WO2024136135A1 - Ferritic stainless steel with improved impact toughness, and manufacturing method thereof - Google Patents

Ferritic stainless steel with improved impact toughness, and manufacturing method thereof Download PDF

Info

Publication number
WO2024136135A1
WO2024136135A1 PCT/KR2023/018180 KR2023018180W WO2024136135A1 WO 2024136135 A1 WO2024136135 A1 WO 2024136135A1 KR 2023018180 W KR2023018180 W KR 2023018180W WO 2024136135 A1 WO2024136135 A1 WO 2024136135A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact toughness
stainless steel
ferritic stainless
improved impact
content
Prior art date
Application number
PCT/KR2023/018180
Other languages
French (fr)
Korean (ko)
Inventor
정일찬
공정현
강형구
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220178730A external-priority patent/KR20240096251A/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024136135A1 publication Critical patent/WO2024136135A1/en

Links

Images

Definitions

  • the present invention relates to a ferritic stainless steel with improved impact toughness and a method of manufacturing the same.
  • stainless steel can be classified according to its chemical composition or metal structure. According to metal structure, stainless steel can be classified into austenitic, ferritic, martensitic, and dual phase.
  • Ferritic stainless steel has excellent corrosion resistance while adding a small amount of expensive alloy elements, so it is more price competitive than austenitic stainless steel.
  • low-Cr ferritic stainless steel containing 10.5 to 14% Cr has excellent price competitiveness even among ferritic stainless steels, and is widely used as automobile exhaust system flanges and architectural structural materials.
  • thick hot-rolled annealed materials with a thickness of 3 mm or more are mainly used.
  • processing defects may occur due to brittle fracture during stamping.
  • brittle fracture may occur due to vibration during actual use in automobiles, buildings, etc.
  • the purpose of the disclosed invention to solve the above-described problems is to provide a ferritic stainless steel and a manufacturing method thereof that improve impact toughness and suppress brittle fracture by controlling alloy components and manufacturing methods.
  • the present invention can provide ferritic stainless steel with improved impact toughness.
  • Ferritic stainless steel with improved impact toughness has, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, including the remaining Fe and inevitable impurities, -20°C shock Toughness may be 100J or more.
  • the value of equation (1) below may be 4 to 60.
  • Equation (1) 10000 B - 100 (C + N) / Ti
  • B, C, N and Ti mean the content (% by weight) of each element.
  • Ferritic stainless steel with improved impact toughness may have an impact toughness of 120J or more at 20°C.
  • Ferritic stainless steel with improved impact toughness may have an average grain diameter of 65 ⁇ m or less.
  • Ferritic stainless steel with improved impact toughness may have a thickness of 3 to 15 mm.
  • the present invention provides a method for manufacturing the ferritic stainless steel with improved impact toughness described above.
  • a method for manufacturing ferritic stainless steel with improved impact toughness includes, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr. : 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, producing a slab containing the remaining Fe and inevitable impurities. steps; Reheating the slab and then hot rolling and rough rolling to produce a hot rolled material; And it may include the step of cooling the hot rolled material after winding it at 700 to 900°C.
  • the slab may have a value of 4 to 60 in equation (1) below.
  • Equation (1) 10000 B - 100 (C + N) / Ti
  • B, C, N and Ti mean the content (% by weight) of each element.
  • the ferritic stainless steel may have an impact toughness of -20°C of 100J or more.
  • the ferritic stainless steel may have an impact toughness of 120J or more at 20°C.
  • the reheating can be performed at 1200 to 1280°C.
  • the finishing rolling can be performed at 900 to 1100°C.
  • the ferritic stainless steel may have an average grain diameter of 65 ⁇ m or less.
  • a ferritic stainless steel with improved impact toughness which suppresses brittle fracture, suppresses the rate of machining defects, and has excellent durability during actual use of parts, and a method for manufacturing the same can be provided.
  • Figure 1 is an image taken with an EBSD (Electron Backscatter Diffraction) of the center of a ferritic stainless steel with improved impact toughness according to an example of the disclosed invention.
  • EBSD Electro Backscatter Diffraction
  • Ferritic stainless steel with improved impact toughness has, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, and may include the remaining Fe and inevitable impurities.
  • the content of C (carbon) may be 0.005 to 0.015%.
  • C is an element effective in increasing strength through solid solution strengthening.
  • price competitiveness may decrease due to an increase in steelmaking VOD process costs.
  • the C content may be 0.005% or more.
  • the upper limit of C content may be 0.015%.
  • the C content may be 0.007 to 0.014%.
  • the content of N may be 0.005 to 0.015%.
  • N is an element effective in increasing the strength of steel.
  • the N content may be 0.005% or more.
  • the solid solution N concentration reaches a limit, Cr 2 N precipitates are generated, and corrosion resistance may be deteriorated due to local Cr depletion in the matrix.
  • the upper limit of N content may be 0.015%.
  • the N content may be 0.006 to 0.015%.
  • the content of Si may be 0.01 to 0.60%.
  • Si is an element that can partially contribute to strength improvement through solid solution strengthening. Considering this, Si may be added in an amount of 0.01% or more. However, if the Si content is excessive, the strength of the steel may increase excessively, resulting in poor impact toughness. Considering this, the upper limit of Si content may be limited to 0.60%. Preferably, the Si content may be 0.20 to 0.40%.
  • the content of Mn (manganese) may be 0.2 to 0.9%.
  • Mn is an element that facilitates the creation of austenite phase at high temperatures and is effective in realizing structure refinement through activation of phase transformation from austenite phase to ferrite phase.
  • the Mn content may be 0.2% or more.
  • the corrosion resistance of the material may be greatly inferior.
  • the upper limit of Mn content may be 0.9%.
  • the Mn content may be 0.2 to 0.7%.
  • the content of Cr (chromium) may be 10.5 to 13.0%.
  • Cr is an essential element added to form a passive film that suppresses oxidation of steel. Additionally, Cr is an element effective in suppressing high temperature oxidation. Considering this, the Cr content may be added at 10.5% or more. However, if the Cr content is excessive, the formation of austenite phase can be suppressed at high temperatures, thereby limiting structure refinement through phase transformation activation. Considering this, the upper limit of Cr content may be limited to 13.0%. Preferably, the Cr content may be 11.3 to 12.5%.
  • Ni nickel
  • the content of Ni (nickel) may be 0.6 to 1.1%.
  • Ni is an element that facilitates the creation of austenite phase at high temperatures and is effective in realizing structure refinement through phase transformation activation. Considering this, Ni may be added in an amount of 0.6% or more. However, if the Ni content is excessive, price competitiveness may decrease due to increased raw material costs. Considering this, the upper limit of Ni content may be 1.1%.
  • the content of Ti may be 0.05 to 0.30%.
  • Ti can improve weldability by combining with C and N and suppressing the formation of Cr carbonitride. Considering this, Ti may be added in an amount of 0.05% or more. However, since Ti is an expensive element, if the Ti content is excessive, price competitiveness may decrease. Considering this, the upper limit of Ti content may be limited to 0.30%. Preferably, the Ti content may be 0.16 to 0.27%.
  • the content of B (boron) may be 0.0005 to 0.0070%.
  • B is an element that concentrates at grain boundaries and is an effective element in improving impact toughness by suppressing the propagation of microcracks. Considering this, B may be added in an amount of 0.0005% or more. However, if the content of B is excessive, impact toughness may be deteriorated by combining with N and forming a BN precipitated phase. Considering this, the upper limit of B content can be limited to 0.0070%. That is, if the B content exceeds 0.0070%, room temperature impact toughness and/or low temperature impact toughness may decrease. In this case, it is difficult to achieve the effect of suppressing brittle fracture. Preferably, the content of B may be 0.0011 to 0.0065%.
  • the P (phosphorus) content may be 0.04% or less.
  • P is an unavoidable impurity contained in steel and is an element that causes intergranular corrosion or impairs hot workability during pickling during the steel manufacturing process.
  • the upper limit of P content can be limited to 0.04%.
  • the upper limit of P content may be limited to 0.02%.
  • the S (sulfur) content may be 0.01% or less.
  • S is an unavoidable impurity contained in steel and is an element that segregates at grain boundaries and impairs hot workability.
  • the upper limit of S content may be limited to 0.01%.
  • the upper limit of S content may be limited to 0.007%.
  • the remaining component of the disclosed invention is iron (Fe).
  • Fe iron
  • the ferritic stainless steel with improved impact toughness according to the above embodiment may have a ferrite structure fraction of 98 volume% or more, specifically 99 volume% or more.
  • Such ferritic stainless steel has a relatively low thermal expansion coefficient and excellent corrosion resistance compared to steel types with other structures.
  • the strength, corrosion resistance, and processability are suitable for application as exhaust system parts for internal combustion engine vehicles, home appliance parts, kitchen items, interior and exterior construction items with excellent corrosion resistance, and hydrogen fuel cell parts for hydrogen vehicles. It can be implemented.
  • ferritic stainless steels with a BCC (Body Centered Cubic) crystal structure have very low impact toughness compared to austenitic stainless steels with an FCC (Face Centered Cubic) crystal structure.
  • BCC Body Centered Cubic
  • FCC Fe Centered Cubic
  • Ferritic stainless steel with improved impact toughness may satisfy low-temperature impact toughness of -20°C of 100J or more. If the low-temperature impact toughness of ferritic stainless steel at -20°C is less than 100J, the resistance to brittle fracture in a low-temperature environment may be poor. For example, when processing for use as exhaust system flange parts, it is difficult to suppress brittle fracture. At this time, the processing may include stamping processing, milling processing, etc.
  • the low-temperature impact toughness at -20°C may be 110J or more, more specifically 120J or more, and more specifically 130J or more.
  • the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention when applied to, for example, exhaust system flange parts, these parts become brittle at low temperatures due to the characteristic of being exposed to a low temperature environment of around -20°C for a long time. Since resistance to heat is very important, more advantageous physical properties can be realized in harsh environments.
  • Ferritic stainless steel with improved impact toughness may have an impact toughness of 120 J or more at room temperature at 20°C. If the impact toughness of ferritic stainless steel at room temperature at 20°C is less than 120J, it is difficult to suppress brittle fracture, for example, when processing to apply it to exhaust system flange parts. At this time, the processing may include stamping processing, milling processing, etc.
  • the value of equation (1) below may be 4 to 60, specifically 5 to 55, and more specifically 10 to 40.
  • Equation (1) 10000 B - 100 (C + N) / Ti
  • B, C, N and Ti mean the content (% by weight) of each element.
  • the present inventors manufactured various hot-rolled steel sheets having the composition range and microstructure of the disclosed invention and analyzed the impact toughness at room temperature and low temperature, and derived the above equation (1).
  • Equation (1) refers to the degree to which B is concentrated at the grain boundaries.
  • C and N like B, can be concentrated at grain boundaries and thus may prevent B from being enriched. Therefore, by adding Ti to form a Ti(C,N) precipitate phase, grain boundary enrichment of C and N can be suppressed. Through this, impact toughness can be improved by facilitating B thickening and preventing the propagation of fine cracks inside the crystal grains.
  • the disclosed invention it is intended to improve impact toughness through B enrichment by controlling the value of equation (1) from 4 to 60. If the value of equation (1) is less than 4, the concentrated B content may be too small and the effect of improving impact toughness may be small. On the other hand, if the value of equation (1) exceeds 60, B is concentrated too much and combines with elements such as Ti, C, N, etc. to form a precipitated phase, so impact toughness, specifically impact toughness at -20°C low temperature, decreases. It can become inferior.
  • the value of equation (1) may preferably be 4.0 to 59.0, more preferably 4.1 to 58.8, and even more preferably 5 to 55, 5.4 to 55, or 5.4 to 53.8. there is.
  • the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention can further improve the impact toughness at 20°C at room temperature and at low temperature at -20°C, and the effect of suppressing brittle fracture is improved to a higher efficiency. It can be.
  • Ferritic stainless steel with improved impact toughness may additionally have an average grain diameter of 65 ⁇ m or less at the center of the steel, preferably 50 ⁇ m or less.
  • impact toughness values specifically impact toughness at room temperature at 20°C and low temperature at -20°C, can be further improved.
  • the value of equation (1) may be preferably 10 to 40, and more preferably 11.5 to 37.8.
  • the average grain diameter at the center of the steel can be controlled to 65 ⁇ m or less.
  • the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention can realize impact toughness at room temperature at 20°C above 150J and at low temperature at -20°C at above 130J, thereby realizing better impact toughness. .
  • the average means the average of the measured values measured at five arbitrary locations.
  • the center of the steel refers to a point between 1/4t and 3/4t when the steel thickness is t.
  • Figure 1 is an image taken with an EBSD (Electron Backscatter Diffraction) of the center of a ferritic stainless steel with improved impact toughness according to an example of the disclosed invention.
  • EBSD Electro Backscatter Diffraction
  • the average grain diameter of the ferritic stainless steel according to an example is 32 ⁇ m. In other words, it can be confirmed that the ferritic stainless steel with improved impact toughness according to an example has grain refinement.
  • the ferritic stainless steel with improved impact toughness according to an example of the disclosed invention is a ferritic stainless steel with improved impact toughness at -20°C of 100 J or more, especially low-temperature impact toughness, by controlling the alloy composition, equation (1), and manufacturing method.
  • Stainless steel can be provided.
  • the ferritic stainless steel with improved impact toughness according to an embodiment can provide ferritic stainless steel with improved impact toughness at 20°C of 120J or more, particularly impact toughness at room temperature. That is, according to an example of the disclosed invention, by improving impact toughness even though it is a ferritic stainless steel, it is possible to suppress the processing defect rate and ensure durability in actual use.
  • Ferritic stainless steel with improved impact toughness may have a thickness of 3 to 15 mm in a hot-rolled state. However, it is not limited to this, and the thickness can be adjusted depending on the purpose and function.
  • a method for manufacturing ferritic stainless steel with improved impact toughness includes, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr. : 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, producing a slab containing the remaining Fe and inevitable impurities. steps; Reheating the slab and then hot rolling and rough rolling to produce a hot rolled material; And it may include the step of cooling the hot rolled material after winding it at 700 to 900°C.
  • the slab may have a value of equation (1) below of 4 to 60, specifically 5 to 55, and more specifically 10 to 40.
  • Equation (1) 10000 B - 100 (C + N) / Ti
  • B, C, N and Ti mean the content (% by weight) of each element.
  • the reheating can be performed at 1200 to 1280°C.
  • the reheating temperature By controlling the reheating temperature to 1200 to 1280°C, coarse precipitates generated during slab manufacturing can be sufficiently re-decomposed. Additionally, by controlling the reheating temperature to 1200 to 1280°C, the average grain diameter can be prevented from increasing and surface defects due to surface oxidation can be suppressed.
  • the finishing rolling can be performed at 900 to 1100°C.
  • finishing rolling temperature By controlling the finishing rolling temperature to 900 to 1100°C, cracks that may occur on the surface of the steel material during rolling can be prevented, and the structure can be made uniform to improve toughness and strength. In addition, by controlling the finishing rolling temperature to 900 to 1100°C, coarsening of austenite grains can be prevented and sufficient refinement of ferrite grains after transformation can be achieved.
  • the hot rolled material can be wound at 700 to 900°C.
  • the shape and surface quality can be improved. Additionally, by controlling the coiling temperature to 700 to 900°C, the formation of martensite phase during the cooling process can be suppressed.
  • the cooling can be performed through air cooling.
  • slabs were manufactured by melting them in a vacuum melting furnace. At this time, the components were controlled so that P was 0.04% or less and S was 0.01% or less.
  • the slab was reheated at 1250°C, and then hot rolled, rough rolled, and finished rolled to produce a hot rolled material. The finishing rolling was performed at 1000°C.
  • the hot rolled material was wound at 800°C and then air-cooled to prepare a specimen with a thickness of 8 mm.
  • An 8 mm thick specimen was manufactured in the same manner as in Example 5 described above, except that the coiling temperature was changed to 900°C.
  • Example 1 (weight%) C N Si Mn Cr Ni Ti B
  • Example 2 0.013 0.014 0.50 0.3 12.2 0.6 0.21 0.0017
  • Example 2 0.010 0.007 0.60 0.7 12.5 0.9 0.27 0.0011
  • Example 3 0.008 0.009 0.20 0.7 12.0 0.8 0.16 0.0016
  • Example 4 0.011 0.009 0.30 0.4 11.8 0.7 0.21 0.0021
  • Example 5 0.007 0.006 0.30 0.4 11.9 0.7 0.23 0.0025
  • Example 6 0.007 0.006 0.30 0.4 11.9 0.7 0.23 0.0025
  • Example 7 0.012 0.013 0.40 0.2 11.6 0.6 0.19 0.0051
  • Example 8 0.014 0.015 0.30 0.4 11.3 1.1 0.26 0.0065
  • Example 9 0.007 0.006 0.30 0.6 11.2 0.8 0.25 0.0064
  • Comparative Example 1 0.010 0.009 0.20 0.8 12.6 0.7 0.23 0.0005 Comparative Example 2 0.007
  • Table 2 shows equation (1) values, average grain diameter, 20°C impact toughness, and -20°C impact toughness.
  • equation (1) The value of equation (1) was expressed by calculating equation (1) below.
  • Equation (1) 10000 B - 100 (C + N) / Ti
  • B, C, N and Ti mean the content (% by weight) of each element.
  • the average grain diameter was expressed by measuring the center of the specimen with EBSD (Electron Backscatter Diffraction).
  • the average means the average of the measured values measured at five arbitrary locations.
  • the center of the steel refers to a point between 1/4t and 3/4t when the steel thickness is t.
  • Impact toughness was measured by performing a Charpy-V notch impact test at temperatures of 20°C and -20°C using an impact tester from Zwick Roell. In addition, if the measured impact toughness at -20°C was 100J or more, the brittle fracture inhibition ability was evaluated as “excellent,” and if the measured impact toughness value at -20°C was less than 100J, the brittle fracture inhibition ability was evaluated as “poor,” and the results are listed in Table 2.
  • low-temperature impact toughness especially -20°C impact toughness
  • it has excellent resistance to low-temperature embrittlement even when exposed to a low-temperature environment for a long time, and, for example, has an excellent ability to suppress brittle fracture during stamping for application as exhaust system flange parts.
  • Example 5 it was manufactured in the same manner as Example 6, except that the coiling temperature was performed differently to additionally control the grain size. Through the physical property measurement results of Examples 5 and 6, it can be confirmed that there is an additional improvement in impact toughness when the grain size is controlled to 65 ⁇ m or less.

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

The disclosed invention relates to a ferritic stainless steel with an improved impact toughness, and a manufacturing method thereof. A ferritic stainless steel with an improved impact toughness according to one embodiment has, in weight%: C: 0.005% to 0.015%; N: 0.005% to 0.015%; Si: 0.01% to 0.60%; Mn: 0.2% to 0.9%; Cr: 10.5% to 13.0%; Ni: 0.6% to 1.1%; Ti: 0.05% to 0.30%; B: 0.0005% to 0.0070%; P: 0.04% or less; S: 0.01% or less; and the remaining Fe and inevitable impurities, wherein the ferritic stainless steel can have an impact toughness of over 100J at -20℃.

Description

충격인성이 향상된 페라이트계 스테인리스강 및 그 제조방법Ferritic stainless steel with improved impact toughness and manufacturing method thereof
본 발명은 충격인성이 향상된 페라이트계 스테인리스강 및 그 제조방법에 관한 것이다.The present invention relates to a ferritic stainless steel with improved impact toughness and a method of manufacturing the same.
일반적으로 스테인리스강은 화학성분이나 금속조직에 따라 분류할 수 있다. 금속조직에 따를 경우, 스테인리스강은 오스테나이트(Austenite)계, 페라이트(Ferrite)계, 마르텐사이트(Martensite)계 및 이상(Dual Phase)계로 분류할 수 있다. In general, stainless steel can be classified according to its chemical composition or metal structure. According to metal structure, stainless steel can be classified into austenitic, ferritic, martensitic, and dual phase.
페라이트계 스테인리스강은 고가의 합금원소가 적게 첨가되면서도 내식성이 뛰어나므로, 오스테나이트계 스테인리스강에 비하여 가격 경쟁력이 높다. 특히, 10.5 내지 14%의 Cr을 포함하는 저Cr 페라이트계 스테인리스강은, 페라이트 스테인리스강 내에서도 가격 경쟁력이 매우 우수하여 자동차 배기계 플랜지, 건축용 구조재 등으로 널리 사용되고 있다. Ferritic stainless steel has excellent corrosion resistance while adding a small amount of expensive alloy elements, so it is more price competitive than austenitic stainless steel. In particular, low-Cr ferritic stainless steel containing 10.5 to 14% Cr has excellent price competitiveness even among ferritic stainless steels, and is widely used as automobile exhaust system flanges and architectural structural materials.
자동차 배기계 플랜지 및 건축용 구조재로서 주로 두께 3mm 이상의 후물 열연 소둔재를 사용하고 있다. For automobile exhaust system flanges and structural structural materials for construction, thick hot-rolled annealed materials with a thickness of 3 mm or more are mainly used.
상기 후물 열연 소둔재 부품 제조 공정에서, Stamping시 취성파괴로 인한 가공 불량이 발생할 수 있다. 또한, 자동차, 건축물 등에 실사용 시 진동으로 인한 취성파괴가 발생할 수 있다. In the manufacturing process of the thick hot-rolled annealed material parts, processing defects may occur due to brittle fracture during stamping. In addition, brittle fracture may occur due to vibration during actual use in automobiles, buildings, etc.
따라서, 가공 및 실사용 시 취성파괴를 억제하기 위해, 페라이트계 스테인리스강의 충격 인성 특성 향상이 매우 중요하다.Therefore, in order to suppress brittle fracture during processing and actual use, it is very important to improve the impact toughness properties of ferritic stainless steel.
상술한 문제를 해결하기 위한 개시된 발명의 목적은, 합금성분 및 제조방법을 제어하여, 충격인성을 향상시키고 취성파괴를 억제한 페라이트계 스테인리스강 및 그 제조방법을 제공하는 데 있다.The purpose of the disclosed invention to solve the above-described problems is to provide a ferritic stainless steel and a manufacturing method thereof that improve impact toughness and suppress brittle fracture by controlling alloy components and manufacturing methods.
본 발명은 충격인성이 향상된 페라이트계 스테인리스강을 제공할 수 있다.The present invention can provide ferritic stainless steel with improved impact toughness.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, -20℃ 충격인성이 100J 이상일 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment has, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, including the remaining Fe and inevitable impurities, -20°C shock Toughness may be 100J or more.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 아래 식 (1)의 값이 4 내지 60일 수 있다.In the ferritic stainless steel with improved impact toughness according to one embodiment, the value of equation (1) below may be 4 to 60.
식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다.In formula (1), B, C, N and Ti mean the content (% by weight) of each element.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 20℃ 충격인성이 120J 이상일 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment may have an impact toughness of 120J or more at 20°C.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 평균 결정립 직경이 65㎛ 이하일 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment may have an average grain diameter of 65㎛ or less.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 두께가 3 내지 15mm일 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment may have a thickness of 3 to 15 mm.
본 발명은 전술한 충격인성이 향상된 페라이트계 스테인리스강의 제조 방법을 제공한다.The present invention provides a method for manufacturing the ferritic stainless steel with improved impact toughness described above.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강 제조방법은, 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계; 상기 슬라브를 재가열한 다음, 열연 조압연 및 사상압연하여 열연재를 제조하는 단계; 및 상기 열연재를 700 내지 900℃에서 권취한 후 냉각하는 단계를 포함할 수 있다.A method for manufacturing ferritic stainless steel with improved impact toughness according to an embodiment includes, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr. : 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, producing a slab containing the remaining Fe and inevitable impurities. steps; Reheating the slab and then hot rolling and rough rolling to produce a hot rolled material; And it may include the step of cooling the hot rolled material after winding it at 700 to 900°C.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강에서, 상기 슬라브는, 아래 식 (1)의 값이 4 내지 60일 수 있다.In the ferritic stainless steel with improved impact toughness according to one embodiment, the slab may have a value of 4 to 60 in equation (1) below.
식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다.In formula (1), B, C, N and Ti mean the content (% by weight) of each element.
상기 페라이트계 스테인리스강은 -20℃ 충격인성이 100J이상 일 수 있다.The ferritic stainless steel may have an impact toughness of -20°C of 100J or more.
상기 페라이트계 스테인리스강은 20℃ 충격인성이 120J이상 일 수 있다.The ferritic stainless steel may have an impact toughness of 120J or more at 20°C.
상기 재가열은, 1200 내지 1280℃에서 수행할 수 있다.The reheating can be performed at 1200 to 1280°C.
상기 사상압연은, 900 내지 1100℃에서 수행할 수 있다.The finishing rolling can be performed at 900 to 1100°C.
상기 페라이트계 스테인리스강은 평균 결정립 직경이 65㎛ 이하일 수 있다.The ferritic stainless steel may have an average grain diameter of 65㎛ or less.
개시된 발명의 일 실시예에 따르면, 취성파괴를 억제하여, 가공 불량률이 억제되고, 부품 실사용 시 내구성이 우수한, 충격인성이 향상된 페라이트계 스테인리스강 및 그 제조방법을 제공할 수 있다.According to one embodiment of the disclosed invention, a ferritic stainless steel with improved impact toughness, which suppresses brittle fracture, suppresses the rate of machining defects, and has excellent durability during actual use of parts, and a method for manufacturing the same can be provided.
도 1은, 개시된 발명의 일 예에 따른 충격인성이 향상된 페라이트계 스테인리스강의 중심부를 EBSD(Electron Backscatter Diffraction, 후방산란전자 회절패턴 분석기)로 촬영한 이미지이다.Figure 1 is an image taken with an EBSD (Electron Backscatter Diffraction) of the center of a ferritic stainless steel with improved impact toughness according to an example of the disclosed invention.
이하에서는 개시된 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 개시된 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 개시된 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 개시된 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 개시된 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the disclosed invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the idea of the disclosed invention to those skilled in the art in the technical field to which the disclosed invention belongs. The disclosed invention is not limited to the embodiments presented herein and may be embodied in other forms. In order to clarify the disclosed invention, the drawings may omit illustrations of parts unrelated to the description and may slightly exaggerate the sizes of components to aid understanding.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly makes an exception.
