WO2023121133A1 - Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same - Google Patents

Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same Download PDF

Info

Publication number
WO2023121133A1
WO2023121133A1 PCT/KR2022/020359 KR2022020359W WO2023121133A1 WO 2023121133 A1 WO2023121133 A1 WO 2023121133A1 KR 2022020359 W KR2022020359 W KR 2022020359W WO 2023121133 A1 WO2023121133 A1 WO 2023121133A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
corrosion resistance
formability
steel sheet
content
Prior art date
Application number
PCT/KR2022/020359
Other languages
French (fr)
Korean (ko)
Inventor
강형구
김동훈
조규진
김진석
김영준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202280084228.6A priority Critical patent/CN118414445A/en
Publication of WO2023121133A1 publication Critical patent/WO2023121133A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the content of N may be 0.001% or more and 0.02% or less.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have a coating index of 30% or more represented by Equation (2) below.
  • a hot-rolled material may be produced by hot-rolling the reheated slab, and a cold-rolled material may be manufactured by cold-rolling the hot-rolled material.
  • Example 1 0.006 0.85 0.30 0.03 0.02 9.5 0.11 0.19 0.007
  • Example 2 0.006 0.48 0.30 0.03 0.01 9.5 0.08 0.20 0.006
  • Example 3 0.007 0.78 0.28 0.02 0.15 8.8 0.04 0.17 0.006
  • Example 4 0.006 0.92 0.30 0.20 0.03 9.1 0.03 0.19 0.006
  • Example 5 0.006 0.80 0.30 0.25 0.10 9.1 0.15 0.15 0.006
  • Comparative Example 1 0.005 0.50 0.25 0.01 0.03 11.2 0.03 0.20 0.006
  • Comparative Example 2 0.006 0.48 0.45 0.03 0.35 0.0 0.01 0.21 0.009
  • Comparative Example 3 0.006 0.22 0.30 0.03 0.25 9.5 0.10 0.19 0.008
  • Comparative Example 4 0.008 0.21 0.31 0.03 0.03 8.8 0.10 0.20 0.003 Comparative Example 5 0.008 0.52 0.27 0.06 0.15 9.1 0.01 0.22 0.004 Comparative Example 6 0.006 0.
  • Equation (1) values, Equation (2) values, Ericsson values, and pit potentials are shown in Table 2 below. Equation (1) values are expressed by calculating Equation (1) below.
  • Ericsson value was measured as follows. After inserting the specimen between the upper and lower dies, the outer periphery of the specimen was fixed with a force of 20 kN. Thereafter, deformation was applied to the specimen at a speed of 5 to 20 mm/min using a spherical punch having a diameter of 20 mm. Thereafter, a punch was inserted until the specimen was fractured, and then the strain height of the specimen was measured at fracture. The higher the Ericsson value, the better the moldability.
  • Examples 1 to 5 satisfied the alloy composition, component range, and Equation (1) and Equation (2) values presented in the present invention. Accordingly, Examples 1 to 5 satisfied the Ericsson value of 4.4 mm or more and the pitting potential of 70 mV or more. That is, Examples 1 to 5 were excellent in both corrosion resistance and formability. However, Comparative Examples 1 to 6 did not satisfy the value of 2 or more in the equation (1), and thus did not satisfy the Ericsson value of 4.4 mm or more. But't That is, Comparative Examples 1 to 6 were inferior in formability.
  • FIG. 1 is a photograph of the Ericsson test results of Example 2
  • FIG. 2 is a photograph of the Ericsson test results of Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present specification discloses: a steel plate for an exhaust system steel pipe, wherein the steel plate is economical and improved in terms of corrosion resistance and formability by controlling the alloy components and production method; and a method for producing the steel plate. The steel plate which is for a steel pipe and has improved corrosion resistance and formability according to an embodiment of the present invention may include 0.001-0.02 wt% of C, 0.4-1.0 wt% of Si, 0.1-0.5 wt% of Mn, 8.0-10.0 wt% of Cr, 0-0.3 wt% of Ni (exclusive of 0), 0-0.3 wt% of Cu (exclusive of 0), 0.02-0.2 wt% of Al, 0.001-0.02 wt% of N, and 0.05-0.4 wt% of Ti, with the remainder including Fe and inevitable impurities.

Description

내식성과 성형성이 향상된 배기계 강관용 강판 및 그 제조방법Steel plate for exhaust system steel pipe with improved corrosion resistance and formability and manufacturing method thereof
본 발명은 내식성과 성형성이 향상된 배기계 강관용 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 합금성분 및 제조방법을 제어하여, 경제적이면서도 내식성과 성형성을 향상시킨 배기계 강관용 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet for exhaust system steel pipe with improved corrosion resistance and formability and a method for manufacturing the same, and more particularly, to a steel sheet for exhaust system steel pipe with improved corrosion resistance and formability while being economical by controlling alloy components and a manufacturing method, and a steel sheet for exhaust system steel pipe with improved corrosion resistance and formability, and the same It's about manufacturing methods.
자동차 등 내연기관의 배기계용 강관은 필요에 따라 굽힘, 확관 등 성형이 가해지므로 성형성이 우수할 것이 요구된다. 또한, 내연기관의 배기계용 강관은 외부에 노출되어 있으므로, 일정 수준 이상의 내식성도 요구된다.Steel pipes for exhaust systems of internal combustion engines, such as automobiles, are subject to molding, such as bending and expansion, as needed, so they are required to have excellent formability. In addition, since the steel pipe for an exhaust system of an internal combustion engine is exposed to the outside, a certain level of corrosion resistance is also required.
내식성을 확보하기 위한 가장 일반적인 방법은 스테인리스강을 사용하는 것이다. 배기계용 스테인리스강은 Cr을 최소 10.5 중량% 이상 함유하고 있는 페라이트계 스테인리스강이 활용된다. 그러나 상기 스테인리스강은 Cr 함유량이 비교적 많으므로, 가격경쟁력이 떨어진다. 따라서, Cr 함량을 낮춘 배기계 강관용 스테인리스강에 대한 필요성이 대두되고 있다.The most common way to ensure corrosion resistance is to use stainless steel. Stainless steel for the exhaust system is ferritic stainless steel containing at least 10.5% by weight of Cr. However, since the stainless steel has a relatively high Cr content, price competitiveness is poor. Therefore, there is a need for stainless steel for exhaust system steel pipes with a reduced Cr content.
