WO2024130821A1 - 一种具有循环润滑油路结构的涡旋式压缩机 - Google Patents

一种具有循环润滑油路结构的涡旋式压缩机 Download PDF

Info

Publication number
WO2024130821A1
WO2024130821A1 PCT/CN2023/073737 CN2023073737W WO2024130821A1 WO 2024130821 A1 WO2024130821 A1 WO 2024130821A1 CN 2023073737 W CN2023073737 W CN 2023073737W WO 2024130821 A1 WO2024130821 A1 WO 2024130821A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
assembly
scroll
pressure chamber
oil return
Prior art date
Application number
PCT/CN2023/073737
Other languages
English (en)
French (fr)
Inventor
肖启能
黄惊云
Original Assignee
深圳昂湃技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳昂湃技术有限公司 filed Critical 深圳昂湃技术有限公司
Publication of WO2024130821A1 publication Critical patent/WO2024130821A1/zh

Links

Definitions

  • the present application relates to the technical field of compressors, and more specifically, to a scroll compressor with a circulating lubricating oil circuit structure.
  • Scroll compressors have the advantages of low noise, small size, and high energy efficiency ratio. They have good application prospects in the field of electric vehicle heat pump air conditioning. For this reason, CO2 scroll compressors are becoming more and more a hot topic of research.
  • lubricating oil is supplied to the back pressure chamber and the suction space separately through multiple supply flow paths, which can effectively supply lubricating oil.
  • the existing scroll compressor has a complex lubricating oil diversion structure, which is difficult to adapt to variable working conditions.
  • the purpose of the present application is to provide a scroll compressor with a circulating lubricating oil circuit structure, which has the advantages of being able to ensure stable performance under variable working conditions and having a simple lubricating oil circuit structure.
  • the present application provides a scroll compressor with a circulating lubricating oil circuit structure, comprising: a casing, in which a bearing seat assembly is arranged, and a suction cavity and an oil pool are formed on one side of the bearing seat assembly;
  • a static disk assembly the static disk assembly is fixedly arranged in the casing
  • a moving disc assembly which rotates eccentrically relative to the stationary disc assembly and matches with the moving disc assembly to form a compression chamber, which is connected to the suction chamber;
  • the casing has a low-pressure chamber structure, a high-pressure chamber structure and an oil separation channel; the high-pressure chamber structure is connected to the compression chamber and the oil separation channel;
  • the scroll compressor further includes a first oil return passage and a second oil return passage;
  • the first oil return channel is connected to the oil distribution channel and the low-pressure chamber structure, and the low-pressure chamber structure is connected to the suction chamber.
  • the diameter is smaller than the diameter of the oil channel;
  • the bearing seat assembly and the moving plate assembly form a back pressure chamber.
  • the second oil return channel has an oil inlet section and an oil outlet section.
  • the oil inlet section connects the compression chamber and the back pressure chamber, and the oil outlet section connects the back pressure chamber and the suction chamber.
  • the first oil return passage includes: an inlet section, which passes through the stator assembly and communicates with the oil separation passage,
  • a throttling groove section is disposed around the end surface of the stator assembly and is connected to the inlet section;
  • the outlet section penetrates the stator disk assembly and communicates with the low-pressure chamber structure and the throttling groove section.
  • a communicating hole section is also provided through the static disk assembly, and the communicating hole section is connected with the suction cavity of the low-pressure cavity structure.
  • the housing is provided with:
  • first air inlet a first air inlet, the first air inlet being connected to the oil separation channel and the high pressure chamber structure respectively;
  • the oil return port is connected to the right end of the oil distribution channel; the first oil return channel is connected to the oil return port;
  • a filter component is provided at the oil return port.
  • the filter assembly includes: a filter body, wherein a mounting groove is provided in the filter body;
  • Filter screen the filter screen is installed in the installation groove
  • the filter screen pressing ring is embedded in the installation groove and abuts against the fixed filter screen.
  • a fourth sealing ring and a fifth sealing ring are provided on the outer wall of the filter body, the filter body is sealed with the side of the hole on the static disk assembly through the fourth sealing ring, and the filter body is sealed with the side of the oil return port through the fifth sealing ring.
  • the housing includes: a motor housing and an exhaust cover detachably connected to the motor housing;
  • the static disk assembly includes: a static vortex disk, a high-pressure chamber structure is formed between the static vortex disk and the exhaust cover, and a static vortex ring is arranged on the static vortex disk;
  • the first oil return channel is opened on the static vortex disk
  • the movable disk assembly includes a movable scroll disk, a movable vortex ring is arranged on the movable scroll disk, and the stationary vortex ring and the movable vortex ring are meshed to form a compression chamber, and both adopt symmetrical arc plus straight line correction vortex rings.
  • the stationary disk assembly further comprises: an elastic ring, which is disposed between the stationary scroll and the exhaust cover and enables the stationary scroll to abut against the bearing seat assembly;
  • the first sealing ring is arranged in the groove of the upper raised circular rib of the static scroll and is used for sealing the connection between the static scroll and the exhaust cover.
  • the bearing seat assembly includes: a bearing seat body, and a pin mounting plate;
  • the movable scroll rests on the pin mounting plate, and a back pressure cavity is formed within the bearing seat body, the pin mounting plate and the movable scroll;
  • the scroll compressor also includes a second oil return passage, the second oil return passage has an oil inlet section and an oil outlet section, the oil inlet section is connected to the compression chamber and the back pressure chamber;
  • the oil outlet section is connected with the back pressure chamber and the suction chamber.
  • the oil inlet section includes a back pressure hole arranged at the bottom of the movable scroll, and the back pressure hole is connected to the compression chamber and the back pressure chamber respectively;
  • the oil outlet section includes: a second oil return hole arranged on the outer wall of the bearing seat body, and a flow channel gap formed between the outer wall of the bearing seat assembly and the inner wall of the motor housing, the second oil return hole connects the back pressure chamber and the flow channel gap, and the flow channel gap is connected to the suction chamber.
  • pin shafts are arranged on the pin mounting plate, and six pin matching holes are arranged on the back of the movable scroll.
  • the pin shafts and the pin matching holes match each other so that the pin shafts can move in the pin matching holes.
  • the end face of the movable scroll is sealed with the first end face of the pin mounting plate through the second sealing ring, and the second end face of the pin mounting plate is sealed with the end face of the bearing seat body through the third sealing ring.
  • a scroll compressor with a circulating lubricating oil circuit structure provided by the present application are at least that: a mixture of refrigerant gas and lubricating oil first lubricates the friction pair in the suction chamber, and then enters the compression chamber under the action of the pressure difference.
  • the lubricating oil plays a role in lubricating the friction pair between the static disk assembly and the dynamic disk assembly; under the extrusion of the compression chamber, on the one hand, the lubricating oil enters the back pressure chamber through the oil inlet section of the second oil return channel to lubricate the friction pair in the back pressure chamber, and then returns to the bottom oil pool in the suction chamber through the oil outlet section of the second oil return channel, so as to realize the circulation of the lubricating oil all the way.
  • the refrigerant gas and lubricating oil are discharged from the static vortex assembly into the compression chamber and enter the high-pressure chamber structure.
  • the lubricating oil when the lubricating oil enters the high-pressure chamber with the high-pressure gas, the lubricating oil is squeezed to the connection between the high-pressure chamber structure and the low-pressure chamber structure to realize the oil seal, thereby playing the role of sealing the leakage gap between the connection.
  • the gas in the high-pressure chamber structure then enters the oil separation channel for oil-gas separation.
  • the separated lubricating oil enters the first oil return channel on the static vortex assembly, passes through the low-pressure chamber structure, and returns to the suction chamber of the compressor, and further returns to the bottom oil pool.
  • the circulation requirements of the lubricating oil can be achieved through the first oil return channel and the second oil return channel, forming a good lubrication effect on the various components of the compressor, and improving the operating efficiency and stability of the compressor.
  • the caliber of the first oil return channel is smaller than the caliber of the oil separation channel, the lubricating oil passing through the first oil return channel undergoes a large pressure drop, changing from high pressure to low pressure, meeting the circulation requirements of the lubricating oil; even when the oil content in the lubricating oil circuit under specific working conditions is low, the lubricating oil will not be returned in large quantities in the oil return circulation path, resulting in less lubricating oil in other chambers, and the amount of lubricating oil in each chamber can still be guaranteed, so that the gaps in each chamber are effectively sealed with sufficient lubricating oil to avoid the problem of large refrigeration leakage.
  • FIG1 is a cross-sectional view of a scroll compressor having a circulating lubricating oil path structure provided by an embodiment of the present application at a first position;
  • FIG2 is a cross-sectional view of a scroll compressor having a circulating lubricating oil path structure provided by an embodiment of the present application at another perspective of a first position;
  • FIG3 is an exploded view of a scroll compressor with a circulating lubricating oil circuit structure provided in an embodiment of the present application
  • FIG. 4 is a partial cross-sectional view of a scroll compressor having a circulating lubricating oil path structure in a second position provided by an embodiment of the present application;
  • FIG. 5 is a partial cross-sectional view of a scroll compressor with a circulating lubricating oil path structure at a third position provided by an embodiment of the present application;
  • FIG. 6 is a partial cross-sectional view of a scroll compressor with a circulating lubrication oil path structure provided by an embodiment of the present application at a fourth position;
  • FIG7 is a schematic structural diagram of a stationary scroll of a scroll compressor having a circulating lubricating oil circuit structure provided in an embodiment of the present application;