이하, 본 발명의 실시예에서의 합금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical content of alloy components in the embodiments of the present invention will be explained. Hereinafter, unless otherwise specified, the unit is weight%.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함할 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment has, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, and may include the remaining Fe and inevitable impurities.
C(탄소)의 함량은 0.005 내지 0.015%일 수 있다.The content of C (carbon) may be 0.005 to 0.015%.
C는 고용강화에 의한 강도 증가에 효과적인 원소이다. 다만, C의 함량을 극저로 관리하기 위해서는 제강 VOD 공정비 증가로 가격경쟁력이 떨어질 수 있다. 이를 고려하여, C의 함량은 0.005% 이상일 수 있다. 그러나, C의 함량이 과다한 경우에는, Cr23C6 석출물이 생성되어 기지 내 국부 Cr 고갈로 인해 내식성이 열위될 수 있다. 이를 고려하여, C 함량의 상한은 0.015%일 수 있다. 바람직하게는, C의 함량은 0.007 내지 0.014%일 수 있다. C is an element effective in increasing strength through solid solution strengthening. However, in order to manage the C content to an extremely low level, price competitiveness may decrease due to an increase in steelmaking VOD process costs. Considering this, the C content may be 0.005% or more. However, if the C content is excessive, Cr 23 C 6 precipitates may be generated and corrosion resistance may be deteriorated due to local Cr depletion in the matrix. Considering this, the upper limit of C content may be 0.015%. Preferably, the C content may be 0.007 to 0.014%.
N(질소)의 함량은 0.005 내지 0.015%일 수 있다.The content of N (nitrogen) may be 0.005 to 0.015%.
N는 강의 강도증가에 효과적인 원소이다. 다만, N의 함량을 극저로 관리하기 위해서는 제강 VOD 공정비 증가로 가격경쟁력이 떨어질 수 있다. 이를 고려하여, N의 함량은 0.005% 이상일 수 있다. 그러나, N의 함량이 과다한 경우에는, 고용 N 농도가 한계에 달하고, Cr2N 석출물이 생성되어 기지 내 국부 Cr 고갈로 인해 내식성이 열위될 수 있다. 이를 고려하여, N 함량의 상한은 0.015%일 수 있다. 바람직하게는, N의 함량은 0.006 내지 0.015%일 수 있다.N is an element effective in increasing the strength of steel. However, in order to manage the N content to an extremely low level, price competitiveness may decrease due to an increase in steelmaking VOD process costs. Considering this, the N content may be 0.005% or more. However, when the N content is excessive, the solid solution N concentration reaches a limit, Cr 2 N precipitates are generated, and corrosion resistance may be deteriorated due to local Cr depletion in the matrix. Considering this, the upper limit of N content may be 0.015%. Preferably, the N content may be 0.006 to 0.015%.
Si(실리콘)의 함량은 0.01 내지 0.60%일 수 있다.The content of Si (silicon) may be 0.01 to 0.60%.
Si은 고용 강화에 의한 강도 향상이 일부 기여할 수 있는 원소이다. 이를 고려하여, Si은 0.01% 이상 첨가될 수 있다. 그러나, Si의 함량이 과다한 경우에는, 강의 강도가 지나치게 증가하여 충격 인성이 열위해질 수 있다. 이를 고려하여, Si 함량의 상한은 0.60%로 제한될 수 있다. 바람직하게는, Si의 함량은 0.20 내지 0.40%일 수 있다.Si is an element that can partially contribute to strength improvement through solid solution strengthening. Considering this, Si may be added in an amount of 0.01% or more. However, if the Si content is excessive, the strength of the steel may increase excessively, resulting in poor impact toughness. Considering this, the upper limit of Si content may be limited to 0.60%. Preferably, the Si content may be 0.20 to 0.40%.
Mn(망간)의 함량은 0.2 내지 0.9%일 수 있다.The content of Mn (manganese) may be 0.2 to 0.9%.
Mn은 고온에서 오스테나이트상 생성을 용이하게 하고, 오스테나이트상에서 페라이트상으로 상변태 활성화를 통한 조직 미세화를 구현하는데 효과적인 원소이다. 이를 고려하여, Mn의 함량은 0.2% 이상일 수 있다. 그러나, Mn의 함량이 과다한 경우에는, 소재의 내식성이 크게 열위해질 수 있다. 이를 고려하여, Mn 함량의 상한은 0.9%일 수 있다. 바람직하게는, Mn의 함량은 0.2 내지 0.7%일 수 있다.Mn is an element that facilitates the creation of austenite phase at high temperatures and is effective in realizing structure refinement through activation of phase transformation from austenite phase to ferrite phase. Considering this, the Mn content may be 0.2% or more. However, if the Mn content is excessive, the corrosion resistance of the material may be greatly inferior. Considering this, the upper limit of Mn content may be 0.9%. Preferably, the Mn content may be 0.2 to 0.7%.
Cr(크롬)의 함량은 10.5 내지 13.0%일 수 있다.The content of Cr (chromium) may be 10.5 to 13.0%.
Cr은 강의 산화를 억제하는 부동태 피막을 형성하기 위해 필수적으로 첨가하는 원소이다. 또한, Cr은 고온 산화를 억제하는데 효과적인 원소이다. 이를 고려하여, Cr의 함량은 10.5% 이상 첨가될 수 있다. 그러나, Cr의 함량이 과다한 경우에는, 고온에서 오스테나이트상 생성을 억제하여, 상변태 활성화를 통한 조직 미세화를 제한할 수 있다. 이를 고려하여, Cr 함량의 상한은 13.0%로 제한될 수 있다. 바람직하게는, Cr의 함량은 11.3 내지 12.5%일 수 있다.Cr is an essential element added to form a passive film that suppresses oxidation of steel. Additionally, Cr is an element effective in suppressing high temperature oxidation. Considering this, the Cr content may be added at 10.5% or more. However, if the Cr content is excessive, the formation of austenite phase can be suppressed at high temperatures, thereby limiting structure refinement through phase transformation activation. Considering this, the upper limit of Cr content may be limited to 13.0%. Preferably, the Cr content may be 11.3 to 12.5%.
Ni(니켈)의 함량은 0.6 내지 1.1%일 수 있다.The content of Ni (nickel) may be 0.6 to 1.1%.
Ni은 고온에서 오스테나이트상 생성을 더욱 용이하게 하고, 상변태 활성화를 통한 조직 미세화를 구현하는데 효과적인 원소이다. 이를 고려하여, Ni은 0.6% 이상 첨가될 수 있다. 그러나, Ni의 함량이 과다한 경우에는, 원재료비 상승으로 인한 가격경쟁력이 떨어질 수 있다. 이를 고려하여, Ni 함량의 상한은 1.1%일 수 있다. Ni is an element that facilitates the creation of austenite phase at high temperatures and is effective in realizing structure refinement through phase transformation activation. Considering this, Ni may be added in an amount of 0.6% or more. However, if the Ni content is excessive, price competitiveness may decrease due to increased raw material costs. Considering this, the upper limit of Ni content may be 1.1%.
Ti(티타늄)의 함량은 0.05 내지 0.30%일 수 있다.The content of Ti (titanium) may be 0.05 to 0.30%.
Ti은 C 및 N와 결합하여, Cr 탄질화물 형성을 억제함으로서 용접성을 향상시킬 수 있다. 이를 고려하여, Ti은 0.05% 이상 첨가될 수 있다. 그러나, Ti은 고가의 원소이므로, Ti의 함량이 과다한 경우에는 가격경쟁력이 떨어질 수 있다. 이를 고려하여, Ti 함량의 상한은 0.30%로 제한될 수 있다. 바람직하게는, Ti의 함량은 0.16 내지 0.27%일 수 있다.Ti can improve weldability by combining with C and N and suppressing the formation of Cr carbonitride. Considering this, Ti may be added in an amount of 0.05% or more. However, since Ti is an expensive element, if the Ti content is excessive, price competitiveness may decrease. Considering this, the upper limit of Ti content may be limited to 0.30%. Preferably, the Ti content may be 0.16 to 0.27%.
B(보론)의 함량은 0.0005 내지 0.0070%일 수 있다.The content of B (boron) may be 0.0005 to 0.0070%.
B은 결정립계에 농화되는 원소로서, 미세 크랙의 전파를 억제하여 충격인성을 향상시키는데 효과적인 원소이다. 이를 고려하여, B은 0.0005% 이상 첨가될 수 있다. 그러나, B의 함량이 과다한 경우에는, N과 결합하여 BN 석출상이 생성됨으로써 충격인성이 열위해질 수 있다. 이를 고려하여, B 함량의 상한은 0.0070%로 제한될 수 있다. 즉, B 함량이 0.0070%를 초과하는 경우 상온 충격인성 및/또는 저온 충격인성이 저하될 수 있다. 이러한 경우, 취성파괴를 억제하는 효과를 구현하기 어렵다. 바람직하게는, B의 함량은 0.0011 내지 0.0065%일 수 있다.B is an element that concentrates at grain boundaries and is an effective element in improving impact toughness by suppressing the propagation of microcracks. Considering this, B may be added in an amount of 0.0005% or more. However, if the content of B is excessive, impact toughness may be deteriorated by combining with N and forming a BN precipitated phase. Considering this, the upper limit of B content can be limited to 0.0070%. That is, if the B content exceeds 0.0070%, room temperature impact toughness and/or low temperature impact toughness may decrease. In this case, it is difficult to achieve the effect of suppressing brittle fracture. Preferably, the content of B may be 0.0011 to 0.0065%.
P(인)의 함량은 0.04% 이하일 수 있다.The P (phosphorus) content may be 0.04% or less.
P은 강 중 포함되는 불가피한 불순물로서 강 제조공정 중 산세 시 입계부식을 일으키거나 열간가공성을 저해시키는 원소이다. 이를 고려하여, P 함량의 상한은 0.04%로 제한될 수 있다. 바람직하게는, P 함량의 상한은 0.02%로 제한될 수 있다.P is an unavoidable impurity contained in steel and is an element that causes intergranular corrosion or impairs hot workability during pickling during the steel manufacturing process. Considering this, the upper limit of P content can be limited to 0.04%. Preferably, the upper limit of P content may be limited to 0.02%.
S(황)의 함량은 0.01% 이하일 수 있다.The S (sulfur) content may be 0.01% or less.