그러나, Cr 햠량을 낮추면, 내식성이 열화되는 문제가 있다. 또한, 용접부의 인성이 떨어지는 문제가 있다. 따라서, Cr을 저감하면서도, 내식성 및 성형성이 우수한 배기계용 강판을 확보하기 위한 방안이 요구되고 있는 바이다.However, when the amount of Cr is lowered, there is a problem that corrosion resistance deteriorates. In addition, there is a problem that the toughness of the welded part is poor. Therefore, there is a demand for a method for securing a steel sheet for an exhaust system having excellent corrosion resistance and formability while reducing Cr.
상술한 문제를 해결하기 위한 본 발명의 목적은, Cr 함량을 저감하여 경제적이면서도, 내식성과 성형성이 향상된 배기계용 강판 및 그 제조방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a steel sheet for an exhaust system that is economical by reducing the Cr content and has improved corrosion resistance and formability, and a manufacturing method thereof.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족할 수 있다.Steel sheet for steel pipe with improved corrosion resistance and formability according to an embodiment of the present invention, in weight%, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more and 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu: more than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: 0.05% or more 0.4% or less, including the remaining Fe and unavoidable impurities, the texture index represented by the formula (1) below may satisfy 2 or more and 5.5 or less.
식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다.In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 아래 식 (2)로 표시되는 피막지수가 30% 이상일 수 있다.In addition, the steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have a coating index of 30% or more represented by the following formula (2).
식 (2): Simax + Almax Equation (2): Si max + Al max
상기 식 (2)에서, Simax 및 Almax는 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 햠량의 최댓값을 의미한다.In the above formula (2), Si max and Al max mean the maximum values of Si and Al content measured in a range of 20 nm from the steel sheet surface.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 에릭슨 값이 4.4mm 이상일 수 있다.In addition, the steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have an Ericsson value of 4.4 mm or more.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 공식전위가 70mV 이상일 수 있다.In addition, the steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have a pitting potential of 70 mV or more.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법은, 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족하는 슬라브를 제조하는 단계; 상기 슬라브를 1150 내지 1240℃로 재가열하는 단계; 상기 재가열한 슬라브를 열간압연하여 열간압연재를 제조하는 단계; 상기 열간압연재를 냉간압연하여 냉간압연재를 제조하는 단계; 상기 냉간압연재를 900 내지 1020℃로 소둔 열처리하는 단계를 포함할 수 있다.In addition, in the method for manufacturing a steel sheet for a steel pipe with improved corrosion resistance and formability according to an embodiment of the present invention, in weight%, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu: more than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Preparing a slab containing Ti: 0.05% or more and 0.4% or less, the remainder Fe and unavoidable impurities, and having a texture index represented by Equation (1) below that satisfies 2 or more and 5.5 or less; Reheating the slab to 1150 to 1240 ° C; preparing a hot-rolled material by hot-rolling the reheated slab; Cold-rolling the hot-rolled material to produce a cold-rolled material; It may include the step of annealing heat treatment of the cold-rolled material at 900 to 1020 ℃.
식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다.In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법에서, 상기 열간압연재는, 두께가 2.5 내지 4.5mm일 수 있다.In addition, in the method for manufacturing a steel sheet for a steel pipe having improved corrosion resistance and formability according to an embodiment of the present invention, the hot-rolled material may have a thickness of 2.5 to 4.5 mm.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법에서, 상기 냉간압연재는, 두께가 0.5 내지 2.0mm일 수 있다.In addition, in the method for manufacturing a steel sheet for a steel pipe having improved corrosion resistance and formability according to an embodiment of the present invention, the cold-rolled material may have a thickness of 0.5 to 2.0 mm.
본 발명의 일 실시예에 따르면, Cr 함량을 저감하여 경제적이면서도, 내식성과 성형성이 향상된 배기계용 강판 및 그 제조방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a steel sheet for an exhaust system that is economical by reducing the Cr content and has improved corrosion resistance and formability, and a manufacturing method thereof.
도 1은, 실시예 2의 에릭슨 시험 결과를 촬영한 사진이다.1 is a photograph taken of the Ericsson test results of Example 2.
도 2는, 비교예 2의 에릭슨 시험 결과를 촬영한 사진이다.Figure 2 is a photograph taken of the Ericsson test results of Comparative Example 2.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족할 수 있다.Steel sheet for steel pipe with improved corrosion resistance and formability according to an embodiment of the present invention, in weight%, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more and 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu: more than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: 0.05% or more 0.4% or less, including the remaining Fe and unavoidable impurities, the texture index represented by the formula (1) below may satisfy 2 or more and 5.5 or less.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the spirit of the present invention to those skilled in the art. The present invention may be embodied in other forms without being limited to only the embodiments presented herein. In the drawings, in order to clarify the present invention, illustration of parts irrelevant to the description may be omitted, and the size of components may be slightly exaggerated to aid understanding.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
이하, 본 발명의 실시예에서의 합금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the alloy component content in the embodiments of the present invention will be described. Hereinafter, unless otherwise specified, units are % by weight.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함할 수 있다.Steel sheet for steel pipe with improved corrosion resistance and formability according to an embodiment of the present invention, in weight%, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more and 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu: more than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: 0.05% or more 0.4% or less, the remaining Fe and unavoidable impurities may be included.
C(탄소)의 함량은 0.001% 이상 0.02% 이하일 수 있다.The content of C (carbon) may be 0.001% or more and 0.02% or less.
C는 제품의 강도를 확보하기 위해 첨가되는 원소이다. 이를 고려하여, C는 0.001% 이상 첨가될 수 있다. 그러나, C의 함량이 과다한 경우에는, 용접부에서 Cr과 화합물을 형성함으로써 강판의 내식성을 떨어뜨릴 수 있다. 이를 고려하여, C 함량의 상한은 0.02%로 제한될 수 있다. 바람직하게는, C의 함량은 0.005% 이상 0.01% 이하일 수 있다.C is an element added to ensure product strength. Considering this, C may be added in an amount of 0.001% or more. However, when the content of C is excessive, corrosion resistance of the steel sheet may be deteriorated by forming a compound with Cr at the welded portion. Considering this, the upper limit of the C content may be limited to 0.02%. Preferably, the content of C may be 0.005% or more and 0.01% or less.
Si(실리콘)의 함량은 0.4% 이상 1.0% 이하일 수 있다.The content of Si (silicon) may be 0.4% or more and 1.0% or less.
Si은 강의 내식성과 성형성을 동시에 향상시킬 수 있게 하는 주요 원소이다. 이를 고려하여, Si는 0.4% 이상 첨가될 수 있다. 그러나, Si의 함량이 과다한 경우에는, 강도가 지나치게 높아지고 성형성이 떨어질 수 있다. 이를 고려하여, Si 함량의 상한은 1.0%로 제한될 수 있다. 바람직하게는, Si의 함량은 0.5% 이상 0.8% 이하일 수 있다.Si is a major element that can simultaneously improve corrosion resistance and formability of steel. Considering this, Si may be added in an amount of 0.4% or more. However, when the content of Si is excessive, strength may be excessively high and moldability may be deteriorated. Considering this, the upper limit of the Si content may be limited to 1.0%. Preferably, the content of Si may be 0.5% or more and 0.8% or less.
Mn(망간)의 함량은 0.1% 이상 0.5% 이하일 수 있다.The content of Mn (manganese) may be 0.1% or more and 0.5% or less.
Mn은 경화능을 향상시키고, 효과적인 산세를 위해 첨가될 수 있는 원소이다. 이를 고려하여, Mn은 0.1% 이상 첨가될 수 있다. 그러나, Mn의 함량이 과다한 경우에는, 용접부의 마르텐사이트상 형성을 촉진시킴으로써 성형성을 떨어뜨릴 수 있다. 이를 고려하여, Mn 함량의 상한은 0.5%로 제한될 수 있다. 바람직하게는, Mn의 함량은 0.2% 이상 0.4% 이하일 수 있다.Mn is an element that can be added for improving hardenability and effective pickling. Considering this, Mn may be added in an amount of 0.1% or more. However, when the content of Mn is excessive, formability may be deteriorated by accelerating the formation of martensitic phase in the weld zone. Considering this, the upper limit of the Mn content may be limited to 0.5%. Preferably, the content of Mn may be 0.2% or more and 0.4% or less.
Cr(크롬)의 함량은 8.0% 이상 10.0% 이하일 수 있다.The content of Cr (chromium) may be 8.0% or more and 10.0% or less.
본 발명에서 Cr은 최소한의 내식성 및 성형성 확보를 위해 8.0% 이상 첨가될 수 있다. 그러나, Cr의 함량이 과도한 경우에는, 저원가를 추구하는 본 발명의 취지에서 벗어나게 된다. 이를 고려하여, Cr 함량의 상한은 10.0%로 제한될 수 있다. 바람직하게는, Cr의 함량은 8.5% 이상 9.5% 이하일 수 있다.In the present invention, Cr may be added in an amount of 8.0% or more to secure minimum corrosion resistance and formability. However, if the content of Cr is excessive, it is out of the spirit of the present invention to pursue low cost. Considering this, the upper limit of the Cr content may be limited to 10.0%. Preferably, the Cr content may be 8.5% or more and 9.5% or less.
Ni(니켈)의 함량은 0% 초과 0.3% 이하일 수 있다.The content of Ni (nickel) may be more than 0% and 0.3% or less.
Ni은 용접부의 마르텐사이트상 형성을 촉진시킴으로써 성형성을 떨어뜨릴 수 있는 원소이다. 이를 고려하여, Ni 함량의 상한은 0.3%로 제한될 수 있다.Ni is an element that can deteriorate formability by accelerating the formation of martensitic phase in the weld zone. Considering this, the upper limit of the Ni content may be limited to 0.3%.
Cu(구리)의 함량은 0% 초과 0.3% 이하일 수 있다.The content of Cu (copper) may be greater than 0% and 0.3% or less.
Cu는 Ni와 마찬가지로, 마르텐사이트상 형성을 촉진시킴으로써 성형성을 떨어뜨릴 수 있는 원소이다. 이를 고려하여, Cu 함량의 상한은 0.3%로 제한될 수 있다. 바람직하게는, Cu의 함량은 0% 초과 0.28% 이하일 수 있다.Cu, like Ni, is an element that can deteriorate formability by accelerating martensite phase formation. Considering this, the upper limit of the Cu content may be limited to 0.3%. Preferably, the content of Cu may be greater than 0% and less than or equal to 0.28%.
Al(알루미늄)의 함량은 0.02% 이상 0.2% 이하일 수 있다.The content of Al (aluminum) may be 0.02% or more and 0.2% or less.
Al은 강의 내식성과 성형성을 동시에 향상시킬 수 있는 원소이다. 이를 고려하여, Al은 0.02% 이상 첨가될 수 있다. 그러나, Al의 함량의 과다한 경우에는, 용강 내 합금성분의 제어가 어려워질 수 있다. 이를 고려하여, Al 함량의 상한은 0.2%로 제한될 수 있다. 바람직하게는, Al의 함량은 0.03% 이상 0.1% 이하일 수 있다.Al is an element that can simultaneously improve corrosion resistance and formability of steel. Considering this, Al may be added in an amount of 0.02% or more. However, when the Al content is excessive, it may be difficult to control the alloy components in molten steel. Considering this, the upper limit of the Al content may be limited to 0.2%. Preferably, the content of Al may be 0.03% or more and 0.1% or less.
N(질소)의 함량은 0.001% 이상 0.02% 이하일 수 있다.The content of N (nitrogen) may be 0.001% or more and 0.02% or less.
