 mm 인 경우, 굴곡부 부근에 열이 집중되는 영역이 없이, 가열로 내의 온도가 균일한 열 분포를 갖는 것을 확인할 수 있다.
<유도 가열에서 코일의 피치 간격 제어>
도 9a 내지 도 9c는 본 발명의 비교예 및 실시예에 따른, 코일 배치와 이에 따른 온도 분포를 도시한다.
도 9a를 참조하면, 가열부에서 가열로에 열을 가하기 위한 히팅부로 유도가열이 사용된 경우, 유도 가열을 위한 코일의 피치간 간격에 따라, 상기 가열로 내의 평균 온도가 상이한 것을 확인하였다. 구체적으로, 상기 코일의 중앙영역에서 평균 온도가 최대 온도를 갖는 것을 확인하였다.
도 9b를 참조하면, 상기 코일이 상기 가열로의 중심부로부터 멀어질수록 상기 코일의 피치 간격이 좁아지는 것을 확인할 수 있다. 구체적으로, 코일의 중앙 영역과 코일의 외곽 영역을 비교하면, 상기 외곽 영역에서의 상기 코일의 피치 간격이 조밀한 것을 확인할 수 있다.
이와 같이, 상기 코일의 피치 간격이 상기 외곽 영역에서 조밀하고, 상기 중앙 영역에서 조밀하지 못함에 따라, 도 7a에서 열이 집중되어 평균 온도가 높았던 상기 중앙 영역의 온도가 상기 외곽 영역으로 분산되어, 상기 중앙 영역 및 상기 외곽 영역의 평균 온도의 차이가 적어 균일한 온도를 가열할 수 있는 것을 확인하였다.
도 9c를 참조하면, 본 발명의 히팅부가 배치되는 예비열처리부 및 흡열부와 용융부에서, 도 9b와 같이 히팅부인 코일의 피치 간격이 중앙영역과 외곽영역에 있어서 상이하게 패턴을 제어함으로써, 가열부의 평균 온도에 있어서 큰 차이가 발생하는 문제를 방지하는 것을 확인하였다.
<발열체 필요 에너지 - 가열부 목표 온도 제어를 위한 최소한의 에너지>
가열부 내 시간당 65 kg 이동하는 반응물의 예열구간과 열처리 구간의 목표 온도 Y(예열가열부: 700 ℃, 용융부: 1,150 내지 1,400 ℃)에 도달하기 위해 투입해야하는 발열체 공급에너지(예비열처리부: 12 kW, 용융부 18 kW)를 만족해야 원하는 목표 온도에 도달할 수 있다. 하기 식은 가열로의 승온 시 발열체에 필요한 최소한의 에너지와 목표 온도의 상관관계를 나타낸다. 여기서, a는 효율에 대한 상수로 Boudouard 반응 시작전 온도인 700도이하에서는 1이하이며, Boudouard 반응온도이상의 목표에서는 0.4까지 변한다. 이는 Y의 목표온도 조건에 따라서 0.2 내지 1의 계수를 가진다. Cp는 비열(J/Kg-℃)이고, m은 물질 이송량(Kg/s)으로 60 내지 70 Kg/s 범위이고, x는 용융 온도에 도달하기 위한 최소 에너지인 전력[W] 값을 의미하며, Ti는 초기 온도로 예비가열의 경우 상온이며, 용융을 위한 고온 가열은 예비가열의 최종 온도를 목표로 한다.
<식 1>
예비열처리부의 목표 온도 Y = a(x/(Cp*m) + Ti)
예를 들어서 상기 목표 온도를 위한 최소한의 투입 열량을 계산해보면 하기와 같다. 여기서 Cp는 800J/Kg-℃, m은 65Kg/hr, Ti는 25℃로 하였다. 이때 수식은 하기와 같이 변경될 수 있다. 예비 열처리부의 목표 온도는 Boudouard 반응 시작온도인 700도를 기준으로 하였고, 용융 처리부의 목표 온도는 반응로 최소 온도인 1,150를 기준으로 하였다.
<식 1>
예비열처리부의 목표 온도 Y = 0.813(x/(Cp×m) + 25);
<식 2>
용융부의 목표 온도 Y = 0.4(x/(Cp×m) + 700);
하기 표 4는 예비열처리부 및 반응물의 원료 물질의 가열에 필요한 최소한의 에너지(kW)에 따른 반응물 온도를 나타낸 것이다. 구체적으로, 하기 표 4는 가열부에서 고려한 이론 값의 최소값을 의미한다.
번호 구간 전력
[kW]
반응물 중심 온도 비고
1 예비열처리부 8 475 비교예
2 예비열처리부 10 587 비교예
3 예비열처리부 12 700 실시예
4 용융부 12 1032 비교예
5 용융부 14 1087 비교예
6 용융부 16 1150 실시예
7 용융부 25.4 1400 실시예
상기 표 4를 살펴보면, 예비 가열부의 경우, 환원 반응을 위한 시작온도 구간으로 약 700도를 목표로 반응물의 중심 온도를 확보하여야 하며, 구체적으로 발열체인 원료 물질을 가열하는데 필요한 에너지인 전력은 12 kW 이상이 가해져야 하는 것을 확인하였다. 용융부의 경우, 원료물질이 흑연을 많이 포함하고 있기 때문에 이산화탄소에서 일산화탄소로 변환하는 Boudouard reaction에 의한 흡열반응을 고려해야 하기 때문에, 최소한 16 kW 이상 전력이 가해져야 목표 온도에 도달하는 것을 확인하였다. 하지만 이는 목표 온도에 도달하기 위한 최소한의 이론 값으로 실제 반응로에 부여되어야 하는 전력량은 이보다 크게 부여되어야 한다. 이상 바람직한 실시예들에 대해 상세하게 설명하였지만, 본 발명의 권리 범위는 이에 한정되는 것이 아니고, 다음의 청구 범위에서 정의하고 있는 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.

Claims (27)

  1. 원료 물질을 투입하는 장입부;
    상기 장입부로부터 투입된 상기 원료 물질을 가열하는 가열부;
    열처리된 생성물을 냉각하는 냉각부; 및
    상기 냉각부로부터 냉각된 반응물을 배출하는 배출부를 포함하고,
    상기 가열부는,
    상기 장입부로부터 투입된 상기 원료 물질을 예비 가열하는 예비열처리부,
    상기 예비열처리부 보다 높은 온도로 가열하는 고온 열처리부를 포함하며,
    상기 고온 열처리부는 1,150 내지 1,400 ℃의 온도 범위에서 상기 원료 물질의 열처리가 수행되는 열처리부를 포함하는 폐배터리 재활용을 위한 고온 환원 장치.
  2. 제1 항에 있어서,
    상기 고온 열처리부는 수직 또는 수평 방향으로 2 이상의 열처리부를 포함하는 폐배터리 재활용을 위한 고온 환원 장치.
  3. 제1 항에 있어서,
    상기 고온 열처리부는 상기 예비열처리부 보다 높은 온도로 가열하는 흡열부, 및
    상기 흡열부 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융부를 포함하는 폐배터리 재활용을 위한 고온 환원 장치.
  4. 제1 항에 있어서,
    승온하는 가열부는 상기 원료 물질을 1 내지 10 ℃/min로 승온시키는 고온 환원 장치.
  5. 제3 항에 있어서,
    상기 용융부는 Ni, Cu, Co, 및 Mn 중 적어도 하나가 용융되어 구형의 입자를 형성하는 고온 환원 장치.
  6. 제1 항에 있어서,
    장입되는 상기 원료 물질의 니켈에 대한 탄소의 무게비(C/Ni)는 20 이상인 고온 환원 장치.
  7. 제1 항에 있어서,
    상기 가열부는 가열로 및 히팅부를 포함하고,
    상기 가열로의 단면에 있어서, 중심부를 기준으로 상기 단면의 단축 및 장축 방향의 임의의 위치에서의 온도를 측정하였을 때,
    상기 중심부와 상기 임의의 위치에서의 온도차가 250 ℃ 이하인 폐배터리 재활용을 위한 고온 환원 장치.
  8. 제7 항에 있어서,
    상기 가열로의 상기 단면은,
    상기 단축에 대한 상기 장축의 길이 비율이 2/1 내지 4/1 인 폐배터리 재활용을 위한 고온 환원 장치.
  9. 제1 항에 있어서,
    상기 가열로는 상기 가열로의 외측에 굴곡부를 갖는 폐배터리 재활용을 위한 고온 환원 장치.
  10. 제9 항에 있어서,
    상기 굴곡부의 길이는 30 mm 이상인 폐배터리 재활용을 위한 고온 환원 장치.
  11. 제1 항에 있어서,
    상기 가열부는 적어도 하나 이상의 히팅부를 포함하고,
    상기 히팅부는 코일 형상을 갖는 것이며,
    상기 코일은 상기 코일의 중심 영역으로부터 멀어질수록 상기 코일의 피치간 이격 거리가 좁아지는 폐배터리 재활용을 위한 고온 환원 장치.
  12. 제11 항에 있어서,
    상기 히팅부는 상기 가열부의 적어도 일부에 배치되는 폐배터리 재활용을 위한 고온 환원 장치.
  13. 제1 항에 있어서,
    상기 가열부 내에 예비열처리부의 목표 온도는 하기 식 1을 만족하는 고온 환원 장치.
    <식 1>
    T111 ≥ 0.813(x/(Cp×m) + 25)
    (상기 식 1에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
  14. 제13 항에 있어서,
    상기 식 1에서 x는 12,000 W 이상인 고온 환원 장치.
  15. 제3 항에 있어서,
    상기 가열부 내에 용융부의 목표 온도는 하기 식 2를 만족하는 고온 환원 장치.
    <식 2>
    T113 ≥ 0.4(x/(Cp×m) + 700)
    (상기 식 2에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
  16. 제15 항에 있어서,
    상기 식 2에서 x는 16,000 W 이상인 고온 환원 장치.
  17. 제1 항에 있어서,