S은 강 중 포함되는 불가피한 불순물로서 결정립계에 편석되어 열간가공성을 저해시키는 원소이다. 이를 고려하여, S 함량의 상한은 0.01%로 제한될 수 있다. 바람직하게는, S 함량의 상한은 0.007% 로 제한될 수 있다.S is an unavoidable impurity contained in steel and is an element that segregates at grain boundaries and impairs hot workability. Considering this, the upper limit of S content may be limited to 0.01%. Preferably, the upper limit of S content may be limited to 0.007%.
개시된 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the disclosed invention is iron (Fe). However, in the normal manufacturing process, unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the ordinary manufacturing process, all of them are not specifically mentioned in this specification.
상기 일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 페라이트 조직의 분율 98부피% 이상, 구체적으로 99부피%이상인 것일 수 있다. 이와 같은 페라이트계 스테인리스강은, 다른 조직의 강종에 비해 열팽창계수가 상대적으로 낮고, 내식성이 우수하다. 이러한 경우, 예를 들면, 내연기관자동차의 배기계용 부품, 가전기기용 부품, 주방용 물품, 내식성이 우수한 건설 건축 내외장용 물품, 수소차 수소연료전지용 부품 등으로 적용하기에 적합한 강도, 내식성, 가공성을 구현할 수 있다. The ferritic stainless steel with improved impact toughness according to the above embodiment may have a ferrite structure fraction of 98 volume% or more, specifically 99 volume% or more. Such ferritic stainless steel has a relatively low thermal expansion coefficient and excellent corrosion resistance compared to steel types with other structures. In this case, for example, the strength, corrosion resistance, and processability are suitable for application as exhaust system parts for internal combustion engine vehicles, home appliance parts, kitchen items, interior and exterior construction items with excellent corrosion resistance, and hydrogen fuel cell parts for hydrogen vehicles. It can be implemented.
본 발명자들은 충격인성이 향상된 페라이트계 스테인리스 강에 대해 다양한 검토를 행한 결과, 이하의 지견을 얻을 수 있었다.As a result of various studies on ferritic stainless steels with improved impact toughness, the present inventors were able to obtain the following findings.
일반적으로 BCC(Body Centered Cubic) 결정 구조를 갖는 페라이트계 스테인리스강의 경우 FCC(Face Centered Cubic) 결정 구조를 갖는 오스테나이트계 스테인리스 강과 비교하여 충격인성이 매우 낮다. 또한, Ti 안정화 페라이트계 스테인리스강의 경우에는, 제강-연주-열연 공정 중 상변태 과정이 없으므로, 결정립 미세화를 구현하여 어려워서 충격인성이 더욱 열위해질 수 있다.In general, ferritic stainless steels with a BCC (Body Centered Cubic) crystal structure have very low impact toughness compared to austenitic stainless steels with an FCC (Face Centered Cubic) crystal structure. Additionally, in the case of Ti-stabilized ferritic stainless steel, since there is no phase transformation process during the steelmaking-continuous-casting-hot rolling process, it is difficult to implement grain refinement, which may further deteriorate impact toughness.
종래에는 Ti 안정화 페라이트계 스테인리스강의 충격인성을 향상시키기 위해서 오스테나이트 안정화 원소인 Mn, Ni 원소를 다량 첨가했다. 이를 통해, 상기 Ti 안정화 페라이트계 스테인리스강의 제조 과정 중 오스테나이트상에서 페라이트상으로의 상변태를 활성화시켜서 결정립 미세화를 구현하고자 했다. 그러나, 오스테나이트 안정화 원소의 다량 첨가로 인한 충격인성 향상 효과는 크지 않았고, 가격경쟁력도 떨어지는 문제가 있었다.Conventionally, to improve the impact toughness of Ti-stabilized ferritic stainless steel, large amounts of Mn and Ni elements, which are austenite stabilizing elements, were added. Through this, we attempted to realize grain refinement by activating the phase transformation from the austenite phase to the ferrite phase during the manufacturing process of the Ti-stabilized ferritic stainless steel. However, the effect of improving impact toughness due to the addition of a large amount of austenite stabilizing elements was not significant, and there was a problem of poor price competitiveness.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, -20℃ 저온 충격인성이 100J 이상을 만족할 수 있다. 페라이트계 스테인리스강의 -20℃ 저온 충격인성이 100J미만인 경우, 저온 환경에서의 취성 파괴에 대한 저항성이 열위할 수 있다. 예를 들면, 배기계 플랜지 부품으로 적용하기 위한 가공 시, 취성 파괴를 억제하기 어렵다. 이때, 상기 가공은 스탬핑 가공, 밀링 가공 등을 포함할 수 있다. Ferritic stainless steel with improved impact toughness according to one embodiment may satisfy low-temperature impact toughness of -20°C of 100J or more. If the low-temperature impact toughness of ferritic stainless steel at -20°C is less than 100J, the resistance to brittle fracture in a low-temperature environment may be poor. For example, when processing for use as exhaust system flange parts, it is difficult to suppress brittle fracture. At this time, the processing may include stamping processing, milling processing, etc.
또한, 구체적으로 -20℃ 저온 충격인성이 110J 이상, 보다 구체적으로 120J 이상, 보다 구체적으로 130J 이상일 수 있다. 이러한 경우, 본 발명 일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강을 예를 들면, 배기계 플랜지 부품으로 적용할 때, 이들 부품은 -20℃ 내외의 저온 환경에 장시간 노출되는 특성으로 인해 저온 취성에 대한 저항성이 매우 중요하게 작용하므로, 가혹 환경에서 더욱 유리한 물성을 구현할 수 있다.Additionally, specifically, the low-temperature impact toughness at -20°C may be 110J or more, more specifically 120J or more, and more specifically 130J or more. In this case, when the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention is applied to, for example, exhaust system flange parts, these parts become brittle at low temperatures due to the characteristic of being exposed to a low temperature environment of around -20°C for a long time. Since resistance to heat is very important, more advantageous physical properties can be realized in harsh environments.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 20℃ 상온 충격인성이 120J 이상일 수 있다. 페라이트계 스테인리스강의 20℃ 상온 충격인성이 120J미만인 경우, 예를 들면, 배기계 플랜지 부품으로 적용하기 위한 가공 시, 취성 파괴를 억제하기 어렵다. 이때, 상기 가공은 스탬핑 가공, 밀링 가공 등을 포함할 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment may have an impact toughness of 120 J or more at room temperature at 20°C. If the impact toughness of ferritic stainless steel at room temperature at 20°C is less than 120J, it is difficult to suppress brittle fracture, for example, when processing to apply it to exhaust system flange parts. At this time, the processing may include stamping processing, milling processing, etc.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 아래 식 (1)의 값이 4 내지 60, 구체적으로 5 내지 55, 보다 구체적으로 10 내지 40일 수 있다.In the ferritic stainless steel with improved impact toughness according to an embodiment, the value of equation (1) below may be 4 to 60, specifically 5 to 55, and more specifically 10 to 40.
식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다.In formula (1), B, C, N and Ti mean the content (% by weight) of each element.
본 발명자들은 개시된 발명의 성분범위 및 미세조직을 갖는 다양한 열연 강판을 제조하여 상온 및 저온 충격인성 평가를 분석한 결과, 상기 식 (1)을 도출하였다. The present inventors manufactured various hot-rolled steel sheets having the composition range and microstructure of the disclosed invention and analyzed the impact toughness at room temperature and low temperature, and derived the above equation (1).
식 (1)은 B이 결정립계에 농화하는 정도를 의미한다. C 및 N는 B와 마찬가지로 결정립계에 농화될 수 있으므로, B이 농화되는 것을 방해할 수 있다. 따라서, Ti을 첨가하여 Ti(C,N) 석출상을 형성시킴으로써 C 및 N의 결정립계 농화를 억제할 수 있다. 이를 통해, B 농화를 용이하게 하고, 결정립 내부의 미세 크랙이 전파되는 것을 방해함으로써 충격인성이 향상될 수 있다.Equation (1) refers to the degree to which B is concentrated at the grain boundaries. C and N, like B, can be concentrated at grain boundaries and thus may prevent B from being enriched. Therefore, by adding Ti to form a Ti(C,N) precipitate phase, grain boundary enrichment of C and N can be suppressed. Through this, impact toughness can be improved by facilitating B thickening and preventing the propagation of fine cracks inside the crystal grains.
개시된 발명에서는 식 (1)의 값을 4 내지 60으로 제어함으로써 B 농화를 통한 충격인성 향상을 구현하고자 한다. 식 (1)의 값이 4미만일 경우에는, 농화되는 B 함량이 너무 적어 충격인성 향상 효과가 적을 수 있다. 반면, 식 (1)의 값이 60을 초과하면, B가 지나치게 많이 농화되어, Ti, C, N 등의 원소와 결합하여 석출상이 형성되므로, 충격인성, 구체적으로는 -20℃ 저온 충격인성이 열위해질 수 있다. In the disclosed invention, it is intended to improve impact toughness through B enrichment by controlling the value of equation (1) from 4 to 60. If the value of equation (1) is less than 4, the concentrated B content may be too small and the effect of improving impact toughness may be small. On the other hand, if the value of equation (1) exceeds 60, B is concentrated too much and combines with elements such as Ti, C, N, etc. to form a precipitated phase, so impact toughness, specifically impact toughness at -20°C low temperature, decreases. It can become inferior.