N는 C와 마찬가지로, 강판의 강도를 향상시키는데 효과적인 원소이다. 이를 고려하여, N은 0.001% 이상 첨가될 수 있다. 그러나, N의 함량이 과다한 경우에는, 용접부에서 Cr과 화합물을 형성함으로써 강판의 내식성을 떨어뜨릴 수 있다. 이를 고려하여, N 함량의 상한은 0.02%로 제한될 수 있다. 바람직하게는, N의 함량은 0.005% 이상 0.01% 이하일 수 있다.N, like C, is an element effective in improving the strength of a steel sheet. Considering this, N may be added in an amount of 0.001% or more. However, when the N content is excessive, corrosion resistance of the steel sheet may be deteriorated by forming a compound with Cr at the welded portion. Considering this, the upper limit of the N content may be limited to 0.02%. Preferably, the N content may be 0.005% or more and 0.01% or less.
Ti(티타늄)의 함량은 0.05% 이상 0.4% 이하일 수 있다.The content of Ti (titanium) may be 0.05% or more and 0.4% or less.
Ti은 Cr과 C 및 N의 화합물 형성을 방지하여 내식성을 확보할 수 있게 하는데 효과적인 원소이다. 이를 고려하여 Ti은 0.05% 이상 첨가될 수 있다. 그러나, Ti의 함량이 과도한 경우에는, 강의 인성이 떨어지므로 성형성이 열위해질 수 있다. 이를 고려하여, Ti 함량의 상한은 0.4%로 제한될 수 있다. 바람직하게는, Ti의 함량은 0.1% 이상 0.3% 이하일 수 있다.Ti is an element effective in securing corrosion resistance by preventing the formation of a compound of Cr, C, and N. Considering this, Ti may be added by 0.05% or more. However, when the content of Ti is excessive, formability may be deteriorated because the toughness of the steel is lowered. Considering this, the upper limit of the Ti content may be limited to 0.4%. Preferably, the content of Ti may be 0.1% or more and 0.3% or less.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, not all of them are specifically mentioned in this specification.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족할 수 있다.The steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may satisfy a texture index of 2 or more and 5.5 or less represented by Equation (1) below.
식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다.In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component.
강관용 강판의 Cr 함량을 저감하면, 강관 용접 시 고온을 경유하면서 오스테나이트상이 형성되고, 상온으로 식으면서 마르텐사이트상으로 상변태가 발생할 수 있다. 따라서, 강관용 강판의 Cr 함량을 저감하면, 용접부의 인성이 열화됨으로써, 강관을 굽히거나 확대할 때 균열이 쉽게 발생할 수 있다. When the Cr content of the steel sheet for steel pipes is reduced, an austenite phase is formed while passing through a high temperature during welding of the steel pipe, and a phase transformation into a martensite phase may occur while cooling to room temperature. Therefore, when the Cr content of the steel sheet for steel pipes is reduced, the toughness of the welded portion is deteriorated, and cracks may easily occur when the steel pipe is bent or expanded.
용접부의 마르텐사이트상 생성을 방지하기 위해서는 합금성분 제어가 필요하다. 특히, 강판 제조에 사용되는 용강에는 Ni, Cu 및 Mn등의 불순물이 첨가되기 쉬운데, 상기 불순물은 용강에 사용되는 스크랩 등에 기인하게 되므로, 상기 불순물의 함량을 제어하는 것이 필요하다.In order to prevent the formation of martensite phase in the weld zone, it is necessary to control the alloy composition. In particular, impurities such as Ni, Cu, and Mn are easily added to molten steel used for manufacturing steel sheets. Since the impurities are caused by scraps used in molten steel, it is necessary to control the content of the impurities.
본 발명에서는, Si 및 Al과 함께, 용강 내 불순물로 작용하는 Ni, Cu 및 Mn을 제어할 수 있는 조직지수로써, 상기 식 (1)을 개시한다.In the present invention, the formula (1) is disclosed as a texture index capable of controlling Ni, Cu, and Mn acting as impurities in molten steel along with Si and Al.
식 (1)의 값이 2 미만인 경우에는, 용접부 마르텐사이트상 생성을 효과적으로 억제하기 어려우므로, 강판의 성형성이 떨어질 수 있다. 그러나, 식 (1)의 값이 5.5를 초과하는 경우에는, 강의 강도가 지나치게 높아짐으로써 강판의 성형성이 떨어질 수 있다.When the value of Equation (1) is less than 2, it is difficult to effectively suppress the generation of martensitic phase in the weld zone, and thus the formability of the steel sheet may be deteriorated. However, when the value of formula (1) exceeds 5.5, the formability of the steel sheet may deteriorate due to excessively high strength of the steel.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 아래 식 (2)로 표시되는 피막지수가 30% 이상일 수 있다.The steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have a coating index of 30% or more represented by Equation (2) below.
식 (2): Simax + Almax Equation (2): Si max + Al max
상기 식 (2)에서, Simax 및 Almax는 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 햠량의 최댓값을 의미한다.In the above formula (2), Si max and Al max mean the maximum values of Si and Al content measured in a range of 20 nm from the steel sheet surface.
Cr의 함량을 저감하면서도 내식성을 확보하기 위해서는, 강판 표면에 Si 및 Al 피막을 형성시키는 것이 효과적이다. 강판 표면에 Si 및 Al 피막을 형성시키기 위해서는, 강판 표면의 Si 및 Al 함량이 높은 것이 유리하다.In order to secure corrosion resistance while reducing the Cr content, it is effective to form a film of Si and Al on the surface of the steel sheet. In order to form a film of Si and Al on the surface of the steel sheet, it is advantageous that the content of Si and Al on the surface of the steel sheet is high.
본 발명에서는, 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 함량의 최댓값의 합을 20% 이상으로 제어함으로써, 충분한 내식성을 확보할 수 있다.In the present invention, sufficient corrosion resistance can be secured by controlling the sum of the maximum values of Si and Al contents measured in the range of 20 nm from the surface of the steel sheet to 20% or more.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판은, 합금조성 및 제조방법을 제어함으로써, 에릭슨 값이 4.4mm 이상일 수 있고, 공식전위가 70mV 이상일 수 있다.The steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention may have an Ericsson value of 4.4 mm or more and a pitting potential of 70 mV or more by controlling the alloy composition and manufacturing method.
