WO2024131897A1 - 一种塔吊的现场安全控制方法、控制器及计算设备 - Google Patents

一种塔吊的现场安全控制方法、控制器及计算设备 Download PDF

Info

Publication number
WO2024131897A1
WO2024131897A1 PCT/CN2023/140690 CN2023140690W WO2024131897A1 WO 2024131897 A1 WO2024131897 A1 WO 2024131897A1 CN 2023140690 W CN2023140690 W CN 2023140690W WO 2024131897 A1 WO2024131897 A1 WO 2024131897A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower crane
hook
maximum allowable
speed
current
Prior art date
Application number
PCT/CN2023/140690
Other languages
English (en)
French (fr)
Inventor
刘洲印
赵平
程旭刚
李兴旺
郝宝君
袁晓佳
滕海亮
Original Assignee
北京东土科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京东土科技股份有限公司 filed Critical 北京东土科技股份有限公司
Publication of WO2024131897A1 publication Critical patent/WO2024131897A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear

Definitions

  • the present application belongs to the field of intelligent control, and in particular, relates to an on-site safety control method, controller and computing device for a tower crane.
  • the various axes of the tower crane are driven according to the pre-planned trajectory to drive the hook to move.
  • the various axes of the tower crane are subject to kinematic constraints to ensure the safety of the tower crane.
  • the kinematic constraints are not obtained based on the actual weight and position of the tower crane, that is, the maximum speed of the various axes of the tower crane at different hoisting weights and different positions is the same, which is obviously unreasonable.
  • the hoisting weight is large, there will be mechanical safety hazards in some positions, which may damage the wheel axle device or motor of the tower crane.
  • the various axes of the tower crane are driven according to the pre-planned trajectory to drive the hook to move, and obstacles are avoided in time during the movement to ensure the safety of the tower crane on the path.
  • the maximum movement speed of each axis of the tower crane under a specific weight and position is also not considered.
  • the hoisting weight is large, there will be mechanical safety hazards in some positions, which may damage the wheel axle device or motor of the tower crane.
  • the embodiment of the present application provides a method, controller and computing device for on-site safety control of a tower crane.
  • the technical solution of the embodiment of the present application drives the hook to move while obtaining the maximum speed currently allowed in each axis direction according to the hoisting weight and the current variable length, so as to control the speed of each axis not to exceed the maximum speed of the axis in the next control cycle, thereby achieving safe movement of the tower crane.
  • an embodiment of the present application provides an on-site safety control method for a tower crane, including: controlling the hook to move in the axial space according to the planned path points, and every two adjacent planned path points are reached through several control cycles, wherein the coordinates in the direction of the amplitude variation axis are the amplitude variation length; obtaining the current coordinates of the hook in the axial space in each control cycle; obtaining the maximum allowable speed of the hook in each direction of the axial space according to the current amplitude variation length, hoisting weight and working parameters of the tower crane; obtaining the arrival position coordinates and target speed of the tower crane in the axial space in the next control cycle according to the current coordinates and speed of the hook in the axial space, the maximum allowable speed, and the coordinates of the planned path points that have not been reached.
  • the technical solution of the embodiment of the present application drives the hook to move while obtaining the maximum speed currently allowed in each axis direction according to the hoisting weight and the current variable length, so as to control the speed of each axis not to exceed the maximum speed of the axis in the next control cycle, thereby realizing safe movement of the tower crane.
  • the maximum allowable speed of the hook in each direction of the axial space is obtained according to the current amplitude variation length, the hoisting weight and the working gear of the tower crane, including: obtaining the current maximum allowable hoisting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length; calculating the current weight ratio and torque ratio, the weight ratio being the ratio of the hoisting weight to the maximum allowable hoisting weight, and the torque ratio being the ratio of the working torque of the tower crane in the amplitude variation direction to the maximum allowable working torque; obtaining the current speed of the hook in each direction of the axial space according to at least one of the weight ratio and the torque ratio and the working parameters of the tower crane.
  • the maximum permissible speed in the direction is obtained according to the current amplitude variation length, the hoisting weight and the working gear of the tower crane, including: obtaining the current maximum allowable hoisting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length;
  • the tower crane is used to obtain the current maximum allowable lifting weight and the maximum allowable working torque in the luffing direction according to the current variable length, and then the maximum allowable speed of the hook in each direction of the axial space is obtained according to the ratio of the current lifting weight to the maximum allowable lifting weight, the ratio of the current working torque in the luffing direction to the maximum allowable working torque and the working parameters of the tower crane.
  • the maximum allowable speed is more accurate, which further improves the movement safety of the tower crane.
  • the maximum allowable speed of the hook in each direction of the axial space is obtained according to at least one of the weight ratio and the torque ratio and the working parameters of the tower crane, and at least one of the following is included: the first maximum allowable speed of the hook in each direction of the axial space is obtained according to the weight ratio and the working gear of the tower crane, and is used as the maximum allowable speed in the corresponding direction; the second maximum allowable speed of the hook in each direction of the axial space is obtained according to the torque ratio and the working gear, and is used as the maximum allowable speed in the corresponding direction; the smaller value of the first maximum allowable speed and the second maximum allowable speed of the hook in each direction of the axial space is used as the maximum allowable speed in that direction.
  • the first maximum allowable speed of the hook in each direction of the shaft space is obtained according to the ratio of the current hoisting weight to the maximum allowable hoisting weight and the working parameters of the tower crane.
  • the second maximum allowable speed of the hook in each direction of the shaft space is obtained according to the ratio of the current working torque in the amplitude change direction to the maximum allowable working torque and the working parameters of the tower crane. Then, the smaller value is taken as the maximum allowable speed by comparison, which further improves the movement safety of the tower crane.
  • the method of obtaining the current maximum allowable speed of the hook in each direction of the axial space based on at least one of the weight ratio and the torque ratio and the working parameters of the tower crane also includes: obtaining a third maximum allowable speed of the hook in each direction of the axial space based on at least one of the position limit and the deceleration limit of the tower crane in each direction of the axial space and the working gear, and the working parameters also include at least one of the following: the position limit and the deceleration limit; taking the smaller value of the third maximum allowable speed of the hook in each direction of the axial space and the maximum allowable speed in the corresponding direction as the maximum allowable speed in the corresponding direction.
  • the maximum permissible speed is corrected by using the position limit and/or deceleration limit of the tower crane, thereby further improving the movement safety of the tower crane.
  • the method of obtaining the current maximum allowable lifting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length specifically includes: obtaining the current maximum allowable lifting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length using the first curve group of the tower crane, the first curve group including the relationship between the allowable lifting weight of the tower crane and the amplitude variation length at different tower crane ratios.
  • the current maximum allowable hoisting weight and the maximum allowable working moment in the luffing direction are obtained according to the relationship between the allowable hoisting weight and the luffing length of the tower crane at different tower crane ratios, so as to further improve the movement safety of the tower crane.
  • the method of obtaining the first maximum allowable speed of the hook in each direction of the axial space according to the weight ratio and the working gear of the tower crane specifically includes: obtaining the first maximum allowable speed of the hook in each direction of the axial space by using a second curve group according to the weight ratio and the working gear of the tower crane, the second curve group including a curve of the relationship between the maximum allowable speed limit in each direction of the hook axial space and the weight ratio under each working gear of the tower crane.
  • the first maximum permissible speed is obtained according to the relationship curve between the maximum permissible speed limit in each direction of the hook shaft space and the weight ratio under each working gear of the tower crane, so as to further improve the movement safety of the tower crane.
  • the torque ratio and the working gear are obtained
  • the second maximum allowable speed of the hook in each direction of the axial space specifically includes: obtaining the second maximum allowable speed of the hook in each direction of the axial space by using the third curve according to the torque ratio and the working gear, and the third curve group includes a relationship curve between the maximum allowable speed in each direction of the hook axial space and the torque ratio under each working gear of the tower crane.
  • the second maximum permissible speed is obtained according to the relationship curve between the maximum permissible speed limit in each direction of the hook shaft space and the torque ratio in each working gear of the tower crane, which further improves the movement safety of the tower crane.
  • the method further includes: when the current working torque ratio is greater than the rated torque, the tower crane stops moving and outputs a planned path abnormality signal.
  • the direction of the axial space of the tower crane also includes a lifting direction and a rotation direction.
  • obtaining the current coordinates of the hook in the axis space in each control cycle specifically includes: obtaining the current coordinates of the hook in the axis space through an encoder on each axis of the tower crane in each control cycle.
  • the method further includes: obtaining the hoisting weight through a weight sensor after the tower crane lifts the hook.
  • the actual hoisting weight is obtained through the weight sensor, which makes the safety control of the tower crane more accurate.
  • an embodiment of the present application provides a tower crane controller, including: a motion control module, used to control the hook to move in the axis space according to the planned path points, and every two adjacent planned path points are reached through several control cycles, wherein the coordinate in the direction of the amplitude variation axis is the amplitude variation length; a data acquisition module, used to obtain the current coordinates of the hook in the axis space in each control cycle; a safety control module, used to obtain the maximum allowable speed of the hook in each direction of the axis space according to the current amplitude variation length, hoisting weight and working parameters of the tower crane; a trajectory control module, used to obtain the position coordinates and target speed of the tower crane in the axis space in the next control cycle according to the current coordinates and speed of the hook in the axis space, the maximum allowable speed and the next planned path point.
  • a motion control module used to control the hook to move in the axis space according to the planned path points, and every two adjacent planned path points are reached through several control
  • the technical solution of the embodiment of the present application drives the hook to move while obtaining the maximum speed currently allowed in each axis direction according to the hoisting weight and the current variable length, so as to control the speed of each axis not to exceed the maximum speed of the axis in the next control cycle, thereby realizing safe movement of the tower crane.
  • the safety control module is specifically used to include: obtaining the current maximum allowable lifting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length; calculating the current weight ratio and torque ratio, the weight ratio being the ratio of the current lifting weight to the maximum allowable lifting weight, and the torque ratio being the ratio of the working torque of the tower crane in the amplitude variation direction to the maximum allowable working torque; obtaining the current maximum allowable speed of the hook in each direction of the axial space according to at least one of the weight ratio and the torque ratio and the working parameters of the tower crane.
  • the tower crane is used to obtain the current maximum allowable lifting weight and the maximum allowable working moment in the variable length direction, and then according to the ratio of the current lifting weight to the maximum allowable lifting weight and the variable length direction, the maximum allowable lifting weight can be adjusted.
  • the ratio of the previous working torque to the maximum allowable working torque and the tower crane working parameters are used to obtain the maximum allowable speed of the hook in each direction of the axis space. This maximum allowable speed is more accurate, further improving the movement safety of the tower crane.
  • the safety control module is specifically used to obtain the current maximum allowable speed of the hook in each direction of the axial space based on at least one of the weight ratio and the torque ratio and the working parameters of the tower crane, and at least one of the following is included: obtaining the first maximum allowable speed of the hook in each direction of the axial space according to the weight ratio and the working gear of the tower crane, and using it as the maximum allowable speed in the corresponding direction, and the working parameters include the working gear; obtaining the second maximum allowable speed of the hook in each direction of the axial space according to the torque ratio and the working gear, and using it as the maximum allowable speed in the corresponding direction; taking the smaller value of the first maximum allowable speed and the second maximum allowable speed of the hook in each direction of the axial space as the maximum allowable speed in that direction.
  • the first maximum allowable speed of the hook in each direction of the axial space is obtained according to the ratio of the current hoisting weight to the maximum allowable hoisting weight and the working parameters of the tower crane.
  • the second maximum allowable speed of the hook in each direction of the axial space is obtained according to the ratio of the current working torque of the amplitude change to the maximum allowable working torque and the working parameters of the tower crane. Then, the smaller value is taken as the maximum allowable speed by comparison, which further improves the movement safety of the tower crane.
  • the safety control module is specifically used to obtain the current maximum allowable speed of the hook in each direction of the shaft space based on at least one of the weight ratio and the torque ratio and the working parameters of the tower crane, and also includes: obtaining the third maximum allowable speed of the hook in each direction of the shaft space based on at least one of the position limit and the deceleration limit of the tower crane in each direction of the shaft space and the working gear, and the working parameters also include at least one of the following: the position limit and the deceleration limit; taking the smaller value of the third maximum allowable speed of the hook in each direction of the shaft space and the maximum allowable speed in the corresponding direction as the maximum allowable speed in the corresponding direction.
  • the maximum permissible speed is corrected by using the position limit and/or deceleration limit of the tower crane, thereby further improving the movement safety of the tower crane.
  • a process control module is further included, which is used to stop the tower crane from moving and output a planned path abnormality signal when the current working torque ratio is greater than the rated torque.
  • the safety control module obtains the current maximum allowable lifting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length, specifically including: obtaining the current maximum allowable lifting weight and the maximum allowable working torque in the amplitude variation direction according to the current amplitude variation length using the first curve group of the tower crane, the first curve group including the relationship between the allowable lifting weight of the tower crane and the amplitude variation length at different tower crane ratios.
  • the current maximum allowable hoisting weight and the maximum allowable working moment in the luffing direction are obtained according to the relationship between the allowable hoisting weight and the luffing length of the tower crane at different tower crane ratios, so as to further improve the movement safety of the tower crane.
  • the safety control module obtains the first maximum allowable speed of the hook in each direction of the axial space according to the weight ratio and the working gear of the tower crane, specifically including: obtaining the first maximum allowable speed of the hook in each direction of the axial space by using the second curve group according to the weight ratio and the working gear of the tower crane, the second curve group including a curve of the relationship between the maximum allowable speed limit in each direction of the hook axial space and the weight ratio under each working gear of the tower crane.
  • the safety control module obtains the second maximum allowable speed of the hook in each direction of the axial space according to the torque ratio and the working gear, specifically including: obtaining the second maximum allowable speed of the hook in each direction of the axial space using a third curve according to the torque ratio and the working gear, the third curve group including a curve of the relationship between the maximum allowable speed in each direction of the hook axial space and the torque ratio under each working gear of the tower crane.
  • the second maximum permissible speed is obtained according to the relationship curve between the maximum permissible speed limit in each direction of the hook shaft space and the torque ratio in each working gear of the tower crane, which further improves the movement safety of the tower crane.
  • the direction of the shaft space of the tower crane also includes a lifting direction and a rotation direction.
  • the data acquisition module is specifically used to obtain the current coordinates of the hook in the axis space through an encoder on each axis of the tower crane in each control cycle.
  • the data acquisition module is further specifically used to obtain the hoisting weight through a weight sensor after the tower crane lifts the hook.
  • the actual hoisting weight is obtained through the weight sensor, which makes the safety control of the tower crane more accurate.
  • an embodiment of the present application provides a computing device, comprising: a bus; a communication interface connected to the bus; at least one processor connected to the bus; and at least one memory connected to the bus and storing program instructions, wherein when the program instructions are executed by the at least one processor, the at least one processor executes any implementation described in the first aspect of the present application.
  • an embodiment of the present application provides a computer-readable storage medium having program instructions stored thereon, wherein when the program instructions are executed by a computer, the computer executes any implementation method described in the first aspect of the application.
  • FIG1 is a schematic flow chart of a first embodiment of an on-site safety control method for a tower crane of the present application
  • FIG2 is a schematic flow chart of a second embodiment of an on-site safety control method for a tower crane of the present application
  • FIG3 is a schematic structural diagram of a tower crane controller embodiment 1 of the present application.
  • FIG4 is a schematic structural diagram of a tower crane controller embodiment 2 of the present application.
  • FIG5 is a schematic diagram of the structure of a computing device according to various embodiments of the present application.
  • first ⁇ second ⁇ third, etc. or module A, module B, module C, etc. are only used to distinguish similar objects, or to distinguish different embodiments, and do not represent a specific ordering of the objects. It can be understood that the specific order or sequence can be interchanged where permitted, so that the embodiments of the present application described here can be implemented in an order other than that illustrated or described here.
  • the embodiment of the present application provides a method, controller and computing device for on-site safety control of a tower crane, the method comprising: controlling the hook to move in the axis space according to the planned path points, reaching every two adjacent planned path points through several control cycles, and obtaining the coordinates of the hook in the axis space in each control cycle; obtaining the maximum allowable speed of the hook in each direction in the axis space according to the current variable length, hoisting weight and working parameters of the tower crane; obtaining the coordinates and target speed of the tower crane in the axis space in the next control cycle according to the coordinates and speed of the hook in the axis space, the maximum allowable speed and the next planned path point.
  • the technical solution of the embodiment of the present application drives the hook to move while obtaining the maximum speed currently allowed in each axis direction according to the hoisting weight and the current variable length, so as to control the speed of each axis not to exceed the maximum speed of the axis in the next control cycle, thereby realizing safe movement of the tower crane.
  • the tower crane of each embodiment of the present application includes: a tower crane and a tower crane controller.
  • the tower crane includes several axes, for example, including: a variable amplitude axis, a lifting axis and a rotary axis.
  • An encoder is installed on each axis to record the position of each axis, that is, the coordinates in the axis space.
  • the tower crane also includes a focus sensor for hoisting weight.
  • the working parameters of the tower crane include the working gear, the position limit on each axis and the deceleration limit.
  • the working gear is 5 gears;
  • the position limit includes: the external stop and internal stop of the variable amplitude shaft, that is, the maximum variable amplitude length and the minimum variable amplitude length, the upper and lower limits of the lifting shaft, that is, the maximum and minimum lifting height, the left limit and right limit of the slewing shaft, that is, the maximum angle of left rotation and the maximum angle of right rotation;
  • the deceleration limit includes: the external reduction and internal reduction of the variable amplitude shaft, that is, the external variable amplitude length and the internal variable amplitude length that must be decelerated in the variable amplitude direction, the lifting up reduction and lifting down reduction of the lifting shaft, that is, the upward lifting height and the downward lifting height that must be decelerated in the lifting direction, the left reduction and right reduction of the slewing shaft, that is, the left rotation angle and the right rotation angle that must be
  • the following introduces a first embodiment of an on-site safety control method for a tower crane of the present application in conjunction with FIG1 .
  • a method for on-site safety control of a tower crane is implemented in a tower crane controller, and includes: controlling a hook to move in the axis space according to a planned path point, reaching every two adjacent planned path points through a number of control cycles, and obtaining the coordinates of the hook in the axis space in each control cycle; obtaining the maximum allowable speed of the hook in each direction in the axis space according to the current variable length, hoisting weight and working parameters of the tower crane ...
  • the coordinates and speed between the axes, the maximum allowable speed, and the next planned path point are used to obtain the coordinates and target speed of the tower crane in the axis space in the next control cycle.
  • the technical solution of this embodiment drives the hook to move while obtaining the maximum speed allowed in each axis direction according to the hoisting weight and the current variable length, so as to control the speed of each axis not to exceed the maximum speed of the axis in the next control cycle, thereby realizing safe movement of the tower crane.
  • FIG1 shows a flow chart of a first embodiment of an on-site safety control method for a tower crane, including steps S110 to S140 .
  • the planned path points are the key points between the tower crane's hook-lifting point and hook-dropping point, and every two adjacent planned path points are reached through several control cycles.
  • the coordinates of the planned path points are obtained from other modules, which are the coordinates of the tower crane's axis space. If the obtained coordinates are Cartesian space coordinates, they are converted into the coordinates of the tower crane's axis space by the kinematic inverse solution method.
  • the position is represented by the coordinates of the tower crane axis space, which at least includes the coordinates in the direction of the variable amplitude axis, and the coordinates in the direction of the variable amplitude axis are represented by the variable amplitude length.
  • the coordinates of the tower crane axis space also include: the coordinates in the lifting axis direction represented by the lifting height and the coordinates in the rotation axis direction represented by the rotation angle.
  • the current position of the hook in the axis space is obtained in real time through encoders on each axis of the tower crane.
  • the hoisting weight is obtained through a weight sensor after the tower crane lifts the hook.
  • the working parameters of the tower crane at least include the working gear of the tower crane.
  • the current maximum allowable hoisting weight and the maximum allowable working torque in the direction of the boom length are obtained according to the current boom length; and the current weight ratio and torque ratio are calculated, the weight ratio being the ratio of the hoisting weight to the current maximum allowable hoisting weight, and the torque ratio being the ratio of the working torque of the tower crane in the direction of the boom length to the current maximum allowable working torque; and then the current maximum allowable speed of the hook in each direction of the axial space is obtained according to at least one of the weight ratio and the torque ratio and the working parameters of the tower crane.
  • the tower crane operating parameters also include at least one of the following: position limit and deceleration limit of the tower crane in each direction of the axial space, and obtaining a third maximum allowable speed of the hook in each direction of the axial space based on at least one of the position limit and deceleration limit of the tower crane in each direction of the axial space and the working gear of the tower crane; adjusting the maximum allowable speed in the corresponding direction according to the third maximum allowable speed of the hook in each direction of the axial space, wherein the maximum allowable speed of the hook in each direction of the axial space after adjustment is the smaller value of the maximum allowable speed before adjustment in that direction and the third maximum allowable speed.
  • a first maximum permissible speed of the hook in each direction of the axial space is obtained according to the weight ratio and the working gear of the tower crane, and is used as the maximum permissible speed in the corresponding direction, wherein for different working gears, there are different corresponding relationships between the maximum permissible speed of the tower crane in each direction of the axial space and the weight ratio;
  • the hook position in each direction of the shaft space is obtained according to the torque ratio and the working gear position of the tower crane.
  • the second maximum permissible speed in the direction is taken as the maximum permissible speed in the corresponding direction, wherein for different working gears, there are different corresponding relationships between the maximum permissible speed and the torque ratio in each direction of the tower crane in the shaft space;
  • the first maximum allowable speed and the second maximum allowable speed of the hook in each direction of the axial space are first obtained, and then the smaller value of the first maximum allowable speed and the second maximum allowable speed of the hook in each direction of the axial space is taken as the maximum allowable speed in that direction.
  • S140 Obtain the target position and target speed to be reached by the tower crane in the next control cycle in the axis space according to the current position and speed of the hook in the axis space, the maximum allowable speed of the hook in the three directions of the axis space and the coordinates of the planned path points that have not been reached.
  • step S130 the position to be reached in the next control cycle and the target speed on each axis are planned while moving.
  • the maximum speed obtained in step S130 cannot be exceeded to ensure safe operation of the tower crane.
  • This step can be completed by a trajectory planning algorithm.
  • all planned path points that have not been reached are selected to participate in the calculation.
  • the calculation amount is not calculated, and several planned path points closest in time are selected to participate in the calculation.
  • the current boom length of the hook is obtained in each control cycle, and the current maximum allowable speed of the hook in each direction of the axial space is obtained based on the boom length, the hoisting weight and the working parameters of the tower crane, so that the tower crane is controlled not to exceed the maximum allowable speed in the next control cycle, thereby achieving safe movement of the tower crane.
  • a second embodiment of a method for on-site safety control of a tower crane runs in a tower crane controller and is a more detailed implementation method of the first embodiment of a method for on-site safety control of a tower crane.
  • the first maximum allowable speed of the current tower crane is obtained according to the ratio of the current hoisting weight to the current maximum allowable hoisting weight and the working gear.
  • the second maximum allowable speed of the current tower crane is obtained according to the ratio of the current working torque to the current maximum allowable working torque and the working gear.
  • the third maximum allowable speed of each axis of the tower crane is obtained according to the working gear of the tower crane, the position limit of each axis and the deceleration limit.
  • the smaller value among the first maximum allowable speed of each axis, the current second maximum allowable speed and the third maximum allowable speed is taken as the current maximum allowable speed in that direction, so that the tower crane is controlled not to exceed the maximum allowable speed in the next control cycle, thereby achieving safe movement of the tower crane.
  • the tower crane shaft includes: a variable-length shaft, a lifting shaft and a slewing shaft.
  • the position coordinates of the hook in the shaft space are represented by the variable-length length, the lifting height and the slewing angle.
  • Table 1 shows the input parameters of the tower crane when it is working. In each working cycle of the tower crane, the tower crane control obtains corresponding data from the input parameters, which include:
  • Planning the path including: planning the lifting point array, planning the luffing point array, and planning the turning point array.
  • Each control cycle uses the values of the path points to be reached in these three point arrays;
  • Tower crane working parameters including: rated torque, ratio, working gear (1 out of 5 gears); luffing external stop and luffing internal stop of the luffing axis, lifting upper limit and lifting lower limit of the lifting axis, left limit and right limit of the slewing axis; luffing external reduction and luffing internal reduction of the luffing axis, lifting up reduction and lifting down reduction of the lifting axis, left reduction and right reduction of the slewing axis; current actual parameters: hoisting weight, luffing position, the luffing position is obtained once in each control cycle.
  • Table 2 shows the output parameters of the tower crane in each control cycle.
  • the tower crane controller outputs data to the output parameter table in each cycle, including the target position and target speed of the next control cycle and the working instruction signal.
  • the target position is represented by the target lifting point array, target luffing point array and target rotation point array
  • the target speed is represented by the target lifting speed point array, target luffing speed point array and target rotation speed point array.
  • the work indication signal includes: abnormal signal, indicating that the tower crane is working abnormally and the tower crane needs to stop; abnormal ID, the cause of the abnormality; end signal, whether the hook reaches the hook drop point, and work signal, indicating that the hook continues to move in the next work cycle.
  • FIG2 shows a flow chart of a second embodiment of an on-site safety control method for a tower crane, including steps S210 to S310 .
  • the working parameters are the factory parameters of the tower crane itself (multiplier, rated torque) and the set working gear, position limit and deceleration limit.
  • the hoisting weight is obtained through the weight sensor after the tower crane lifts the hook, and is maintained during the subsequent hook operation.
  • the planned path is obtained from the planning module and is represented by the planned lifting point array, the planned amplitude change point array and the planned turning point array in Table 1.
  • S220 Control the axis of the tower crane to move according to the axis space coordinates of the planned path point.
  • every two adjacent planned path points are reached through several control cycles, and the position reached in each control cycle includes not only the adjacent planned path points, but also the middle position between the adjacent planned path points.
  • the control cycle is the working cycle of the tower crane.
  • the position coordinates of the axis space include the variable length, lifting height and rotation angle.
  • the working torque is the product of the hoisting weight and the variable length.
  • step S240 Determine whether the current working torque exceeds the rated torque. If not, execute step S250, otherwise execute step S280.
  • the first curve group includes the relationship curves between the maximum allowable hoisting weight and the variable length at different magnifications, which is determined by the characteristics of the tower crane itself and is obtained when the tower crane leaves the factory.
  • Table 3 shows the relationship between the maximum allowable hoisting weight and the variable length at different magnifications in a table form, and the maximum allowable working torque is the product of the maximum allowable hoisting weight and the variable length.
  • the range and interval of the variable length can be set as needed.
  • S260 Obtain the current maximum allowable speed of the hook in three directions of the axis space according to the hoisting weight, the current maximum allowable hoisting weight, the maximum allowable working torque and the working parameters.
  • this step includes the following 4 steps.
  • the second curve group is used to obtain the maximum first allowable speed of the hook in the three directions of the axial space.
  • the weight ratio is the ratio of the current hoisting weight to the maximum allowable hoisting weight.
  • the second curve group includes the relationship curves of the first maximum allowable speed and weight ratio of the hook in the three directions of the shaft space under each working gear, wherein each relationship curve is obtained when the tower crane leaves the factory. There are 15 second curves for 5 working gears, and each second curve corresponds to a combination of a working gear and a direction of the shaft space.
  • the torque ratio is the ratio of the current working torque in the amplitude variation direction to the maximum allowable working torque.
  • the third curve group includes the relationship curves of the second maximum allowable speed and torque ratio of the hook in the three directions of the shaft space under each working gear, wherein each relationship curve is obtained when the tower crane leaves the factory. There are 15 third curves for 5 working gears, and each third curve corresponds to a combination of a working gear and a direction of the shaft space.
  • the fourth maximum allowable speed in the rising direction of the lifting shaft is obtained according to the lifting upper limit of the tower crane on the lifting shaft and the working gear of the tower crane
  • the fifth maximum allowable speed in the rising direction of the lifting shaft is obtained according to the lifting up deduction of the tower crane on the lifting shaft and the working gear of the tower crane.
  • the fourth maximum allowable speed and the fifth maximum allowable speed are both obtained when the tower crane leaves the factory, and the smaller value of the fourth maximum allowable speed and the fifth maximum allowable speed is used as the third maximum allowable speed in the rising direction of the tower crane lifting shaft.
  • the descending direction of the tower crane lifting shaft is obtained according to the lifting lower limit and the lifting down deduction of the tower crane on the lifting shaft and the working gear of the tower crane.
  • the third maximum permissible speed in the direction is obtained according to the lifting lower limit and the lifting down deduction of the tower crane on the lifting shaft and the working gear of the tower crane.
  • the third maximum allowable speed in the outward and inward luffing directions of the tower crane luffing shaft is obtained according to the luffing outer stop and the luffing inner stop, the luffing outer reduction and the luffing inner reduction on the tower crane and the working gear of the tower crane.
  • the third maximum allowable speed of the tower crane's rotating shaft to the left and right is obtained according to the tower crane's rotation left stop and rotation right stop, rotation left reduction and rotation right reduction on the rotating shaft and the working gear of the tower crane.
  • this step (3) can be executed once during the entire movement of the tower crane, and the third maximum permissible speed can be obtained in other subsequent control cycles.
  • the various third maximum permissible speeds obtained in this step (3) are all obtained when the tower crane leaves the factory.
  • the third maximum permissible speeds at different working gears under position limit and deceleration limit are given in a table form.
  • Table 4 shows in which direction the third maximum permissible speed exists when the working parameters are set to various values.
  • the numbers in each grid corresponding to each position limit and deceleration limit are examples, not the real third maximum permissible speed.
  • the third maximum permissible speed in the grid with a black background will limit the maximum permissible speed of the hook in the corresponding direction.
  • the maximum allowable speeds of the hook in three directions of the axial space are obtained according to the first maximum allowable speed, the second maximum allowable speed and the third maximum allowable speed.
  • the maximum permissible speed of the hook in each direction of the axial space is the first maximum permissible speed, the second maximum permissible speed, and the The second maximum permissible speed and the third maximum permissible speed are smaller values.
  • a table is used to represent the first maximum allowable speed corresponding to the second curve group and the second maximum allowable speed corresponding to the third curve group.
  • Table 5 shows the first maximum allowable speed under different working gears and different weight ratio combinations, and the second maximum allowable speed under different working gears and different torque ratio combinations.
  • the numbers in each grid corresponding to each combination are examples, not the real first maximum allowable speed or the first maximum allowable speed.
  • the first maximum allowable speed or the second maximum allowable speed in the grid with a black background will limit the maximum allowable speed of the hook in the corresponding direction.
  • S270 Obtain the target position and target speed to be reached in the next control cycle according to the current position and speed of the hook in the axis space, the planned path point to be reached, and the maximum allowable speed of the hook in the three directions of the axis space.
  • the target position and target speed obtained in this step are input into the corresponding positions in Table 2.
  • S310 The hook stops moving and outputs an abnormal signal.
  • a first embodiment of a tower crane controller of the present application is described below in conjunction with FIG. 3 .
  • a tower crane controller embodiment 1 executes the method described in embodiment 1 of an on-site safety control method for a tower crane, and has all the advantages of embodiment 1 of an on-site safety control method for a tower crane.
  • FIG3 shows a structure of a first embodiment of a tower crane controller, including: a motion control module 310 , a data acquisition module 320 , a safety control module 330 , and a trajectory control module 340 .
  • the motion control module 310 is used to control the axis of the tower crane to move in the axis space according to the planned path points.
  • step S110 of the first embodiment of a method for on-site safety control of a tower crane please refer to step S110 of the first embodiment of a method for on-site safety control of a tower crane.
  • the data acquisition module 320 is used to obtain the current position of the hook in the shaft space in each control cycle.
  • step S120 of the first embodiment of a method for on-site safety control of a tower crane please refer to step S120 of the first embodiment of a method for on-site safety control of a tower crane.
  • the safety control module 330 is used to obtain the maximum permissible speed of the hook in three directions of the axis space according to the current variable length, hoisting weight and working parameters of the tower crane.
  • step S130 of the first embodiment of a method for on-site safety control of a tower crane please refer to step S130 of the first embodiment of a method for on-site safety control of a tower crane.
  • the trajectory control module 340 is used to obtain the position and target speed of the tower crane in the next control cycle in the axis space according to the current position and speed of the hook in the axis space, the maximum allowable speed of the hook in the three directions of the axis space, and the coordinates of the unreached planned path points.
  • step S140 of the first embodiment of a method for on-site safety control of a tower crane please refer to step S140 of the first embodiment of a method for on-site safety control of a tower crane.
  • a second embodiment of a tower crane controller of the present application is described below in conjunction with FIG. 4 .
  • a tower crane controller embodiment 2 executes the method described in embodiment 2 of an on-site safety control method for a tower crane, and has all the advantages of embodiment 2 of an on-site safety control method for a tower crane.
  • FIG4 shows a structure of a tower crane controller embodiment 2, including: a data acquisition module 410, a motion control module 420, The control module 420, the safety control module 430, the trajectory control module 440 and the process control module 450.
  • the data acquisition module 410 is used to obtain the working parameters, planned path and hoisting weight of the tower crane, and fill in the corresponding items of the input parameter table of Table 1. It is also used to obtain the current position of the hook in the shaft space through the encoder in each control cycle and calculate the current working torque.
  • this module please refer to steps S210 and S230 of Example 2 of a method for on-site safety control of a tower crane.
  • the motion control module 420 is used to control the axis of the tower crane to move according to the axis space coordinates of the planned path point; it is also used to drive the tower crane to move according to the obtained target position and target speed when the target position and target speed of the next control cycle are obtained.
  • the principle and advantages of this module can be referred to steps S220 and S280 of the second embodiment of a method for on-site safety control of a tower crane.
  • the safety control module 430 is used to obtain the current maximum allowable hoisting weight and the maximum allowable working moment in the direction of the luffing according to the luffing length and the tower crane's multiple using the first curve group; it is also used to obtain the current maximum allowable speed of the hook in three directions of the shaft space according to the hoisting weight, the current maximum allowable hoisting weight, the maximum allowable working moment and the working parameters.
  • this module please refer to steps S250 and S260 of Embodiment 2 of a method for on-site safety control of a tower crane.
  • the trajectory control module 440 is used to obtain the target position and target speed to be reached in the next control cycle according to the current position and speed of the hook in the axis space, the planned path point to be reached, and the maximum allowable speed of the hook in the three directions of the axis space.
  • this module please refer to step S270 of the second embodiment of a method for on-site safety control of a tower crane.
  • the process control module 450 is used to determine whether the current working torque exceeds the rated torque; it is also used to determine whether the hook drop point has been reached; it is also used to stop the tower crane movement when the tower crane reaches the hook drop point; it is also used to stop the tower crane movement when the current working torque exceeds the rated torque and output an abnormal signal.
  • the principles and advantages of this module refer to steps S240, S290, S300 and S310 of the second embodiment of a method for on-site safety control of a tower crane.
  • the embodiment of the present application also provides a computing device, which is described in detail in FIG5 below.
  • the computing device 500 includes a processor 510 , a memory 520 , a communication interface 530 , and a bus 540 .
  • the communication interface 530 in the computing device 500 shown in this figure can be used to communicate with other devices.
  • the processor 510 may be connected to a memory 520.
  • the memory 520 may be used to store the program code and data. Therefore, the memory 520 may be a storage unit inside the processor 510, or an external storage unit independent of the processor 510, or a component including a storage unit inside the processor 510 and an external storage unit independent of the processor 510.
  • the computing device 500 may further include a bus 540.
  • the memory 520 and the communication interface 530 may be connected to the processor 510 via the bus 540.
  • the bus 540 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 540 may be divided into an address bus, a data bus, a control bus, etc. For ease of representation, the figure is represented by only one line, but it does not mean that there is only one bus or one type of bus.
  • the processor 510 may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSPs), or other processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor 510 uses one or more integrated circuits to execute related programs to implement the technical solutions provided in the embodiments of the present application.
  • the memory 520 may include a read-only memory and a random access memory, and provides instructions and data to the processor 510.
  • a portion of the processor 510 may also include a nonvolatile random access memory.
  • the processor 510 may also store information on the device type.
  • the processor 510 executes the computer-executable instructions in the memory 520 to perform the operation steps of each method embodiment.
  • the computing device 500 can correspond to the corresponding subjects in the methods according to the embodiments of the present application, and the above-mentioned and other operations and/or functions of each module in the computing device 500 are respectively for realizing the corresponding processes of each method of the embodiment of the present method, which will not be repeated here for the sake of brevity.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the embodiment of the method.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can essentially be embodied in the form of a software product, or in other words, the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several instructions for enabling a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the decoding method described in each embodiment of the present application.
  • the aforementioned storage media include USB flash drives, mobile hard drives, read-only memories (ROM), random access memories (RAM), disks or Various media that can store program codes, such as CDs or other media.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program When the program is executed by a processor, it is used to execute the operating steps of the method embodiment.
  • Computer-readable media can be computer-readable signal media or computer-readable storage media.
  • Computer-readable storage media can be, for example, but not limited to, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any combination of the above. More specific examples (non-exhaustive lists) of computer-readable storage media include, electrical connections with one or more wires, portable computer disks, hard disks, random access memories (RAM), read-only memories (ROM), erasable programmable read-only memories (EPROM or flash memory), optical fibers, portable compact disk read-only memories (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above.
  • computer-readable storage media can be any tangible medium containing or storing programs, which can be used by instruction execution systems, devices or devices or used in combination with them.
  • Computer-readable signal media may include data signals propagated in baseband or as part of a carrier wave, which carry computer-readable program code. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. Computer-readable signal media may also be any computer-readable medium other than a computer-readable storage medium, which may send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • the program code embodied on the computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operation of the present application can be written in one or more programming languages or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partially on the user's computer, as an independent software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer can be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer (e.g., using an Internet service provider to connect through the Internet).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)

Abstract

一种塔吊的现场安全控制方法、控制器及计算设备,其中控制方法包括:控制吊钩按照规划路径点在轴空间运动(S110),每两个相邻的规划路径点通过若干个控制周期到达;在每个控制周期获得吊钩当前在轴空间的位置(S120);根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度(S130);根据吊钩当前在轴空间的坐标与速度、每个方向的最大允许速度和未达到规划路径点的坐标获得塔吊下个控制周期在轴空间的到达位置和目标速度(S140)。该现场安全控制方法一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。

Description

一种塔吊的现场安全控制方法、控制器及计算设备 技术领域
本申请属于智能控制领域,尤其涉及一种塔吊的现场安全控制方法、控制器及计算设备。
背景技术
在一些现有塔吊的现场安全控制方法中,根据提前规划的轨迹驱动塔吊各个轴以驱动吊钩运动,在该运动过程中,实现塔吊各个轴遵从运动学约束限制,以保证塔吊安全。这种情况下,运动学约束限制并不是根据塔吊的实际重量和位置来获得的,也就是在不同吊装重量不同位置的塔吊各个轴最大速度一样,这显然不合理,在吊装重量较大时会在一些位置存在机械安全隐患,损伤塔吊的轮轴装置或电机。
在另一些现有技术中,根据提前规划的轨迹驱动塔吊各个轴以驱动吊钩运动,在该运动过程中及时避开障碍物,以保证塔吊在路径上的安全。这种情况下,同样也未考虑在具体重量和位置下塔吊每个轴的最大运动速度,在吊装重量较大时会在一些位置存在机械安全隐患,损伤塔吊的轮轴装置或电机。
发明内容
有鉴于此,本申请实施例提供了一种塔吊的现场安全控制方法、控制器及计算设备。本申请实施例的技术方案通过一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。
第一方面,本申请实施例提供了一种塔吊的现场安全控制方法,包括:控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,其中,在变幅轴方向的坐标为变幅长度;在每个控制周期获得吊钩当前在轴空间的坐标;根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;根据吊钩当前在轴空间的坐标与速度、所述最大允许速度、未达到规划路径点的坐标获得塔吊下个控制周期在轴空间到达位置坐标和目标速度。
由上,本申请实施例的技术方案一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。
在第一方面的一种可能实施方式中,所述根据当前的变幅长度、吊装重量和塔吊的工作挡位获得吊钩当前在轴空间每个方向的最大允许速度,包括:根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向最大允许工作力矩;计算当前的重量比例和力矩比例,所述重量比例为吊装重量与所述最大允许吊装重量的比例,所述力矩比例为塔吊在变幅方向的工作力矩与所述最大工作允许工作力矩的比例;根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方 向的最大允许速度。
由上,根据当前的变幅长度利用塔吊获得当前的最大允许吊装重量和在变幅方向最大允许工作力矩,再根据当前的吊装重量与最大允许吊装重量的比例、变幅方向当前的工作力矩与最大允许工作力矩的比例与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,该最大允许速度更为准确,进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,所述根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,至少包括下列之一:根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,并作为相应方向的最大允许速度;根据所述力矩比例和所述工作挡位获得吊钩在轴空间每个方向的第二最大允许速度,并作为相应方向的最大允许速度;把吊钩在轴空间每个方向的第一最大允许速度和第二最大允许速度中的小值作为该方向的所述最大允许速度。
由上,根据当前的吊装重量与最大允许吊装重量的比例、塔吊工作参数获得吊钩当前在轴空间每个方向的第一最大允许速度,再根据变幅方向当前的工作力矩与最大允许工作力矩的比例与塔吊工作参数获得吊钩当前在轴空间每个方向的第二最大允许速度,然后对比取小值为最大允许速度,又进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,所述根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,还包括:至少根据塔吊在轴空间每个方向位置限位和减速限位二者之一和所述工作挡位获得吊钩在轴空间每个方向的第三最大允许速度,所述工作参数还至少包括下列之一:所述位置限位和所述减速限位;把吊钩在轴空间每个方向的第三最大允许速度和相应方向的所述最大允许速度的小值作为该相应方向的所述最大允许速度。
由上,使用塔吊的位置限位和/或减速限位来修正最大允许速度,进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,所述根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩,具体包括:根据当前的变幅长度利用塔吊第一曲线组获得当前的最大允许吊装重量和在变幅方向最大允许工作力矩,第一曲线组包括在不同的塔吊倍率时塔吊允许吊装重量与变幅长度的关系。
由上,根据在不同的塔吊倍率时塔吊允许吊装重量与变幅长度的关系获得的当前的最大允许吊装重量和在变幅方向的最大允许工作力矩,进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,所述根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,具体包括:根据所述重量比例和塔吊工作挡位利用第二曲线组获得吊钩在轴空间每个方向的第一最大允许速度,第二曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述重量比例的关系曲线。
由上,根据在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述重量比例的关系曲线获得的第一最大允许速度,进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,所述根据所述力矩比例和所述工作挡位获得 吊钩在轴空间每个方向的第二最大允许速度,具体包括:根据所述力矩比例和所述工作挡位利用第三曲线获得吊钩在轴空间每个方向的第二最大允许速度,第三曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许速度与所述力矩比例的关系曲线。
由上,根据在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述力矩比例的关系曲线获得的第二最大允许速度,进一步提高塔吊的运动安全。
在第一方面的一种可能实施方式中,还包括:在当前的工作力矩比例均大于额定力矩时,塔吊停止运动,并输出规划路径异常信号。
由上,在当前工作力矩为超力矩时,塔吊停止运动,更加提升了塔吊的安全。
在第一方面的一种可能实施方式中,塔吊的轴空间的方向还包括起升方向和回转方向。
由上,对变幅方向、起升方向和回转方向均进行安全控制,更加提升了塔吊的安全。
在第一方面的一种可能实施方式中,所述在每个控制周期获得吊钩当前在轴空间的坐标,具体包括:在每个控制周期通过塔吊每个轴上的编码器获得吊钩当前在轴空间的坐标。
由上,通过编码器获取吊钩在轴空间的实际位置,对塔吊的安全控制更精确。
在第一方面的一种可能实施方式中,还包括:在塔吊起钩后通过重量传感器获得吊装重量。
由上,通过重量传感器获取实际吊装重量,对塔吊的安全控制更精确。
第二方面,本申请实施例提供了一种塔吊控制器,包括:运动控制模块,用于控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,其中,在变幅轴方向的坐标为变幅长度;数据获得模块,用于在每个控制周期获得吊钩当前在轴空间的坐标;安全控制模块,用于根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;轨迹控制模块,用于根据吊钩当前在轴空间的坐标与速度、所述最大允许速度、下个规划路径点获得塔吊下个控制周期在轴空间到达位置坐标和目标速度。
由上,本申请实施例的技术方案一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。
在第二方面的一种可能实施方式中,所述安全控制模块具体用于,包括:根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩;计算当前的重量比例和力矩比例,所述重量比例为当前的吊装重量与所述最大允许吊装重量的比例,所述力矩比例为塔吊在变幅方向的工作力矩与所述最大允许工作力矩的比例;根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度。
由上,根据当前的变幅长度利用塔吊获得当前的最大允许吊装重量和在变幅方向最大允许工作力矩,再根据当前的吊装重量与最大允许吊装重量的比例、变幅方向当 前的工作力矩与最大允许工作力矩的比例与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,该最大允许速度更为准确,进一步提高塔吊的运动安全。
在第二方面的一种可能实施方式中,所述安全控制模块具体用于根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度时,至少包括下列之一:根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,并作为相应方向的所述最大允许速度,所述工作参数包括所述工作挡位;根据所述力矩比例和所述工作挡位获得吊钩在轴空间每个方向的第二最大允许速度,并作为相应方向的所述最大允许速度;把吊钩在轴空间每个方向的第一最大允许速度和第二最大允许速度中的小值作为该方向的所述最大允许速度。
由上,根据当前的吊装重量与最大允许吊装重量的比例、塔吊工作参数获得吊钩当前在轴空间每个方向的第一最大允许速度,再根据变幅当前的工作力矩与最大允许工作力矩的比例与塔吊工作参数获得吊钩当前在轴空间每个方向的第二最大允许速度,然后对比取小值为最大允许速度,又进一步提高塔吊的运动安全。
在第二方面的一种可能实施方式中,所述安全控制模块具体用于根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度时,还包括:至少根据塔吊在轴空间每个方向位置限位和减速限位二者之一和所述工作挡位获得吊钩在轴空间每个方向的第三最大允许速度,所述工作参数还至少包括下列之一:所述位置限位和所述减速限位;把吊钩在轴空间每个方向的第三最大允许速度和相应方向的所述最大允许速度的小值作为该相应方向的所述最大允许速度。
由上,使用塔吊的位置限位和/或减速限位来修正最大允许速度,进一步提高塔吊的运动安全。
在第二方面的一种可能实施方式中,还包括过程控制模块,用于在当前的工作力矩比例均大于额定力矩时,塔吊停止运动,并输出规划路径异常信号。
由上,在当前工作力矩为超力矩时,塔吊停止运动,更加提升了塔吊的安全。
在第二方面的一种可能实施方式中,所述安全控制模块再根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩,具体包括:根据当前的变幅长度利用塔吊第一曲线组获得当前的最大允许吊装重量和在变幅方向最大允许工作力矩,第一曲线组包括在不同的塔吊倍率时塔吊允许吊装重量与变幅长度的关系。
由上,根据在不同的塔吊倍率时塔吊允许吊装重量与变幅长度的关系获得的当前的最大允许吊装重量和在变幅方向最大允许工作力矩,进一步提高塔吊的运动安全。
在第二方面的一种可能实施方式中,所述安全控制模块在根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,具体包括:根据所述重量比例和塔吊工作挡位利用第二曲线组获得吊钩在轴空间每个方向的第一最大允许速度,第二曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述重量比例的关系曲线。
由上,根据在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述 重量比例的关系曲线获得的第一最大允许速度,进一步提高塔吊的运动安全。
在第二方面的一种可能实施方式中,所述安全控制模块在根据所述力矩比例和所述工作挡位获得吊钩在轴空间每个方向的第二最大允许速度,具体包括:根据所述力矩比例和所述工作挡位利用第三曲线获得吊钩在轴空间每个方向的第二最大允许速度,第三曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许速度与所述力矩比例的关系曲线。
由上,根据在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述力矩比例的关系曲线获得的第二最大允许速度,进一步提高塔吊的运动安全。在第二方面的一种可能实施方式中,塔吊的轴空间的方向还包括起升方向和回转方向。
由上,对变幅方向、起升方向和回转方向均进行安全控制,更加提升了塔吊的安全。
在第二方面的一种可能实施方式中,所述数据获得模块具体用于在每个控制周期通过塔吊每个轴上的编码器获得吊钩当前在轴空间的坐标。
由上,通过编码器获取吊钩在轴空间的实际位置,对塔吊的安全控制更精确。
在第二方面的一种可能实施方式中,所述数据获得模块还具体用于在塔吊起钩后通过重量传感器获得吊装重量。
由上,通过重量传感器获取实际吊装重量,对塔吊的安全控制更精确。
第三方面,本申请实施例提供了一种计算设备,包括:总线;通信接口,其与所述总线连接;至少一个处理器,其与所述总线连接;以及至少一个存储器,其与所述总线连接并存储有程序指令,所述程序指令当被所述至少一个处理器执行时使得所述至少一个处理器执行本申请第一方面任一所述实施方式。
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有程序指令,所述程序指令当被计算机执行时使得所述计算机执行申请第一方面任一所述实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请的一种塔吊的现场安全控制方法实施例一的流程示意图;
图2为本申请的一种塔吊的现场安全控制方法实施例二的流程示意图;
图3为本申请的一种塔吊控制器实施例一的结构示意图;
图4为本申请的一种塔吊控制器实施例二的结构示意图;
图5为本申请各实施例计算设备的结构示意图。
具体实施方式
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
在以下的描述中,所涉及的术语“第一\第二\第三等”或模块A、模块B、模块C等,仅用于区别类似的对象,或用于区别不同的实施例,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
在以下的描述中,所涉及的表示步骤的标号,如S110、S120……等,并不表示一定会按此步骤执行,在允许的情况下可以互换前后步骤的顺序,或同时执行。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
本申请实施例提供了一种塔吊的现场安全控制方法、控制器及计算设备,所述方法包括:控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,在每个控制周期获得吊钩当前在轴空间的坐标;根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;根据吊钩当前在轴空间的坐标与速度、所述最大允许速度、下个规划路径点获得塔吊下个控制周期在轴空间到达位置坐标和目标速度。本申请实施例的技术方案一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。
下面结合附图介绍本申请的各实施例。
首先介绍本申请各实施例的塔吊,其包括:塔吊和塔吊控制器。塔吊包括若干个轴,示例地,包括:变幅轴、起升轴和回转轴。在每个轴安装编码器用于记录每个轴的位置,即在轴空间的坐标。塔吊还包括重点传感器用于吊装重量。
塔吊的工作参数包括工作挡位、每个轴上的位置限位和减速限位。示例地,工作挡位为5挡;示例地,位置限位包括:变幅轴的变幅外停与变幅内停即最大变幅长度与最小变幅长度,起升轴的起升上限与起升下限即起升高度的最大值与最小值,回转轴的回转左限与回转右限即向左回转的最大角度和向右回转的最大角度;示例地,减速限位包括:变幅轴的变幅外减与变幅内减即变幅方向必须减速的向外变幅长度与向内变幅长度,起升轴的起升上减与起升下减即起升方向必须减速的向上的起升高度和向小的起升高度,回转轴的回转左减与回转右减即必须减速的向左回转角度和向右回转角度。
下面结合图1介绍本申请的一种塔吊的现场安全控制方法实施例一。
一种塔吊的现场安全控制方法实施例一在塔吊控制器中运行,其包括:控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,在每个控制周期获得吊钩当前在轴空间的坐标;根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;根据吊钩当前在轴空 间的坐标与速度、所述最大允许速度、下个规划路径点获得塔吊下个控制周期在轴空间到达位置坐标和目标速度。本实施例的技术方案一边驱动吊钩运动,一边根据吊装重量和当前变幅长度获得当前在各个轴方向允许的最大速度,以在下个控制周期控制每个轴的速度不超过该轴的最大速度,实现塔吊安全运动。
图1示出了一种塔吊的现场安全控制方法实施例一的流程,包括步骤S110至S140。
S110:控制塔吊的轴按照规划路径点在轴空间运动。
其中,规划路径点为塔吊从起钩点到落钩点之间的关键点,每两个相邻的规划路径点通过若干个控制周期到达。
其中,规划路径点的坐标从其他模块获得,其为塔吊的轴空间的坐标。如果所获得的坐标为笛卡尔空间的坐标,则通过运动学逆解的方法转换为塔吊的轴空间的坐标。
S120:在每个控制周期获得吊钩当前在轴空间的位置。
其中,该位置用塔吊轴空间的坐标表示,其至少包括在变幅轴方向的坐标,在变幅轴方向的坐标用变幅长度表示。在一些实施例中,塔吊轴空间的坐标还包括:用起升高度表示的起升轴方向的坐标和用回转角度表示的回转轴方向的坐标。
在一些实施例中,通过塔吊在各个轴上的编码器实时获得吊钩当前在轴空间的位置。
S130:根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间三个方向的最大允许速度。
其中,吊装重量在塔吊起钩后通过重量传感器获得。
其中,塔吊的工作参数至少包括塔吊的工作挡位。
在一些实施例中,根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩;并计算当前的重量比例和力矩比例,所述重量比例为吊装重量与当前的最大允许吊装重量的比例,所述力矩比例为塔吊在变幅方向的工作力矩与当前的最大允许工作力矩的比例;再根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度。
在另一些实施例中,塔吊工作参数还至少包括下列之一:塔吊在轴空间每个方向位置限位和减速限位,还至少根据塔吊在轴空间每个方向位置限位和减速限位二者之一和塔吊工作挡位获得吊钩在轴空间每个方向的第三最大允许速度;根据吊钩在轴空间每个方向的第三最大允许速度调整相应方向的最大允许速度,其中,吊钩在轴空间每个方向调整后的最大允许速度为在该方向调整前的最大允许速度与第三最大允许速度中的小值。
根据重量比例和力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度时,包括以下三种可能的实施方式:
(1)在一些实施例中,根据重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,并作为相应方向的最大允许速度,其中,对于不同工作挡位,塔吊在轴空间每个方向的最大允许速度与重量比例之间,存在不同的对应关系;
(2)在一些实施例中,根据力矩比例和塔吊工作挡位获得吊钩在轴空间每个方 向的第二最大允许速度,并作为相应方向的最大允许速度,其中,对于不同工作挡位,塔吊在轴空间每个方向的最大允许速度与力矩比例之间,存在不同的对应关系;
(3)在另一些实施例中,先获得吊钩在轴空间每个方向的第一最大允许速度和第二最大允许速度,再把吊钩在轴空间每个方向的第一最大允许速度和第二最大允许速度中的小值作为该方向的最大允许速度。
S140:根据吊钩当前在轴空间的位置与速度、吊钩当前在轴空间三个方向的最大允许速度和未到达的规划路径点的坐标获得塔吊下个控制周期在轴空间到达的目标位置和目标速度。
其中,通过本步骤实现一边运动一边规划下个控制周期达到的位置及每个轴上的目标速度,从当前位置运动到下个控制周期的目标位置时不能超过在步骤S130所获得的最大速度,以实现塔吊安全工作。
其中,本步骤可以通过轨迹规划算法完成。在一些实施例中,会选择所有未到达的规划路径点参与计算,在另一些实施例中,未计算计算量,会选择离时间上最近的若干个规划路径点参与计算。
综上,在一种塔吊的现场安全控制方法实施例一中,在每个控制周期获得吊钩当前的变幅长度,并根据该变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度,从而控制塔吊在下个控制周期中不能超过该最大允许速度,实现塔吊安全运动。
下面结合图2介绍本申请的一种塔吊的现场安全控制方法实施例二。从吊装重量、工作力矩和每个轴的位置限位与减速限位,获得的最大允许速度更为安全。
一种塔吊的现场安全控制方法实施例二在塔吊控制器中运行,是一种塔吊的现场安全控制方法实施例一的更为详细的实施方式,在确定每个控制周期的最大允许速度时,根据当前的吊装重量与当前最大允许吊装重量的比例及工作挡位获得当前塔吊的第一最大允许速度,根据当前的工作力矩与当前最大允许工作力矩的比例以及工作挡位获得当前塔吊的第二最大允许速度,根据塔吊的工作挡位、每个轴的位置限位与减速限位获得塔吊每个轴的第三最大允许速度,取每个轴的第一最大允许速度、当前的第二最大允许速度和第三最大允许速度中的小值,作为当前该方向的最大允许速度,从而控制塔吊在下个控制周期中不能超过该最大允许速度,实现塔吊安全运动。
一种塔吊的现场安全控制方法实施例二的塔吊的轴包括:变幅轴、起升轴和回转轴。吊钩在轴空间的位置坐标用变幅长度、起升高度和回转角度表示。
表一示出了塔吊在工作时的输入参数,在塔吊每个工作周期,塔吊控制都从该输入参数获取相应的数据,其包括:
规划路径,包括:规划起升点数组、规划变幅点数组、规划回转点数组,每个控制周期使用即将要达到的路径点在这三个点数组的值;
塔吊工作参数,包括:额定力矩、倍率、工作挡(5挡中取1挡);变幅轴的变幅外停与变幅内停,起升轴的起升上限与起升下限,回转轴的回转左限与回转右限;变幅轴的变幅外减与变幅内减,起升轴的起升上减与起升下减,回转轴的回转左减与回转右减;当前实际参数:吊装重量、变幅位置,变幅位置在每个控制周期获得一次。
表一:
表二示出了塔吊在每个控制周期的输出参数,塔吊控制器在每个周期都向该输出参数表中输出数据。其包括下个控制周期的目标位置为和目标速度、工作指示信号。
其中,目标位置用目标起升点数组、目标变幅点数组和目标回转点数组表示,目标速度用目标起升速度点数组、目标变幅速度点数组和目标回转速度点数组表示。每个控制周期输出下个周期的目标位置与目标速度。
其中,工作指示信号包括:异常信号,指示塔吊工作异常,塔吊需要停下来;异常ID,异常的原因;结束信号,吊钩是否达到落钩点,工作信号,指示吊扣下个工作周期继续运动。
表二

图2示出了一种塔吊的现场安全控制方法实施例二的流程,包括步骤S210至S310。
S210:获取塔吊的工作参数、规划路径和吊装重量,并填写到表一的输入参数表的对应表项。
其中,工作参数为塔吊本身的出厂参数(倍率、额定力矩)和设置的工作挡位、位置限位和减速限位。
其中,吊装重量在塔吊起钩后通过重量传感器获得,在后续吊钩运行过程中一直保持。
其中,规划路径从规划模块获得,以表一中规划起升点数组、规划变幅点数组和规划回转点数组表示。
S220:控制塔吊的轴按照规划路径点的轴空间坐标进行运动。
其中,每两个相邻的规划路径点通过若干个控制周期到达,在每个控制周期到达的位置不仅包括这相邻规划路径点,还包括这相邻规划路径点之间中间位置。控制周期为塔吊的工作周期。
S230:在每个控制周期通过编码器获得吊钩当前在轴空间的位置,并计算当前的工作力矩。
其中,轴空间的位置坐标包括变幅长度、起升高度和回转角度。
其中,工作力矩为吊装重量与变幅长度的乘积。
S240:判断当前工作力矩是否超过额定力矩。其中,如果未超过,则执行步骤S250,否则执行步骤S280。
S250:根据变幅长度和塔吊的倍率利用第一曲线组获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩。
其中,第一曲线组包括在不同倍率下最大允许吊装重量与变幅长度的关系曲线,这是塔吊本身特性确定,塔吊出厂时获取。
在一些实施例中,为了方便用表格表示第一曲线组,表三示出了表格形式的在不同倍率下的最大允许吊装重量与变幅长度的关系,最大允许工作力矩就是最大允许吊装重量与变幅长度的乘积。在实际场景中,可以根据需要设置变幅长度的范围和间隔。
表三

S260:根据吊装重量、当前的最大允许吊装重量与最大允许工作力矩和工作参数获得吊钩当前在轴空间三个方向的最大允许速度。
其中,本步骤包括以下4个步骤。
(1)根据当前的重量比例和工作挡位利用第二曲线组获得吊钩当前在轴空间三个方向的最大第一允许速度。
其中,重量比例为当前的吊装重量与最大允许吊装重量的比例。
其中,第二曲线组包括在每个工作挡位下吊钩在轴空间三个方向的第一最大允许速度与重量比例的关系曲线,其中,每条关系曲线都是塔吊出厂时获得的。5个工作挡位则有15条第二曲线,每条第二曲线对应一个工作挡位与轴空间的一个方向组合。
(2)根据当前的力矩比例和工作挡位获得吊钩当前在轴空间三个方向的第二最大允许速度。
其中,力矩比例为变幅方向当前的工作力矩与最大允许工作力矩的比例。
其中,第三曲线组包括在每个工作挡位下吊钩在轴空间三个方向的第二最大允许速度与力矩比例的关系曲线,其中,每条关系曲线都是塔吊出厂时获得的。5个工作挡位则有15条第三曲线,每条第三曲线对应一个工作挡位与轴空间的一个方向组合。
(3)根据塔吊在轴空间三个方向位置限位与减速限位及工作挡位获得吊钩在轴空间三个方向的第三最大允许速度。
其中,根据塔吊在起升轴上的起升上限和塔吊的工作挡位获得起升轴上升方向的第四最大允许速度,根据塔吊在起升轴上的起升上减和塔吊的工作挡位获得起升轴上升方向的第五最大允许速度,第四最大允许速度和第五最大允许速度都是塔吊出厂时获得的,把该第四最大允许速度和第五最大允许速度的小值作为塔吊起升轴上升方向的第三最大允许速度。按照获取塔吊起升轴上升方向的第三最大允许速度的方法,根据塔吊在起升轴上的起升下限与起升下减和塔吊的工作挡位获得塔吊起升轴下降方 向的第三最大允许速度。
其中,按照获取塔吊起升轴上升方向与下降方向的第三最大允许速度的方法,根据塔吊在变幅轴上的变幅外停与变幅内停、变幅外减与变幅内减和塔吊的工作挡位获得塔吊变幅轴向外与向内变幅方向的第三最大允许速度。
其中,按照获取塔吊起升轴上升方向与下降方向的第三最大允许速度的方法,根据塔吊在回转轴上的回转左停与回转右停、回转左减与回转右减和塔吊的工作挡位获得塔吊回转轴向左与向右回转的第三最大允许速度。
其中,在本骤(3)可以整个塔吊的运动过程中执行一次,后续其他控制周期可以已经获得的第三最大允许速度。
其中,在本骤(3)中获得的各种第三最大允许速度都是从塔吊出厂时获得的。在一些实施例中,为了方便,用表格形式给出在位置限位与减速限位在不同工作挡位的第三最大允许速度。表四示出了工作参数设置为各种值时具体在哪个方向上存在第三最大允许速度,每种位置限位与减速限位对应的各格子里数字是一种示例,不是真实的第三最大允许速度,一般在黑色本底的格子中第三最大允许速度会对的吊钩在对应方向的最大允许速度存在限制。
表四
(4)根据第一最大允许速度、第二最大允许速度和第三最大允许速度获得吊钩在轴空间三个方向的最大允许速度。
其中,吊钩在轴空间每个方向的最大允许速度为该方向上第一最大允许速度、第 二最大允许速度和第三最大允许速度中小值。
在一些实施例中,为了方便用表格表示第二曲线组对应的第一最大允许速度和第三曲线组对应的第二最大允许速度。表五示出了在不同工作挡位和不同重量比例组合下的第一最大允许速度,以及在不同工作挡位和不同力矩比例组合下存在第二最大允许速度。每种组合对应的各格子里数字是一种示例,不是真实的第一最大允许速度或第一最大允许速度,一般在黑色本底的格子中第一最大允许速度或第二最大允许速度会对的吊钩在对应方向的最大允许速度存在限制。
表五
S270:根据吊钩当前在轴空间的位置与速度、将要达到的规划路径点及吊钩当前在轴空间三个方向的最大允许速度获得下个控制周期到达的目标位置和目标速度。
其中,本步骤获得的目标位置和目标速度输入到表二的对应位置。
S280:在下个控制周期内按照获得的目标位置和目标速度驱动塔吊运动。
S290:判断是否到达落钩点,其中,如果未到达则继续执行步骤S230,如果到达落钩点,则执行步骤S300。
S300:塔吊运动结束。
其中,还塔吊运动结束时向表二中填写相应的结束信号。
S310:吊钩停止运动,并输出异常信号。
其中,吊钩停止运动时向表二中填写相应的异常信号,且异常原因为工作力矩超过额定力矩。
一种塔吊的现场安全控制方法实施例二在确定每个控制周期的最大允许速度时,根据当前的吊装重量与当前最大允许吊装重量的比例以及工作挡位获得当前塔吊的第一最大允许速度,根据当前的工作力矩与当前最大允许工作力矩的比例以及工作挡位获得当前塔吊的第二最大允许速度,根据塔吊的工作挡位、每个轴的位置限位与减速限位获得塔吊每个轴的第三最大允许速度,取每个轴的第三最大允许速度、当前的第一最大允许速度和第二最大允许速度中的小值,作为当前该方向的最大允许速度,从而控制塔吊在下个控制周期中不能超过该最大允许速度,实现塔吊安全运动。一种塔吊的现场安全控制方法实施例二从吊装重量、工作力矩和每个轴的位置限位与减速限位,获得的最大允许速度更为安全。
下面结合图3介绍本申请的一种塔吊控制器实施例一。
一种塔吊控制器实施例一执行一种塔吊的现场安全控制方法实施例一所述方法,具有一种塔吊的现场安全控制方法实施例一的一切优点。
图3示出了一种塔吊控制器实施例一的结构,包括:运动控制模块310、数据获得模块320、安全控制模块330、轨迹控制模块340。
运动控制模块310用于控制塔吊的轴按照规划路径点在轴空间运动。其原理和优点请参考一种塔吊的现场安全控制方法实施例一的步骤S110。
数据获得模块320用于在每个控制周期获得吊钩当前在轴空间的位置。其原理和优点请参考一种塔吊的现场安全控制方法实施例一的步骤S120。
安全控制模块330用于根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间三个方向的最大允许速度。其原理和优点请参考一种塔吊的现场安全控制方法实施例一的步骤S130。
轨迹控制模块340用于根据吊钩当前在轴空间的位置与速度、吊钩当前在轴空间三个方向的最大允许速度和未到达规划路径点的坐标获得塔吊下个控制周期在轴空间到达的位置和目标速度。其原理和优点请参考一种塔吊的现场安全控制方法实施例一的步骤S140。
下面结合图4介绍本申请的一种塔吊控制器实施例二。
一种塔吊控制器实施例二执行一种塔吊的现场安全控制方法实施例二所述方法,具有一种塔吊的现场安全控制方法实施例二的一切优点。
图4示出了一种塔吊控制器实施例二的结构,包括:数据获得模块410、运动控 制模块420、安全控制模块430、轨迹控制模块440和过程控制模块450。
数据获得模块410用于获取塔吊的工作参数、规划路径和吊装重量,并填写到表一的输入参数表的对应表项,还用于在每个控制周期通过编码器获得吊钩当前在轴空间的位置,并计算当前的工作力矩。本模块的原理和优点请参考一种塔吊的现场安全控制方法实施例二的步骤S210和S230。
运动控制模块420用于控制塔吊的轴按照规划路径点的轴空间坐标进行运动;还用于在获得下个控制周期的目标位置和目标速度时按照获得的目标位置和目标速度驱动塔吊运动。本模块的原理和优点请参考一种塔吊的现场安全控制方法实施例二的步骤S220和S280。
安全控制模块430用于根据变幅长度和塔吊的倍率利用第一曲线组获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩;还用于根据吊装重量、当前的最大允许吊装重量与最大允许工作力矩和工作参数获得吊钩当前在轴空间三个方向的最大允许速度。本模块的原理和优点请参考一种塔吊的现场安全控制方法实施例二的步骤S250和S260。
轨迹控制模块440用于根据吊钩当前在轴空间的位置与速度、将要达到的规划路径点及吊钩当前在轴空间三个方向的最大允许速度获得下个控制周期到达的目标位置和目标速度。本模块的原理和优点请参考一种塔吊的现场安全控制方法实施例二的步骤S270。
过程控制模块450用于判断当前工作力矩是否超过额定力矩;还用于判断是否到达落钩点;还用于在到达塔吊到达落钩点时,停止塔吊运动;还用于当前工作力矩超过额定力矩停止塔吊运动,并输出异常信号。本模块的原理和优点请参考一种塔吊的现场安全控制方法实施例二的步骤S240、S290、S300和S310。
本申请实施例还提供了一种计算设备,下面图5详细介绍。
该计算设备500包括,处理器510、存储器520、通信接口530、总线540。
应理解,该图所示的计算设备500中的通信接口530可以用于与其他设备之间进行通信。
其中,该处理器510可以与存储器520连接。该存储器520可以用于存储该程序代码和数据。因此,该存储器520可以是处理器510内部的存储单元,也可以是与处理器510独立的外部存储单元,还可以是包括处理器510内部的存储单元和与处理器510独立的外部存储单元的部件。
可选的,计算设备500还可以包括总线540。其中,存储器520、通信接口530可以通过总线540与处理器510连接。总线540可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(EFStended Industry Standard Architecture,EISA)总线等。所述总线540可以分为地址总线、数据总线、控制总线等。为便于表示,该图中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,在本申请实施例中,该处理器510可以采用中央处理单元(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(digital  signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器510采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
该存储器520可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。处理器510的一部分还可以包括非易失性随机存取存储器。例如,处理器510还可以存储设备类型的信息。
在计算设备500运行时,所述处理器510执行所述存储器520中的计算机执行指令执行各方法实施例的操作步骤。
应理解,根据本申请实施例的计算设备500可以对应于执行根据本申请各实施例的方法中的相应主体,并且计算设备500中的各个模块的上述和其它操作和/或功能分别为了实现本方法实施例各方法的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本方法实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述译码方法的全部或部分步骤。而前述的存储介质包括,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或 者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行方法实施例的操作步骤。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括,具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括、但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,均属于本申请保护范畴。

Claims (10)

  1. 一种塔吊的现场安全控制方法,其特征在于,包括:
    控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,其中,在变幅轴方向的坐标为变幅长度;
    在每个控制周期获得吊钩当前在轴空间的坐标;
    根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;
    根据吊钩当前在轴空间的坐标、速度、所述每个方向的最大允许速度和未达到规划路径点的坐标获得塔吊下个控制周期在轴空间的到达位置坐标和目标速度。
  2. 根据权利要求1所述方法,其特征在于,所述根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度,包括:
    根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩;
    计算当前的重量比例和力矩比例,所述重量比例为吊装重量与所述最大允许吊装重量的比例,所述力矩比例为塔吊在变幅方向的工作力矩与所述最大允许工作力矩的比例;
    根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度。
  3. 根据权利要求2所述方法,其特征在于,所述根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,至少包括下列之一:
    根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,并作为相应方向的最大允许速度,所述工作参数包括所述工作挡位;
    根据所述力矩比例和所述工作挡位获得吊钩在轴空间每个方向的第二最大允许速度,并作为相应方向的最大允许速度;
    把吊钩在轴空间每个方向的第一最大允许速度和第二最大允许速度中的小值作为该方向的最大允许速度。
  4. 根据权利要求3所述方法,其特征在于,所述根据所述重量比例和所述力矩比例中至少之一与塔吊工作参数获得吊钩当前在轴空间每个方向的最大允许速度,还包括:
    至少根据塔吊在轴空间每个方向位置限位和减速限位二者之一和所述工作挡位获得吊钩在轴空间每个方向的第三最大允许速度,所述工作参数还至少包括下列之一:所述位置限位和所述减速限位;
    根据吊钩在轴空间每个方向的第三最大允许速度调整相应方向的最大允许速度,其中,吊钩在轴空间每个方向调整后的最大允许速度为在该方向调整前的最大允许速 度与第三最大允许速度中的小值。
  5. 根据权利要求2所述方法,其特征在于,还包括:在当前的工作力矩比例均大于额定力矩时,塔吊停止运动,并输出规划路径异常信号。
  6. 根据权利要求2所述方法,其特征在于,所述根据当前的变幅长度获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩,具体包括:
    根据当前的变幅长度利用塔吊第一曲线组获得当前的最大允许吊装重量和在变幅方向的最大允许工作力矩,第一曲线组包括在不同的塔吊倍率时塔吊允许吊装重量与变幅长度的关系。
  7. 根据权利要求3所述方法,其特征在于,所述根据所述重量比例和塔吊工作挡位获得吊钩在轴空间每个方向的第一最大允许速度,具体包括:
    根据所述重量比例和塔吊工作挡位利用第二曲线组获得吊钩在轴空间每个方向的第一最大允许速度,第二曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许限速与所述重量比例的关系曲线。
  8. 根据权利要求3所述方法,其特征在于,所述根据所述力矩比例和所述工作挡位获得吊钩在轴空间每个方向的第二最大允许速度,具体包括:
    根据所述力矩比例和所述工作挡位利用第三曲线获得吊钩在轴空间每个方向的第二最大允许速度,第三曲线组包括在塔吊的每个工作挡位下吊钩轴空间每个方向的最大允许速度与所述力矩比例的关系曲线。
  9. 一种塔吊控制器,其特征在于,包括:
    运动控制模块,用于控制吊钩按照规划路径点在轴空间运动,每两个相邻的规划路径点通过若干个控制周期到达,其中,在变幅轴方向的坐标为变幅长度;
    数据获得模块,用于在每个控制周期获得吊钩当前在轴空间的坐标;
    安全控制模块,用于根据当前的变幅长度、吊装重量和塔吊的工作参数获得吊钩当前在轴空间每个方向的最大允许速度;
    轨迹控制模块,用于根据吊钩当前在轴空间的坐标、速度、所述每个方向的最大允许速度和未达到规划路径点的坐标获得塔吊下个控制周期在轴空间到达位置坐标和目标速度。
  10. 一种计算设备,其特征在于,包括:
    总线;
    通信接口,其与所述总线连接;
    至少一个处理器,其与所述总线连接;以及
    至少一个存储器,其与所述总线连接并存储有程序指令,所述程序指令当被所述至少一个处理器执行时使得所述至少一个处理器执行权利要求1至8任一所述方法。
PCT/CN2023/140690 2022-12-23 2023-12-21 一种塔吊的现场安全控制方法、控制器及计算设备 WO2024131897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211666618.2 2022-12-23
CN202211666618.2A CN115838119A (zh) 2022-12-23 2022-12-23 一种塔吊的现场安全控制方法、控制器及计算设备

Publications (1)

Publication Number Publication Date
WO2024131897A1 true WO2024131897A1 (zh) 2024-06-27

Family

ID=85579145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140690 WO2024131897A1 (zh) 2022-12-23 2023-12-21 一种塔吊的现场安全控制方法、控制器及计算设备

Country Status (2)

Country Link
CN (1) CN115838119A (zh)
WO (1) WO2024131897A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838119A (zh) * 2022-12-23 2023-03-24 北京东土科技股份有限公司 一种塔吊的现场安全控制方法、控制器及计算设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115312A1 (de) * 2001-03-28 2002-10-02 Man Wolffkran Verfahren zur Steuerung von Kranbewegungen sowie Kran
CN111532986A (zh) * 2020-05-18 2020-08-14 浙江三一装备有限公司 起重机力矩控制方法、装置和电子设备
CN112093672A (zh) * 2020-08-13 2020-12-18 中联重科股份有限公司 基于速度控制的行程限位控制系统、方法及塔式起重机
CN112919348A (zh) * 2021-04-02 2021-06-08 中国电建集团重庆工程有限公司 一种塔吊安全监测系统及方法
CN113415728A (zh) * 2021-06-29 2021-09-21 广州市建筑科学研究院集团有限公司 一种塔机吊运路径自动规划方法及系统
JP2021147139A (ja) * 2020-03-18 2021-09-27 戸田建設株式会社 タワークレーンの自動経路設定システム
CN113911922A (zh) * 2021-09-13 2022-01-11 杭州大杰智能传动科技有限公司 智能塔吊回转全过程状况监测传感方法和系统
CN114148930A (zh) * 2021-11-26 2022-03-08 西安理工大学 塔机智能控制系统的路径规划与动态避让方法
CN115072568A (zh) * 2022-06-22 2022-09-20 北京东土科技股份有限公司 一种塔吊的控制系统及方法
CN115159353A (zh) * 2022-06-22 2022-10-11 北京东土科技股份有限公司 一种塔吊控制的方法、装置、计算设备及存储介质
CN115838119A (zh) * 2022-12-23 2023-03-24 北京东土科技股份有限公司 一种塔吊的现场安全控制方法、控制器及计算设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115312A1 (de) * 2001-03-28 2002-10-02 Man Wolffkran Verfahren zur Steuerung von Kranbewegungen sowie Kran
JP2021147139A (ja) * 2020-03-18 2021-09-27 戸田建設株式会社 タワークレーンの自動経路設定システム
CN111532986A (zh) * 2020-05-18 2020-08-14 浙江三一装备有限公司 起重机力矩控制方法、装置和电子设备
CN112093672A (zh) * 2020-08-13 2020-12-18 中联重科股份有限公司 基于速度控制的行程限位控制系统、方法及塔式起重机
CN112919348A (zh) * 2021-04-02 2021-06-08 中国电建集团重庆工程有限公司 一种塔吊安全监测系统及方法
CN113415728A (zh) * 2021-06-29 2021-09-21 广州市建筑科学研究院集团有限公司 一种塔机吊运路径自动规划方法及系统
CN113911922A (zh) * 2021-09-13 2022-01-11 杭州大杰智能传动科技有限公司 智能塔吊回转全过程状况监测传感方法和系统
CN114148930A (zh) * 2021-11-26 2022-03-08 西安理工大学 塔机智能控制系统的路径规划与动态避让方法
CN115072568A (zh) * 2022-06-22 2022-09-20 北京东土科技股份有限公司 一种塔吊的控制系统及方法
CN115159353A (zh) * 2022-06-22 2022-10-11 北京东土科技股份有限公司 一种塔吊控制的方法、装置、计算设备及存储介质
CN115838119A (zh) * 2022-12-23 2023-03-24 北京东土科技股份有限公司 一种塔吊的现场安全控制方法、控制器及计算设备

Also Published As

Publication number Publication date
CN115838119A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2024131897A1 (zh) 一种塔吊的现场安全控制方法、控制器及计算设备
CN206218608U (zh) 堆垛机防摇摆装置及堆垛机
CN111590587B (zh) 机器人的负载质心范围的确定方法及绘制方法
CN112783974A (zh) 数据转换方法、装置、设备和存储介质
CN110608132B (zh) 一种风力发电机组变桨滑环的选型方法及装置
CN107748524A (zh) 基于单片机和fpga的双电机高速高精伺服控制系统及其方法
CN112093672A (zh) 基于速度控制的行程限位控制系统、方法及塔式起重机
CN115072568A (zh) 一种塔吊的控制系统及方法
CN115302506A (zh) 关节模组的测试方法、装置、设备和存储介质
CN108563122B (zh) 一种移动机器人速度平滑插值方法
CN102530730B (zh) 一种回转机构的控制系统及塔式起重机
WO2024027348A1 (zh) 用于塔式起重机的控制方法、处理器、装置及塔式起重机
CN103539024A (zh) 一种塔机一体化集成控制器
CN115159353B (zh) 一种塔吊控制的方法、装置、计算设备及存储介质
CN112443454B (zh) 风力发电机组的偏航控制方法、系统和装置
FI81703C (fi) Datain- och utmatningsapparat foer en med tillhjaelp av en digitalraeknare anvaendbar operationsregleranordning.
CN114132852B (zh) 起重设备的安全控制方法及系统
CN115353005A (zh) 基于起升重量的起重机恒功率起升速度控制方法和系统
CN108533452A (zh) 风力发电机组的解缆控制方法和解缆控制装置
CN111125883B (zh) 一种快速确定陆上风机吊装工况的计算方法
CN109687445B (zh) 配电网对异步风机接纳能力的评估方法、系统及终端设备
CN114355762B (zh) 一种基于非奇异快速终端滑模的变桨控制方法
CN203054620U (zh) 基于dsp的转台速率控制系统
CN207096768U (zh) 运动控制器、外骨骼的运动控制系统和外骨骼系统
CN112157661B (zh) 一种基于机器人动力学的关节运动轨迹优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906054

Country of ref document: EP

Kind code of ref document: A1