하나의 예시에서, 식 (1)의 값은 바람직하게는 4.0 내지 59.0일 수 있고, 보다 바람직하게는 4.1 내지 58.8, 보다 더욱 바람직하게는, 5 내지 55, 5.4 내지 55, 또는 5.4 내지 53.8일 수 있다. 상기 범위 내에서, 본 발명 일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은 20℃ 상온 충격인성 및 -20℃ 저온 충격인성이 더욱 향상될 수 있고, 취성파괴 억제 효과가 더욱 높은 효율로 향상될 수 있다.In one example, the value of equation (1) may preferably be 4.0 to 59.0, more preferably 4.1 to 58.8, and even more preferably 5 to 55, 5.4 to 55, or 5.4 to 53.8. there is. Within the above range, the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention can further improve the impact toughness at 20°C at room temperature and at low temperature at -20°C, and the effect of suppressing brittle fracture is improved to a higher efficiency. It can be.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 추가적으로 강 중심부의 평균 결정립 직경이 65㎛ 이하, 바람직하게는 50㎛ 이하일 수 있다. 이러한 경우, 상변태 활성화를 통해 결정립 미세화를 구현함으로써, 충격인성 값, 구체적으로 20℃ 상온 충격인성 및 -20℃ 저온 충격인성 값을 더욱 향상시킬 수 있다.Ferritic stainless steel with improved impact toughness according to an embodiment may additionally have an average grain diameter of 65 ㎛ or less at the center of the steel, preferably 50 ㎛ or less. In this case, by implementing grain refinement through phase transformation activation, impact toughness values, specifically impact toughness at room temperature at 20°C and low temperature at -20°C, can be further improved.
하나의 예시에서, 식 (1)의 값은 바람직하게는 10 내지 40일 수 있고, 보다 바람직하게는 11.5 내지 37.8일 수 있다. 이와 동시에 강 중심부의 평균 결정립 직경을 65㎛ 이하로 제어할 수 있다. 이러한 경우, 본 발명 일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은 20℃ 상온 충격인성을 150J 이상, -20℃ 저온 충격인성을 130J 이상으로 구현할 수 있어, 더욱 우수한 충격인성을 구현할 수 있다.In one example, the value of equation (1) may be preferably 10 to 40, and more preferably 11.5 to 37.8. At the same time, the average grain diameter at the center of the steel can be controlled to 65㎛ or less. In this case, the ferritic stainless steel with improved impact toughness according to an embodiment of the present invention can realize impact toughness at room temperature at 20°C above 150J and at low temperature at -20°C at above 130J, thereby realizing better impact toughness. .
여기서 평균이란, 임의의 5개소에서 측정한 측정값의 평균을 의미한다. 또한, 강 중심부란, 강 두께를 t라고 했을 때 1/4t 내지 3/4t 지점을 의미한다.Here, the average means the average of the measured values measured at five arbitrary locations. In addition, the center of the steel refers to a point between 1/4t and 3/4t when the steel thickness is t.
도 1은, 개시된 발명의 일 예에 따른 충격인성이 향상된 페라이트계 스테인리스강의 중심부를 EBSD(Electron Backscatter Diffraction, 후방산란전자 회절패턴 분석기)로 촬영한 이미지이다.Figure 1 is an image taken with an EBSD (Electron Backscatter Diffraction) of the center of a ferritic stainless steel with improved impact toughness according to an example of the disclosed invention.
도 1을 참고하면, 일 예에 따른 페라이트계 스테인리스강의 평균 결정립 직경이 32㎛인 것을 확인할 수 있다. 즉, 일 예에 따른 충격인성이 향상된 페라이트계 스테인리스강은 결정립 미세화를 구현한 것을 확인할 수 있다.Referring to Figure 1, it can be seen that the average grain diameter of the ferritic stainless steel according to an example is 32㎛. In other words, it can be confirmed that the ferritic stainless steel with improved impact toughness according to an example has grain refinement.
개시된 발명의 일 예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 합금조성, 식 (1) 및 제조방법을 제어함으로써, -20℃ 충격인성이 100J 이상인 충격인성, 특히 저온 충격인성이 향상된 페라이트계 스테인리스강을 제공할 수 있다. 또한, 일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 20℃ 충격인성이 120J 이상인 충격인성, 특히 상온 충격인성이 향상된 페라이트계 스테인리스강을 제공할 수 있다. 즉, 개시된 발명의 일 예에 의하면, 페라이트계 스테인리스강임에도 불구하고 충격인성을 향상시킴으로써, 가공 불량률을 억제하고 실사용 시 내구성을 확보할 수 있다. The ferritic stainless steel with improved impact toughness according to an example of the disclosed invention is a ferritic stainless steel with improved impact toughness at -20°C of 100 J or more, especially low-temperature impact toughness, by controlling the alloy composition, equation (1), and manufacturing method. Stainless steel can be provided. In addition, the ferritic stainless steel with improved impact toughness according to an embodiment can provide ferritic stainless steel with improved impact toughness at 20°C of 120J or more, particularly impact toughness at room temperature. That is, according to an example of the disclosed invention, by improving impact toughness even though it is a ferritic stainless steel, it is possible to suppress the processing defect rate and ensure durability in actual use.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강은, 열연재 상태에서의 두께가 3 내지 15mm일 수 있다. 다만, 이에 한정되지 않고, 목적 및 기능에 따라 두께를 조절할 수 있다.Ferritic stainless steel with improved impact toughness according to one embodiment may have a thickness of 3 to 15 mm in a hot-rolled state. However, it is not limited to this, and the thickness can be adjusted depending on the purpose and function.
다음으로, 개시된 발명의 다른 일 측면에 따른 충격인성이 향상된 페라이트계 스테인리스강 제조방법에 대해 설명한다.Next, a method for manufacturing ferritic stainless steel with improved impact toughness according to another aspect of the disclosed invention will be described.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강 제조방법은, 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계; 상기 슬라브를 재가열한 다음, 열연 조압연 및 사상압연하여 열연재를 제조하는 단계; 및 상기 열연재를 700 내지 900℃에서 권취한 후 냉각하는 단계를 포함할 수 있다.A method for manufacturing ferritic stainless steel with improved impact toughness according to an embodiment includes, in weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr. : 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, producing a slab containing the remaining Fe and inevitable impurities. steps; Reheating the slab and then hot rolling and rough rolling to produce a hot rolled material; And it may include the step of cooling the hot rolled material after winding it at 700 to 900°C.
일 실시예에 따른 충격인성이 향상된 페라이트계 스테인리스강에서, 상기 슬라브는, 아래 식 (1)의 값이 4 내지 60, 구체적으로 5 내지 55, 보다 구체적으로 10 내지 40일 수 있다.In the ferritic stainless steel with improved impact toughness according to one embodiment, the slab may have a value of equation (1) below of 4 to 60, specifically 5 to 55, and more specifically 10 to 40.
식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다.In formula (1), B, C, N and Ti mean the content (% by weight) of each element.
상기 각 합금조성의 성분범위 및 식 (1)의 수치 한정 이유는 상술한 바와 같으며, 이하 각 제조단계에 대하여 보다 상세히 설명한다.The range of components of each alloy composition and the reason for limiting the values in equation (1) are as described above, and each manufacturing step will be described in more detail below.
상기 합금조성 및 식 (1)을 만족하는 슬라브를 제조한 후, 일련의 재가열, 열연 조압연, 사상압연, 권취 및 냉각 공정을 거칠 수 있다.After manufacturing a slab that satisfies the alloy composition and equation (1), it can be subjected to a series of reheating, hot rolling, rough rolling, finishing rolling, winding, and cooling processes.
한편, 압연 후 소재의 결정립 성장을 억제하기 위해, 추가적인 소둔은 생략하고 산세만 진행할 수 있다.Meanwhile, in order to suppress grain growth of the material after rolling, additional annealing can be omitted and only pickling can be performed.
상기 재가열은, 1200 내지 1280℃에서 수행할 수 있다.The reheating can be performed at 1200 to 1280°C.
재가열 온도를 1200 내지 1280℃로 제어함으로써, 슬라브 제조 중 생성된 조대한 석출물을 충분히 재분해할 수 있다. 또한, 재가열 온도를 1200 내지 1280℃로 제어함으로써, 평균 결정립 직경이 커지지 않도록 하고, 표면 산화로 인한 표면결함을 억제할 수 있다.By controlling the reheating temperature to 1200 to 1280°C, coarse precipitates generated during slab manufacturing can be sufficiently re-decomposed. Additionally, by controlling the reheating temperature to 1200 to 1280°C, the average grain diameter can be prevented from increasing and surface defects due to surface oxidation can be suppressed.
상기 사상압연은, 900 내지 1100℃에서 수행할 수 있다.The finishing rolling can be performed at 900 to 1100°C.