    상기 가열부는 산소 분압이 0.1 atm 이하인 분위기에서 수행되는 폐배터리 재활용을 위한 고온 환원 장치.
  18. 제1 항에 있어서,
    상기 가열부에 있어서,
    상기 예비열처리부는 800 ℃ 이하의 온도 범위에서 가열되는 폐배터리 재활용을 위한 고온 환원 장치.
  19. 제3 항에 있어서,
    상기 가열부에 있어서,
    상기 흡열부는 CO2 가스를 2CO로 전환하는 부다반응(Boudouard Reaction)으로 흡열 반응이 발생하는 폐배터리 재활용을 위한 고온 환원 장치.
  20. 폐배터리의 파쇄 공정 이후 수행되는 열처리 공정으로서,
    원료 물질을 투입하는 장입하는 단계;
    장입하여 투입된 상기 원료 물질을 가열하는 단계;
    열처리된 생성물을 냉각하는 단계; 및
    냉각된 반응물을 배출하는 단계를 포함하고,
    상기 원료 물질을 가열하는 단계는,
    상기 장입하여 투입된 상기 원료 물질을 예비 가열하는 단계,
    상기 예비 가열하는 단계 보다 높은 온도로 가열하는 고온 열처리 단계를 포함하며,
    상기 고온 열처리하는 단계는 1,150 내지 1,400 ℃의 온도 범위에서 상기 원료 물질의 열처리가 수행되는 열처리 단계를 포함하는 폐배터리 재활용을 위한 열처리 방법.
  21. 제20 항에 있어서,
    상기 고온 열처리하는 단계는 상기 예비열처리부 보다 높은 온도로 가열하는 흡열 단계,
    상기 흡열 단계 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융부를 형성하는 용융 단계를 포함하는 폐배터리 재활용을 위한 열처리 방법.
  22. 제20 항에 있어서,
    상기 장입하여 투입된 상기 원료 물질을 가열하는 단계는,
    가열 부재인 가열로의 단면에 있어서, 중심부를 기준으로 상기 단면의 단축 및 장축 방향의 임의의 위치에서의 온도를 측정하였을 때, 상기 중심부와 상기 임의의 위치에서의 온도차가 250 ℃ 이하인 폐배터리 재활용을 위한 열처리 방법.
  23. 제20 항에 있어서,
    상기 가열로의 상기 단면은,
    상기 단축에 대한 상기 장축의 길이 비율이 2/1 내지 4/1 인 폐배터리 재활용을 위한 열처리 방법.
  24. 제20 항에 있어서,
    상기 가열로는 상기 가열로의 외측에 굴곡부를 갖는 폐배터리 재활용을 위한열처리 방법.
  25. 제24 항에 있어서,
    상기 굴곡부의 길이는 60 mm 이상인 폐배터리 재활용을 위한 열처리 방법.
  26. 제20 항에 있어서,
    상기 장입하여 투입된 상기 원료 물질을 예비 가열하는 단계는 하기 식 1의 목표 온도에서 수행되는 폐배터리 재활용을 위한 열처리 방법.
    <식 1>
    T111 ≥ 0.813(x/(Cp×m) + 25)
    (상기 식 1에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg- ℃]이고, m은 물질 이송량[Kg/s]이다)
  27. 제21 항에 있어서,
    상기 흡열 단계 보다 높은 온도 범위에서 가열하여 적어도 일부의 용융층을 형성하는 용융 단계의 목표 온도는 하기 식 2를 만족하는 폐배터리 재활용을 위한 열처리 방법.
    <식 2>
    T113 ≥ 0.4(x/(Cp×m) + 700)
    (상기 식 2에서 x는 투입되는 에너지[W]이고, Cp는 비열[J/Kg·℃]이고, m은 물질 이송량[kg/s]이다)
PCT/KR2023/019932 2022-12-20 2023-12-05 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법 WO2024136227A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0179625 2022-12-20
KR1020220179625A KR20240097512A (ko) 2022-12-20 2022-12-20 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법

