WO2024131260A1 - 一种灌注系统 - Google Patents

一种灌注系统 Download PDF

Info

Publication number
WO2024131260A1
WO2024131260A1 PCT/CN2023/126121 CN2023126121W WO2024131260A1 WO 2024131260 A1 WO2024131260 A1 WO 2024131260A1 CN 2023126121 W CN2023126121 W CN 2023126121W WO 2024131260 A1 WO2024131260 A1 WO 2024131260A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
carrier
scraper
motion
perfusion system
Prior art date
Application number
PCT/CN2023/126121
Other languages
English (en)
French (fr)
Inventor
陈宾文
周生啟
黄远
颜平
刘龙
Original Assignee
苏州悦肤达医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州悦肤达医疗科技有限公司 filed Critical 苏州悦肤达医疗科技有限公司
Publication of WO2024131260A1 publication Critical patent/WO2024131260A1/zh

Links

Definitions

  • the invention relates to the technical field of mechanical equipment, and in particular to a perfusion system.
  • Polymer soluble microneedles are one of the main directions of current microneedle technology, and their application prospects in beauty care, skin care, and medical drug delivery are very broad.
  • Polymer soluble microneedles generally include a substrate and a needle body arranged on the substrate, wherein the needle body is used to pierce human skin, and the substrate remains on the surface of the skin.
  • Polymer soluble microneedles include integrated microneedles and split microneedles.
  • the substrate of the integrated microneedle is made of the same material as the needle body. The effective ingredients in the needle body can be quickly absorbed by the human body, while the effective ingredients in the substrate are difficult to be absorbed, resulting in waste.
  • the substrate of the split microneedle is made of a different material from the needle body, wherein the needle body contains effective ingredients, while the substrate does not.
  • the object of the present invention is to provide a perfusion system, aiming to improve the production efficiency of the needle body of a split microneedle and reduce the equipment cost.
  • the present invention provides a perfusion system for perfusing raw materials into a needle body forming cavity of a mold, wherein the mold comprises a mold body, wherein the mold body is provided with at least one forming area, wherein the forming area is provided with a plurality of needle body forming cavities arranged at intervals;
  • the perfusion system comprises:
  • a vacuum mechanism comprises a housing and a vacuum generator, wherein the housing has an inner cavity which is selectively isolated from or connected to the outside, and the vacuum generator is used to evacuate the inner cavity;
  • the platform mechanism comprises a first platform and a second platform, wherein the first platform and the second platform are both used to carry the mold; the first platform is arranged in the inner cavity, and the second platform is arranged outside the shell;
  • a liquid injection mechanism which is partially disposed in the inner cavity and is used to inject a raw material into the molding area of the mold located on the first carrier;
  • a transfer mechanism used to transfer the mold between the first carrier and the second carrier
  • the scraping mechanism is arranged outside the shell and is used for scraping the mold located on the second carrier.
  • the injection mechanism comprises an injection head, which is disposed in the inner cavity and is used to inject the raw material into the molding area;
  • the injection system also includes a first motion mechanism, which is used to drive the first carrier and the injection head to generate relative movement along a first direction and/or a second direction, so that the projection of the injection head on the mold is located within the molding area, and the first direction and the second direction are both horizontal directions, and the first direction is perpendicular to the second direction.
  • a first motion mechanism which is used to drive the first carrier and the injection head to generate relative movement along a first direction and/or a second direction, so that the projection of the injection head on the mold is located within the molding area, and the first direction and the second direction are both horizontal directions, and the first direction is perpendicular to the second direction.
  • the first motion mechanism is also used to drive the injection head to move in a vertical direction, so that the injection head moves closer to or farther away from the mold in the vertical direction.
  • the scraping mechanism includes a scraper assembly and a fourth motion assembly
  • the scraper assembly includes a scraper
  • the fourth motion assembly is connected to the scraper assembly and is used to drive the scraper to perform reciprocating linear motion along a third direction, and the third direction is a horizontal direction.
  • the fourth motion assembly is also used to drive at least a portion of the scraper assembly to move in a vertical direction.
  • the scraper assembly also includes a force monitoring module, which is connected to the scraper and is used to monitor the pressure between the scraper and the mold; the fourth motion component is also configured to drive at least part of the structure of the scraper assembly to move in a vertical direction according to the pressure monitored by the force monitoring module.
  • the scraper assembly further comprises a base; the base is connected to the fourth motion assembly; the force monitoring module comprises a guide shaft, a pressure sensor, a floating block, an elastic member and a coupling block;
  • the guide shaft is connected to the base and extends in a vertical direction, and the guide shaft is configured to be able to move in a vertical direction relative to the base;
  • the coupling block is connected to the guide shaft and remains relatively stationary with the guide shaft, and the coupling block is also connected to the scraper;
  • the floating block is sleeved on the guide shaft
  • the guide shaft is disposed on the guide shaft and can move in a vertical direction relative to the guide shaft;
  • the elastic member is disposed between the floating block and the engaging block; and the pressure sensor is disposed between the floating block and the base.
  • the perfusion system further comprises a recovery mechanism, and the recovery mechanism is used to recover the raw materials scraped out by the scraping mechanism.
  • the recovery mechanism includes a suction nozzle, a negative pressure generator and a liquid storage tank; the suction nozzle is used to suck the scraped raw materials; the negative pressure generator is connected to the suction nozzle and is used to generate negative pressure so that the suction nozzle sucks the raw materials; the liquid storage tank is connected to the suction nozzle and is used to store the raw materials sucked by the suction nozzle.
  • the suction nozzle sucks the raw material at a predetermined position
  • the recovery mechanism also includes a fifth motion component, which is connected to the suction nozzle and is used to drive the suction nozzle to reciprocate along a fourth direction to reach or deviate from the predetermined position.
  • the pouring system has at least a first transfer station and a scraping liquid recovery station, the first transfer station and the scraping liquid recovery station are located outside the shell;
  • the second carrier is provided with a mold placement position for placing the mold, and the pouring system further includes a second motion mechanism, the second motion mechanism is connected to the second carrier, and is used to drive the second carrier to move, so that the mold placement position can be selectively located at the first transfer station or the scraping liquid recovery station;
  • the transfer mechanism is used to transfer the mold between the first carrier and the mold placement position located at the first transfer station; the scraping mechanism is used to scrape the mold at the scraping recovery station.
  • the first transfer station and the scraper liquid recovery station are arranged at intervals around a rotation axis, and the second motion mechanism is used to drive the second carrier to rotate around the rotation axis; a plurality of the mold placement positions are provided on the second carrier, and the plurality of the mold placement positions are arranged at intervals around the rotation axis; when one of the plurality of the mold placement positions is located at the first transfer station, another one of the plurality of the mold placement positions is located at the scraper liquid recovery station.
  • the plurality of mold placement positions are arranged symmetrically around the center of the rotation axis, and the central angles corresponding to adjacent mold placement positions are equal to the central angles corresponding to the first transfer station and the scraping liquid recovery station.
  • the perfusion system has a second transfer station, which is located in the inner cavity;
  • the perfusion system includes a first motion mechanism, which is used to drive the first carrier to reciprocate along a first direction so that the first carrier reaches or deviates from the second transfer station, and the first direction is a horizontal direction;
  • the transfer mechanism is used to transfer the mold between the second carrier and the first carrier located at the second transfer station.
  • the transfer mechanism includes a clamp and a third motion component, wherein the third motion component is connected to the clamp and is used to drive the clamp to perform reciprocating linear motion along a first direction to enter or leave the inner cavity, and the third motion component is also used to drive the clamp to perform reciprocating linear motion along a vertical direction; the clamp is used to clamp the mold.
  • the third motion component is connected to the clamp and is used to drive the clamp to perform reciprocating linear motion along a first direction to enter or leave the inner cavity, and the third motion component is also used to drive the clamp to perform reciprocating linear motion along a vertical direction; the clamp is used to clamp the mold.
  • the perfusion system of the present invention has the following advantages:
  • the aforementioned perfusion system is used to perfuse raw materials into the needle body forming cavity of the mold, wherein the mold includes a mold body, and at least one forming area is provided on the mold body, and a plurality of the needle body forming cavities arranged at intervals are provided in the forming area;
  • the perfusion system includes a vacuum mechanism, a carrier mechanism, a liquid injection mechanism, a transfer mechanism and a liquid scraping mechanism;
  • the vacuum mechanism includes a shell and a vacuum generator, the shell has an inner cavity, the inner cavity is selectively isolated from or connected to the outside, and the vacuum generator is used to evacuate the inner cavity;
  • the carrier mechanism includes a first carrier and a second carrier, the first carrier and the second carrier are both used to carry the mold, the first carrier is arranged in the inner cavity, and the second carrier is arranged outside the shell;
  • the liquid injection mechanism is partially arranged in the inner cavity, and is used to inject raw materials into the forming area of the mold located on the first carrier;
  • the transfer mechanism is used
  • the injection system provided by the present invention only needs to provide raw materials to the molding area, and then the raw materials flow under the action of their own fluidity and penetrate into each needle body molding cavity, and finally the excess raw materials in the molding area are scraped off by the scraping mechanism, so that all the needle body molding cavities are filled with raw materials, and only the needle body is formed after vacuum drying without forming the base of the microneedle.
  • the injection system of the present invention does not need to accurately inject the mold hole by hole while automating the operation to improve production efficiency, so there is no need to use a precision filling valve, reducing equipment costs.
  • FIG1 is a schematic diagram of the structure of a perfusion system provided according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of the structure of a perfusion system according to an embodiment of the present invention, in which part of the structure is simplified;
  • FIG3 is a schematic structural diagram of a vacuum mechanism of a perfusion system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first carrier and a first motion assembly of a perfusion system provided by the present invention according to an embodiment
  • FIG. 5 is a schematic structural diagram of a liquid injection head and a second motion assembly of a liquid injection mechanism of a perfusion system according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a second carrier and a second motion mechanism of a perfusion system provided by the present invention according to an embodiment
  • FIG. 7 is a schematic structural diagram of a transfer mechanism of a perfusion system according to an embodiment of the present invention.
  • FIG8 is a schematic structural diagram of a liquid scraping mechanism of a perfusion system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a scraper assembly of a perfusion system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a recovery mechanism of a perfusion system according to an embodiment of the present invention.
  • 2000-carrier structure 2100-first carrier, 2101-positioning pin, 2200-second carrier, 2201-first mold placement position;
  • 4000-transfer mechanism 4100-clamping claw, 4200-third moving assembly, 4210-fifth mounting portion, 4220-fourth guiding mechanism, 4230-connecting arm, 4240-fourth driving portion, 4250-sixth mounting portion, 4260-fifth driving portion, 4270-seventh mounting portion, 4280-sixth driving portion;
  • 6000-recovery mechanism 6100-suction nozzle, 6200-liquid storage tank, 6300-fifth motion component, 6310-ninth mounting part, 6320-ninth driving part, 6400-base, 6600-fifth guide mechanism;
  • each embodiment of the following description has one or more technical features, but this does not mean that the user of the present invention must implement all the technical features in any embodiment at the same time, or can only implement part or all of the technical features in different embodiments separately.
  • those skilled in the art can selectively implement part or all of the technical features in any embodiment according to the disclosure of the present invention and according to the design specifications or implementation requirements, or selectively implement a combination of part or all of the technical features in multiple embodiments, thereby increasing the flexibility of the implementation of the present invention.
  • the singular forms “a”, “an”, and “the” include plural objects, and the plural form “a plurality” includes more than two objects, unless the context clearly indicates otherwise.
  • the term “or” is generally used in a sense including “and/or”, unless the context clearly indicates otherwise.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection of two elements or the interaction relationship between two elements. For ordinary technicians in this field, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the injection system provided in the embodiment of the present invention is used to inject raw materials into the needle body forming cavity of the needle body forming mold (not shown in the figure) of the split microneedle.
  • the needle body forming mold is directly referred to as the mold in the following text.
  • the mold includes a mold body, and at least one molding area is provided on the mold body, and the molding area is provided with a plurality of needle body molding cavities arranged at intervals.
  • FIG. 1 and FIG. 2 show a schematic diagram of the structure of the perfusion system provided by an embodiment of the present invention, wherein FIG. 2 simplifies some structures.
  • the perfusion system includes a vacuum mechanism 1000, a stage mechanism 2000, a liquid injection mechanism 3000, a transfer mechanism 4000 and a liquid scraping mechanism 5000.
  • the vacuum mechanism 1000 includes a shell 1100 and a vacuum generator 1200.
  • the shell 1100 has an inner cavity 1101, and the inner cavity 1101 is selectively isolated from or connected to the outside.
  • the vacuum generator 1200 is used to evacuate the inner cavity 1101.
  • the stage mechanism 2000 includes a first stage 2100 and a second stage 2200, and the first stage 2100 and the second stage 2200 are both used to carry the mold.
  • the first stage 2100 is arranged in the inner cavity 1101, and the second stage 2200 is arranged outside the shell 1100.
  • the injection mechanism 3000 is partially disposed in the inner cavity 1101 and is used to inject raw materials into the molding area of the mold located on the first carrier 2100.
  • the transfer mechanism 4000 is used to transfer the mold between the first carrier 2100 and the second carrier 2200.
  • the scraping mechanism 5000 is disposed outside the housing 1100 and is used to scrape the mold located on the second carrier 2200 and loaded with raw materials.