사상압연 온도를 900 내지 1100℃로 제어함으로써, 압연 시 강재 표면에 발생할 수 있는 크랙을 방지하고, 조직을 균일화하여 인성 및 강도를 향상시킬 수 있다. 또한, 사상압연 온도를 900 내지 1100℃로 제어함으로써, 오스테나이트 결정립 조대화를 방지하여 변태 후 페라이트 결정립 미세화를 충분히 구현할 수 있다.By controlling the finishing rolling temperature to 900 to 1100°C, cracks that may occur on the surface of the steel material during rolling can be prevented, and the structure can be made uniform to improve toughness and strength. In addition, by controlling the finishing rolling temperature to 900 to 1100°C, coarsening of austenite grains can be prevented and sufficient refinement of ferrite grains after transformation can be achieved.
상기 열연재를 700 내지 900℃에서 권취할 수 있다.The hot rolled material can be wound at 700 to 900°C.
권취 온도를 700 내지 900℃로 제어함으로써, 형상 및 표면품질을 향상시킬 수 있다. 또한, 권취 온도를 700 내지 900℃로 제어함으로써, 냉각 과정에서 마르텐사이트상이 생성되는 것을 억제할 수 있다.By controlling the coiling temperature to 700 to 900°C, the shape and surface quality can be improved. Additionally, by controlling the coiling temperature to 700 to 900°C, the formation of martensite phase during the cooling process can be suppressed.
상기 냉각은 공냉을 통해 수행할 수 있다.The cooling can be performed through air cooling.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for illustrating the implementation of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.
{실시예}{Example}
(실시예 1 내지 5, 7 내지 9 및 비교예 1 내지 6의 제조)(Preparation of Examples 1 to 5, 7 to 9 and Comparative Examples 1 to 6)
아래 표 1에 나타낸 다양한 합금 성분범위에 대하여, 진공용해로에서 용해하여 슬라브를 제조했다. 이때, P는 0.04% 이하, S는 0.01%이하가 되도록 성분 제어하였다. 상기 슬라브를 1250℃에서 재가열한 다음, 열연 조압연 및 사상압연하여 열연재를 제조했다. 상기 사상압연은 1000℃에서 수행했다. 상기 열연재를 800℃에서 권취한 후 공냉하여 8mm 두께의 시편을 제조했다.For the various alloy composition ranges shown in Table 1 below, slabs were manufactured by melting them in a vacuum melting furnace. At this time, the components were controlled so that P was 0.04% or less and S was 0.01% or less. The slab was reheated at 1250°C, and then hot rolled, rough rolled, and finished rolled to produce a hot rolled material. The finishing rolling was performed at 1000°C. The hot rolled material was wound at 800°C and then air-cooled to prepare a specimen with a thickness of 8 mm.
(실시예 6의 제조)(Preparation of Example 6)
권취온도를 900℃로 변경한 것을 제외하고, 전술한 실시예 5의 제조와 동일한 방식으로 8mm 두께의 시편을 제조했다.An 8 mm thick specimen was manufactured in the same manner as in Example 5 described above, except that the coiling temperature was changed to 900°C.
(중량%)(weight%) C C NN Si Si Mn Mn CrCr Ni Ni TiTi BB
실시예 1Example 1 0.0130.013 0.0140.014 0.500.50 0.30.3 12.212.2 0.60.6 0.210.21 0.00170.0017
실시예 2Example 2 0.0100.010 0.0070.007 0.600.60 0.70.7 12.512.5 0.90.9 0.270.27 0.00110.0011
실시예 3Example 3 0.0080.008 0.0090.009 0.200.20 0.70.7 12.012.0 0.80.8 0.160.16 0.00160.0016
실시예 4Example 4 0.0110.011 0.0090.009 0.300.30 0.40.4 11.811.8 0.70.7 0.210.21 0.00210.0021
실시예 5Example 5 0.0070.007 0.0060.006 0.300.30 0.40.4 11.911.9 0.70.7 0.230.23 0.00250.0025
실시예 6Example 6 0.0070.007 0.0060.006 0.300.30 0.40.4 11.911.9 0.70.7 0.230.23 0.00250.0025
실시예 7Example 7 0.0120.012 0.0130.013 0.400.40 0.20.2 11.611.6 0.60.6 0.190.19 0.00510.0051
실시예 8Example 8 0.0140.014 0.0150.015 0.300.30 0.40.4 11.311.3 1.11.1 0.260.26 0.00650.0065
실시예 9Example 9 0.0070.007 0.0060.006 0.300.30 0.60.6 11.211.2 0.80.8 0.250.25 0.00640.0064
비교예 1Comparative Example 1 0.0100.010 0.0090.009 0.200.20 0.80.8 12.612.6 0.70.7 0.230.23 0.00050.0005
비교예 2Comparative Example 2 0.0070.007 0.0060.006 0.100.10 0.40.4 11.411.4 0.80.8 0.220.22 0.00060.0006
비교예 3Comparative Example 3 0.0110.011 0.0120.012 0.400.40 0.50.5 12.812.8 1.01.0 0.180.18 0.00150.0015
비교예 4Comparative Example 4 0.0070.007 0.0080.008 0.200.20 0.50.5 11.011.0 0.90.9 0.290.29 0.00690.0069
비교예 5Comparative Example 5 0.0060.006 0.0110.011 0.500.50 0.70.7 10.610.6 0.70.7 0.250.25 0.00850.0085
비교예 6Comparative Example 6 0.0130.013 0.0140.014 0.200.20 0.50.5 10.710.7 0.90.9 0.110.11 0.00770.0077
아래 표 2에는, 식 (1) 값, 평균 결정립 직경, 20℃ 충격인성 및 -20℃ 충격인성을 나타냈다.Table 2 below shows equation (1) values, average grain diameter, 20°C impact toughness, and -20°C impact toughness.
식 (1) 값은 아래 식 (1)을 계산하여 나타냈다.The value of equation (1) was expressed by calculating equation (1) below.
식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다.In formula (1), B, C, N and Ti mean the content (% by weight) of each element.
평균 결정립 직경은, EBSD(Electron Backscatter Diffraction, 후방산란전자 회절패턴 분석기)로 시편의 중심부를 측정하여 나타냈다.The average grain diameter was expressed by measuring the center of the specimen with EBSD (Electron Backscatter Diffraction).
여기서 평균이란, 임의의 5개소에서 측정한 측정값의 평균을 의미한다. 또한, 강 중심부란, 강 두께를 t라고 했을 때 1/4t 내지 3/4t 지점을 의미한다.Here, the average means the average of the measured values measured at five arbitrary locations. In addition, the center of the steel refers to a point between 1/4t and 3/4t when the steel thickness is t.
충격인성은, Zwick Roell사의 충격시험기를 통해 20℃및 -20℃의 온도에서 Charpy-V notch 충격시험을 수행하여 측정했다. 또한, 측정된 -20℃ 충격인성 값이 100J 이상인 경우 취성파괴억제능을 "우수"로 평가하고, 100J 미만인 경우 취성파괴억제능을 "불량"으로 평가하고, 그 결과를 표 2에 기재하였다.Impact toughness was measured by performing a Charpy-V notch impact test at temperatures of 20℃ and -20℃ using an impact tester from Zwick Roell. In addition, if the measured impact toughness at -20°C was 100J or more, the brittle fracture inhibition ability was evaluated as “excellent,” and if the measured impact toughness value at -20°C was less than 100J, the brittle fracture inhibition ability was evaluated as “poor,” and the results are listed in Table 2.
(중량%)(weight%) 식(1)Equation (1) 결정립크기
(㎛)
Grain size
(㎛)
20℃ 충격인성
(J)
20℃ impact toughness
(J)
-20℃ 충격인성
(J)
-20℃ impact toughness
(J)
취성파괴억제능Brittle fracture inhibition ability
실시예 1Example 1 4.14.1 3232 122122 101101 우수Great
실시예 2Example 2 4.74.7 3636 125125 107107 우수Great
실시예 3Example 3 5.45.4 3333 147147 128128 우수Great
실시예 4Example 4 11.511.5 3131 151151 131131 우수Great
실시예 5Example 5 19.319.3 3636 155155 130130 우수Great
실시예 6Example 6 19.319.3 6565 121121 104104 우수Great
실시예 7Example 7 37.837.8 2929 153153 133133 우수Great
실시예 8Example 8 53.853.8 2828 146146 125125 우수Great
실시예 9Example 9 58.858.8 3737 128128 104104 우수Great
비교예 1Comparative Example 1 -3.3-3.3 3434 117117 9595 불량error
비교예 2Comparative Example 2 0.10.1 3232 121121 9898 불량error
비교예 3Comparative Example 3 2.22.2 3737 123123 9999 불량error
비교예 4Comparative Example 4 63.863.8 2828 119119 9393 불량error
비교예 5Comparative Example 5 78.278.2 3333 9696 8383 불량error
비교예 6Comparative Example 6 52.552.5 3535 103103 8888 불량error
표 1 및 표 2를 통해 알 수 있는 바와 같이, 본 발명에 따른 실시예 1 내지 9의 경우 저온 충격인성, 특히 -20℃ 충격인성을 100J 이상으로 달성하였다. 이러한 경우, 저온 환경에 장시간 노출되더라도 저온 취성에 대한 저항성이 우수하며, 예를 들면, 배기계 플랜지 부품으로 적용하기 위한 스탬핑 가공 시 취성 파괴 억제능이 우수하다.As can be seen from Tables 1 and 2, in Examples 1 to 9 according to the present invention, low-temperature impact toughness, especially -20°C impact toughness, was achieved at 100J or more. In this case, it has excellent resistance to low-temperature embrittlement even when exposed to a low-temperature environment for a long time, and, for example, has an excellent ability to suppress brittle fracture during stamping for application as exhaust system flange parts.
본 발명에 따른 실시예 5의 경우, 추가적으로 결정립 크기를 제어하기 위해 권취온도를 다르게 수행한 것을 제외하고 실시예 6과 동일한 방법으로 제조하였다. 실시예 5와 실시예 6의 물성 측정 결과를 통해, 결정립 크기를 제어 65㎛ 이하로 제어하는 경우 추가적인 충격 인성의 향상이 있음을 확인할 수 있다.In the case of Example 5 according to the present invention, it was manufactured in the same manner as Example 6, except that the coiling temperature was performed differently to additionally control the grain size. Through the physical property measurement results of Examples 5 and 6, it can be confirmed that there is an additional improvement in impact toughness when the grain size is controlled to 65㎛ or less.
개시된 발명의 일 예에 따르면, 가공 불량률이 억제되고, 부품 실사용 시 내구성이 우수한, 충격인성이 향상된 페라이트계 스테인리스강 및 그 제조방법을 제공할 수 있다.According to an example of the disclosed invention, it is possible to provide a ferritic stainless steel with improved impact toughness and a manufacturing method thereof, which suppresses the rate of machining defects and has excellent durability during actual use of parts.

Claims (12)

  1. 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,In weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.05% 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, including the remaining Fe and inevitable impurities,
    -20℃ 충격인성이 100J 이상인, 충격인성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved impact toughness, with an impact toughness of over 100J at -20℃.
  2. 청구항 1에 있어서,In claim 1,
    아래 식 (1)의 값이 4 내지 60인, 충격인성이 향상된 페라이트계 스테인리스강.A ferritic stainless steel with improved impact toughness where the value of equation (1) below is 4 to 60.
    식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
    (식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다)(In equation (1), B, C, N and Ti mean the content (% by weight) of each element)
  3. 청구항 1에 있어서,In claim 1,
    20℃ 충격인성이 120J 이상인, 충격인성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved impact toughness, with an impact toughness of 120J or more at 20°C.
  4. 청구항 1에 있어서,In claim 1,
    평균 결정립 직경이 65㎛ 이하인, 충격인성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved impact toughness with an average grain diameter of 65㎛ or less.
  5. 청구항 1에 있어서,In claim 1,
    평균 두께가 3 내지 15mm인, 충격인성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved impact toughness, with an average thickness of 3 to 15 mm.
  6. 중량%로, C: 0.005 내지 0.015%, N: 0.005 내지 0.015%, Si: 0.01 내지 0.60%, Mn: 0.2 내지 0.9%, Cr: 10.5 내지 13.0%, Ni: 0.6 내지 1.1%, Ti: 0.05 내지 0.30%, B: 0.0005 내지 0.0070%, P: 0.04% 이하, S: 0.01% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계;In weight percent, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.2 to 0.9%, Cr: 10.5 to 13.0%, Ni: 0.6 to 1.1%, Ti: 0.05 to 0.05% Preparing a slab containing 0.30%, B: 0.0005 to 0.0070%, P: 0.04% or less, S: 0.01% or less, the remaining Fe and inevitable impurities;
    상기 슬라브를 재가열한 다음, 열연 조압연 및 사상압연하여 열연재를 제조하는 단계; 및Reheating the slab and then hot rolling and rough rolling to produce a hot rolled material; and
    상기 열연재를 700 내지 900℃에서 권취한 후 냉각하는 단계를 포함하는, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.A method of manufacturing ferritic stainless steel with improved impact toughness, comprising the step of winding the hot rolled material at 700 to 900 ° C and then cooling it.
  7. 청구항 6에 있어서,In claim 6,
    상기 슬라브는, 아래 식 (1)의 값이 4 내지 60인, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.The slab is a method of manufacturing ferritic stainless steel with improved impact toughness, wherein the value of equation (1) below is 4 to 60.
    식 (1): 10000 B - 100 ( C + N ) / TiEquation (1): 10000 B - 100 (C + N) / Ti
    (식 (1)에 있어서, B, C, N 및 Ti는 각 원소의 함량(중량%)를 의미한다)(In equation (1), B, C, N and Ti mean the content (% by weight) of each element)
  8. 청구항 6에 있어서,In claim 6,
    상기 페라이트계 스테인리스강은 -20℃ 충격인성이 100J 이상인 것인, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.A method of manufacturing ferritic stainless steel with improved impact toughness, wherein the ferritic stainless steel has an impact toughness of 100J or more at -20°C.
  9. 청구항 6에 있어서,In claim 6,
    상기 페라이트계 스테인리스강은 20℃ 충격인성이 120J 이상인 것인, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.A method of manufacturing ferritic stainless steel with improved impact toughness, wherein the ferritic stainless steel has an impact toughness of 120J or more at 20°C.
  10. 청구항 6에 있어서,In claim 6,
    상기 재가열은, 1200 내지 1280℃에서 수행하는, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.The reheating is performed at 1200 to 1280°C. A method of manufacturing ferritic stainless steel with improved impact toughness.
  11. 청구항 6에 있어서,In claim 6,
    상기 사상압연은, 900 내지 1100℃에서 수행하는, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.A method of manufacturing ferritic stainless steel with improved impact toughness, wherein the finishing rolling is performed at 900 to 1100°C.
  12. 청구항 6에 있어서,In claim 6,
    상기 페라이트계 스테인리스강은 평균 결정립 직경이 65㎛ 이하인 것인, 충격인성이 향상된 페라이트계 스테인리스강 제조방법.A method of manufacturing ferritic stainless steel with improved impact toughness, wherein the ferritic stainless steel has an average grain diameter of 65㎛ or less.
PCT/KR2023/018180 2022-12-19 2023-11-13 Ferritic stainless steel with improved impact toughness, and manufacturing method thereof WO2024136135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220178730A KR20240096251A (en) 2022-12-19 Ferritic stainless steel with improved impact toughness and manufacturing method thereof
KR10-2022-0178730 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024136135A1 true WO2024136135A1 (en) 2024-06-27

