WO2024131636A1 - 一种电池安全阀检测装置、电池和方法 - Google Patents

一种电池安全阀检测装置、电池和方法 Download PDF

Info

Publication number
WO2024131636A1
WO2024131636A1 PCT/CN2023/138824 CN2023138824W WO2024131636A1 WO 2024131636 A1 WO2024131636 A1 WO 2024131636A1 CN 2023138824 W CN2023138824 W CN 2023138824W WO 2024131636 A1 WO2024131636 A1 WO 2024131636A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
strip
safety valve
detection strip
substrate
Prior art date
Application number
PCT/CN2023/138824
Other languages
English (en)
French (fr)
Inventor
徐剑虹
郑益
王浩
朱利安
李哲楠
Original Assignee
杭州高特电子设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211293786.1A external-priority patent/CN115513546A/zh
Application filed by 杭州高特电子设备股份有限公司 filed Critical 杭州高特电子设备股份有限公司
Priority to US18/749,332 priority Critical patent/US20240339686A1/en
Publication of WO2024131636A1 publication Critical patent/WO2024131636A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/003Machine valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery information detection, and in particular to a battery safety valve detection device, a battery and a method.
  • the battery safety valve is the last explosion-proof barrier of the battery itself.
  • the opening threshold of the safety valve for example, the opening threshold of the safety valve of some lithium-ion batteries is 600 ⁇ 800KPa
  • the battery safety valve is opened to release gas and reduce pressure.
  • the gas inside the battery is discharged outward in large quantities, and the electrolyte inside the battery will also be ejected with the release of pressure.
  • the opening of the safety valve avoids the explosion, the chemical substances inside the battery that leaked with the gas may also react chemically with oxygen in the air under high temperature conditions and catch fire.
  • the problematic battery also affects the safety of surrounding batteries and needs to be promptly alerted for intervention, as well as subsequent replacement, etc. Otherwise, it will seriously affect the overall safe operation of the system.
  • the battery status is mainly detected and managed through the battery management module.
  • the current battery management module mainly detects the battery voltage, temperature, charge and discharge current and performs insulation monitoring on the system. Since the safety valve itself does not have a monitorable physical quantity, the current battery management module does not monitor the battery safety valve. A small amount of information is disclosed, such as using valve opening sound signals, air pressure signals and other means for monitoring.
  • the first purpose of the present invention is to provide a battery safety valve detection device, which is located on the outside of the safety valve. Once the safety valve is opened, the electrolyte sprayed outward along with the gas can be detected, so as to quickly and accurately know whether the battery safety valve is opened.
  • a battery safety valve detection device comprises: a substrate fixedly arranged outside the safety valve and a first detection strip and a second detection strip arranged on the substrate, the substrate is an insulating material, the first detection strip and the second detection strip are conductive materials, and there is a potential difference between the first detection strip and the second detection strip; a detection area is provided on the side of the substrate close to the safety valve, the first detection strip and the second detection strip are extended in the detection area, and the first detection strip and the second detection strip in the detection area are at least partially exposed to the surface of the substrate, when the safety valve is opened, the electrolyte contaminates the detection area, so that the potential difference and/or current of the first detection strip and the second detection strip change.
  • the first detection strip and the second detection strip are not conductive to each other, so that when the two are energized, there can be a potential difference.
  • the first detection strip and the second detection strip extend side by side and are separated by a distance, so that there is no direct contact between the first detection strip and the second detection strip; in addition, the first detection strip and the second detection strip cover most of the surface of the detection area, so that no matter where the safety valve is opened or where the electrolyte is splashed, the first detection strip and the second detection strip can be connected together and then conductive to avoid missed detection, while also improving the sensitivity of detection.
  • a plurality of holes opening toward the location of the safety valve are provided in the detection area, and the holes are densely distributed between the first detection strip and the second detection strip.
  • the electrolyte splashes a portion of the electrolyte will be retained in the holes, so that the electrolyte will flow to the edges of the holes under the action of gravity, thereby connecting the first detection strip and the second detection strip, so that only a very small amount of electrolyte is required to connect the first detection strip and the second detection strip.
  • the first detection strip and the second detection strip are arranged in a spiral shape to maximize coverage of the detection area. More importantly, the spiral extension makes the spacing between the first detection strip and the second detection strip very small in all directions, so that only a very small amount of electrolyte is needed to connect the first detection strip and the second detection strip.
  • the hole diameter is 0.2-1 mm, and the distance between the centers of adjacent holes is 0.4-1.5 mm.
  • the smaller hole diameter and hole spacing allow the holes to be densely distributed between the first detection strip and the second detection strip, and due to the effect of the liquid surface tension, the collected electrolyte can be quickly spread in the detection area, so that the electrolyte can quickly connect the first detection strip and the second detection strip on both sides of the hole.
  • all or part of the holes penetrate the upper and lower surfaces of the substrate; a protective layer is provided on the surface of the substrate away from the safety valve, the protective layer shields the outer ends of all the holes, and the thickness of the protective layer is 5-20um.
  • the advantage of having some holes penetrate the substrate is that after the safety valve is opened, the air inside the battery can pass through the holes to be discharged to the outside, and will not continue to accumulate.
  • the advantage of setting it in the protective layer is that the outer ends of these penetrated holes are closed, thereby preventing the outside air from passing through the holes into the lower surface of the substrate, so that the first detection strip and the second detection strip are quickly oxidized, which can extend the service life of the detection device.
  • the substrate is a sheet structure with a thickness of 0.2-1 mm, the first detection strip and the second detection strip are 50-200 ⁇ m thick and about 0.2-1 mm wide, and the first detection strip and the second detection strip are copper foil or aluminum foil; the first detection strip and the second detection strip are arranged on the substrate by etching.
  • the outer shape structure of the substrate and the first detection strip and the second detection strip makes the outer shape of the detection device sheet-like, that is, it only occupies a very small space, and the detection device will not cause the outer shape of the battery to change after being installed on the battery.
  • the first detection strip and the second detection strip are arranged on the lower surface of the substrate, so that the lower parts of the first detection strip and the second detection strip are exposed to the outside as much as possible, so that once the safety valve is opened, the electrolyte can be quickly splashed on the first detection strip and the second detection strip.
  • the second object of the present invention is to provide a battery, comprising a shell and a cover plate arranged on the top of the shell, a safety valve is arranged on the cover plate, and the battery safety valve detection device is arranged on the outside of the safety valve.
  • a third object of the present invention is to provide a battery safety valve detection method, which adopts the above-mentioned battery safety valve detection device, collects the potential difference and/or current between the first detection strip and the second detection strip, and determines that the safety valve is open when the potential difference and/or current changes.
  • the beneficial effects of the present invention are as follows: by arranging a substrate on the outside of the safety valve, and arranging a first detection strip and a second detection strip on the substrate, the electrolyte contacts the first detection strip and the second detection strip after being sprayed out of the safety valve, and the first detection strip and the second detection strip are connected, and then the resistance between the first detection strip and the second detection strip changes from the original infinity to a smaller value, so that the electrolyte is detected by detecting the resistance value between the first detection strip and the second detection strip, thereby achieving the purpose of monitoring the safety valve.
  • FIG. 1 is a cross-sectional view of a battery.
  • FIG. 2 is a partial enlarged view of point A in FIG. 1 .
  • FIG. 3 is a schematic diagram of the top surface of a battery.
  • FIG. 4 is a three-dimensional cross-sectional view of the detection device in Example 1 viewed from the bottom.
  • FIG5 is a bottom view of the detection device in Example 1.
  • FIG. 6 is a top view of the substrate in Example 1.
  • FIG. 6 is a top view of the substrate in Example 1.
  • FIG. 7 is a schematic diagram of a battery pack.
  • FIG8 is a longitudinal cross-sectional view of the detection device in Example 2.
  • FIG9 is a transverse cross-sectional view of the detection device in Example 2.
  • FIG. 10 is a three-dimensional view of the first detection strip and the second detection strip in Example 2.
  • FIG. 11 is a top view of the first detection strip and the second detection strip in Example 2.
  • FIG. 11 is a top view of the first detection strip and the second detection strip in Example 2.
  • FIG12 is a transverse cross-sectional view of the detection device in Example 3.
  • Fig. 13 is a cross-sectional view taken along line B-B in Fig. 12 .
  • Figure 14 is a longitudinal cross-sectional view of the detection device in Example 3.
  • Figure 15 is a longitudinal cross-sectional view of the detection device in Example 4.
  • Figure 16 is a schematic diagram of one side of the detection device in Example 4.
  • Figure 17 is a transverse cross-sectional view of the detection device in Example 4.
  • Figure 18 is a longitudinal cross-sectional view of the detection device and the safety valve in Example 5.
  • Figure 19 is a longitudinal cross-sectional view of the detection device in Example 5.
  • Figure 20 is a schematic diagram of the first test strip in Example 5.
  • Figure 21 is a top view of the lower substrate in Example 5.
  • FIG22 is a top view of the intermediate substrate in Example 5.
  • Figure 23 is a schematic diagram of the second test strip in Example 5.
  • Figure 24 is a schematic diagram of the detection device and cover plate in Example 6.
  • Figure 25 is a longitudinal cross-sectional view of the detection device in Example 6.
  • the battery 10 includes a shell 11 and a cover plate 12 disposed at the top opening of the shell 11 .
  • the electrolyte and gas of the battery itself are disposed inside the shell 11 .
  • Two poles 13 and 14 with opposite polarities are disposed on the cover plate 12 , and both poles protrude outwardly to the outside of the battery (or are flush with the battery cover plate).
  • the middle part of the cover plate 12 is provided with a mounting opening 121 which runs through the upper and lower surfaces.
  • a safety valve 15 is provided inside the mounting opening 121.
  • the air pressure inside the battery 10 is lower than the valve opening threshold of the safety valve 15, and the safety valve 15 is in a closed state; when the battery 10 is in an abnormal state (such as overcharge, over discharge, overheating, abuse, improper operation or other reasons), the air pressure inside the battery 10 continues to rise.
  • the air pressure exceeds the threshold of the safety valve 15 for example, the valve opening threshold of some lithium-ion battery safety valves is 600 ⁇ 800KPa