  • FIG8 is a structural schematic diagram of a fixed scroll of a scroll compressor with a circulating lubricating oil path structure provided by an embodiment of the present application from another perspective;
  • FIG. 9 is a partial cross-sectional view of a scroll compressor with a circulating lubricating oil path structure provided by an embodiment of the present application at a fifth position;
  • FIG10 is a partial cross-sectional view of a scroll compressor with a circulating lubricating oil path structure provided by an embodiment of the present application at a sixth position;
  • FIG11 is a rear view of a movable scroll of a scroll compressor having a circulating lubrication oil path structure provided in an embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of a bearing seat body of a scroll compressor having a circulating lubricating oil circuit structure provided in an embodiment of the present application.
  • the scroll compressor can be a horizontal structure.
  • the scroll compressor mainly includes: a casing 100, a rotating mechanism 700, a moving plate assembly 400, a static plate assembly 300 and a first oil return channel 500.
  • the casing 100 is provided with an air suction chamber 111, an air suction port 113 and an oil pool 112.
  • the air suction chamber 111 is connected to the air suction port 113 to allow the refrigerant gas to enter the air suction chamber 111.
  • the oil pool 112 is located in the air suction chamber 111, so that the refrigerant gas can be mixed with the lubricating oil in the oil pool 112.
  • the rotating mechanism 700 is rotatably arranged in the housing 100, the moving disc assembly 400 is located in the housing 100 and eccentrically connected to the rotating structure, the static disc assembly 300 is fixedly arranged in the housing 100, and is matched with the moving disc assembly 400 to form a compression chamber 310, and the static disc assembly 300 is driven by the rotating mechanism 700 to perform eccentric activities, thereby changing the size of the compression chamber 310.
  • the compression chamber 310 has a second air inlet 311 and a second air outlet 312, and the second air inlet 311 is connected to the suction chamber 111; when the compression chamber 310 becomes smaller, the gas in the compression chamber 310 can be squeezed out from the second air outlet 312, and when the compression chamber 310 becomes larger, the gas can be absorbed from the suction chamber 111 through the second air inlet 311, thereby realizing the function of pumping gas.
  • a high-pressure chamber structure 122, a low-pressure chamber structure 121 and an oil separation channel 123 are provided in the housing 100; the second exhaust port 312 is connected to the high-pressure chamber structure 122, and the high-pressure chamber structure is connected to the oil separation channel 123.
  • the oil separation channel 123 is used to separate the oil and gas and allow the gas to enter the gas section and be discharged, while the lubricating oil enters the oil return section;
  • the first oil return channel 500 is connected to the oil return section and the low-pressure chamber structure 121, and the low-pressure chamber structure 121 is connected to the suction chamber 111;
  • the first oil return channel 500 The diameter of the oil channel 123 is smaller than that of the oil channel 123, so that the high-pressure lubricating oil in the oil channel 123 is depressurized when passing through the first oil return channel 500, so that the pressure of the lubricating oil flowing into the low-pressure chamber structure 121 is reduced.
  • a bearing seat assembly 200 is disposed in the housing 100.
  • An air suction chamber 111 is formed between the bearing seat assembly 200 and the motor housing 110.
  • the oil pool 112 is located in the air suction chamber 111.
  • the bearing seat assembly 200 and the moving plate assembly 400 form a back pressure chamber 210.
  • the back pressure chamber 210 is provided with bearings and other parts that support the rotating assembly.
  • the scroll compressor also includes a second oil return channel 600.
  • the second oil return channel 600 has an oil inlet section and an oil outlet section. The oil inlet section connects the compression chamber 310 and the back pressure chamber 210; the oil outlet section connects the back pressure chamber 210 and the air suction chamber 111.
  • the mixture of refrigerant gas and lubricating oil first lubricates the friction pair in the suction chamber 111, and then enters the compression chamber 310 surrounded by the static plate assembly 300 and the movable plate assembly 400 under the action of the pressure difference. Driven by the eccentric movement of the movable plate assembly 400, it is forced to flow from the outside of the compression chamber 310 to the center. In this process, the lubricating oil plays a role in lubricating the friction pair between the static plate assembly 300 and the movable plate assembly 400.
  • the lubricating oil enters the back pressure chamber 210 through the oil inlet section of the second oil return channel 600 to lubricate the friction pair in the back pressure chamber 210, and then returns to the bottom oil pool 112 in the suction chamber through the oil outlet section of the second oil return channel 600 to realize the circulation of the lubricating oil all the way.
  • the refrigerant gas and lubricating oil reach the exhaust pressure, they are discharged from the static vortex 320 out of the compression chamber 310 and enter the high-pressure chamber structure 122.
  • the lubricating oil when the lubricating oil enters the high-pressure chamber along with the high-pressure gas, the lubricating oil is squeezed to the connection between the high-pressure chamber structure 122 and the low-pressure chamber structure 121 to achieve oil sealing, thereby sealing the leakage gap between the connection.
  • the gas in the high-pressure chamber structure 122 then enters the oil separation channel 123 for oil-gas separation, and the refrigerant is discharged from the exhaust end of the oil separation channel 123 to the outside of the compressor, and the lubricating oil enters the first oil return channel 500 on the static vortex assembly from the oil return section of the oil separation channel 123, and enters the low-pressure chamber structure 121.
  • the lubricating oil passing through the first oil return channel 500 undergoes a significant pressure drop, changing from high pressure to low pressure, and returns to the suction chamber 111 of the compressor after passing through the low-pressure chamber structure 121, and further returns to the bottom oil pool 112, thus completing another complete cycle of the lubricating oil.
  • the circulation requirements of the lubricating oil can be achieved through the first oil return channel 500 and the second oil return channel 600, forming a good lubrication effect for various components of the compressor, and improving the operating efficiency and stability of the compressor.
  • the caliber of the first oil return channel 500 becomes smaller, even if the oil content in the oil circuit of the lubricating oil under specific working conditions is relatively low, the lubricating oil will not be returned in large quantities in the oil return circulation path, resulting in less lubricating oil in other chambers, and the amount of lubricating oil in each chamber can still be guaranteed, so that the gaps in each chamber can be effectively sealed with sufficient lubricating oil to avoid the problem of large refrigeration leakage.
  • a scroll compressor provided in this embodiment is a horizontal structure, wherein a rotating mechanism 700, a stator assembly 300, a moving disk assembly 400 and a bearing seat assembly 200 are all arranged in a casing 100, an air suction chamber 111 and an oil pool 112 are located at the rear of the casing 100, the stator assembly 300 is located at the front of the casing 100, and the moving disk assembly 400 is located at the stator assembly 300.
  • the rear end of the rotating mechanism 700 is located in the suction cavity 111 , and the front end passes through the bearing seat assembly 200 and is connected to the stator assembly 300 .
  • the casing 100 mainly includes a motor casing 110 and an exhaust cover 120.
  • the motor casing 110 and the exhaust cover 120 are detachably connected to the front of the motor casing 110 by bolts.
  • the suction chamber 111 is located in the motor casing 110.
  • a groove is set at the bottom of the suction chamber 111 in the motor casing 110 to form an oil pool 112.
  • An suction port 113 is opened on the motor casing 110.
  • the suction port 113 is connected to the suction chamber 111 and is used for the entry of refrigerant gas.
  • the bearing seat assembly 200 specifically includes: a bearing seat body 220 and a pin mounting plate 230; the bearing seat body 220 is located at the rear side of the pin mounting plate 230, a bearing is arranged in the bearing seat body 220, and the rotating mechanism 700 is connected through the bearing, the pin mounting plate 230 is located between the moving plate assembly 400 and the bearing seat body 220, the moving plate assembly 400 is against the pin mounting plate 230, and a back pressure chamber 210 is enclosed in the bearing seat body 220, the pin mounting plate 230 and the moving plate assembly 400.
  • the static disk assembly 300 is located at the front side of the exhaust cover 120.
  • the static disk assembly 300 includes a static vortex 320, a filter assembly 130, an elastic ring 330 and a first sealing ring 340.
  • a filter mounting hole 350 and a protruding raised circular rib are provided on the front end surface of the static vortex 320; the filter assembly 130 is located in the filter mounting hole 350 on the front end surface of the static vortex 320, and the first sealing ring 340 is located in the groove on the outer wall of the raised circular rib on the static vortex 320.
  • the elastic ring 330 can be a spring ring, which is installed between the static vortex 320 and the exhaust cover 120. The static vortex 320 is pressed against the bearing seat assembly 200 by the elastic force of the spring ring.
  • the movable plate assembly 400 includes a movable scroll 410 and a second sealing ring 430.
  • a stationary scroll ring 321 is provided on the fixed scroll 320 (as shown in Figure 8), and a movable scroll ring 411 is provided on the movable scroll 410 (as shown in Figure 3).
  • the fixed scroll 320 wraps the movable scroll 410, and the movable scroll 410 can move inside the fixed scroll 320.
  • the fixed scroll ring 321 and the movable scroll ring 411 are meshed to form a compression chamber 310.
  • the movable scroll 410 is moved by the drive of the rotating mechanism 700, thereby expanding or contracting the compression chamber 310.
  • the outer side of the static vortex 320 is provided with air holes and oil holes.
  • the air holes are connected to the suction chamber 111 for the second air inlet 311, and the oil holes are connected to the oil pool 112.
  • the pressure in the compression chamber 310 is small, so that the refrigerant gas and lubricating oil enter the outer position of the compression chamber 310 through the second air inlet 311 and the oil holes.
  • the movable vortex 410 moves and the compression chamber 310 becomes smaller, the gas and lubricating oil are forced to flow from the outside of the compression chamber 310 to the center, and the pressure in the compression chamber 310 increases.
  • the static vortex 321 and the movable vortex 411 in this embodiment both adopt symmetrical arc plus straight line correction vortex, which has good meshing effect and stable operation.