Publications (1)

Publication Number Publication Date
WO2024136227A1 true WO2024136227A1 (ko) 2024-06-27

Family

ID=91589259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019932 WO2024136227A1 (ko) 2022-12-20 2023-12-05 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법

Country Status (2)

Country Link
KR (1) KR20240097512A (ko)
WO (1) WO2024136227A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841554A (ja) * 1994-07-29 1996-02-13 Ogihara:Kk 廃電池の処理方法
KR20130069538A (ko) * 2009-10-14 2013-06-26 에스지엘 카본 에스이 Li를 포함하는 벌크 재료의 처리를 위한 방법 및 반응로
KR20140024417A (ko) * 2011-05-10 2014-02-28 에코루프 게엠베하 스크랩으로부터 금속 및 희토류금속을 회수하는 방법
KR20210036287A (ko) * 2019-09-25 2021-04-02 주식회사 엘지화학 폐전지 처리 방법
WO2022019172A1 (ja) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 有価金属を回収する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841554A (ja) * 1994-07-29 1996-02-13 Ogihara:Kk 廃電池の処理方法
KR20130069538A (ko) * 2009-10-14 2013-06-26 에스지엘 카본 에스이 Li를 포함하는 벌크 재료의 처리를 위한 방법 및 반응로
KR20140024417A (ko) * 2011-05-10 2014-02-28 에코루프 게엠베하 스크랩으로부터 금속 및 희토류금속을 회수하는 방법
KR20210036287A (ko) * 2019-09-25 2021-04-02 주식회사 엘지화학 폐전지 처리 방법
WO2022019172A1 (ja) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 有価金属を回収する方法

Also Published As

Publication number Publication date
KR20240097512A (ko) 2024-06-27

Similar Documents

Publication Publication Date Title
CN102251097B (zh) 一种从废旧锂电池中回收金属的方法
EP4186604A1 (en) Method for recovering valuable metal
WO2022045559A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2022191593A1 (ko) 리튬 이차 전지의 유가 금속 회수용 전처리물 제조 방법
CA1338567C (en) Method of recycling steel belted tires
WO2021261697A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2024136227A1 (ko) 폐배터리 재활용을 위한 고온 환원 장치 및 폐배터리 재활용을 열처리 방법
WO2022035053A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2022010161A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
JP3482838B2 (ja) 移動型炉床炉の操業方法
WO2021210739A1 (ko) 규소산화물 제조장치 및 제조방법, 규소산화물 음극재
CN111455122B (zh) 一种从钒钛磁铁矿中分离钒、钛、铁的方法
WO2022080657A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2013100333A1 (ko) 분철광석 환원장치 및 용철 및 환원철 제조장치 및 그 방법
WO2023068432A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 그 제조방법
WO2023106893A1 (ko) 리튬이차 전지용 급속충전형 음극활물질, 이를 포함하는 리튬이차 전지의 제조방법
WO2023121058A1 (ko) 유가 금속 회수 합금, 유가 금속 회수 조성물, 및 유가 금속 회수 방법
WO2021177733A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2024123058A1 (ko) 유가 금속 반응물, 유가 금속 파쇄물, 및 유가 금속 회수 방법
WO2021060873A1 (ko) 폐전지 처리 방법
WO2022004981A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2024080753A1 (ko) 리튬 함유 화합물을 포함하는 조성물 및 배터리 처리 방법
WO2023038283A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2024080754A1 (ko) 유가 금속 회수용 리튬 화합물 및 이의 제조 방법
WO2023017910A1 (en) Recycling method of positive electrode material for secondary batteries and device using the same