  • the safety valve 15 is opened, and the gas inside the battery 10 is ejected outward, and a part of the electrolyte is also ejected outward.
  • the structure of the safety valve 15 is common knowledge in the art and will not be repeated here, and the safety valve 15 is usually disposable, that is, once opened, it cannot be closed again. Therefore, after the safety valve 15 is opened, the battery 10 needs to be repaired or replaced in time.
  • the present application provides a battery safety valve detection device, which is sometimes referred to as a detection device 20 hereinafter.
  • the detection device 20 is disposed on the cover plate 12 and completely covers the mounting opening 121, that is, the detection device 20 is located outside the safety valve 15. Once the safety valve 15 is opened, the gas inside the battery 10 will be ejected outward along with part of the electrolyte and splashed on the bottom surface of the detection device 20. It should be noted that when the internal gas is discharged outward, at least a part of the detection device 20 can be broken, torn or even broken, or a channel for gas discharge is reserved in the detection device 20, so that the gas can continue to be released outward, thereby preventing the gas from continuing to accumulate inside the battery 10 and causing damage to the internal structure of the battery 10.
  • the detection device 20 includes a substrate 21.
  • the substrate 21 is a sheet structure with a thickness of 0.2 to 1 mm, preferably 0.5 mm, so that the thickness of the entire detection device 20 is kept within a relatively small range.
  • the substrate 21 is an insulating material, which can be a hard material or a flexible material, but is preferably a film, especially a polyimide film.
  • the substrate 21 can be a single-layer structure or a composite structure of two or more layers.
  • a pasting method can be adopted, for example, the substrate 21 is pasted on the outer surface of the cover plate 12 by a sealant.
  • the detection area 211 is slightly smaller than the shape of the installation port 121.
  • the detection area 211 is set corresponding to the installation port 121, and the detection area 211 almost completely covers the installation port 121.
  • the detection area 211 is circular, but other geometric shapes are not excluded, and can be adaptively adjusted according to the actual shape of the installation port 121 and the safety valve.
  • a first detection strip 22 and a second detection strip 23 are arranged on the lower surface of the substrate 21, and the first detection strip 22 and the second detection strip 23 are separated from each other by the substrate 21 so that the two do not contact each other, and the first detection strip 22 and the second detection strip 23 are both made of conductive materials, such as metal materials, semiconductor materials, and non-metallic materials with good conductive properties, but preferably copper foil or aluminum foil. It can be seen from the above structure that in a normal state, the resistance value between the first detection strip 22 and the second detection strip 23 is infinite.
  • the first detection strip 22 and the second detection strip 23 mainly extend in the detection area 211, and the first detection strip 22 and the second detection strip 23 are exposed in the detection area 211, so that when the safety valve is opened, the electrolyte carried by the internal gas splashes on the lower surface of the substrate 21, thereby connecting the first detection strip 22 and the second detection strip 23 together.
  • the electrolyte has conductivity, so the first detection strip 22 and the second detection strip 23 are connected, so that the resistance between the first detection strip 22 and the second detection strip 23 changes from the original infinity to a smaller value, so that the electrolyte detection can be achieved by detecting the resistance value between the first detection strip 22 and the second detection strip 23.
  • first detection strip 22 and the second detection strip 23 may be arranged inside the substrate 21 instead of on the lower surface of the substrate 21.
  • the first detection strip 22 and the second detection strip 23 may be arranged between two adjacent layers.
  • a hole or channel for the electrolyte to be splashed into the interior needs to be reserved on the lower surface of the substrate 21, that is, the first detection strip 22 and the second detection strip 23 still need to be exposed on the surface of the detection area 211 of the substrate 21.
  • the first detection strip 22 and the second detection strip 23 extend side by side and are separated by a small distance, for example, 0.2-1 mm, the thickness of the first detection strip 22 and the second detection strip 23 is 50-200 um, the width is about 0.2-1 mm, and the first detection strip 22 and the second detection strip 23 need to cover most of the detection area 211.
  • the first detection strip 22 and the second detection strip 23 are both spiral-shaped and closely arranged to maximize the coverage of the detection area 211.
  • a plurality of holes 212 may be provided in the detection area 211 , the holes 212 are provided toward the mounting opening 121 below, and the aperture of the holes 212 is between 0.2 and 1 mm, and the distance between the centers of two adjacent holes 212 is between 0.4 and 1.5 mm, so that the holes 212 are densely distributed in the detection area 211 , so that no matter where the gas is discharged from the safety valve 15 , it can be ensured that there are corresponding holes 212 that can contact the electrolyte, and part of the electrolyte can be retained in the holes 212 , and the first detection strip 22 and the second detection strip 23 mentioned above are distributed around the holes 212 , so that as long as a small amount of electrolyte is sprayed out, it can be collected by the holes 212 , and the first detection strip 22 and the second detection strip 23 on both sides of the hole 212 are connected, thereby improving the detection sensitivity.
  • the holes 212 are also arranged in a spiral shape and are located between the first detection strip 22 and the second detection strip 23, so that the holes 212 can also cover most of the detection area 211.
  • the holes 212 can also be distributed in a rectangular or circular array.
  • some or all of the holes 212 penetrate the inner and outer surfaces of the substrate 21, so that the gas can be directly discharged from these holes 212.
  • the above-mentioned holes 212 and the spiral extension of the first detection strip 22 and the second detection strip 23 can well cover most of the area of the detection area 211, so that no matter from which position the safety valve is opened and from which position the gas and the electrolyte are sprayed, they can contact with the first detection strip 22 and the second detection strip 23 at the corresponding position, and because the spacing between the first detection strip 22 and the second detection strip 23 in all directions is very small, only a very small leakage amount is required to connect the first detection strip 22 and the second detection strip 23, that is, the device can accurately detect whether the electrolyte is leaking by monitoring the resistance value of the first detection strip 22 and the second detection strip 23, thereby judging whether the safety valve is opened.
  • the first detection strips 22 and the second detection strips 23 may be disposed by etching.
  • the outside air can enter the bottom of the substrate 21 through the holes 212, which may cause the first detection strip 22 and the second detection strip 23 to oxidize and affect the detection result of the device. Therefore, in order to ensure that the detection device 20 can be used for a long time, it is necessary to provide necessary protection for the first detection strip 22 and the second detection strip 23.
  • a protective layer 24 can be provided on the outer surface of the substrate 21, and the protective layer 24 at least covers the outer side of the detection area 211, and seals the outer ends of all the holes 212 (for the penetrating holes 212, the semi-enclosed holes 212 themselves do not have outer ends), so that after the detection device 20 is installed on the cover plate 12, the outside air is separated from the first detection strip 22 and the second detection strip 23, and the first detection strip 22 and the second detection strip 23 are prevented from being rapidly oxidized.
  • the protective layer 24 is a thin film structure, such as a PE film or a polyparaxylene film.
  • the protective layer 24 can be fixed by pasting, but since the internal air in this embodiment needs to be discharged outward through the holes 212, the thickness of the protective layer 24 should not be too large, preferably 5 to 20 ⁇ m, so that when the safety valve 15 is opened, the released gas can pass through the holes 212 to open or break the corresponding position of the protective layer 24, thereby releasing the pressure.
  • an extension portion 213 is provided on the right side of the substrate 21, and a first connection end 2131 and a second connection end 2132 are provided on the extension portion 213.
  • the ends of the first detection strip 22 and the second detection strip 23 extend to the extension portion 213 and are respectively connected to the first connection end 2131 and the second connection end 2132.
  • the first connection end 2131 and the second connection end 2132 are at least partially located on the outer surface of the detection device 20 to facilitate the subsequent wiring during resistance detection.
  • the first connection end 2131 and the second connection end 2132 are pads to facilitate subsequent wire welding on the first connection end 2131 and the second connection end 2132.
  • the extension portion 213 is connected to one of the poles.
  • the right side portions of the first detection strip 22 and the second detection strip 23 extending toward the first connection end 2131 and the second connection end 2132 are usually arranged inside the substrate 21, and the surface of the substrate 21 does not have to be exposed, so as to avoid the first detection strip 22 and the second detection strip 23 at these positions from contacting with external water or other liquids, thereby being turned on and affecting the accuracy of the detection results.
  • the extension direction of the first connection end 2131 and the second connection end 2132 can also be reasonably designed according to the actual design of the battery and the battery management module, such as extending toward one end of the battery pole, or toward both ends of the battery pole.
  • each detection device 20 can be installed on the cover plate 12 of a single cell to monitor the safety valve of each single cell.
  • the poles of the same polarity in each cell 10 are usually connected together through a metal bar 30 (generally an aluminum bar or a copper bar), and at this time, the detection device 20 on each cell 10 is connected to the corresponding metal bar 30 or pole.
  • the specific use process of the detection device 20 is as follows:
  • the substrate 21 is fixed to the outer surface of the cover plate 12 by gluing, and the detection area 211 completely covers the mounting opening 121, so that the first detection strip 22 and the second detection strip 23 are exposed outside the safety valve 15.
  • the first detection strip 22 and the second detection strip 23 are separated by the substrate 21 and cannot directly contact each other, and the resistance value between the two is infinite.
  • the internal pressure of the battery 10 continues to increase.
  • the safety valve 15 is opened, and the gas inside the battery 10 carries the electrolyte to spray outward, break through the protective layer 24, and release outward.
  • the electrolyte will splash on the bottom surface of the substrate 21 and in the hole 212, so that the first detection strip 22 and the second detection strip 23 at these positions are connected. At this time, the resistance between the first detection strip 22 and the second detection strip 23 will be reduced, so that the potential difference and/or current on the first connection terminal 2131 and the second connection terminal 2132 are collected, so as to determine whether the electrolyte is leaking, and then determine whether the safety valve 15 is open, reflecting the working state of the battery.
  • the advantages of the detection device 20 are simple structure, low manufacturing cost, high detection timeliness and reliable detection results.