Family

ID=91589139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018180 WO2024136135A1 (en) 2022-12-19 2023-11-13 Ferritic stainless steel with improved impact toughness, and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2024136135A1 (en)

Similar Documents

Publication Publication Date Title
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2016111388A1 (en) Super high strength plated steel sheet having tensile strength of 1300 mpa or more, and manufacturing method therefor
WO2024136135A1 (en) Ferritic stainless steel with improved impact toughness, and manufacturing method thereof
WO2020111546A1 (en) Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
WO2019117432A1 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
WO2010074458A2 (en) High-strength cold rolled steel sheet having superior deep drawability and a high yield ratio, galvanized steel sheet using same, alloyed galvanized steel sheet, and method for manufacturing same
WO2022131504A1 (en) Austenitic stainless steel with improved high temperature softening resistance
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2017111436A1 (en) Ferritic stainless steel for automotive exhaust system, having improved pitting corrosion resistance and condensate corrosion resistance, and method for manufacturing same
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2019124690A1 (en) Ferritic stainless steel having improved pipe-expanding workability and method for manufacturing same
WO2019093689A1 (en) High-strength, low-toughness cold-rolled steel sheet having excellent fracture properties, and method for producing same
WO2018110866A1 (en) Ferrite-based stainless steel having improved impact toughness, and method for producing same
WO2023121133A1 (en) Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same
WO2020130257A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same
WO2022139277A1 (en) Steel for tool and manufacturing method for same
WO2024144041A1 (en) High strength cold-rolled steel sheet and manufacturing method therefor
WO2022119134A1 (en) Ferritic stainless steel with improved grain boundary erosion, and manufacturing method thereof
WO2023075287A1 (en) Ferritic stainless steel and manufacturing method therefor
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2024128574A1 (en) Austenitic stainless steel with improved hydrogen embrittlement resistance and manufacturing method therefor
WO2022124526A1 (en) Ferrite-based stainless steel having improved ridging resistance and method for manufacturing same
WO2022270814A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2020096268A1 (en) Hot-rolled steel sheet with excellent low-temperature impact toughness and manufacturing method therefor