  • the transfer mechanism 4000 is used to place the mold on the first carrier 2100.
  • the vacuum generator 1200 is used to vacuum the mold.
  • the inner cavity 1101 is evacuated.
  • the raw material is injected into the molding area of the mold by the injection mechanism 3000.
  • the raw material is viscous and has a certain fluidity, so the raw material can flow and penetrate into each needle body molding cavity in the molding area.
  • the vacuum of the inner cavity 1101 is broken, and the mold is transferred to the second carrier 2200 by the transfer mechanism 4000.
  • the excess raw material in the molding area is scraped out by the scraping mechanism 5000.
  • the mold filled with raw materials can be transferred to a vacuum drying chamber for drying in any suitable manner, so that the raw material is solidified and formed to form a needle body.
  • the injection system provided in the embodiment of the present invention only needs to inject the raw material into the molding area without the need to inject it hole by hole.
  • the injection system of the present invention not only realizes automated operation, but also does not require the use of precision filling valves, thereby improving production efficiency while reducing production costs.
  • a window 1102 and a closing door 1110 are provided on the shell 1100.
  • the window 1102 is airtight.
  • the closing door 1110 is opened to release the closure of the window 1102, the inner cavity 1101 is connected to the outside at the window 1102.
  • the transfer mechanism 4000 can transfer the mold between the first carrier 2100 and the second carrier 2200 at the window 1102.
  • the perfusion system further comprises a recovery mechanism 6000 , and the recovery mechanism 6000 is used to recover the raw materials scraped out by the scraping mechanism 5000 .
  • the pouring system has a first transfer station A and a scraping liquid recovery station B, both of which are outside the housing 1100, and preferably at different positions, wherein the first transfer station A is located at the window 1102.
  • a mold placement position is provided on the second carrier 2200, which is referred to as a first mold placement position 2201.
  • the second carrier 2200 can be driven to move, thereby carrying the first mold placement position 2201 to move, so that the first mold placement position 2201 is located at the first transfer station A or at the scraping liquid recovery station B, so that the mold located at the first mold placement position 2201 can be transferred between the first transfer station A and the scraping liquid recovery station B.
  • the transfer mechanism 4000 can transfer the mold from the first stage 2100 to the first mold placement position 2201, or transfer the mold from the first mold placement position 2201 to the first stage 2100.
  • the scraping liquid mechanism 4000 can scrape the mold located at the first mold placement position 2201, and the recovery mechanism 6000 can recover the scraped raw materials.
  • the injection system further has a second transfer station C, which is in the inner cavity 1101 and located at the window 1102.
  • a second mold placement position (not shown) may be provided on the first carrier 2100, and the mold is used to be placed at the second mold placement position.
  • the first carrier 2100 may be driven to move so that the second mold placement position can reach or deviate from the second transfer station C, that is, the mold located at the second mold placement position can reach or deviate from the second transfer station C.
  • the transfer mechanism 4000 may transfer the mold from the first carrier 2100 to the second carrier 2200, or transfer the mold from the second carrier 2200 to the first carrier 2100. In other words, the transfer mechanism 4000 actually transfers the mold between the first mold placement position 2201 located at the first transfer station A and the second mold placement position located at the second transfer station C.
  • the first mold placement position 2201 can be a groove set on the second carrier 2200, the shape and size of the groove match the shape and size of the mold, the groove is used to accommodate the mold, and the mold is limited by the groove to prevent the mold from shifting on the second carrier 2200.
  • the mold should remain positioned on the first carrier 2100.
  • a positioning hole can be set on the mold, and a positioning pin 2101 can be set on the second mold placement position. When the mold is placed in the second mold placement position, the positioning pin 2101 is inserted into the positioning hole, and the cooperation between the positioning hole and the positioning pin is used to prevent the mold from shifting on the first carrier 2100.
  • FIG3 is a schematic diagram showing the structure of the vacuum mechanism 1000.
  • the housing 1100 It can be a hollow rectangular structure (i.e., a cube or a cuboid), or any other suitable shape.
  • the window 1102 is provided on a side wall of the shell 1100.
  • the embodiment of the present invention does not limit the structure of the closed door 1110, and it can adopt any suitable closed door in the prior art, as long as it can be opened and closed normally, and when the window 1102 is closed, it can ensure that there is no air leakage at the window 1102.
  • the vacuum generator 1200 can be a vacuum pump, and the vacuum generator 1200 can be arranged on the shell 1100.
  • a transparent observation window 1103 can be provided on the side wall of the shell 1100, so that the operator can observe the situation inside the inner cavity 1101 through the observation window 1103.
  • the vacuum mechanism 1000 also includes a vacuum breaking valve 1300, and the vacuum breaking valve 1300 is used to break the vacuum of the inner cavity 1101.
  • the vacuum breaker valve 1300 is disposed on the housing 1100 and communicated with the inner cavity 1101. When the inner cavity 1101 is evacuated and the inner cavity 1101 maintains a vacuum, the vacuum breaker valve 1300 is closed. When the vacuum breaker valve 1300 is opened, the inner cavity 1101 is vacuum-breakered. It can be understood that the vacuum breaker valve is an optional structure, and those skilled in the art can also use any other suitable method to break the vacuum of the inner cavity 1101.
  • the infusion system also includes a first motion mechanism (not marked in the figure), and the first motion mechanism includes a first motion component (not marked in the figure).
  • the first motion component is connected to the first carrier 2100 and is used to drive the first carrier 2100 to move along the first direction so that the second mold placement position of the first carrier 2100 can reach or deviate from the second transfer station C.
  • the first motion component can be installed on the housing 1100 through a first mounting portion 7010.
  • the first motion component includes a first drive portion 7110.
  • the first drive portion 7110 can be any suitable linear motion module in the prior art.
  • the first drive portion 7110 can include a motor, a screw and a screw nut.
  • the motor is arranged on the first mounting portion 7010, the screw is connected to the output end of the motor, the screw nut is sleeved on the screw, and the screw nut is connected to the first carrier 2100.
  • the first drive portion 7110 can be an electric telescopic rod or a pneumatic telescopic rod, or other linear motion modules, which is not limited in this embodiment of the present invention.
  • a second mounting portion 7020 can be provided on the first mounting portion 7010, and a first guide mechanism 7030 extending along the X direction is provided on the second mounting portion 7020.
  • the first carrier 2100 is arranged on the first guide mechanism 7030, The first stage 2100 performs reciprocating linear motion along the first guide mechanism 7030 driven by the first driving unit 7110 .
  • the first guide mechanism 7030 is a slide rail or a guide groove. Such a configuration can improve the motion stability of the first stage 2100 .
  • the injection mechanism 3000 includes an injection head 3100, and the injection head 3100 is located in the inner cavity 1101.
  • the injection mechanism 3000 also includes a raw material tank 3200, and the raw material tube 3200 is usually arranged outside the housing 1100.
  • the raw material tank 3200 stores raw materials, and the raw material tank 3200 is connected to the injection head 3100 through a pipeline. The raw materials arrive at the injection head 3100 through the pipeline, and then are injected into the molding area of the mold through the injection head 3100.
  • the first motion mechanism is also used to drive the first carrier 2100 and the injection head 3100 to generate relative movement along the first direction and/or the second direction, so that the projection of the injection head 3100 on the mold is located within the molding area, ensuring that the injection head 3100 can inject the raw material into the molding area.
  • the first direction and the second direction are both horizontal directions, and the first direction is perpendicular to the second direction.
  • the first motion mechanism is also used to drive the injection head 3100 to move in the vertical direction, so that the injection head 3100 is close to or away from the mold in the vertical direction.
  • the first direction is marked with X
  • the second direction is marked with Y
  • the third direction is marked with Z, so that the X direction involved in the following text is the first direction
  • the Y direction is the second direction
  • the Z direction is the third direction.
  • the first motion mechanism further includes a second motion assembly (not marked in the figure), which is connected to the injection head 3100 and is used to drive the injection head 3100 to reciprocate along the Y direction and/or to reciprocate linearly along the Z direction.
  • the second motion assembly includes a second drive unit 7210, a third mounting unit 7220 and a third drive unit 7230.
  • the second drive unit 7210 is mounted on the housing 1100 through the fourth mounting unit 7040, and the third mounting unit 7220 is connected to the second drive unit 7210 and is used to reciprocate linearly along the Y direction under the drive of the second drive unit 7210.
  • the third drive unit 7230 can be arranged on the third mounting unit 7220 and is directly or indirectly connected to the injection head 3100, and the third drive unit 7230 is used to drive the injection head 3100 to reciprocate linearly along the Z direction.
  • the second driving unit 7210 and the third driving unit 7230 may be any suitable linear motion modules in the prior art.
  • a second guide mechanism (not marked in the figure) may be provided on the fourth mounting portion 7040, and the second guide mechanism extends along the Y direction.
  • the third mounting portion 7220 is provided on the second guide mechanism and moves along the second guide mechanism.
  • a third guide mechanism (not marked in the figure) may be provided on the third mounting portion 7220, and the third guide mechanism extends along the vertical direction.
  • the injection head 3100 is provided on the third guide mechanism through a sliding plate 7240, and moves along the third guide mechanism. The provision of the second guide mechanism and the third guide mechanism can improve the movement stability of the injection head 3100.
  • the pouring system also includes a second motion mechanism 8000, which is connected to the second carrier 2200 and is used to drive the second carrier 2200 to move so that the first mold placement position 2201 can be selectively located at the first transfer station A or the scraping liquid recovery station B.
  • a second motion mechanism 8000 which is connected to the second carrier 2200 and is used to drive the second carrier 2200 to move so that the first mold placement position 2201 can be selectively located at the first transfer station A or the scraping liquid recovery station B.
  • the first transfer station A and the scraper recovery station B are arranged at intervals around a rotation axis S.
  • the second motion mechanism 8000 is used to drive the second carrier 2200 to rotate around the rotation axis S, so that the first mold placement position 2201 can be selectively located at the first transfer station A or the scraper recovery station B.
  • the second motion mechanism 8000 includes a motor, and the second carrier 2200 can be directly connected to the output shaft of the motor and driven to rotate by the motor.
  • the second stage 2200 is provided with a plurality of first mold placement positions 2201, and the plurality of first mold placement positions 2201 are arranged at intervals around the rotation axis S.
  • the plurality of first mold placement positions 2201 are located at the first transfer station A, another of the plurality of first mold placement positions 2201 is located at the scraping liquid recovery station B.
  • another mold can be scraped and recovered at the scraping liquid recovery station B, which is conducive to improving production efficiency.
  • a plurality of the first mold placement positions 2011 are arranged symmetrically around the rotation axis S, and the circumferential angles corresponding to adjacent first mold placement positions 2201 are equal to the central angles corresponding to the first transfer station A and the scraper recovery station B.
  • four first mold placement positions 2011 are provided on the second carrier 2200, and the central angles between adjacent first mold placement positions 2011 are 90°.
  • the central angle between the first mold transfer station A and the scraper recovery station B is also 90°. It can be understood that the central angle of a circle is a bad angle, and a bad angle refers to an angle less than 180°.
  • the injection system may also have a material unloading station D and a material loading station E, and the first transfer station A, the scraper recovery station B, the material unloading station D and the material loading station E are arranged in sequence around the rotation axis, and the central angle between any two of the stations is 90°.
  • the four processes of liquid injection, scraper recovery, material unloading and material loading can be performed simultaneously, that is, when the liquid injection operation is performed on one mold (at this time, one of the first mold placement positions 2201 is waiting at the first transfer station A), the mold located at another first mold placement position 2201 can perform the scraper recovery operation at the scraper recovery station B, the mold located at another first mold placement position 2201 can unload at the material unloading station D, and another first mold placement position 2201 can load at the material loading station E.
  • Such a setting can further shorten the production cycle and improve production efficiency.
  • the loading and unloading stations can be combined, and they can be at position D as shown in Figures 1 and 2, or at position E.
  • FIG7 shows a schematic diagram of the structure of the transfer mechanism 4000.
  • the transfer mechanism 4000 includes a clamp 4100 and a third motion component 4200.
  • the third motion component 4200 is connected to a fixing mechanism.
  • the embodiment of the present invention has no special restrictions on the fixing mechanism. It can be the shell 1100 or a component other than the perfusion system, as long as it is a fixing device.
  • the third motion component 4200 is connected to the clamp 4100 and is used to drive the clamp 4100 to move along the X direction to enter or leave the inner cavity 1101.
  • the third motion component 4200 is also used to drive the clamp 4100 to perform reciprocating linear motion in the vertical direction.
  • the third motion component 4200 is also used to control the clamp 4100 to clamp or release the mold.
  • the clamp 4100 includes two clamping members arranged opposite to each other.
  • the third moving component 4200 drives the two clamping members to move in directions approaching each other, the space between the two clamping members is reduced and the mold can be clamped.
  • the third moving component 4200 drives the two clamping members to move in directions away from each other, the space between the two clamping members is increased and the clamped mold is released.
  • the third movement assembly 4200 may include a fifth mounting portion 4210, a fourth The guide mechanism 4220, the connecting arm 4230, the fourth driving part 4240, the sixth mounting part 4250, the fifth driving part 4260, the seventh mounting part 4270 and the sixth driving part 4280.
  • the fifth mounting part 4210 is mounted on the fixing mechanism.
  • the fourth guide mechanism 4220 is arranged on the fifth mounting part 4210 and extends along the X direction.
  • the connecting arm 4230 is connected to the fourth guide mechanism 4220.
  • the fifth driving part 4240 can be arranged on the fifth mounting part 4210, the fifth driving part 4240 is connected to the connecting arm 4230, and drives the connecting arm 4230 to move along the X direction.