다음으로, 본 발명의 다른 일 측면에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법에 대하여 설명한다.Next, a method for manufacturing a steel sheet for a steel pipe having improved corrosion resistance and formability according to another aspect of the present invention will be described.
본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법은, 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족하는 슬라브를 제조하는 단계; 상기 슬라브를 1150 내지 1240℃로 재가열하는 단계; 상기 재가열한 슬라브를 열간압연하여 열간압연재를 제조하는 단계; 상기 열간압연재를 냉간압연하여 냉간압연재를 제조하는 단계; 상기 냉간압연재를 900 내지 1020℃로 소둔 열처리하는 단계를 포함할 수 있다.In the method for manufacturing a steel sheet for steel pipes with improved corrosion resistance and formability according to an embodiment of the present invention, in weight%, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more 0.5 % or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu: more than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: Preparing a slab containing 0.05% or more and 0.4% or less, the remaining Fe and unavoidable impurities, and having a texture index represented by Equation (1) below that satisfies 2 or more and 5.5 or less; Reheating the slab to 1150 to 1240 ° C; preparing a hot-rolled material by hot-rolling the reheated slab; Cold-rolling the hot-rolled material to produce a cold-rolled material; It may include the step of annealing heat treatment of the cold-rolled material at 900 to 1020 ℃.
식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다.In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component.
상기 각 합금조성의 성분범위 및 식 (1)의 수치 한정 이유는 상술한 바와 같으며, 이하 각 제조단계에 대하여 보다 상세히 설명한다.The component range of each alloy composition and the reason for limiting the numerical value of Formula (1) are as described above, and each manufacturing step will be described in detail below.
상기 합금조성 및 식 (1)을 만족하는 슬라브를 제조한 후, 일련의 재가열, 열간압연, 냉간압연 및 소둔 열처리하는 단계를 거칠 수 있다.After manufacturing a slab satisfying the alloy composition and formula (1), a series of reheating, hot rolling, cold rolling, and annealing heat treatment may be performed.
먼저, 상기 슬라브를 1150 내지 1240℃로 재가열할 수 있다.First, the slab may be reheated to 1150 to 1240 ° C.
재가열 온도가 낮을 경우에는, 슬라브 제조 중 생성된 조대한 석출물들을 재분해하기 어려울 수 있다. 이를 고려하여, 재가열 온도는 1150℃이상일 수 있다. 그러나, 재가열 온도가 지나치게 높을 경우에는, 슬라브 표면의 Si이 과도하게 산화되어, 산세 공정에서 제거될 수 있다. 따라서, 재가열 온도가 지나치게 높을 경우에는, 강판 표면의 Si 함량이 낮아지게 되어 내식성이 떨어질 수 있다. 이를 고려하여, 재가열 온도의 상한은 1240℃로 제한될 수 있다. 바람직하게는, 재가열 온도는 1200℃ 이상 1240℃이하일 수 있다.When the reheating temperature is low, it may be difficult to re-decompose the coarse precipitates generated during slab manufacturing. Considering this, the reheating temperature may be 1150°C or higher. However, when the reheating temperature is too high, Si on the surface of the slab is excessively oxidized and may be removed in the pickling process. Therefore, when the reheating temperature is too high, the Si content on the surface of the steel sheet is lowered, and thus corrosion resistance may be deteriorated. Considering this, the upper limit of the reheating temperature may be limited to 1240°C. Preferably, the reheating temperature may be 1200 ° C or more and 1240 ° C or less.
상기 재가열한 슬라브를 열간압연하여 열간압연재를 제조하고, 상기 열간압연재를 냉간압연하여 냉간압연재를 제조할 수 있다.A hot-rolled material may be produced by hot-rolling the reheated slab, and a cold-rolled material may be manufactured by cold-rolling the hot-rolled material.
상기 냉간압연재는 900 내지 1020℃로 소둔 열처리할 수 있다.The cold-rolled material may be annealed and heat treated at 900 to 1020 ° C.
소둔 열처리 온도가 낮을 경우에는, 냉간압연 가공된 조직에서의 재결정이 부족하여, 가공성이 떨어질 수 있다. 이를 고려하여, 소둔 열처리 온도는 900℃ 이상일 수 있다. 그러나, 소둔 열처리 온도가 지나치게 높을 경우에는, 재가열 공정에서와 마찬가지로, 강 표면의 Si 함량이 줄어들게 되어 내식성이 떨어질 수 있다. 이를 고려하여, 소둔 열처리 온도의 상한은 1020℃로 제한될 수 있다. 바람직하게는, 소둔 열처리 온도는 920℃ 이상 980℃ 이하일 수 있다.When the annealing heat treatment temperature is low, recrystallization in the cold-rolled structure is insufficient, and workability may be deteriorated. In consideration of this, the annealing heat treatment temperature may be 900 °C or more. However, when the annealing heat treatment temperature is too high, as in the reheating process, the Si content of the steel surface is reduced, and thus corrosion resistance may be deteriorated. Considering this, the upper limit of the annealing heat treatment temperature may be limited to 1020 °C. Preferably, the annealing heat treatment temperature may be 920 ° C or more and 980 ° C or less.
또한, 본 발명의 일 실시예에 따른 내식성과 성형성이 향상된 강관용 강판의 제조방법에서, 상기 열간압연재는, 두께가 2.5 내지 4.5mm일 수 있고, 상기 냉간압연재는, 두께가 0.5 내지 2.0mm일 수 있다. 다만, 상기 열간압연재 및 냉간압연재의 두께는 이에 한정되지 않고, 목적에 따라 다양한 두께로 제조될 수 있다.In addition, in the method for manufacturing a steel sheet for steel pipes having improved corrosion resistance and formability according to an embodiment of the present invention, the hot-rolled material may have a thickness of 2.5 to 4.5 mm, and the cold-rolled material may have a thickness of 0.5 to 2.0 mm. can be However, the thickness of the hot-rolled material and the cold-rolled material is not limited thereto, and may be manufactured in various thicknesses depending on the purpose.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for exemplifying the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
{실시예}{Example}
아래 표 1에 나타낸 다양한 합금 성분범위에 대하여, 슬라브를 제조하고, 1240℃로 재가열한 후, 열간압연하여 3mm 두께의 열간압연재를 제조했다. 다음으로, 상기 열간압연재를 냉간압연하여 1mm 두께의 냉간압연제를 제조한 후, 980℃에서 소둔 열처리한 후, 산세 처리했다.For the various alloy composition ranges shown in Table 1 below, slabs were prepared, reheated to 1240 ° C, and then hot rolled to produce a 3 mm thick hot rolled material. Next, the hot-rolled material was cold-rolled to prepare a cold-rolled product having a thickness of 1 mm, followed by annealing heat treatment at 980° C. and pickling.
