WO2024131766A1 - 一种直流充电桩功率分配方法 - Google Patents

一种直流充电桩功率分配方法 Download PDF

Info

Publication number
WO2024131766A1
WO2024131766A1 PCT/CN2023/139750 CN2023139750W WO2024131766A1 WO 2024131766 A1 WO2024131766 A1 WO 2024131766A1 CN 2023139750 W CN2023139750 W CN 2023139750W WO 2024131766 A1 WO2024131766 A1 WO 2024131766A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
charging
module groups
charging gun
power
Prior art date
Application number
PCT/CN2023/139750
Other languages
English (en)
French (fr)
Inventor
秦晨
周飞
Original Assignee
万帮数字能源股份有限公司
万帮星星充电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万帮数字能源股份有限公司, 万帮星星充电科技有限公司 filed Critical 万帮数字能源股份有限公司
Publication of WO2024131766A1 publication Critical patent/WO2024131766A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to the technical field of direct current charging piles, and in particular to a direct current charging pile power distribution method.
  • the power demand changes in real time.
  • the power demand is relatively large.
  • the DC charging pile needs to cut in as many modules as possible to meet the needs of the vehicle.
  • the power demand decreases and no longer needs as many modules as before.
  • the DC charging pile can cut out the excess modules and use them on another gun to make full use of module resources.
  • the module allocation and calling process is what we call power allocation.
  • the previous power distribution method was to switch in and out the modules used by a single charging gun as a whole.
  • the modules used by the charging gun would first reduce the current and cut off the power relay and then increase the voltage. This would cause large fluctuations in the output current during the switching process and a poor user experience.
  • a DC charging pile power distribution method comprises the following steps:
  • Step S101 Obtain the connection status of each charging gun in the DC charging pile and the vehicle end, and determine whether it is in a single-gun charging state. If so, proceed to step S102;
  • Step S102 Obtain the operating state of the charging gun. If it is in the insulation boosting state, proceed to step S103; if it is in the charging state, proceed to step S104;
  • Step S103 Allocate the power module group closest to the charging gun to the charging gun, so that the charging gun is insulated and boosted, and after the boost is completed, proceed to step S104;
  • Step S104 Obtain the required power at the vehicle end in real time, and calculate the required number of power module groups in real time based on the required power, and compare the number of power module groups currently allocated to the charging gun with the required number of power module groups. If the currently allocated number of power module groups is greater than the required number of power module groups, the power module groups are cut out; if the currently allocated number of power module groups is less than the required number of power module groups, the idle power module groups are cut in until the currently allocated number of power module groups is equal to the required number of power module groups.
  • Step S105 Obtain the operating status of each charging gun. If all charging guns are in the insulation boosting state, proceed to step S106. If there are charging guns in both the insulation boosting state and the charging state, proceed to step S107. If all charging guns are in the charging state, proceed to step S108.
  • Step S106 Allocate the power module group closest to each charging gun to the corresponding charging gun, so that each charging gun is insulated and boosted, and proceed to step S108 after the boost is completed;
  • Step S107 Determine whether there is an idle power module group. If so, allocate the idle power module group closest to each charging gun in the insulation boost state to the corresponding charging gun to perform insulation boost. If not, cut out the power module group farthest from the charging gun itself among the power module groups allocated in the charging gun in the charging state, and then allocate the power module group to the corresponding charging gun in the insulation boost state to perform insulation boost. After all charging guns have completed the boost, proceed to step S108.
  • Step S108 Obtain the required power of the vehicle end connected to each charging gun in real time. If the number of power module groups required by all charging guns is less than or equal to the total number of power module groups in the charging pile, calculate the required number of power module groups in real time according to the required power of each vehicle end, and compare the number of power module groups currently allocated to the corresponding charging gun with the required number of power module groups.
  • the currently allocated number of power module groups is greater than the required number of power module groups, cut out the power module groups; if the currently allocated number of power module groups is less than the required number of power module groups, cut in the idle power module groups until the currently allocated number of power module groups is equal to the required number of power module groups; if the required number of power module groups for all charging guns is greater than the total number of power module groups in the charging pile, make the number of power module groups allocated to the charging guns with larger required power greater than the number of power module groups allocated to the charging guns with smaller required power, and make each charging gun allocated at least one power module group.
  • the switching-out priority of the power module group is determined according to the distance between the power module group currently allocated to the charging gun and the charging gun;
  • the cutting-in priority of the power module group is determined according to the distance between the idle power module group and the charging gun;
  • the power module group is cut out; if the number of currently allocated power module groups is less than the required number of power module groups, the idle power module group is cut in, including:
  • the required number of power module groups is continuously acquired. If the number of currently allocated power module groups is continuously greater than the required number of power module groups within a time T, the power module groups are cut out.
  • the time T is 3 to 5 minutes.
  • the present invention realizes power distribution of the charging gun by switching in and out of the power module group.
  • the power distribution process is smoother, the response speed is effectively improved, and the user experience is better.
  • FIG. 1 is a schematic flow chart of steps S101 to S104 in the DC charging pile power distribution method provided by the present invention.
  • FIG. 2 is a flow chart of steps S105 to S108 in the DC charging pile power distribution method provided by the present invention.
  • the present application embodiment provides a DC charging pile power distribution method.
  • the method includes steps S101 to S108, and the specific steps are described as follows:
  • Step S101 Obtain the connection status between each charging gun in the DC charging pile and the vehicle end, and determine whether it is in a single-gun charging state. If so, proceed to step S102, if not, proceed to step S105.
  • each charging gun in the DC charging pile determines whether each charging gun in the DC charging pile is connected to the vehicle end. If only one charging gun is connected to the vehicle end, it means that it is in a single-gun charging state. If multiple charging guns are connected to the vehicle end at the same time, it means that the charging pile is in a multi-gun charging state.
  • Step S102 Obtain the operating status of the charging gun. If it is in the insulation boosting state, proceed to step S103; if it is in the charging state, proceed to step S104.
  • the working state of the charging gun connected to the vehicle end is determined, that is, whether the charging gun is in an insulation boost state or a charging state.
  • Step S103 Allocate the power module group closest to the charging gun to the charging gun, so that the charging gun is insulated and boosted, and after the boost is completed, proceed to step S104;
  • the charging gun if the charging gun is in an insulation boost state, the power module group closest to the charging gun needs to be allocated to the charging gun for insulation boosting. After the charging gun boosts the voltage to the same voltage as the vehicle-end battery, the charging gun can charge the vehicle-end battery, that is, it is in a charging state.
  • Step S104 Obtain the required power at the vehicle end in real time, and calculate the required number of power module groups in real time based on the required power, and compare the number of power module groups currently allocated to the charging gun with the required number of power module groups. If the currently allocated number of power module groups is greater than the required number of power module groups, the power module groups are cut out; if the currently allocated number of power module groups is less than the required number of power module groups, the idle power module groups are cut in until the currently allocated number of power module groups is equal to the required number of power module groups.
  • the charging pile calculates the number of required power module groups in real time according to the required power sent by the vehicle. If the number of currently allocated power module groups is greater than the required number of power module groups, the power module groups currently allocated to the charging gun are cut out, that is, the power module groups allocated to the charging gun are reduced. If the number of currently allocated power module groups is less than the required number of power module groups, the idle power module groups are cut in, that is, the number of power module groups allocated to the charging gun is increased.
  • the cutting-out priority of the power module group is determined according to the distance between the power module group currently assigned to the charging gun and the charging gun. The greater the distance from the charging gun, the higher the cutting-out priority of the power module group.
  • the cutting-in priority of the power module group is determined according to the distance between the idle power module group and the charging gun. The smaller the distance from the charging gun, the higher the cutting-in priority of the power module group.
  • Step S105 Obtain the operating status of each charging gun. If all charging guns are in the insulation boost state, proceed to step S106. If there are charging guns in both the insulation boost state and the charging state, proceed to step S107. If all charging guns are in the charging state, proceed to step S108.
  • the multi-gun charging state there are three situations.
  • the first is that all charging guns are in the insulation boost state. At this time, the charging guns need to be insulated and boosted first. The vehicle-end battery can be charged only after the boost is completed.
  • the second is that some charging guns are in the charging state, and some charging guns are in the insulation boost state. At this time, the charging gun in the insulation boost state needs to be insulated and boosted so that the charging gun can charge the vehicle-end battery, that is, enter the charging state.
  • the third is that all charging guns are in the charging state, that is, all charging guns do not need to be insulated and boosted.
  • Step S106 Allocate the power module group closest to each charging gun to the corresponding charging gun, so that each charging gun is insulated and boosted, and proceed to step S108 after the boost is completed.
  • the power module group closest to each charging gun is allocated to the corresponding charging gun. It should be noted that in the insulation boosting stage, one power module in the power module group allocated to each charging gun can provide the charging gun with insulation boosting.
  • Step S107 Determine whether there is an idle power module group. If so, allocate the idle power module group closest to each charging gun in the insulation boost state to the corresponding charging gun for insulation boost. If not, cut out the power module group farthest from the charging gun itself among the power module groups allocated in the charging gun in the charging state, and then allocate the power module group to the corresponding charging gun in the insulation boost state for insulation boost. After all charging guns have completed the boost, proceed to step S108.
  • the charging pile can allocate the idle power module group closest to the charging gun in the insulation boost state to the corresponding charging gun for insulation boost. If all power module groups in the charging pile have been allocated to the charging gun in the charging state, then it is necessary to cut out a power module group from the power module groups allocated in the charging gun in the charging state, make it an idle power module group first, and then allocate it to the charging gun in the insulation boost state for insulation boost, and charge after the boost is completed.
  • the cut out power module group is the power module group farthest from the charging gun.
  • Step S108 Obtain the required power of the vehicle end connected to each charging gun in real time. If the number of power module groups required by all charging guns is less than or equal to the total number of power module groups in the charging pile, calculate the required number of power module groups in real time according to the required power of each vehicle end, and compare the number of power module groups currently allocated to the corresponding charging gun with the required number of power module groups. If the number of currently allocated power module groups is greater than the required number of power module groups, cut out the power module groups. If the number of currently allocated power module groups is less than the required number of power module groups, cut in the idle power module groups until the number of currently allocated power module groups is equal to the required number of power module groups.
  • the number of power module groups required by all charging guns is greater than the total number of power module groups in the charging pile, the number of power module groups allocated to the charging guns with greater required power is greater than the number of power module groups allocated to the charging guns with less required power, and each charging gun is allocated at least one power module group.
  • the number of power module groups required by all charging guns is less than or equal to the total number of power module groups in the charging pile, the number of power module groups required is calculated in real time based on the required power of each vehicle end, and then the number of power module groups currently allocated to each charging gun is compared with the required number of power module groups. If the number of currently allocated power module groups is greater than the required number of power module groups, the power module groups currently allocated to the charging gun are cut out, that is, the power module groups allocated to the charging gun are reduced. If the number of currently allocated power module groups is less than the required number of power module groups, the idle power module groups are cut in, that is, the number of power module groups allocated to the charging gun is increased.
  • the cutting-out priority of the power module group is determined according to the distance between the power module group currently assigned to the charging gun and the charging gun. The greater the distance from the charging gun, the higher the cutting-out priority of the power module group.
  • the cutting-in priority of the power module group is determined according to the distance between the idle power module group and the charging gun. The smaller the distance from the charging gun, the higher the cutting-in priority of the power module group.
  • the power required by the charging gun is used as the priority for allocating power module groups, that is, the number of power module groups allocated to charging guns with larger power requirements is greater than the number of power module groups allocated to charging guns with smaller power requirements.
  • the power module groups are immediately cut in; when the number of currently allocated power module groups is greater than the required number of power module groups, the required number of power module groups is continuously obtained. If the number of currently allocated power module groups continues to be greater than the required number of power module groups within time T, the power module groups are cut out.
  • the purpose of doing this is to prevent the vehicle-side demand from jumping back and forth, thereby frequently triggering power allocation and affecting the user experience.
  • the time T is 5 minutes.
  • the charging pile contains four 30KW power module groups, from left to right, module group one, module group two, module group three and module group four.
  • the two charging guns are charging gun one and charging gun two. Among them, the distance between module group one, module group two, module group three and module group four and charging gun one gradually increases. Conversely, the distance between module group one, module group two, module group three and module group four and charging gun two gradually decreases.
  • the operating state of the charging gun is obtained. If it is in the insulation boost state, the power module group closest to the charging gun is assigned to the charging gun, so that the charging gun performs insulation boost until the voltage is equal to the battery voltage in the vehicle end, and then the charging gun starts to charge the vehicle end battery and enters the charging state.
  • the DC charging pile After entering the normal charging stage, the DC charging pile obtains the required power of the vehicle in real time, calculates the number of power module groups required in real time based on the required power, compares the number of power module groups currently allocated by the charging gun with the number of power module groups required, and switches the power module groups in or out based on the comparison results.
  • the details are as follows:
  • the power module groups are switched out until the number of currently allocated power module groups is equal to the required number of power module groups.
  • the order of power module group switching out is module group 4 -> module group 3 -> module group 2 -> module group 1.
  • the order of power module group switching out is module group 1 -> module group 2 -> module group 3 -> module group 4. That is, the switching out priority of the power module group is determined according to the distance between the power module group currently assigned to the charging gun and the charging gun, and the greater the distance from the charging gun, the higher the switching-in priority of the power module group.
  • Step a Raise the voltage of the corresponding power module group to be equal to the voltage of the corresponding vehicle-end battery
  • Step b closing the power relay of the corresponding power module group
  • Step c increasing the current of the corresponding power module group to a predetermined value.
  • idle power module groups are switched in until the number of currently allocated power module groups is equal to the required number of power module groups.
  • the order of power module group switching is module group 1 -> module group 2 -> module group 3 -> module group 4.
  • the order of power module group switching is module group 4 -> module group 3 -> module group 2 -> module group 1. That is, the switching priority of the power module group is determined according to the distance between the idle power module group and the charging gun, and the smaller the distance to the charging gun, the higher the switching priority of the power module group.
  • Step d reducing the current of the corresponding power module group to 0;
  • Step e Disconnect the power relay of the corresponding power module group
  • Step f Reduce the voltage of the corresponding power module group to 0.
  • Case 1 Both charging gun 1 and charging gun 2 are in the insulation boost state. Then, power module 1 is assigned to charging gun 1, so that charging gun 1 performs insulation boost. Power module 4 is assigned to charging gun 2, so that charging gun 2 performs insulation boost. After insulation boost, charging gun 1 and charging gun 2 charge the vehicle-end battery respectively, that is, both are in the charging state.
  • Case 2 One charging gun is in the charging state and the other charging gun is in the insulation stage.
  • module group 4 is allocated to charging gun 2 for insulation boost; when there is no idle power module group (that is, all power module groups are allocated to charging gun 1), charging gun 1 needs to cut out module group 4, and then allocate module group 4 to charging gun 2 for insulation boost. After insulation boost, charging gun 1 and charging gun 2 charge the vehicle-end battery respectively, that is, both are in the charging state.
  • charging gun 2 When charging gun 2 is in the charging state and charging gun 1 is in the insulation boost state, if there is an idle power module group, module group 1 is assigned to charging gun 1 for insulation boost; when there is no idle power module group (that is, all power module groups are assigned to charging gun 2), charging gun 2 needs to cut out module group 1, and then assign module group 1 to charging gun 1 for insulation boost. After insulation boost, charging gun 1 and charging gun 2 charge the vehicle-end battery respectively, that is, both are in the charging state.
  • the charging pile obtains the required power of the vehicle end connected to charging gun 1 and charging gun 2 in real time. If the number of power module groups required by charging gun 1 and charging gun 2 is less than or equal to the total number of power module groups in the charging pile, that is, four groups, the number of power module groups required is calculated in real time according to the required power of each vehicle end, and the number of power module groups currently allocated to the corresponding charging gun is compared with the number of required power module groups.
  • the power module group is cut out; if the number of currently allocated power module groups is less than the number of required power module groups, the idle power module group is cut in until the number of currently allocated power module groups is equal to the number of required power module groups.
  • the number of power module groups required by charging gun 1 and charging gun 2 is greater than four, the number of power module groups allocated to the charging gun with greater power requirement is greater than the number of power module groups allocated to the charging gun with less power requirement, and each charging gun is allocated at least one power module group. That is, if the required power of charging gun 1 is significantly greater than the required power of charging gun 2, module group 1, module group 2 and module group 3 are all allocated to charging gun 1, and module group 4 is allocated to charging gun 2, so as to ensure that both charging gun 1 and charging gun 2 can maintain the charging state.
  • charging gun 1 is in charging state and charging gun 2 is in insulation boost state as an example.
  • the number of power module groups assigned to charging gun 1 is four, and the number of power module groups assigned to charging gun 2 is zero. That is, at this time, module group 1, module group 2, module group 3 and module group 4 are all assigned to charging gun 1.
  • the number of power module groups assigned to charging gun 1 is three, and the number of power module groups assigned to charging gun 1 is one. And at this time, module group 1, module group 2, and module group 3 are all assigned to charging gun 1, and module group 4 is assigned to charging gun 2, so that charging gun 2 can be insulated and boosted.
  • the power demand of charging gun two is greater than the power demand of charging gun one. Therefore, before the change, the number of power module groups allocated to charging gun one is one group, and the number of power module groups allocated to charging gun two is three groups. At this time, module group one is allocated to charging gun one, and module group two, module group three and module group four are all allocated to charging gun two. As charging progresses, the power demand of charging gun two decreases, and the number of power module groups in charging gun two is greater than the required number of power module groups, then module group two allocated to charging gun two is cut out. The power module group after cutting out becomes an idle power module group and is assigned to charging gun one.
  • the number of power module groups allocated to charging gun one is two groups, and the number of power module groups allocated to charging gun two is two groups. At this time, module group one and module group two are allocated to charging gun one, and module group three and module group four are allocated to charging gun two.
  • the technical solution of the present application realizes the power distribution of the charging gun by switching on and off the power module group.
  • the power distribution process is smoother, the response speed is effectively improved, the user experience is better, and the number of operations on the power relay is reduced, reducing the probability of safety accidents caused by misoperation.
  • the present invention may also have other implementation modes; any technical solutions formed by equivalent replacement or equivalent transformation shall fall within the protection scope required by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种直流充电桩功率分配方法,涉及直流充电桩技术领域,包括以下步骤: S101:判断充电桩是否处于单枪充电状态; S102:获取该充电枪的运行状态,若处于绝缘升压状态,则进行S103,若处于充电状态,则进行S104;步骤S103:将与该充电枪距离最近的电源模块组分配至该充电枪,进行绝缘升压;步骤S104:实时获取车端的需求功率,并根据需求功率实时计算所需电源模块组数量,并将其与当前分配的电源模块组数量进行对比,以此进行电源模块组的切入或切出,直至当前分配的电源模块组数量等于所需电源模块组数量。本发明通过电源模块组的切入切出实现充电枪的功率分配,功率分配过程更加平滑,有效提升了响应速度,使用户体验更好,且减少了对功率继电器的操作次数,降低了由误操作而引起安全事故的概率。

Description

一种直流充电桩功率分配方法 技术领域
本发明涉及直流充电桩技术领域,特别是涉及一种直流充电桩功率分配方法。
背景技术
新能源汽车在充电过程中,需求的功率是实时变化的,充电刚开始时需求功率比较大,这个时候直流充电桩就需要切入尽可能多的模块来满足车端的需求,而随着充电的持续进行,需求功率在变小,不在需要原先那么多模块,这个时候直流充电桩就可以将多余模块进行切出,将这部分模块用在另外一把枪上,实现模块资源物尽其用。而模块的分配调用过程就是我们说的功率分配。
之前的功率分配方式是单支充电枪用到的模块整体的切入切出,在车端需求改变的某一时候触发功率分配时,该充电枪用到的模块都先进行降流断功率继电器然后再升压,这样就会导致切换过程中输出电流波动较大,用户体验不佳。
发明内容
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种直流充电桩功率分配方法。
为了解决以上技术问题,本发明的技术方案如下:
一种直流充电桩功率分配方法,包括以下步骤:
步骤S101:获取直流充电桩内各充电枪与车端的连接状态,判断是否处于单枪充电状态,若是,则进行步骤S102;
步骤S102:获取该充电枪的运行状态,若处于绝缘升压状态,则进行步骤S103,若处于充电状态,则进行步骤S104;
步骤S103:将与该充电枪距离最近的电源模块组分配至该充电枪,使该充电枪进行绝缘升压,升压完成后进行步骤S104;
步骤S104:实时获取车端的需求功率,并根据需求功率实时计算所需电源模块组数量,并将充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:所述步骤S101中,若处于多枪充电状态,则包括以下步骤:
步骤S105:获取各充电枪的运行状态,若所有充电枪均处于绝缘升压状态,则进行步骤S106,若同时存在处于绝缘升压状态和处于充电状态的充电枪,则进行步骤S107,若所有充电枪均处于充电状态,则进行步骤S108;
步骤S106:将与各个充电枪距离最近的电源模块组分配至对应充电枪,使各个充电枪进行绝缘升压,完成升压后进行步骤S108;
步骤S107:判断是否存在空闲电源模块组,若是,则将与每个处于绝缘升压状态的充电枪距离最近的空闲电源模块组分配至对应充电枪,使其进行绝缘升压,若否,则将处于充电状态的所述充电枪内分配的电源模块组中与自身充电枪距离最远的电源模块组切出,再将该电源模块组分配至对应处于绝缘升压状态的充电枪,使其进行绝缘升压,所有充电枪完成升压后进行步骤S108;
步骤S108:实时获取与各充电枪连接的车端的需求功率,若所有充电枪所需电源模块组数量小于或等于充电桩内电源模块组的总数量,则根据每个车端的需求功率实时计算其所需电源模块组数量,并将对应充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量;若所有充电枪所需电源模块组数量大于充电桩内电源模块组的总数量,使所需功率大的充电枪分配的电源模块组数量大于所需功率小的充电枪分配的电源模块组数量,且使每个充电枪至少分配一个电源模块组。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:任一充电枪进行电源模块组切出时,根据充电枪当前分配的电源模块组与充电枪之间的距离确定电源模块组的切出优先级;
其中,与充电枪之间的距离越大,电源模块组的切出优先级越高。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:任一充电枪进行电源模块组切入时,根据空闲电源模块组与充电枪之间的距离确定电源模块组的切入优先级;
其中,与充电枪之间的距离越小,电源模块组的切入优先级越高。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:任一电源模块组切出时,包括以下步骤:
将对应电源模块组的电流降为0;
断开对应电源模块组的功率继电器;
将对应电源模块组的电压降为0。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:任一电源模块组切入时,包括以下步骤:
将对应电源模块组的电压升至与对应车端电池电压相等;
闭合对应电源模块组的功率继电器;
将对应电源模块组的电流升至预定值。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:所述若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入包括:
当当前分配的电源模块组数量小于所需电源模块组数量时,立即进行电源模块组切入;
当当前分配的电源模块组数量大于所需电源模块组数量时,持续获取所需电源模块组数量,若在时间T内当前分配的电源模块组数量持续大于所需电源模块组数量,则进行电源模块组切出。
作为本发明所述直流充电桩功率分配方法的一种优选方案,其中:所述时间T为3~5min。
本发明的有益效果是:
(1)本发明通过电源模块组的切入切出实现充电枪的功率分配,功率分配过程更加平滑,有效提升了响应速度,使用户体验更好。
(2)本发明在进行功率分配时,需求模块组数量增加立即生效,而需求模块组数量减少必须持续一段时间才生效,这样可防止车端需求来回横跳从而频繁触发功率分配,进而减少了对功率继电器的操作次数,降低了由误操作而引起安全事故的概率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明提供的直流充电桩功率分配方法中步骤S101~步骤S104的流程示意图。
图2为本发明提供的直流充电桩功率分配方法中步骤S105~步骤S108的流程示意图。
实施方式
为使本发明的内容更容易被清楚地理解,下面根据具体实施方式并结合附图,对本发明作出进一步详细的说明。
本申请实施例提供了一种直流充电桩功率分配方法。该方法包括步骤S101~步骤S108,具体步骤说明如下:
步骤S101:获取直流充电桩内各充电枪与车端的连接状态,判断是否处于单枪充电状态,若是,则进行步骤S102,若否,则进行步骤S105。
具体的,判断直流充电桩内各充电枪是否与车端连接。若只有一把充电枪与车端连接,则表示此时处于单枪充电状态。若同时有多把充电枪与车端连接,则表示此时充电桩处于多枪充电状态。
步骤S102:获取该充电枪的运行状态,若处于绝缘升压状态,则进行步骤S103,若处于充电状态,则进行步骤S104。
具体的,在单枪充电状态下,判断与车端连接的充电枪所处的工作状态。即判断该充电枪处于绝缘升压状态还是处于充电状态。
步骤S103:将与该充电枪距离最近的电源模块组分配至该充电枪,使该充电枪进行绝缘升压,升压完成后进行步骤S104;
具体的,若充电枪处于绝缘升压状态,则需要将与该充电枪距离最近的电源模块组分配给该充电枪,供该充电枪进行绝缘升压。在充电枪升压至电压与与车端电池电压相等后,该充电枪即可对车端电池进行充电,即处于充电状态。
步骤S104:实时获取车端的需求功率,并根据需求功率实时计算所需电源模块组数量,并将充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。
具体的,充电桩根据车端发送的需求功率,实时计算需求电源模块组的数量。若当前分配的电源模块组数量大于所需电源模块组数量,则将充电枪当前分配的电源模块组进行电源模块组切出,即减少分配给充电枪的电源模块组。若当前分配的电源模块组数量小于所需电源模块组数量,则将空闲电源模块组切入,即增加分配给充电枪的电源模块组数量。
需要说明的是,充电枪进行电源模块组切出时,根据充电枪当前分配的电源模块组与充电枪之间的距离确定电源模块组的切出优先级。其中,与充电枪之间的距离越大,电源模块组的切出优先级越高。充电枪进行电源模块组切入时,根据空闲电源模块组与充电枪之间的距离确定电源模块组的切入优先级。其中,与充电枪之间的距离越小,电源模块组的切入优先级越高。
步骤S105:获取各充电枪的运行状态,若所有充电枪均处于绝缘升压状态,则进行步骤S106,若同时存在处于绝缘升压状态和处于充电状态的充电枪,则进行步骤S107,若所有充电枪均处于充电状态,则进行步骤S108。
具体的,在多枪充电状态下,存在三种情况。第一种,所有充电枪均处于绝缘升压状态,此时充电枪都需要先进行绝缘升压。待升压完成后方可对车端电池进行充电。第二种,有充电枪处于充电状态,同时也有充电枪处于绝缘升压状态。此时处于绝缘升压状态的充电枪需要进行绝缘升压,以使该充电枪可对车端电池进行充电,即进入充电状态。第三种则是所有充电枪均处于充电状态,即所有充电枪均不需要进行绝缘升压。
步骤S106:将与各个充电枪距离最近的电源模块组分配至对应充电枪,使各个充电枪进行绝缘升压,完成升压后进行步骤S108。
具体的,将与每个充电枪最近的电源模块组分配给对应充电枪。需要说明的是,在绝缘升压阶段,分配给每个充电枪的电源模块组中的一个电源模块即可供充电枪进行绝缘升压。
步骤S107:判断是否存在空闲电源模块组,若是,则将与每个处于绝缘升压状态的充电枪距离最近的空闲电源模块组分配至对应充电枪,使其进行绝缘升压,若否,则将处于充电状态的所述充电枪内分配的电源模块组中与自身充电枪距离最远的电源模块组切出,再将该电源模块组分配至对应处于绝缘升压状态的充电枪,使其进行绝缘升压,所有充电枪完成升压后进行步骤S108。
具体的,若充电桩内未进行分配的电源模块组,则其为空闲电源模块组,可随时受充电桩控制,进行分配。此时,充电桩可将与处于绝缘升压状态的充电枪距离最近的空闲电源模块组分配给对应的充电枪,供其进行绝缘升压。若充电桩内所有电源模块组均已分配给处于充电状态的充电枪,则此时需要从处于充电状态的充电枪内分配的电源模块组中切出一个电源模块组,使其先成为空闲电源模块组,然后将其分配给处于绝缘升压状态的充电枪,供其进行绝缘升压,并待其升压完成后进行充电。
需要说明的是,从处于充电状态的充电枪内切出电源模块组时,切出的电源模块组为与该充电枪距离最远的电源模块组。
步骤S108:实时获取与各充电枪连接的车端的需求功率,若所有充电枪所需电源模块组数量小于或等于充电桩内电源模块组的总数量,则根据每个车端的需求功率实时计算其所需电源模块组数量,并将对应充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。若所有充电枪所需电源模块组数量大于充电桩内电源模块组的总数量,使所需功率大的充电枪分配的电源模块组数量大于所需功率小的充电枪分配的电源模块组数量,且使每个充电枪至少分配一个电源模块组。
具体的,若所有充电枪所需电源模块组数量小于或等于充电桩内电源模块组的总数量,则根据每个车端的需求功率实时计算其所需电源模块组数量,然后将每个充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比。若当前分配的电源模块组数量大于所需电源模块组数量,则将充电枪当前分配的电源模块组进行电源模块组切出,即减少分配给充电枪的电源模块组。若当前分配的电源模块组数量小于所需电源模块组数量,则将空闲电源模块组切入,即增加分配给充电枪的电源模块组数量。
需要说明的是,充电枪进行电源模块组切出时,根据充电枪当前分配的电源模块组与充电枪之间的距离确定电源模块组的切出优先级。其中,与充电枪之间的距离越大,电源模块组的切出优先级越高。充电枪进行电源模块组切入时,根据空闲电源模块组与充电枪之间的距离确定电源模块组的切入优先级。其中,与充电枪之间的距离越小,电源模块组的切入优先级越高。
若所有充电枪所需电源模块组数量大于充电桩内电源模块组的总数量,则在保证每个充电枪均可保持充电状态的前提下,按照充电枪所需功率大小作为电源模块组分配的优先级,即所需功率大的充电枪分配的电源模块组数量大于所需功率小的充电枪分配的电源模块组数量。
另外,需要说明的是,在进行电源模块组的切入和切出时,需遵循以下原则:
当当前分配的电源模块组数量小于所需电源模块组数量时,立即进行电源模块组切入;当当前分配的电源模块组数量大于所需电源模块组数量时,持续获取所需电源模块组数量,若在时间T内当前分配的电源模块组数量持续大于所需电源模块组数量,则进行电源模块组切出。
这样做的目的在于防止车端需求来回横跳从而频繁触发功率分配,影响用户体验。
在本实施例中,上述时间T为5min。
下面以120KW的双枪充电桩举例说明。该充电桩内包含四个30KW的电源模块组,从左向右分别为模块组一、模块组二、模块组三和模块组四。两个充电枪分别为充电枪一和充电枪二。其中,模块组一、模块组二、模块组三和模块组四与充电枪一之间的距离逐渐增大。相对的,模块组一、模块组二、模块组三和模块组四与充电枪二之间的距离逐渐减小。
首先,根据充电枪一和充电枪二与车端的连接状态,判断充电桩处于单枪充电状态还是双枪充电状态。
若处于单枪充电状态,则获取该充电枪的运行状态。若处于绝缘升压状态,则将与该充电枪距离最近的电源模块组分配至该充电枪,使该充电枪进行绝缘升压,直至升压至与车端内电池电压相等,然后充电枪开始对车端电池进行充电,进入充电状态。
在进入正常充电阶段后,直流充电桩实时获取车端的需求功率,并根据需求功率实时计算所需电源模块组数量,并将充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,并根据对比结果进行电源模块组的切入或切出。具体如下:
若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,直至当前分配的电源模块组数量等于所需电源模块组数量。
其中,当充电枪一处于正常充电状态时,电源模块组切出的顺序为模块组四—>模块组三—>模块组二—>模块组一。当充电枪二处于正常充电状态时,电源模块组切出的顺序为模块组一—>模块组二—>模块组三—>模块组四。即根据充电枪当前分配的电源模块组与充电枪之间的距离确定电源模块组的切出优先级,且与充电枪之间的距离越大,电源模块组的切入优先级越高。
需要说明的是,任一电源模块组切入时,包括以下步骤:
步骤a:将对应电源模块组的电压升至与对应车端电池电压相等;
步骤b:闭合对应电源模块组的功率继电器;
步骤c:将对应电源模块组的电流升至预定值。
若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。
其中,当充电枪一处于正常充电状态时,电源模块组切入的顺序为模块组一—>模块组二—>模块组三—>模块组四。当充电枪二处于正常充电状态时,电源模块组切入的顺序为模块组四—>模块组三—>模块组二—>模块组一。即根据空闲电源模块组与充电枪之间的距离确定电源模块组的切入优先级,且与充电枪之间的距离越小,电源模块组的切入优先级越高。
需要说明的是,任一电源模块组切出时,包括以下步骤:
步骤d:将对应电源模块组的电流降为0;
步骤e:断开对应电源模块组的功率继电器;
步骤f:将对应电源模块组的电压降为0。
单枪充电状态下具体的电源模块组的切入切出变化参见表1。其中,以充电枪一需求模块组增加过程为例:在第一行中,在变化前充电枪一和充电枪二分配的电源模块组数量均为0,因此模块组一、模块组二、模块组三和模块组四均未进行分配。在变化后,充电枪一分配的电源模块组数量为1,充电枪二分配的电源模块组数量为0。参见变化后所属枪号一列,电源模块组1分配至充电枪一,模块组二、模块组三和模块组四均未进行分配。
表1
若充电桩处于多枪充电状态,则首先获取充电枪一和充电枪二的运行状态。具体分为以下三种情况:
情况一:充电枪一和充电枪二均处于绝缘升压状态。则将电源模块一分配给充电枪一,使充电枪一进行绝缘升压。将电源模块四分配给充电枪二,使充电枪二进行绝缘升压。绝缘升压后,充电枪一和充电枪二分别对车端电池进行充电,即均处于充电状态。
情况二:一把充电枪处于充电状态,另一把充电枪处于绝缘阶段。
充电枪一处于充电状态,充电枪二处于绝缘升压状态的情况下,当有空闲的电源模块组时,将模块组四分配给充电枪二用于绝缘升压;当没有空闲电源模块组时(也就是所有电源模块组均分配给了充电枪一),此时充电枪一需要切出模块组四,然后将模块组四分配给到充电枪二,用于绝缘升压。绝缘升压后,充电枪一和充电枪二分别对车端电池进行充电,即均处于充电状态。
充电枪二处于充电状态,充电枪一处于绝缘升压状态的情况下,当有空闲的电源模块组时,将模块组一分配给充电枪一用于绝缘升压;当没有空闲电源模块组时(也就是所有电源模块组均分配给了充电枪二),此时充电枪二需要切出模块组一,然后将模块组一分配给到充电枪一,用于绝缘升压。绝缘升压后,充电枪一和充电枪二分别对车端电池进行充电,即均处于充电状态。
情况三:充电枪一和充电枪二均处于充电状态。
此时充电桩实时获取与充电枪一和充电枪二连接的车端的需求功率。若充电枪一和充电枪二所需电源模块组数量小于或等于充电桩内电源模块组的总数量,即四组,则根据每个车端的需求功率实时计算其所需电源模块组数量,并将对应充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比。若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。
若充电枪一和充电枪二所需电源模块组数量大于四,则使所需功率大的充电枪分配的电源模块组数量大于所需功率小的充电枪分配的电源模块组数量,且使每个充电枪至少分配一个电源模块组。即若充电枪一的需求功率明显大于充电枪二的需求功率,则将模块组一、模块组二和模块组三均分配至充电枪一,将模块组四分配至充电枪二,保证充电枪一和充电枪二均可保持充电状态。
双枪充电状态下具体的电源模块组的切入切出变化参见表2。
以充电枪一处于充电状态,充电枪二处于绝缘升压状态下的案例4为例,首先,变化前,充电枪一分配的电源模块组数量为四组,充电枪二分配的电源模块组数量为零组。即此时模块组一、模块组二、模块组三和模块组四均分配给充电枪一。变化后,充电枪一分配的电源模块组数量为三组,充电枪一分配的电源模块组数量为一组。且此时模块组一、模块组二、模块组三均分配给充电枪一,二模块组四分配给充电枪二,供充电枪二进行绝缘升压。
以双枪充电的案例6为例,首先,充电枪二的需求功率大于充电枪一的需求功率。因此,变化前,充电枪一分配的电源模块组数量为一组,充电枪二分配的电源模块组数量为三组。此时模块组一分配给充电枪一,模块组二、模块组三和模块组四均分配给充电枪二。随着充电的进行,充电枪二的需求功率下降,充电枪二内的电源模块组数量大于所需电源模块组数量,则分配给充电枪二的模块组二切出。切出后的电源模块组成为空闲电源模块组,被分配给充电枪一。因此,变化后,充电枪一分配的电源模块组数量为两组,充电枪二分配的电源模块组数量为两组。此时模块组一和模块组二分配给充电枪一,模块组三和模块组四分配给充电枪二。
表2
由此,本申请的技术方案通过电源模块组的切入切出实现充电枪的功率分配,功率分配过程更加平滑,有效提升了响应速度,使用户体验更好,且减少了对功率继电器的操作次数,降低了由误操作而引起安全事故的概率。
除上述实施例外,本发明还可以有其他实施方式;凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

  1. 一种直流充电桩功率分配方法,其特征在于:包括以下步骤:
    步骤S101:获取直流充电桩内各充电枪与车端的连接状态,判断是否处于单枪充电状态,若是,则进行步骤S102;
    步骤S102:获取该充电枪的运行状态,若处于绝缘升压状态,则进行步骤S103,若处于充电状态,则进行步骤S104;
    步骤S103:将与该充电枪距离最近的电源模块组分配至该充电枪,使该充电枪进行绝缘升压,升压完成后进行步骤S104;
    步骤S104:实时获取车端的需求功率,并根据需求功率实时计算所需电源模块组数量,并将充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量。
  2. 根据权利要求1所述的直流充电桩功率分配方法,其特征在于:所述步骤S101中,若处于多枪充电状态,则包括以下步骤:
    步骤S105:获取各充电枪的运行状态,若所有充电枪均处于绝缘升压状态,则进行步骤S106,若同时存在处于绝缘升压状态和处于充电状态的充电枪,则进行步骤S107,若所有充电枪均处于充电状态,则进行步骤S108;
    步骤S106:将与各个充电枪距离最近的电源模块组分配至对应充电枪,使各个充电枪进行绝缘升压,完成升压后进行步骤S108;
    步骤S107:判断是否存在空闲电源模块组,若是,则将与每个处于绝缘升压状态的充电枪距离最近的空闲电源模块组分配至对应充电枪,使其进行绝缘升压,若否,则将处于充电状态的所述充电枪内分配的电源模块组中与自身充电枪距离最远的电源模块组切出,再将该电源模块组分配至对应处于绝缘升压状态的充电枪,使其进行绝缘升压,所有充电枪完成升压后进行步骤S108;
    步骤S108:实时获取与各充电枪连接的车端的需求功率,若所有充电枪所需电源模块组数量小于或等于充电桩内电源模块组的总数量,则根据每个车端的需求功率实时计算其所需电源模块组数量,并将对应充电枪当前分配的电源模块组数量与所需电源模块组数量进行对比,若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入,直至当前分配的电源模块组数量等于所需电源模块组数量;若所有充电枪所需电源模块组数量大于充电桩内电源模块组的总数量,使所需功率大的充电枪分配的电源模块组数量大于所需功率小的充电枪分配的电源模块组数量,且使每个充电枪至少分配一个电源模块组。
  3. 根据权利要求1所述的直流充电桩功率分配方法,其特征在于:任一充电枪进行电源模块组切出时,根据充电枪当前分配的电源模块组与充电枪之间的距离确定电源模块组的切出优先级;
    其中,与充电枪之间的距离越大,电源模块组的切出优先级越高。
  4. 根据权利要求1所述的直流充电桩功率分配方法,其特征在于:任一充电枪进行电源模块组切入时,根据空闲电源模块组与充电枪之间的距离确定电源模块组的切入优先级;
    其中,与充电枪之间的距离越小,电源模块组的切入优先级越高。
  5. 根据权利要求1所述的直流充电桩功率分配方法,其特征在于:任一电源模块组切出时,包括以下步骤:
    将对应电源模块组的电流降为0;
    断开对应电源模块组的功率继电器;
    将对应电源模块组的电压降为0。
  6. 根据权利要求1所述的直流充电桩功率分配方法,其特征在于:任一电源模块组切入时,包括以下步骤:
    将对应电源模块组的电压升至与对应车端电池电压相等;
    闭合对应电源模块组的功率继电器;
    将对应电源模块组的电流升至预定值。
  7. 根据权利要求1或2所述的直流充电桩功率分配方法,其特征在于:所述若当前分配的电源模块组数量大于所需电源模块组数量,则进行电源模块组切出,若当前分配的电源模块组数量小于所需电源模块组数量,则进行空闲电源模块组切入包括:
    当当前分配的电源模块组数量小于所需电源模块组数量时,立即进行电源模块组切入;
    当当前分配的电源模块组数量大于所需电源模块组数量时,持续获取所需电源模块组数量,若在时间T内当前分配的电源模块组数量持续大于所需电源模块组数量,则进行电源模块组切出。
  8. 根据权利要求7所述的直流充电桩功率分配方法,其特征在于:所述时间T为3~5min。
PCT/CN2023/139750 2022-12-23 2023-12-19 一种直流充电桩功率分配方法 WO2024131766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211660665.6A CN115891731A (zh) 2022-12-23 2022-12-23 一种直流充电桩功率分配方法
CN202211660665.6 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024131766A1 true WO2024131766A1 (zh) 2024-06-27

Family

ID=86474531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139750 WO2024131766A1 (zh) 2022-12-23 2023-12-19 一种直流充电桩功率分配方法

Country Status (2)

Country Link
CN (1) CN115891731A (zh)
WO (1) WO2024131766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115891731A (zh) * 2022-12-23 2023-04-04 万帮数字能源股份有限公司 一种直流充电桩功率分配方法
CN116729188B (zh) * 2023-08-14 2023-11-14 南京能可瑞科技有限公司 一种直流充电桩多段功率分配的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207683356U (zh) * 2016-06-16 2018-08-03 北京昌石科技有限公司 用于直流充电桩的直流功率模块阵列
CN108988427A (zh) * 2018-08-01 2018-12-11 安徽锐能科技有限公司 用于调节电池组的充电功率的方法
CN109228907A (zh) * 2018-07-16 2019-01-18 西安特锐德智能充电科技有限公司 电动汽车的直流充电控制方法及大功率群充系统
CN109591648A (zh) * 2018-12-29 2019-04-09 特变电工南京智能电气有限公司 一种电动汽车充电岛控制系统及其工作方法
US20210281197A1 (en) * 2016-09-01 2021-09-09 Mitsuba Corporation Brushless motor and control method
CN115891731A (zh) * 2022-12-23 2023-04-04 万帮数字能源股份有限公司 一种直流充电桩功率分配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207683356U (zh) * 2016-06-16 2018-08-03 北京昌石科技有限公司 用于直流充电桩的直流功率模块阵列
US20210281197A1 (en) * 2016-09-01 2021-09-09 Mitsuba Corporation Brushless motor and control method
CN109228907A (zh) * 2018-07-16 2019-01-18 西安特锐德智能充电科技有限公司 电动汽车的直流充电控制方法及大功率群充系统
CN108988427A (zh) * 2018-08-01 2018-12-11 安徽锐能科技有限公司 用于调节电池组的充电功率的方法
CN109591648A (zh) * 2018-12-29 2019-04-09 特变电工南京智能电气有限公司 一种电动汽车充电岛控制系统及其工作方法
CN115891731A (zh) * 2022-12-23 2023-04-04 万帮数字能源股份有限公司 一种直流充电桩功率分配方法

Also Published As

Publication number Publication date
CN115891731A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024131766A1 (zh) 一种直流充电桩功率分配方法
CN106740216B (zh) 一种电动汽车充电系统
US20180001780A1 (en) Matrix-type flexible charging pile and a charging method capable of dynamically allocating power
CN109664787B (zh) 充电方法、系统以及充电控制器
CN110271454A (zh) 一种燃料电池电动汽车功率优化方法
CN112519620B (zh) 一种电动汽车柔性充电系统及控制方法
CN107070192B (zh) 基于组合换流器的柔性直流输电系统协调均压启动方法
EP4194257A1 (en) Power control method and system for battery charging and swap station, medium, apparatus, and battery charging and swap station
CN112744113B (zh) 一种电动汽车充电负荷分配方法及系统
CN109591643A (zh) 一种基于优先级的功率动态分配系统及其方法
WO2023010721A1 (zh) 多燃料电池的混合动力系统及其能量管理方法、装置
CN112421740B (zh) 一种充电桩系统及充电桩功率分配控制方法
CN116729188B (zh) 一种直流充电桩多段功率分配的方法及系统
CN115296349A (zh) 一种综合储能电站的高效经济性功率分配方法
WO2023273312A1 (zh) 一种功率分配装置、充电装置、设备、控制方法及系统
EP4002633A1 (en) Power supply system
KR20150121639A (ko) 하이브리드 자동차의 구동회로 및 그 제어방법
CN207426751U (zh) 一机双枪功率智能分配直流充电桩系统
CN115871505B (zh) 功率聚合系统
CN218558620U (zh) 一种一机六枪充电桩
CN117022024A (zh) 一种充电桩功率分配方法及充电桩
CN111806285A (zh) 公共快充站多枪充电桩充电功率分配方法
CN111071092A (zh) 一种充电桩功率动态分配系统及方法
CN108711875A (zh) 一种分布式储能单元协调控制系统及控制方法
CN105656120B (zh) 一种双路充电机负荷智能分配的监控方法