  • the end face of the movable vortex 410 can seal the back pressure chamber 210 through the second sealing ring 430 and the first end face 232 of the pin mounting plate 230, so as to prevent air leakage from the connection.
  • the second exhaust port 312 is opened in the middle position of the static scroll 320.
  • a valve structure is usually provided on the second exhaust port 312.
  • the pressure in the compression chamber 310 is relatively low, the compression chamber 310 is closed.
  • the pressure reaches a preset pressure value for example, a certain high pressure
  • the valve is pushed open so that gas and liquid can enter the high-pressure chamber structure 122 through the second exhaust port 312.
  • the oil separation channel 123, the high pressure chamber structure 122 and the low pressure chamber structure 121 are arranged on the exhaust cover 120.
  • the oil separation channel 123 is connected to the first air inlet 124.
  • the oil separation channel 123 has an oil outlet and an air outlet.
  • the air outlet is connected to the first exhaust port 125, and the oil outlet is connected to the oil return port 126.
  • the high pressure chamber structure 122 is located in the middle of the exhaust cover 120, and is connected to the oil separation channel 123 through the first air inlet 124.
  • the oil return port 126 is connected to the first oil return channel 500, and then connected to the low pressure chamber structure 121.
  • the low pressure chamber structure 121 is located at the edge of the exhaust cover 120 and is connected to the air suction chamber 111.
  • the high-pressure gas generated from the compression chamber 310 enters the high-pressure chamber structure 122, and enters the oil separation channel 123 through the first air inlet 124 for oil and gas separation.
  • the refrigerant gas enters the first exhaust port 125 through the air outlet end, and can be discharged outside the compressor.
  • the separated lubricating oil enters the oil return port 126 from the oil outlet end and enters the first oil return channel 500.
  • the first oil return passage 500 specifically includes: an inlet section 510, a throttling groove section 520 and an outlet section 530.
  • the inlet section 510 penetrates the fixed scroll 320 along the front-to-back direction and communicates with the oil separation passage 123.
  • the throttling groove section 520 is arranged around the end surface of the fixed scroll 320 and communicates with the inlet section 510.
  • the rear end surface of the fixed scroll 320 and the bearing seat assembly 200 are pressed and matched with each other by means of the pre-deformation of the elastic ring 330.
  • the elastic ring 330 exerts a certain force on the fixed scroll 320, thereby realizing the side sealing of the throttling groove section 520 and forming a channel in the throttling groove section 520, so as to facilitate the effective throttling and pressure reduction effect of the lubricating oil in the throttling groove section 520.
  • the cross-sectional size of the throttling groove section 520 is particularly small, even if the oil content in the oil circuit is small under specific working conditions, no large refrigeration leakage will occur.
  • the outlet section 530 penetrates the stator assembly 300 and connects the low-pressure chamber structure 121 and the throttling groove section 520; the inlet section 510 of the first oil return channel 500 is connected to the oil return port 126 on the exhaust cover 120 through the filter assembly 130, and the outlet section 530 of the first oil return channel 500 is connected to the low-pressure chamber structure 121 on the exhaust cover 120.
  • the lubricating oil passing through the oil return port 126 is filtered by the filter assembly 130, the filtered lubricating oil enters the inlet section 510, the throttling groove section 520 and the outlet section 530 in turn, and finally reaches the low-pressure chamber structure 121, and then returns to the suction chamber 111 through the second air inlet 311.
  • the calibers of the inlet section 510, the throttling groove section 520 and the outlet section 530 are all smaller than the oil outlet end of the oil separation channel 123. Therefore, a large pressure drop can occur in the first oil return channel 500.
  • the throttling groove section 520 is grooved on the end surface to form a semicircular channel, and the diameter size is greatly reduced, thereby achieving a good throttling and pressure reduction effect.
  • a connecting hole section 540 is also provided on the static scroll 320.
  • the connecting hole section 540 penetrates the static scroll 320 in the front-to-back direction.
  • the connecting hole section 540 connects the low-pressure chamber structure 121 and the inner edge space of the static scroll 320 (the edge space can also be considered as a part of the compression chamber 310, but it is located at the edge of the compression chamber 310.
  • the middle position is compressed to generate high pressure, while the edge does not generate high pressure), and then communicates with the suction chamber 111 through the second air inlet 311 on the side wall of the static scroll 320.
  • the filter assembly 130 includes a filter body 131, a filter screen 132, a filter screen pressing ring 133, a fourth sealing ring 134 and a fifth sealing ring 135.
  • the filter screen 132 is located in the filter body 131 and is pressed and fixed by the filter screen pressing ring 133.
  • the fourth sealing ring 134 is located in the first deep groove on the outer wall of the filter body 131.
  • the filter body 131 is sealed by the fourth sealing ring.
  • the fifth sealing ring 135 is located in the second deep groove on the outer wall of the filter body 131.
  • the filter body 131 is sealed with the side of the oil return port 126 through the fifth sealing ring 135.
  • the outer wall surface of the fixed vortex 320 and the inner wall surface of the exhaust cover 120 cooperate to position the fixed vortex 320 in the circumferential direction.
  • the use of the filter assembly 130 assembly not only achieves the filtration of the lubricating oil but also can block and buffer the high-pressure lubricating oil, further achieving the effect of throttling and reducing pressure.
  • the bearing seat assembly 200 also includes six pin shafts 231 and a third sealing ring 234.
  • the bearing seat can be mounted on the motor housing 110.
  • the pin shaft 231 is mounted on the front end surface of the pin mounting plate 230.
  • Six holes are evenly distributed around the front end surface of the pin mounting plate 230.
  • the six pin shafts 231 are respectively embedded in the six holes.
  • the rear end surface (back) of the movable scroll 410 is provided with six pin matching holes 420.
  • the pin shafts 231 and the pin matching holes 420 cooperate with each other so that the pin shafts 231 can move in the pin matching holes 420. Since the movable scroll 410 rotates eccentrically, the movable scroll 410 can move in the pin matching holes 420 through the drive of the rotating mechanism, thereby making the compression chamber 310 larger or smaller.
  • the end face of the movable scroll 410 in this embodiment is sealed with the first end face 232 of the pin mounting plate 230 through the second sealing ring 430, and the second end face 233 of the pin mounting plate 230 is sealed with the end face of the bearing seat through the third sealing ring 234, thereby sealing the front end of the bearing seat assembly 200 and forming a back pressure chamber 210 in the bearing seat assembly 200.
  • the oil inlet section includes a back pressure hole 610 provided at the bottom of the movable scroll 410, and the back pressure hole 610 is respectively connected to the compression chamber 310 and the back pressure chamber 210.
  • the oil outlet section includes: a second oil return hole 620 provided on the outer wall of the bearing seat body 220, and a flow channel gap 630 formed between the outer wall of the bearing seat body 220 and the inner wall of the motor housing 110, the second oil return hole 620 is connected to the back pressure chamber 210 and the flow channel gap 630, and the flow channel gap 630 is connected to the suction chamber 111.
  • a back pressure hole 610 is provided at the bottom of the movable scroll 410.
  • the back pressure hole 610 is located near the center of the movable scroll 410 and penetrates the movable scroll 410 in the front-to-back direction, so that the back pressure hole 610 is connected to the compression chamber 310 and the back pressure chamber 210 respectively.
  • the aperture of the back pressure hole 610 can be set to 1mm; the flow channel gap 630 formed between the outer wall of the bearing seat assembly and the inner wall of the motor housing 110 is also set to be relatively small, for example, a small gap of 0.2mm.
  • the high-pressure lubricating oil flowing out of the compression chamber 310 is throttled and depressurized through the back pressure hole 610 on the bearing seat body 220, thereby entering the back pressure chamber 210 to lubricate each friction pair, and then returns to the bottom oil pool 112 after throttling and pressure reduction again through the second oil return hole 620 and the small flow channel gap 630.
  • a certain amount of lubricating oil is pre-injected into the oil pool 112 at the bottom of the casing 100.
  • the injected lubricating oil initially gathers in the oil pool 112 at the bottom of the casing 100.
  • the oil The refrigerant gas from the evaporator enters the suction chamber 111 through the suction port 113.
  • part of the lubricating oil in the oil pool 112 at the bottom is carried by the refrigerant to form an oil-gas mixture, and flows in the set flow channel in the shell cavity.
  • the lubricating oil is carried to the auxiliary bearing for necessary lubrication.
  • the mixture of refrigerant gas and lubricating oil enters the compressor compression chamber 310 surrounded by the fixed scroll 320 and the movable scroll 410 under the action of the pressure difference.
  • the movable scroll 410 moves and shrinks the compression space, so that the oil-gas mixture is forced to flow from the edge of the vortex to the center.
  • the lubricating oil not only plays a role in lubricating the friction pair between the movable scroll 410 and the fixed scroll 320, but also plays a role in sealing the leakage gap between the high and low pressure chambers.
  • the oil circuit is divided into two paths. In one path, the lubricating oil enters the back pressure cavity 210 surrounded by the movable scroll 410 and the bearing seat assembly 200 through the back pressure hole 610 along with the refrigerant gas, lubricates the friction pair in the back pressure cavity 210, and then generates throttling pressure drop through the back pressure hole 610 on the bearing seat assembly 200 and the tiny flow channel gap 630, and returns to the oil pool 112 at the bottom of the compressor casing 100.
  • the refrigerant gas and lubricating oil reach the exhaust pressure in the compression chamber 310, they are discharged from the compression chamber 310 from the second exhaust port on the static scroll 320 and enter the high-pressure chamber structure 122 on the exhaust cover 120. Then, the mixture enters the oil separation channel 123 through the air inlet on the exhaust cover 120 to separate oil and gas, so that the separated refrigerant is discharged from the first exhaust port 125, and the lubricating oil enters the oil return port 126 from the oil separation channel 123, and flows through the filter assembly 130 to filter out impurities in the lubricating oil, while also achieving a partial throttling and pressure reduction effect.

