WO2024136021A1 - 무방향성 전기강판 및 그 제조방법 - Google Patents

무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2024136021A1
WO2024136021A1 PCT/KR2023/014375 KR2023014375W WO2024136021A1 WO 2024136021 A1 WO2024136021 A1 WO 2024136021A1 KR 2023014375 W KR2023014375 W KR 2023014375W WO 2024136021 A1 WO2024136021 A1 WO 2024136021A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
excluding
oriented electrical
manufacturing
Prior art date
Application number
PCT/KR2023/014375
Other languages
English (en)
French (fr)
Inventor
이헌주
이상우
김윤수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024136021A1 publication Critical patent/WO2024136021A1/ko

Links

Definitions

  • One embodiment of the present invention relates to a non-oriented electrical steel sheet and a method of manufacturing the same. Specifically, one embodiment of the present invention omits the descaling process for the hot-rolled sheet and performs the pickling process after the first cold rolling, thereby developing crystal grains with a specific orientation and improving magnetism, and manufacturing the same. It's about method.
  • Non-oriented electrical steel sheets are mainly used in motors that convert electrical energy into mechanical energy, and in order to achieve high efficiency in the process, excellent magnetic properties of non-oriented electrical steel sheets are required.
  • the magnetic properties of non-oriented electrical steel are mainly evaluated by iron loss and magnetic flux density.
  • Iron loss refers to energy loss that occurs at a specific magnetic flux density and frequency
  • magnetic flux density refers to the degree of magnetization obtained under a specific magnetic field. The lower the iron loss, the more energy efficient a motor can be manufactured under the same conditions, and the higher the magnetic flux density, the more compact the motor or the reduction of copper loss. Therefore, a drive motor with excellent efficiency and torque can be made using non-oriented electrical steel sheets with low iron loss and high magnetic flux density, and through this, the driving distance and output of eco-friendly cars can be improved.
  • the characteristics of the non-oriented electrical steel sheet that must be considered also vary depending on the operating conditions of the motor.
  • W15/50 which is the iron loss when a 1.5T magnetic field is applied at a commercial frequency of 50Hz
  • magnetic properties are often important at low fields of 1.0T or less and high frequencies of 400 Hz or more, so non-oriented electrical steel sheets with W10/400 iron loss are used. The characteristics of are often evaluated.
  • a commonly used method to improve the magnetic properties of non-oriented electrical steel is to add alloy elements such as Si, Al, and Mn. If the resistivity of steel increases through the addition of these alloy elements, eddy current loss can be reduced, thereby lowering total iron loss. In addition, alloy elements can be dissolved in iron as substitutional elements to increase strength by producing a reinforcing effect.
  • alloy elements can be dissolved in iron as substitutional elements to increase strength by producing a reinforcing effect.
  • the amount of alloy elements such as Si, Al, and Mn added increases, the magnetic flux density decreases and brittleness increases. If more than a certain amount is added, cold rolling becomes impossible, making commercial production impossible. In particular, the thinner the thickness of electrical steel sheet, the better the high-frequency iron loss, but the decrease in rollingability due to brittleness becomes a fatal problem.
  • the maximum total Si, Al, and Mn content that can be commercially produced is known to be approximately 4.5% by weight, and by optimizing the trace element content, the highest quality non-oriented electrical steel
  • One embodiment of the present invention provides a non-oriented electrical steel sheet and a method of manufacturing the same. Specifically, one embodiment of the present invention omits the descaling process for the hot-rolled sheet and performs the pickling process after the first cold rolling, thereby developing crystal grains with a specific orientation and improving magnetism, and manufacturing the same. Provides a method.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention contains Si: 1.5 to 4.5%, Al: 0.1 to 1.5%, Mn: 0.1 to 0.5% by weight, the balance Fe and inevitable impurities, and aggregate
  • the orientation with the highest intensity is located within 5 degrees of ⁇ 110 ⁇ 115>.
  • the ⁇ 110 ⁇ 115> orientation strength may be three times or more than the ⁇ 001 ⁇ 100> orientation strength.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include 0.001 to 0.007 wt% of Te and 0.01 to 0.1 wt% of one or more of Sn and Sb, respectively or in total.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention contains Cu: 0.005 to 0.2% by weight, Cr: 0.01 to 0.5% by weight, Ni: 0.05% by weight or less (excluding 0%), Zn: 0.01% by weight or less ( It may further include one or more of Co: 0.05% by weight or less (excluding 0%).
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has P: 0.1% by weight or less (excluding 0%), C: 0.005% by weight or less (excluding 0%), and S: 0.005% by weight or less (excluding 0%). It may further include one or more of Ti: 0.005% by weight or less (excluding 0%), N: 0.005% by weight or less (excluding 0%).
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has Mo: 0.03% by weight or less (excluding 0%), B: 0.0050% by weight or less (excluding 0%), V: 0.0050% by weight or less (excluding 0%) excluding), Ca: 0.0050% by weight or less (excluding 0%), Nb: 0.0050% by weight or less (excluding 0%). It may further include one or more of Zr: 0.005% by weight or less (excluding 0%) and Mg: 0.0050% by weight or less (excluding 0%).
  • the average grain size may be 50 to 150 ⁇ m.
  • the difference in B50 magnetic flux density between the rolling direction and the rolling direction may be 0.05 to 0.07T.
  • the method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention includes Si: 1.5 to 4.5%, Al: 0.1 to 1.5%, Mn: 0.1 to 0.5% in weight percent, and the balance includes Fe and inevitable impurities.
  • Manufacturing a hot-rolled plate by hot-rolling the slab Manufacturing a first cold-rolled sheet by first cold-rolling the hot-rolled sheet with scale remaining on the hot-rolled sheet; Pickling the first cold rolled sheet; It includes a step of manufacturing a second cold rolled sheet by performing a second cold rolling on the pickled first cold rolled sheet, and a cold rolled sheet annealing step of annealing the second cold rolled sheet.
  • the slab may further include 0.001 to 0.007% by weight of Te and 0.01 to 0.1% by weight of one or more of Sn and Sb, respectively or in a combined amount.
  • the slabs include Cu: 0.005 to 0.2% by weight, Cr: 0.01 to 0.5% by weight, Ni: 0.1% by weight or less (excluding 0%), Zn: 0.01% by weight or less (excluding 0%), and Co: 0.05% by weight. It may further include one or more of % or less (excluding 0%).
  • the step of heating the slab to 1200°C or lower may be further included.
  • hot rolling may be performed at a finish rolling temperature of 800°C or higher and coiling may be performed at 550°C or lower.
  • the hot-rolled sheet After manufacturing the hot-rolled sheet, the hot-rolled sheet may be cooled, and the cooled hot-rolled sheet may be subjected to first cold rolling.
  • a step of rewinding the coil at a temperature of 350° C. or higher is included in the process of cooling the hot-rolled sheet, and the re-wound hot-rolled sheet may be subjected to first cold rolling.
  • the reduction ratio may be 40 to 70%.
  • the friction coefficient between the cold rolled work roll and the steel plate may be 0.4 or more.
  • an intermediate annealing step of annealing the first cold-rolled sheet to 900° C. or higher may be further included.
  • the reduction ratio may be 55 to 80%.
  • the friction coefficient between the cold rolled work roll and the steel plate may be 0.2 or less.
  • the annealing step of the cold rolled sheet may be annealed at a temperature of 850°C or higher in a mixed gas atmosphere of hydrogen (H 2 ) and nitrogen (N 2 ).
  • the non-oriented electrical steel sheet according to an embodiment of the present invention can have better properties by improving the anisotropy of magnetic flux density by optimizing the crystal orientation.
  • the non-oriented electrical steel sheet according to one embodiment of the present invention contributes to the manufacture of eco-friendly automobile motors, high-efficiency home appliance motors, and super premium electric motors.
  • first, second, and third are used to describe, but are not limited to, various parts, components, regions, layers, and/or sections. These terms are used only to distinguish one portion, component, region, layer or section from another portion, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight%, and 1ppm is 0.0001% by weight.
  • further including an additional element means replacing the remaining iron (Fe) by the amount of the additional element.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention includes Si: 1.5 to 4.5%, Al: 0.1 to 1.5%, and Mn: 0.1 to 0.5% by weight.
  • Si plays a role in lowering iron loss by increasing the resistivity of the material and increasing strength through solid solution strengthening. If too little Si is added, the effect of improving iron loss and strength may be insufficient. If too much Si is added, the brittleness of the material increases, leading to a rapid decrease in rolling productivity and the formation of surface oxide layers and oxides that are harmful to magnetism. Therefore, it may contain 1.5 to 4.5% by weight of Si. More specifically, it may contain 2.0 to 4.3 weight%. More specifically, it may contain 3.0 to 3.7 weight%.
  • Aluminum (Al) plays a role in lowering iron loss by increasing the resistivity of the material and increasing strength through solid solution strengthening. If too little Al is added, fine nitrides may be formed, making it difficult to obtain a magnetic improvement effect. If too much Al is added, excessive nitrides are formed, deteriorating magnetism, and causing problems in all processes such as steelmaking and continuous casting, which can greatly reduce productivity. Therefore, it may contain 0.1 to 1.5% by weight of Al. More specifically, it may contain 0.3 to 1.2% by weight. More specifically, it may contain 0.5 to 1.0 weight%.
  • Manganese (Mn) increases the resistivity of materials, improves iron loss, and plays a role in forming sulfides. If too little Mn is added, fine sulfides are formed, causing magnetic deterioration, and if too much Mn is added, excessive fine MnS is precipitated and promotes the formation of ⁇ 111 ⁇ texture, which is unfavorable to magnetism, causing a sharp decrease in magnetic flux density. I do it. Therefore, it may contain 0.1 to 0.5% by weight of Mn. More specifically, it may contain 0.2 to 0.4% by weight.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include 0.001 to 0.007 wt% of Te and 0.01 to 0.1 wt% of one or more of Sn and Sb, respectively or in total.
  • Te 0.001 to 0.007% by weight
  • Tellurium diffuses into the oxide layer on the surface of the hot-rolled coil, increasing the coefficient of friction between the oxide layer and the rolling work roll, while concentrating at the bottom of the oxide layer to improve hardness, so that the oxide layer crushed during rolling falls off rather than being pressed into the base material. It can be added. If the amount of Te added is too small, the effect may be minimal. If too much Te is added, the oxide layer is easily removed and the base material comes into direct contact with the work roll, reducing the above effect. Additionally, excessive strain bands are created within the steel sheet during cold rolling, resulting in a ⁇ 111 ⁇ //ND texture that is disadvantageous to magnetism. can develop
  • At least one of Sn and Sb 0.01 to 0.1% by weight
  • Tin (Sn) and antimony (Sb) serve to improve the texture of the material and suppress surface oxidation by segregating at grain boundaries and surfaces, so they can be added to improve magnetism. If the amount of Sn and Sb added is too small, the effect is minimal, and the coefficient of friction between the oxidized layer on the surface of the hot rolled coil and the rolled work roll may be reduced, thereby deteriorating magnetic properties and surface quality. If too much Sn and Sb are added, grain boundary segregation may become severe, deteriorating surface quality, and hardness may increase, causing fracture of the cold-rolled sheet and lowering rollability. Therefore, one or more types of Sn and Sb may be further added within the above-mentioned range.