  • the sixth mounting part 4250 is connected to the connecting arm 4230, the fifth driving part 4260 is arranged on the sixth mounting part 4250, and the fifth driving part 4260 is connected to the seventh mounting part 4270, and is used to drive the seventh mounting part 4270 to do reciprocating linear motion in the vertical direction.
  • the clamping jaw 4100 and the sixth driving part 4280 are both disposed on the sixth mounting part 4270.
  • the sixth driving part 4280 is connected to the clamping jaw 4100 and is used to drive the two clamping members to move in a direction toward or away from each other. It should be understood that the embodiment of the present invention can also select any other suitable manipulator in the prior art as the transfer mechanism.
  • FIG8 shows a schematic diagram of the structure of the scraping mechanism 5000.
  • the scraping mechanism 5000 includes a scraper assembly 5100 and a fourth motion assembly 5200.
  • the scraper assembly 5100 includes a scraper 5110
  • the fourth motion assembly 5200 is connected to the scraper assembly 5100 and is used to drive the scraper assembly 5100 to reciprocate along the third direction, thereby driving the scraper 5110 to reciprocate along the third direction to scrape the mold.
  • the third direction is a horizontal direction.
  • the third direction can be an X direction, a Y direction, or other directions.
  • the fourth motion assembly 5200 is also used to drive at least part of the structure of the scraper assembly 5100 to move in a vertical direction, so that the scraper 5110 is close to or away from the mold in the vertical direction, and the pressure between the scraper 5110 and the mold can also be adjusted.
  • the fourth motion component 5200 includes a seventh driving part 5210, an eighth mounting part 5220 and an eighth driving part 5230.
  • the seventh driving part 5210 is mounted on a fixed structure in any suitable manner.
  • the fixed structure can be the shell 1100 or other mechanisms. As long as it is a stable structure, the embodiment of the present invention is not limited to this.
  • the eighth mounting part 5220 is connected to the seventh driving part 5210, and drives the seventh driving part 5210 to make reciprocating linear motion along the third direction.
  • the eighth driving part 5230 is arranged on the eighth mounting part 5220,
  • the eighth driving unit 5230 is connected to the scraper assembly 5100 in any suitable manner to drive at least a portion of the scraper assembly 5100 to reciprocate in the vertical direction.
  • the seventh driving unit 5210 and the eighth driving unit 5230 can be any suitable linear motion modules in the prior art.
  • the scraper assembly 5100 further includes a force monitoring module 5120, which is connected to the scraper 5110 and used to monitor the pressure between the scraper 5110 and the mold.
  • the fourth motion assembly 5200 is specifically the eighth driving unit 5230 configured to drive at least part of the structure of the scraper assembly 5100 to move in a vertical direction according to the pressure monitored by the force monitoring module 5120.
  • a standard pressure range can be pre-set, and the force monitoring module monitors the pressure value between the scraper 5110 and the mold. When the pressure value is within the standard pressure range, the eighth driving unit 5230 does not work.
  • the eighth driving unit 5230 starts and drives at least part of the structure of the scraper assembly 5100 to move upward, so that the pressure between the scraper 5110 and the mold is reduced and restored to within the standard pressure range.
  • the eighth driving unit 5230 starts and drives at least part of the structure of the scraper assembly 5100 to move downward, so that the pressure between the scraper 5110 and the mold increases and returns to the standard pressure range.
  • the scraper assembly further includes a base 5130, and the base 5130 is connected to the fourth motion assembly 5200, specifically the eighth drive unit 5230.
  • the force monitoring module 5120 includes a guide shaft 5121, a pressure sensor 5122, a floating block 5123, an elastic member 5124, and a coupling block 5125.
  • the guide shaft 5121 is connected to the base 5130 and extends in a vertical direction, and the guide shaft 5121 is configured to be able to move in a vertical direction relative to the base 5130.
  • a guide through hole (not marked in the figure) extending through in a vertical direction is provided on the base 5130, and the guide shaft 5121 is partially penetrated in the guide through hole.
  • the upper end of the guide shaft 5121 extends to the outside of the guide through hole, and a limit stopper is also formed on the upper end of the guide shaft 5121 ( FIG9 ). (not marked in the figure), the diameter of the limit baffle is larger than the diameter of the guide through hole, so that the guide shaft 5121 will not be separated from the base 5130 under the action of gravity.
  • the engaging block 5125 is connected to the guide shaft 5121 and remains relatively still with the guide shaft 5121.
  • the engaging block 5125 is also connected to the scraper 5110, and the engaging block 5125 and the scraper 5110 also remain relatively still.
  • the floating block 5123 is mounted on the guide shaft 5121 and can move in the vertical direction relative to the guide shaft 5121.
  • the elastic member 5124 is arranged between the floating block 5124 and the engaging block 5125.
  • the pressure sensor 5122 is arranged between the floating block 5123 and the base 5130.
  • the pressure between the scraper 5110 and the mold is sequentially transmitted to the elastic member 5124 through the scraper 5110 and the engaging block 5125, and then transmitted to the floating block 5123 by the elastic member 5124, and finally transmitted to the pressure sensor 5122 by the floating block 5123.
  • the base 5130 is driven to move upward by the eighth driving part 5230, thereby driving the guide shaft 5121, the engaging block 5125 and the scraper 5110 to move upward, thereby reducing the pressure between the scraper 5110 and the mold.
  • the base 5130 is driven to move downward by the eighth driving part 5230, so that the guide shaft 5121, the engaging block 5125 and the scraper 5110 move downward under the action of gravity, thereby increasing the pressure between the scraper 5110 and the mold.
  • FIG10 shows a schematic diagram of the structure of the recovery mechanism 6000.
  • the recovery mechanism 6000 includes a suction nozzle 6100, a liquid storage tank 6200 and a negative pressure generator (not shown in the figure).
  • the suction nozzle 6100 is used to suck the raw material scraped by the scraping mechanism 5000 at the scraping recovery station B.
  • the liquid storage tank 6200 is connected to the suction nozzle 6100 and is used to store the raw material sucked by the suction nozzle 6100.
  • the negative pressure generator is connected to the liquid storage tank 6200, and the negative pressure generator is used to generate negative pressure as a power when the suction nozzle 6100 sucks the raw material.
  • the negative pressure generator can be a vacuum pump.
  • the scraper 5110 scrapes the excess raw material on the mold to a predetermined position of the scraping liquid recovery station B, and the suction nozzle 6100 sucks the raw material at the predetermined position, and when the suction nozzle 6100 does not suck liquid, the suction nozzle 6100 can be moved away from the predetermined position.
  • the recovery mechanism 6000 also includes a fifth motion component 6300, which is connected to the suction nozzle 6100 and is used to drive the suction nozzle 6100 to reciprocate along the fourth direction so that The suction nozzle 6100 reaches or deviates from the predetermined position.
  • the fourth direction may be a horizontal direction, such as an X direction or a Y direction.
  • the recovery mechanism 6000 includes a base 6400 and a fifth guide mechanism 6500, the fifth guide mechanism 6500 is arranged on the base 6400 and extends along the fourth direction.
  • the fifth motion assembly 6300 includes a ninth mounting portion 6310 and a ninth drive portion 6320, the ninth mounting portion 6310 is arranged on the fifth guide mechanism 6500.
  • the ninth drive portion 6320 may be arranged on the base 6400, the ninth drive portion 6320 is connected to the ninth mounting portion 6310, and is used to drive the ninth mounting portion 6310 to perform reciprocating linear motion along the fifth guide mechanism 6500.
  • the suction nozzle 6100 is connected to the ninth mounting portion 6310, and the suction nozzle 6100 moves synchronously with the ninth mounting portion 6310.
  • the ninth drive portion 6320 may be any suitable linear motion module in the prior art.
  • the working process of the perfusion system is described by taking the example that the perfusion system has both a loading station E and an unloading station D.
  • one of the first mold placement positions 2201 is located at the loading station E.
  • the clamp 4100 is located above the first transfer station A, and the space between the two clamps 4100 is large enough to clamp the mold.
  • the closed door 1110 does not close the inner cavity 1101.
  • the second mold placement position is located at the second transfer station C.
  • the scraper 5110 of the scraper mechanism 5000 is located above the scraper recovery station C, and the suction nozzle 6100 is away from the predetermined position.
  • the working process is as follows:
  • an empty mold is placed on the first mold placement position 2201 located at the loading station E.
  • the second motion mechanism 8000 drives the second carrier 2200 to rotate so that the mold reaches the first transfer station A.
  • the third motion module 4200 drives the clamp 4100 to move downward until the two clamps are located on opposite sides of the mold. Then, the third motion module 4200 drives the two clamps to move toward each other and clamp the mold. Subsequently, the third motion module 4200 drives the clamp 4100 to move upward. And the third motion module 4200 drives the clamp 4100 to move along the X direction, so that the clamp 4100 enters the inner cavity 1101 and reaches above the second mold placement position. Afterwards, the third motion module 4200 drives the clamp 4100 to move downward. The mold is placed in the second mold placement position, and the positioning pin is inserted into the positioning hole. Then, the third motion module 4200 drives the two clamping members to move in a direction away from each other to release the mold. After that, the third motion module drives the clamping claw to move upward and move in the X direction and leave the inner cavity 1101.
  • the closed door 1110 closes the window 1102 to isolate the inner cavity 1101 from the outside.
  • the vacuum generator 1200 evacuates the inner cavity 1101 so that the vacuum degree of the inner cavity reaches a predetermined value.
  • the first motion mechanism 7000 drives the first stage 2100 and/or the injection head 3100 to move so that the projection of the injection head 3100 on the mold is located in the molding area.
  • the first motion mechanism 7000 also controls the injection head 3100 to move in the vertical direction according to actual conditions. Specifically, if the height of the injection head 3100 is too large (i.e., the distance from the injection head 3100 to the mold in the vertical direction is too large), the second drive unit 7130 is controlled to drive the injection head 3100 to move downward. If the height of the injection head 3100 is too small (i.e., the distance from the injection head 3100 to the mold in the vertical direction is too small), the second drive unit 7130 is controlled to drive the injection head 3100 to move upward.
  • the liquid injection operation is performed.
  • the first carrier 2100 and/or the liquid injection head 3100 can be controlled to move according to actual conditions so that the raw material injection work can be completed smoothly.
  • the third driving unit 7210 drives the first carrier 2100 to move, and at the same time, the first driving unit 7110 drives the injection head 3100 to move in the Y direction, so that the injection head 7210 performs trajectory injection in the molding area, and the trajectory of the raw material in the molding area is a curve. Then the raw material flows and penetrates into each needle body molding cavity in the molding area.
  • the reason for this is that although the raw material has a certain fluidity, its viscosity is large and the fluidity is poor.
  • the liquid injection method of this embodiment can be used in the liquid injection While the amount of material is as small as possible, it is also ensured that the raw material penetrates into all the needle body molding cavities.
  • the injection head 3100 can only be driven to move along the Y direction during the injection process. Conversely, if the size of the molding area in the Y direction is small and the size in the X direction is large, during the injection process, it is only necessary to control the first carrier 2100 to move along the X direction.
  • the entire injection process may include a plurality of intermittent sub-injection processes, and each sub-process injects liquid into one molding area.
  • the two molding areas are the first molding area and the second molding area.
  • the first molding area arrives below the injection head 3100 (that is, the projection of the injection head 3100 on the mold is located in the first molding area)
  • the first carrier 2100 and the injection head 3100 remain relatively still, and then the injection head 3100 injects the raw material into the first molding area.
  • the injection head 3100 is closed to stop the injection.
  • a sub-injection process ends.
  • the first carrier 2100 and/or the injection head 3100 are moved so that the second molding area arrives under the injection head 3100 (the projection of the injection head 3100 on the mold is located in the second molding area), and then the first carrier 2100 and the injection head 3100 are kept relatively still, and then the injection head 3100 is used to inject liquid into the second molding area to complete the second sub-injection process.
  • the vacuum breaking valve 1300 is opened to break the vacuum in the inner cavity 1101 .
  • the third driving unit 7210 drives the first carrier 2100 to move, so that the mold located at the second mold placement position arrives at the second transfer station C. And, the closed door 1110 is opened.
  • the transfer mechanism 4000 transfers the mold from the second mold placement position located at the second transfer station C to the first mold placement position located at the first transfer station A.
  • the third motion assembly 4200 drives the clamping jaw 4100 to move along the X direction and enter the inner cavity 1101, and then the third motion assembly 4200 drives the clamping jaw 4100 to move downward until the two clamping members are located on opposite sides of the mold.
  • the third motion assembly 4200 drives the two clamping members to move toward each other and clamp the mold.
  • the third motion module 4200 The clamping jaw 4100 is driven to move upward and in the X direction, so that the clamping jaw 4100 leaves the inner cavity 1101 and reaches above the first mold placement position.
  • the third motion module 4200 drives the clamping jaw 4100 to move downward, so that the mold is placed in the first mold placement position. Finally, the third motion mold 4200 drives the two clamping members to move in a direction away from each other and releases the mold. Then, the third motion module 4200 drives the clamping jaw 4100 to move upward.
  • the second motion mechanism 8000 drives the second carrier 2200 to rotate, so that the mold that has completed the liquid injection arrives at the scraping liquid recovery station B.
  • the fourth motion component 5200 drives the scraper component 5100 to move downward until the scraper 5110 contacts the mold, and then the fourth motion component 5200 drives the scraper component 5100 to move along the third direction, so that the scraper 5110 scrapes off the excess raw material on the mold.
  • the fifth motion component 6300 drives the suction nozzle 6100 to approach the predetermined position, and the negative pressure generator works so that the suction nozzle 6100 sucks the raw material scraped off by the scraper 5110. It can be understood that during the scraping process, the fourth motion component 5200 controls at least part of the structure of the scraper component 5100 to move in the vertical direction according to the pressure between the mold and the scraper 5110 monitored by the force monitoring module 5120.
  • the fourth moving assembly 5200 drives the scraper assembly 5100 to move upward to separate the scraper 5110 from the mold. Also, the fifth moving assembly 6300 drives the suction nozzle 6100 away from the predetermined position.
  • the second motion mechanism 8000 drives the second carrier 2200 to rotate, so that the mold that has completed the scraping liquid recovery work arrives at the unloading station D, and the mold is unloaded at the unloading station D.
  • the perfusion system may further include a controller (not shown in the figure), which is used to control all the above actions.