구분division 합금성분alloy component
CC SiSi MnMn NiNi CuCu CrCr AlAl TiTi NN
실시예1Example 1 0.006 0.006 0.85 0.85 0.30 0.30 0.03 0.03 0.02 0.02 9.5 9.5 0.11 0.11 0.19 0.19 0.007 0.007
실시예2Example 2 0.006 0.006 0.48 0.48 0.30 0.30 0.03 0.03 0.01 0.01 9.5 9.5 0.08 0.08 0.20 0.20 0.006 0.006
실시예3Example 3 0.007 0.007 0.78 0.78 0.28 0.28 0.02 0.02 0.15 0.15 8.8 8.8 0.04 0.04 0.17 0.17 0.006 0.006
실시예4Example 4 0.006 0.006 0.92 0.92 0.30 0.30 0.20 0.20 0.03 0.03 9.1 9.1 0.03 0.03 0.19 0.19 0.006 0.006
실시예5Example 5 0.006 0.006 0.80 0.80 0.30 0.30 0.25 0.25 0.10 0.10 9.1 9.1 0.15 0.15 0.15 0.15 0.006 0.006
비교예1Comparative Example 1 0.005 0.005 0.50 0.50 0.25 0.25 0.01 0.01 0.03 0.03 11.2 11.2 0.03 0.03 0.20 0.20 0.006 0.006
비교예2Comparative Example 2 0.006 0.006 0.48 0.48 0.45 0.45 0.03 0.03 0.35 0.35 0.0 0.0 0.01 0.01 0.21 0.21 0.009 0.009
비교예3Comparative Example 3 0.006 0.006 0.22 0.22 0.30 0.30 0.03 0.03 0.25 0.25 9.5 9.5 0.10 0.10 0.19 0.19 0.008 0.008
비교예4Comparative Example 4 0.008 0.008 0.21 0.21 0.31 0.31 0.03 0.03 0.03 0.03 8.8 8.8 0.10 0.10 0.20 0.20 0.003 0.003
비교예5Comparative Example 5 0.008 0.008 0.52 0.52 0.27 0.27 0.06 0.06 0.15 0.15 9.1 9.1 0.01 0.01 0.22 0.22 0.004 0.004
비교예6Comparative Example 6 0.006 0.006 0.26 0.26 0.29 0.29 0.02 0.02 0.03 0.03 8.9 8.9 0.01 0.01 0.17 0.17 0.006 0.006
비교예7Comparative Example 7 0.006 0.006 0.50 0.50 0.30 0.30 0.23 0.23 0.28 0.28 9.2 9.2 0.10 0.10 0.19 0.19 0.006 0.006
아래 표 2에는 식 (1) 값, 식 (2) 값, 에릭슨 값 및 공식전위를 나타냈다.식 (1) 값은 아래 식 (1)을 계산하여 나타냈다.Equation (1) values, Equation (2) values, Ericsson values, and pit potentials are shown in Table 2 below. Equation (1) values are expressed by calculating Equation (1) below.
식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다.In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component.
식 (2) 값은 아래 식 (2)를 계산하여 나타냈다.The value of Equation (2) was expressed by calculating Equation (2) below.
식 (2): Simax + Almax Equation (2): Si max + Al max
상기 식 (2)에서, Simax 및 Almax는 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 햠량의 최대값을 의미한다.In Equation (2), Si max and Al max mean the maximum values of Si and Al content measured in a range of 20 nm from the surface of the steel sheet.
한편, 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 함량은, 글로우 방전 분광 분석법(Glow discharge mass spectrometry)을 활용하였으며, 업계나 학계에서 통용되는 다른 장비를 사용하여 측정할 수 있다.On the other hand, the Si and Al contents measured in the range of 20 nm from the surface of the steel sheet were measured using glow discharge mass spectrometry, and may be measured using other equipment commonly used in industry or academia.
에릭슨 값은, 다음과 같이 측정하였다. 시편을 상부 다이와 하부 다이 사이에 삽입한 후, 상기 시편의 외주부를 20kN의 힘으로 고정하였다. 이후, 20mm의 직경을 가지는 구형 펀치를 사용하여 5 내지 20mm/min의 속도로 상기 시편에 변형을 가해주었다. 이후, 상기 시편이 파단될 때까지 펀치를 삽입한 뒤, 파단 시 시편의 변형 높이를 측정하는 방식으로 수행하였다. 에릭슨 값이 클수록 성형성이 우수함을 의미한다.Ericsson value was measured as follows. After inserting the specimen between the upper and lower dies, the outer periphery of the specimen was fixed with a force of 20 kN. Thereafter, deformation was applied to the specimen at a speed of 5 to 20 mm/min using a spherical punch having a diameter of 20 mm. Thereafter, a punch was inserted until the specimen was fractured, and then the strain height of the specimen was measured at fracture. The higher the Ericsson value, the better the moldability.
공식전위는, 정전위기(Potentiostat) 장비를 이용하여 측정했다. 이때, 시편을 NaCl 용액에 침지하고, 20mV/min의 전압을 인가하였을 때, 전류가 100㎂에 도달하는 전위 (pitting potential)를 측정한 값을 나타냈다. 여기서, 상기 NaCl용액의 온도는 30℃이고, 농도는 0.5% 로 설정했다. 한편, 공식전위 값이 높을수록 내식성이 우수함을 의미한다.The pitting potential was measured using a potentiostat equipment. At this time, when the specimen was immersed in the NaCl solution and a voltage of 20 mV/min was applied, the measured value of the pitting potential at which the current reached 100 ㎂ was shown. Here, the temperature of the NaCl solution was set to 30 °C and the concentration was set to 0.5%. On the other hand, the higher the pitting potential value, the better the corrosion resistance.