  • the total amount may be 0.01 to 0.1% by weight.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention contains Cu: 0.005 to 0.2% by weight, Cr: 0.01 to 0.5% by weight, Ni: 0.05% by weight or less (excluding 0%), Zn: 0.01% by weight or less ( It may further include one or more of Co: 0.05% by weight or less (excluding 0%).
  • Chromium (Cr) plays a role in improving iron loss by increasing resistivity. If too much Cr is included, the magnetic flux density may decrease. More specifically, when Cr is further included, it may contain 0.01 to 0.10% by weight.
  • Ni 0.05% by weight or less
  • Nickel (Ni) does not form fine-sized precipitates that reduce the magnetism of the steel sheet, but it forms a concentrated layer on the surface or directly below the surface of the steel sheet, which can impair workability during hot rolling or cold rolling.
  • Zinc (Zn) does not form fine-sized precipitates that reduce the magnetism of the steel sheet, but since it is an element with high oxygen affinity, it can promote the formation of an oxide layer on the surface of the steel sheet.
  • Co Cobalt does not form fine-sized precipitates that reduce the magnetism of the steel sheet, but it increases the high-temperature strength and can make the shape of the coil poor after hot rolling.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has P: 0.1% by weight or less (excluding 0%), C: 0.005% by weight or less (excluding 0%), and S: 0.005% by weight or less (excluding 0%). It may further include one or more of Ti: 0.005% by weight or less (excluding 0%), N: 0.005% by weight or less (excluding 0%).
  • Phosphorus (P) deteriorates hot processing characteristics and plays a role in lowering productivity compared to improving magnetism. Therefore, P may be included in an amount of 0.100% by weight or less.
  • the lower limit is not particularly limited, but it segregates on the surface and grain boundaries of the steel sheet to suppress surface oxidation during annealing, hinders diffusion of elements through grain boundaries, and improves texture by interfering with recrystallization in the ⁇ 111 ⁇ //ND orientation. Since it also performs its intended role, it can be set to 0.005% by weight. More specifically, it may contain 0.005 to 0.050% by weight of P. More specifically, it may contain 0.010 to 0.030% by weight of P.
  • Carbon (C) causes self-aging and combines with other impurity elements to form carbides, which reduces magnetic properties but improves strength by interfering with dislocation movement. If too much C is included, the fine carbide fraction may increase and the magnetism may deteriorate. Therefore, it may contain C in an amount of 0.0050% by weight or less.
  • the lower limit of C is not particularly limited, but when considering productivity, it may include 0.0010% by weight or more. That is, it may contain 0.0010 to 0.0050% by weight of C. More specifically, it may contain 0.0010 to 0.0030% by weight.
  • S Sulfur
  • MnS and CuS which worsens magnetic properties and hot workability. Therefore, it may contain S in an amount of 0.0050% by weight or less.
  • it helps in the development of crystal grains with a specific orientation and helps improve magnetic flux density, so in one embodiment of the present invention, it can be added in an amount of 0.0005% by weight or more. More specifically, it may contain 0.0010 to 0.0030% by weight of S.
  • Titanium (Ti) has a very strong tendency to form precipitates within the steel, and forms fine carbides, nitrides, or sulfides inside the base metal, suppressing grain growth and domain wall movement, thereby deteriorating iron loss. Therefore, the Ti content may be 0.0050% by weight or less.
  • the lower limit is not particularly limited, but can be set to 0.0003% by weight due to steelmaking costs. That is, it may contain 0.0003 to 0.0050% by weight of Ti. More specifically, it may contain 0.0003 to 0.0030% by weight.
  • N Nitrogen (N) not only forms fine AlN precipitates inside the base material, but also combines with other impurities to form fine precipitates, which inhibits grain growth and worsens iron loss. Therefore, it may contain 0.0050% by weight or less of N.
  • the lower limit of N is not particularly limited, but since N helps improve strength, the lower limit can be set to 0.0003% by weight. That is, it may contain 0.0003 to 0.0050% by weight of N. More specifically, it may contain 0.0010 to 0.0030% by weight.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has Mo: 0.03% by weight or less (excluding 0%), B: 0.0050% by weight or less (excluding 0%), V: 0.0050% by weight or less (excluding 0%) excluding), Ca: 0.0050% by weight or less (excluding 0%), Nb: 0.0050% by weight or less (excluding 0%). It may further include one or more of Zr: 0.005% by weight or less (excluding 0%) and Mg: 0.0050% by weight or less (excluding 0%).
  • Mo molybdenum
  • the lower limit is not particularly limited, but it can be included in an amount of 0.001% by weight or more because it plays a role in improving the texture by segregating on the surface and grain boundaries. More specifically, it may contain 0.001 to 0.010% by weight of Mo. More specifically, it may contain 0.005 to 0.010% by weight of Mo.
  • B may be included in an amount of 0.005% by weight or less.
  • the lower limit is not particularly limited, but can be set to 0.0001% by weight due to steel manufacturing costs. More specifically, it may contain 0.0001 to 0.0030% by weight of B.
  • V 0.0050% by weight or less
  • Vanadium (V) has a very strong tendency to form precipitates within the steel, and forms fine carbides or nitrides inside the base material, suppressing grain growth and domain wall movement, thereby deteriorating iron loss. Therefore, the V content may be 0.0050% by weight or less.
  • the lower limit is not particularly limited, but can be set to 0.0003% by weight due to steelmaking costs. That is, it may contain 0.0003 to 0.0050% by weight of V. More specifically, it may contain 0.0003 to 0.0030% by weight of V.
  • Calcium (Ca) has a very strong tendency to form precipitates within the steel, and forms fine sulfides inside the base material, suppressing grain growth and domain wall movement, thereby deteriorating iron loss.
  • Nb 0.0050% by weight or less
  • Niobium (Nb) has a very strong tendency to form precipitates within the steel, and forms fine carbides or nitrides inside the base material, suppressing grain growth and domain wall movement, thereby deteriorating iron loss. Therefore, the Nb content may be 0.0050% by weight or less.
  • the lower limit is not particularly limited, but can be set to 0.0003% by weight due to steelmaking costs. That is, it may contain 0.0003 to 0.0050% by weight of Nb. More specifically, it may contain 0.0003 to 0.0030% by weight of Nb.
  • zirconium (Zr) is added in excessive amounts, it may cause magnetic deterioration through the formation of inclusions in the steel. Therefore, it may contain Zr in an amount of 0.005% by weight or less.
  • the lower limit is not particularly limited, but can be set to 0.0001% by weight due to steel manufacturing costs. That is, it may contain 0.0001 to 0.0050% by weight of Zr. More specifically, it may contain 0.0005 to 0.0030% by weight.
  • Magnesium (Mg) is an element that mainly combines with S to form sulfide, and can affect the surface oxide layer of base iron. Therefore, it may contain 0.0050% by weight or less of Mg.
  • the lower limit is not particularly limited, but can be set to 0.0001% by weight due to steel manufacturing costs. That is, it may contain 0.0001 to 0.0050% by weight of Mg. More specifically, it may contain 0.0005 to 0.0030% by weight.
  • the balance includes Fe and inevitable impurities.
  • unavoidable impurities they are impurities mixed during the steelmaking stage and the manufacturing process of non-oriented electrical steel sheets, and since these are widely known in the field, detailed explanations will be omitted.
  • the addition of elements other than the above-described alloy components is not excluded, and various elements may be included within a range that does not impair the technical spirit of the present invention. If additional elements are included, they are included by replacing the remaining Fe.
  • the orientation with the highest strength is located within 5 degrees of ⁇ 110 ⁇ 115>.
  • ODF orientation distribution function
  • ⁇ 110 ⁇ 115> dramatically improved the magnetic properties in the rolling direction and the direction perpendicular to rolling. It can help improve magnetism.
  • the orientation with the highest intensity may be located within 5 degrees of ⁇ 110 ⁇ 115>.
  • the angle with ⁇ 110 ⁇ 115> means the angle formed between the ⁇ 110 ⁇ 115> direction and an arbitrary direction on a plane containing the ⁇ 110 ⁇ 115> direction and an arbitrary direction.
  • ODF The analysis location of ODF is not particularly limited, but can be analyzed by measuring a sufficiently wide TD surface of the steel plate.
  • the ⁇ 110 ⁇ 115> orientation strength may be three times or more than the ⁇ 001 ⁇ 100> orientation strength.
  • the ⁇ 001 ⁇ 100> orientation theoretically provides the best magnetic properties in the rolling direction and the direction perpendicular to rolling, but the ⁇ 110 ⁇ 115> orientation also provides excellent magnetic properties in the rolling direction and the direction perpendicular to rolling. It is an orientation that can be used, and the fact that the ⁇ 110 ⁇ 115> orientation has more than three times the strength of the ⁇ 001 ⁇ 100> orientation means that the transformation, recovery, and recrystallization processes applied to the material have gone through a significantly different process. More specifically, the ⁇ 110 ⁇ 115> orientation intensity may be 3.5 to 5 times the ⁇ 001 ⁇ 100> orientation intensity. ⁇ 001 ⁇ 100> orientation intensity may be 0.3 to 1.5.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may have an average grain size of 50 to 150 ⁇ m.
  • the grain size means the diameter of a virtual circle with an area equal to the grain area.
  • the average grain size can be calculated as 2 ⁇ (measured area ⁇ number of grains ⁇ ) 0.5 .
  • the grain size can be measured based on the rolling vertical plane (TD plane).
  • the measurement position is not particularly limited, but can be measured at 1/4 to 3/4 of the entire thickness of the steel plate. More specifically, the average grain size may be 60 to 95 ⁇ m.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has excellent anisotropy of magnetic flux density and excellent high-frequency iron loss.
  • the efficiency of the motor can be improved while minimizing the increase in cost, thereby increasing the mileage on a single charge of the eco-friendly car.
  • the iron loss (W 10/400 ) of the non-oriented electrical steel sheet is 12.0 W/kg or less based on a thickness of 0.25 mm
  • the magnetic flux density (B 50L ) measured in the rolling direction is 1.69T or more
  • the magnetic flux measured in the vertical direction of rolling is Density (B 50C ) may be 1.65T or more.
  • the iron loss (W 10/400 ) is 10.5 to 11.5 W/kg
  • the magnetic flux density (B 50L ) measured in the rolling direction is 1.70 to 1.75 T
  • the magnetic flux density (B 50C ) measured in the vertical direction of rolling is 1.66. It may be from 1.70T to 1.70T.
  • a method of manufacturing a non-oriented electrical steel sheet includes manufacturing a hot-rolled sheet by hot-rolling a slab; Manufacturing a first cold rolled sheet by performing first cold rolling on the hot rolled sheet with scale remaining on the hot rolled sheet; Pickling the first cold rolled sheet; It includes a step of manufacturing a second cold rolled sheet by performing a second cold rolling on the pickled first cold rolled sheet, and a cold rolled sheet annealing step of annealing the second cold rolled sheet.
  • the slab is hot rolled.
  • the alloy composition of the slab was described in the above-mentioned alloy composition of the non-oriented electrical steel sheet, redundant description will be omitted. Since the alloy composition does not substantially change during the manufacturing process of the non-oriented electrical steel sheet, the alloy composition of the non-oriented electrical steel sheet and the slab are substantially the same.
  • the slab contains Si: 1.5 to 4.5%, Al: 0.1 to 1.5%, and Mn: 0.1 to 0.5% by weight, and includes the balance Fe and inevitable impurities.
  • the slabs can be heated before hot rolling.
  • the heating temperature of the slab is not limited, but the slab can be heated below 1200°C. If the slab heating temperature is too high, precipitates such as AlN and MnS present in the slab may be re-dissolved and finely precipitated during hot rolling and annealing, thereby suppressing grain growth and reducing magnetism.
  • the slab is hot rolled to manufacture a hot rolled sheet.
  • the hot rolled sheet thickness may be 1.8 to 2.3 mm.
  • the finish rolling temperature may be 800°C or higher. Specifically, it may be 800 to 1000°C.
  • Hot-rolled sheets can be wound at temperatures below 550°C. By winding the hot-rolled sheet at a low temperature, it is advantageous to create an oxide layer that can increase the friction coefficient in the primary cold rolling process. More specifically, the coiling temperature of the hot rolled sheet may be 400 to 525°C.
  • the hot-rolled sheet is subjected to first cold rolling with scale remaining on the hot-rolled sheet.
  • scale is created on the surface of the hot rolled sheet due to contact with air at high temperature.
  • this scale was removed through pickling, shot blasting, or surface grinding, and then cold rolled.
  • descaling processes such as pickling, shot blasting, or surface grinding are omitted, and cold rolling is performed.
  • scale refers to a portion of the surface of a steel sheet where elements such as Fe, Al, and Si combine with oxygen to form a different phase from the base material.
  • Remaining scale means that a scale of at least 1 ⁇ m thickness remains on the hot rolled sheet.
  • the scale thickness refers to the sum of the scale thicknesses created on both surfaces of the steel plate. If the thickness of the remaining scale is too thin, the effect of the remaining scale may not be fully effective. Even if the scale thickness is thicker, the effect does not improve, and there is a problem that the yield of steel sheets decreases. More specifically, scales with a thickness of 0.1 to 1 ⁇ m may remain.
  • this problem can be solved by concentrating Te under the surface oxide layer of the steel sheet by controlling the holding time in the range of 400 to 500°C after coiling the hot-rolled sheet, thereby facilitating the removal of the oxide layer during the first cold rolling.
  • the hot-rolled sheet After manufacturing the hot-rolled sheet, the hot-rolled sheet may be cooled, and the cooled hot-rolled sheet may be subjected to first cold rolling. That is, after hot rolling, annealing of the hot rolled sheet can be omitted and first cold rolling can be performed. When hot-rolled sheet annealing is omitted, the Te-enriched layer below the surface oxide layer of the steel sheet can be maintained and the oxide layer that causes surface defects can be removed harmlessly.
  • the process of cooling the hot rolled sheet may include the step of rewinding the coil at a temperature of 350°C or higher.
  • the oxide layer that may cause surface defects can be physically crushed in advance, making it easy to partially remove it during the first cold rolling. More specifically, it can be rewinded at a temperature of 375 to 450°C.
  • the reduction ratio may be 40 to 70%.
  • Reduction rate can be calculated as (Thickness before rolling - Thickness after rolling) / Thickness before rolling. If the reduction rate is too low, the rolling load increases during the second cold rolling, which reduces productivity, and the second cold rolling reduction rate increases, which may cause problems that promote fine ⁇ 111>//ND orientation recrystallization. Conversely, if the reduction ratio is too high, the cold rolling load increases and the possibility of sheet fracture increases. More specifically, the reduction rate may be 50 to 65%.
  • the first cold rolling step may be performed at a temperature of 60 to 300°C. This temperature can be raised naturally due to friction between the steel sheet and the rolling roll, or by applying heat from the outside. If the temperature is too low, the rolling load increases significantly and the steel sheet may slip between the rolling rolls rather than being rolled, causing problems such as twisting. If the temperature is too high, Si and Al oxidation may occur on the surface of the steel sheet, magnetism may deteriorate, and problems such as rolling oil ignition may occur. More specifically, it is preferably carried out at a temperature of 70 to 250°C. The above-mentioned temperature refers to the temperature of the steel plate.
  • the friction coefficient between the cold rolling work roll and the steel plate during the first cold rolling may be 0.4 or more.
  • the coefficient of friction with the work roll located first may be 0.4 or more. The higher the friction coefficient, the more advantageous it is to develop a texture favorable to magnetism during final recrystallization annealing. More specifically, it may be 0.45 to 0.7.
  • an intermediate annealing step of annealing the first cold-rolled sheet to 900° C. or higher may be further included. If the annealing temperature is too low, the size of the grains becomes fine and the grain boundaries increase, and the number of ⁇ 111>//ND-oriented recrystallization nuclei at the grain boundaries increases during the second cold rolling, ultimately deteriorating the magnetic flux density. Specifically, the temperature of the intermediate annealing step may be 900 to 1100°C.
  • the intermediate annealing time can be from 10 seconds to 600 seconds.
  • the first cold rolled sheet is pickled.
  • scale remains in the final manufactured non-oriented electrical steel sheet, it damages magnetism.
  • marks of the scale being indented or dropped may form irregularities on the surface, which may deteriorate the operational stability and magnetic characteristics of the motor.
  • pickling all scale may be removed or may exist at a thickness of 0.01 ⁇ m or less.
  • Pickling refers not only to acid immersion, but also to all methods of physically and chemically descaling. Pickling methods may include acid soaking, shot blasting or surface grinding.
  • the reduction rate may be 55 to 80%. If the reduction rate is too low, the strain energy accumulated in the rolled steel sheet is small, making it difficult to recrystallize in the subsequent annealing process, and the rolled structure may remain, causing problems in improving magnetic flux density and iron loss. On the other hand, if the reduction rate is too high, recrystallization of ⁇ 111>//ND orientation grains is promoted in the subsequent annealing process and the grains become fine, which may cause problems such as inferior magnetic flux density and increased iron loss. More specifically, the reduction rate may be 60 to 75%.
  • the friction coefficient between the cold rolling work roll and the steel plate during the second cold rolling may be 0.2 or less.
  • the final rolled thickness may be 0.1 mm to 0.35 mm.
  • the cold rolled sheet annealing step may be performed in a mixed gas and atmosphere of hydrogen (H 2 ) and nitrogen (N 2 ).
  • the mixed gas may contain less than 40% by volume of hydrogen and more than 60% by volume of nitrogen.
  • the cold rolled sheet annealing step can be annealed at a temperature of 850°C or higher.
  • the above-mentioned temperature refers to the cracking temperature. If the cracking temperature is too low, grains may not grow sufficiently, which may lead to increased hysteresis loss and deterioration of iron loss. If the cracking temperature is too high, eddy current loss may increase and magnetic flux density may rapidly decrease. More specifically, it can be annealed at a temperature of 850 to 1100°C. Annealing can be performed for 30 to 50 seconds.
  • all (i.e., more than 99%) of the processed structure formed in the cold rolling step can be recrystallized.
  • an insulating film After annealing the cold rolled sheet, an insulating film can be formed.
  • the insulating film can be treated with organic, inorganic, and organic-inorganic composite films, and can also be treated with other insulating coating agents.
  • Slabs were manufactured with the ingredients listed in Table 1 and the balance including Fe and unavoidable impurities. This was heated to 1150°C and hot rolled to a finishing temperature of 880°C to produce a hot rolled sheet with a thickness of 2.0m. Specimen number B2 was pickled to completely remove scale on the hot-rolled plate.
  • the hot rolled sheet was first cold rolled under the conditions in the table, omitting annealing, and then pickled to completely remove scale. Intermediate annealing was performed and a second cold rolling was performed to bring the final thickness to 0.25 mm. The second cold rolled steel sheet was annealed to the temperature shown in Table.
  • Magnetic flux density was measured in the rolling direction and the rolling direction.
  • W 10/400 is the iron loss when a magnetic flux density of 1.0T is induced at a frequency of 400Hz
  • B 50 means the magnetic flux density induced in a magnetic field of 5000A/m.
  • Hot rolled thickness [mm] A1 900 500 X 400 X 1.25 A2 900 500 O 400 X 1.56 A3 900 500 O 400 X 1.00 A4 900 500 O 400 X 4.17 A5 900 500 O 400 X 1.25 A6 900 500 O 400 X 1.56 A7 900 500 O 400 X 1.67 A8 900 500 O 400 X 2.08 B1 750 500 O 400 X 1.25 B2 900 500 O 400 O 1.56 B3 900 500 O 400 X 1.67 B4 900 500 O 400 X 2.08 B5 900 500 O 400 X 1.25 B6 900 500 O 400 X 1.56 B7 900 500 O 400 X 1.67 B8 900 500 O 400 X 2.08 C1 900 500 O 400 X 1.25 C2 900 630
  • the invention example in which the steel components are appropriately adjusted and some scale remains in the hot-rolled sheet develops a specific texture and has excellent iron loss and magnetic flux density, especially magnetic flux in the rolling direction and the direction perpendicular to the rolling. It can be confirmed that the density difference is appropriately obtained.
  • the present invention is not limited to the embodiments, but can be manufactured in various different forms, and a person skilled in the art will understand that the present invention can be manufactured in other specific forms without changing the technical idea or essential features of the present invention. You will understand that it can be done. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 집합조직을 ODF로 나타내었을 때, 가장 높은 강도를 갖는 방위가 {110}<115> 에서 5˚ 이내에 위치한다.

Description

무방향성 전기강판 및 그 제조방법
본 발명의 일 실시예는 무방향성 전기강판 및 그 제조 방법에 관한 것이다. 구체적으로 본 발명의 일 실시예는 열연판에 대한 탈 스케일 공정을 생략하고, 제1 냉간압연 이후 산세 공정을 수행함으로써, 특정 방위를 갖는 결정립을 발달시켜 자성을 향상시킨 무방향성 전기강판 및 그 제조 방법에 관한 것이다.
무방향성 전기강판은 전기에너지를 기계적에너지로 변환시키는 모터에 주로 사용되는데, 그 과정에서 높은 효율을 발휘하기 위해 무방향성 전기강판의 우수한 자기적 특성을 요구한다. 특히 근래에는 내연기관 대신 모터로 구동되는 친환경자동차가 주목받게 되면서 구동모터 코어 소재로 사용되는 무방향성 전기강판의 수요가 증가하고 있으며, 이를 위해 자기적 특성과 강도가 동시에 우수한 무방향성 전기강판이 요구되고 있다.
무방향성 전기강판의 자기적 특성은 주로 철손과 자속밀도로 평가한다. 철손은 특정 자속밀도와 주파수에서 발생하는 에너지 손실을 의미하며, 자속밀도는 특정 자장 하에서 얻어지는 자화의 정도를 의미한다. 철손이 낮을수록 동일한 조건에서 에너지 효율이 높은 모터를 제조할 수 있으며, 자속밀도가 높을수록 모터를 소형화시키거나 구리손을 감소시킬 수 있다. 따라서 낮은 철손과 높은 자속밀도를 갖는 무방향성 전기강판을 사용하여 효율과 토크가 우수한 구동모터를 만들 수 있고, 이를 통해 친환경자동차의 주행거리와 출력을 향상시킬 수 있다.
모터의 작동조건에 따라 고려해야되는 무방향성 전기강판의 특성 또한 달라지게 된다. 모터에 사용되는 무방향성 전기강판의 특성을 평가하기 위한 일반적인 기준으로는 상용주파수 50Hz에서 1.5T 자장이 인가되었을 때의 철손인 W15/50을 널리 사용하고 있다. 그러나 친환경자동차 구동모터에 사용되는 두께 0.35mm 이하의 무방향성 전기강판에서는 1.0T 또는 그 이하의 저자장과 400Hz 이상의 고주파에서 자기적 특성이 중요한 경우가 많으므로, W10/400 철손으로 무방향성 전기강판의 특성을 평가하는 경우가 많다.
무방향성 전기강판의 자기적 특성을 향상시키기 위해 통상적으로 사용되는 방법은 Si, Al, Mn 등의 합금원소를 첨가하는 것이다. 이러한 합금원소의 첨가를 통해 강의 비저항이 증가하면 와전류 손실이 감소하여 전체 철손을 낮출 수 있다. 또한 합금원소가 철에 치환형 원소로 고용되어 강화효과를 일으켜 강도를 높일 수 있다. 반면 Si, Al, Mn 등의 합금원소 첨가량이 증가할수록 자속밀도가 열위해지고 취성이 증가하는 단점이 있으며, 일정량 이상 첨가하면 냉간압연이 불가능하여 상업적 생산이 불가능해진다. 특히 전기강판은 두께를 얇게 만들수록 고주파 철손이 우수해지게 되는데, 취성에 의한 압연성 저하는 치명적인 문제가 된다. 상업적 생산이 가능한 Si, Al, Mn 함량 합계의 최대값은 대략 4.5 중량% 정도로 알려져 있으며, 이 외에 미량원소 함량을 최적화하여 자성과 강도가 우수한 최고급 무방향성 전기강판을 생산할 수 있다.
하지만, Si, Al, Mn, Cr과 같은 고비저항 합금원소를 많이 첨가하였을 때에는 자속밀도가 낮아지게 되는 문제점이 발생한다. 특히, 친환경 전기자동차 구동모터와 같이 경량화가 지속적으로 요구되는 소재에는 높은 자속밀도를 가진 소재의 사용이 필수적이다.
이를 위해, 열연판을 박물화하여 특성을 개선시키는 방법이 제안되었으며, 고Al을 포함시키고 2회소둔 2회압연을 거쳐 자성을 개선하는 방법이 제안되었다. 또한 박슬라브 제조방법을 통해 열연박물화를 하는 방법이 제안되었다.
하지만, 열연판 두께를 낮추는 방법은 일반적인 열연공정에서 압연부하 증가로 인하여 양산이 힘들고, 고Al 첨가 및 2회 소둔 및 2회 압연 공정은 자성향상이 일부 확인되나 {110}<001> Goss 집합조직도 함께 발달하기 때문에 모터의 원주특성이 열화되고 고Al 첨가에 따른 표면 결함도 크게 증가한다.
본 발명의 일 실시예는 무방향성 전기강판 및 그 제조 방법을 제공한다. 구체적으로 본 발명의 일 실시예는 열연판에 대한 탈 스케일 공정을 생략하고, 제1 냉간압연 이후 산세 공정을 수행함으로써, 특정 방위를 갖는 결정립을 발달시켜 자성을 향상시킨 무방향성 전기강판 및 그 제조 방법을 제공한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 집합조직을 ODF로 나타내었을 때, 가장 높은 강도를 갖는 방위가 {110}<115> 에서 5˚ 이내에 위치한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 집합조직을 ODF로 나타내었을 때, {110}<115> 방위강도가 {001}<100> 방위강도의 3배 이상일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Te: 0.001 내지 0.007 중량% 및 Sn 및 Sb 중 1종 이상을 각각 또는 그 합량으로 0.01 내지 0.1 중량% 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Cu: 0.005 내지 0.2 중량%, Cr: 0.01 내지 0.5 중량%, Ni:0.05 중량% 이하(0%를 제외함), Zn:0.01 중량% 이하(0%를 제외함) 및 Co: 0.05 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 P:0.1 중량% 이하(0%를 제외함), C:0.005 중량% 이하(0%를 제외함), S:0.005 중량% 이하(0%를 제외함), Ti:0.005 중량% 이하(0%를 제외함), N:0.005 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Mo: 0.03 중량% 이하(0%를 제외함), B: 0.0050 중량% 이하(0%를 제외함), V: 0.0050 중량% 이하(0%를 제외함), Ca: 0.0050 중량% 이하(0%를 제외함), Nb: 0.0050 중량% 이하(0%를 제외함). Zr: 0.005 중량%이하(0%를 제외함) 및 Mg: 0.0050 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
평균 결정립 입경이 50 내지 150㎛ 일 수 있다.
압연방향과 압연수직방향의 B50 자속밀도 차이가 0.05 내지 0.07T일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조 방법은 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 열연판 상에 스케일이 잔존한 상태로 제1 냉간압연 하여 제1 냉연판을 제조하는 단계; 제1 냉연판을 산세하는 단계; 산세된 제1 냉연판을 제2 냉간압연 하여 제2 냉연판을 제조하는 단계 및 제2 냉연판을 소둔하는 냉연판 소둔 단계;를 포함한다.
슬라브는 Te: 0.001 내지 0.007 중량% 및 Sn 및 Sb 중 1종 이상을 각각 또는 그 합량으로 0.01 내지 0.1 중량% 더 포함할 수 있다.
슬라브는 Cu: 0.005 내지 0.2 중량%, Cr: 0.01 내지 0.5 중량%, Ni:0.1 중량% 이하(0%를 제외함), Zn:0.01 중량% 이하(0%를 제외함) 및 Co: 0.05 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
슬라브는 P:0.1 중량% 이하(0%를 제외함), C:0.005 중량% 이하(0%를 제외함), S:0.005 중량% 이하(0%를 제외함), Ti:0.005 중량% 이하(0%를 제외함), N:0.005 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
슬라브는 Mo: 0.03 중량% 이하(0%를 제외함), B: 0.0050 중량% 이하(0%를 제외함), V: 0.0050 중량% 이하(0%를 제외함), Ca: 0.0050 중량% 이하(0%를 제외함), Nb: 0.0050 중량% 이하(0%를 제외함), Zr: 0.005 중량%이하(0%를 제외함), 및 Mg: 0.0050 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
열연판을 제조하는 단계 전에, 슬라브를 1200℃ 이하로 가열하는 단계를 더 포함할 수 있다.
열연판을 제조하는 단계에서, 마무리 압연 온도 800℃ 이상에서 열간압연하고, 550℃ 이하에서 권취할 수 있다.
열연판을 제조하는 단계 이후, 열연판을 냉각하고, 냉각된 열연판을 제1 냉간압연할 수 있다.
열연판을 제조하는 단계 이후, 열연판을 냉각하는 과정에서 350℃ 이상의 온도에서 코일을 재권취하는 단계를 포함하고, 재권취된 열연판을 제1 냉간압연할 수 있다.
제1 냉연판을 제조하는 단계는 압하율이 40 내지 70%일 수 있다. 냉간압연 워크롤과 강판의 마찰계수가 0.4 이상일 수 있다.
제1 냉연판을 제조하는 단계 이후, 제1 냉연판을 900℃ 이상으로 소둔하는 중간 소둔 단계를 더 포함할 수 있다.
제2 냉연판을 제조하는 단계는 압하율이 55 내지 80%일 수 있다. 냉간압연 워크롤과 강판의 마찰계수가 0.2 이하일 수 있다.
냉연판 소둔 단계는 수소(H2)와 질소(N2)의 혼합가스 분위기에서 850℃ 이상의 온도로 소둔할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 결정 방위를 최적화화여 자속밀도의 이방성을 개선하여 더욱 우수한 특성을 가질 수 있다.
궁극적으로 본 발명의 일 실시예에 의한 무방향성 전기강판은 친환경 자동차용 모터, 고효율 가전용 모터, 슈퍼프리미엄급 전동기를 제조할 수 있도록 기여한다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함한다.
이하에서는 무방향성 전기강판의 성분 한정의 이유부터 설명한다.
Si: 1.5 내지 4.5 중량%
실리콘(Si)은 재료의 비저항을 높여 철손을 낮추고 고용강화에 의해 강도를 높여주는 역할을 한다. Si가 너무 적게 첨가될 경우 철손 및 강도 개선 효과가 부족할 수 있다. Si를 너무 많이 첨가할 경우, 재료의 취성이 증가하여 압연생산성이 급격히 저하되고 자성에 유해한 표층부 산화층 및 산화물을 형성할 수 있다. 따라서, Si를 1.5 내지 4.5 중량% 포함할 수 있다. 더욱 구체적으로 2.0 내지 4.3 중량% 포함할 수 있다. 더욱 구체적으로 3.0 내지 3.7 중량% 포함할 수 있다.
Al: 0.1 내지 1.5 중량%
알루미늄(Al)은 재료의 비저항을 높여 철손을 낮추고 고용강화에 의해 강도를 높여주는 역할을 한다. Al이 너무 적게 첨가될 경우 미세 질화물이 형성되어 자성 개선 효과를 얻기 어려울 수 있다. Al이 너무 많이 첨가되면 질화물이 과다하게 형성되어 자성을 열화시키며, 제강과 연속주조 등의 모든 공정상에 문제를 발생시켜 생산성을 크게 저하시킬 수 있다. 따라서, Al을 0.1 내지 1.5 중량% 포함할 수 있다. 더욱 구체적으로 0.3 내지 1.2 중량% 포함할 수 있다. 더욱 구체적으로 0.5 내지 1.0 중량% 포함할 수 있다.
Mn: 0.1 내지 0.5 중량%
망간(Mn)은 재료의 비저항을 높여 철손을 개선하고 황화물을 형성시키는 역할을 한다. Mn이 너무 적게 첨가될 경우 황화물이 미세하게 형성되어 자성 열화를 일으키며, Mn이 너무 많이 첨가될 경우 미세한 MnS가 과다하게 석출되고 자성에 불리한 {111} 집합조직의 형성을 조장하여 자속밀도가 급격히 감소하게 된다. 따라서, Mn을 0.1 내지 0.5 중량% 포함할 수 있다. 더욱 구체적으로 0.2 내지 0.4 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Te: 0.001 내지 0.007 중량% 및 Sn 및 Sb 중 1종 이상을 각각 또는 그 합량으로 0.01 내지 0.1 중량% 더 포함할 수 있다.
Te: 0.001 내지 0.007 중량%
텔루륨(Te)은 열연코일 표면의 산화층에 확산되어 산화층과 압연 워크롤 사이의 마찰계수를 증가시키면서 산화층 하부에 농화되어 경도를 향상시키므로, 압연 중에 파쇄된 산화층이 모재에 압입되지 않고 탈락시키기 위해 첨가할 수 있다. Te의 첨가량이 너무 작으면 그 효과가 미미할 수 있다. Te가 너무 많이 첨가되면 산화층이 쉽게 탈락되어 모재가 직접 워크롤에 접촉하게 되면서 상기 효과가 저감되고, 냉간압연 중에 강판 내에 변형밴드가 과도하게 생성되어 자성에 불리한 {111}//ND 집합조직이 발달할 수 있다.
Sn 및 Sb 중 1종 이상: 0.01 내지 0.1 중량%
주석(Sn) 및 안티몬(Sb)은 결정립계 및 표면에 편석하여 재료의 집합조직을 개선하고 표면 산화를 억제하는 역할을 하므로 자성을 향상시키기 위해 첨가할 수 있다. Sn 및 Sb의 첨가량이 너무 작으면 그 효과가 미미하고, 열연코일 표면의 산화층과 압연 워크롤 사이의 마찰계수를 저하시켜 자기적 특성과 표면품질을 열화시킬 수 있다. Sn 및 Sb가 너무 많이 첨가되면, 결정립계 편석이 심해져 표면 품질이 열화되고, 경도가 상승하여 냉연판 파단을 일으켜 압연성이 저하될 수 있다. 따라서, 전술한 범위에서 Sn 및 Sb 중 1종 이상을 더 첨가할 수 있다. 더욱 구체적으로 Sn을 0.01 내지 0.05 중량% 또는 Sb를 0.01 내지 0.05 중량% 포함할 수 있다. 더욱 구체적으로 Sn을 0.01 내지 0.05 중량% 및 Sb를 0.01 내지 0.05 중량% 포함할 수 있다. Sn 및 Sb를 동시에 첨가하는 경우, 그 합량으로 0.01 내지 0.1 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Cu: 0.005 내지 0.2 중량%, Cr: 0.01 내지 0.5 중량%, Ni:0.05 중량% 이하(0%를 제외함), Zn:0.01 중량% 이하(0%를 제외함) 및 Co: 0.05 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
Cu: 0.01 중량% 이하
구리(Cu)는 Mn과 함께 황화물을 형성시키는 역할을 한다. Cu가 더 첨가되는 경우, 너무 적게 첨가되면 CuMnS가 미세하게 석출되어 자성을 열화시킬 수 있다. Cu가 너무 많이 첨가되면 고온취성이 발생하게 되어 연주나 열연시 크랙을 형성할 수 있다. 더욱 구체적으로 Cu를 0.001 내지 0.01 중량% 포함할 수 있다.
Cr: 0.50 중량% 이하
크롬(Cr)은 비저항을 높여 철손을 개선하는 역할을 한다. Cr이 너무 많이 포함되면 자속밀도가 저하할 수 있다. 더욱 구체적으로 Cr을 더 포함하는 경우, 0.01 내지 0.10 중량% 포함할 수 있다.
Ni:0.05 중량% 이하
니켈(Ni)은 강판의 자성을 저하시키는 미세한 크기의 석출물을 형성하지는 않으나, 강판의 표면 또는 표면직하에 농화층을 형성하여 열간압연 또는 냉간압연 과정에서 작업성을 해칠 수 있다.
Zn:0.01 중량% 이하
아연(Zn)은 강판의 자성을 저하시키는 미세한 크기의 석출물을 형성하지는 않으나, 산소친화도가 높은 원소이므로 강판 표면에 산화층 형성을 촉진시킬 수 있다.
Co: 0.05 중량% 이하
코발트(Co)은 강판의 자성을 저하시키는 미세한 크기의 석출물을 형성하지는 않으나, 고온강도를 증가시켜 열간압연 후 코일의 형상을 불량하게 만들 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 P:0.1 중량% 이하(0%를 제외함), C:0.005 중량% 이하(0%를 제외함), S:0.005 중량% 이하(0%를 제외함), Ti:0.005 중량% 이하(0%를 제외함), N:0.005 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
P : 0.100 중량% 이하
인(P)는 열간가공 특성을 열화시켜 자성개선 대비 생산성이 저하시키는 역할을 한다. 따라서 P를 0.100 중량% 이하로 포함할 수 있다. 그 하한은 특별히 한정되지 않으나, 강판의 표면 및 결정립계에 편석하여 소둔시 표면산화를 억제하고, 결정립계를 통한 원소의 확산을 방해하며, {111}//ND 방위의 재결정을 방해하여 집합조직을 개선시키는 역할을 수행하기도 하므로, 0.005 중량%로 할 수 있다. 더욱 구체적으로, P를 0.005 내지 0.050 중량% 포함할 수 있다. 더욱 구체적으로 P를 0.010 내지 0.030 중량% 포함할 수 있다.
C: 0.0050 중량% 이하
탄소(C)는 자기시효를 일으키고 기타 불순물 원소와 결합하여 탄화물을 생성하여 자기적 특성을 저하시키나 전위 이동을 방해하여 강도를 향상한다. C가 너무 많이 포함될 경우, 미세한 탄화물 분율이 증가하여 자성이 열화될 수 있다. 따라서, C를 0.0050 중량% 이하로 포함할 수 있다. C의 하한은 특별히 한정되지 아니하나, 생산성을 고려할 때, 0.0010 중량% 이상 포함할 수 있다. 즉, C를 0.0010 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 0.0010 내지 0.0030 중량% 포함할 수 있다.
S : 0.0050 중량% 이하
황(S)은 미세한 석출물인 MnS 및 CuS를 형성하여 자기특성을 악화시키고 열간가공성을 악화시킨다. 따라서, S를 0.0050 중량% 이하로 포함할 수 있다. 다만 본 발명의 일 실시예에서 특정 방위를 갖는 결정립의 발달에 도움을 주고, 자속밀도 향상에 도움을 주므로 본 발명의 일 실시예에서 0.0005 중량% 이상 첨가할 수 있다. 더욱 구체적으로 S를 0.0010 내지 0.0030 중량% 포함할 수 있다.
Ti: 0.0050중량% 이하
티타늄(Ti)은 강내 석출물 형성 경향이 매우 강하며, 모재 내부에 미세한 탄화물, 질화물 또는 황화물을 형성하여 결정립 성장 및 자벽이동을 억제함으로써 철손을 열화시킨다. 따라서 Ti 함량은 0.0050 중량% 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0003 중량%로 할 수 있다. 즉, Ti를 각각 0.0003 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 0.0003 내지 0.0030 중량% 포함할 수 있다.
N: 0.0050 중량% 이하
질소(N)은 모재 내부에 미세한 AlN 석출물을 형성할 뿐 아니라, 기타 불순물과 결합하여 미세한 석출물을 형성하여 결정립 성장을 억제하여 철손을 악화시킨다. 따라서, N을 0.0050 중량% 이하로 포함할 수 있다. N의 하한은 특별히 한정되지 아니하나, N이 강도를 향상시키는데 도움을 주므로, 하한을 0.0003 중량%로 할 수 있다. 즉 N을 0.0003 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 0.0010 내지 0.0030 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Mo: 0.03 중량% 이하(0%를 제외함), B: 0.0050 중량% 이하(0%를 제외함), V: 0.0050 중량% 이하(0%를 제외함), Ca: 0.0050 중량% 이하(0%를 제외함), Nb: 0.0050 중량% 이하(0%를 제외함). Zr: 0.005 중량%이하(0%를 제외함) 및 Mg: 0.0050 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
Mo: 0.030 중량% 이하
몰리브덴(Mo)은 과량 첨가할 경우, 편석원소의 편석을 억제하여 집합조직 개선효과가 감소할 수 있다. 따라서, Mo를 0.03 중량% 이하로 포함할 수 있다. 그 하한은 특별히 한정되지 않으나, 표면과 입계에 편석하여 집합조직을 개선시키는 역할을 하므로 0.001 중량% 이상 포함할 수 있다. 더욱 구체적으로 Mo를 0.001 내지 0.010 중량% 포함할 수 있다. 더욱 구체적으로 Mo를 0.005 내지 0.010 중량% 포함할 수 있다.
B: 0.005 중량% 이하
붕소(B)를 과량 첨가할 경우, 강내 개재물 형성 등을 통한 자성 악화를 야기할 수 있다. 따라서, B를 0.005 중량% 이하로 포함할 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0001 중량%로 할 수 있다. 더욱 구체적으로, B를 0.0001 내지 0.0030 중량% 포함할 수 있다.
V: 0.0050중량% 이하
바나듐(V)은 강내 석출물 형성 경향이 매우 강하며, 모재 내부에 미세한 탄화물 또는 질화물을 형성하여 결정립 성장 및 자벽이동을 억제함으로써 철손을 열화시킨다. 따라서 V 함량은 각각 0.0050 중량% 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0003 중량%로 할 수 있다. 즉, V를 0.0003 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 V를 0.0003 내지 0.0030 중량% 포함할 수 있다.
Ca: 0.0050 중량% 이하
칼슘(Ca)는 강내 석출물 형성 경향이 매우 강하며, 모재 내부에 미세한 황화물을 형성하여 결정립 성장 및 자벽이동을 억제함으로써 철손을 열화시킨다.
Nb: 0.0050중량% 이하
니오븀(Nb)는 강내 석출물 형성 경향이 매우 강하며, 모재 내부에 미세한 탄화물 또는 질화물을 형성하여 결정립 성장 및 자벽이동을 억제함으로써 철손을 열화시킨다. 따라서 Nb 함량은 0.0050 중량% 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0003 중량%로 할 수 있다. 즉, Nb를 0.0003 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 Nb를 0.0003 내지 0.0030 중량% 포함할 수 있다.
Zr: 0.005 중량%이하
지르코늄(Zr)를 과량 첨가할 경우, 강내 개재물 형성 등을 통한 자성 악화를 야기할 수 있다. 따라서, Zr를 0.005 중량% 이하로 포함할 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0001 중량%로 할 수 있다. 즉, Zr를 0.0001 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 0.0005 내지 0.0030 중량% 포함할 수 있다.
Mg: 0.0050 중량% 이하
마그네슘(Mg)은 주로 S와 결합하여 황화물을 형성하는 원소이며, 소지철 표면 산화층에 영향을 미칠 수 있다. 따라서, Mg를 0.0050 중량% 이하 포함할 수 있다. 그 하한은 특별히 한정되지 않으나, 제강 비용으로 인하여 0.0001 중량%로 할 수 있다. 즉, Mg를 0.0001 내지 0.0050 중량% 포함할 수 있다. 더욱 구체적으로 0.0005 내지 0.0030 중량% 포함할 수 있다.
잔부는 Fe 및 불가피한 불순물을 포함한다. 불가피한 불순물에 대해서는 제강 단계 및 무방향성 전기강판의 제조 공정 과정에서 혼입되는 불순물이며, 이는 해당 분야에서 널리 알려져 있으므로, 구체적인 설명은 생략한다. 본 발명의 일 실시예에서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 집합조직을 ODF(방위분포함수, orientation distribution function)로 나타내었을 때, 가장 높은 강도를 갖는 방위가 {110}<115> 에서 5˚ 이내에 위치한다. 이는 {110}<115> 부근의 방위를 갖는 결정립이 다량 형성되어, 다른 방위에 비해 다량 생성되었다는 의미이며, {110}<115> 는 압연방향 및 압연수직방향의 자기적 특성을 획기적으로 개선하여 자성 향상에 도움을 줄 수 있다. 더욱 구체적으로 가장 높은 강도를 갖는 방위가 {110}<115> 에서 5˚ 이내에 위치할 수 있다. {110}<115>과의 각도는 {110}<115> 방향과 임의의 방향을 포함하는 면에서 {110}<115> 방향과 임의의 방향이 이루는 각도를 의미한다. ODF의 분석 위치는 특별히 제한되지 않으나, 강판의 TD면을 충분히 넓게 측정하여 분석할 수 있다. ODF는 EBSD를 이용하여 측정할 수 있으며, OIM Software를 이용하여 분석할 수 있다. Harmonic series expansion 방법을 사용하고, l(max)=22로 설정하여 분석할 수 있다. 구체적으로 {110}<115> 에서의 강도는 3 내지 15 일 수 있다.
{110}<115> 부근의 방위를 갖는 결정립을 다량 형성하기 위해서는 강 조성 및 제조 공정이 적절히 조절되어야 한다. 이에 대해서는 후술할 무방향성 전기강판의 제조 방법에 대해서 자세히 설명하므로, 중복되는 설명은 생략한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 집합조직을 ODF로 나타내었을 때, {110}<115> 방위강도가 {001}<100> 방위강도의 3배 이상일 수 있다. {001}<100> 방위는 압연방향과 압연수직방향의 자기적 특성을 이론적으로 가장 우수하게 만드는 방위이지만, {110}<115> 방위 또한 압연방향과 압연수직방향의 자기적 특성을 우수하게 만들 수 있는 방위이며, {110}<115> 방위가 {001}<100> 방위보다 3배 이상의 강도를 갖는 것은 소재에 인가된 변형, 회복, 재결정 과정이 확연히 상이한 과정을 거쳤음을 의미한다. 더욱 구체적으로 {110}<115> 방위강도가 {001}<100> 방위강도의 3.5배 내지 5배 일 수 있다. {001}<100> 방위강도는 0.3 내지 1.5일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 평균 결정립 입경이 50 내지 150 ㎛일 수 있다. 적절한 평균 결정립경이 확보될 시, 자성을 향상시킬 수 있다. 특히 고주파 철손을 향상시킬 수 있다. 본 발명의 일 실시예에서 결정립 입경이란 결정립 면적과 동일한 면적을 갖는 가상의 원을 가정하여 그 원의 직경을 의미한다. 평균 결정립 입경은 2×(측정면적÷결정립개수÷π)0.5로 계산할 수 있다. 결정립 입경은 압연 수직면(TD면)을 기준으로 측정할 수 있다. 측정 위치는 특별히 한정되지 않으나, 강판 전체 두께의 1/4 내지 3/4 지점에서 측정할 수 있다. 더욱 구체적으로 평균 결정립경이 60 내지 95㎛일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 자속밀도의 이방성이 우수하고, 고주파 철손이 우수하다. 본 발명의 일 실시예에 의한 무방향성 전기강판을 이용하여 친환경 자동차 구동용 모터를 제조할 시, 비용 증가를 최소화하면서도 모터의 효율을 향상시켜 친환경 자동차의 1회 충전 주행거리를 증가시킬 수 있다는 점에서 유리함이 있다.
구체적으로 무방향성 전기강판의 철손(W10/400)이 0.25mm 두께 기준으로 12.0 W/kg이하, 압연방향에서 측정한 자속밀도(B50L)이 1.69T이상이고, 압연수직방향에서 측정한 자속밀도(B50C)가 1.65T 이상일 수 있다. 더욱 구체적으로 철손(W10/400)이 10.5 내지 11.5 W/kg, 압연방향에서 측정한 자속밀도(B50L)이 1.70 내지 1.75 T이고, 압연수직방향에서 측정한 자속밀도(B50C)가 1.66 내지 1.70T일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 열연판 상에 스케일이 잔존한 상태로 제1 냉간압연 하여 제1 냉연판을 제조하는 단계; 제1 냉연판을 산세하는 단계; 산세된 제1 냉연판을 제2 냉간압연 하여 제2 냉연판을 제조하는 단계 및 제2 냉연판을 소둔하는 냉연판 소둔 단계;를 포함한다.
먼저, 슬라브를 열간압연한다.
슬라브의 합금 성분에 대해서는 전술한 무방향성 전기강판의 합금성분에서 설명하였으므로, 중복되는 설명은 생략한다. 무방향성 전기강판의 제조 과정에서 합금 성분이 실질적으로 변동되지 않으므로, 무방향성 전기강판과 슬라브의 합금 성분은 실질적으로 동일하다.
구체적으로 슬라브는 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함한다.
그 밖의 추가 원소에 대해서는 무방향성 전기강판의 합금성분에서 설명하였으므로, 중복되는 설명은 생략한다.
슬라브를 열간압연하기 전에 가열할 수 있다. 슬라브의 가열 온도는 제한되지 않으나, 슬라브를 1200℃이하로 가열할 수 있다. 슬라브 가열 온도가 너무 높으면, 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간압연 및 소둔시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시킬 수 있다.
다음으로, 슬라브를 열간 압연하여 열연판을 제조한다. 열연판 두께는 1.8 내지 2.3mm가 될 수 있다. 열연판을 제조하는 단계에서 마무리 압연 온도는 800℃ 이상일 수 있다. 구체적으로 800 내지 1000℃ 일 수 있다. 열연판은 550℃ 이하의 온도에서 권취될 수 있다. 열연판을 낮은 온도에서 권취함으로써, 1차 냉간압연 공정에서 마찰계수를 증가시킬 수 있는 산화층을 조성하기에 유리하다. 더욱 구체적으로 열연판의 권취 온도는 400 내지 525℃일 수 있다.
다음으로, 열연판을 열연판 상에 스케일이 잔존한 상태로 제1 냉간압연한다. 열간압연 시 고온에서 공기와 접촉함으로써, 열연판 표면에 스케일이 생성되고, 기존에는 이 스케일을 산세, 쇼트 블라스트 또는 표면 연삭의 방법을 통해 제거하고, 냉간압연하였다. 본 발명의 일 실시예에서는 산세, 쇼트 블라스트 또는 표면 연삭등의 탈 스케일 공정을 생략하고, 냉간압연을 수행한다. 산세 공정을 생략한 상태로 냉간압연하여 압연 워크롤과 강판의 마찰이 증가하게 됨으로써, 압연 중에 평면변형과 외에도 전단변형이 동시에 인가되면서 재결정 소둔 시 특정 방위가 발달하게 된다. 본 발명의 일 실시예에서 스케일이란 강판 표면에 Fe, Al, Si 등의 원소가 산소와 결합하여 모재와 상이한 상을 형성한 부분을 의미한다. 스케일이 잔존한다는 의미는 열연판 상에 적어도 1㎛ 두께의 스케일이 잔존함을 의미한다. 이 때, 스케일 두께는 강판의 양 표면에 생성된 스케일 두께의 합을 의미한다. 잔존하는 스케일 두께가 너무 얇으면 스케일 잔존에 의한 효과가 충분히 발휘되지 못할 수 있다. 스케일 두께가 더 두껍더라도 효과는 향상되지 않으며, 강판의 수율이 줄어드는 문제가 있다. 더욱 구체적으로 0.1 내지 1㎛두께의 스케일이 잔존할 수 있다.
스케일이 잔존한채로 냉간압연 할 시, 스케일이 파쇄되면서 강판의 표면에 물리적인 결함을 유발할 수 있다. 본 발명의 일 실시예에서는 열연판 권취 후 400 내지 500℃ 구간의 유지시간 제어를 통해 강판 표면 산화층 하부에 Te를 농화시켜 1차 냉간압연 중에 산화층을 탈락을 용이하게 하여 이 문제를 해결할 수 있다.
열연판을 제조하는 단계 이후, 열연판을 냉각하고, 냉각된 열연판을 제1 냉간압연할 수 있다. 즉, 열간압연 이후, 열연판 소둔을 생략하고, 제1 냉간압연할 수 있다. 열연판 소둔을 생략할 시, 강판 표면 산화층 하부의 Te 농화층을 유지하여 표면 결함을 유발하는 산화층을 무해하게 제거할 수 있다.
열연판을 냉각하는 과정에서 350℃ 이상의 온도에서 코일을 재권취하는 단계를 포함할 수 있다. 코일을 재권취함으로써, 표면결함을 유발할 수 있는 산화층을 물리적으로 사전에 파쇄하여 1차 냉간압연 시에 일부 제거하기에 용이할 수 있다. 더욱 구체적으로 375 내지 450℃의 온도에서 재권취할 수 있다.
제1 냉연판을 제조하는 단계는 압하율이 40 내지 70%일 수 있다. 압하율은 (압연 전 두께 - 압연 후 두께) / 압연 전 두께로 계산할 수 있다. 압하율이 너무 낮으면 제2 냉간압연시 압연부하가 증가하여 생산성이 떨어지고 제2 냉간압연 압하율이 증가하여 미세한 <111>//ND 방위 재결정을 촉진하는 문제가 발생할 수 있다. 반대로 압하율이 너무 높으면 냉간압연 부하가 증가하고 판파단 발생 가능성도 높게 된다. 더욱 구체적으로 압하율이 50 내지 65%일 수 있다.
제1 냉간압연 단계는 60 내지 300℃의 온도에서 수행될 수 있다. 이 온도는 강판과 압연롤의 마찰로 인해 저절로 강판의 온도가 올라가거나 또는 외부에서 열을 가하여 올릴 수 있다. 온도가 너무 낮으면 압연부하가 크게 증가하게 되고 강판이 압연롤 사이에서 압연되지 않고 미끄러져서 꼬임 등의 문제가 발생할 수 있다. 온도가 너무 높으면 강판 표면에서 Si 및 Al 산화가 발생하게 되고 자성이 열화될 수 있고 압연유가 발화하는 등의 문제가 발생할 수 있다. 더욱 구체적으로 70 내지 250℃의 온도에서 수행되는 것이 바람직하다. 전술한 온도는 강판의 온도를 의미한다.
이 때, 제1 냉간압연 시 냉간압연 워크롤과 강판의 마찰계수는 0.4 이상일 수 있다. 워크 롤이 복수개 존재하는 경우, 가장 먼저 위치하는 워크 롤과의 마찰계수가 0.4 이상일 수 있다. 마찰계수가 높을수록 최종 재결정 소둔시 자성에 유리한 집합조직을 발달시키기에 유리하다. 더욱 구체적으로 0.45 내지 0.7일 수 있다.
제1 냉연판을 제조하는 단계 이후, 제1 냉연판을 900℃ 이상으로 소둔하는 중간 소둔 단계를 더 포함할 수 있다. 소둔 온도가 너무 낮으면 결정립의 크기가 미세해지고 결정립계가 증가하여 제2 냉간압연시 입계에서의 <111>//ND 방위 재결정 핵이 증가하여 결국 자속밀도가 열위해지게 된다. 구체적으로 중간 소둔 단계의 온도는 900 내지 1100℃일 수 있다. 중간 소둔 시간은 10초 내지 600초 일 수 있다.
다음으로, 제1 냉연판을 산세한다. 스케일이 최종 제조된 무방향성 전기강판에 잔존할 시, 자성을 해치게 된다. 또한, 스케일이 잔존한 채로 제2 냉간압연을 수행할 시, 표면에 스케일이 압입되거나 탈락한 자국이 요철을 형성하여 모터의 동작 안정성 및 자기적 특성을 열화시킬 수 있다. 산세후, 스케일이 모두 제거되거나, 0.01㎛ 두께 이하로 존재할 수 있다. 산세는 산 침지 뿐 아니라, 물리적, 화학적으로 탈스케일하는 모든 방법을 의미한다. 산세 방법으로 산 침지, 쇼트 블라스트 또는 표면 연삭이 있을 수 있다.
다음으로, 산세된 제1 냉연판을 제2 냉간압연한다. 이 때, 압하율은 55 내지 80%가 될 수 있다. 압하율이 너무 낮으면 압연된 강판에 축적된 변형에너지가 작아 이후 소둔 공정에서 재결정하기 어려워 압연 조직이 남아있게 되어 자속밀도 및 철손 개선에 문제가 발생할 수 있다. 반대로, 압하율이 너무 높으면 이후 소둔공정에서 <111>//ND 방위 결정립의 재결정이 촉진되고 결정립도 미세해져 자속밀도는 열위하고 철손은 증가하는 문제가 발생할 수 있다. 더욱 구체적으로 압하율은 60 내지 75%일 수 있다.
이 때, 제2 냉간압연 시 냉간압연 워크롤과 강판의 마찰계수는 0.2 이하일 수 있다. 마찰계수가 낮을수록 중간소둔 과정에서 형성된 집합조직이 전단변형에 의해 자성에 불리한 집합조직으로 변형되지 않고 유지되기에 유리하다. 더욱 구체적으로 0.01 내지 0.15일 수 있다.
최종 압연 두께는 0.1mm 내지 0.35mm일 수 있다.
다음으로, 제2 냉연판을 소둔 한다. 냉연판 소둔 단계는 수소(H2)와 질소(N2)의 혼합가스 및 분위기에서 수행될 수 있다. 혼합가스는 수소 40 부피% 이하 및 질소 60 부피% 이상 포함될 수 있다.
냉연판 소둔 단계는 850 ℃ 이상의 온도로 소둔할 수 있다. 전술한 온도는 균열 온도를 의미한다. 균열 온도가 너무 낮을 경우, 결정립이 충분히 성장하지 못하여 이력손실이 증가하여 철손이 열화되는 문제가 발생할 수 있다. 균열 온도가 너무 높을 경우, 와전류 손실이 증가하고 자속밀도가 급격히 저하되는 문제가 발생할 수 있다. 더욱 구체적으로 850 내지 1100℃의 온도에서 소둔할 수 있다. 30 내지 50초 동안 소둔할 수 있다.
냉연판 소둔 과정에서 냉간압연 단계에서 형성된 가공 조직이 모두(즉, 99% 이상) 재결정될 수 있다.
냉연판 소둔 후, 절연피막을 형성할 수 있다. 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다.
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실시예 1
표 1 및 잔부 Fe 및 불가피한 불순물을 포함하는 성분으로 슬라브를 제조하였다. 이를 1150℃로 가열하고 880℃의 마무리온도로 열간압연하여, 판두께 2.0m의 열연판을 제조하였다. 시편번호 B2는 산세하여 열연판 상에 스케일을 완전히 제거하였다.
이후, 열연판을 소둔을 생략하고 표의 조건으로 제1 냉간압연하고, 산세하여 스케일을 완전히 제거하였다. 중간소둔 하고, 제2 냉간압연하여 최종 두께를 0.25mm로 하였다. 제2 냉간압연한 강판을 표 에 기재된 온도로 소둔하였다.
자속밀도, 철손 등의 자기적 특성은 각각의 시편에 대해 너비 60mm × 길이 60mm × 매수 5매의 시편을 절단하여 철손은 Single sheet tester로 압연방향과 압연수직방향을 측정하고 그 평균값을 나타내었다. 자속밀도는 압연 방향, 압연 수직 방향을 측정하였다.
이 때, W10/400은 400Hz의 주파수로 1.0T의 자속밀도를 유기하였을 때의 철손이고, B50은 5000A/m의 자기장에서 유도되는 자속밀도를 의미한다.
ODF는 EBSD, OIM Software를 이용하여 분석하였다. Harmonic series expansion 방법을 사용하고, l(max)=22로 설정하여 분석하였다.
시편번호 Si
[%]
Al
[%]
Mn
[%]
Te
[%]
Sn
[%]
Sb
[%]
A1 2.8 1.40 0.40 0.005 0.02 0.05
A2 2.8 1.40 0.40 0.024 0.08 0.01
A3 2.8 1.40 0.40 0.003 0.03 0.05
A4 2.8 1.40 0.40 0.005 0.07 0.01
A5 2.8 1.40 0.40 0.004 0.04 0.03
A6 2.8 1.40 0.40 0.004 0.06 0.01
A7 2.8 1.40 0.40 0.004 0.05 0.01
A8 2.8 1.40 0.40 0.005 0.05 0.01
B1 3.4 0.95 0.30 0.003 0.02 0.01
B2 3.4 0.95 0.30 0.005 0.01 0.01
B3 3.4 0.95 0.30 0.004 0.03 0.03
B4 3.4 0.95 0.30 0.005 0.07 0.01
B5 3.4 0.95 0.30 0.004 0.04 0.03
B6 3.4 0.95 0.30 0.005 0.06 0.01
B7 3.4 0.95 0.30 0.004 0.05 0.03
B8 3.4 0.95 0.30 0.004 0.05 0.01
C1 3.6 0.75 0.20 0.003 0.003 0.002
C2 3.6 0.75 0.20 0.003 0.02 0.05
C3 3.6 0.75 0.20 0.004 0.08 0.01
C4 3.6 0.75 0.20 0.005 0.03 0.05
C5 3.6 0.75 0.20 0.003 0.07 0.01
C6 3.6 0.75 0.20 0.004 0.04 0.05
C7 3.6 0.75 0.20 0.003 0.06 0.01
C8 3.6 0.75 0.20 0.005 0.05 0.03
D1 4.2 0.30 0.15 0.004 0.02 0.03
D2 4.2 0.30 0.15 0.0002 0.07 0.01
D3 4.2 0.30 0.15 0.004 0.03 0.02
D4 4.2 0.30 0.15 0.005 0.01 0.05
D5 4.2 0.30 0.15 0.005 0.16 0.12
D6 4.2 0.30 0.15 0.004 0.02 0.03
D7 4.2 0.30 0.15 0.005 0.04 0.01
D8 4.2 0.30 0.15 0.004 0.01 0.01
시편번호 Cu
[%]
Cr
[%]
Ni
[%]
Zn
[%]
Co
[%]
A1 0.020 0.020 0.015 0.002 0.008
A2 0.020 0.020 0.015 0.002 0.008
A3 0.020 0.020 0.015 0.002 0.008
A4 0.020 0.020 0.015 0.002 0.008
A5 0.020 0.020 0.015 0.002 0.008
A6 0.020 0.020 0.015 0.002 0.008
A7 0.020 0.020 0.015 0.002 0.008
A8 0.020 0.020 0.015 0.002 0.008
B1 0.010 0.020 0.015 0.002 0.008
B2 0.010 0.020 0.015 0.002 0.008
B3 0.010 0.020 0.015 0.002 0.008
B4 0.010 0.020 0.015 0.002 0.008
B5 0.010 0.020 0.015 0.002 0.008
B6 0.010 0.020 0.015 0.002 0.008
B7 0.010 0.020 0.015 0.002 0.008
B8 0.010 0.020 0.015 0.002 0.008
C1 0.020 0.020 0.015 0.002 0.008
C2 0.020 0.020 0.015 0.002 0.008
C3 0.020 0.020 0.015 0.002 0.008
C4 0.020 0.020 0.015 0.002 0.008
C5 0.020 0.020 0.015 0.002 0.008
C6 0.020 0.020 0.015 0.002 0.008
C7 0.020 0.020 0.015 0.002 0.008
C8 0.020 0.020 0.015 0.002 0.008
D1 0.010 0.020 0.015 0.002 0.008
D2 0.010 0.020 0.015 0.002 0.008
D3 0.010 0.020 0.015 0.002 0.008
D4 0.010 0.020 0.015 0.002 0.008
D5 0.010 0.020 0.015 0.002 0.008
D6 0.010 0.020 0.015 0.002 0.008
D7 0.010 0.020 0.015 0.002 0.008
D8 0.010 0.020 0.015 0.002 0.008
시편번호 열연
마무리온도
[℃]
열연코일
권취온도
[℃]
열연코일
재권취 여부
열연코일
재권취 온도
[℃]
열연코일
산세 여부
열연두께[mm]
A1 900 500 X 400 X 1.25
A2 900 500 O 400 X 1.56
A3 900 500 O 400 X 1.00
A4 900 500 O 400 X 4.17
A5 900 500 O 400 X 1.25
A6 900 500 O 400 X 1.56
A7 900 500 O 400 X 1.67
A8 900 500 O 400 X 2.08
B1 750 500 O 400 X 1.25
B2 900 500 O 400 O 1.56
B3 900 500 O 400 X 1.67
B4 900 500 O 400 X 2.08
B5 900 500 O 400 X 1.25
B6 900 500 O 400 X 1.56
B7 900 500 O 400 X 1.67
B8 900 500 O 400 X 2.08
C1 900 500 O 400 X 1.25
C2 900 630 O 400 X 1.56
C3 900 500 O 400 X 1.19
C4 900 500 O 400 X 4.17
C5 900 500 O 400 X 1.25
C6 900 500 O 400 X 1.56
C7 900 500 O 400 X 1.67
C8 900 500 O 400 X 2.08
D1 900 500 O 200 X 1.25
D2 900 500 O 400 X 1.56
D3 900 500 O 400 X 1.67
D4 900 500 O 400 X 2.08
D5 900 500 O 400 X 1.25
D6 900 500 O 400 X 1.56
D7 900 500 O 400 X 1.67
D8 900 500 O 400 X 2.08
시편번호 제 1 냉연
압하율
[%]
제 1 냉연
마찰계수
중간소둔
온도
[℃]
제 2 냉연
압하율
[%]
제 2 냉연
마찰계수
냉연판 소둔
온도
[℃]
A1 50 0.3 1030 60 0.1 1000
A2 60 0.3 1030 60 0.1 1000
A3 50 0.5 1030 50 0.1 1000
A4 80 0.5 1030 70 0.1 1000
A5 50 0.5 1030 60 0.1 1000
A6 60 0.5 1030 60 0.1 1000
A7 50 0.5 1030 70 0.1 1000
A8 60 0.5 1030 70 0.1 1000
B1 50 0.3 1030 60 0.1 1000
B2 60 0.3 1030 60 0.1 1000
B3 50 0.5 1030 70 0.1 1000
B4 60 0.5 1030 70 0.1 830
B5 50 0.5 1030 60 0.1 1000
B6 60 0.5 1030 60 0.1 1000
B7 50 0.5 1030 70 0.1 1000
B8 60 0.5 1030 70 0.1 1000
C1 50 0.3 1030 60 0.1 1000
C2 60 0.3 1030 60 0.1 1000
C3 30 0.5 1030 70 0.1 1000
C4 60 0.5 1030 85 0.1 1000
C5 50 0.5 1030 60 0.1 1000
C6 60 0.5 1030 60 0.1 1000
C7 50 0.5 1030 70 0.1 1000
C8 60 0.5 1030 70 0.1 1000
D1 50 0.3 1030 60 0.1 1000
D2 60 0.3 1030 60 0.1 1000
D3 50 0.5 850 70 0.1 1000
D4 60 0.5 1030 70 0.3 1000
D5 50 0.5 1030 60 0.1 1000
D6 60 0.5 1030 60 0.1 1000
D7 50 0.5 1030 70 0.1 1000
D8 60 0.5 1030 70 0.1 1000
시편번호 최대강도 방위와
{110}<115> 방위 각도차
[˚]
{110}<115> 방위강도
/ {001}<100> 방위강도
평균
결정립경
[μm]
W10/400
[W/kg]
압연방향
B50
[T]
압연수직방향
B50
[T]
비고
A1 12 1.3 88 12.3 1.68 1.64 비교예
A2 20 1.1 91 12.7 1.68 1.64 비교예
A3 13 1.4 102 12.5 1.68 1.64 비교예
A4 11 0.9 95 12.4 1.68 1.64 비교예
A5 3 4.3 87 11.3 1.70 1.66 발명예
A6 2 5.1 91 11.4 1.70 1.66 발명예
A7 3 3.9 85 11.2 1.70 1.66 발명예
A8 1 4.1 101 11.5 1.70 1.66 발명예
B1 13 1.1 94 12.6 1.68 1.64 비교예
B2 11 0.8 87 12.7 1.68 1.64 비교예
B3 9 1.8 103 12.4 1.68 1.64 비교예
B4 11 1.1 32 12.6 1.68 1.64 비교예
B5 2 4.5 92 11.5 1.70 1.66 발명예
B6 2 6.2 88 11.4 1.70 1.66 발명예
B7 3 4.7 96 11.2 1.70 1.66 발명예
B8 3 4.6 75 11.2 1.70 1.66 발명예
C1 12 0.9 102 12.7 1.68 1.64 비교예
C2 8 0.8 86 12.7 1.68 1.64 비교예
C3 11 1.1 94 12.6 1.68 1.64 비교예
C4 19 1.5 95 12.4 1.68 1.64 비교예
C5 1 5.3 95 11.4 1.70 1.66 발명예
C6 3 4.2 91 11.4 1.70 1.66 발명예
C7 2 6.1 88 11.5 1.70 1.66 발명예
C8 2 5.4 86 11.2 1.70 1.66 발명예
D1 12 1.9 92 12.3 1.68 1.64 비교예
D2 9 1.3 99 12.6 1.68 1.64 비교예
D3 11 0.7 89 12.7 1.68 1.64 비교예
D4 11 1.3 85 12.4 1.68 1.64 비교예
D5 12 1.2 92 12.2 1.68 1.64 비교예
D6 2 3.9 103 11.3 1.70 1.66 발명예
D7 3 4.1 95 11.3 1.70 1.66 발명예
D8 2 5.3 94 11.4 1.70 1.66 발명예
표 1 내지 표 3에 나타나듯이, 강 성분이 적절히 조절되고, 열연판에 스케일을 일부 잔존한 발명예는 특정 집합 조직이 발달하여 철손 및 자속밀도가 우수하고, 특히 압연 방향 및 압연 수직 방향의 자속밀도 차이가 적절히 얻어짐을 확인할 수 있다.
반면, 강 성분이 적절히 조절되지 않은 경우, 철손 및 자속밀도가 열위함을 확인할 수 있다.
또한, 강 성분이 적절히 조절되더라도, 열연판에 스케일을 모두 제거한 경우, 특정 집합 조직이 발달하지 못해, 철손 및 자속밀도가 열위함을 확인할 수 있다. 또한, 제1 냉간압연 이후 스케일을 제거하지 않은 경우, 스케일로 인해, 철손 및 자속밀도가 열위함을 확인할 수 있다.
또한, 열연판 스케일을 일부 제거한 경우, 특정 집합 조직의 발달이 충분치 아니하고, 자성이 비교적 열위함을 확인할 수 있다. 또한, 제1 냉간압연 이후, 스케일을 충분히 제거하지 못한 경우도, 자성이 비교적 열위함을 확인할 수 있다.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 집합조직을 ODF로 나타내었을 때, 가장 높은 강도를 갖는 방위가 {110}<115> 에서 5˚ 이내에 위치하는 무방향성 전기강판.
  2. 제1항에 있어서,
    집합조직을 ODF로 나타내었을 때, {110}<115> 방위강도가 {001}<100> 방위강도의 3배 이상인 무방향성 전기강판.
  3. 제1항에 있어서,
    Te: 0.001 내지 0.007 중량%, 및 Sn 및 Sb 중 1종 이상을 각각 또는 그 합량으로 0.01 내지 0.1 중량% 더 포함하는 무방향성 전기강판.
  4. 제1항에 있어서,
    Cu: 0.005 내지 0.2 중량%, Cr: 0.01 내지 0.5 중량%, Ni:0.05 중량% 이하(0%를 제외함), Zn:0.01 중량% 이하(0%를 제외함) 및 Co: 0.05 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판.
  5. 제1항에 있어서,
    P:0.1 중량% 이하(0%를 제외함), C:0.005 중량% 이하(0%를 제외함), S:0.005 중량% 이하(0%를 제외함), Ti:0.005 중량% 이하(0%를 제외함), N:0.005 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판.
  6. 제1항에 있어서,
    Mo: 0.03 중량% 이하(0%를 제외함), B: 0.0050 중량% 이하(0%를 제외함), V: 0.0050 중량% 이하(0%를 제외함), Ca: 0.0050 중량% 이하(0%를 제외함), Nb: 0.0050 중량% 이하(0%를 제외함), Zr: 0.005 중량%이하(0%를 제외함) 및 Mg: 0.0050 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판.
  7. 제1항에 있어서,
    평균 결정립 입경이 50 내지 150㎛인 무방향성 전기강판.
  8. 중량%로 Si : 1.5 내지 4.5%, Al : 0.1 내지 1.5%, Mn : 0.1 내지 0.5%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간 압연하여 열연판을 제조하는 단계;
    상기 열연판을 열연판 상에 스케일이 잔존한 상태로 제1 냉간압연 하여 제1 냉연판을 제조하는 단계;
    상기 제1 냉연판을 산세하는 단계;
    산세된 제1 냉연판을 제2 냉간압연 하여 제2 냉연판을 제조하는 단계 및
    상기 제2 냉연판을 소둔하는 냉연판 소둔 단계;를 포함하는 무방향성 전기강판의 제조 방법.
  9. 제8항에 있어서,
    상기 슬라브는 Te: 0.001 내지 0.007 중량% 및 Sn 및 Sb 중 1종 이상을 각각 또는 그 합량으로 0.01 내지 0.1 중량% 더 포함하는 무방향성 전기강판의 제조방법.
  10. 제8항에 있어서,
    상기 슬라브는 Cu: 0.005 내지 0.2 중량%, Cr: 0.01 내지 0.5 중량%, Ni:0.1 중량% 이하(0%를 제외함), Zn:0.01 중량% 이하(0%를 제외함) 및 Co: 0.05 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판의 제조방법.
  11. 제8항에 있어서,
    상기 슬라브는 P:0.1 중량% 이하(0%를 제외함), C:0.005 중량% 이하(0%를 제외함), S:0.005 중량% 이하(0%를 제외함), Ti:0.005 중량% 이하(0%를 제외함), N:0.005 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판의 제조방법.
  12. 제8항에 있어서,
    상기 슬라브는 Mo: 0.03 중량% 이하(0%를 제외함), B: 0.0050 중량% 이하(0%를 제외함), V: 0.0050 중량% 이하(0%를 제외함), Ca: 0.0050 중량% 이하(0%를 제외함), Nb: 0.0050 중량% 이하(0%를 제외함), Zr: 0.005 중량%이하(0%를 제외함) 및 Mg: 0.0050 중량% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판의 제조방법.
  13. 제8항에 있어서,
    상기 열연판을 제조하는 단계 전에, 상기 슬라브를 1200℃ 이하로 가열하는 단계를 더 포함하는 무방향성 전기강판의 제조방법.
  14. 제8항에 있어서,
    상기 열연판을 제조하는 단계에서, 마무리 압연 온도 800℃ 이상에서 열간압연하고, 550℃ 이하에서 권취하는 무방향성 전기강판의 제조방법.
  15. 제8항에 있어서,
    상기 열연판을 제조하는 단계 이후, 열연판을 냉각하고, 냉각된 열연판을 제1 냉간압연하는 무방향성 전기강판의 제조방법.
  16. 제8항에 있어서,
    상기 열연판을 제조하는 단계 이후, 상기 열연판을 냉각하는 과정에서 350℃ 이상의 온도에서 코일을 재권취하는 단계를 포함하고, 재권취된 열연판을 제1 냉간압연하는 무방향성 전기강판의 제조방법.
  17. 제8항에 있어서,
    상기 제1 냉연판을 제조하는 단계는 압하율이 40 내지 70%이며, 냉간압연 워크롤과 강판의 마찰계수가 0.4 이상인 무방향성 전기강판의 제조방법.
  18. 제8항에 있어서,
    상기 제1 냉연판을 제조하는 단계 이후, 상기 제1 냉연판을 900℃ 이상으로 소둔하는 중간 소둔 단계를 더 포함하는 무방향성 전기강판의 제조방법.
  19. 제8항에 있어서,
    상기 제2 냉연판을 제조하는 단계는 압하율이 55 내지 80%이며, 냉간압연 워크롤과 강판의 마찰계수가 0.2 이하인 무방향성 전기강판의 제조방법.
  20. 제8항에 있어서,
    상기 냉연판 소둔 단계는 수소(H2)와 질소(N2)의 혼합가스 분위기에서 850℃ 이상의 온도로 소둔하는 무방향성 전기강판의 제조방법.
PCT/KR2023/014375 2022-12-21 2023-09-21 무방향성 전기강판 및 그 제조방법 WO2024136021A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220180323A KR20240098504A (ko) 2022-12-21 2022-12-21 무방향성 전기강판 및 그 제조방법
KR10-2022-0180323 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024136021A1 true WO2024136021A1 (ko) 2024-06-27

Family

ID=91589082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014375 WO2024136021A1 (ko) 2022-12-21 2023-09-21 무방향성 전기강판 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20240098504A (ko)
WO (1) WO2024136021A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209224A (ja) * 1991-12-05 1993-08-20 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
CN111057821A (zh) * 2019-12-27 2020-04-24 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法、应用
JP2021025097A (ja) * 2019-08-06 2021-02-22 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
KR20220125316A (ko) * 2020-02-20 2022-09-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판용의 열연 강판, 무방향성 전자 강판 및 그 제조 방법
WO2022211053A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209224A (ja) * 1991-12-05 1993-08-20 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2021025097A (ja) * 2019-08-06 2021-02-22 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
CN111057821A (zh) * 2019-12-27 2020-04-24 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法、应用
KR20220125316A (ko) * 2020-02-20 2022-09-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판용의 열연 강판, 무방향성 전자 강판 및 그 제조 방법
WO2022211053A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR20240098504A (ko) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125685A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020130328A1 (ko) 방향성의 전기강판 및 그 제조 방법
WO2022139359A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022173159A1 (ko) 무방향성 전기강판의 제조방법 및 이에 의해 제조된 무방향성 전기강판
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136021A1 (ko) 무방향성 전기강판 및 그 제조방법
TW202140811A (zh) 無方向性電磁鋼板用熱軋鋼板
WO2024136022A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2024136023A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024106753A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067723A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136171A1 (ko) 무방향성 전기강판, 그 제조방법 및 그를 포함하는 모터 코어
WO2024136113A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024136276A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2023121270A1 (ko) 무방향성 전기강판 및 그 제조방법