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明提供了一种灌注系统,用于将原料灌注至模具的针体成型腔,模具上设有至少一个成型区,成型区设有多个间隔布置的针体成型腔;灌注系统包括:真空机构,包括壳体和真空发生器,壳体具有内腔,真空发生器用于对内腔抽真空;载台机构,包括第一载台和第二载台,第一载台和第二载台均用于承载模具;第一载台设置在内腔中,第二载台设置在壳体外;注液机构,部分地设置在内腔中,并用于将原料注射至位于第一载台上的模具的成型区;转移机构,用于使模具在第一载台与第二载台之间转移;以及,刮液机构,设置在壳体外,用于对位于第二载台上模具进行刮液。该灌注系统在实现分体式微针的针体的自动化生产的前提下,还提高生产效率,降低设备成本。

Description

一种灌注系统 技术领域
本发明涉及机械设备技术领域,具体涉及一种灌注系统。
背景技术
聚合物可溶微针是当前微针技术的主要方向之一,其在美容护肤、医疗给药方面的应用前景十分广阔。聚合物可溶微针一般包括基底和设置在基底上的针体,其中针体用于刺入人体皮肤,基底留于皮肤表层。聚合物可溶微针包括一体式微针和分体式微针。一体式微针基底与针体的材质相同,针体内的有效成分能够迅速被人体吸收,而基底中的有效成分则难以被吸收,造成了浪费。分体式微针的基底与针体的材质不同,其中针体中包含有效成分,而基底则不包含有效成分。分体式微针的出现一方面降低了其原料成本,避免有效成分的浪费,另一方面提高了人体对有效成分吸收的一致性和稳定性。
现有技术中,通常采用手动操作或采用精密灌装阀对模具的针体成型腔进行逐孔灌注,以完成针体的生产。手动操作的效率低下,采用精密灌装阀不仅存在效率低的问题,还提高了设备成本。
发明内容
本发明的目的在于提供一种灌注系统,旨在提高分体式微针的针体的生产效率,并降低设备成本。
为实现上述目的,本发明提供了一种灌注系统,用于将原料灌注至模具的针体成型腔,所述模具包括模体,所述模体上设有至少一个成型区,所述成型区设有多个间隔布置的所述针体成型腔;所述灌注系统包括:
真空机构,包括壳体和真空发生器,所述壳体具有一内腔,所述内腔选择性地与外界隔离或连通,所述真空发生器用于对所述内腔抽真空;
载台机构,包括第一载台和第二载台,所述第一载台和所述第二载台均用于承载所述模具;所述第一载台设置在所述内腔中,所述第二载台设置在所述壳体外;
注液机构,部分地设置在所述内腔中,并用于将原料注射至位于所述第一载台上的所述模具的所述成型区;
转移机构,用于使所述模具在所述第一载台与所述第二载台之间转移;以及,
刮液机构,设置在所述壳体外,并用于对位于所述第二载台上的模具进行刮液。
可选地,所述注液机构包括注液头,所述注液头设置在所述内腔中,并用于将原料注射至所述成型区;
所述灌注系统还包括第一运动机构,所述第一运动机构用于驱使所述第一载台与所述注液头之间产生沿第一方向和/或第二方向的相对运动,以使得所述注液头在所述模具上的投影位于所述成型区内,所述第一方向与所述第二方向均为水平方向,且所述第一方向与所述第二方向垂直。
可选地,所述第一运动机构还用于驱使所述注液头沿竖直方向运动,以使得所述注液头在竖直方向上靠近或远离所述模具。
可选地,所述刮液机构包括刮板组件和第四运动组件,所述刮板组件包括刮板;所述第四运动组件与所述刮板组件连接,并用于驱使所述刮板沿第三方向做往复直线运动,所述第三方向为水平方向。
可选地,所述第四运动组件还用于驱使所述刮板组件的至少部分结构沿竖直方向运动。
可选地,所述刮板组件还包括力监测模块,所述力监测模块与所述刮板连接,并用于监测所述刮板与所述模具之间的压力;所述第四运动组件还被配置为能够根据所述力监测模块所监测的压力驱使所述刮板组件的至少部分结构沿竖直方向运动。
可选地,所述刮板组件还包括基座;所述基座与所述第四运动组件连接;所述力监测模块包括导向轴、压力传感器、浮动块、弹性件和接合块;所述导向轴与所述基座连接,并沿竖直方向延伸,所述导向轴被配置为能够相对于所述基座沿竖直方向运动;所述接合块与所述导向轴连接,并与所述导向轴保持相对静止,所述接合块还与所述刮板连接;所述浮动块套装在所述导 向轴上,并能够相对于所述导向轴在竖直方向上运动;所述弹性件设置在所述浮动块与所述接合块之间;所述压力传感器设置所述浮动块与所述基座之间。
可选地,所述灌注系统还包括回收机构,所述回收机构用于回收经所述刮液机构刮出的原料。
可选地,所述回收机构包括吸嘴、负压发生器和储液罐;所述吸嘴用于吸取刮出的原料;所述负压发生器与所述吸嘴连接,并用于产生负压,以使所述吸嘴吸取原料;所述储液罐与所述吸嘴连接,并用于存储所述吸嘴吸取的原料。
可选地,所述吸嘴在预定位置处吸取原料;所述回收机构还包括第五运动组件,所述第五运动组件与所述吸嘴连接,并用于驱使所述吸嘴沿第四方向做往复运动,以抵达或偏离所述预定位置。
可选地,所述灌注系统至少具有第一转运工位和刮液回收工位,所述第一转运工位和所述刮液回收工位位于所述壳体外;所述第二载台上设有用于放置模具的模具放置位,所述灌注系统还包括第二运动机构,所述第二运动机构与所述第二载台连接,并用于驱使所述第二载台运动,以使所述模具放置位能够选择性地位于所述第一转运工位或所述刮液回收工位处;
所述转移机构用于使所述模具在所述第一载台和位于所述第一转运工位处的所述模具放置位之间转移;所述刮液机构用于在所述刮液回收工位处对所述模具进行刮液。
可选地,所述第一转运工位与所述刮液回收工位围绕一旋转轴线间隔布置,所述第二运动机构用于驱使所述第二载台绕所述旋转轴线旋转;所述第二载台上设有多个所述模具放置位,多个所述模具放置位围绕所述旋转轴线间隔布置;多个所述模具放置位中的一个位于所述第一转运工位时,多个所述模具放置位中的另一个位于所述刮液回收工位。
可选地,多个所述模具放置位围绕所述旋转轴线中心对称地布置,且相邻的所述模具放置位所对应的圆心角的角度与所述第一转运工位及所述刮液回收工位所对应的圆心角的角度相等。
可选地,所述灌注系统具有第二转运工位,所述第二转运工位位于所述内腔中;所述灌注系统包括第一运动机构,所述第一运动机构用于驱使所述第一载台沿第一方向往复运动,以使所述第一载台抵达或偏离所述第二转运工位,所述第一方向为水平方向;
所述转移机构用于使所述模具在所述第二载台和位于所述第二转运工位处的所述第一载台之间转移。
可选地,所述转移机构包括夹爪和第三运动组件,所述第三运动组件与所述夹爪连接,并用于驱使所述夹爪沿第一方向做往复直线运动以进入或离开所述内腔,所述第三运动组件还用于驱使所述夹爪沿竖直方向做往复直线运动;所述夹爪用于夹持所述模具。
与现有技术相比,本发明的灌注系统具有如下优点:
前述的灌注系统用于将原料灌注至模具的针体成型腔,所述模具包括模体,所述模体上设有至少一个成型区,所述成型区内设有多个间隔布置的所述针体成型腔;所述灌注系统包括真空机构、载台机构、注液机构、转移机构及刮液机构;所述真空机构包括壳体和真空发生器,所述壳体具有一内腔,所述内腔选择性地与外界隔离或连通,所述真空发生器用于对所述内腔抽真空;所述载台机构包括第一载台和第二载台,所述第一载台和所述第二载台均用于承载模具,所述第一载台设置在所述内腔中,所述第二载台设置在所述壳体外;所述注液机构部分地设置在所述内腔中,并用于将原料注射至位于所述第一载台上的模具的成型区;所述转移机构用于使所述模具在所述第一载台与所述第二载台之间转移;所述刮液机构设置在所述壳体外,并用于对位于所述第二载台上的模具进行刮液。本发明所提供的灌注系统只需要向所述成型区提供原料,然后原料在其自身流动性的作用下流动而渗入各个针体成型腔,最后经所述刮液机构刮除所述成型区的多余的原料,就可以使得所有的所述针体成型腔内填充有原料,并且在真空干燥之后只形成针体而不会形成微针的基底。也就是说,本发明的灌注系统在自动化操作以提高生产效率的同时,还无需精确地对模具进行逐孔灌注,因而无需使用精密灌装阀,降低设备成本。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是本发明根据一实施例所提供的灌注系统的结构示意图;
图2是本发明根据一实施例所提供的灌注系统的结构示意图,图示中对部分结构进行了简化处理;
图3是本发明根据一实施例所提供的灌注系统的真空机构的结构示意图;
图4是本发明根据一实施例所提供的灌注系统的第一载台及第一运动组件的结构示意图;
图5是本发明根据一实施例所提供的灌注系统的注液机构的注液头及第二运动组件的结构示意图;
图6是本发明根据一实施例所提供的灌注系统的第二载台及第二运动机构的结构示意图;
图7是本发明根据一实施例所提供的灌注系统的转移机构的结构示意图。
图8是本发明根据一实施例所提供的灌注系统的刮液机构的结构示意图;
图9是本发明根据一实施例所提供的灌注系统的刮板组件的结构示意图;
图10是本发明根据一实施例所提供的灌注系统的回收机构的结构示意图;
附图中:
1000-真空机构,1100-壳体,1200-真空发生器,1300-破真空阀,1101-内腔,1102-窗口,1103-观察窗,1110-封闭门;
2000-载台结构,2100-第一载台,2101-定位销,2200-第二载台,2201-第一模具放置位;
3000-注液机构,3100-注液头,3200-原料罐,
4000-转移机构,4100-夹爪,4200-第三运动组件,4210-第五安装部,4220-第四导向机构,4230-连接臂,4240-第四驱动部,4250-第六安装部,4260-第五驱动部,4270-第七安装部,4280-第六驱动部;
5000-刮液机构,5100-刮板组件,5110-刮板,5120-力监测模块,5121- 导向轴、5122-压力传感器,5123-浮动块,5124-弹性件,5125-接合块,5130-基座,5200-第四运动组件,5210-第七驱动部,5220-第八安装部,5230-第八驱动部,
6000-回收机构,6100-吸嘴,6200-储液罐,6300-第五运动组件,6310-第九安装部,6320-第九驱动部,6400-底座,6600-第五导向机构;
7110-第一驱动部,7210-第二驱动部,7220-第三安装部,7230-第三驱动部,7010-第一安装部,7020-第二安装部,7030-第一导向机构,7040-第四安装部;
8000-第二运动机构。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,以下说明内容的各个实施例分别具有一或多个技术特征,然此并不意味着使用本发明者必需同时实施任一实施例中的所有技术特征,或仅能分开实施不同实施例中的一部或全部技术特征。换句话说,在实施为可能的前提下,本领域技术人员可依据本发明的公开内容,并视设计规范或实作需求,选择性地实施任一实施例中部分或全部的技术特征,或者选择性地实施多个实施例中部分或全部的技术特征的组合,借此增加本发明实施时的弹性。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,复数形式“多个”包括两个以上的对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内 容另外明确指出外,以及术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。附图中相同或相似的附图标记代表相同或相似的部件。
本发明实施例所提供的灌注系统用于将原料灌注至分体式微针的针体成型模具(图中未示出)的针体成型腔。为简明起见,后文中直接将所述针体成型模具称之为模具。所述模具包括模体,所述模体上设有至少一个成型区,所述成型区设有多个间隔布置的所述针体成型腔。
图1及图2示出了本发明一实施例所提供的灌注系统的结构示意图,其中,图2对部分结构进行了简化处理。如图1及图2所示,所述灌注系统包括真空机构1000、载台机构2000、注液机构3000、转移机构4000及刮液机构5000。所述真空机构1000包括壳体1100和真空发生器1200。所述壳体1100具有一内腔1101,所述内腔1101选择性地与外界隔离或连通。所述真空发生器1200用于对所述内腔1101抽真空。所述载台机构2000包括第一载台2100和第二载台2200,所述第一载台2100和所述第二载台2200均用于承载所述模具。所述第一载台2100设置在所述内腔1101中,所述第二载台2200设置在所述壳体1100外。所述注液机构3000部分地设置在所述内腔1101中,并用于向位于所述第一载台2100上的所述模具的成型区注射原料。所述转移机构4000用于使所述模具在所述第一载台2100与所述第二载台2200之间转移。所述刮液机构5000设置在所述壳体1100外,用于对位于所述第二载台2200上且已经装载有原料的所述模具进行刮液。
工作时,利用所述转移机构4000将所述模具放置在所述第一载台2100上。在所述内腔1101与外界隔离的情况下,通过所述真空发生器1200对所 述内腔1101抽真空。待所述内腔1101的真空度满足要求时,利用所述注液机构3000将原料注射至所述模具的所述成型区。原料为粘稠状,并具有一定的流动性,因此原料可以流动并渗入所述成型区的各个针体成型腔内。之后对所述内腔1101破真空,并由所述转移机构4000将所述模具转移至所述第二载台2200上。通过所述刮液机构5000刮出所述成型区处多余的原料。在此之后,可以采用任意合适的方式将已灌注原料的所述模具转移至真空干燥室进行干燥处理,以使得原料固化成型,形成针体。也就是说,本发明实施例所提供的灌注系统只需要将原料注射至所述成型区而无需逐孔进行灌注。换言之,本发明的所述灌注系统不仅实现自动化操作,还无需使用精密灌装阀,提高生产效率的同时降低生产成本。
需要说明的是,所述壳体1100上设置有窗口1102和封闭门1110,当所述封闭门1110封闭所述窗口1102时,所述窗口1102不漏气,当所述封闭门1110打开以解除对所述窗口1102的封闭时,所述内腔1101在所述窗口1102处与外界连通,此时所述转移机构4000可以在所述窗口1102处使所述模具在所述第一载台2100与所述第二载台2200之间转移。
进一步地,所述灌注系统还包括回收机构6000,所述回收机构6000用于回收经所述刮液机构5000刮出的原料。
进一步地,所述灌注系统具有第一转运工位A和刮液回收工位B,所述第一转运工位A和所述刮液回收工位B均在所述壳体1100的外部,且优选两者的位置不同,其中所述第一转运工位A位于所述窗口1102处。所述第二载台2200上设有模具放置位,该模具放置位被称之为第一模具放置位2201,所述第二载台2200能够被驱使以运动,进而携带所述第一模具放置位2201运动,以使得所述第一模具放置位2201处于所述第一转运工位A或处于所述刮液回收工位B,从而使得位于所述第一模具放置位2201处的所述模具可以在所述第一转运工位A与所述刮液回收工位B之间转移。
当所述第一模具放置位2201位于所述第一转运工位A处时,所述转移机构4000可以将模具从所述第一载台2100转移至所述第一模具放置位2201,或者将所述模具从所述第一模具放置位2201转移至所述第一载台2100。当所 述第一模具放置位2201位于所述刮液回收工位B时,所述刮液机构4000可以对位于所述第一模具放置位2201的模具刮液,以及所述回收机构6000可以对刮出的原料进行回收。
可选地,所述灌注系统还具有第二转运工位C,所述第二转运工位C在所述内腔1101中,并位于所述窗口1102处。所述第一载台2100上可设置第二模具放置位(图中未示出),所述模具用于放置在所述第二模具放置位。所述第一载台2100可以被驱使而运动,以使所述第二模具放置位能够抵达或偏离所述第二转运工位C,也即位于所述第二模具放置位的所述模具能够抵达或偏离所述第二转运工位C。当所述第一载台2100的所述第二模具放置位位于所述第二转运工位B时,所述转移机构4000可以将所述模具从所述第一载台2100转移至所述第二载台2200,或者将所述模具从所述第二载台2200转移至所述第一载台2100。换句话说,所述转移机构4000实际上是使所述模具在位于所述第一转运工位A处的所述第一模具放置位2201与位于所述第二转运工位C处的所述第二模具放置位之间转移。
需要说明的是,当所述模具被放置在所述第一模具放置位2201时,所述模具应在所述第二载台2200保持定位。为此,所述第一模具放置位2201可以为设置在所述第二载台2200上的凹槽,所述凹槽的形状及尺寸与所述模具的形状及尺寸相匹配,所述凹槽用于容纳所述模具,利用所述凹槽对所述模具限位,可以避免所述模具在所述第二载台2200上移位。同样地,当所述模具被放置在所述第二模具放置位时,所述模具应在所述第一载台2100上保持定位。为实现此目的,所述模具上可设置定位孔,同时所述第二模具放置位上可设置定位销2101,当所述模具被放置在所述第二模具放置位时,所述定位销2101插入所述定位孔,利用所述定位孔与所述定位销的配合来避免所述模具在所述第一载台2100上移位。
接下去,本文将结合附图对所述灌注系统的一个具体实施例做详细介绍。需要说明的是,以下描述的结构仅仅是所述灌注系统的一种可选构造,其并不是唯一的构造,因而不应对本发明构成不当限定。
图3示出所述真空机构1000的结构示意图。如图3所示,所述壳体1100 可为中空的矩体结构(即正方体或长方体),当然也可以是其他任意合适的形状。所述壳体1100的一个侧壁上设有所述窗口1102。本发明实施例对所述封闭门1110的结构没有限定,其可以采用现有技术中任一种合适的封闭门,只要其能够正常启闭,且在封闭所述窗口1102时保证所述窗口1102处不漏气即可。所述真空发生器1200可以是真空泵,所述真空发生器1200可设置在所述壳体1100上。此外,所述壳体1100的侧壁上还可以设有透明的观察窗1103,以便于操作人员透过所述观察窗1103观察所述内腔1101内部的情况。以及,所述真空机构1000还包括破真空阀1300,所述破真空阀1300用于对所述内腔1101破真空。所述破真空阀1300设置在所述壳体1100上,并与所述内腔1101连通,当所述内腔1101被抽真空以及所述内腔1101维持真空时,所述破真空阀1300关闭。当所述破真空阀1300打开时,所述内腔1101破真空。可以理解,所述破真空阀是一种可选择的结构,本领域技术人员也可以采用其他任意合适的方式来使所述内腔1101破真空。
请参考图4,所述灌注系统还包括第一运动机构(图中未标注),所述第一运动机构包括第一运动组件(图中未标注),所述第一运动组件与所述第一载台2100连接,并用于驱使所述第一载台2100沿第一方向运动,以使得所述第一载台2100的所述第二模具放置位能够抵达或偏离所述第二转运工位C。
请返回参考图4,所述第一运动组件可通过第一安装部7010安装在所述壳体1100上。所述第一运动组件包括第一驱动部7110,所述第一驱动部7110可以是现有技术中任意合适的直线运动模块,在一个示范性的实现方式中,所述第一驱动部7110可以包括电机、丝杆和丝杆螺母,所述电机设置在所述第一安装部7010上,所述丝杆与所述电机的输出端连接,所述丝杆螺母套设在所述丝杆上,且所述丝杆螺母与所述第一载台2100连接。在替代性的实现方式中,所述第一驱动部7110可以是电动伸缩杆或气动伸缩杆,或其他的直线运动模块,本发明实施例对此不做限定。进一步地,所述第一安装部7010上还可以设置第二安装部7020,所述第二安装部7020上设有沿X方向延伸的第一导向机构7030。所述第一载台2100设置在所述第一导向机构7030上, 所述第一载台2100在所述第一驱动部7110的驱使下沿所述第一导向机构7030做往复直线运动,所述第一导向机构7030是滑轨或导槽。这样的设置,可以提高所述第一载台2100的运动平稳性。
请返回参考图1并结合图5,所述注液机构3000包括注液头3100,所述注液头3100位于所述内腔1101中。所述注液机构3000还包括原料罐3200,所述原料管3200通常设置在所述壳体1100的外部。所述原料罐3200中存储有原料,所述原料罐3200通过管道与所述注液头3100连接,原料经由管道抵达所述注液头3100,进而通过所述注液头3100注射至所述模具的所述成型区。
所述第一运动机构还用于驱使所述第一载台2100与所述注液头3100之间产生沿第一方向和/或第二方向的相对运动,以使得所述注液头3100在所述模具上的投影位于所述成型区内,确保所述注液头3100能够将原料注射至所述成型区。所述第一方向与所述第二方向均为水平方向,且所述第一方向与所述第二方向垂直。进一步地,所述第一运动机构还用于驱使所述注液头3100沿竖直方向运动,以使得所述注液头3100在竖直方向上靠近或远离所述模具。图示中,以X标识所述第一方向,以Y标识所述第二方向,以Z标识所述第三方向,从而后文中涉及的X方向即为所述第一方向,Y方向即为所述第二方向,Z方向即为所述第三方向。
由此,所述第一运动机构还包括第二运动组件(图中未标注),所述第二运动组件与所述注液头3100连接,并用于驱使所述注液头3100沿Y方向做往复运动和/或沿Z方向做往复直线运动。可选地,所述第二运动组件包括第二驱动部7210、第三安装部7220和第三驱动部7230。所述第二驱动部7210通过第四安装部7040安装于所述壳体1100上,所述第三安装部7220与所述第二驱动部7210连接,并用于在所述第二驱动部7210的驱使下沿Y方向做往复直线运动。所述第三驱动部7230可设置在所述第三安装部7220上,并直接或间接地与所述注液头3100连接,所述第三驱动部7230用于驱使所述注液头3100沿Z方向做往复直线运动。所述第二驱动部7210及所述第三驱动部7230可以是现有技术中任意合适的直线运动模块。
此外,所述第四安装部7040上设可设置第二导向机构(图中未标注),所述第二导向机构沿Y方向延伸。所述第三安装部7220设置在所述第二导向机构上,并沿所述第二导向机构运动。以及,所述第三安装部7220上可设置第三导向机构(图中未标注),所述第三导向机构沿竖直方向延伸。本实施例中,所述注液头3100通过一滑动板7240设置在所述第三导向机构上,并沿所述第三导向机构运动。所述第二导向机构及所述第三导向机构的设置可以提高所述注液头3100的运动平稳性。
如图6所示,所述灌注系统还包括第二运动机构8000,所述第二运动机构8000与所述第二载台2200连接,并用于驱使所述第二载台2200运动,以使得所述第一模具放置位2201能够选择性地位于所述第一转运工位A或所述刮液回收工位B处。
可选地,所述第一转运工位A与所述刮液回收工位B围绕一旋转轴线S间隔布置。所述第二运动机构8000用于驱使所述第二载台2200绕所述旋转轴线S旋转,以使得所述第一模具放置位2201可以选择性地位于所述第一转运工位A或所述刮液回收工位B。所述第二运动机构8000包括电机,所述第二载台2200可直接与所述电机的输出轴连接,并被所述电机驱动旋转。
较佳地,所述第二载台2200上设有多个所述第一模具放置位2201,多个所述第一模具放置位2201围绕所述旋转轴线S间隔布置,当多个所述第一模具放置位2201中的一个位于所述第一转运工位A时,多个所述第一模具放置工位2201的另一个位于所述刮液回收工位B。如此一来,当一个所述模具在所述真空系统1000内进行注液时,另一个所述模具可以在所述刮液回收工位B处进行刮液及回收操作,这有利于提高生产效率。
可选地,多个所述第一模具放置位2011围绕所述旋转轴线S中心对称地布置,且相邻的所述第一模具放置位2201所对应的圆周角的角度与所述第一转运工位A及所述刮液回收工位B所对应的圆心角的角度相等。如图6所示,在一种可选的设计中,所述第二载台2200上设有四个所述第一模具放置位2011,相邻的所述第一模具放置位2011之间的圆心角为90°,与之对应地,所述第一模具转运工位A与所述刮液回收工位B之间的圆心角也为90°。可 以理解,圆心角是劣角,劣角是指小于180°的角。
进一步地,当所述第二载台2200上设有四个所述第一模具放置位2201,且所述灌注系统采用机械化的方式对所述模具进行上下料时,所述灌注系统还可以具有下料工位D和上料工位E,所述第一转运工位A、所述刮液回收工位B、所述下料工位D和所述上料工位E围绕所述旋转轴线依次布置,且任意两个所述工位之间的圆心角为90°。如此,注液、刮液回收、下料、上料四个过程可同步进行,也即,在对一个所述模具执行注液操作(此时一个所述第一模具放置位2201在所述第一转运工位A处等候)时,位于另一个所述第一模具放置位2201处的所述模具可在所述刮液回收工位B处进行刮液回收操作,位于再一个所述第一模具放置位2201处的所述模具可在所述下料工位D处下料,以及又一个所述第一模具放置位2201可在所述上料工位E处上料。这样的设置能够进一步缩短生产节拍,提高生产效率。
可以理解,若由操作人员手动上下料,从方便工作及节省人员配置的角度来说,上料工位和下料工位可合并,其可以在如图1及图2所示的D位置,也可以在E位置。
图7示出了所述转移机构4000的结构示意图。如图7所述,所述转移机构4000包括夹爪4100和第三运动组件4200。所述第三运动组件4200与一固定机构连接,本发明实施例对所述固定机构没有特殊限制,其可以是所述壳体1100,也可以是所述灌注系统以外的构件,只要其是一固定装置即可。所述第三运动组件4200与所述夹爪4100连接,并用于驱使所述夹爪4100沿X方向运动以进入或离开所述内腔1101。所述第三运动组件4200还用于驱使所述夹爪4100沿竖直方向做往复直线运动。此外,所述第三运动组件4200还用于控制所述夹爪4100夹持或放开所述模具。可以理解,所述夹爪4100包括相对设置的两个夹持件,当所述第三运动组件4200驱使两个所述夹持件沿相互靠近的方向运动时,两个所述夹持件之间的空间减小,并可以夹持住所述模具,当所述第三运动组件4200驱使两个所述夹持件沿相互远离的方向运动时,两个所述夹持件之间的空间增大,并放开被夹持的所述模具。
请继续参考图7,所述第三运动组件4200可包括第五安装部4210、第四 导向机构4220、连接臂4230、第四驱动部4240、第六安装部4250、第五驱动部4260、第七安装部4270和第六驱动部4280。所述第五安装部4210安装于所述固定机构上。所述第四导向机构4220设置在所述第五安装部4210上并沿X方向延伸。所述连接臂4230与所述第四导向机构4220连接。所述第五驱动部4240可设置在所述第五安装部4210上,所述第五驱动部4240与所述连接臂4230连接,并驱使所述连接臂4230沿X方向运动。所述第六安装部4250与所述连接臂4230连接,所述第五驱动部4260设置在所述第六安装部4250上,且所述第五驱动部4260与所述第七安装部4270连接,并用于驱使所述第七安装部4270沿竖直方向做往复直线运动。所述夹爪4100及所述第六驱动部4280均设置在所述第六安装部4270上,所述第六驱动部4280与所述夹爪4100连接,并用于驱使两个所述夹持件沿相互靠近或相互远离的方向运动。应理解,本发明实施例也可以选用现有技术中其他任意合适的机械手作为所述转移机构。
图8示出了所述刮液机构5000的结构示意图。如图8所示,所述刮液机构5000包括刮板组件5100和第四运动组件5200。所述刮板组件5100包括刮板5110,所述第四运动组件5200与所述刮板组件5100连接,并用于驱使所述刮板组件5100沿所述第三方向做往复运动,进而带动所述刮板5110沿第三方向做往复直线运动,以对所述模具进行刮液。所述第三方向为水平方向,于本发明实施例中,所述第三方向可以是X方向,也可以是Y方向,也可以是其他方向。进一步地,所述第四运动组件5200还用于驱使所述刮板组件5100的至少部分结构沿竖直方向运动,以使所述刮板5110在竖直方向上靠近或远离所述模具,且还可以调整所述刮板5110与所述模具之间的压力。
请继续参考图8,所述第四运动组件5200包括第七驱动部5210、第八安装部5220和第八驱动部5230。所述第七驱动部5210通过任意合适的方式安装于一固定结构上,所述固定结构可以是所述壳体1100,也可以是其他机构,只要其为以稳定结构即可,本发明实施例对此不作限定。所述第八安装部5220与所述第七驱动部5210连接,并在所述第七驱动部5210驱使下沿所述第三方向做往复直线运动。所述第八驱动部5230设置在所述第八安装部5220上, 且所述第八驱动部5230通过任意合适的方式与所述刮板组件5100连接,以用于驱使所述刮板组件5100的至少部分结构沿竖直方向做往复运动。所述第七驱动部5210和所述第八驱动部5230可以是现有技术中任意合适的直线运动模块。
请参考图9,所述刮板组件5100还包括力监测模块5120,所述力监测模块5120与所述刮板5110连接,并用于监测所述刮板5110与所述模具之间的压力。所述第四运动组件5200具体是所述第八驱动部5230被配置为根据所述力监测模块5120所监测的所述压力驱使所述刮板组件5100的至少部分结构沿竖直方向运动。具体是,可以预先设定一标准压力范围,所述力监测模块监测所述刮板5110与所述模具之间的压力值。当所述压力值在所述标准压力范围内时,所述第八驱动部5230不工作。当所述压力值大于所述标准压力范围的最大值时,所述第八驱动部5230启动并驱使所述刮板组件5100的至少部分结构向上运动,以使得所述刮板5110与所述模具之间的压力减小并恢复至所述标准压力范围内。当所述压力值小于所述标准压力范围的最小值时,所述第八驱动部5230启动并驱使所述刮板组件5100的至少部分结构向下运动,以使得所述刮板5110与所述模具之间的压力增大并恢复至所述标准压力范围内。也就是说,在刮液过程中通过所述力监测模块5120的设置,并根据所述力监测模块5120所监测的所述刮板5110与所述模具之间的压力来对所述刮板5110的高度进行调节,可以保证刮板5110在刮液时对模具表面的压力的一致性,有利于提高所制得的针体的一致性。
可选地,如图9所示,所述刮板组件还包括基座5130,所述基座5130与所述第四运动组件5200具体是所述第八驱动部5230连接。所述力监测模块5120包括导向轴5121、压力传感器5122、浮动块5123、弹性件5124和接合块5125。其中,所述导向轴5121与所述基座5130连接,并沿竖直方向延伸,且所述导向轴5121被配置为能够相对于所述基座5130沿竖直方向运动。可选地,所述基座5130上设有沿竖直方向贯通地延伸的导向通孔(图中未标注),所述导向轴5121部分地穿设在所述导向通孔内。所述导向轴5121的上端延伸至所述导向通孔的外部,且所述导向轴5121的上端还形成有限位挡片(图 中未标注),所述限位挡片的直径大于所述导向通孔的直径,从而所述导向轴5121不会在重力的作用下脱离所述基座5130。所述接合块5125与所述导向轴5121连接,并与所述导向轴5121保持相对静止。所述接合块5125还与所述刮板5110连接,所述接合块5125与所述刮板5110也保持相对静止。所述浮动块5123套装在所述导向轴5121上,并能够相对于所述导向轴5121在竖直方向上运动。所述弹性件5124设置在所述浮动块5124与所述接合块5125之间。所述压力传感器5122设置所述浮动块5123与所述基座5130之间。
在刮液过程中,所述刮板5110与所述模具之间的压力依次经所述刮板5110及所述接合块5125传递至所述弹性件5124,再由所述弹性件5124传递至所述浮动块5123,最后由所述浮动块5123传递至所述压力传感器5122。当所述压力过大时,通过所述第八驱动部5230驱使所述基座5130向上运动,进而带动所述导向轴5121、所述接合块5125及所述刮板5110向上运动,由此可使得所述刮板5110与所述模具之间的压力减小。当所述压力过大时,通过所述第八驱动部5230驱使所述基座5130向下运动,以使得所述导向轴5121、所述接合块5125及所述刮板5110在重力的作用下向下运动,进而所述刮板5110与所述模具之间的压力增大。
图10示出了所述回收机构6000的结构示意图。如图10所示,所述回收机构6000包括吸嘴6100、储液罐6200和负压发生器(图中未示出)。所述吸嘴6100用于在所述刮液回收工位B处吸取经所述刮液机构5000所刮出的原料。所述储液罐6200与所述吸嘴6100连接,用于存储所述吸嘴6100所吸取的原料。所述负压发生器与所述储液罐6200连接,所述负压发生器用于产生负压,以作为所述吸嘴6100吸取原料时的动力。所述负压发生器可以是真空泵。
进一步地,所述刮板5110将所述模具上多余的原料刮至所述刮液回收工位B的预定位置,所述吸嘴6100在所述预定位置处吸取原料,并且当所述吸嘴6100不吸液时,所述吸嘴6100可被移动以远离所述预定位置。针对于此,所述回收机构6000还包括第五运动组件6300,所述第五运动组件6300与所述吸嘴6100连接,并用于驱使所述吸嘴6100沿第四方向做往复运动,以使 所述吸嘴6100抵达或偏离所述预定位置。
可选地,请继续参考图10,所述第四方向可以是水平方向,例如X方向或Y方向。所述回收机构6000包括底座6400和第五导向机构6500,所述第五导向机构6500设置在所述底座6400上,并沿所述第四方向延伸。所述第五运动组件6300包括第九安装部6310和第九驱动部6320,所述第九安装部6310设置在所述第五导向机构6500上。所述第九驱动部6320可设置在所述底座6400上,所述第九驱动部6320与所述第九安装部6310连接,并用于驱使所述第九安装部6310沿所述第五导向机构6500做往复直线运动。所述吸嘴6100与所述第九安装部6310连接,且所述吸嘴6100与所述第九安装部6310同步运动。此处,所述第九驱动部6320可以是现有技术中任意合适的直线运动模块。
接下去以所述灌注系统同时具有上料工位E和下料工位D为例对所述灌注系统的工作过程进行说明。在初始状态下,一个所述第一模具放置位2201位于所述上料工位E。所述夹爪4100位于所述第一转运工位A的上方,且两个所述夹持件4100之间的空间足够大,并能够夹持所述模具。所述封闭门1110未封闭所述内腔1101。所述第二模具放置位位于所述第二转运工位C处。所述刮液机构5000的所述刮板5110位于所述刮液回收工位C的上方,所述吸嘴6100远离所述预定位置。工作过程如下:
首先在所述上料工位E处将一空的模具放置于位于所述上料工位E处的第一模具放置位2201上。
接着,所述第二运动机构8000驱使所述第二载台2200旋转,以使所述模具抵达所述第一转运工位A。
接着,所述第三运动组件4200驱使所述夹爪4100向下运动,直至两个所述夹持件位于所述模具的相对两侧。然后,所述第三运动组件4200驱使两个所述夹持件相向运动,并夹持所述模具。随后,所述第三运动模块4200驱使所述夹爪4100向上运动。以及所述第三运动模块4200驱使所述夹爪4100沿X方向运动,使得所述夹爪4100进入所述内腔1101,且抵达所述第二模具放置位的上方。之后,所述第三运动模块4200驱使所述夹爪4100向下运 动,使得所述模具放置于所述第二模具放置位,且所述定位销插入所述定位孔。然后,所述第三运动模块4200驱使两个所述夹持件沿相互远离的方向运动以放开所述模具。之后,所述第三运动模块驱使所述夹爪向上运动,及沿X方向运动,并离开所述内腔1101。
接着,所述封闭门1110封闭所述窗口1102,使得所述内腔1101与外界隔离。
接着,所述真空发生器1200对所述内腔1101抽真空,使得所述内腔的真空度达到预定值。以及,所述第一运动机构7000驱使所述第一载台2100和/或所述注液头3100运动,使得所述注液头3100在所述模具上的投影位于所述成型区。另外,所述第一运动机构7000还根据实际情况控制所述注液头3100在竖直方向上运动,具体是,所述注液头3100的高度过大(即注液头3100在竖直方向上到所述模具的距离过大),则控制所述第二驱动部7130驱动所述注液头3100向下运动,若所述注液头3100的高度过小(即所述注液头3100在竖直方向上到所述模具的距离过小),则控制所述第二驱动部7130驱使所述注液头3100向上运动。
接着执行注液操作。在注液过程中,可以根据实际情况控制所述第一载台2100和/或所述注液头3100运动,以使得原料注射工作可以顺利完成。
举例来说,当所述模具上有一个所述成型区,且所述成型区在X方向及Y方向上的尺寸均较大时,在注液过程中,所述第三驱动部7210驱使所述第一载台2100运动,同时所述第一驱动部7110驱使所述注液头3100沿Y方向运动,以使得所述注液头7210在所述成型区进行轨迹注液,原料在所述成型区的轨迹为曲线。之后原料流动并渗入所述成型区的各个针体成型腔内。这样做的原因是,原料虽然具有一定的流动性,但其黏度较大,流动性不佳,若只在成型区的某一点注液,或者所述第一载台2100和所述注液头3100中的一者运动以使得原料在所述成型区的轨迹形成一条直线(当只有所述第一载台2100运动时,原料轨迹为沿X方向的直线,当只有所述注液头3100运动时,原料轨迹为沿Y方向的直线),在注液量尽可能少的要求下,难以保证原料可以渗入每一个所述针体成型腔。而本实施例的注液方式则可以在注液 量尽可能少的情况下,还保证原料渗入所有的针体成型腔。当然,若成型区在X方向上的尺寸较小而在Y方向上的尺寸较大,在注液过程中可以只驱使所述注液头3100沿Y方向运动。反过来若成型区在Y方向上的尺寸较小而在X方向上的尺寸较大,在注液过程中只需控制所述第一载台2100沿X方向运动。
或者,当所述模具上具有多个相互分离的所述成型区,且每个所述成型区的面积均较小时,整个注液过程可以包括多个间断的子注液过程,每个子过程中对一个所述成型区注液进行注液。以所述模具具有两个所述成型区为例进行说明,两个所述成型区分别为第一成型区和第二成型区。当所述第一成型区抵达所述注液头3100下方(也即所述注液头3100在所述模具上的投影位于所述第一成型区内)后,所述第一载台2100和所述注液头3100保持相对静止,然后所述注液头3100将原料注射至所述第一成型区。在完成对所述第一成型区的注液后,即关闭所述注液头3100以停止注液。至此一个子注液过程结束。接着使所述第一载台2100和/所述注液头3100运动,以使所述第二成型区抵达所述注液头3100的下方(所述注液头3100在所述模具上的投影位于所述第二成型区),随后使所述第一载台2100和所述注液头3100保持相对静止,然后使所述注液头3100对第二个所述成型区注液以完成第二个子注液过程。
注液过程结束后,所述破真空阀1300打开,使得所述内腔1101破真空。
接着,所述第三驱动部7210驱使所述第一载台2100运动,以使位于所述第二模具放置位的所述模具抵达所述第二转运工位C。以及,所述封闭门1110打开。
接着,所述转移机构4000将所述模具从位于所述第二转运工位C处的所述第二模具放置位转移至位于所述第一转运工位A的所述第一模具放置位。具体是,所述第三运动组件4200驱使所述夹爪4100沿X方向运动并进入所述内腔1101,然后,所述第三运动组件4200驱使所述夹爪4100向下运动至两个所述夹持件位于所述模具的相对两侧。随后,所述第三运动组件4200驱使两个所述夹持件相向运动,并夹持所述模具。然后,所述第三运动模块4200 驱使所述夹爪4100向上运动以及沿X方向运动,使得所述夹爪4100离开所述内腔1101,且抵达所述第一模具放置位的上方。之后,所述第三运动组件4200驱使所述夹爪4100向下运动,使得所述模具放置于所述第一模具放置位,最后,所述第三运动模具4200驱使两个所述夹持件沿相互远离的方向运动,并放开所述模具。然后,所述第三运动模块4200驱使所述夹爪4100向上运动。
接着,所述第二运动机构8000驱使所述第二载台2200旋转,使得已完成注液的所述模具抵达所述刮液回收工位B。
接着,所述第四运动组件5200驱使所述刮板组件5100向下运动至所述刮板5110与所述模具接触,然后所述第四运动组件5200驱使所述刮板组件5100沿所述第三方向运动,使得所述刮板5110刮出所述模具上多余的原料。所述第五运动组件6300驱使所述吸嘴6100靠近所述预定位置,且所述负压发生器工作,以使得所述吸嘴6100吸取被所述刮板5110刮出的原料。可以理解,在刮液的过程中,所述第四运动组件5200根据所述力监测模块5120所监测的所述模具与所述刮板5110之间的压力控制所述刮板组件5100的至少部分结构沿竖直方向运动。
刮液回收操作完成后,所述第四运动组件5200驱使所述刮板组件5100向上运动,以使所述刮板5110与所述模具分离。以及,所述第五运动组件6300驱使所述吸嘴6100远离所述预定位置。
接着,所述第二运动机构8000驱使所述第二载台2200旋转,使得完成刮液回收工作的所述模具抵达所述下料工位D,在所述下料工位D处对所述模具进行下料。
本领域技术人员应理解,上述过程全部为自动化操作的过程,因此,所述灌注系统还可以包括控制器(图中未示出),所述控制器用于控制上述的全部动作。
虽然本发明披露如上,但并不局限于此。本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种灌注系统,用于将原料灌注至模具的针体成型腔,所述模具包括模体,所述模体上设有至少一个成型区,所述成型区设有多个间隔布置的所述针体成型腔;其特征在于,所述灌注系统包括:
    真空机构,包括壳体和真空发生器,所述壳体具有一内腔,所述内腔选择性地与外界隔离或连通,所述真空发生器用于对所述内腔抽真空;
    载台机构,包括第一载台和第二载台,所述第一载台和所述第二载台均用于承载所述模具;所述第一载台设置在所述内腔中,所述第二载台设置在所述壳体外;
    注液机构,部分地设置在所述内腔中,并用于将原料注射至位于所述第一载台上的所述模具的所述成型区;
    转移机构,用于使所述模具在所述第一载台与所述第二载台之间转移;以及,
    刮液机构,设置在所述壳体外,并用于对位于所述第二载台上的模具进行刮液。
  2. 根据权利要求1所述的灌注系统,其特征在于,所述注液机构包括注液头,所述注液头设置在所述内腔中,并用于将原料注射至所述成型区;
    所述灌注系统还包括第一运动机构,所述第一运动机构用于驱使所述第一载台与所述注液头之间产生沿第一方向和/或第二方向的相对运动,以使得所述注液头在所述模具上的投影位于所述成型区内,所述第一方向与所述第二方向均为水平方向,且所述第一方向与所述第二方向垂直。
  3. 根据权利要求2所述的灌注系统,其特征在于,所述第一运动机构还用于驱使所述注液头沿竖直方向运动,以使得所述注液头在竖直方向上靠近或远离所述模具。
  4. 根据权利要求1所述的灌注系统,其特征在于,所述刮液机构包括刮板组件和第四运动组件,所述刮板组件包括刮板;所述第四运动组件与所述刮板组件连接,并用于驱使所述刮板沿第三方向做往复直线运动,所述第三方向为水平方向。
  5. 根据权利要求4所述的灌注系统,其特征在于,所述第四运动组件还用于驱使所述刮板组件的至少部分结构沿竖直方向运动。
  6. 根据权利要求5所述的灌注系统,其特征在于,所述刮板组件还包括力监测模块,所述力监测模块与所述刮板连接,并用于监测所述刮板与所述模具之间的压力;所述第四运动组件被配置为能够根据所述力监测模块所监测的压力驱使所述刮板组件的至少部分结构沿竖直方向运动。
  7. 根据权利要求6所述的灌注系统,其特征在于,所述刮板组件还包括基座;所述基座与所述第四运动组件连接;所述力监测模块包括导向轴、压力传感器、浮动块、弹性件和接合块;所述导向轴与所述基座连接,并沿竖直方向延伸,所述导向轴被配置为能够相对于所述基座沿竖直方向运动;所述接合块与所述导向轴连接,并与所述导向轴保持相对静止,所述接合块还与所述刮板连接;所述浮动块套装在所述导向轴上,并能够相对于所述导向轴在竖直方向上运动;所述弹性件设置在所述浮动块与所述接合块之间;所述压力传感器设置所述浮动块与所述基座之间。
  8. 根据权利要求1所述的灌注系统,其特征在于,所述灌注系统还包括回收机构,所述回收机构用于回收经所述刮液机构刮出的原料。
  9. 根据权利要求8所述的灌注系统,其特征在于,所述回收机构包括吸嘴、负压发生器和储液罐;所述吸嘴用于吸取刮出的原料;所述负压发生器与所述吸嘴连接,并用于产生负压,以使所述吸嘴吸取原料;所述储液罐与所述吸嘴连接,并用于存储所述吸嘴吸取的原料。
  10. 根据权利要求9所述的灌注系统,其特征在于,所述吸嘴在预定位置处吸取原料;所述回收机构还包括第五运动组件,所述第五运动组件与所述吸嘴连接,并用于驱使所述吸嘴沿第四方向做往复运动,以抵达或偏离所述预定位置。
  11. 根据权利要求1所述的灌注系统,其特征在于,所述灌注系统至少具有第一转运工位和刮液回收工位,所述第一转运工位和所述刮液回收工位位于所述壳体外;所述第二载台上设有用于放置模具的模具放置位,所述灌注系统还包括第二运动机构,所述第二运动机构与所述第二载台连接,并用于 驱使所述第二载台运动,以使所述模具放置位能够选择性地位于所述第一转运工位或所述刮液回收工位处;
    所述转移机构用于使所述模具在所述第一载台和位于所述第一转运工位处的所述模具放置位之间转移;所述刮液机构用于在所述刮液回收工位处对所述模具进行刮液。
  12. 根据权利要求11所述的灌注系统,其特征在于,所述第一转运工位与所述刮液回收工位围绕一旋转轴线间隔布置,所述第二运动机构用于驱使所述第二载台绕所述旋转轴线旋转;所述第二载台上设有多个所述模具放置位,多个所述模具放置位围绕所述旋转轴线间隔布置;多个所述模具放置位中的一个位于所述第一转运工位时,多个所述模具放置位中的另一个位于所述刮液回收工位。
  13. 根据权利要求12所述的灌注系统,其特征在于,多个所述模具放置位围绕所述旋转轴线中心对称地布置,且相邻的所述模具放置位所对应的圆心角的角度与所述第一转运工位及所述刮液回收工位所对应的圆心角的角度相等。
  14. 根据权利要求1所述的灌注系统,其特征在于,所述灌注系统具有第二转运工位,所述第二转运工位位于所述内腔中;所述灌注系统包括第一运动机构,所述第一运动机构用于驱使所述第一载台沿第一方向往复运动,以使所述第一载台抵达或偏离所述第二转运工位,所述第一方向为水平方向;
    所述转移机构用于使所述模具在所述第二载台和位于所述第二转运工位处的所述第一载台之间转移。
  15. 根据权利要求1所述的灌注系统,其特征在于,所述转移机构包括夹爪和第三运动组件,所述第三运动组件与所述夹爪连接,并用于驱使所述夹爪沿第一方向做往复直线运动以进入或离开所述内腔,所述第三运动组件还用于驱使所述夹爪沿竖直方向做往复直线运动;所述夹爪用于夹持所述模具。
PCT/CN2023/126121 2022-12-21 2023-10-24 一种灌注系统 WO2024131260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211650850.7A CN118219476A (zh) 2022-12-21 2022-12-21 一种灌注系统
CN202211650850.7 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024131260A1 true WO2024131260A1 (zh) 2024-06-27

Family

ID=91504691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126121 WO2024131260A1 (zh) 2022-12-21 2023-10-24 一种灌注系统

Country Status (2)

Country Link
CN (1) CN118219476A (zh)
WO (1) WO2024131260A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797435A (zh) * 2020-06-16 2021-12-17 苏州悦肤达医疗科技有限公司 一种微针浇注系统及微针制备方法
KR20220039488A (ko) * 2020-09-22 2022-03-29 연세대학교 산학협력단 마이크로 니들 제조 기판체 및 이의 합착장비 및 이의 제어방법
CN217434812U (zh) * 2022-05-26 2022-09-16 苏州悦肤达医疗科技有限公司 一种灌注系统
CN219153495U (zh) * 2022-12-21 2023-06-09 苏州悦肤达医疗科技有限公司 一种灌注系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797435A (zh) * 2020-06-16 2021-12-17 苏州悦肤达医疗科技有限公司 一种微针浇注系统及微针制备方法
KR20220039488A (ko) * 2020-09-22 2022-03-29 연세대학교 산학협력단 마이크로 니들 제조 기판체 및 이의 합착장비 및 이의 제어방법
CN217434812U (zh) * 2022-05-26 2022-09-16 苏州悦肤达医疗科技有限公司 一种灌注系统
CN219153495U (zh) * 2022-12-21 2023-06-09 苏州悦肤达医疗科技有限公司 一种灌注系统

Also Published As

Publication number Publication date
CN118219476A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2017193599A1 (zh) 一种西林瓶配药装置及配药方法
CN106265075A (zh) 一种西林瓶配药机器人及其配药方法
CN219153495U (zh) 一种灌注系统
WO2018068339A1 (zh) 一种细胞玻璃化冷冻处理设备及其处理方法
CN217434812U (zh) 一种灌注系统
CN210668586U (zh) 一种生产电池的浸润设备
CN106784594A (zh) 一种直线式圆柱电池真空注液机构
CN103904288A (zh) 一种快速配比混合加液设备
WO2024131260A1 (zh) 一种灌注系统
CN110164779A (zh) 镭射二极体模组封帽设备及方法
CN207123538U (zh) 一种新型注射泵
CN205948045U (zh) 西林瓶配药装置
CN201699078U (zh) 能精确及微量控制电解液注射的电池注液机
CN109473622A (zh) 注液封口一体化装置及注液封口方法
CN217745057U (zh) 西林瓶封装药物调配机器人
CN215355136U (zh) 一种锂电池电解液配置设备
CN112237544B (zh) 一种配药机
CN209334330U (zh) 一种多功能洗板机
CN207759095U (zh) 一种试剂盒灌液装置
CN204507327U (zh) 小型电动程控液体灌装机
CN210228686U (zh) 一种药液转移器
WO2023226790A1 (zh) 一种灌注系统
CN114452213B (zh) 西林瓶封装药物全智能调配机器人
CN114307828B (zh) 一种穿刺加液方法、装置以及穿刺加液混匀设备
CN220501092U (zh) 一种饲料添加剂分装装置