Landscapes

  • Rotary Pumps (AREA)

Abstract

一种具有循环润滑油路结构的涡旋式压缩机包括:机壳(100),其内设置有轴承座组件(200)、吸气腔(111)以及油池(112);静盘组件(300);动盘组件(400),其和静盘组件(300)相配形成的压缩腔(310)连通吸气腔(111);机壳(100),其内具有低压腔结构(121)、高压腔结构(122)和油分通道(123),高压腔结构(122)连通压缩腔(310)和油分通道(123);第一回油通道(500)和第二回油通道(600)。第一回油通道(500)连通油分通道(123)和低压腔结构(121),低压腔结构(121)连通吸气腔(111),第二回油通道(600)具有进油段和出油段,进油段连通压缩腔(310)和背压腔(210),出油段连通背压腔(210)和吸气腔(111)。该涡旋式压缩机润滑油回路结构简单。

Description

一种具有循环润滑油路结构的涡旋式压缩机 技术领域
本申请涉及压缩机技术领域,更具体地说,是涉及一种具有循环润滑油路结构的涡旋式压缩机。
背景技术
随着电动汽车行业的兴起与蓬勃发展,传统的以R134a为工质的热泵空调系统已很难满足汽车对于变工况性能的要求,特别是在环境温度降低时,R134a热泵系统的性能会急剧下降。以CO2为工质的跨临界CO2热泵空调相较于前者有着较出色的性能,且CO2作为汽车空调制冷剂对环境与人体均无害。
涡旋压缩机具有噪声低,体积小,能效比高的优点,在电动汽车热泵空调领域具有良好的应用前景,为此CO2涡旋压缩机越来越成为目前研究的热点。然而,由于跨临界二氧化碳循环压比大,压差小,压力高的特点,使得其应用在涡旋压缩机上需要解决影响涡旋压缩机润滑和密封的油循环问题。为了解决上述问题,现有的压缩机结构中,通过多个供给流路向背压室和吸入空间单独供给润滑油,可有效地供给润滑油。但是现有的涡旋压缩机的润滑油分流结构复杂,难以适应于多变工况运行。
因此,现有技术有待改进。
发明内容
本申请的目的在于提供一种具有循环润滑油路结构的涡旋式压缩机,具有在多变工况下能保证性能稳定,润滑油回路结构简单的优点。
为实现上述目的,本申请采用的技术方案是:
本申请提供一种具有循环润滑油路结构的涡旋式压缩机,包括:机壳,其内设置有轴承座组件,并在轴承座组件一侧形成吸气腔以及油池;
静盘组件,静盘组件固定设置在机壳内;
动盘组件,动盘组件相对于静盘组件偏心转动,并与动盘组件相配形成压缩腔,压缩腔连通所述吸气腔;
机壳内具有低压腔结构、高压腔结构和油分通道;高压腔结构连通压缩腔和油分通道;
其中,涡旋式压缩机还包括第一回油通道和第二回油通道;
第一回油通道连通油分通道和低压腔结构,低压腔结构连通吸气腔,第一回油通道的口 径小于油分通道的口径;
轴承座组件与所述动盘组件围成背压腔,第二回油通道具有进油段和出油段,进油段连通压缩腔和背压腔,出油段连通背压腔和吸气腔。
在一种实施方式中,第一回油通道包括:进口段,其贯穿静盘组件并连通油分通道,
节流槽段,其在静盘组件的端面上环绕设置,并连通进口段;
出口段,其贯穿静盘组件并连通低压腔结构和节流槽段。
静盘组件上还贯穿设置有连通孔段,连通孔段连通低压腔结构吸气腔。
在一种实施方式中,机壳上设置有:
第一进气口,第一进气口分别连通油分通道和高压腔结构;
第一排气口,第一排气口连通油分通道的出气端;
回油口,回油口连通油分通道的出右端;第一回油通道连通回油口;
回油口处设置有过滤组件。
在一种实施方式中,过滤组件包括:过滤器本体,过滤器本体内设置有安装槽,
滤网,滤网安装在安装槽内;
滤网压环,滤网压环嵌于安装槽内并抵靠固定滤网。
在一种实施方式中,过滤器本体的外壁上设置有第四密封圈和第五密封圈,过滤器本体通过第四密封圈和静盘组件上的孔的侧面进行密封配合,过滤器本体通过第五密封圈和回油口的侧面进行密封配合。
在一种实施方式中,机壳包括:电机壳和可拆卸连接在电机壳上的排气盖;
静盘组件包括:静涡盘,静涡盘与排气盖之间形成高压腔结构,静涡盘上设置有静涡圈;
第一回油通道开设在静涡盘上;
动盘组件包括:动涡盘,动涡盘上设置有动涡圈,静涡圈和动涡圈啮合形成压缩腔,且均采用对称圆弧加直线修正涡圈。
在一种实施方式中,静盘组件还包括:弹性圈,弹性圈设置在静涡盘与排气盖之间,并使静涡盘抵靠在轴承座组件上;
第一密封圈,第一密封圈设置在静涡盘的上凸起圆肋的沟槽内,并用于密封静涡盘和排气盖的连接处。
在一种实施方式中,轴承座组件包括:轴承座本体,以及柱销安装盘;
动涡盘抵靠在柱销安装盘上,并在轴承座本体、柱销安装盘以及动涡盘内围成背压腔;
涡旋式压缩机还包括第二回油通道,第二回油通道具有进油段和出油段,进油段连通压缩腔和背压腔;
出油段连通背压腔和吸气腔。
在一种实施方式中,进油段包括设置在动涡盘的底部的背压孔,背压孔分别与压缩腔和背压腔连通;
出油段包括:设置在轴承座本体的外侧壁上的第二回油孔,以及轴承座组合的外侧壁和电机壳的内侧壁之间形成的流道间隙,第二回油孔连通背压腔和流道间隙,流道间隙和吸气腔相连通。
在一种实施方式中,柱销安装盘上设置有六根柱销轴,动涡盘的背部设有六个柱销配合孔,柱销轴和柱销配合孔相互配合,以使柱销轴在柱销配合孔内进行活动;
动涡盘的端面通过第二密封圈和柱销安装盘的第一端面密封配合,柱销安装盘的第二端面通过第三密封圈和轴承座本体的端面密封配合。
本申请提供的一种具有循环润滑油路结构的涡旋式压缩机的有益效果至少在于:制冷剂气体和润滑油的混合物,先在吸气腔内对摩擦副进行润滑,然后在压差的作用下进入压缩腔内,在此过程中润滑油起到润滑静盘组件和动盘组件之间摩擦副的作用;在压缩腔的挤压作用下,一方面润滑油经第二回油通道的进油段而进入到背压腔内对背压腔内摩擦副进行润滑,然后经第二回油通道的出油段回吸取腔内底部油池,实现一路润滑油的循环。另一方面,制冷剂气体和润滑油从静涡组件排出压缩腔,进入到高压腔结构内,而且当润滑油随高压气体进入到高压腔内后,润滑油被挤压到高压腔结构和低压腔结构的连接处而实现油封,从而又起到密封该连接处之间泄漏间隙的作用。从高压腔结构内的气体接着进入到油分通道内发生油气分离,分离后的润滑油进入到静涡组件上的第一回油通道中,经过低压腔结构之后回到压缩机的吸气腔内,进一步回到底部油池。通过第一回油通道和第二回油通道可以实现润滑油的循环要求,形成对压缩机各部件良好的润滑效果,提高压缩机的运行效率和稳定性。同时由于第一回油通道的口径小于油分通道的口径,因此在经过第一回油通道的润滑油发生大幅的压降,从高压变为低压,满足润滑油的循环要求;即使在特定工况下的润滑油的油路中油含量较小时,润滑油不会在回油循环路径中被大量回油而造成其他腔室的润滑油较少的情况,仍可以保证各腔室中的润滑油量,从而通过足够润滑油对各腔室的缝隙处进行有效油封而避免发生较大的制冷泄漏的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其 他的附图。
图1为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第一位置的剖视图;
图2为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第一位置的另一视角的剖视图;
图3为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的爆炸图;
图4为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第二位置的局部剖视图;
图5为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第三位置的局部剖视图;