  • the bottom of the substrate 21 has a connection port 215 that is recessed upward, the detection area 211 is located in the connection port 215, and the top of the connection port 215 is provided with an exhaust port 216 that passes through the upper and lower surfaces of the substrate 21.
  • the gas is discharged outward from the exhaust port 216.
  • the first detection strip 22 and the second detection strip 23 are arranged inside the substrate 21.
  • the first detection strip 22 includes a first main body 221 disposed inside the substrate 21, and the first main body 221 is used to fix the first detection strip 22 inside the substrate 21.
  • a first collection portion 222 is disposed at the upper portion of the first main body 221, and the end of the first collection portion 222 extends to the outer surface of the substrate 21, and the end is connected to the first connection end 2131, and the end serves as the first collection end of the detection device 20.
  • a first detection portion 223 is disposed at the lower portion of the first main body 221, and the first detection portion 223 extends to the position where the connection port 215 is located, and the end of the first detection portion 223 is exposed in the detection area 211 and contacts the air there, and the end is the first detection end of the detection device 20.
  • the second detection strip 23 includes a second main body 231 disposed inside the substrate 21, and the second main body 231 is used to fix the second detection strip 23 inside the substrate 21.
  • a second collection portion 232 is disposed at the upper portion of the second main body 231, and the end of the second collection portion 232 extends to the outer surface of the substrate 21, and the end is connected to the second connection end 2132, and the end serves as the second collection end of the detection device 20.
  • a second detection portion 233 is disposed at the lower portion of the second main body 231, and the second detection portion 233 extends to the position where the connection port 215 is located, and the end of the second detection portion 233 is exposed in the detection area 211 and contacts the air there, and the end is the second detection end of the detection device 20.
  • the electrolyte will splash into the connection port 215, thereby connecting the first detection end (first detection part 223) and the second detection end (second detection part 233) located in the connection port 215, thereby collecting the potential difference and/or current on the first connection end 2131 and the second connection end 2132, thereby determining whether the electrolyte is leaking, and further determining whether the safety valve 15 is open, thereby reflecting the working status of the battery.
  • the first body 221 is annular and is arranged concentrically with the connection port 215.
  • a notch 2211 is formed on one side of the annular shape.
  • the notch 2211 divides the first body 221 into two ends, one end of which is connected to the first collection portion 222.
  • the first collection portion 222 extends outward in a generally straight line, and a cylindrical first collection terminal 2221 is formed at the end of the first collection portion 222.
  • the first detection portion 223 includes a plurality of first detection terminals 2231 arranged circumferentially, the upper end of the first detection terminal 2231 is connected to the first body 221, and the lower end of the first detection terminal 2231 is located in the connection port 215.
  • the second body 231 is also annular and is arranged concentrically with the connection port 215.
  • the second body 231 is located below the first body 221, and the diameter of the second body 231 is smaller than that of the first body 221.
  • the second collection portion 232 extends from the notch 2211 mentioned above and extends outward substantially in parallel with the first collection portion 222.
  • a cylindrical second collection terminal 2321 is formed at the end of the second collection portion 232.
  • the second collection terminal 2321 and the first collection terminal 2221 are arranged side by side and closely adjacent to each other for easy detection of wiring.
  • the second detection portion 233 includes a plurality of circumferentially arranged second detection terminals 2331, the upper ends of the second detection terminals 2331 are connected to the second body 231, the lower ends of the second detection terminals 2331 are located in the installation port 121, and the second detection terminals 2331 and the first detection terminals 2231 are arranged alternately.
  • the reason for setting a plurality of first detection terminals 2231 and second detection terminals 2331 is to make a large number of first detection terminals and second detection terminals distributed in the installation opening 121, thereby improving the accuracy and timeliness of detection.
  • the surface area of the first detection terminal 2231 and the second detection terminal 2331 can be appropriately increased, for example, the lower ends of the first detection terminal 2231 and the second detection terminal 2331 can be made into an ellipse (see Figure 10).
  • first detection terminal 2231 and the second detection terminal 2331 are located on the same circumference to reduce the distance between them, but other arrangements of the first detection terminal 2231 and the second detection terminal 2331 are not excluded, such as being arranged on different circumferences.
  • the bottom surfaces of the first detection terminal 2231 and the second detection terminal 2331 are both arranged on the top surface of the connection port 215, so that they can directly contact the electrolyte leaked from the safety valve 15.
  • the bottom surfaces of part or all of the first detection terminal 2231 and the second detection terminal 2331 can also be arranged on the side walls on the left and right sides of the connection port 215, so that they can also contact the electrolyte.
  • the shell 11 of some batteries is made of metal, in order to avoid the first detection end and the second detection end directly contacting and conducting with the shell 11, when installing the device, it is necessary to pay attention to leaving a certain gap (for example, 1-3mm) between the first detection end and the second detection end and the shell 11.
  • the substrate 21 is divided into two layers, which are respectively recorded as the lower substrate 21a and the upper substrate 21c.
  • the two substrates 21 can be connected by concave-convex matching.
  • a protrusion protruding upward is provided on the upper surface of the lower substrate 21a, and a groove recessed upward is provided on the lower surface of the upper substrate 21c. The protrusion fits in the groove to achieve the connection of the two substrates 21.
  • a connecting port 215 penetrating from top to bottom is provided in the middle of the substrate 21, and the connecting port 215 is used for gas to be discharged outward.
  • FIG12 shows a cross-sectional view of the detection device 20.
  • a connection port 215 that runs through the upper and lower surfaces is provided in the middle of the substrate 21.
  • the connection port 215 corresponds to the safety valve 15.
  • a detection area 211 is provided at the bottom of the substrate 21, and the detection area 211 extends inward to the interior of the substrate 21.
  • the detection area 211 covers most of the area of the substrate 21 to improve the accuracy of the detection and prevent missed detection.
  • a receiving area corresponding to the detection area 211 is provided on the bottom surface of the upper substrate 21c, and the shape of the receiving area is close to or slightly larger than the detection area 211.
  • the receiving area is recessed upward and fits above the detection area 211, thereby forming a gap 50 between the upper and lower substrates 21.
  • a plurality of detection channels 2111 penetrating the upper and lower surfaces of the lower substrate 21a are provided in the detection area 211, so that the detection area 211 is connected to the outside, and the height of the detection channel 2111 (or the thickness of the detection area 211 in the lower substrate 21a) does not exceed 2 mm, thereby ensuring that when there is electrolyte at the bottom of the detection channel 2111, the electrolyte can flow upward along the detection channel 2111 and enter the gap 50 (see FIG. 14 ) between the upper and lower substrates 21.
  • the detection channel 2111 since the height of the detection channel 2111 is very small, even if there is only a small amount of electrolyte at the bottom, the detection channel 2111 can still transport the electrolyte, thereby ensuring the timeliness of the detection.
  • these detection channels 2111 are distributed along the length direction of the substrate 21 and extend straightly along the width direction, so that the detection channels 2111 are densely distributed on the substrate 21, so that the detection channels 2111 can cover most of the surface of the substrate 21, so that the electrolyte at each position on the substrate 21 can enter the detection channel 2111 at the corresponding position.
  • the detection channel 2111 can also extend in a curved manner, for example, the detection channel 2111 is an arc or a broken line.
  • a first detection strip 22 and a second detection strip 23 are arranged on the substrate 21.
  • the first detection strip 22 and the second detection strip 23 are separated by the substrate 21 so that the two are not in direct contact. In other words, in a normal state, the resistance between the first detection strip 22 and the second detection strip 23 is infinite.
  • the first detection strip 22 and the second detection strip 23 both have a plurality of detection parts, which are distributed on both sides of the detection channel 2111 and are located in the gap 50, that is, the upper surface of the detection part is in contact with the gap 50. When there is an electrolyte in the detection channel 2111, the electrolyte will flow into the gap 50 and then into the detection part.
  • the first detection part 223 of the first detection strip 22 and the second detection part 233 of the second detection strip 23 are connected by the electrolyte, the first detection strip 22 and the second detection strip 23 are connected.
  • the first detection strip 22 has a first collection terminal 2221, which extends outward to the surface of the substrate 21 and is connected to the first connection end 2131.
  • the first detection strip 22 also has a plurality of first detection portions 223, which are distributed on the sides of the detection channel 2111 and extend in the same direction around the detection channel 2111, ensuring that the electrolyte at any point in the detection channel 2111 can contact the first detection portion 223.
  • the second detection strip 23 has a second detection terminal 2331, which also extends outward to the surface of the substrate 21 and is connected to the second connection end 2132.
  • the second detection strip 23 also has a plurality of second detection portions 233, which are distributed on the sides of the detection channel 2111 and extend in the same direction around the detection channel 2111, ensuring that the electrolyte at any point in the detection channel 2111 can contact the second detection portion 233.
  • the first detection portion 223 and the second detection portion 233 are respectively provided on both sides of the detection channel 2111, so that when there is electrolyte in one of the detection channels 2111, the first detection portion 223 and the second detection portion 233 adjacent to the detection channel 2111 will be connected, so that the first detection strip 22 and the second detection strip 23 are turned on, ensuring that the first detection portion 223 and the second detection portion 233 can accurately detect the electrolyte, thereby ensuring the accuracy of the detection result and avoiding missed detection.
  • the first detection strip 22 and the second detection strip 23 are respectively arranged at one end of the detection channel 2111, and the detection portions of the two extend toward each other.
  • the first detection strip 22 is arranged at the upper end of the detection channel 2111
  • the second detection strip 23 is arranged at the lower end of the detection channel 2111
  • the first detection portion 223 extends from top to bottom
  • the second detection portion 233 extends from bottom to top.
  • the electrolyte sprayed from the safety valve 15 will flow into the gap 50 along the detection channel 2111, and finally flow into the first detection part 223 and the second detection part 233 on both sides of the detection channel 2111, so that the first detection strip 22 and the second detection strip 23 are connected, so as to collect the potential difference and/or current on the first connection end 2131 and the second connection end 2132, so as to determine whether the electrolyte is leaking, and then determine whether the safety valve 15 is open, reflecting the working status of the battery.
  • the detection device 20 in this embodiment needs to be arranged on the pole of the metal shell, as shown in Figure 15. Similar to Example 3, this embodiment also has two layers of substrates 21, and a detection area 211 is arranged at the bottom of the lower substrate 21a. A plurality of detection channels 2111 opening downward are arranged in the detection area 211, and the upper end of the detection channel 2111 extends to the inside of the lower substrate 21a. In addition, a first detection strip 22 and a second detection strip 23 are also arranged on the substrate 21. The first detection strip 22 extends between the connection surfaces of the upper and lower substrates 21, and the first detection strip 22 roughly covers the entire cross section of the shell, so as to ensure the accuracy and timeliness of subsequent detection.
  • the first collection terminal 2221 of the first detection strip 22 extends to the outer surface of the substrate 21 except the bottom surface, for example, in Figure 15, it extends to the upper surface of the upper substrate 21, and is connected to the first connection end 2131, as a collection end of the detection device 20.
  • the second collecting terminal 2321 of the second detection strip 23 is arranged on the bottom surface of the lower substrate 21. Specifically, the second detection strip 23 is embedded in the bottom of the lower substrate 21 so that it directly contacts the pole of the metal shell, and as another collecting end, it can also be considered to be connected to the second connecting end 2132.
  • the electrolyte When there is electrolyte at the bottom of the substrate 21, the electrolyte will flow along the detection channel 2111 into the interior of the substrate 21, so that the electrolyte can contact the first detection strip 22. At this time, under the action of the electrolyte, the first detection strip 22 and the metal shell are connected, so that the potential difference and/or current on the first connection terminal 2131 and the second connection terminal 2132 are collected, so as to determine whether the electrolyte is leaking, and then determine whether the safety valve 15 is open, reflecting the working status of the battery.
  • the first detection strip 22 has a plurality of first detection portions 223, which are directly opposite to the detection channel 2111 and preferably cover the corresponding detection channel 2111, so that when there is electrolyte in any detection channel 2111, the first detection portion 223 at the corresponding position can contact the electrolyte in time. Further, the first detection portion 223 can extend downward into the detection channel 2111, but it should be noted that the first detection portion 223 cannot be flush with the lower end of the detection channel 2111, otherwise the bottom of the first detection portion 223 will contact the metal shell, resulting in the first detection strip 22 and the second detection strip 23 always being connected, and the electrolyte cannot be accurately detected. Usually, there is a distance of 1 mm between the bottom of the first detection portion 223 and the lower end of the detection channel 2111.
  • the detection device 20 in this embodiment is arranged on the outer surface of the safety valve 15.
  • FIG. 18 shows a schematic diagram of the detection device 20 installed on a certain safety valve.
  • FIG19 shows a cross-sectional view of the detection device 20.
  • the substrate 21 in this embodiment is three-layered.
  • the lower substrate 21a is in the shape of a thin plate or sheet, and has a relatively small thickness, usually not greater than 2 mm, preferably less than 1 mm.
  • the middle substrate 21b is also in the shape of a thin plate or sheet, and its thickness is close to that of the lower substrate 21, but preferably less than that of the lower substrate 21a, for example, 50% of the thickness of the lower substrate 21a.
  • the outer contour of the middle substrate 21b is close to that of the lower substrate 21a but slightly smaller than that of the lower substrate 21a, and a first platform 60 extending laterally is formed on the periphery of the connection between the two.
  • the outer contour of the upper substrate 21c is similar to that of the middle substrate 21b but slightly larger than that of the middle substrate 21b.
  • a second platform 70 extending laterally is formed on the periphery of the connection between the two.
  • the second platform 70 is directly opposite to the first platform 60 and is separated by a distance, so that a liquid inlet 80 opening toward the periphery is formed between the first platform 60, the second platform 70 and the outer wall surface of the middle substrate 21.
  • the electrolyte enters the first platform 60. Since the thickness of the middle substrate 21b is small, a small amount of electrolyte can fill the liquid inlet 80, so that the electrolyte is connected to the upper second platform 70. That is, in this embodiment, the detection area 211 is located at the periphery of the substrate 21.
  • a first detection strip 22 is provided at the connection between the lower substrate 21a and the middle substrate 21b, and a second detection strip 23 is provided at the connection between the middle substrate 21b and the upper substrate 21c.
  • the first detection strip 22 and the second detection strip 23 are separated by the substrate 21 and do not contact each other.
  • the first detection strip 22 has a first collection terminal 2221 and a first detection portion 223.
  • the first collection terminal 2221 extends upward through the middle substrate 21b to the top surface of the upper substrate 21c and is connected to the first connection end 2131.
  • the first detection portion 223 extends around the circumference of the lower substrate 21a, and the first detection portion 223 is exposed in the first platform 60, that is, the first detection portion 223 is exposed in the liquid inlet 80, so that the electrolyte can contact the first detection portion 223.
  • the second detection strip 23 has a second collection terminal 2321 and a second detection portion 233, and the second collection terminal 2321 extends upward to the top surface of the upper substrate 21 and is connected to the second connection terminal 2132.
  • the second detection portion 233 extends around the circumference of the top insulating layer 300, and the second detection portion 233 is exposed in the second platform 70, that is, the second detection portion 233 is exposed in the liquid inlet 80, so that the electrolyte can contact the second detection portion 233.
  • the first detection strip 22 includes a first annular body 221, which is embedded in the top surface of the lower substrate 21a and is concentrically arranged with the lower substrate 21a.
  • the periphery of the first body 221 is exposed in the first platform 60, that is, the periphery of the first body 221 is the first detection portion 223 mentioned above.
  • the upper part of the first body 221 extends upward to the top surface of the upper substrate 21, serving as a first collection end.
  • a first mounting groove 217 adapted to the shape of the first main body 221 is provided on the upper surface of the lower substrate 21a, and a distance is left between the first mounting groove 217 and the outer wall of the lower substrate 21a, which is the first platform 60 mentioned above.
  • the intermediate substrate 21b may be a circular sheet or a toothed sheet, preferably a toothed sheet, that is, a toothed notch groove is formed on the outer periphery of the intermediate substrate 21b, and the outer end point of the notch groove does not exceed the outer periphery of the first detection strip 22 and the second detection strip 23, so that the outer periphery of the first detection strip 22 and the second detection strip 23 can be exposed in the liquid inlet 80.
  • the intermediate substrate 21b is also provided with a first opening 2112 that passes through the upper and lower surfaces, and the first opening 2112 allows the first detection strip 22 to pass upward.
  • the second detection strip 23 includes a second annular body 231, and a second opening 235 is formed in the middle of the second body 231, which runs through from top to bottom, and the second opening 235 is for the first detection strip 22 to pass upward.
  • the second body 231 is embedded in the bottom surface of the upper substrate 21c, and the second body 231 is concentrically arranged with the upper substrate 21c.
  • the outer periphery of the second body 231 is exposed in the second platform 70, that is, the outer periphery of the second body 231 is the second detection part 233 mentioned above.
  • the upper part of the second body 231 extends upward to the top surface of the upper substrate 21c, serving as a second collection end.
  • the detection device 20 in this embodiment is disposed on the metal shell of the battery, that is, the detection device 20 must be disposed on a conductive material.
  • FIG. 25 shows a cross-sectional view of the detection device 20.
  • the substrate 21 in this embodiment has two layers, upper and lower, and a first detection strip 22 is arranged between the two layers.
  • the lower substrate 21a is in the form of a thin sheet or a thin plate, and the thickness should not be too large, usually not exceeding 2 mm, preferably 1 mm.
  • the periphery of the first detection strip 22 is exposed outside the detection device 20, that is, the periphery of the first detection strip 22 is in contact with the outside air, and the periphery is the first detection portion 223, which can also be considered as the detection area 211 in this embodiment.
  • the outer contour of the first detection strip 22 is close to the lower substrate 21a, or slightly smaller than the lower substrate 21a, so that as long as the electrolyte flows to the top of the lower substrate 21, it can quickly contact the first detection strip 22, thereby improving the accuracy and timeliness of the detection.
  • the first detection strip 22 is in the shape of a disk, but it can also be in the shape of a ring or other thin sheets.
  • the first collection terminal 2221 on the upper part of the first detection strip 22 extends on the top surface of the upper substrate 21c and is connected to the first connection terminal 3121 as the first collection terminal.
  • the outer contour of the upper substrate 21c is larger than that of the lower substrate 21a.
  • the outer periphery of the upper substrate 21a is provided with an extension 219 extending outward laterally.
  • the bottom surface of the extension 219 is attached to the outer surface of the battery metal shell, and a second detection strip 23 is provided on the extension 219.
  • the bottom of the second detection strip 23 is exposed on the bottom surface of the extension 219 for contacting the outer surface of the battery metal shell.
  • the second collection terminal 2321 at the top of the second detection strip 23 extends to the top surface of the upper substrate 21 and is connected to the second connection terminal 3122, serving as a second collection terminal.
  • the first detection strip 22 and the second detection strip 23 are separated by the upper substrate 21c so that the two do not contact each other. In other words, under normal circumstances, the resistance value between the first detection strip 22 and the second detection strip 23 is infinite.
  • the electrolyte contacts the metal shell of the battery and the first detection strip 22 at the same time, so that the first detection strip 22 and the second detection strip 23 are connected, so as to collect the potential difference and/or current on the first connection terminal 2131 and the second connection terminal 2132, so as to judge whether the electrolyte is leaking, and then judge whether the safety valve 15 is open, reflecting the working state of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池安全阀检测装置,包括固定设置在安全阀(15)外侧的衬底(21)以及设置在衬底(21)上的第一检测条(22)和第二检测条(23),衬底(21)为绝缘材料,第一检测条(22)和第二检测条(23)为导体材料,第一检测条(22)和第二检测条(23)之间具有电位差;衬底(21)靠安全阀(15)的一侧具有检测区域(211),第一检测条(22)和第二检测条(23)在检测区域(211)中延伸设置,并且检测区域(211)中的第一检测条(22)和第二检测条(23)至少部分暴露在衬底(21)表面,在安全阀(15)开阀时,电解液污染检测区域(211),使第一检测条(22)和第二检测条(23)电位差和/或电流改变。该检测装置对电解液进行检测,达到安全阀监控的目的。还提供一种电池,及一种电池安全阀检测方法。

Description

一种电池安全阀检测装置、电池和方法 技术领域
本发明涉及电池信息检测领域,尤其是一种电池安全阀检测装置、电池和方法。
背景技术
新能源行业的快速发展,使锂离子电池、钠离子电池、铅酸蓄电池等电化学电池大量被应用。电动汽车、储能电站等环境均需要采用大量的电池并联和/或串联组成高压电池组。电池本身设计工艺、滥用等各种原因导致的安全问题,再加上电池数量巨多,使电池的安全问题日益突出。其中,在电池使用过程中,操作不当或其他某些原因,导致出现安全问题,如严重过充的情况下,导致电池内部温度以及压力持续不断升高,当超过其本身的安全阈值时,便会爆炸;其他如电池短路、严重过温、热失控、撞击或挤压变形以及刺穿等问题也可能会引起电池爆炸。
电池安全阀是电池本身最后一道防爆屏障,当电池内部压力达到安全阀的开阀阈值(比如某些锂离子电池安全阀的开阀阈值为600~800KPa)时,为避免爆炸,电池安全阀被冲开进行泄气减压。此时,电池内部的气体向外大量排出,同时电池内部电解液也会随压力的释放喷出。虽然安全阀开启避免了爆炸,但随气体一同泄露的电池内部化学物质在高温条件下,也存在与空气中氧气发生化学反应后起火的可能。同时,问题电池也影响着周边电池的安全,需要被及时告警进行干预,以及后续替换等等,否则将严重影响系统整体安全运行。
现有技术中,为了保证电池安全有效地运行,主要通过电池管理模块对电池的状态进行检测、管理。目前的电池管理模块主要检测电池的电压、温度、充放电电流和对系统做绝缘监测等,由于安全阀本身不具备可监测的物理量,目前电池管理模块没有对电池安全阀的监测,少量的一些资料公开如采用开阀声音信号、气压信号等手段进行监测。
发明内容
为解决上述问题,本发明的第一个目的是提供一种电池安全阀检测装置,该检测装置位于安全阀的外侧,一旦安全阀开启,就能对随气体一同向外喷出的电解液进行检测,从而快速且准确的获知电池安全阀是否开启。
为本发明的第一个目的,采用以下技术方案予以实施:
一种电池安全阀检测装置,包括:固定设置在安全阀外侧的衬底以及设置在衬底上的第一检测条和第二检测条,衬底为绝缘材料,第一检测条和第二检测条为导体材料,第一检测条和第二检测条之间具有电位差;衬底靠安全阀的一侧具有检测区域,所述的第一检测条和第二检测条在检测区域中延伸设置,并且检测区域中的第一检测条和第二检测条至少部分暴露在衬底表面,在安全阀开阀时,电解液污染检测区域,使第一检测条和第二检测条电位差和/或电流改变。
作为优选,在检测区域内,第一检测条和第二检测条不相导通,从而当两者通电时,能具有电位差,作为不相导通的优选方式,第一检测条和第二检测条并排延伸且隔开一段距离,从而第一检测条和第二检测条之间不直接接触;此外,第一检测条和第二检测条覆盖检测区域大部分表面,从而无论安全阀从何处开启,电解液喷溅在何处,都能将第一检测条和第二检测条连接在一起,进而将两者导通,避免漏检,同时也能提高检测的灵敏度。
作为优选,检测区域中还设置有若干个朝安全阀所在位置开口的孔穴,孔穴密集的分布在第一检测条和第二检测条之间,当电解液喷溅时,一部分电解液将被保持在空穴中,从而电解液在重力的作用下将流向孔穴的边缘,进而将第一检测条和第二检测条导通,使得只需要非常少的电解液就能将第一检测条和第二检测条导通。
作为优选,在检测区域内,第一检测条和第二检测条均呈螺旋形排列,以最大化的覆盖检测区域,更重要的是,螺旋形的延伸方式使得第一检测条和第二检测条之间各个方向上的间距都很小,进而只需非常少的电解液就能将第一检测条和第二检测条导通。
作为优选,孔穴的孔径为0.2~1mm,相邻的孔穴的圆心之间的距离为0.4~1.5mm,较小的孔径和孔间距,使得孔穴密集的分布在第一检测条和第二检测条之间,并且由于液体表面张力的作用,能将收集到的电解液迅速铺开在检测区域内,从而使得电解液能快速的连接孔穴两侧的第一检测条和第二检测条。
作为优选,全部或部分所述的孔穴贯穿衬底上下表面;衬底背离安全阀的表面设置有保护层,保护层遮蔽所有孔穴的外端,保护层厚度为5~20um。将部分孔穴贯穿衬底的优点在于,使得安全阀开启后,电池内部的空气能穿过孔穴向外排出,不至于继续聚集。设置在保护层的优点在于,将这些贯穿的孔穴的外端封闭,从而避免外界的空气穿过孔穴进入衬底的下表面,从而使得第一检测条和第二检测条快速氧化,能延长检测装置的使用寿命。
作为优选,衬底为片状结构,厚度为0.2~1mm,第一检测条和第二检测条的厚度为50~200um,宽度约为0.2~1mm,第一检测条和第二检测条为铜箔或铝箔;第一检测条和第二检测条通过刻蚀的方式设置在衬底上。衬底以及第一检测条和第二检测条的外形结构,使得检测装置的外形呈片状,即只占据非常小的空间,该检测装置在安装到电池上后,不会引起电池外形的改变。
作为优选,在检测区域内,第一检测条和第二检测条设置在衬底的下表面,从而使得第一检测条和第二检测条的下部尽可能多的暴露在外界,从而一旦安全阀开启,电解液就能迅速的喷溅在第一检测条和第二检测条上。
本发明的第二个目的是提供一种电池,包括壳体和设置在壳体顶部的盖板,盖板上设置有安全阀,上述的电池安全阀检测装置设置在安全阀的外侧。
本发明的第三个目的是提供一种电池安全阀检测方法,该方法采用上述的电池安全阀检测装置,通过采集第一检测条和第二检测条之间的电位差和/或电流,在电位差和/或电流改变时,判定安全阀打开。
综上所述,本发明的有益效果是:通过在安全阀的外侧设置衬底,并在衬底上设置第一检测条和第二检测条,使得电解液从安全阀中喷出后与第一检测条和第二检测条接触,将第一检测条和第二检测条导通,进而第一检测条和第二检测条之间的电阻发生变化,由原先的无穷大变为较小的值,从而通过检测第一检测条和第二检测条之间的电阻值,对电解液进行检测,到达安全阀监控的目的。
附图说明
图1为某一种电池的剖视图。
图2为图1中A处的局部放大图。
图3为电池顶面的示意图。
图4为实施例1中检测装置从底部看的立体剖面图。
图5为实施例1中检测装置的仰视图。
图6为实施例1中衬底的俯视图。
图7为电池组的示意图。
图8为实施例2中检测装置纵向的剖视图。
图9为实施例2中检测装置横向的剖视图。
图10为实施例2中第一检测条和第二检测条的立体图。
图11为实施例2中第一检测条和第二检测条的俯视图。
图12为实施例3中检测装置横向的剖视图。
图13为图12中B-B处的剖面图。
图14为实施例3中检测装置纵向的剖视图。
图15为实施例4中检测装置纵向的剖视图。
图16为实施例4中检测装置一侧的示意图。
图17为实施例4中检测装置横向的剖视图。
图18为实施例5中检测装置和安全阀纵向的剖视图。
图19为实施例5中检测装置纵向的剖视图。
图20为实施例5中第一检测条的示意图。
图21为实施例5中下层衬底的俯视图。
图22为实施例5中中间衬底的俯视图。
图23为实施例5中第二检测条的示意图。
图24为实施例6中检测装置和盖板的示意图。
图25为实施例6中检测装置纵向的剖视图。
实施方式
如图1所示,电池10包括壳体11以及设置在壳体11顶部开口处的盖板12,壳体11内部设置有电池本身的电解液和气体,盖板12上设置有两个极性相反的极柱13,14,并且两个极柱均向外凸出到电池外部(或与电池盖板持平)。盖板12的中部设置有一个贯穿上下表面的安装口121,安装口121的内设置有安全阀15,当电池10处于正常工作状态时,电池10内部的气压低于安全阀15的开阀阈值,安全阀15处于关闭状态;当电池10处于非正常状态时(例如过充、过放、过热等滥用、操作不当或者其他某些原因等),电池10内部的气压不断升高,当气压超过安全阀15的阈值(比如某些锂离子电池安全阀的开阀阈值为600~800KPa)时,安全阀15被打开,电池10内部的气体向外喷出,同时还会携带一部分电解液一起向外喷出。需要说明的是,安全阀15的结构为本领域公知常识,在此不再赘述,并且安全阀15通常是一次性的,即一旦打开,则无法再将其关闭。因此,在安全阀15打开后,需要及时对电池10进行维修或更换。
由上述内容可知,为了对电池10的工作状态进行检测,其中一种可选的方式是对安全阀15是否开启进行检测,而安全阀15开启的同时势必带出少量的电解液,因而可以选择对电解液进行检测,以反映电池的工作状态。为此,本申请提供一种电池安全阀检测装置,下文中有时也简称为检测装置20。
如图1和3所示,检测装置20设置在盖板12上,并且完全覆盖安装口121,即检测装置20位于安全阀15的外侧,一旦安全阀15打开,则电池10内部的气体将携带着部分电解液一起向外喷出,并喷溅在检测装置20的底面上。需要说明的是,当内部气体向外排出时,至少能使得检测装置20的一部分被冲破、撕开甚至断裂,抑或在检测装置20中预留供气体排出的通道,使得气体能继续向外释放,防止气体继续聚集在电池10内部,造成电池10内部结构毁坏。
实施例
如图4、5和6所示,检测装置20包括衬底21,在本实施例中,衬底21为片状结构,厚度为0.2~1mm,优选为0.5mm,使得整个检测装置20的厚度保持在较小的范围内,当检测装置20设置在盖板12上之后,不会影响电池10的整体外观,保证电池10在正常工作空间内继续使用,不需要额外扩大电池10的安装空间。另外,衬底21为绝缘材料,可以为硬质材料,也可以为柔性材料,但优选为薄膜,尤其是聚酰亚胺膜。还需要说明的是,衬底21可以是单层结构也可以是两层及以上的复合结构。此外,为方便的将衬底21固定在盖板12上,可以采用粘贴的方式,例如通过密封胶将衬底21粘贴在盖板12的外表面上。
如图6所示,衬底21的底面上有检测区域211,检测区域211的外形略小于安装口121的外形,安装时,检测区域211与安装口121对应设置,并且检测区域211几乎完全覆盖安装口121。在本实施例中,检测区域211为圆形,但不排除采用其它的几何形状,可以根据实际安装口121和安全阀的外形适应性调整。
如图4和图5所示,在本实施例中,衬底21下表面设置有第一检测条22和第二检测条23,第一检测条22和第二检测条23之间被衬底21相互隔开,使得两者不接触,并且第一检测条22和第二检测条23均为导体材料,例如金属材料、半导体材料以及导电性能良好的非金属材料,但优选为铜箔或铝箔。由上述结构可知,在正常状态下,第一检测条22和第二检测条23之间的电阻值为无穷大。并且从图中还可以看出,第一检测条22和第二检测条23主要在检测区域211内延伸,并且第一检测条22和第二检测条23暴露在检测区域211内,从而当安全阀开启时,内部气体携带的电解液喷溅在衬底21的下表面,从而将第一检测条22和第二检测条23连接在一起,而电解液具有导电能力,因此第一检测条22和第二检测条23之间导通,使得第一检测条22和第二检测条23之间的电阻发生变化,由原先的无穷大变为较小的值,从而通过检测第一检测条22和第二检测条23之间的电阻值,就能实现电解液的检测。
需要说明的是,第一检测条22和第二检测条23也可以不设置在衬底21的下表面,而设置在衬底21内部,例如衬底21为多层复合结构时,第一检测条22和第二检测条23可以设置在相邻两层之间,但此时需要在衬底21的下表面预留供电解液喷溅进内部的孔或通道,即第一检测条22和第二检测条23仍然需要暴露在衬底21检测区域211的表面。
为了提高检测结果的准确性,第一检测条22和第二检测条23并排延伸且隔开一段较小的距离,例如隔开0.2~1mm,第一检测条和第二检测条的厚度为50~200um,宽度约为0.2~1mm,并且第一检测条22和第二检测条23需要覆盖检测区域211的大部分面积。在本实施例中,第一检测条22和第二检测条23都呈螺旋形且紧密排列,以最大化的覆盖检测区域211。
除此之外,如图6所示,还可以在检测区域211内设置若干个孔穴212,孔穴212朝向下方的安装口121设置,并且孔穴212的孔径在0.2~1mm之间,相邻的两个孔穴212的圆心之间的距离为0.4~1.5mm,使得孔穴212密集的分布在检测区域211内,从而无论气体从安全阀15的哪个位置排出,都能保证有相应的孔穴212能与电解液接触,并且能将部分电解液保持在孔穴212内,上文中的第一检测条22和第二检测条23分布在孔穴212的周边,从而只要有少量的电解液喷出,就能被孔穴212收集,并将该孔穴212两侧的第一检测条22和第二检测条23连接,提高了检测的灵敏度。作为优选,孔穴212也呈螺旋形排列,并位于第一检测条22和第二检测条23之间,使得孔穴212也能覆盖检测区域211的大部分面积。但在其它实施例中也可以采用矩形或圆形阵列的方式进行分布。此外,正如前文所述,为了便于气体向外排出,部分或者全部孔穴212贯穿衬底21内外表面,使得气体能从这些贯穿的孔穴212中直接向外排出。
从图4和图5中来看,上述孔穴212以及第一检测条22和第二检测条23螺旋形的延伸方式,能良好的覆盖检测区域211的大部分面积,从而无论安全阀从哪个位置开启,气体和电解液从哪个位置喷出,都能与对应位置的第一检测条22和第二检测条23接触,并且由于第一检测条22和第二检测条23之间各个方向上的间距都很小,从而只需非常小的泄漏量,就能将第一检测条22和第二检测条23导通,即该装置通过监控第一检测条22和第二检测条23的电阻值,就能精准的检测电解液是否泄漏,从而判断安全阀是否打开。
为了将第一检测条22和第二检测条23稳固的安装在衬底21上,第一检测条22和第二检测条23可以采用刻蚀的方式进行设置。
注意到在设置上述贯穿衬底21上下表面的孔穴212后,外界的空气可以通过孔穴212进入衬底21的底部,从而可能导致第一检测条22和第二检测条23氧化,影响装置的检测结果,因此为了保证检测装置20能长期使用,需要对第一检测条22和第二检测条23进行必要的防护。通常的,可以在衬底21的外表面设置有一层保护层24,保护层24至少覆盖在检测区域211的外侧,并且将所有的孔穴212的外端(针对贯穿的孔穴212而言,半封闭的孔穴212本身不存在外端)封闭,从而在该检测装置20安装到盖板12上后,将外界空气与第一检测条22和第二检测条23隔开,避免第一检测条22和第二检测条23快速氧化。
优选的,保护层24为薄膜结构,例如PE薄膜、聚对二甲苯膜。保护层24可以通过粘贴的方式进行固定,但由于本实施例中内部的空气需要通过孔穴212向外排出,因此保护层24的厚度不宜太大,优选为5~20um,这样当安全阀15开启时,释放出来的气体可以穿过孔穴212把保护层24对应的位置冲开或冲破,进而释放压力。
如图5和6所示,衬底21的右侧设置有延伸部213,延伸部213上设置有第一连接端2131和第二连接端2132,第一检测条22和第二检测条23的端部延伸到延伸部213上并分别连接在第一连接端2131和第二连接端2132上,第一连接端2131和第二连接端2132至少部分位于检测装置20的外表面,以便于后续对电阻检测时的接线。常见的,第一连接端2131和第二连接端2132为焊盘,以便于后续导线焊接在第一连接端2131和第二连接端2132上。如图3所示,检测装置20在安装时,延伸部213与其中一个极柱连接。
需要说明的是,第一检测条22和第二检测条23的右侧朝向第一连接端2131和第二连接端2132延伸的部分通常设置在衬底21的内部,而不必暴露的衬底21的表面,以避免这些位置的第一检测条22和第二检测条23与外界的水或者其它液体接触,进而被导通,影响检测结果的准确性。
第一连接端2131和第二连接端2132延伸方向也可根据电池与电池管理模块实际的设计进行合理设计,如延伸方向分别向电池极柱一端,或者分别向电池极柱两端。
如图3所示,每个检测装置20可以安装在一个单体电池的盖板12上,实现对每个单体电池的安全阀的监测。此外,当多节单体电池10串联、并联或混联成电池组时(参见图7),通常通过金属排30(一般为铝排或铜排)将各节电池10中相同极性的极柱连接在一起,而此时各节电池10上的检测装置20则连接在对应的金属排30或极柱上。
检测装置20具体使用过程如下:
将衬底21通过粘贴的方式固定在盖板12的外表面上,并且使得检测区域211完全覆盖安装口121,进而第一检测条22和第二检测条23暴露在安全阀15的外侧。当电池10处于正常工作状态时,第一检测条22和第二检测条23之间被衬底21隔开,无法直接接触,两者之间的电阻值为无穷大。当电池10处于非正常状态时,电池10内部压力不断增大,当压力超过安全阀15的开阀阈值时,安全阀15被打开,电池10内部的气体携带着电解液向外喷出,并冲开保护层24,向外释放,而电解液将喷溅在衬底21的底面上以及孔穴212内,从而将这些位置的第一检测条22和第二检测条23导通,这时第一检测条22和第二检测条23之间的电阻将减小,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
检测装置20的优点是结构简单、制作成本低、检测及时性高、检测结果可靠。
实施例
如图8所示,本实施例中,衬底21的底部具有向上凹陷的连接口215,检测区域211位于连接口215内,并且连接口215的顶部设置有贯穿衬底21上下表面的排气口216,本实施例中,安全阀15开口后,气体从排气口216中向外排出。第一检测条22和第二检测条23设置在衬底21内部。
如图8和10所示,第一检测条22包括设置在衬底21内部的第一主体221,第一主体221用于将第一检测条22固定在衬底21的内部。第一主体221的上部设置有第一采集部分222,第一采集部分222的端部延伸到衬底21的外表面上,并且该端部与第一连接端2131连接,该端部作为检测装置20的第一采集端。第一主体221的下部设置有第一检测部分223,第一检测部分223向连接口215所在的位置延伸,并且第一检测部分223的端部暴露在检测区域211内,与此处的空气接触,该端即为检测装置20的第一检测端。
如图8和10所示,第二检测条23包括设置在衬底21内部的第二主体231,第二主体231用于将第二检测条23固定在衬底21的内部。第二主体231的上部设置有第二采集部分232,第二采集部分232的端部延伸到衬底21的外表面上,并且该端部与第二连接端2132连接,该端部作为检测装置20的第二采集端。第二主体231的下部设置有第二检测部分233,第二检测部分233向连接口215所在的位置延伸,并且第二检测部分233的端部暴露在检测区域211内,与此处的空气接触,该端即为检测装置20的第二检测端。
在本实施例中,安全阀15开启后,电解液将喷溅在连接口215内,从而将位于连接口215中的第一检测端(第一检测部分223)和第二检测端(第二检测部分233)导通,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
具体的,如图10和图11所示,本实施例中,第一主体221为圆环形,并且与连接口215同心设置,圆环形的一侧形成有缺口2211,缺口2211将第一主体221分为两端,其中一端连接第一采集部分222。第一采集部分222大致呈直线向外延伸,并在第一采集部分222的端部形成有圆柱形的第一采集端子2221。第一检测部分223包括若干个圆周排列的第一检测端子2231,第一检测端子2231的上端连接在第一主体221上,第一检测端子2231的下端位于连接口215中。
如图10和图11所示,第二主体231也为圆环形,并且与连接口215同心设置。此外,第二主体231位于第一主体221的下方,并且第二主体231的直径小于第一主体221。第二采集部分232从上文中的缺口2211中伸出,并与第一采集部分222大致平行的向外延伸,第二采集部分232的端部形成有圆柱形的第二采集端子2321,第二采集端子2321和第一采集端子2221并排紧邻设置,以便于检测的接线。第二检测部分233包括若干个圆周排列的第二检测端子2331,第二检测端子2331的上端连接在第二主体231上,第二检测端子2331的下端位于安装口121中,并且第二检测端子2331与第一检测端子2231交替排列。
设置多个第一检测端子2231和第二检测端子2331的原因是:使得安装口121中分布有数量较多的第一检测端和第二检测端,从而提高检测的准确性和及时性。为了进一步提高检测效果和准确性,可以适当增大第一检测端子2231和第二检测端子2331的表面积,例如可以将第一检测端子2231和第二检测端子2331的下端做成椭圆形(参见图10)。
进一步的,第一检测端子2231和第二检测端子2331位于同一个圆周上,以减小相互之间的距离,但并不排除第一检测端子2231和第二检测端子2331其它设置方式,例如设置在不同的圆周上。
作为优选,第一检测端子2231和第二检测端子2331的底面均设置在连接口215的顶面上,这样可以直接与安全阀15中漏出的电解液接触。但也可以是部分或者全部第一检测端子2231和第二检测端子2331的底面设置在连接口215左右两侧的侧壁上,这样也能使其与电解液接触。
需要说明的是,由于部分电池的壳体11由金属制成,为了避免第一检测端和第二检测端直接与壳体11接触而导通,在安装该装置时,需要注意第一检测端和第二检测端与壳体11之间需要留有一定的空隙(例如1-3mm)。
实施例
如图14所示,在本实施例中,衬底21分为上下两层,分别记作下层衬底21a和上层衬底21c,作为举例,两层衬底21之间可以通过凹凸配合实现连接,例如在下层衬底21a上表面设置有向上凸出的凸起,上层衬底21c的下表面设置有向上凹陷的凹槽,凸起配合在凹槽内,实现两层衬底21的连接。衬底21的中部设置有上下贯穿的连接口215,连接口215供气体向外排出。
图12示出了检测装置20的剖面图,衬底21的中部设置有贯穿上下表面的连接口215,连接口215与安全阀15对应,本实施例中安全阀15打开后,气体从连接口215中向外排出。衬底21底部设置有检测区域211,并且检测区域211向内延伸到衬底21的内部,检测区域211覆盖衬底21的大部分区域,以提高检测的准确性,防止漏检。上层衬底21c的底面上设置有与检测区域211对应的容置区,容置区的外形与检测区域211接近或略大于检测区域211。容置区向上凹陷并且配合在检测区域211上方,从而在上下两层衬底21之间形成空隙50。
如图13和14所示,检测区域211内设置有贯穿下层衬底21a上下表面的若干条检测通道2111,使得检测区域211与外界连通,检测通道2111的高度(或者说下层衬底21a中检测区域211的厚度)不超过2mm,从而保证当检测通道2111的底部存在电解液时,电解液能沿着检测通道2111向上流动,使其进入上下两层衬底21之间的空隙50(参见图14)内。并且由于检测通道2111的高度很小,即使底部只存在少量的电解液,检测通道2111也能对电解液进行输送,从而确保检测的及时性。
在本实施例中,这些检测通道2111沿着衬底21的长度方向分布,并沿着宽度方向直线延伸,使得检测通道2111密集的分布在衬底21上,从而检测通道2111能覆盖衬底21大部分表面,使得衬底21上各个位置的电解液都能进入相应位置的检测通道2111。需要说明的是,检测通道2111也可以以曲线的方式延伸,例如检测通道2111为圆弧形或折线形。
如图12所示,衬底21上设置有第一检测条22和第二检测条23,第一检测条22和第二检测条23之间通过衬底21隔开,使得两者不直接接触,换言之,在正常状态下,第一检测条22和第二检测条23之间的电阻无穷大。第一检测条22和第二检测条23都具有多个检测部分,这些检测部分分布在检测通道2111的两侧并且位于空隙50内,即检测部分的上表面与空隙50接触。当检测通道2111中有电解液时,电解液将流入空隙50中,进而流入检测部分,当第一检测条22的第一检测部分223与第二检测条23的第二检测部分233被电解液连接时,第一检测条22和第二检测条23被导通。
如图12所示,第一检测条22具有第一采集端子2221,第一采集端子2221向外伸出到衬底21的表面,并且与第一连接端2131连接。第一检测条22还具有若干个第一检测部分223,第一检测部分223分布在检测通道2111的侧方,并且第一检测部分223围绕检测通道2111同向延伸,确保检测通道2111中任何一处的电解液都能接触到第一检测部分223。
同样的,第二检测条23具有第二检测端子2331,第二检测端子2331也向外伸出到衬底21的表面,并且与第二连接端2132连接。第二检测条23还具有若干个第二检测部分233,第二检测部分233分布在检测通道2111的侧方,并且围绕检测通道2111同向延伸,确保检测通道2111中任何一处的电解液都能接触到第二检测部分233。
如图12所示,检测通道2111的两侧分别设置第一检测部分223和第二检测部分233,这样使得当其中一个检测通道2111中有电解液时,与这个检测通道2111相邻的第一检测部分223和第二检测部分233将被连接,从而第一检测条22和第二检测条23被导通,确保第一检测部分223和第二检测部分233能准确的检测到电解液,保证检测结果的准确性,同时也能避免漏检。
可选的,如图12所示,第一检测条22和第二检测条23分别设置在检测通道2111的一端,并且两者的检测部分相向延伸。具体的,在本实施例中,第一检测条22设置在检测通道2111的上端,第二检测条23设置在检测通道2111的下端,第一检测部分223从上向下延伸,而第二检测部分233从下向上延伸。
本实施例中的检测装置20使用时,从安全阀15中喷出的电解液将沿着检测通道2111流入空隙50中,并最终流入检测通道2111两侧的第一检测部分223和第二检测部分233中,从而第一检测条22和第二检测条23被导通,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
实施例
本实施例中的检测装置20需要设置在金属壳体的极柱上,如图15所示,与实施例3类似的,本实施例也具有上下两层衬底21,并且下层衬底21a的底部设置有检测区域211,检测区域211内设置有若干个朝下开口的检测通道2111,检测通道2111的上端向下层衬底21a内部延伸。此外,衬底21上也设置有第一检测条22和第二检测条23,第一检测条22在上下两层衬底21的连接面之间延伸,并且第一检测条22大致覆盖外壳的整个横截面,以便于保证后续检测时的准确性和及时性。第一检测条22的第一采集端子2221延伸到衬底21除底面外的外表面上,例如在图15中延伸到上层衬底21的上表面,并且与第一连接端2131连接,作为检测装置20的一个采集端。第二检测条23的第二采集端子2321设置在下层衬底21的底面上,具体的说,第二检测条23嵌入在下层衬底21的底部,使其直接与金属壳体的极柱接触,作为另一个采集端,也可以认为连接在第二连接端2132上。
当衬底21的底部存在电解液时,电解液将顺着检测通道2111向衬底21内部流动,从而电解液能与第一检测条22接触,这时在电解液的作用下,第一检测条22和金属壳体之间被导通,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
如图15所示,第一检测条22具有若干个第一检测部分223,这些第一检测部分223与检测通道2111正对,并且最好覆盖在与之对应的检测通道2111上,从而当任意一个检测通道2111中存在电解液时,对应位置的第一检测部分223都能及时的接触到电解液。进一步,第一检测部分223可以向下伸入的检测通道2111中,但此时应当注意第一检测部分223不能与检测通道2111的下端平齐,否则第一检测部分223的底部将会与金属壳体接触,从而导致第一检测条22和第二检测条23始终导通,无法对电解液进行准确的检测。通常第一检测部分223底部与检测通道2111下端之间留有1mm的距离。
实施例
本实施例中的检测装置20设置在安全阀15的外表面上,图18示出了检测装置20安装在某一种安全阀上的示意图。
图19示出了检测装置20的剖面图,本实施例中的衬底21为三层,下层衬底21a薄板状或薄片状,厚度较小,通常不大于2mm,优选为1mm以下。中间衬底21b也为薄板状或薄片状,其厚度与下层的衬底21接近,但最好小于下层衬底21a,例如为下层衬底21a厚度的50%。中间衬底21b的外形轮廓与下层衬底21a相接近但略小于下层衬底21a,并在两者连接处的外周上形成有横向延伸的第一平台60。当安全阀15中有电解液漏出时,电解液将沿着衬底21的外壁面向上流动,并流入第一平台60中。
上层衬底21c外形轮廓与中间衬底21b相接近但略大于中间衬底21b,在两者连接处的外周上形成有横向延伸的第二平台70,第二平台70与第一平台60正对,并且相隔一段距离,从而第一平台60、第二平台70和中间的衬底21的外壁面之间形成一个朝向外周方向开口的进液口80。使用时,电解液进入第一平台60中,由于中间衬底21b的厚度较小,使得少量的电解液就能填满进液口80,从而电解液与上部的第二平台70连接。即在本实施例中,检测区域211位于衬底21的外周。
继续参见图19,下层衬底21a和中间衬底21b的连接处设置有第一检测条22,中间衬底21b和上层衬底21c的连接处设置有第二检测条23,第一检测条22和第二检测条23之间被衬底21隔开,彼此不接触。
第一检测条22具有第一采集端子2221和第一检测部分223,第一采集端子2221向上穿过中间衬底21b延伸到上层衬底21c的顶面上,并与第一连接端2131连接。第一检测部分223围绕下层衬底21a的周向延伸,并且第一检测部分223露出在第一平台60中,即第一检测部分223露出在进液口80内,从而电解液能与第一检测部分223接触。
类似的,第二检测条23具有第二采集端子2321和第二检测部分233,第二采集端子2321向上延伸到上层衬底21的顶面上,并与第二连接端2132连接。第二检测部分233围绕顶部绝缘层300的周向延伸,并且第二检测部分233露出在第二平台70中,即第二检测部分233露出在进液口80内,从而电解液能与第二检测部分233接触。
由上述结构可知,当电解液流入进液口80时,液体将与第一检测部分223和第二检测部分233接触,使得第一检测部分223和第二检测部分233相互连接,从而第一检测条22和第二检测条23之间被导通,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
具体的,如图19和20所示,第一检测条22包括圆环形的第一主体221,第一主体221嵌入下层衬底21a的顶面中,并且与下层衬底21a同心设置。第一主体221的外周露出在第一平台60中,即第一主体221的外周为上文中的第一检测部分223。第一主体221的上部向上延伸到上层衬底21的顶面上,作为第一采集端。
如图21所示,下层衬底21a的上表面上设置有与第一主体221外形相适应的第一安装槽217,第一安装槽217与下层衬底21a的外侧壁之间留有一端距离,该距离即为上文中的第一平台60。
如图22所示,中间衬底21b可以为圆形薄片或齿形薄片,优选为齿形薄片,即在中间衬底21b的外周上形成有齿形的缺口槽,缺口槽的外端点不超过第一检测条22和第二检测条23的外周,使得第一检测条22和第二检测条23的外周能露出在进液口80中。中间衬底21b上还设置有贯穿上下表面的第一开口2112,第一开口2112供第一检测条22向上穿过。
如图23所示,第二检测条23包括圆环形的第二主体231,第二主体231的中部形成有上下贯穿的第二开口235,第二开口235供第一检测条22向上穿过。第二主体231嵌入上层衬底21c的底面中,第二主体231与上层衬底21c同心设置。第二主体231的外周露出在第二平台70中,即第二主体231的外周为上文中的第二检测部分233。如图23所示,第二主体231的上部向上延伸到上层衬底21c的顶面上,作为第二采集端。
实施例
本实施例中的检测装置20设置在电池的金属外壳上,即该检测装置20必须设置在导电材料上。
图25示出了检测装置20的剖面图,可以看出本实施例中的衬底21有上下两层,并且两层之间设置有第一检测条22,下层衬底21a为薄片状或薄板状,厚度不宜太大,通常不超过2mm,优选为1mm。第一检测条22的外周露出在检测装置20的外侧,即第一检测条22的外周与外界空气接触,该外周即为第一检测部分223,也可以认为是本实施例中的检测区域211。第一检测条22的外形轮廓与下层衬底21a接近,或略小于下层衬底21a,使得只要电解液流到下层衬底21的上方就能迅速的与第一检测条22接触,提高检测的准确性和及时性。
在本实施例中,第一检测条22为圆片状,但也可以是圆环形,或其它薄片状的外形。第一检测条22上部的第一采集端子2221延伸部上层衬底21c的顶面上并与第一连接端3121连接,作为第一采集端。
上层衬底21c的外形轮廓大于下层衬底21a,上层衬底21a的外周设置有横向向外伸出的伸出部219,伸出部219的底面贴合在电池金属外壳的外表面上,并在伸出部219上设置有第二检测条23,第二检测条23的底部露出在伸出部219的底面上,用于与电池金属外壳的外表面接触。第二检测条23顶部的第二采集端子2321延伸到上层衬底21的顶面上并与第二连接端3122连接,作为第二采集端。
由上述结构可知,第一检测条22和第二检测条23之间通过上层衬底21c隔开,使得两者不接触。换言之,在正常情况下,第一检测条22和第二检测条23之间的电阻值为无穷大。一旦电解液喷出时,电解液与电池的金属外壳接触的同时还会与第一检测条22接触,从而使得第一检测条22和第二检测条23之间被导通,从而采集第一连接端2131和第二连接端2132上的电位差和/或电流,就能判断电解液是否泄漏,进而判断安全阀15是否打开,反映电池的工作状态。
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施列,而是要符合与本文所公开的原理和新颖点相一致的最宽的范围。

Claims (10)

  1. 一种电池安全阀检测装置,其特征在于,包括:固定设置在安全阀(15)外侧的衬底(21)以及设置在衬底(21)上的第一检测条(22)和第二检测条(23),衬底(21)为绝缘材料,第一检测条(22)和第二检测条(23)为导体材料,第一检测条(22)和第二检测条(23)之间具有电位差;衬底(21)靠安全阀(15)的一侧具有检测区域(211),所述的第一检测条(22)和第二检测条(23)在检测区域(211)中延伸设置,并且检测区域(211)中的第一检测条(22)和第二检测条(23)至少部分暴露在衬底(21)表面,在安全阀开阀时,电解液污染检测区域(211),使第一检测条(22)和第二检测条(23)电位差和/或电流改变。
  2. 根据权利要求1所述的电池安全阀检测装置,其特征在于,在检测区域(211)内,第一检测条(22)和第二检测条(23)不相导通,优选为并排延伸且隔开一段距离;第一检测条(22)和第二检测条(23)覆盖检测区域(211)大部分表面。
  3. 根据权利要求2所述的电池安全阀检测装置,其特征在于,检测区域(211)中还设置有若干个朝安全阀(15)所在位置开口的孔穴(212),孔穴(212)密集的分布在第一检测条(22)和第二检测条(23)之间。
  4. 根据权利要求3所述的电池安全阀检测装置,其特征在于,在检测区域(211)内,第一检测条(22)和第二检测条(23)均呈螺旋形排列。
  5. 根据权利要求3所述的电池安全阀检测装置,其特征在于,孔穴(212)的孔径为0.2~1mm,相邻的孔穴(212)的圆心之间的距离为0.4~1.5mm。
  6. 根据权利要求3所述的电池安全阀检测装置,其特征在于,全部或部分所述的孔穴(212)贯穿衬底(21)上下表面;衬底(21)背离安全阀(15)的表面设置有保护层(24),保护层(24)遮蔽所有孔穴的外端,保护层(24)厚度为5~20um。
  7. 根据权利要求1所述的电池安全阀检测装置,其特征在于,衬底(21)为片状结构,厚度为0.2~1mm,第一检测条(22)和第二检测条(23)的厚度为50~200um,宽度约为0.2~1mm,第一检测条(22)和第二检测条(23)为铜箔或铝箔;第一检测条(22)和第二检测条(23)通过刻蚀的方式设置在衬底(21)上。
  8. 根据权利要求1所述的电池安全阀检测装置,其特征在于,在检测区域(211)内,第一检测条(22)和第二检测条(23)设置在衬底(21)的下表面。
  9. 一种电池,其特征在于,包括壳体和设置在壳体顶部的盖板,盖板上设置有安全阀,权利要求1~8任意一项所述的电池安全阀检测装置设置在安全阀的外侧。
  10. 一种电池安全阀检测方法,其特征在于,该方法采用权利要求1~8任意一项所述的电池安全阀检测装置,通过采集第一检测条(22)和第二检测条(23)之间的电位差和/或电流,在电位差和/或电流改变时,判定安全阀打开。
PCT/CN2023/138824 2022-10-21 2023-12-14 一种电池安全阀检测装置、电池和方法 WO2024131636A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/749,332 US20240339686A1 (en) 2022-10-21 2024-06-20 Battery safety valve detection device and method, and battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN202211293786.1A CN115513546A (zh) 2022-10-21 2022-10-21 一种层状结构的电池漏液检测装置
CN202211294345 2022-10-21
CN202211294333 2022-10-21
CN202211293734 2022-10-21
CN202211293789 2022-10-21
CN202211634585.3A CN116183207A (zh) 2022-10-21 2022-12-19 一种电池安全阀检测装置、电池和方法
CN202211634585.3 2022-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/749,332 Continuation US20240339686A1 (en) 2022-10-21 2024-06-20 Battery safety valve detection device and method, and battery

Publications (1)

Publication Number Publication Date
WO2024131636A1 true WO2024131636A1 (zh) 2024-06-27

Family

ID=86449826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138824 WO2024131636A1 (zh) 2022-10-21 2023-12-14 一种电池安全阀检测装置、电池和方法

Country Status (3)

Country Link
US (1) US20240339686A1 (zh)
CN (2) CN116183207A (zh)
WO (1) WO2024131636A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116183207A (zh) * 2022-10-21 2023-05-30 杭州高特电子设备股份有限公司 一种电池安全阀检测装置、电池和方法
CN116885397B (zh) * 2023-09-07 2024-01-12 杭州高特电子设备股份有限公司 一种集成多种检测传感器的电池模组集成母排
CN116895859B (zh) * 2023-09-07 2024-01-12 杭州高特电子设备股份有限公司 一种储能电池安全阀检测传感器、检测装置和储能电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312680A (ja) * 1992-05-14 1993-11-22 Japan Storage Battery Co Ltd 密閉電池用安全弁検査装置
JP2002251985A (ja) * 2000-12-21 2002-09-06 Sony Corp 電解液漏洩検出機能付きバッテリパックおよび電解液漏洩検出方法
CN202221373U (zh) * 2011-09-08 2012-05-16 天津力神电池股份有限公司 用于电池壳安全阀的测试工装
JP2015179076A (ja) * 2014-02-26 2015-10-08 プライムアースEvエナジー株式会社 安全弁機構の検査装置及び安全弁機構の検査方法
CN107515111A (zh) * 2017-08-30 2017-12-26 广东电网有限责任公司东莞供电局 一种蓄电池阀门测试装置及蓄电池阀门检测方法
CN116183207A (zh) * 2022-10-21 2023-05-30 杭州高特电子设备股份有限公司 一种电池安全阀检测装置、电池和方法
CN219203255U (zh) * 2022-12-19 2023-06-16 杭州高特电子设备股份有限公司 一种集合电池温度和安全阀检测的检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312680A (ja) * 1992-05-14 1993-11-22 Japan Storage Battery Co Ltd 密閉電池用安全弁検査装置
JP2002251985A (ja) * 2000-12-21 2002-09-06 Sony Corp 電解液漏洩検出機能付きバッテリパックおよび電解液漏洩検出方法
CN202221373U (zh) * 2011-09-08 2012-05-16 天津力神电池股份有限公司 用于电池壳安全阀的测试工装
JP2015179076A (ja) * 2014-02-26 2015-10-08 プライムアースEvエナジー株式会社 安全弁機構の検査装置及び安全弁機構の検査方法
CN107515111A (zh) * 2017-08-30 2017-12-26 广东电网有限责任公司东莞供电局 一种蓄电池阀门测试装置及蓄电池阀门检测方法
CN116183207A (zh) * 2022-10-21 2023-05-30 杭州高特电子设备股份有限公司 一种电池安全阀检测装置、电池和方法
CN219203254U (zh) * 2022-10-21 2023-06-16 杭州高特电子设备股份有限公司 一种对电池安全阀开启进行检测的电池
CN219203255U (zh) * 2022-12-19 2023-06-16 杭州高特电子设备股份有限公司 一种集合电池温度和安全阀检测的检测装置

Also Published As

Publication number Publication date
CN219203254U (zh) 2023-06-16
CN116183207A (zh) 2023-05-30
US20240339686A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
WO2024131636A1 (zh) 一种电池安全阀检测装置、电池和方法
JP4187685B2 (ja) 二次電池
WO2021218642A1 (zh) 漏液检测装置及其电池模组和电池包
KR100938896B1 (ko) 배터리 팩
JP2005332820A (ja) 電極組立体を有する二次電池
WO2024131634A1 (zh) 一种片状结构的电池漏液检测装置
CN219203255U (zh) 一种集合电池温度和安全阀检测的检测装置
WO2021101027A1 (ko) 전극 조립체 및 그의 제조 방법
WO2024067559A1 (zh) 电池托盘组件、电池包、车辆
US20050118499A1 (en) Secondary battery
WO2024131632A1 (zh) 一种检测金属外壳电池漏液的装置
KR20150045739A (ko) 이차 전지 모듈
WO2024103915A1 (zh) 电池及电子设备
KR100599748B1 (ko) 이차 전지와 이차 전지의 캡 조립체 및 이에 사용되는안전밸브 설치 방법
KR20040099525A (ko) 안전벤트를 가지는 각형 리튬 이차 전지
CN219067157U (zh) 锂电池的集流盘组件及锂电池
CN115483464A (zh) 一种锂电池及电池包
WO2018052186A1 (ko) 이차 전지
KR101243529B1 (ko) 리튬 이차전지
KR100551039B1 (ko) 이차 전지와 이에 사용되는 전극 조립체
KR20040026260A (ko) 각형 리튬이차 전지
KR20020078084A (ko) 안전변을 구비한 리튬 이차 전지 및 그 제조방법
KR100667944B1 (ko) 이차 전지와 이에 사용되는 안전밸브 설치 방법
CN220710546U (zh) 电池模组和电池包
CN116222896A (zh) 一种层状结构的电池漏液检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905801

Country of ref document: EP

Kind code of ref document: A1