WO2024131006A1 - 浸没液冷系统、方法和服务器 - Google Patents

浸没液冷系统、方法和服务器 Download PDF

Info

Publication number
WO2024131006A1
WO2024131006A1 PCT/CN2023/102634 CN2023102634W WO2024131006A1 WO 2024131006 A1 WO2024131006 A1 WO 2024131006A1 CN 2023102634 W CN2023102634 W CN 2023102634W WO 2024131006 A1 WO2024131006 A1 WO 2024131006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
immersion
flow channel
flow
heat exchange
Prior art date
Application number
PCT/CN2023/102634
Other languages
English (en)
French (fr)
Inventor
朱欢来
吴安
刘广志
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2024131006A1 publication Critical patent/WO2024131006A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of liquid cooling technology, and in particular to an immersion liquid cooling system, method and server.
  • the mainstream liquid cooling methods mainly include cold plate liquid cooling and immersion liquid cooling.
  • Immersion liquid cooling is to immerse the server directly in insulating coolant, relying on the circulation of coolant to remove the heat generated by the server operation. Compared with cold plate liquid cooling, it has lower noise and is more energy-efficient.
  • the commonly used immersion liquid cooling cabinet is an immersion heat exchange cavity with a length * width * height of about 2600 * 1000 * 1300mm.
  • the liquid flows in from the bottom of one side in the length direction, flows through the vertical parallel arrangement of liquid cooling servers to take away the heat, and then overflows from the top of the other side in the length direction.
  • the number of parallel equipment nodes in the length direction of the entire immersion heat exchange cavity is as high as 54.
  • the device node closest to the inlet is only about 44.45mm at most, and the device node farthest from the inlet is about 2500mm; even if the liquid is introduced from both sides of the length direction at the same time, the device node closest to the inlet in the bottom process direction is only 44.45mm, but the device node farthest from the inlet is still about 1250mm, which is still two orders of magnitude different.
  • the conventional technical means adopted are: adding a flow equalizer at the bottom of the immersion heat exchange cavity to eliminate the flow difference to a certain extent.
  • the actual application is often very different from the design.
  • PUE, the PUE the ratio of all energy consumed by the data center to the energy used by the IT load
  • the conventional technical means cannot simultaneously meet the demand for exactly the same flow of the same equipment node, that is, the differentiated flow requirements caused by different power consumption and temperature specifications between different equipment nodes.
  • an immersion liquid cooling system comprising:
  • a liquid separator and a liquid collector are arranged on both sides of the immersion heat exchange cavity;
  • the liquid separator, the liquid collector and the immersion heat exchange cavity are all provided with a plurality of flow channels, the flow channel outlets of the liquid separator are connected one by one with the flow channel inlet of the immersion heat exchange cavity, the flow channel outlets of the immersion heat exchange cavity are connected one by one with the flow channel inlet of the liquid collector, the cooling liquid diverted through the flow channel of the liquid separator flows along the flow channel of the immersion heat exchange cavity and flows out from the flow channel of the liquid collector to form a liquid cooling flow channel.
  • the immersion heat exchange cavity includes at least two device nodes connected in series in order of temperature specifications from low to high, the device node with the lowest temperature specification is closest to the liquid distributor, and the device node with the highest temperature specification is closest to the liquid collector.
  • each of the device nodes includes a plurality of device units arranged in parallel, and flow channels are arranged between adjacent device units.
  • the system further includes: a heat exchanger; the heat exchanger connects the liquid collector and the liquid distributor, and the cooling liquid flowing out of the liquid collector is cooled by the heat exchanger and then flows back into the immersion heat exchange cavity through the liquid distributor to form a liquid cooling cycle.
  • the liquid separator includes a liquid collecting pipe, a liquid cavity and a flow homogenizer; a flow channel is arranged in the flow homogenizer, and the cooling liquid flows into the immersion heat exchange cavity along the flow channel of the flow homogenizer through the liquid collecting pipe and the liquid cavity in turn.
  • a one-way flow guide plate opened toward a flow channel outlet of the liquid distributor is provided at the flow channel inlet of the liquid distributor.
  • the liquid concentrator is arranged at the outlet of the flow channel of the previous device node among the adjacent device nodes, and/or the liquid distributor is arranged at the inlet of the flow channel of the next device node among the adjacent device nodes.
  • the length of the flow channel and/or the diameter of the flow channel is determined by the heat dissipation requirements of the equipment unit through which the coolant flows.
  • the liquid collector includes a liquid collecting pipe, a liquid cavity and a flow homogenizer; a flow channel is arranged in the flow homogenizer, and the cooling liquid flows out of the immersion heat exchange cavity through the flow channel, the liquid cavity and the liquid collecting pipe of the flow homogenizer in sequence.
  • a one-way flow guide plate opened toward a flow channel outlet of the liquid manifold is provided at the flow channel inlet of the liquid manifold.
  • the liquid chamber is a semicircular hollow shell, and the flow equalizer is detachably connected to the liquid chamber.
  • the side of the flow homogenizer close to the liquid chamber is semicircular.
  • the arc-shaped convex surface of the flow homogenizer of the liquid concentrator protrudes toward one side of the liquid collecting pipe of the liquid concentrator.
  • the arc-shaped concave surface of the flow homogenizer of the liquid distributor is concave toward one side of the liquid collecting pipe of the liquid distributor.
  • the side of the flow equalizer away from the liquid chamber is in a semicircular arc shape, and the arc-shaped concave surface of the flow equalizer is concave toward one side of the liquid collecting pipe.
  • the system further includes a circulation pump and a valve; the circulation pump connects the heat exchanger and the liquid separator, and the coolant cooled by the heat exchanger is pressurized by the circulation pump and pumped into the liquid separator; the valve is arranged between the circulation pump and the liquid separator.
  • an immersion liquid cooling method uses an immersion liquid cooling system to dissipate heat from an immersion heat exchange cavity, and the method comprises:
  • the cooling liquid is sent to the liquid distributor, and the cooling liquid enters the flow channel of the immersion heat exchange cavity through the flow channel of the liquid distributor to absorb the heat in the immersion heat exchange cavity, and flows out of the liquid collector to form a liquid cooling flow channel, so as to achieve heat dissipation of the immersion heat exchange cavity. hot.
  • the method further includes: arranging a heat exchanger between the liquid collector and the liquid separator to cool the coolant flowing out of the liquid collector, and re-sending the cooled coolant into the liquid separator to form a liquid cooling cycle.
  • the method further includes: setting a temperature monitoring module to the liquid collecting pipe of the liquid distributor and the flow channel of the immersion heat exchange cavity to monitor the temperature of the coolant, and the number of the temperature monitoring module is at least one; setting a flow monitoring module to the liquid collecting pipe of the liquid distributor to monitor the flow rate of the coolant.
  • the method further includes: setting an alarm module to the immersion heat exchange cavity, when the temperature monitoring module detects that the coolant temperature exceeds a first preset value, and/or when the flow monitoring module detects that the flow of the coolant is lower than a second preset value, the alarm module is triggered to issue an alarm.
  • the method further includes: setting an electromagnetic guide valve to the liquid collecting pipe of the liquid distributor, and when a temperature monitoring module set in the liquid collecting pipe of the liquid distributor detects that the coolant temperature exceeds a first preset value, the electromagnetic guide valve is closed to cut off the current liquid cooling flow channel.
  • a server which includes an immersion liquid cooling system
  • the immersion liquid cooling system includes: a liquid separator and a liquid collector arranged on both sides of the immersion heat exchange cavity; the liquid separator, the liquid collector and the immersion heat exchange cavity are all provided with multiple flow channels, the flow channel outlets of the liquid separator are connected one by one with the flow channel inlet of the immersion heat exchange cavity, the flow channel outlets of the immersion heat exchange cavity are connected one by one with the flow channel inlet of the liquid collector, and the cooling liquid diverted through the flow channel of the liquid separator flows along the flow channel of the immersion heat exchange cavity and out of the flow channel of the liquid collector to form a liquid cooling flow channel.
  • the above-mentioned immersion liquid cooling system, method and server, the system is applied to an immersion heat exchange cavity, the system includes: a liquid separator and a liquid collector arranged on both sides of the immersion heat exchange cavity; the liquid separator, the liquid collector and the immersion heat exchange cavity are all provided with a plurality of flow channels, the flow channel outlet of the liquid separator is connected one by one with the flow channel inlet of the immersion heat exchange cavity, the flow channel outlet of the immersion heat exchange cavity is connected one by one with the flow channel inlet of the liquid collector, the cooling liquid diverted through the flow channel of the liquid separator flows along the flow channel of the immersion heat exchange cavity and flows out from the flow channel of the liquid collector to form a liquid cooling flow channel.
  • the cooling liquid can be sent into the immersion heat exchange cavity to form a liquid cooling flow channel without a pressurizing device to achieve heat dissipation of the immersion heat exchange cavity;
  • the immersion heat exchange cavity includes at least two device nodes connected in series in order of temperature specifications from low to high, the device node with the lowest temperature specification is closest to the liquid distributor, and the device node with the highest temperature specification is closest to the liquid collector.
  • the device nodes are connected in series in order according to the temperature specifications to meet the liquid cooling requirements of device nodes with different temperature specifications, thereby reducing economic costs and resource losses;
  • the same device units are connected in parallel to generate device nodes, and flow channels are set between the device units, which meets the same heat dissipation requirements of the same device units, improves heat dissipation efficiency, and enhances heat dissipation effects.
  • FIG1 is a schematic structural diagram of an immersion liquid cooling system in one embodiment
  • FIG2 is a schematic structural diagram of an immersion heat exchange cavity in one embodiment
  • FIG3 is a schematic structural diagram of an immersion heat exchange system in one embodiment
  • FIG4 is a schematic structural diagram of an immersion heat exchange system in one embodiment
  • FIG5 is a schematic structural diagram of an immersion heat exchange system in one embodiment
  • FIG6 is a schematic structural diagram of an immersion heat exchange system in one embodiment
  • FIG7 is a schematic diagram of the structure of a liquid collector/liquid distributor in one embodiment
  • FIG8 is a schematic diagram of the structure of a liquid collector/liquid distributor in one embodiment
  • FIG9 is a schematic diagram of the side shape of a flow equalizer in one embodiment
  • FIG10 is a schematic diagram of the structure of a computer device in one embodiment
  • 101 liquid distributor; 102, liquid collector; 1021, liquid collecting pipe; 1022, liquid chamber; 1023, flow equalizer; 103, immersed heat exchange chamber; 1031, equipment node; 10311, equipment unit; 104, heat exchanger; 105, circulation pump; 106, valve.
  • the immersion liquid cooling system provided in the present application is shown in FIG1 .
  • the system is applied to the immersion heat exchange cavity shown in FIG2 .
  • the system includes:
  • a liquid separator 101 and a liquid collector 102 are arranged on both sides of the immersion heat exchange cavity 103;
  • the liquid separator 101, the liquid collector 102 and the immersion heat exchange cavity 103 are all provided with flow channels.
  • the cooling liquid diverted through the flow channel of the liquid separator 101 flows along the flow channel of the immersion heat exchange cavity 103 and flows out from the flow channel of the liquid collector 102 to form a liquid cooling flow channel.
  • the liquid separator 101 is disposed on the left side of the immersion heat exchange cavity 103
  • the liquid collector 102 is disposed on the right side of the immersion heat exchange cavity 103 .
  • the immersion heat exchange cavity 103 is shown in Figure 2, and the immersion heat exchange cavity 103 includes at least two device nodes 1031 that are laterally connected in series in order of temperature specifications from low to high.
  • the device node 1031 with the lowest temperature specification is closest to the liquid distributor 101, and the device node 1031 with the highest temperature specification is closest to the liquid collector 102.
  • the coolant can be sent into the liquid distributor 101 at one time to achieve heat dissipation for multiple different device nodes 1031, thereby reducing resource consumption and improving heat dissipation efficiency.
  • the immersion heat exchange cavity 103 includes CXL storage nodes, high-density computing nodes, and input/output nodes connected in series in sequence, wherein the temperature specification of the CXL storage node is 85° C., the temperature specification of the high-density computing node is 100° C., and the temperature specification of the input/output node is 120° C.
  • the above-mentioned device nodes 1031 are connected in series and arranged in the immersion heat exchange cavity 103 in order from low to high temperature specifications.
  • the CXL storage node is connected to the liquid distributor, on the one hand, because the temperature specification of the CXL storage device in the CXL storage node is the lowest, and on the other hand, because the structural form of the DIMM strip of the CXL storage device naturally has a uniform flow function, which can play a role in uniform flow of the coolant.
  • the flow direction of the flow channel of the device node 1031 is not limited. As shown in Figure 3, the flow channel of the device node 1031 in the same immersion heat exchange cavity 103 may include a horizontal setting or a vertical setting.
  • the flow direction of the flow channel changes, it is only necessary to set a liquid collector 102 at the liquid outlet of the device node 1031 before the flow direction of the flow channel changes, and set a liquid separator 101 at the liquid inlet of the device node 1031 where the flow direction of the flow channel changes, so that the coolant flowing out of the liquid collector 102 can flow smoothly into the liquid separator 101, and the flow channel of the liquid separator 101 is connected to the flow channel of the device node 1031.
  • each of the device nodes 1031 includes a plurality of device units 10311 arranged in parallel, and flow channels are arranged between adjacent device units 10311.
  • the immersion heat exchange cavity 103 is cooled to achieve the effect of improving the heat dissipation effect.
  • the system when the previous device node 10311 in the adjacent device nodes 10311 has multiple flow channels and the next device node 10311 has multiple flow channels, as shown in Figure 5, the system also includes: setting the liquid confluence device 102 at the flow channel outlet of the previous device node 1031 in the adjacent device nodes 10311, and setting the liquid distributor 101 at the flow channel inlet of the next device node 1031 in the adjacent device nodes 10311.
  • a liquid collector 102 is provided at the outlet of the flow channel of the CXL storage node in the immersed heat exchange cavity 103, and a liquid distributor 101 is provided at the inlet of the flow channel of the high-density computing node connected in series with the CXL storage node; the liquid collector 102 is provided at the outlet of the flow channel of the previous device node 10311 of the adjacent device node 10311, and its function is to achieve the effect of uniform temperature of the coolant in different flow channels of any device node; that is, in actual application scenarios, the actual temperatures of different device units 10311 in the same device node 10311 vary. Differences are very common.
  • the temperatures of the coolants in the various channels in the equipment node will also be different.
  • the coolant in any channel of the equipment node 1031 is mixed in the liquid chamber 1022 of the liquid collector 102 to achieve the beneficial effect of accurately controlling the temperature of the coolant, and avoid the situation where the equipment unit of the next equipment node is damaged by directly inputting the coolant with a higher temperature directly into the channel of the next equipment node.
  • the liquid distributor 101 is set at the inlet of the channel of the next equipment node 1031 in the adjacent equipment nodes 10311, and its function is to re-uniform the coolant after being equalized by the liquid collector 102 and flow it into the channel of the next equipment node. It should be understood that when both the previous device node 10311 and the next device node 10311 have multiple flow channels, the number of flow channels of the next device node 10311 is not necessarily completely equal to the number of flow channels of the next device node 10311.
  • the system when the flow channels of the previous device node 10311 among adjacent device nodes 10311 are multiple and the flow channel of the subsequent device node 10311 is single, as shown in FIG4 , the system includes: the liquid collector 102 is arranged at the flow channel outlet of the previous device node 1031 among adjacent device nodes 10311, and the liquid collecting pipe 1021 of the liquid collector 102 is connected with the flow channel of the subsequent device node 1031; the cooling liquid in the flow channel of the previous device node 1031 flows into the flow channel of the subsequent device node 1031 along the liquid collecting pipe 1021 of the liquid collector 102 after the temperature of the liquid cavity of the liquid collector 102 is uniformly adjusted.
  • the system includes: setting the liquid distributor 101 at the flow channel entrance of the next device node 1031 in the adjacent device nodes 10311, connecting the liquid collecting pipe 1021 of the liquid distributor 101 with the flow channel of the previous device node 1031, and the cooling liquid in the flow channel of the previous device node 1031 flows into the flow channel of the next device node 1031 after being uniformly flowed through the liquid distributor 101.
  • the heat dissipation efficiency can be improved, resource consumption can be reduced, and the differentiated flow requirements between the same device nodes 1031 and between device nodes 1031 with different temperature specifications can be coordinated.
  • the system further includes: a heat exchanger 104; the heat exchanger 104 connects the liquid collector 102 and the liquid separator 101, and the cooling liquid flowing out of the liquid collector 102 is cooled by the heat exchanger 104, and then flows into the immersion heat exchange cavity 103 again through the liquid separator 101 to form a liquid cooling cycle, and the cooling liquid flowing out of the liquid collector 102 is sent to the heat exchanger 104 for cooling, and then the cooled cooling liquid is sent back to the liquid separator 101 to dissipate heat and cool the device node 1031/device unit 10311 in the immersion heat exchange cavity 103, forming a liquid cooling cycle, thereby improving resource utilization and having the beneficial effect of green energy saving.
  • a heat exchanger 104 connects the liquid collector 102 and the liquid separator 101, and the cooling liquid flowing out of the liquid collector 102 is cooled by the heat exchanger 104, and then flows into the immersion heat exchange cavity 103 again through the liquid separator 101 to form a liquid cooling cycle, and the cooling liquid flowing out
  • the liquid separator 101 includes a liquid collecting pipe 1021, a liquid cavity 1022 and a flow homogenizer 1023; a flow channel is provided in the flow homogenizer 1023, and the cooling liquid flows into the immersion heat exchange cavity 103 along the flow channel of the flow homogenizer 1023 through the liquid collecting pipe 1021 and the liquid cavity 1022 in sequence; a flow channel is provided inside the flow homogenizer 1023 to divert the cooling liquid sent into the liquid separator 101, so as to facilitate the cooling liquid to be sent to the flow channel of the immersion heat exchange cavity 103 connected to the flow channel of the liquid separator 101.
  • the liquid distributor 101 includes a liquid collecting pipe 1021, a liquid cavity 1022 and a flow homogenizer 1023.
  • the flow homogenizer 1023 includes a plurality of flow channels of equal length and equal diameter.
  • the coolant enters the liquid cavity 1022 after passing through the liquid collecting pipe 1021, and the flow rate of the coolant can be instantly reduced to a state close to the static state. Then, the coolant with a flow rate close to the static state flows into the flow channel of the immersed heat exchange cavity 103 through the flow channel of the flow homogenizer 1023, and its local resistance loss coefficient is a constant. In this way, the flow rate of any flow channel of the flow homogenizer 1023 is consistent, and the resistance of the liquid inlet and the liquid outlet of any flow channel is consistent, so that the situation of poor heat dissipation effect caused by excessive flow rate of the coolant will not occur.
  • a one-way guide plate opened toward the flow channel outlet of the liquid separator 101 is provided at the flow channel inlet of the liquid separator 101, which can ensure that the coolant can smoothly enter the immersion heat exchange cavity 103 on the one hand, and prevent the coolant in the flow channel from flowing back on the other hand.
  • the liquid collector 102 includes a liquid collecting pipe 1021 , a liquid cavity 1022 and a flow homogenizer 1023 ; a flow channel is provided in the flow homogenizer 1023 , and the cooling liquid flows out of the immersion heat exchange cavity 103 through the flow channel of the flow homogenizer 1023 , the liquid cavity 1022 and the liquid collecting pipe 1021 in sequence.
  • a one-way guide plate opened toward the outlet of the flow channel of the liquid collector 102 is provided at the inlet of the flow channel of the liquid collector 102, which helps the coolant in the flow channel of the immersion heat exchange cavity 103 to flow out of the immersion heat exchange cavity 103 on the one hand, and avoids damage to the device node 1031 in the immersion heat exchange cavity 103 due to the reflux of the coolant on the other hand.
  • BB', CC', DD', EE' and FF' are the flow channels of the homogenizer, and the structure of the liquid distributor 101 is similar to that of the liquid collector 102 shown in Figure 7, so it will not be repeated here.
  • the length of the flow channel and/or the diameter of the flow channel are determined by the heat dissipation requirements of the equipment unit through which the coolant flows. It should be understood that whether it is the flow channel of the liquid separator 101, the flow channel of the liquid collector 102, or the flow channel of the immersion heat exchange cavity 103, the length or diameter of the flow channel in the same structural unit (i.e., the liquid separator 101, the liquid collector 102 or the immersion heat exchange cavity 103) may be the same or different, that is, those skilled in the art can set the flow channel to a straight or non-straight shape according to actual conditions to change the length of the flow channel.
  • the working energy consumption and temperature specifications of different equipment nodes are different, so the length of the flow channel at the equipment node with higher temperature specifications and greater working energy consumption can be appropriately increased to improve the heat dissipation efficiency and enhance the cooling effect; similarly, the diameter of the flow channel at the equipment node with higher temperature specifications and greater working energy consumption can be increased to increase the flow rate of the coolant at the equipment node and thus improve the heat dissipation efficiency.
  • those skilled in the art can determine the length and diameter of the flow channel between different equipment units in the same equipment node according to the actual application scenario. It should be noted that no matter how the flow channel diameter in the immersion heat exchange cavity 103 is changed, the tightness of the connection between the flow channel and the flow channel of the liquid distributor 101/liquid collector 102 should be ensured to ensure that no leakage of the coolant occurs.
  • the flow channel of the liquid distributor 101 is connected to at least one flow channel of the immersion heat exchange cavity 103 to improve the heat dissipation efficiency of the equipment unit 10311; the flow channel of the liquid collector 102 is connected to each flow channel of the immersion heat exchange cavity 103 to ensure that the coolant in any flow channel can flow out smoothly, thereby avoiding the situation where the equipment node 1031 cannot dissipate heat and is damaged due to the inability of the coolant to flow out.
  • the liquid cavity 1022 is a semicircular hollow shell, and the flow equalizer 1023 is detachably connected to the liquid cavity 1022.
  • the flow equalizer 1023 and the liquid cavity 1022 are set to a detachable connection structure, which facilitates the cleaning of the flow channels of the liquid separator 101 and the flow equalizer 1023, thereby avoiding the situation where the coolant cannot smoothly enter/flow out of the immersion heat exchange cavity 103 due to blockage of the liquid cavity 1022 or the flow channel.
  • the cross-sectional shape of the side where the flow equalizer 1023 is connected to the immersion heat exchange cavity 103 is not unique, that is, the side shape of the flow equalizer 1023 is not limited, and those skilled in the art can determine the side shape of the immersion heat exchange cavity 103.
  • the side surface shape or other actual conditions are to set the side surface of the flow equalizer 1023 to a triangle, rhombus, hexagon, trapezoid, rectangle, parallelogram or any polygonal shape as shown in FIG9 .
  • the side of the flow equalizer 1023 close to the liquid cavity 1022 is in a semicircular shape. Setting one side of the liquid cavity 1022 in a semicircular shape can greatly reduce the flow resistance of the coolant.
  • the arc-shaped convex surface of the flow equalizer 1023 of the liquid collector 102 is convex toward the side of the liquid collecting pipe 1021 of the liquid collector 102 , which can reduce the resistance to the coolant and increase the speed of the coolant flowing out of the liquid collector 102 .
  • the arc-shaped concave surface of the flow homogenizer 1023 of the liquid separator 101 is concave toward the side of the liquid collecting pipe 1021 of the liquid separator 101 , which has the beneficial effect of reducing the resistance to the coolant and increasing the rate at which the coolant flows into the liquid separator 101 .
  • the side of the flow equalizer 1023 away from the liquid chamber 1022 is in a semicircular arc shape, and the arc-shaped concave surface of the flow equalizer 1023 is concave toward the side of the collecting pipe 1021; it should be understood that the side of the flow equalizer 1023 away from the liquid chamber 1022 is the side of the flow equalizer 1023 close to the immersion heat exchange chamber 103, that is, the side of the flow equalizer 1023 connected to the immersion heat exchange chamber to deliver the coolant into the flow channel in the immersion heat exchange chamber; setting the side of the flow equalizer 1023 away from the liquid chamber 1022 to a semicircular arc shape can reduce the resistance to the coolant on the one hand, so that the coolant can flow into the flow channel of the immersion heat exchange chamber more quickly and smoothly; it should be understood that in actual application scenarios, the two sides of the immersion heat exchange chamber are concave, that is, there is no situation where the immersion heat exchange chamber is incompatible with the liquid separator 101
  • liquid separator 101/liquid collector 102 it is not necessary for the liquid separator 101/liquid collector 102 to be tightly connected to the immersion heat exchange cavity. It is only necessary to ensure that the flow channel of the liquid separator 101/liquid collector 102 is tightly connected to the flow channel of the immersion heat exchange cavity, and the coolant can smoothly flow from the flow channel of the liquid separator 101/liquid collector 102 into the flow channel of the immersion heat exchange cavity.
  • a nozzle can also be provided on one side of the pipe of the flow homogenizer 1023 close to the immersion heat exchange cavity, so that the coolant flows from the nozzle into the immersion heat exchange cavity after passing through the pipe of the flow homogenizer 1023.
  • the system further includes a circulation pump 105 and a valve 106;
  • the circulation pump 105 connects the heat exchanger 104 and the liquid separator 101, and the coolant cooled by the heat exchanger 104 is pressurized by the circulation pump 105 and pumped into the liquid separator 101;
  • the valve 106 is arranged between the circulation pump 105 and the liquid separator 101; by arranging the circulation pump 105, the rate of delivering the coolant to the immersion heat exchange cavity 103 is accelerated, and the cooling rate of the immersion heat exchange cavity 103 is improved.
  • an immersion liquid cooling method uses the above-mentioned immersion liquid cooling system to dissipate heat from the immersion heat exchange cavity 103, and the method comprises:
  • the cooling liquid is fed into the liquid separator 101 , and enters the flow channel of the immersion heat exchange cavity 103 through the flow channel of the liquid separator 101 to absorb the heat in the immersion heat exchange cavity 103 , and flows out of the liquid collector 102 to form a liquid cooling flow channel, thereby achieving heat dissipation for the immersion heat exchange cavity 103 .
  • the method further includes: setting a heat exchanger 104 between the liquid collector 102 and the liquid separator 101 to cool the coolant flowing out of the liquid collector 102, and re-sending the cooled coolant into the liquid separator 101 to form a liquid cooling cycle.
  • the method further includes: setting a temperature monitoring module to the liquid collecting pipe 1021 of the liquid distributor 101 and the flow channel of the immersion heat exchange cavity 103 to monitor the temperature of the coolant, and the number of the temperature monitoring module is at least one; setting a flow monitoring module to the liquid collecting pipe 1021 of the liquid distributor 101 to monitor the temperature of the coolant. Monitoring of coolant flow.
  • the method further includes: setting an alarm module to the immersion heat exchange cavity 103, and when the temperature monitoring module detects that the temperature of the coolant exceeds a first preset value, and/or when the flow monitoring module detects that the flow of the coolant is lower than a second preset value, the alarm module is triggered to issue an alarm.
  • technicians in this field can set multiple alarm modes according to actual application scenarios, such as, when the flow monitoring module detects that the flow of the coolant is lower than the second preset value, the alarm module issues a first alarm, and when the temperature monitoring module detects that the temperature of the coolant exceeds the first preset value, the alarm module issues a second alarm;
  • a temperature monitoring module can also be set in front of each device node 1031, and an alarm mode can be set for each temperature monitoring module, which is convenient for monitoring the temperature of the coolant on the one hand, preventing damage to the device unit 10311 of the device node 1031 due to excessively high coolant temperature, and on the other hand, it is convenient for technicians to locate the problem in time.
  • the method further includes: setting an electromagnetic guide valve to the liquid collecting pipe 1021 of the liquid distributor 101, and when the temperature monitoring module set on the liquid collecting pipe 1021 of the liquid distributor 101 detects that the coolant temperature exceeds a first preset value, the electromagnetic guide valve is closed to cut off the current liquid cooling flow channel.
  • a server comprising an immersion liquid cooling system, the system comprising:
  • a liquid separator 101 and a liquid collector 102 are arranged on both sides of the immersion heat exchange cavity 103;
  • the liquid separator 101, the liquid collector 102 and the immersion heat exchange cavity 103 are all provided with a plurality of flow channels.
  • the flow channel outlet of the liquid separator 101 is connected one by one with the flow channel inlet of the immersion heat exchange cavity 103, and the flow channel outlet of the immersion heat exchange cavity 103 is connected one by one with the flow channel inlet of the liquid collector 102.
  • the cooling liquid diverted through the flow channel of the liquid separator 101 flows along the flow channel of the immersion heat exchange cavity 103 and flows out from the flow channel of the liquid collector 102 to form a liquid cooling flow channel.
  • the immersion heat exchange chamber 103 includes at least two device nodes 1031 connected in series in order of temperature specifications from low to high, the device node 1031 with the lowest temperature specification is closest to the liquid distributor 101, and the device node 1031 with the highest temperature specification is closest to the liquid collector 102.
  • the device node 1031 includes a plurality of device units 10311 arranged in parallel, and flow channels are arranged between adjacent device units 10311 .
  • the system further includes: a heat exchanger 104; the heat exchanger 104 connects the liquid collector 102 and the liquid separator 101, and the cooling liquid flowing out of the liquid collector 102 is cooled by the heat exchanger 104 and then flows into the immersion heat exchange cavity 103 again through the liquid separator 101 to form a liquid cooling cycle.
  • the liquid separator 101 includes a liquid collecting pipe 1021, a liquid cavity 1022 and a flow homogenizer 1023; a flow channel is provided in the flow homogenizer 1023, and the cooling liquid flows into the immersion heat exchange cavity 103 along the flow channel of the flow homogenizer 1023 through the liquid collecting pipe 1021 and the liquid cavity 1022 in turn.
  • a one-way flow guide plate opened toward a flow channel outlet of the liquid separator 101 is disposed at the flow channel inlet of the liquid separator 101 .
  • the liquid collector 102 includes a liquid collecting pipe 1021, a liquid cavity 1022 and a flow homogenizer 1023; a flow channel is provided in the flow homogenizer 1023, and the cooling liquid flows out of the immersion heat exchange cavity 103 through the flow channel of the flow homogenizer 1023, the liquid cavity 1022 and the liquid collecting pipe 1021 in sequence.
  • a one-way flow guide plate opened toward a flow channel outlet of the liquid manifold 102 is disposed at the flow channel inlet of the liquid manifold 102 .
  • the liquid chamber 1022 is a semicircular hollow shell, and the flow equalizer 1023 is detachably connected to the liquid chamber 1022 .
  • the side of the flow homogenizer 1023 close to the liquid chamber 1022 is semicircular.
  • the arc-shaped convex surface of the flow homogenizer 1023 of the liquid concentrator 102 protrudes toward one side of the liquid collecting pipe 1021 of the liquid concentrator 102 .
  • the arc-shaped concave surface of the flow homogenizer 1023 of the liquid distributor 101 is concave toward one side of the liquid collecting pipe 1021 of the liquid distributor 101 .
  • the system further includes a circulation pump 105 and a valve 106; the circulation pump 105 connects the heat exchanger 104 and the liquid separator 101, and the coolant cooled by the heat exchanger 104 is pressurized by the circulation pump 105 and pumped into the liquid separator 101; the valve 106 is arranged between the circulation pump 105 and the liquid separator 101.
  • a computer device which may be a terminal, and its internal structure diagram may be shown in FIG10.
  • the computer device includes a processor, a memory, a network interface, a display screen, and an input device connected via a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device may be a touch layer covered on the display screen, or a key, a trackball or a touch pad provided on the housing of the computer device, or an external keyboard, a touch pad or a mouse, etc.
  • FIG. 10 is merely a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the following steps when executing the computer program:
  • the alarm module is triggered to issue an alarm.
  • the electromagnetic pilot valve is closed to cut off the current liquid cooling channel.
  • a computer readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the alarm module is triggered to issue an alarm.
  • the electromagnetic pilot valve is closed to cut off the current liquid cooling channel.
  • Non-volatile memory can include read-only memory (ROM), programmable ROM (PROM), Electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in a variety of forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及一种浸没液冷系统、方法和服务器,所述系统应用于浸没换热腔体,所述系统包括:设置在所述浸没换热腔体两侧的分液器和汇液器;所述分液器、所述汇液器和所述浸没换热腔体上均设置有多条流道,所述分液器上的流道出口与所述浸没换热腔体上的流道入口一一连接,所述浸没换热腔体上的流道出口与所述汇液器上的流道入口一一连接,经所述分液器的流道分流的冷却液,沿浸没换热腔体上的流道,从所述汇液器的流道流出形成液冷流道;通过将分液器和汇液器设置于浸没换热腔体的两侧,从而无需加压装置即可将冷却液送入浸没换热腔体内形成液冷流道实现对浸没换热腔体的散热。

Description

浸没液冷系统、方法和服务器
本申请要求于2022年12月22日提交中国专利局、申请号为202211654933.3、发明名称为“浸没液冷系统、方法和服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷技术领域,特别是涉及一种浸没液冷系统、方法和服务器。
背景技术
主流液冷散热方式主要包括冷板液冷散热和浸没液冷散热,浸没液冷散热是将服务器直接浸没在绝缘的冷却液中,依靠冷却液的循环流动带走服务器运行产生的热量,相对于冷板式液冷散热,噪音更低,更加节能。
目前常用的浸没液冷机柜为长*宽*高约2600*1000*1300mm的浸没换热腔体,液体从长度方向一侧底部流入,流经立式垂直并联布置的液冷服务器带走热量后,从长度方向另外一侧的顶部溢流流出。然而,整个浸没换热腔体长度方向设备节点并联数量高达54个,在占腔体流阻比例最大的底部流程方向上离入口最近的设备节点流程最多只有44.45mm左右,离入口最远的设备节点有2500mm左右;即使从长度方向的两侧同时进液,底部流程方向上离入口最近的设备节点流程只有44.45mm,但是离入口最远的设备节点仍有1250mm左右,依然相差了两个数量级。由此可见,每个设备节点之间的流程相差有两个数量级,即每个设备节点的沿程阻力损失差异两个数量级,如此必然会导致不同流程设备节点的流量差异巨大,且实测过程中发现不同流程设备节点内部的温度迥异。
另外,传统系统架构设计主要考量设备节点的综合竞争力及稳定的产品性能。而云原生系统架构设计基于数据中心整体维度的计算、存储、输入/输出、加速单元解耦,强调各类功能单元基于特定应用的极简设计,即单设备节点聚焦计算、存储、输入/输出或者加速单元。这样一来,不同设备节点的功耗大小和部件温度规格差异很大,而温度相同的入口流量,无法满足不同设备节点的差异化的温度流量需求。
现有技术中,为了解决上述技术问题,采用的常规的技术手段为:在浸没换热腔体底部增设匀流板,以在一定程度上消除流量差异,但是由于不同流程设备节点底部入口沿程阻力损失相差两个数量级,实际应用中往往与设计差异巨大,为了提高远程设备节点内部的流量,只能通过增加循环泵流量来实现,但是如此一来就增加了系统功耗,拉高了系统能源效率(PUE,所述PUE=数据中心消耗的所有能源与IT负载使用的能源之比),与现在要求的绿色节能理念相悖。并且,采用常规的技术手段无法同时满足相同设备节点完全一样的流量的需求,即,不同设备节点间因功耗不同、温度规格不一而产生的差异化的流量需求。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提升散热效率,减少资源消耗,能够协调同一设备节点间与不同温度规格设备节点间的差异化流量需求的浸没液冷系统、方法和服务器。
一方面,提供一种浸没液冷系统,所述系统应用于浸没换热腔体,所述系统包括:
设置在所述浸没换热腔体两侧的分液器和汇液器;
所述分液器、所述汇液器和所述浸没换热腔体均设置有多条流道,所述分液器的流道出口与所述浸没换热腔体的流道入口一一连接,所述浸没换热腔体的流道出口与所述汇液器的流道入口一一连接,经所述分液器的流道分流的冷却液,沿浸没换热腔体的流道,从所述汇液器的流道流出形成液冷流道。
在其中一个实施例中,所述浸没换热腔体包括按照温度规格从低到高的顺序依次串联连接的至少两个设备节点,温度规格最低的设备节点最靠近所述分液器,温度规格最高的设备节点最靠近所述汇液器。
在其中一个实施例中,每个所述设备节点包括数个并联设置的设备单元,相邻的设备单元之间设置有流道。
在其中一个实施例中,所述系统还包括:热交换器;所述热交换器连通所述汇液器与所述分液器,从所述汇液器流出的冷却液,经所述热交换器冷却后,重新经所述分液器流入所述浸没换热腔体形成液冷循环。
在其中一个实施例中,所述分液器包括集液管、液腔和匀流器;所述匀流器内设置有流道,冷却液依次经所述集液管和所述液腔,沿所述匀流器的流道流入所述浸没换热腔体。
在其中一个实施例中,所述分液器的流道入口处设置有朝所述分液器的流道出口一侧开启的单向导流片。
在其中一个实施例中,在相邻的设备节点中的前一设备节点的流道出口处设置所述汇液器,和/或,在相邻的设备节点中的后一设备节点的流道入口处设置所述分液器。
在其中一个实施例中,所述流道的长度,和/或,所述流道的直径由所述冷却液流经的设备单元的散热需求确定。
在其中一个实施例中,所述汇液器包括集液管、液腔和匀流器;所述匀流器内设置有流道,冷却液依次经所述匀流器的流道、液腔和集液管流出所述浸没换热腔体。
在其中一个实施例中,所述汇液器的流道入口处设置有朝所述汇液器的流道出口一侧开启的单向导流片。
在其中一个实施例中,所述液腔为半圆弧形中空壳体,所述匀流器与所述液腔可拆卸式连接。
在其中一个实施例中,所述匀流器靠近所述液腔的一侧呈半圆弧形。
在其中一个实施例中,所述汇液器的匀流器的弧形凸面凸向所述汇液器的集液管一侧。
在其中一个实施例中,所述分液器的匀流器的弧形凹面凹向所述分液器的集液管一侧。
在其中一个实施例中,所述匀流器远离所述液腔的一侧呈半圆弧形,所述匀流器的弧形凹面凹向所述集液管一侧。
在其中一个实施例中,所述系统还包括循环泵和阀门;所述循环泵连通所述热交换器与所述分液器,热交换器冷却后的冷却液经所述循环泵加压后泵入所述分液器;所述阀门设置于所述循环泵与所述分液器之间。
另一方面,提供了一种浸没液冷方法,所述方法使用浸没液冷系统对浸没换热腔体进行散热,所述方法包括:
送入冷却液至所述分液器,冷却液经所述分液器的流道进入所述浸没换热腔体的流道吸收所述浸没换热腔体内的热量,流出所述汇液器形成液冷流道,以实现对浸没换热腔体的散 热。
在其中一个实施例中,所述方法还包括:在汇液器和分液器之间设置热交换器,以实现对从汇液器流出的冷却液进行冷却,并将冷却后的冷却液重新送入分液器形成液冷循环。
在其中一个实施例中,所述方法还包括:设置温度监测模块至所述分液器的集液管与所述浸没换热腔体的流道,以用于实现对冷却液温度的监测,所述温度监测模块的数量至少为一个;设置流量监测模块至所述分液器的集液管,以用于实现对冷却液的流量的监测。
在其中一个实施例中,所述方法还包括:设置告警模块至所述浸没换热腔体,当温度监测模块监测到所述冷却液温度超过第一预设值,和/或,当所述流量监测模块监测到所述冷却液的流量低于第二预设值,则触发所述告警模块发出告警。
在其中一个实施例中,所述方法还包括:设置电磁导向阀至所述分液器的集液管,当设置于所述分液器的集液管的温度监测模块监测到所述冷却液温度超过第一预设值时,则所述电磁导向阀关闭,以切断当前液冷流道。
再一方面,提供了服务器,所述服务器包括浸没液冷系统,所述浸没液冷系统包括:设置在所述浸没换热腔体两侧的分液器和汇液器;所述分液器、所述汇液器和所述浸没换热腔体均设置有多条流道,所述分液器的流道出口与所述浸没换热腔体的流道入口一一连接,所述浸没换热腔体的流道出口与所述汇液器的流道入口一一连接,经所述分液器的流道分流的冷却液,沿浸没换热腔体的流道,从所述汇液器的流道流出形成液冷流道。
上述浸没液冷系统、方法和服务器,所述系统应用于浸没换热腔体,所述系统包括:设置在所述浸没换热腔体两侧的分液器和汇液器;所述分液器、所述汇液器和所述浸没换热腔体均设置有多条流道,所述分液器的流道出口与所述浸没换热腔体的流道入口一一连接,所述浸没换热腔体的流道出口与所述汇液器的流道入口一一连接,经所述分液器的流道分流的冷却液,沿浸没换热腔体的流道,从所述汇液器的流道流出形成液冷流道。通过将分液器和汇液器设置于浸没换热腔体的两侧,从而无需加压装置即可将冷却液送入浸没换热腔体内形成液冷流道实现对浸没换热腔体的散热;
进一步地,所述浸没换热腔体包括按照温度规格从低到高的顺序依次串联连接的至少两个设备节点,所述温度规格最低的设备节点最靠近所述分液器,所述温度规格最高的设备节点最靠近所述汇液器,按照温度规格将设备节点依次串联,满足不同温度规格设备节点的液冷需求,减少了经济成本,降低了资源损耗;
更进一步地,将同一设备单元并联生成设备节点,在设备单元之间设置流道,满足了同一设备单元相同的散热需求,提高了散热效率,提升了散热效果。
附图说明
图1为一个实施例中浸没液冷系统的结构示意图;
图2为一个实施例中浸没换热腔体的结构示意图;
图3为一个实施例中浸没换热系统的结构示意图;
图4为一个实施例中浸没换热系统的结构示意图;
图5为一个实施例中浸没换热系统的结构示意图;
图6为一个实施例中浸没换热系统的结构示意图;
图7为一个实施例中汇液器/分液器的结构示意图;
图8为一个实施例中汇液器/分液器的结构示意图;
图9为一个实施例中匀流器的侧面形状示意图;
图10为一个实施例中计算机设备的结构示意图;
图中,101,分液器;102,汇液器;1021,集液管;1022,液腔;1023,匀流器;103,浸没换热腔体;1031,设备节点;10311,设备单元;104,热交换器;105,循环泵;106,阀门。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的浸没液冷系统,如图1所示,所述系统应用于如图2所示的浸没换热腔体,所述系统包括:
设置在所述浸没换热腔体103两侧的分液器101和汇液器102;
所述分液器101、所述汇液器102和所述浸没换热腔体103均设置有流道,经所述分液器101的流道分流的冷却液,沿浸没换热腔体103的流道,从所述汇液器102的流道流出形成液冷流道。
具体地,如图1所示,所述分液器101设置于所述浸没换热腔体103的左侧,所述汇液器102设置于所述浸没换热腔体103的右侧。
在其中一个实施例中,所述浸没换热腔体103如图2所示,所述浸没换热腔体103包括按照温度规格从低到高的顺序依次横向串联连接的至少两个设备节点1031,温度规格最低的设备节点1031最靠近所述分液器101,温度规格最高的设备节点1031最靠近所述汇液器102,如此一来,将冷却液一次送入分液器101即可实现对多个不同的设备节点1031的散热,减少资源消耗,提高散热效率。
具体地,如图2所示,所述浸没换热腔体103包括依次串联连接的CXL存储节点、高密计算节点和输入/输出节点,其中CXL存储节点的温度规格为85℃、高密计算节点的温度规格为100℃、输入/输出节点的温度规格为120℃,按照温度规格从低到高的顺序依次将上述设备节点1031串联连接设置于浸没换热腔体103内,只需保证送入分液器101的冷却液温度低于温度规格最低的设备节点1031的温度要求,即可实现对浸没换热腔体103内的设备节点1031进行散热降温。其中在上述由CXL存储节点、高密计算节点和输入/输出节点构成的浸没换热腔体中,将所述CXL存储节点与分液器连接,一方面是因为CXL存储节点内CXL存储设备的温度规格最低,另外一方面是因为CXL存储设备DIMM条的结构形态天然具有匀流功能,能够对冷却液起到匀流的作用。需要理解的是,在实际的应用场景中,所述设备节点1031的流道的流向并不做限定,如图3所示,在同一浸没换热腔体103中设备节点1031的流道可以包括横向设置的,还可以包括竖向设置的,当流道的流向发生变化时,只需在流道流向发生变化前的设备节点1031的出液口设置汇液器102,在流道流向发生变化的设备节点1031的进液口处设置分液器101,使得从汇液器102流出的冷却液可以顺利流入分液器101内,分液器101的流道与设备节点1031的流道连通即可。
在其中一个实施例中,每个所述设备节点1031包括数个并联设置的设备单元10311,相邻的设备单元10311之间设置有流道,通过在浸没换热腔体103内设置多个流道,实现对浸没换热腔体103的冷却降温,以达到提高散热效果的作用。
在其中一个实施例中,当所述相邻的设备节点10311中的前一设备节点10311的流道为多个,后一设备节点10311的流道为多个时,如图5所示,所述系统还包括:在相邻的设备节点10311中的前一设备节点1031的流道出口处设置所述汇液器102,和,在相邻的设备节点10311中的后一设备节点1031的流道入口处设置所述分液器101。在浸没换热腔体103中的CXL存储节点的流道出口设置汇液器102,在与CXL存储节点串联连接的高密计算节点的流道入口处设置分液器101;在相邻的设备节点10311的前一设备节点1031的流道出口处设置所述汇液器102,其作用在于,可以对任一设备节点不同流道内的冷却液达到均温的效果;也就是说,在实际的应用场景中,同一设备节点10311中不同设备单元10311的实际温度存在差异是很常见的,当不同设备单元10311的实际温度存在差异时,设备节点中的各流道内的冷却液的温度也会不一样,通过在设备节点1031的流道出口出设置汇液器102,将设备节点1031中任一流道内的冷却液在汇液器102的液腔1022中混合,以达到精确控制冷却液温度的有益效果,避免因直接将温度较高的冷却液直接输入至下一设备节点的流道而造成损坏下一设备节点的设备单元的情况的发生。在相邻的设备节点10311中的后一设备节点1031的流道入口处设置所述分液器101,其作用在于,将经汇液器102均温后的冷却液重新匀流,流入后一设备节点的流道内。需要理解的是,当前一设备节点10311和后一设备节点10311的流道均为多个时,所述后一设备节点10311的流道数与后一设备节点10311的流道数不必然是完全相等的。
在其中一个实施例中,当相邻的设备节点10311中的前一设备节点10311的流道为多个,后一设备节点10311的流道为单个时,如图4所示,所述系统包括:在相邻的设备节点10311中的前一设备节点1031的流道出口处设置所述汇液器102,将所述汇液器102的集液管1021与后一设备节点1031的流道连通;前一设备节点1031的流道内的冷却液在汇液器102的液腔均温后,沿所述汇液器102的集液管1021流入后一设备节点1031的流道中。
在其中一个实施例中,当相邻的设备节点10311中前一设备节点10311的流道为单个,后一设备节点10311的流道为多个时,如图6所示,所述系统包括:在相邻的设备节点10311中的后一设备节点1031的流道入口处设置所述分液器101,将所述分液器101的集液管1021与前一设备节点1031的流道连通,前一设备节点1031流道内的冷却液经所述分液器101匀流后,流入后一设备节点1031的流道中。
基于上述浸没液冷系统,能够提升散热效率,减少资源消耗,能够协调同一设备节点1031间与不同温度规格设备节点1031间的差异化流量需求。
在其中一个实施例中,所述系统还包括:热交换器104;所述热交换器104连通所述汇液器102与所述分液器101,从所述汇液器102流出的冷却液,经所述热交换器104冷却后,重新经所述分液器101流入所述浸没换热腔体103形成液冷循环,将从汇液器102流出的冷却液送入热交换器104进行冷却降温,再将冷却降温后的冷却液重新送入分液器101对浸没换热腔体103内的设备节点1031/设备单元10311进行散热降温,形成液冷循环,提高了资源的利用率,具有绿色节能的有益效果。
在其中一个实施例中,所述分液器101包括集液管1021、液腔1022和匀流器1023;所述匀流器1023内设置有流道,冷却液依次经所述集液管1021和所述液腔1022,沿所述匀流器1023的流道流入所述浸没换热腔体103;在匀流器1023内部设置流道对送入分液器101内的冷却液进行分流,便于将冷却液送入与分液器101的流道连通的浸没换热腔体103的流 道中。所述分液器101包括集液管1021、液腔1022和匀流器1023,匀流器1023包括若干条等长等径的流道,冷却液经过集液管1021后进入液腔1022,可以将冷却液的流速瞬间降低至接近静止状态,然后将流速接近于静止状态的冷却液通过匀流器1023的流道流入浸没换热腔体103的流道中,其局部阻力损失系数为常数,如此一来,匀流器1023的任一流道的流速一致,且任一流道的进液口和出液口的阻力一致,就不会造成因冷却液流速过快而导致散热效果不佳的情况的发生。
在其中一个实施例中,所述分液器101的流道入口处设置有朝所述分液器101的流道出口一侧开启的单向导流片,一方面能够确保冷却液顺利进入浸没换热腔体103内,另外一方面能够防止流道内的冷却液回流。
在其中一个实施例中,如图7所示,所述汇液器102包括集液管1021、液腔1022和匀流器1023;所述匀流器1023内设置有流道,冷却液依次经所述匀流器1023的流道、液腔1022和集液管1021流出所述浸没换热腔体103。
在其中一个实施例中,所述汇液器102的流道入口处设置有朝所述汇液器102的流道出口一侧开启的单向导流片,一方面有助于浸没换热腔体103的流道内的冷却液流出浸没换热腔体103,另一方面避免因冷却液回流而对浸没换热腔体103内的设备节点1031造成损坏。如图7所示,其中BB’、CC’、DD’、EE’和FF’即为匀液器的流道,所述分液器101的结构与如图7所示的汇液器102的结构类似,故此处不再赘述。
在其中一个实施例中,所述流道的长度,和/或,所述流道的直径由所述冷却液流经的设备单元的散热需求确定。需要理解的是,无论是分液器101的流道,还是汇液器102的流道,又或者是浸没换热腔体103的流道,同一结构单元(即分液器101、汇液器102或浸没换热腔体103)内的流道的长度或直径可以相同也可以不相同,即本领域技术人员可以根据实际情况将流道设置为直线或非直线的形状,以改变流道的长度。具体而言,比如在一个实际情况中,不同设备节点的工作能耗和温度规格不同,因此可适当增长温度规格较高、工作能耗较大的设备节点处的流道长度,以提高散热效率,提升冷却效果;同样地,还可以通过增大温度规格较高、工作能耗较大的设备节点处的流道的直径,以达到增加该设备节点处冷却液流量进而提升散热效率的有益效果。更进一步地,基于上述思想,本领域技术人员可以根据实际应用场景,确定同一设备节点内不同设备单元之间的流道的长度和直径。需要注意的是,无论浸没换热腔体103内的流道直径如何改变,都应确保所述流道与分液器101/汇液器102的流道的连通的紧密性,以确保不会发生冷却液的泄露。
在其中一个实施例中,所述分液器101的流道与所述浸没换热腔体103的至少一个流道连通,以提升对设备单元10311的散热效率;所述汇液器102的流道与所述浸没换热腔体103的每一流道连通,以确保任一流道中的冷却液都可以顺利流出,进而避免因冷却液无法流出而造成的设备节点1031无法散热发生损坏的情况的发生。
在其中一个实施例中,所述液腔1022为半圆弧形中空壳体,所述匀流器1023与所述液腔1022可拆卸式连接,将所述匀流器1023与所述液腔1022设置为可拆卸连接的结构,便于对分液器101和匀流器1023的流道进行清理,避免因液腔1022或流道堵塞而造成冷却液无法顺利进入/流出浸没换热腔体103的情况的发生。
在其中一个实施例中,所述匀流器1023与浸没换热腔体103连接的一侧的截面形状不唯一,即对匀流器1023的侧面形状不作限定,本领域技术人员可以根据浸没换热腔体103的侧 面形状或其他实际情况将匀流器1023的侧面设置为如图9所示的三角形、菱形、六边形、梯形、矩形、平行四边形或任意多边形的形状,无论是哪种形状,只需保证匀流器1023的流道与浸没换热腔体103内的流道紧密连通,保证冷却液可以经匀流器1023的流道顺利进入浸没换热腔体103的流道即可。
在其中一个实施例中,如图8所示,所述匀流器1023靠近所述液腔1022的一侧呈半圆弧形,将所述液腔1022的一侧设置为半圆弧形,能够在很大程度上减小对冷却液的流动阻力。
在其中一个实施例中,所述汇液器102的匀流器1023的弧形凸面凸向所述汇液器102的集液管1021一侧,能够减小对冷却液的阻力,提升冷却液流出汇液器102的速率。
在其中一个实施例中,所述分液器101的匀流器1023的弧形凹面凹向所述分液器101的集液管1021一侧,具有减小对冷却液的阻力,提升冷却液流入分液器101的速率的有益效果。
在其中一个实施例中,如图8所示,所述匀流器1023远离所述液腔1022的一侧呈半圆弧形,所述匀流器1023的弧形凹面凹向所述集液管1021一侧;需要理解的是,所述匀流器1023远离所述液腔1022的一侧,即为所述匀流器1023靠近所述浸没换热腔体103的一侧,即匀流器1023与所述浸没换热腔体连接,以将冷却液送入浸没换热腔体内的流道的一侧;将所述匀流器1023远离所述液腔1022的一侧设置为半圆弧形,一方面能够减少对冷却液的阻力,使得冷却液可以更迅速、更顺畅的流入浸没换热腔体的流道内;需要理解的是,在实际的应用场景中,浸没换热腔体的两侧为凹面状,即不存在浸没换热腔体与分液器101/汇液器102不适配的情况。并且,还需要理解的是,在实际的应用场景中,分液器101/汇液器102是否能与浸没换热腔体紧密连接并不是必要的,只需要保证分液器101/汇液器102的流道与浸没换热腔体的流道紧密连通,冷却液可以顺利从分液器101/汇液器102的流道流入所述浸没换热腔体的流道即可。具体地,还可以在靠近浸没换热腔体的匀流器1023的管道的一侧设置喷嘴,使得冷却液经匀流器1023的管道后,从喷嘴流入浸没换热腔体中。
在其中一个实施例中,所述系统还包括循环泵105和阀门106;所述循环泵105连通所述热交换器104与所述分液器101,热交换器104冷却后的冷却液经所述循环泵105加压后泵入所述分液器101;所述阀门106设置于所述循环泵105与所述分液器101之间;通过设置循环泵105加快了送入冷却液至浸没换热腔体103的速率,提升了对浸没换热腔体103的冷却降温的速率。
在一个实施例中,提供了一种浸没液冷方法,所述方法使用上述的浸没液冷系统对浸没换热腔体103进行散热,所述方法包括:
送入冷却液至所述分液器101,冷却液经所述分液器101的流道进入所述浸没换热腔体103的流道吸收所述浸没换热腔体103内的热量,流出所述汇液器102形成液冷流道,实现对浸没换热腔体103的散热。
在其中一个实施例中,所述方法还包括:在汇液器102和分液器101之间设置热交换器104,以实现对从汇液器102流出的冷却液进行冷却,并将冷却后的冷却液重新送入分液器101形成液冷循环。
在其中一个实施例中,所述方法还包括:设置温度监测模块至所述分液器101的集液管1021与所述浸没换热腔体103的流道上,以用于实现对冷却液温度的监测,所述温度监测模块的数量至少为一个;设置流量监测模块至所述分液器101的集液管1021上,以用于实现对 冷却液的流量的监测。
在其中一个实施例中,所述方法还包括:设置告警模块至所述浸没换热腔体103,当温度监测模块监测到所述冷却液温度超过第一预设值,和/或,当所述流量监测模块监测到所述冷却液的流量低于第二预设值,则触发所述告警模块发出告警。具体地,本领域的技术人员可以根据实际应用场景设置多种告警方式,如,当流量监测模块监测到所述冷却液的流量低于第二预设值时,则告警模块发出第一告警,当温度监测模块监测到所述冷却液温度超过第一预设值时,则告警模块发出第二告警;更进一步地,还可以在每一设备节点1031前设置温度监测模块,对应每一温度监测模块设置一种告警方式,一方面便于对冷却液的温度进行监测,防止因冷却液温度过高而对设备节点1031的设备单元10311造成损害,另一方面,便于技术人员及时对问题进行定位。
在其中一个实施例中,所述方法还包括:设置电磁导向阀至所述分液器101的集液管1021,当设置于所述分液器101的集液管1021上的温度监测模块监测到所述冷却液温度超过第一预设值时,则所述电磁导向阀关闭,切断当前液冷流道。
在一个实施例中,提供了一种服务器,所述服务器包括浸没液冷系统,所述系统包括:
设置在所述浸没换热腔体103两侧的分液器101和汇液器102;
所述分液器101、所述汇液器102和所述浸没换热腔体103均设置有多条流道,所述分液器101的流道出口与所述浸没换热腔体103的流道入口一一连接,所述浸没换热腔体103的流道出口与所述汇液器102的流道入口一一连接,经所述分液器101的流道分流的冷却液,沿浸没换热腔体103的流道,从所述汇液器102的流道流出形成液冷流道。
在其中一个实施例中,所述浸没换热腔体103包括按照温度规格从低到高的顺序依次串联连接的至少两个设备节点1031,所述温度规格最低的设备节点1031最靠近所述分液器101,所述温度规格最高的设备节点1031最靠近所述汇液器102。
在其中一个实施例中,所述设备节点1031包括数个并联设置的设备单元10311,相邻的设备单元10311之间设置有流道。
在其中一个实施例中,所述系统还包括:热交换器104;所述热交换器104连通所述汇液器102与所述分液器101,从所述汇液器102流出的冷却液,经所述热交换器104冷却后,重新经所述分液器101流入所述浸没换热腔体103形成液冷循环。
在其中一个实施例中,所述分液器101包括集液管1021、液腔1022和匀流器1023;所述匀流器1023内设置有流道,冷却液依次经所述集液管1021和所述液腔1022,沿所述匀流器1023的流道流入所述浸没换热腔体103。
在其中一个实施例中,所述分液器101的流道入口处设置有朝所述分液器101的流道出口一侧开启的单向导流片。
在其中一个实施例中,所述汇液器102包括集液管1021、液腔1022和匀流器1023;所述匀流器1023内设置有流道,冷却液依次经所述匀流器1023的流道、液腔1022和集液管1021流出所述浸没换热腔体103。
在其中一个实施例中,所述汇液器102的流道入口处设置有朝所述汇液器102的流道出口一侧开启的单向导流片。
在其中一个实施例中,所述液腔1022为半圆弧形中空壳体,所述匀流器1023与所述液腔1022可拆卸式连接。
在其中一个实施例中,所述匀流器1023靠近所述液腔1022的一侧呈半圆弧形。
在其中一个实施例中,所述汇液器102的匀流器1023的弧形凸面凸向所述汇液器102的集液管1021一侧。
在其中一个实施例中,所述分液器101的匀流器1023的弧形凹面凹向所述分液器101的集液管1021一侧。
在其中一个实施例中,所述系统还包括循环泵105和阀门106;所述循环泵105连通所述热交换器104与所述分液器101,热交换器104冷却后的冷却液经所述循环泵105加压后泵入所述分液器101;所述阀门106设置于所述循环泵105与所述分液器101之间。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种告警触发和液冷流道通断控制。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:
当温度监测模块监测到所述冷却液温度超过第一预设值,和/或,当所述流量监测模块监测到所述冷却液的流量低于第二预设值,则触发所述告警模块发出告警。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
温度监测模块监测到所述冷却液温度超过第一预设值时,则关闭电磁导向阀,以切断当前液冷流道。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
当温度监测模块监测到所述冷却液温度超过第一预设值,和/或,当所述流量监测模块监测到所述冷却液的流量低于第二预设值,则触发所述告警模块发出告警。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
温度监测模块监测到所述冷却液温度超过第一预设值时,则关闭电磁导向阀,以切断当前液冷流道。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、 电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种浸没液冷系统,其特征在于,所述系统应用于浸没换热腔体,所述系统包括:
    设置在所述浸没换热腔体两侧的分液器和汇液器;
    所述分液器、所述汇液器和所述浸没换热腔体均设置有多条流道,所述分液器的流道出口与所述浸没换热腔体的流道入口一一连接,所述浸没换热腔体的流道出口与所述汇液器的流道入口一一连接,经所述分液器的流道分流的冷却液,沿浸没换热腔体的流道,从所述汇液器的流道流出形成液冷流道。
  2. 根据权利要求1所述的浸没液冷系统,其特征在于,所述浸没换热腔体包括按照温度规格从低到高的顺序依次串联连接的至少两个设备节点,温度规格最低的设备节点最靠近所述分液器,温度规格最高的设备节点最靠近所述汇液器。
  3. 根据权利要求2所述的浸没液冷系统,其特征在于,每个所述设备节点包括数个并联设置的设备单元,相邻的设备单元之间设置有流道。
  4. 根据权利要求3所述的浸没液冷系统,其特征在于,所述系统还包括:热交换器;
    所述热交换器连通所述汇液器与所述分液器,从所述汇液器流出的冷却液,经所述热交换器冷却后,重新经所述分液器流入所述浸没换热腔体形成液冷循环。
  5. 根据权利要求4所述的浸没液冷系统,其特征在于,所述系统还包括:
    在相邻的设备节点中的前一设备节点的流道出口处设置所述汇液器,和/或,在相邻的设备节点中的后一设备节点的流道入口处设置所述分液器。
  6. 根据权利要求5所述的浸没液冷系统,其特征在于,所述分液器包括集液管、液腔和匀流器;
    所述匀流器内设置有流道,冷却液依次经所述集液管和所述液腔,沿所述匀流器的流道流入所述浸没换热腔体。
  7. 根据权利要求6所述的浸没液冷系统,其特征在于,所述分液器的流道入口处设置有朝所述分液器的流道出口一侧开启的单向导流片。
  8. 根据权利要求5或7所述的浸没液冷系统,其特征在于,所述汇液器包括集液管、液腔和匀流器;
    所述匀流器内设置有流道,冷却液依次经所述匀流器的流道、液腔和集液管流出所述浸没换热腔体。
  9. 根据权利要求8所述的浸没液冷系统,其特征在于,所述汇液器的流道入口处设置有朝所述汇液器的流道出口一侧开启的单向导流片。
  10. 根据权利要求9所述的浸没液冷系统,其特征在于,所述流道的长度,和/或,所述流道 的直径由所述冷却液流经的设备单元的散热需求确定。
  11. 根据权利要求10所述的浸没液冷系统,其特征在于,所述液腔为半圆弧形中空壳体,所述匀流器与所述液腔可拆卸式连接。
  12. 根据权利要求11所述的浸没液冷系统,其特征在于,所述匀流器靠近所述液腔的一侧呈半圆弧形。
  13. 根据权利要求12所述的浸没液冷系统,其特征在于,所述汇液器的匀流器的弧形凸面凸向所述汇液器的集液管一侧;所述分液器的匀流器的弧形凹面凹向所述分液器的集液管一侧。
  14. 根据权利要求12或13所述的浸没液冷系统,其特征在于,所述匀流器远离所述液腔的一侧呈半圆弧形,所述匀流器的弧形凹面凹向所述集液管一侧。
  15. 根据权利要求14所述的浸没液冷系统,其特征在于,所述系统还包括循环泵和阀门;所述循环泵连通所述热交换器与所述分液器,热交换器冷却后的冷却液经所述循环泵加压后泵入所述分液器;所述阀门设置于所述循环泵与所述分液器之间。
  16. 一种浸没液冷方法,其特征在于,所述方法使用如权利要求1至15任一项所述的浸没液冷系统对浸没换热腔体进行散热,所述方法包括:
    送入冷却液至所述分液器,冷却液经所述分液器的流道进入所述浸没换热腔体的流道吸收所述浸没换热腔体内的热量,流出所述汇液器形成液冷流道,实现对浸没换热腔体的散热。
  17. 根据权利要求16所述的浸没液冷方法,其特征在于,所述方法还包括:
    在汇液器和分液器之间设置热交换器,以实现对从汇液器流出的冷却液进行冷却,并将冷却后的冷却液重新送入分液器形成液冷循环。
  18. 根据权利要求17所述的浸没液冷方法,其特征在于,所述方法还包括:
    设置温度监测模块至所述分液器的集液管与所述浸没换热腔体的流道,以用于实现对冷却液温度的监测,所述温度监测模块的数量至少为一个;
    设置流量监测模块至所述分液器的集液管,以用于实现对冷却液的流量的监测。
  19. 根据权利要求18所述的浸没液冷方法,其特征在于,所述方法还包括:
    设置告警模块至所述浸没换热腔体,当温度监测模块监测到所述冷却液温度超过第一预设值,和/或,当所述流量监测模块监测到所述冷却液的流量低于第二预设值,则触发所述告警模块发出告警。
  20. 根据权利要求19所述的浸没液冷方法,其特征在于,所述方法还包括:
    设置电磁导向阀至所述分液器的集液管,当设置于所述分液器的集液管的温度监测模块监测到所述冷却液温度超过第一预设值时,则所述电磁导向阀关闭,以切断当前液冷流道。
  21. 一种服务器,其特征在于,所述服务器包括如权利要求1至15任一项所述的浸没液冷系统。
PCT/CN2023/102634 2022-12-22 2023-06-27 浸没液冷系统、方法和服务器 WO2024131006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211654933.3 2022-12-22
CN202211654933.3A CN115666112B (zh) 2022-12-22 2022-12-22 浸没液冷系统、方法和服务器

Publications (1)

Publication Number Publication Date
WO2024131006A1 true WO2024131006A1 (zh) 2024-06-27

Family

ID=85022903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102634 WO2024131006A1 (zh) 2022-12-22 2023-06-27 浸没液冷系统、方法和服务器

Country Status (2)

Country Link
CN (1) CN115666112B (zh)
WO (1) WO2024131006A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115666112B (zh) * 2022-12-22 2023-04-11 苏州浪潮智能科技有限公司 浸没液冷系统、方法和服务器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150334880A1 (en) * 2014-05-13 2015-11-19 Green Revolution Cooling, Inc. System and method for air-cooling hard drives in liquid-cooled server rack
CN109643047A (zh) * 2016-08-31 2019-04-16 索尼公司 图像投影装置
CN113873849A (zh) * 2021-10-12 2021-12-31 西北工业大学 一种自适应调节半浸没式液冷散热腔体、循环系统及应用
CN114521093A (zh) * 2022-01-10 2022-05-20 中国电子科技集团公司第二十九研究所 一种单元流路、换热器设计方法、液冷板
CN115038303A (zh) * 2022-06-17 2022-09-09 北京有竹居网络技术有限公司 浸没式液冷装置及液冷系统
CN115220545A (zh) * 2022-07-21 2022-10-21 山西国科睿创科技有限公司 一种非相变浸没式液冷服务器
CN115666112A (zh) * 2022-12-22 2023-01-31 苏州浪潮智能科技有限公司 浸没液冷系统、方法和服务器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980969B2 (ja) * 2016-04-13 2021-12-15 富士通株式会社 データセンタ及びデータセンタの制御方法
CN113365477B (zh) * 2021-06-22 2023-02-03 北京百度网讯科技有限公司 冷却装置、机柜及数据处理设备
CN115348799A (zh) * 2022-05-17 2022-11-15 阿里巴巴(中国)有限公司 液冷测试设备、方法和冷液回收装置
CN115295955B (zh) * 2022-09-28 2022-12-27 常州博瑞电力自动化设备有限公司 一种储能电池箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150334880A1 (en) * 2014-05-13 2015-11-19 Green Revolution Cooling, Inc. System and method for air-cooling hard drives in liquid-cooled server rack
CN109643047A (zh) * 2016-08-31 2019-04-16 索尼公司 图像投影装置
CN113873849A (zh) * 2021-10-12 2021-12-31 西北工业大学 一种自适应调节半浸没式液冷散热腔体、循环系统及应用
CN114521093A (zh) * 2022-01-10 2022-05-20 中国电子科技集团公司第二十九研究所 一种单元流路、换热器设计方法、液冷板
CN115038303A (zh) * 2022-06-17 2022-09-09 北京有竹居网络技术有限公司 浸没式液冷装置及液冷系统
CN115220545A (zh) * 2022-07-21 2022-10-21 山西国科睿创科技有限公司 一种非相变浸没式液冷服务器
CN115666112A (zh) * 2022-12-22 2023-01-31 苏州浪潮智能科技有限公司 浸没液冷系统、方法和服务器

Also Published As

Publication number Publication date
CN115666112B (zh) 2023-04-11
CN115666112A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024131006A1 (zh) 浸没液冷系统、方法和服务器
CN111552359B (zh) 浸没式液体冷却槽及冷却装置
CN112016159B (zh) 机车冷却系统虚拟环路与cfd仿真耦合分析方法
US11291136B2 (en) Liquid-cooled cold plate device
TW201223382A (en) A cabinet of server
US20110182028A1 (en) Cooling system
WO2017215161A1 (zh) 一种用于计算机及数据中心散热的工质接触式冷却系统
US20120024502A1 (en) Enclosed-aisle data center cooling system
WO2024093228A1 (zh) 储能系统及其热管理装置
TWI655895B (zh) 機櫃式散熱系統
WO2023001012A1 (zh) 一种算力板和数据处理设备
CA3090454A1 (en) Cooling arrangement for a rack hosting electronic equipment and at least one fan
CN204761941U (zh) 一种具有混合流道的液冷散热器
CN204229298U (zh) 终端设备
WO2024031900A1 (zh) 一种液冷服务器机柜
WO2015067177A1 (zh) 一种直流换流阀用模块流量均衡水路
CN108726520B (zh) 一种还原炉余热回收系统
WO2024040867A1 (zh) 一种液冷系统
CN217241225U (zh) 散热系统及电子设备
CN208421744U (zh) 一种液冷虚拟数字货币挖矿机及挖矿机组
CN218274796U (zh) 一种液冷板、冷却系统及电池
CN115904037A (zh) 液冷散热装置及服务器
US20240334646A1 (en) Immersed cooling system and immersed cooling cabinet
TWI831660B (zh) 浸沒式液冷循環系統及浸沒式液冷機櫃
CN115811875A (zh) 服务器散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905191

Country of ref document: EP

Kind code of ref document: A1