图6为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第四位置的局部剖视图;
图7为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的静涡盘的结构示意图;
图8为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的静涡盘的另一视角的结构示意图;
图9为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第五位置的局部剖视图;
图10为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的第六位置的局部剖视图;
图11为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的动涡盘的后视图;
图12为本申请实施例提供的一种具有循环润滑油路结构的涡旋式压缩机的轴承座本体的结构示意图。
其中,图中各附图标记:
100、机壳;110、电机壳;111、吸气腔;112、油池;113、吸气口;120、排气盖;121、低压腔结构;122、高压腔结构;123、油分通道;124、第一进气口;125、第一排气口;126、回油口;130、过滤组件;131、过滤器本体;132、滤网;133、滤网压环;134、第四密封圈;135、第五密封圈;200、轴承座组件;210、背压腔;220、轴承座本体;230、柱销安装盘;231、柱销轴;232、第一端面;233、第二端面;234、第三密封圈;300、静盘组件;310、压缩腔;311、第二进气口;312、第二排气口;320、静涡盘;321、静涡圈;330、弹 性圈;340、第一密封圈;350、过滤器安装孔;400、动盘组件;410、动涡盘;411、动涡圈;420、柱销配合孔;430、第二密封圈;500、第一回油通道;510、进口段;520、节流槽段;530、出口段;540、连通孔段;600、第二回油通道;610、背压孔;620、第二回油孔;630、流道间隙;700、旋转机构。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接位于该另一个部件上。当一个部件被称为“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是为了便于描述,不能理解为对本技术方案的限制。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1、图2、图4,本实施例提供了一种具有循环润滑油路结构的涡旋式压缩机,本涡旋式压缩机可以为卧式结构,为方便结构描述,以涡旋式压缩机的轴向为前后方向进行结构描述,本涡旋式压缩机主要包括:机壳100,旋转机构700,动盘组件400、静盘组件300以及第一回油通道500。机壳100内设置有吸气腔111、吸气口113以及油池112,吸气腔111与吸气口113相连通,用于使制冷剂气体进入到吸气腔111中。油池112位于吸气腔111内,使制冷剂气体可以与油池112中的润滑油进行混合。旋转机构700可旋转设置在机壳100内,动盘组件400位于机壳100内并偏心连接在旋转结构上,静盘组件300固定设置在机壳100内,并与动盘组件400相配形成压缩腔310,静盘组件300在旋转机构700的驱动下进行偏心活动,从而可以改变压缩腔310的大小。压缩腔310具有第二进气口311和第二排气口312,第二进气口311连通吸气腔111;当压缩腔310内变小时,可以从第二排气口312挤出压缩腔310内的气体,而压缩腔310变大时,可以通过第二进气口311从吸气腔111内吸收气体,从而实现泵送气体的功能。在机壳100内开设有高压腔结构122、低压腔结构121和油分通道123;第二排气口312连通高压腔结构122,高压腔结连通油分通道123,油分通道123用于将油气分离并使气体进入气体段而排出,而润滑油进入回油段;第一回油通道500连通回油段和低压腔结构121,低压腔结构121连通吸气腔111;第一回油通道500 的口径要小于油分通道123的口径,从而使从油分通道123内高压润滑油经过第一回油通道500时进行降压,使流入到低压腔结构121的润滑油的压强降低。
请参阅图1、图2以及图9,本实施例中的机壳100内设置有轴承座组件200,轴承座组件200与电机壳110之间形成吸气腔111,油池112位于吸气腔111内。轴承座组件200和动盘组件400围成背压腔210,背压腔210内设置有支撑旋转组件的轴承等零件。涡旋式压缩机还包括第二回油通道600,第二回油通道600具有进油段和出油段,进油段连通压缩腔310和背压腔210;出油段连通背压腔210和吸气腔111。
请参阅图2,图4-图6,图9-图10,制冷剂气体和润滑油的混合物,先在吸气腔111内对摩擦副进行润滑,然后在压差的作用下进入静盘组件300和动盘组件400围成的压缩腔310内,在动盘组件400的偏心运动的驱使下,强制由压缩腔310外侧向中心流动,在此过程中润滑油起到润滑静盘组件300和动盘组件400之间摩擦副的作用;在压缩腔310的挤压作用下,一方面润滑油经第二回油通道600的进油段而进入到背压腔210内对背压腔210内摩擦副进行润滑,然后经第二回油通道600的出油段回吸取腔内底部油池112,实现一路润滑油的循环。另一方面,当制冷剂气体和润滑油到达排气压力时,便从静涡盘320排出压缩腔310,进入到高压腔结构122内,而且当润滑油随高压气体进入到高压腔内后,润滑油被挤压到高压腔结构122和低压腔结构121的连接处而实现油封,从而又起到密封该连接处之间泄漏间隙的作用。在高压腔结构122内的气体接着进入到油分通道123内发生油气分离,制冷剂从油分通道123的排气端排出到压缩机外,润滑油则从油分通道123的回油段进入到静涡组件上的第一回油通道500中,并进入到低压腔结构121内。由于第一回油通道500的口径远远小于油分通道123的口径,因此在经过第一回油通道500的润滑油发生大幅的压降,从高压变为低压,经过低压腔结构121之后回到压缩机的吸气腔111内,进一步回到底部油池112,至此完成润滑油的另一路的完整循环。通过第一回油通道500和第二回油通道600可以实现润滑油的循环要求,形成对压缩机各部件良好的润滑效果,提高压缩机的运行效率和稳定性。同时由于第一回油通道500的口径变小,即使在特定工况下的润滑油的油路中油含量较小时,润滑油不会在回油循环路径中被大量回油而造成其他腔室的润滑油较少的情况,仍可以保证各腔室中的润滑油量,从而通过足够润滑油对各腔室的缝隙处进行有效油封而避免发生较大的制冷泄漏的问题。
本实施例的具体结构如下:
请参阅图1、图2,本实施例提供的一种涡旋式压缩机为卧式结构,旋转机构700、静盘组件300、动盘组件400和轴承座组件200均设于机壳100内,吸气腔111以及油池112位于机壳100内的后方,静盘组件300位于机壳100内的前方,动盘组件400位于静盘组件300 和轴承座组件200之间,旋转机构700的后端位于吸气腔111内,前端贯穿轴承座组件200后连接静盘组件300。
请参阅图1到图3,机壳100主要包括电机壳110和排气盖120,电机壳110和排气盖120通过螺栓进行可拆卸连接在电机壳110的前方,吸气腔111位于电机壳110内,在电机壳110内的吸气腔111的底部设置凹槽而形成油池112,在电机壳110上开设有吸气口113,吸气口113与吸气腔111相连通,并用于制冷剂气体的进入。轴承座组件200具体包括:轴承座本体220以及柱销安装盘230;轴承座本体220位于柱销安装盘230的后侧,轴承座本体220内设置有轴承,通过轴承连接旋转机构700,柱销安装盘230位于动盘组件400和轴承座本体220之间,动盘组件400抵靠在柱销安装盘230上,并在轴承座本体220、柱销安装盘230以及动盘组件400内围成背压腔210。
请参阅图2、图3以及图6,本实施例中,静盘组件300位于排气盖120的前侧,静盘组件300包括静涡盘320、过滤组件130、弹性圈330和第一密封圈340。静涡盘320的前端面上设置有过滤器安装孔350和凸出的凸起圆肋;过滤组件130位于静涡盘320前端面上的过滤器安装孔350内,第一密封圈340位于静涡盘320上凸起圆肋的外壁上的沟槽内,弹性圈330可以采用弹簧圈,弹簧圈安装于静涡盘320和排气盖120之间,通过弹簧圈的弹力使静涡盘320抵靠在轴承座组件200上。
请参阅图2、图3以及图9,本实施例中,动盘组件400包括动涡盘410和第二密封圈430;静涡盘320上设置有静涡圈321(如图8),动涡盘410上设置有动涡圈411(如图3);静涡盘320包裹动涡盘410,动涡盘410可以在静涡盘320内活动,静涡圈321和动涡圈411啮合形成压缩腔310,动涡盘410通过旋转机构700的驱动而活动,从而使压缩腔310扩张或收缩。静涡盘320的外侧面设置有气孔和油孔,气孔为第二进气口311连通吸气腔111,油孔连通油池112,当压缩腔310变大时,压缩腔310内压力小,从而使制冷剂气体和润滑油通过第二进气口311和油孔进入到压缩腔310内的外侧位置,当动涡盘410活动而使压缩腔310变小时,使气体和润滑油强制由压缩腔310外侧向中心流动,压缩腔310内压力变大。本实施例中的静涡圈321和动涡圈411均采用对称圆弧加直线修正涡圈,这样啮合效果好,运行稳定。动涡盘410的端面通过第二密封圈430和柱销安装盘230的第一端面232密封配合,可以实现对背压腔210的密封,防止从连接处漏气。
如图2、图8所示,第二排气口312开设在静涡盘320上的中间位置,第二排气口312上通常设置有阀门结构,当压缩腔310内的压力较小时,对压缩腔310进行封闭,当压力达到预设压力值(例如一定的高压),阀门被顶开,从而气液可以通过第二排气口312进入到高压腔结构122内。
请参阅图1、图4,本实施例中,油分通道123、高压腔结构122和低压腔结构121设置在排气盖120上,油分通道123连接有第一进气口124,油分通道123具有出油端和出气端,出气端连通第一排气口125,出油端连通回油口126。高压腔结构122位于排气盖120中部,通过第一进气口124和油分通道123连通,回油口126连通第一回油通道500,进而连通低压腔结构121,低压腔结构121位于排气盖120边缘和所述吸气腔111相连通。从压缩腔310中产生的高压气体进入到高压腔结构122中,通过第一进气口124进入到油分通道123进行油气分离,制冷剂气体通过出气端进入第一排气口125,从而可以排出到压缩机外,分离后的润滑油从出油端进入到回油口126,进入到第一回油通道500。
请参阅图4-图6以及图7和图8,第一回油通道500具体包括:进口段510、节流槽段520以及出口段530,进口段510沿前后方向贯穿静涡盘320并连通所述油分通道123。节流槽段520在静涡盘320的端面上环绕设置,并连通进口段510,静涡盘320的后端面和轴承座组件200借助弹性圈330的预变形实现相互压紧配合,弹性圈330对静涡盘320产生一定的作用力,从而实现对节流槽段520的侧边密封而使节流槽段520形成通道,以利于润滑油在节流槽段520发生有效的节流降压效果,同时由于节流槽段520的截面尺寸特别小,即使在特定工况下油路中油含量较小,也不会发生较大的制冷泄漏。出口段530贯穿静盘组件300并连通低压腔结构121和节流槽段520;第一回油通道500的进口段510通过过滤组件130和排气盖120上的回油口126连通,第一回油通道500的出口段530和排气盖120上的低压腔结构121连通。当从回油口126通过的润滑油经过过滤组件130进行过滤,过滤后的润滑油依次进入到进口段510、节流槽段520以及出口段530,最后到达低压腔结构121内,再经过第二进气口311回到吸气腔111。进口段510、节流槽段520以及出口段530的口径尺寸均小于油分通道123的出油端。因此可以在第一回油通道500内发生大幅的压降。特别是节流槽段520,其在端面上进行刻槽而成,其形成半圆形通道,口径尺寸会大大减小,从而实现很好的节流降压效果。
请参阅图5,在静涡盘320上还贯穿设置有连通孔段540,连通孔段540沿前后方向贯穿静涡盘320,连通孔段540连通低压腔结构121和静涡盘320的内侧边缘空间(该边缘空间也可以认为是压缩腔310的一部分,只是位于压缩腔310的边缘处,压缩腔310在进行压缩时,中间位置被压缩产生高压,而边缘处不产生高压),再通过静涡盘320侧壁上的第二进气口311与吸气腔111相连通。
请参阅图4,过滤组件130包括过滤器本体131、滤网132、滤网压环133,第四密封圈134和第五密封圈135。滤网132位于过滤器本体131内,被滤网压环133压紧固定,第四密封圈134位于过滤器本体131的外侧壁上的第一深槽内,过滤器本体131通过第四密封圈 134和静盘组件300上的过滤器安装孔350的侧面进行密封配合,第五密封圈135位于过滤器本体131外侧壁上的第二深槽内,过滤器本体131通过第五密封圈135和回油口126的侧面进行密封配合。静涡盘320外侧壁表面和排气盖120内侧壁表面进行配合,可以起到使静涡盘320周向定位的作用。
采用过滤组件130组件不仅实现了对润滑油的过滤而且可以对高压润滑油进行阻挡缓冲,进一步实现节流降压的作用。
请参阅图2、图3、图9以及图11,本实施例中,轴承座组件200还包括六根柱销轴231和第三密封圈234,轴承座可以卡嵌安装在电机壳110上,柱销轴231安装于柱销安装盘230的前端面上,在柱销安装盘230的前端面上环绕均匀分布有六个孔,六个柱销轴231分别嵌于六个孔内。动涡盘410的后端面(背部)设有六个柱销配合孔420,柱销轴231和柱销配合孔420相互配合,以使柱销轴231在柱销配合孔420内进行活动。由于动涡盘410是偏心转动,因此通过转动机构的驱动,使动涡盘410可以在柱销配合孔420内进行活动,从而使压缩腔310变大或变小。
本实施例中的动涡盘410端面通过第二密封圈430和柱销安装盘230的第一端面232密封配合,柱销安装盘230的第二端面233通过第三密封圈234和轴承座的端面密封配合,从而对轴承座组件200的前端进行封盖,使轴承座组件200内形成背压腔210。
请参阅图9、图10以及图12,本实施例中,本实施例中的第二回油通道600具体结构中,进油段包括设置在动涡盘410的底部的背压孔610,背压孔610分别与压缩腔310和背压腔210连通。出油段包括:设置在轴承座本体220的外侧壁上的第二回油孔620,以及轴承座本体220的外侧壁和电机壳110的内侧壁之间形成的流道间隙630,第二回油孔620连通背压腔210和流道间隙630,流道间隙630和吸气腔111相连通。动涡盘410的底部开设有背压孔610,背压孔610位于动涡盘410靠近中心的位置并沿前后方向贯穿动涡盘410,从而使背压孔610分别与压缩腔310和背压腔210连通,背压孔610的孔径可以设置为1mm;轴承座组合的外侧壁和电机壳110的内侧壁之间形成的流道间隙630也设置的比较小,例如微小间隙0.2mm。从压缩腔310中流出的高压润滑油经轴承座本体220上的背压孔610进行节流降压,从而进入到背压腔210内对各摩擦副进行润滑,再通过第二回油孔620和微小的流道间隙630再次发生节流压降作用后,回到底部油池112中。
请参阅图1,图4-图6,图9和图10,本实施例提供的一种涡旋式压缩机的回油的使用方法如下:
为保证涡旋式压缩机正常运行,预先向机壳100内的底部油池112内注入一定量的润滑油。注入的润滑油初始时聚集在机壳100的底部的油池112中,当涡旋式压缩机运行时,来 自蒸发器的制冷剂气体通过吸气口113进入吸气腔111内,在制冷剂气流旋绕的带动下,底部的油池112中的润滑油部分被制冷剂携带,形成油气混合物,并在壳体腔内实现设定的流道内流动。首先,随着制冷剂和润滑油混合物在机壳100的内部空间中流动,携带润滑油到达副轴承处进行必要的润滑。其次,制冷剂气体和润滑油的混合物,在压差的作用下进入静涡盘320和动涡盘410围成的压缩机压缩腔310,在旋转机构700的驱动下,动涡盘410运动而收缩压缩空间,从而使油气混合物强制由涡圈边缘侧向中心流动,在此过程中润滑油不仅起到润滑动涡盘410和静涡盘320之间摩擦副的作用,而且起到密封高低压腔之间泄漏间隙的作用。然后油路变成两路,其中一路中,润滑油随制冷剂气体通过背压孔610进入到动涡盘410和轴承座组件200围成的背压腔210内,对背压腔210内的摩擦副进行润滑,之后经轴承座组件200上的背压孔610和微小的流道间隙630发生节流压降,回到压缩机的机壳100底部油池112。另一路中,制冷剂气体和润滑油在压缩腔310内到达排气压力时,便从静涡盘320上第二排气口排出压缩腔310,进入到排气盖120上高压腔结构122内,接着混合物排气盖120上进气口进入到油分通道123内发生油气分离,使分离后的制冷剂从第一排气口125排出,润滑油则从油分通道123进入到回油口126,并流经过滤组件130,过滤掉润滑油中存在的杂质,同时也实现了部分节流降压效果,然后依次经过第一回油通道500的进口段510、节流槽段520以及出口段530,特别是在节流槽段520发生大幅的压降,再接着进入到排气盖120上的低压腔结构121内,最后通过连通孔段540回到压缩机吸气腔111内,进一步回到底部油池112,至此完成润滑油的一个完整循环。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种具有循环润滑油路结构的涡旋式压缩机,其特征在于,包括:机壳,其内设置有轴承座组件,并在所述轴承座组件一侧形成吸气腔以及油池;
    静盘组件,所述静盘组件固定设置在所述机壳内;
    动盘组件,所述动盘组件相对于所述静盘组件偏心转动,并与所述动盘组件相配形成压缩腔,所述压缩腔连通所述吸气腔;
    所述机壳内具有低压腔结构、高压腔结构和油分通道;所述高压腔结构连通所述压缩腔和所述油分通道;
    其中,所述涡旋式压缩机还包括第一回油通道和第二回油通道;
    所述第一回油通道连通所述油分通道和所述低压腔结构,所述低压腔结构连通所述吸气腔,所述第一回油通道的口径小于所述油分通道的口径;
    所述轴承座组件与所述动盘组件围成背压腔,所述第二回油通道具有进油段和出油段,所述进油段连通所述压缩腔和所述背压腔,所述出油段连通所述背压腔和所述吸气腔。
  2. 如权利要求1所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述第一回油通道包括:进口段,其贯穿所述静盘组件并连通所述油分通道;
    节流槽段,其在所述静盘组件的端面上环绕设置,并连通所述进口段;
    出口段,其贯穿所述静盘组件并连通所述低压腔结构和所述节流槽段;
    所述静盘组件上还贯穿设置有连通孔段,所述连通孔段连通所述低压腔结构所述吸气腔。
  3. 如权利要求2所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述机壳上设置有:
    第一进气口,所述第一进气口分别连通所述油分通道和所述高压腔结构;
    第一排气口,所述第一排气口连通所述油分通道的出气端;
    回油口,所述回油口连通所述油分通道的出右端;所述第一回油通道连通所述回油口;
    所述回油口处设置有过滤组件。
  4. 如权利要求3所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述过滤组件包括:过滤器本体,所述过滤器本体内设置有安装槽,
    滤网,所述滤网安装在所述安装槽内;
    滤网压环,所述滤网压环嵌于所述安装槽内并抵靠固定所述滤网。
  5. 如权利要求4所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述过滤器本体的外壁上设置有第四密封圈和第五密封圈,所述过滤器本体通过所述第四密封圈和所述静盘组件上的孔的侧面进行密封配合,所述过滤器本体通过所述第五密封圈和所述回油口 的侧面进行密封配合。
  6. 如权利要求1所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述机壳包括:电机壳和可拆卸连接在所述电机壳上的排气盖;
    所述静盘组件包括:静涡盘,所述静涡盘与所述排气盖之间形成所述高压腔结构,所述静涡盘上设置有静涡圈;
    所述第一回油通道开设在所述静涡盘上;
    所述动盘组件包括:动涡盘,所述动涡盘上设置有动涡圈,所述静涡圈和所述动涡圈啮合形成压缩腔,且均采用对称圆弧加直线修正涡圈。
  7. 如权利要求6所述的具有循环润滑油路结构的涡旋式压缩机,所述静盘组件还包括:弹性圈,所述弹性圈设置在所述静涡盘与所述排气盖之间,并使所述静涡盘抵靠在所述轴承座组件上;
    第一密封圈,所述第一密封圈设置在所述静涡盘的上凸起圆肋的沟槽内,并用于密封所述静涡盘和所述排气盖的连接处。
  8. 如权利要求6所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,轴承座组件包括:轴承座本体,以及柱销安装盘;
    所述动涡盘抵靠在所述柱销安装盘上,并在所述轴承座本体、所述柱销安装盘以及所述动涡盘内围成背压腔;
    涡旋式压缩机还包括第二回油通道,所述第二回油通道具有进油段和出油段,所述进油段连通所述压缩腔和所述背压腔;
    所述出油段连通所述背压腔和所述吸气腔。
  9. 如权利要求8所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述进油段包括设置在所述动涡盘的底部的背压孔,所述背压孔分别与所述压缩腔和所述背压腔连通;
    所述出油段包括:设置在轴承座本体的外侧壁上的第二回油孔,以及轴承座组合的外侧壁和所述电机壳的内侧壁之间形成的流道间隙,所述第二回油孔连通所述背压腔和所述流道间隙,所述流道间隙和所述吸气腔相连通。
  10. 如权利要求8所述的具有循环润滑油路结构的涡旋式压缩机,其特征在于,所述柱销安装盘上设置有六根柱销轴,所述动涡盘的背部设有六个柱销配合孔,所述柱销轴和所述柱销配合孔相互配合,以使所述柱销轴在所述柱销配合孔内进行活动;
    所述动涡盘的端面通过第二密封圈和所述柱销安装盘的第一端面密封配合,所述柱销安装盘的第二端面通过第三密封圈和所述轴承座本体的端面密封配合。
PCT/CN2023/073737 2022-12-22 2023-01-29 一种具有循环润滑油路结构的涡旋式压缩机 WO2024130821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211656264.3 2022-12-22
CN202211656264.3A CN115750339A (zh) 2022-12-22 2022-12-22 一种具有循环润滑油路结构的涡旋式压缩机

Publications (1)

Publication Number Publication Date
WO2024130821A1 true WO2024130821A1 (zh) 2024-06-27

Family

ID=85347424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073737 WO2024130821A1 (zh) 2022-12-22 2023-01-29 一种具有循环润滑油路结构的涡旋式压缩机

Country Status (2)

Country Link
CN (1) CN115750339A (zh)
WO (1) WO2024130821A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261177A (ja) * 1995-03-20 1996-10-08 Hitachi Ltd スクロ−ル圧縮機
US20100092321A1 (en) * 2008-10-15 2010-04-15 Cheol-Hwan Kim Scroll compressor and refrigerating machine having the same
CN112879303A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 涡旋压缩机
CN114857012A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机回油结构、压缩机和空调器
CN114857011A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机回油结构、压缩机和空调器
CN114857010A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机的回油结构、压缩机和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261177A (ja) * 1995-03-20 1996-10-08 Hitachi Ltd スクロ−ル圧縮機
US20100092321A1 (en) * 2008-10-15 2010-04-15 Cheol-Hwan Kim Scroll compressor and refrigerating machine having the same
CN112879303A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 涡旋压缩机
CN114857012A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机回油结构、压缩机和空调器
CN114857011A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机回油结构、压缩机和空调器
CN114857010A (zh) * 2022-06-16 2022-08-05 珠海格力电器股份有限公司 一种压缩机的回油结构、压缩机和空调器

Also Published As

Publication number Publication date
CN115750339A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
US7140852B2 (en) Scroll compressor having an oil reservoir surrounding the discharge chamber and an oil separator in the rear housing
JP2001317480A (ja) スクリュー圧縮機
KR101553953B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
KR20180093693A (ko) 스크롤 압축기
JP2003148366A (ja) 多段気体圧縮機
WO2024130821A1 (zh) 一种具有循环润滑油路结构的涡旋式压缩机
JPWO2005010372A1 (ja) スクロール圧縮機
CN217206873U (zh) 涡旋压缩机
CN110925211A (zh) 一种低背压滚动转子式压缩机及空调
JP2017145732A (ja) スクリュー圧縮機
KR20170042131A (ko) 스크롤 압축기
KR100557061B1 (ko) 스크롤 압축기
WO1997019269A1 (fr) Compresseur volumetrique a spirale et palier de poussee de plateau coulissant
CN110594152B (zh) 一种立式双级涡旋压缩机
WO2020073640A1 (zh) 一种自润滑涡旋压缩机及其静盘
JPH08543Y2 (ja) 油冷式スクリュ圧縮機
JP2002317784A (ja) ロータリ式2段圧縮機
JP4848859B2 (ja) スクロール圧縮機
CN221322706U (zh) 涡旋压缩机及车辆
KR102660782B1 (ko) 스크롤 압축기
US11933306B2 (en) Scroll compressor and refrigeration cycle apparatus
CN217873258U (zh) 一种二氧化碳涡旋压缩机的润滑油回收结构
WO2022004027A1 (ja) ロータリ圧縮機および冷凍サイクル装置
WO2023098102A1 (zh) 压缩机转子、压缩机泵体、压缩机及温度调节系统