구분division 식 (1)Equation (1) 식 (2)(%)Formula (2) (%) 에릭슨 값(mm)Ericsson value (mm) 공식전위(mV)Formal potential (mV)
실시예1Example 1 5.4 5.4 48.9 48.9 4.5 4.5 105 105
실시예2Example 2 3.4 3.4 32.3 32.3 6.2 6.2 70 70
실시예3Example 3 2.8 2.8 39.3 39.3 5.9 5.9 85 85
실시예4Example 4 2.6 2.6 44.8 44.8 5.3 5.3 97 97
실시예5Example 5 2.2 2.2 50.3 50.3 4.4 4.4 108 108
비교예1Comparative Example 1 0.8 0.8 22.9 22.9 0.5 0.5 49 49
비교예2Comparative Example 2 1.0 1.0 19.2 19.2 0.5 0.5 41 41
비교예3Comparative Example 3 1.9 1.9 18.7 18.7 0.9 0.9 40 40
비교예4Comparative Example 4 1.6 1.6 24.7 24.7 1.5 1.5 53 53
비교예5Comparative Example 5 1.4 1.4 12.8 12.8 1.1 1.1 28 28
비교예6Comparative Example 6 1.1 1.1 32.0 32.0 0.8 0.8 69 69
표 2를 참고하면, 실시예 1 내지 5는, 본 발명에서 제시하는 합금조성, 성분범위, 식 (1) 및 식 (2) 값을 만족했다. 따라서, 실시예 1 내지 5는, 에릭슨 값이 4.4mm 이상, 공식전위가 70mV 이상을 만족했다. 즉, 실시예 1 내지 5는, 내식성과 성형성이 모두 우수했다.그러나, 비교예 1 내지 6은, 식 (1) 값이 2 이상을 만족하지 못했으므로, 에릭슨 값이 4.4mm 이상을 만족하지 못했다. 즉, 비교예 1 내지 6은 성형성이 열위했다.Referring to Table 2, Examples 1 to 5 satisfied the alloy composition, component range, and Equation (1) and Equation (2) values presented in the present invention. Accordingly, Examples 1 to 5 satisfied the Ericsson value of 4.4 mm or more and the pitting potential of 70 mV or more. That is, Examples 1 to 5 were excellent in both corrosion resistance and formability. However, Comparative Examples 1 to 6 did not satisfy the value of 2 or more in the equation (1), and thus did not satisfy the Ericsson value of 4.4 mm or more. couldn't That is, Comparative Examples 1 to 6 were inferior in formability.
또한, 비교예 1 내지 5는, 식 (2) 값이 30% 이상을 만족하지 못했으므로, 공식전위 값이 70mV 이상을 만족하지 못했다. 즉, 비교예 1 내지 5는 내식성이 열위했다.In Comparative Examples 1 to 5, the value of Equation (2) did not satisfy 30% or more, so the pitting potential value did not satisfy 70 mV or more. That is, Comparative Examples 1 to 5 were inferior in corrosion resistance.
도 1은, 실시예 2의 에릭슨 시험 결과를 촬영한 사진이고, 도 2는, 비교예 2의 에릭슨 시험 결과를 촬영한 사진이다.1 is a photograph of the Ericsson test results of Example 2, and FIG. 2 is a photograph of the Ericsson test results of Comparative Example 2.
도 1 및 도 2를 참고하면, 본 발명의 일 예에 따른 배기계 강관용 강판의 성형성이 매우 우수하다는 것을 알 수 있다.Referring to FIGS. 1 and 2 , it can be seen that the formability of the steel sheet for an exhaust system steel pipe according to an embodiment of the present invention is very excellent.
본 발명의 일 실시예에 따르면, Cr 함량을 저감하여 경제적이면서도, 내식성과 성형성이 향상된 배기계용 강판 및 그 제조방법을 제공할 수 있는 바, 산업상 이용가능성이 인정된다.According to one embodiment of the present invention, it is possible to provide a steel sheet for an exhaust system that is economical by reducing the Cr content and has improved corrosion resistance and formability, and a method for manufacturing the same, and industrial applicability is recognized.

Claims (7)

  1. 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,In % by weight, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more and 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu : More than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: 0.05% or more and 0.4% or less, the remainder including Fe and unavoidable impurities,
    아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족하는, 내식성과 성형성이 향상된 강관용 강판:Steel sheet for steel pipes with improved corrosion resistance and formability that satisfies 2 or more and 5.5 or less in the structure index represented by the formula (1) below:
    식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
    (상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다).(In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component).
  2. 청구항 1에 있어서,The method of claim 1,
    아래 식 (2)로 표시되는 피막지수가 30% 이상인, 내식성과 성형성이 향상된 강관용 강판:Steel sheet for steel pipes with improved corrosion resistance and formability, having a film index of 30% or more, represented by the formula (2) below:
    식 (2): Simax + Almax Equation (2): Si max + Al max
    (상기 식 (2)에서, Simax 및 Almax는 강판 표면으로부터 20nm 범위에서 측정한 Si 및 Al 햠량의 최댓값을 의미한다).(In the above formula (2), Si max and Al max mean the maximum values of Si and Al content measured in the range of 20 nm from the steel sheet surface).
  3. 청구항 1에 있어서,The method of claim 1,
    에릭슨 값이 4.4mm 이상인, 내식성과 성형성이 향상된 강관용 강판.Steel sheet for steel pipes with an Ericsson value of 4.4 mm or more and improved corrosion resistance and formability.
  4. 청구항 1에 있어서,The method of claim 1,
    공식전위가 70mV 이상인, 내식성과 성형성이 향상된 강관용 강판.Steel sheet for steel pipes with improved corrosion resistance and formability with a pitting potential of 70mV or more.
  5. 중량%로, C: 0.001% 이상 0.02% 이하, Si: 0.4% 이상 1.0% 이하, Mn: 0.1% 이상 0.5% 이하, Cr: 8.0% 이상 10.0% 이하, Ni: 0% 초과 0.3% 이하, Cu: 0% 초과 0.3% 이하, Al: 0.02% 이상 0.2% 이하, N: 0.001% 이상 0.02% 이하, Ti: 0.05% 이상 0.4% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 아래 식 (1)로 표시되는 조직지수가 2 이상 5.5 이하를 만족하는 슬라브를 제조하는 단계;In % by weight, C: 0.001% or more and 0.02% or less, Si: 0.4% or more and 1.0% or less, Mn: 0.1% or more and 0.5% or less, Cr: 8.0% or more and 10.0% or less, Ni: more than 0% and 0.3% or less, Cu : More than 0% and 0.3% or less, Al: 0.02% or more and 0.2% or less, N: 0.001% or more and 0.02% or less, Ti: 0.05% or more and 0.4% or less, including the remainder Fe and unavoidable impurities, expressed by the following formula (1) Manufacturing a slab that satisfies a displayed tissue index of 2 or more and 5.5 or less;
    상기 슬라브를 1150 내지 1240℃로 재가열하는 단계; Reheating the slab to 1150 to 1240 ° C;
    상기 재가열한 슬라브를 열간압연하여 열간압연재를 제조하는 단계; preparing a hot-rolled material by hot-rolling the reheated slab;
    상기 열간압연재를 냉간압연하여 냉간압연재를 제조하는 단계; Cold-rolling the hot-rolled material to produce a cold-rolled material;
    상기 냉간압연재를 900 내지 1020℃로 소둔 열처리하는 단계를 포함하는, 내식성과 성형성이 향상된 강관용 강판의 제조방법:Method for producing a steel sheet for steel pipes with improved corrosion resistance and formability, comprising the step of annealing and heat-treating the cold-rolled material at 900 to 1020 ° C.:
    식 (1): (Si+2Al)/(Ni+Cu+Mn/2)Formula (1): (Si+2Al)/(Ni+Cu+Mn/2)
    (상기 식 (1)에서, Si, Al, Ni, Cu 및 Mn은 각 성분의 함량(중량%)를 의미한다).(In the above formula (1), Si, Al, Ni, Cu and Mn mean the content (wt%) of each component).
  6. 청구항 5에 있어서,The method of claim 5,
    상기 열간압연재는, 두께가 2.5 내지 4.5mm인, 내식성과 성형성이 향상된 강관용 강판의 제조방법.The hot-rolled material has a thickness of 2.5 to 4.5 mm, a method for producing a steel sheet for a steel pipe with improved corrosion resistance and formability.
  7. 청구항 5에 있어서,The method of claim 5,
    상기 냉간압연재는, 두께가 0.5 내지 2.0mm인, 내식성과 성형성이 향상된 강관용 강판의 제조방법.The cold-rolled material has a thickness of 0.5 to 2.0 mm, a method for producing a steel sheet for steel pipes with improved corrosion resistance and formability.
PCT/KR2022/020359 2021-12-21 2022-12-14 Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same WO2023121133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280084228.6A CN118414445A (en) 2021-12-21 2022-12-14 Steel sheet for exhaust system steel pipe having improved corrosion resistance and formability, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0184092 2021-12-21
KR1020210184092A KR20230094726A (en) 2021-12-21 2021-12-21 Steel sheet for exhaust system with improved corrosion resistance and formability and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2023121133A1 true WO2023121133A1 (en) 2023-06-29

Family

ID=86903306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020359 WO2023121133A1 (en) 2021-12-21 2022-12-14 Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same

Country Status (3)

Country Link
KR (1) KR20230094726A (en)
CN (1) CN118414445A (en)
WO (1) WO2023121133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (en) * 2001-01-18 2002-10-03 Kawasaki Steel Corp Ferritic stainless steel sheet and production method therefor
JP2007270168A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing chromium-containing ferritic steel sheet
KR20100058851A (en) * 2008-11-25 2010-06-04 주식회사 포스코 Method for manufacturing ferritic stainless steel with improved formability and ridging property
KR20150110762A (en) * 2013-03-27 2015-10-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
KR20210079082A (en) * 2019-12-19 2021-06-29 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285300A (en) * 2001-01-18 2002-10-03 Kawasaki Steel Corp Ferritic stainless steel sheet and production method therefor
JP2007270168A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing chromium-containing ferritic steel sheet
KR20100058851A (en) * 2008-11-25 2010-06-04 주식회사 포스코 Method for manufacturing ferritic stainless steel with improved formability and ridging property
KR20150110762A (en) * 2013-03-27 2015-10-02 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
KR20210079082A (en) * 2019-12-19 2021-06-29 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
CN118414445A (en) 2024-07-30
KR20230094726A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2020060051A1 (en) Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2021100995A1 (en) Steel sheet having high strength and high formability and method for manufacturing same
WO2019059660A1 (en) Low-alloy steel sheet having excellent strength and ductility and manufacturing method therefor
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2017052005A1 (en) Ferritic stainless steel and manufacturing method therefor
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2023121133A1 (en) Steel plate for exhaust system steel pipe having improved corrosion resistance and formability, and method for producing same
WO2016064226A1 (en) High strength and high ductility ferritic stainless steel sheet and method for producing same
WO2019117432A1 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
WO2019124729A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
WO2022131504A1 (en) Austenitic stainless steel with improved high temperature softening resistance
WO2010074458A2 (en) High-strength cold rolled steel sheet having superior deep drawability and a high yield ratio, galvanized steel sheet using same, alloyed galvanized steel sheet, and method for manufacturing same
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2017111436A1 (en) Ferritic stainless steel for automotive exhaust system, having improved pitting corrosion resistance and condensate corrosion resistance, and method for manufacturing same
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2019124690A1 (en) Ferritic stainless steel having improved pipe-expanding workability and method for manufacturing same
WO2022270814A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2020122320A1 (en) Low-cr ferritic stainless steel with excellent formability and high temperature properties, and manufacturing method therefor
WO2024135997A1 (en) Ferritic stainless steel for construction applications and method for producing same
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2017111437A1 (en) Lean duplex stainless steel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401004083

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE