CN111532986A - 起重机力矩控制方法、装置和电子设备 - Google Patents

起重机力矩控制方法、装置和电子设备 Download PDF

Info

Publication number
CN111532986A
CN111532986A CN202010418184.9A CN202010418184A CN111532986A CN 111532986 A CN111532986 A CN 111532986A CN 202010418184 A CN202010418184 A CN 202010418184A CN 111532986 A CN111532986 A CN 111532986A
Authority
CN
China
Prior art keywords
crane
counterweight
load
main
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010418184.9A
Other languages
English (en)
Other versions
CN111532986B (zh
Inventor
韩晓东
谢军
孙浩
郭松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sany America Inc
Original Assignee
Sany America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sany America Inc filed Critical Sany America Inc
Priority to CN202010418184.9A priority Critical patent/CN111532986B/zh
Publication of CN111532986A publication Critical patent/CN111532986A/zh
Application granted granted Critical
Publication of CN111532986B publication Critical patent/CN111532986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)

Abstract

本发明提供了一种起重机力矩控制方法、装置和电子设备,涉及起重机控制技术领域,该方法首先获取起重机的状态数据;根据状态数据,实时确定起重机的力矩平衡状态;如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点;通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。该方法可实时计算并获得当前起重机配置下的额定载荷值,无需内置载荷表即可实现工况配置的无级变化,提升了起重机在特殊工况和施工环境的适应性。

Description

起重机力矩控制方法、装置和电子设备
技术领域
本发明涉及起重机控制技术领域,尤其是涉及一种起重机力矩控制方法、装置和电子设备。
背景技术
当前起重机力矩限制系统中内置指定工况的分级载荷表,通过载荷表插值计算当前工况的额定载荷值。操作人员必须按生产厂家提供载荷表对应的工况来组装和使用起重机,这些分级载荷表对应的都是离散的工况,不能满足特殊工况和施工环境的使用要求,不能灵活地配置起重机。
发明内容
有鉴于此,本发明的目的在于提供一种起重机力矩控制方法、装置和电子设备,无需载荷表即可实时获取起重机的额定载荷值,可实现起重机工况配置的无级变化,提升起重机载荷的利用率。
第一方面,本发明实施例提供了一种起重机力矩控制方法,该方法包括:
获取起重机的状态数据;
根据状态数据,实时确定起重机的力矩平衡状态;
如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点;
通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。
在一些实施方式中,上述根据状态数据,实时获取起重机当前的力矩平衡状态的步骤包括:
通过第一组参数计算第一状态值,并通过第二组参数计算第二状态值;
第一状态值的计算公式为:
(M主机+M主机后配重+M下车配重+M超起配重)×cos(A地面水平度);
第二状态值的计算公式为:
M主臂+M副臂+M吊载+M风载×cos(A风向-A回转角度);
根据第一状态值和第二状态值确定力矩平衡状态;
其中,M主机为主机的力矩值;M主机后配重为主机后配重的力矩值;M下车配重为下车配重的力矩值;M超起配重为超起配重的力矩值;M主臂为主臂的力矩值;M副臂为副臂的力矩值;M吊载为吊载的力矩值;M风载为风载的力矩值;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
在一些实施方式中,根据第一状态值和第二状态值确定力矩平衡状态包括:
若确定出第一状态值和第二状态值满足以下公式,则确定起重机处于非平衡状态;
(M主机+M主机后配重+M下车配重+M超起配重)cos(A地面水平度)-M主臂-M副臂-M吊载-M风载cos(A风向-A回转角度)。
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,G主机为主机重量;G主机后配重为主机后配重的重量;G下车配重为下车配重的重量;G超起配重为超起配重的重量;G主臂为主臂的重量;G副臂为副臂的重量;G吊载为额定载荷的重量;G风载为施加风载时的重量;L履带架中心距为主机的重心到回转中心的距离。
在一些实施方式中,上述施加风载时的重量,通过如下算式进行计算:
G风载=V风速×S臂架迎风面积×Z转换系数
其中,V风速为风速;S臂架迎风面积为臂架迎风的面积;Z转换系数为转换系数。
在一些实施方式中,上述通过倾翻点计算起重机的额定载荷值,通过以下算式得以实现:
(G主机×L主机+G主机后配重L主机后配重+G下车配重L下车配重+G超起配重L超起配重)×cos(A地面水平度)-G主臂L主臂cos(A塔况主臂角度)-G副臂L副臂cos(A副臂角度)-G额定载荷L吊载-G风载L风载cos(A风向-A回转角度)
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,L主机为主机重心到回转中心的距离;L主机后配重为主机后配重的重心到回转中心的距离;L下车配重为下车配重的重心到回转中心的距离;L超起配重为超起配重重心到回转中心的距离;L主臂为主臂重心到回转中心的距离;L副臂为副臂重心到回转中心的距离;L吊载为吊载重心到回转中心的距离;L风载为风载重心到回转中心的距离;A塔况主臂角度为主臂角度;A副臂角度为副臂角度;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
在一些实施方式中,上述获取起重机的状态数据的步骤,还包括:
通过人机交互界面输入起重机的工况参数。
在一些实施方式中,上述方法还包括:
在根据额定载荷值控制起重机力矩之后,根据用户的载荷表查询请求获取起重机的工况,并向用户输出包含工况的载荷表。
第二方面,本发明实施例提供了一种起重机力矩控制装置,该装置包括:
数据获取模块,用于获取起重机的状态数据;
力矩平衡状态确定模块,用于根据状态数据,实时确定起重机的力矩平衡状态;
倾翻点确定模块,用于如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点;
力矩控制模块,用于通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。
第三方面,本发明实施例还提供一种电子设备,包括存储器、处理器,存储器中存储有可在处理器上运行的计算机程序,其中,处理器执行计算机程序时实现上述第一方面的方法的步骤。
第四方面,本发明实施例还提供一种具有处理器可执行的非易失的程序代码的计算机可读介质,其中,程序代码使处理器执行上述第一方面方法。
本发明实施例带来了以下有益效果:
本发明提供了一种起重机力矩控制方法、装置和电子设备,该方法首先获取起重机的状态数据;根据状态数据,实时确定起重机的力矩平衡状态;如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点;通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。该方法可实时计算并获得当前起重机配置下的额定载荷值,无需内置载荷表即可实现工况配置的无级变化,提升了起重机在特殊工况和施工环境的适应性。
本发明的其他特征和优点将在随后的说明书中阐述,或者,部分特征和优点可以从说明书推知或毫无疑义地确定,或者通过实施本发明的上述技术即可得知。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施方式,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的起重机力矩控制方法的流程图;
图2为本发明实施例提供的起重机力矩控制装置的结构示意图;
图3为本发明实施例提供的一种电子设备的结构示意图。
图标:
210-数据获取模块;220-力矩平衡状态确定模块;230-倾翻点确定模块;240-力矩控制模块;101-处理器;102-存储器;103-总线;104-通信接口。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
当前起重机力矩限制系统都是内置指定工况的分级载荷表,载荷表分级参数主要包括配重分级、超起半径分级、履带架中心距分级、塔况主臂角度分级、水平度分级和风速分级等。起重机力矩限制系统通过人机界面设置的工况查找对应工况的载荷表,通过载荷表插值计算当前工况的额定载荷值。操作人员必须按生产厂家提供载荷表对应的工况来组装和使用起重机。由于这些分级载荷表对应的都是离散的工况,因此并不能满足特殊工况和施工环境的使用要求,不能灵活地配置起重机。
可见,现有技术中的起重机力矩限制系统必须使用参数复杂的分级载荷表,起重机在使用过程中会受到分级载荷表所包含数据的制约,对于特殊工况以及施工环境下的适应性较低。而如何不使用载荷表即可实现额定载荷值的获取,现有技术中还缺少相关解决方案。
基于此,本发明实施例提供的一种起重机力矩控制方法、装置和电子设备,可实时计算并获得当前起重机配置下的额定载荷值,无需内置载荷表即可实现工况配置的无级变化,提升了起重机在特殊工况和施工环境的适应性。
为便于对本实施例进行理解,首先对本发明实施例所公开的一种起重机力矩控制方法进行详细介绍。
参见图1所示的一种起重机力矩控制方法的流程图,其中,该方法具体步骤包括:
步骤S101,获取起重机的状态数据。
起重机的状态数据包含了该设备工作状态数据,例如涉及起重机工作状态时的各项参数,包括:主臂角度、副臂角度、超起半径、超起配重、中央配重、后配重以及下车配重等数据。起重机的状态数据还包括起重机相关的属性数据,例如履带架中心距、主臂长度、副臂长度、地面水平度以及风速数据等。这些数据可通过起重机内置的相关数据接口进行获取,也可通过人机交互界面进行输入从而获取该数据。起重机的状态数据并不限定为一个数值,可以为一个数值区间,也可以是数值和区间的组合。
步骤S102,根据状态数据,实时确定起重机的力矩平衡状态。
状态数据获取之后,需要对这些实时数据进行计算,确定起重机的力矩平衡状态。力矩平衡状态包括平衡状态和非平衡状态,平衡状态下的起重机状态数据可通过相关力矩平衡算式进行表征,这类力矩平衡算式通常包含两类力矩值,在平衡状态下这两类数值大小之和是相等的。当起重机处于非平衡状态时,这两类力矩值是不同的,因此会有力矩差来作为非平衡状态下的力矩大小。
步骤S103,如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点。
当起重机处于非平衡状态时,可通过力矩平衡算式得到非平衡状态下的力矩,通常可通过将两类力矩值做差得到非平衡下的力矩大小,然后根据起重机状态数据确定起重机的倾翻点。
步骤S104,通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。
倾翻点获取之后,利用起重机的状态数据,通过坡度载荷和风载载荷两类数据对起重机的额定荷载值进行计算。计算过程并不需要现有技术中常见的载荷表,而是通过状态数据实时对起重机的额定荷载值进行计算,使得载荷值实时生成,并且最大限度的结合当前起重机的状态,载荷能力得到提升。在获取到额定载荷值后可根据数值大小对起重机的力矩进行控制,无需内置载荷表即可实现工况配置的无级变化,提升了起重机在特殊工况和施工环境的适应性。
通过上述实施例中提供的起重机力矩控制方法实施例可知,该方法可集成离线载荷表计算算法,不需事先存储载荷表,也不需通过插值计算额定载荷,而是根据起重机状态数据实时计算并获得当前额定载荷值,可以根据施工环境要求在合理参数范围内任意配置履带架中心距、主机后配重、下车配重、超起配重、超起工作半径和塔况主臂角度等工况参数,实现了各类工况配置下的无级变化,提升了起重机在特殊工况和施工环境的适应性。
由于不再需要内置载荷表,额定载荷的计算过程是通过特定的计算方式得以实现。实际实现过程中需要首先获得起重机力矩平衡状态,力矩平衡状态的获取以及后续额定载荷的计算过程是根据起重机的状态数据得到的,这些状态数据即为起重机的工况参数,通常包括履带架中心距、主机后配重、下车配重、超起配重、超起半径、塔况主臂角度、地面水平度、风速及风向、回转角度等相关参数。这些参数的获取可通过起重机内置的传感器得到,在一些实施方式中,上述获取起重机的状态数据的步骤,还包括:
通过人机交互界面输入起重机的工况参数。
由于起重机传感器设置的不同,一些参数是起重机无法获取的,例如风速以及风向等参数,因此可通过人机交互界面通过输入获取。
具体的在一些实施方式中,上述根据状态数据,实时获取起重机当前的力矩平衡状态的步骤S102,包括:
通过第一组参数计算第一状态值,并通过第二组参数计算第二状态值;
第一状态值的计算公式为:
(M主机+M主机后配重+M下车配重+M超起配重)×cos(A地面水平度);
第二状态值的计算公式为:
M主臂+M副臂+M吊载+M风载×cos(A风向-A回转角度);
根据第一状态值和第二状态值确定力矩平衡状态;
其中,M主机为主机的力矩值,是一个定值;M主机后配重为主机后配重的力矩值;M下车配重为下车配重的力矩值;M超起配重为超起配重的力矩值;M主臂为主臂的力矩值;M副臂为副臂的力矩值;M吊载为吊载的力矩值;M风载为风载的力矩值;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
如果第一状态值与第二状态值相等,则表明起重机力矩处于平衡状态,即:
(M主机+M主机后配重+M下车配重+M超起配重)×cos(A地面水平度)=M主臂+M副臂+M吊载+M风载×cos(A风向-A回转角度)
如果第一状态值和第二状态值不相等,则表明起重机力矩处于不平衡状态。非平衡状态下通过第一状态值与第二状态值的差值即为起重机此时侧倾点计算数据。在一些实施方式中,根据第一状态值和第二状态值确定力矩平衡状态包括:
若确定出第一状态值和第二状态值满足以下公式,则确定起重机处于非平衡状态;
(M主机+M主机后配重+M下车配重+M超起配重)cos(A地面水平度)-M主臂-M副臂-M吊载-M风载cos(A风向-A回转角度)
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,G主机为主机重量;G主机后配重为主机后配重的重量;G下车配重为下车配重的重量;G超起配重为超起配重的重量;G主臂为主臂的重量;G副臂为副臂的重量;G吊载为额定载荷的重量;G风载为施加风载时的重量;L履带架中心距为主机的重心到回转中心的距离。
具体实施过程中,上述施加风载时的重量G风载,通过如下算式进行计算:
G风载=V风速×S臂架迎风面积×Z转换系数
其中,V风速为风速;S臂架迎风面积为臂架迎风的面积;Z转换系数为转换系数,为定值。
通过倾翻点计算起重机的额定载荷值的过程,可将上述算式进行分解即可实现,具体形式如下:
(G主机×L主机+G主机后配重L主机后配重+G下车配重L下车配重+G超起配重L超起配重)×cos(A地面水平度)-G主臂L主臂cos(A塔况主臂角度)-G副臂L副臂cos(A副臂角度)-G额定载荷L吊载-G风载L风载cos(A风向-A回转角度)
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,L主机为主机重心到回转中心的距离;L主机后配重为主机后配重的重心到回转中心的距离;L下车配重为下车配重的重心到回转中心的距离;L超起配重为超起配重重心到回转中心的距离;L主臂为主臂重心到回转中心的距离;L副臂为副臂重心到回转中心的距离;L吊载为吊载重心到回转中心的距离;L风载为风载重心到回转中心的距离;A塔况主臂角度为主臂角度;A副臂角度为副臂角度;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
具体的说,G为对应参数的重量;L为对应参数的重心与回转中心的距离;A为对应参数的角度值。通过上式即可得到额定载荷值G额定载荷
通过上述实施例中提供的起重机力矩控制方法,无需内置载荷表,通过实时计算的方式获得当前配置下的额定载荷值,可针对当前工况进行工况配置的无级变化。在塔况时,主臂可以在给定角度区间内任意角度下工作。用户可以根据需要在合理参数范围内任意配置主机后配重、下车配重和超起配重。用户可把超起桅杆放置在允许超起工作半径区间内的任意位置,还可以根据需要调整履带架中心距,使得起重机可在有坡度的地面和有风的环境中更好的进行工作。
虽然该方法不需要载荷表,但仍然可以根据用户需求输出载荷表,因此在根据额定载荷值控制起重机力矩之后,根据用户的载荷表查询请求获取起重机的工况,并向用户输出包含工况的载荷表。
可见,上述实施例中提到的起重机力矩控制方法,可通过对坡度载荷以及风载载荷进行计算,实现了实时的载荷表计算,不需存储载荷表,不需通过插值计算额定载荷,使得用户可以根据施工环境要求在合理参数范围内任意配置履带架中心距、主机后配重、下车配重、超起配重、超起工作半径和塔况主臂角度等工况参数,实现了起重机工况配置的无级变化,提升了起重机在特殊工况和施工环境的适应性。
下面结合具体场景,对本发明提到的起重机力矩控制方法带来的效果提升进行描述。以某起重机为例,生产厂家提供相关载荷表如下:
Figure BDA0002495647040000101
Figure BDA0002495647040000111
该载荷表中起重机履带架全伸,主臂为96m,主臂角度85°,副臂长度范围24~96m,超起半径13m,超起配重范围0-300t,主机后配重210t,下车配重60t。可见,这些分级载荷表对应的都是离散的工况,不能满足特殊工况和施工环境的使用要求,不能灵活地配置起重机。而主臂角度为其它角度以及超起半径为其它长度时,就需要另一套载荷表,灵活性较差。
以副臂长度为24m,工作半径为20米,超起配重为310吨为例,载荷表如下:
Figure BDA0002495647040000112
Figure BDA0002495647040000121
可见,该载荷表中最大载荷值为121t。
按照本发明实施例提供的算式,对该工况下的载荷值进行实时计算,结果如下:
Figure BDA0002495647040000122
通过本发明实施例提供的算式,得到该工况下的最大载荷值为150t,比载荷表提供的最大载荷值121t提升了(150-121)/121=23.9%,即载荷能力提升23.9%,可见载荷能力得到了大幅度提升。而且相对于现有技术中超起工作半径固定的(例如13m、15m、17m)和塔况主臂固定若干角度(例如65°、75°、85°)的载荷表而言,本发明实施例可直接通过实时计算的方式获取对应的最大载荷值,适用性得到显著提高。
对应于上述方法实施例,本发明实施例还提供了一种起重机力矩控制装置,其结构示意图如图2所示,其中,该装置包括:
数据获取模块210,用于获取起重机的状态数据;
力矩平衡状态确定模块220,用于根据状态数据,实时确定起重机的力矩平衡状态;
倾翻点确定模块230,用于如果根据起重机的力矩平衡状态确定出起重机处于非平衡状态,则确定起重机的倾翻点;
力矩控制模块240,用于通过倾翻点计算起重机的额定载荷值,根据额定载荷值控制起重机力矩。
本发明实施例提供的起重机力矩控制装置,与上述实施例提供的起重机力矩控制方法具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。为简要描述,实施例部分未提及之处,可参考前述方法实施例中相应内容。
本实施例还提供一种电子设备,为该电子设备的结构示意图如图3所示,该设备包括处理器101和存储器102;其中,存储器102用于存储一条或多条计算机指令,一条或多条计算机指令被处理器执行,以实现上述起重机力矩控制方法。
图3所示的电子设备还包括总线103和通信接口104,处理器101、通信接口104和存储器102通过总线103连接。
其中,存储器102可能包含高速随机存取存储器(RAM,Random AccessMemory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。总线103可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
通信接口104用于通过网络接口与至少一个用户终端及其它网络单元连接,将封装好的IPv4报文或IPv4报文通过网络接口发送至用户终端。
处理器101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器101可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(NetworkProcessor,简称NP)等;还可以是数字信号处理器(DigitalSignal Processor,简称DSP)、专用集成电路(Application Specific IntegratedCircuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器102,处理器101读取存储器102中的信息,结合其硬件完成前述实施例的方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行前述实施例的方法的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以用软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random AccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

1.一种起重机力矩控制方法,其特征在于,所述方法包括:
获取起重机的状态数据;
根据所述状态数据,实时确定起重机的力矩平衡状态;
如果根据起重机的力矩平衡状态确定出所述起重机处于非平衡状态,则确定所述起重机的倾翻点;
通过所述倾翻点计算所述起重机的额定载荷值,根据所述额定载荷值控制所述起重机力矩。
2.根据权利要求1所述的起重机力矩控制方法,其特征在于,根据所述状态数据,实时获取起重机当前的力矩平衡状态的步骤包括:
通过第一组参数计算第一状态值,并通过第二组参数计算第二状态值;
所述第一状态值的计算公式为:
(M主机+M主机后配重+M下车配重+M超起配重)×cos(A地面水平度);
所述第二状态值的计算公式为:
M主臂+M副臂+M吊载+M风载×cos(A风向-A回转角度);
根据所述第一状态值和所述第二状态值确定所述力矩平衡状态;
其中,M主机为主机的力矩值;M主机后配重为主机后配重的力矩值;M下车配重为下车配重的力矩值;M超起配重为超起配重的力矩值;M主臂为主臂的力矩值;M副臂为副臂的力矩值;M吊载为吊载的力矩值;M风载为风载的力矩值;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
3.根据权利要求2所述的起重机力矩控制方法,其特征在于,根据所述第一状态值和所述第二状态值确定所述力矩平衡状态包括:
若确定出所述第一状态值和所述第二状态值满足以下公式,则确定所述起重机处于非平衡状态;
(M主机+M主机后配重+M下车配重+M超起配重)cos(A地面水平度)-M主臂-M副臂-M吊载-M风载cos(A风向-A回转角度)
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,G主机为主机重量;G主机后配重为主机后配重的重量;G下车配重为下车配重的重量;G超起配重为超起配重的重量;G主臂为主臂的重量;G副臂为副臂的重量;G吊载为额定载荷的重量;G风载为施加风载时的重量;L履带架中心距为主机的重心到回转中心的距离。
4.根据权利要求3所述的起重机力矩控制方法,其特征在于,所述施加风载时的重量,通过如下算式进行计算:
G风载=V风速×S臂架迎风面积×Z转换系数
其中,V风速为风速;S臂架迎风面积为臂架迎风的面积;Z转换系数为转换系数。
5.根据权利要求4所述的起重机力矩控制方法,其特征在于,通过所述倾翻点计算所述起重机的额定载荷值,通过以下算式得以实现:
(G主机×L主机+G主机后配重L主机后配重+G下车配重L下车配重+G超起配重L超起配重)×cos(A地面水平度)-G主臂L主臂cos(A塔况主臂角度)-G副臂L副臂cos(A副臂角度)-G额定载荷L吊载-G风载L风载cos(A风向-A回转角度)
=(G主机+G主机后配重+G下车配重+G超起配重+G主臂+G副臂+G吊载+G风载)×L履带架中心距
其中,L主机为主机重心到回转中心的距离;L主机后配重为主机后配重的重心到回转中心的距离;L下车配重为下车配重的重心到回转中心的距离;L超起配重为超起配重重心到回转中心的距离;L主臂为主臂重心到回转中心的距离;L副臂为副臂重心到回转中心的距离;L吊载为吊载重心到回转中心的距离;L风载为风载重心到回转中心的距离;A塔况主臂角度为主臂角度;A副臂角度为副臂角度;A地面水平度为主机与水平地面的夹角;A风向为风向与主机的角度;A回转角度为回转角度。
6.根据权利要求1所述的起重机力矩控制方法,其特征在于,所述获取起重机的状态数据的步骤,还包括:
通过人机交互界面输入所述起重机的工况参数。
7.根据权利要求1所述的起重机力矩控制方法,其特征在于,所述方法还包括:
在根据所述额定载荷值控制所述起重机力矩之后,根据用户的载荷表查询请求获取所述起重机的工况,并向用户输出包含所述工况的载荷表。
8.一种起重机力矩控制装置,其特征在于,所述装置包括:
数据获取模块,用于获取起重机的状态数据;
力矩平衡状态确定模块,用于根据所述状态数据,实时确定起重机的力矩平衡状态;
倾翻点确定模块,用于如果根据起重机的力矩平衡状态确定出所述起重机处于非平衡状态,则确定所述起重机的倾翻点;
力矩控制模块,用于通过所述倾翻点计算所述起重机的额定载荷值,根据所述额定载荷值控制所述起重机力矩。
9.一种电子设备,其特征在于,包括:处理器和存储装置;所述存储装置上存储有计算机程序,所述计算机程序在被所述处理器运行时执行如权利要求1至7任一项所述的起重机力矩控制方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行上述权利要求1至7任一项所述的起重机力矩控制方法的步骤。
CN202010418184.9A 2020-05-18 2020-05-18 起重机力矩控制方法、装置和电子设备 Active CN111532986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010418184.9A CN111532986B (zh) 2020-05-18 2020-05-18 起重机力矩控制方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010418184.9A CN111532986B (zh) 2020-05-18 2020-05-18 起重机力矩控制方法、装置和电子设备

Publications (2)

Publication Number Publication Date
CN111532986A true CN111532986A (zh) 2020-08-14
CN111532986B CN111532986B (zh) 2022-07-05

Family

ID=71969363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010418184.9A Active CN111532986B (zh) 2020-05-18 2020-05-18 起重机力矩控制方法、装置和电子设备

Country Status (1)

Country Link
CN (1) CN111532986B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353820A (zh) * 2021-06-18 2021-09-07 安徽柳工起重机有限公司 起重机性能表生成方法
CN113353823A (zh) * 2021-06-18 2021-09-07 安徽柳工起重机有限公司 基于起重机性能表数据库的起重机控制方法
CN113548588A (zh) * 2021-08-09 2021-10-26 浙江三一装备有限公司 一种倾翻风险预测方法、装置及系统
CN113742869A (zh) * 2021-09-28 2021-12-03 徐工集团工程机械股份有限公司建设机械分公司 一种起重机性能提升方法
CN114044452A (zh) * 2021-10-27 2022-02-15 浙江三一装备有限公司 作业机械作业控制方法、装置及作业机械
CN114132852A (zh) * 2020-11-03 2022-03-04 中联重科股份有限公司 起重设备的安全控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348216A (zh) * 2008-09-05 2009-01-21 湖南三一起重机械有限公司 一种起重机安全保护系统及其起重机
CN102259799A (zh) * 2011-05-05 2011-11-30 长沙中联重工科技发展股份有限公司 履带起重机安装用力矩控制方法、装置及履带起重机
CN102464270A (zh) * 2010-11-11 2012-05-23 徐州重型机械有限公司 一种防倾翻力矩限制器系统及移动式起重机
CN102910543A (zh) * 2012-08-08 2013-02-06 三一集团有限公司 一种起重机及其防前倾翻保护方法和装置
CN105804148A (zh) * 2016-03-14 2016-07-27 柳州柳工挖掘机有限公司 防止挖掘机倾翻控制方法及挖掘机
CN106365046A (zh) * 2015-07-23 2017-02-01 徐工集团工程机械股份有限公司 倾翻控制方法、装置、系统和工程机械
JP2018095364A (ja) * 2016-12-09 2018-06-21 株式会社タダノ クレーンの接触監視システム
CN108750946A (zh) * 2018-05-23 2018-11-06 四川庞源机械工程有限公司 一种起重机负载识别、测量及调节的控制方法
CN110498341A (zh) * 2019-07-25 2019-11-26 中联重科股份有限公司 起重设备安全性控制方法及其系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348216A (zh) * 2008-09-05 2009-01-21 湖南三一起重机械有限公司 一种起重机安全保护系统及其起重机
CN102464270A (zh) * 2010-11-11 2012-05-23 徐州重型机械有限公司 一种防倾翻力矩限制器系统及移动式起重机
CN102259799A (zh) * 2011-05-05 2011-11-30 长沙中联重工科技发展股份有限公司 履带起重机安装用力矩控制方法、装置及履带起重机
CN102910543A (zh) * 2012-08-08 2013-02-06 三一集团有限公司 一种起重机及其防前倾翻保护方法和装置
CN106365046A (zh) * 2015-07-23 2017-02-01 徐工集团工程机械股份有限公司 倾翻控制方法、装置、系统和工程机械
CN105804148A (zh) * 2016-03-14 2016-07-27 柳州柳工挖掘机有限公司 防止挖掘机倾翻控制方法及挖掘机
JP2018095364A (ja) * 2016-12-09 2018-06-21 株式会社タダノ クレーンの接触監視システム
CN108750946A (zh) * 2018-05-23 2018-11-06 四川庞源机械工程有限公司 一种起重机负载识别、测量及调节的控制方法
CN110498341A (zh) * 2019-07-25 2019-11-26 中联重科股份有限公司 起重设备安全性控制方法及其系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132852A (zh) * 2020-11-03 2022-03-04 中联重科股份有限公司 起重设备的安全控制方法及系统
CN115043338A (zh) * 2020-11-03 2022-09-13 中联重科股份有限公司 起重设备的安全控制方法及系统
CN115043338B (zh) * 2020-11-03 2023-08-08 中联重科股份有限公司 起重设备的安全控制方法及系统
CN113353820A (zh) * 2021-06-18 2021-09-07 安徽柳工起重机有限公司 起重机性能表生成方法
CN113353823A (zh) * 2021-06-18 2021-09-07 安徽柳工起重机有限公司 基于起重机性能表数据库的起重机控制方法
CN113353823B (zh) * 2021-06-18 2022-09-23 安徽柳工起重机有限公司 基于起重机性能表数据库的起重机控制方法
CN113548588A (zh) * 2021-08-09 2021-10-26 浙江三一装备有限公司 一种倾翻风险预测方法、装置及系统
CN113742869A (zh) * 2021-09-28 2021-12-03 徐工集团工程机械股份有限公司建设机械分公司 一种起重机性能提升方法
CN114044452A (zh) * 2021-10-27 2022-02-15 浙江三一装备有限公司 作业机械作业控制方法、装置及作业机械
CN114044452B (zh) * 2021-10-27 2023-06-23 浙江三一装备有限公司 作业机械作业控制方法、装置及作业机械

Also Published As

Publication number Publication date
CN111532986B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN111532986B (zh) 起重机力矩控制方法、装置和电子设备
CN106533988B (zh) 一种应用程序网速的控制方法及移动终端
CN103856337B (zh) 资源占用率获取方法、提供方法、系统及服务器
CN114014188B (zh) 起重机风险预防方法及装置
CN112356683A (zh) 基于电动汽车的防抖动方法、装置、设备及存储介质
CN113923208B (zh) 一种下载海量路测数据的处理方法
CN109634428B (zh) 电子设备、反馈提示方法、装置及终端设备
CN113651239A (zh) 一种起重机系统的速度调节方法、装置及设备
KR101830392B1 (ko) Hmi와 빅데이터 기술을 활용한 대용량 산업 데이터 실시간 저장 시스템 및 저장 방법
CN112731030A (zh) 一种电子元器件的检测方法、装置、终端设备及存储介质
CN115329251B (zh) 风力电站的理论功率计算方法及装置
CN112104292B (zh) 电机控制方法、装置、终端设备及存储介质
CN114579499B (zh) 处理器通信接口的控制方法、装置、设备及存储介质
CN115683304A (zh) 称重方法、装置、系统及作业机械
CN111927798B (zh) 一种磁悬浮分子泵降速控制方法和装置
WO2022041064A1 (en) Method and apparatus for robot joint status monitoring
CN113899915A (zh) 一种臂架线速度获取方法、装置及工程车辆
CN103616065B (zh) 一种配料控制系统
CN107403275A (zh) 吊装风险预警方法及装置
CN109829968B (zh) 法线纹理图的生成方法、装置、存储介质及电子设备
CN116879579B (zh) 车辆加速度计算方法、装置、计算机设备及存储介质
CN114717799B (zh) 洗衣机控制方法、装置及电子设备
CN113923131B (zh) 一种监控信息确定方法、装置、计算设备及存储介质
CN110203830B (zh) 起重机额定幅度获得的方法、装置、电子设备及起重机
CN116842339B (zh) 一种大坝数据分析方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant