WO2024130516A1 - 信息处理方法以及装置、通信设备及存储介质 - Google Patents

信息处理方法以及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2024130516A1
WO2024130516A1 PCT/CN2022/140155 CN2022140155W WO2024130516A1 WO 2024130516 A1 WO2024130516 A1 WO 2024130516A1 CN 2022140155 W CN2022140155 W CN 2022140155W WO 2024130516 A1 WO2024130516 A1 WO 2024130516A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
configuration
neighboring base
positioning
Prior art date
Application number
PCT/CN2022/140155
Other languages
English (en)
French (fr)
Inventor
朱亚军
洪伟
赵金铭
李勇
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/140155 priority Critical patent/WO2024130516A1/zh
Priority to CN202280006262.1A priority patent/CN116472768A/zh
Publication of WO2024130516A1 publication Critical patent/WO2024130516A1/zh

Links

Images

Definitions

  • the present disclosure relates to, but is not limited to, the field of wireless communication technology, and in particular to an information processing method and apparatus, a communication device, and a storage medium.
  • Non-terrestrial network (NTN) communications such as satellite communications
  • NTN Non-terrestrial network
  • satellite communications have been adapted to more and more application scenarios due to their wide coverage, strong disaster resistance and large capacity.
  • a satellite such as a neighbor satellite
  • UE user equipment
  • DL-PRS downlink positioning reference signal
  • UL-SRS uplink sounding reference signal
  • the UE or satellite cannot receive the desired positioning signal, such as DL-PRS or UL-SRS, the network positioning measurement cannot be performed, which results in the inability to complete the network positioning or use these positioning signals to verify whether the UE's position is correct.
  • the desired positioning signal such as DL-PRS or UL-SRS
  • Embodiments of the present disclosure provide an information processing method and apparatus, a communication device, and a storage medium.
  • an information processing method which is performed by a location management function (LMF), comprising:
  • a request message is sent to a serving base station, wherein the request message is used to request beam information of a first beam of the serving base station; wherein the beam information of the first beam is used by a neighboring base station to adjust the beam configuration of a second beam; and the second beam after adjusting the beam configuration is used for transmission of positioning signals between the neighboring base station and the UE.
  • the method includes: receiving first identification information of a neighboring base station sent by a UE;
  • Send a request message to the serving base station including:
  • a request message is sent to the serving base station; wherein the first identification information is sent after the UE fails to receive a downlink signal sent by a neighboring base station.
  • the first identification information includes at least one of the following:
  • PCI Physical Cell Identifier
  • GCI Cell Global Identifier
  • TRP Transmitter Receiver Point
  • the method includes: receiving response information sent by a serving base station, wherein the response information is used to indicate beam information of the first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • the method includes: sending first indication information to a neighboring base station, wherein the first indication information is used to indicate beam information of a first beam.
  • the request information also includes first identification information, and the request information is used to request first configuration information of beam information of the first beam of the serving base station; wherein the first configuration information is used by the neighboring base station to receive beam information of the first beam sent by the serving base station.
  • the method comprises:
  • the first configuration information is sent to the neighboring base station.
  • the method includes: sending second indication information to a neighboring base station, wherein the second indication information is used to indicate that the beam configuration of the second beam is restored after the positioning measurement is completed.
  • the positioning signal includes at least one of the following:
  • Uplink sounding reference signal UL-SRS Uplink sounding reference signal
  • an information processing method which is executed by a UE and includes:
  • the request information is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • sending first identification information of a neighboring base station to the LMF includes:
  • the first identification information of the neighboring base station is sent to the LMF.
  • the method comprises:
  • a downlink signal sent by a neighboring base station is received based on the second configuration information.
  • obtaining the second configuration information includes:
  • the method includes determining not to send a UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning:
  • Uplink Time Difference of Arrival (UL-TDOA) positioning
  • DL-TDOA Downlink Time Difference Of Arrival
  • Multi-RTT Multi-Round Trip Time
  • the method includes sending a UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning: UL-TDOA positioning, and Multi-RTT.
  • the method comprises:
  • a third beam for the UE to send a UL-SRS is determined.
  • an information processing method which is performed by a serving base station, and includes:
  • Receive request information sent by LMF wherein the request information is used to request beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for transmission of positioning signals between the neighboring base station and the UE.
  • the method includes: sending response information to the LMF, wherein the response information is used to indicate beam information of the first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • the request information further includes first identification information of a neighboring base station, and the request information is used to request first configuration information of beam information of a first beam of the serving base station.
  • the method includes: sending first configuration information to the LMF.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • an information processing method which is performed by a neighboring base station, and includes:
  • the beam configuration of the second beam of the neighboring base station is adjusted; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals with the UE.
  • obtaining beam information of a first beam of a serving base station includes:
  • the method includes: receiving first configuration information sent by the LMF;
  • Obtaining beam information of a first beam of a serving base station includes: receiving beam information of the first beam sent by the serving base station based on first configuration information.
  • the method comprises:
  • the method includes: sending a downlink signal to the UE based on the second beam before adjusting the beam configuration, wherein the downlink signal is used to send request information to the serving base station when the base station is not received; the request information is used to request beam information of the first beam.
  • the method includes: sending second configuration information of a neighboring base station to the LMF, wherein the second configuration information is used by the LMF to send to the UE, and the second configuration information is used to indicate the configuration of the SSB.
  • the neighboring base station is a base station in a regeneration architecture
  • Methods include:
  • a downlink signal is sent based on a predetermined transmission power.
  • adjusting a beam configuration of a second beam of a neighboring base station based on beam information of a first beam includes:
  • a neighboring base station of a transparent forwarding architecture After determining that the neighboring satellite can receive a signal of the neighboring base station, adjusting the beam configuration of the second beam based on the beam information of the first beam;
  • the beam configuration of the second beam is adjusted based on the beam information of the first beam.
  • an information processing device including:
  • the first sending module is configured to send request information to the serving base station, wherein the request information is used to request beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the apparatus includes: a first sending module configured to receive first identification information of a neighboring base station sent by a UE;
  • the first sending module is configured to send request information to the serving base station based on the first identification information; wherein the first identification information is sent after the UE fails to receive a downlink signal sent by a neighboring base station.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • the first receiving module is configured to receive response information sent by the serving base station, wherein the response information is used to indicate beam information of the first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • the first sending module is configured to send first indication information to a neighboring base station, wherein the first indication information is used to indicate beam information of the first beam.
  • the request information also includes first identification information, and the request information is used to request first configuration information of beam information of the first beam of the serving base station; wherein the first configuration information is used by a neighboring base station to receive beam information of the first beam sent by the serving base station.
  • the first receiving module is configured to receive first configuration information sent by the serving base station
  • the first sending module is configured to send first configuration information to a neighboring base station.
  • the first sending module is configured to send second indication information to the neighboring base station, wherein the second indication information is used to indicate that the beam configuration of the second beam is restored after the positioning measurement is completed.
  • the positioning signal includes at least one of the following: DL-PRS and UL-SRS.
  • an information processing device including:
  • a second sending module is configured to send first identification information of a neighboring base station to the LMF; wherein the first identification information is used by the LMF to send request information to the serving base station;
  • the request information is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • the second sending module is configured to send first identification information of the neighboring base station to the LMF based on not receiving a downlink signal sent by the neighboring base station.
  • the apparatus comprises:
  • a second receiving module is configured to obtain second configuration information, wherein the second configuration information is used to indicate the configuration of UL-SRS and/or SSB;
  • the second receiving module is further configured to receive a downlink signal sent by a neighboring base station based on the second configuration information.
  • the second receiving module is configured to receive second configuration information sent by the serving base station, wherein the second configuration information is used to indicate the configuration of the UL-SRS;
  • a second receiving module is configured to receive second configuration information of a neighboring base station sent by the LMF, wherein the second configuration information is used to indicate the configuration of the SSB.
  • an apparatus includes: a first processing module configured to determine not to send a UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, and Multi-RTT positioning.
  • the second sending module is configured to send the UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning: UL-TDOA positioning, and Multi-RTT.
  • the second receiving module is configured to receive an SSB and/or a downlink positioning reference signal DL-PRS signal sent by a neighboring base station based on a second beam after adjusting the beam configuration;
  • the first processing module is configured to determine a third beam for the UE to send a UL-SRS based on the second beam after the beam configuration is adjusted.
  • an information processing device including:
  • the third receiving module is configured to receive the request information sent by the LMF, wherein the request information is used to request the beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for the transmission of the positioning signal between the neighboring base station and the UE.
  • the apparatus includes: a third sending module configured to send response information to the LMF, wherein the response information is used to indicate beam information of the first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • the request information further includes first identification information of a neighboring base station, and the request information is used to request first configuration information of beam information of a first beam of the serving base station.
  • the third sending module is configured to send the first configuration information to the LMF.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • an information processing device including:
  • a fourth receiving module is configured to not obtain beam information of the first beam of the serving base station
  • the second processing module is configured to adjust the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals with the UE.
  • the fourth receiving module is configured to receive first indication information sent by the LMF, wherein the first indication information is used to indicate beam information of the first beam.
  • the fourth receiving module is configured to receive the first configuration information sent by the LMF
  • the fourth receiving module is also configured to receive beam information of the first beam sent by the serving base station based on the first configuration information.
  • the fourth receiving module is configured to receive second indication information sent by the LMF
  • the second processing module is configured to determine the beam configuration of the second beam to be restored based on the second indication information after the positioning measurement is completed.
  • the device includes: a fourth sending module, configured to send a downlink signal to the UE based on the second beam before adjusting the beam configuration, wherein the downlink signal is used to send request information to the serving base station when the base station is not received; the request information is used to request beam information of the first beam.
  • a fourth sending module configured to send a downlink signal to the UE based on the second beam before adjusting the beam configuration, wherein the downlink signal is used to send request information to the serving base station when the base station is not received; the request information is used to request beam information of the first beam.
  • the fourth sending module is configured to send second configuration information of the neighboring base station to the LMF, wherein the second configuration information is used by the LMF to send to the UE, and the second configuration information is used to indicate the configuration of the SSB.
  • the neighboring base station is a base station in a regeneration architecture
  • a second processing module is configured to adjust the transmission power to a predetermined transmission power
  • the fourth sending module is configured to send a downlink signal based on a predetermined transmission power.
  • the second processing module is configured to, for a neighboring base station of a transparent forwarding architecture, adjust the beam configuration of the second beam based on the beam information of the first beam after determining that the neighboring satellite can receive a signal of the neighboring base station;
  • the second processing module is configured to adjust the beam configuration of the second beam based on the beam information of the first beam after acquiring the beam information of the first beam for the neighboring base station of the regeneration architecture.
  • a communication device comprising:
  • a memory for storing processor-executable instructions
  • the processor is configured to implement the information processing method of any embodiment of the present disclosure when running executable instructions.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the information processing method of any embodiment of the present disclosure is implemented.
  • the LMF sends a request message to the serving base station, wherein the request message is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam, and the second beam after the adjustment is used for the transmission of the positioning signal between the neighboring base station and the UE.
  • the beam configuration (such as beam pointing, etc.) of the beam of the neighboring base station and/or the neighboring satellite can be controlled by LMF or a base station (such as a neighboring base station), so that the neighboring base station and the UE can receive the positioning signals sent by each other, thereby enabling the positioning measurement between the neighboring base station and the UE or the position verification of the UE to be carried out; that is, the reliability of the positioning signal transmission between the neighboring base station and the UE can be improved, and it can be beneficial to improve the accuracy of the positioning of the UE and the correctness of the UE position verification.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram showing an NTN network structure according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram showing a relationship between positions of a UE and a satellite according to an exemplary embodiment.
  • Fig. 4 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 5 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 6 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 7 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 8 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 9 is a schematic flow chart of an information processing method according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram showing an information processing device according to an exemplary embodiment.
  • Fig. 11 is a schematic diagram showing an information processing device according to an exemplary embodiment.
  • Fig. 12 is a schematic diagram showing an information processing device according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram showing an information processing device according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a UE according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: a plurality of user equipments 110 and a plurality of base stations 120.
  • the user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 110 may be an IoT user equipment, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an IoT user equipment, for example, a fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted device.
  • a station STA
  • a subscriber unit a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote user equipment (remote terminal), an access terminal, a user device (user terminal), a user agent, a user device, or a user equipment (user equipment).
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user device 110 may be a vehicle-mounted device, such as a driving computer with wireless communication function, or a wireless user device connected to a driving computer.
  • the user device 110 may be a roadside device, such as a street lamp, a signal lamp, or other roadside device with wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a 4th generation mobile communication (4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new air interface system or a 5G New Radio (NR) system.
  • the wireless communication system may be a next generation system of the 5G system.
  • the access network in the 5G system may be called a new generation-radio access network (NG-RAN).
  • NG-RAN new generation-radio access network
  • the base station 120 can be an evolved base station (eNB) adopted in a 4G system.
  • the base station 120 can also be a base station (gNB) adopting a centralized distributed architecture in a 5G system.
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a medium access control (Medium Access Control, MAC) layer protocol stack;
  • the distributed unit is provided with a physical (Physical, PHY) layer protocol stack.
  • the specific implementation method of the base station 120 is not limited in the embodiments of the present disclosure.
  • a wireless connection may be established between the base station 120 and the user equipment 110 via a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection may also be established between the user devices 110.
  • vehicle-to-vehicle (V2V) communication vehicle-to-infrastructure (V2I) communication
  • V2P vehicle-to-pedestrian communication in vehicle-to-everything (V2X) communication.
  • the above-mentioned user equipment can be considered as the terminal equipment of the following embodiments.
  • the wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (MME) in an evolved packet core (EPC).
  • MME mobility management entity
  • EPC evolved packet core
  • the network management device may also be other core network devices, such as a Serving GateWay (SGW), a Public Data Network GateWay (PGW), a Policy and Charging Rules Function (PCRF) or a Home Subscriber Server (HSS), etc.; or the core network device may also be a core network device in 5G; for example, it may be an Access and Mobility Management Function (AMF), a Policy Control Function (PCF) or a Session Management Function (SMF), etc.
  • AMF Access and Mobility Management Function
  • PCF Policy Control Function
  • SMF Session Management Function
  • the embodiments of the present disclosure list multiple implementation methods to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure can be executed separately, or can be executed together with the methods of other embodiments of the embodiments of the present disclosure, or can be executed together with some methods in other related technologies separately or in combination; the embodiments of the present disclosure do not limit this.
  • execution entity when one execution entity sends a transmission to another execution entity, it may refer to one execution entity sending the transmission directly to another execution entity, or it may refer to one execution entity sending the transmission to another execution entity through any other device; this is not limited in the embodiments of the present disclosure.
  • Non-terrestrial network (NTN) communications such as satellite communications
  • NTN scenarios defined in TR38.821 include scenarios based on geostationary Earth Orbiting (GEO) satellites and scenarios based on non-geostationary Earth Orbiting (NGSO) satellites.
  • GEO geostationary Earth Orbiting
  • NGSO non-geostationary Earth Orbiting
  • the NTN network structure can be shown in Figure 2; the NTN network architecture has two types: transparent forwarding architecture and regeneration architecture.
  • the transparent architecture means that the satellite has the function of transparent forwarding, that is, the communication between the base station and the UE is forwarded by the satellite; it is generally assumed that the NTN gateway and the base station are very close and can be approximately considered to be in the same location.
  • the regeneration architecture means that part of the base station (DU) is on the satellite or the entire structure of the base station is on the satellite, and the satellite has the ability to process data.
  • DL-TDOA Downlink Time Difference Of Arrival
  • UL-TDOA Uplink Time Difference Of Arrival
  • Multi-RTT Multi-Round Trip Time
  • DL-AOD Downlink Angle-of-Departure
  • UL-AOA Uplink Angle of Arrival
  • the DL-TDOA positioning method may be: the UE measures the downlink reference signal time difference (DL-RSTD) by receiving the downlink positioning reference signal (DL-PRS) signal sent by different transmission receiving points (Transmitter Receiver Point, TRP), and the UE or LMF uses multiple RSTD measurement values and the position of each TRP to estimate the position of the UE.
  • the UL-TDOA positioning method may be: different TRPs measure the uplink relative time of arrival (UL-RTOA) by receiving the uplink sounding reference signal (UL-SRS) signal sent by the UE, and the LMF uses multiple UL-RTOA measurement values and the position of each TRP to estimate the position of the UE.
  • the Multi-RTT positioning method can be: different TRPs send DL-PRS signals and receive UL-SRS signals sent by UE, and LMF estimates the positioning of UE through UE-Rx-Tx time difference, each TRP-Rx-Tx time difference and the position of each TRP;
  • UE-Rx-Tx time difference is the time interval between UE measuring the reception of DL-PRS signal and sending UL-SRS signal
  • TRP-Rx-Tx time difference is the time interval between TRP measuring the sending of DL-PRS signal and receiving UL-SRS signal.
  • TRP-Rx-Tx time difference is the time difference between satellite transmitting DL-PRS and receiving UL-SRS.
  • the satellite directly sends positioning-related signals; if the NTN network is a transparent architecture, the gNB sends positioning-related signals and forwards them to the UE via satellite. In both architectures, signal transmission is performed directly between the satellite and the UE.
  • the neighboring satellite may not receive the UL-SRS signal sent by the UE; because of the high transmission power of the satellite, the UE may be able to receive the DL-PRS sent by the neighboring satellite, but if the satellite constellation is not deployed very densely, the UE may not be able to receive the DL-PRS signal sent by the neighboring satellite. If the UE or the neighboring satellite cannot receive the desired signal (DL-PRS or UL-SRS), positioning measurement cannot be performed, and thus positioning cannot be completed or these parameters cannot be used to verify whether the UE's position is correct.
  • the desired signal DL-PRS or UL-SRS
  • UE1 can be a UE that is not on a satellite
  • UE2 can be a UE on a satellite. It can be seen that there are situations where UE1 and UE2 cannot communicate with neighboring satellites, regardless of whether the UE is on a satellite or not.
  • the present disclosure provides an information processing method, which can solve the problem that the UE cannot communicate with the satellite.
  • the present disclosure embodiment provides an information processing method, which is executed by the LMF, and includes:
  • Step S41 Send a request message to the serving base station, wherein the request message is used to request the beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the neighboring base station adjusts the beam configuration of the second beam according to the beam information of the first beam, and the second beam with the adjusted beam configuration is used for transmission of positioning signals between the neighboring base station and the UE.
  • the neighboring base station may be on a neighboring satellite, or the neighboring satellite is a satellite used to forward signals between the neighboring base station and the UE.
  • the serving base station and the neighboring base station may be, but are not limited to, at least one of the following: a 3G base station, a 4G base station, a 5G base station, and other evolved base stations.
  • the serving base station and the neighboring base station may be base stations in satellite communications.
  • the serving base station is a base station with which the UE has been registered or a base station with which the UE has been located;
  • the neighboring base station is a base station within a predetermined range of the UE or a base station with which the UE has not been located, etc.
  • the serving base station may be a first base station, and the neighboring base station may be a second base station.
  • the serving base station may be a service gNB, and the neighboring base station may be a neighbor gNB.
  • the UE may be any mobile terminal or a fixed terminal, for example, the UE may be, but is not limited to, a mobile phone, a computer, a server, a wearable device, a game control platform, a multimedia device, or any sensor.
  • the LMF is a flexibly arranged logical node or function in the core network or an entity that implements a function, etc.
  • sending the request information to the serving base station in step S41 may be: sending a serving base station (service gNB) request to the serving base station through the NR Positioning Protocol A (NR Positioning Protocol A, NRPPa) protocol.
  • serving base station service gNB
  • NR Positioning Protocol A NR Positioning Protocol A, NRPPa
  • the beam information of the first beam may be, but is not limited to: information related to the geographical location of the first beam and/or information related to the direction of the first beam.
  • the direction of the first beam refers to the direction of any beam in the first beam.
  • the information related to the geographical location of the first beam may be, but is not limited to, the position of the center point of the first beam, the geographical locations of two boundaries of the first beam, and/or the position of any point in the first beam.
  • the beam information of the first beam includes, but is not limited to, position information of a beam center point of the first beam and/or a direction of at least one beam of the first beam.
  • the first beam may be a beam of a serving base station.
  • the first beam is a serving beam of a serving base station.
  • the beam configuration of the second beam includes but is limited to at least one of the following: a geographical location of at least one of the second beams, the number of the second beams, a pointing direction of at least one of the second beams, and a coverage area of at least one of the second beams.
  • the second beam may be a beam of a neighboring base station.
  • the beam information of the first beam may be used by the neighboring base station to adjust the beam configuration of the second beam of the neighboring base station.
  • the neighboring base station is deployed on a neighboring satellite, and adjusting the beam of the neighboring base station is to adjust the beam of the satellite.
  • the neighboring base station may adjust the beam of the neighboring base station by adjusting the signal transmitted between the neighboring base station and the satellite beam.
  • the second beam may also be a beam of a neighboring satellite.
  • the beam information of the first beam may be used by the neighboring satellite to adjust the beam configuration of the second beam of the neighboring satellite.
  • the beam configuration of the second beam of the neighboring satellite may be used by the neighboring base station to adjust the beam configuration of the second beam.
  • the first beam and the second beam may be one or more beams.
  • a plurality refers to two or more.
  • the first beam and the second beam may include a transmit beam and/or a receive beam; the transmit beam may be at least one, and/or the receive beam may be at least one.
  • the first beam and the second beam may include one or more transmit beams, one or more receive beams, or may include a portion of a receive beam and a portion of a transmit beam.
  • the first beam and the second beam may both be beams after beamforming.
  • the positioning signal includes but is not limited to at least one of the following: DL-PRS and UL-SRS.
  • the second beam after adjusting the beam configuration is used for the neighboring base station to send DL-PRS to the UE, and/or the second beam after adjusting the beam configuration is used for the UE to send UL-SRS to the neighboring base station; in this way, the successful transmission of DL-PRS and/or UL-SRS can facilitate the positioning between the neighboring base station and the UE.
  • the positioning signal may also be any signal related to positioning in the NTN network; for example, it may be SSB; the positioning signal is not limited here.
  • the positioning signal can be used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, Multi-RTT positioning, DL-AOD positioning, and UL-AOA positioning.
  • the adjustment of the beam of the neighboring base station and/or the neighboring satellite in the embodiment of the present disclosure can be adapted to the adjustment in the positioning scenarios such as UL-TDOA positioning, DL-TDOA positioning, Multi-RTT) positioning, DL-AOD positioning, and/or UL-AOA positioning, and thus can adapt to more application scenarios.
  • the LMF sends a request message to the serving base station, wherein the request message is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam, and the second beam after the adjustment is used for the transmission of the positioning signal between the neighboring base station and the UE.
  • the beam configuration (e.g., beam pointing, etc.) of the beam of the neighboring base station and/or the neighboring satellite can be controlled by the LMF or the base station (e.g., the neighboring base station), so that the neighboring base station and the UE can receive the positioning signal sent by each other, thereby enabling the positioning measurement between the neighboring base station and the UE or the position verification of the UE to be performed; that is, the reliability of the transmission of the positioning signal between the neighboring base station and the UE can be improved, and it can be beneficial to improve the accuracy of the positioning of the UE and the correctness of the UE position verification.
  • sending the request information to the serving base station in step S41 includes: sending the request information to the serving base station based on receiving the first identification information of the neighboring base station sent by the UE.
  • the first identification information is sent by the UE after not receiving the downlink signal sent by the neighboring base station.
  • the embodiment of the present disclosure provides an information processing method, which is executed by LMF, including:
  • Step S50 receiving first identification information of a neighboring base station sent by the UE;
  • Step S51 Based on the first identification information, a request message is sent to a serving base station.
  • the UE may send first identification information of a neighboring base station to the LFM.
  • the first identification information includes at least one of the following:
  • PCI Physical Cell Identifier
  • GCI Cell Global Identifier
  • TRP Transmitter Receiver Point
  • the UE informs the LMF of information about neighboring base stations so that the LMF can subsequently interact with the corresponding neighboring base stations.
  • the request information may be the request information in step S41; and the beam information of the first beam may be the beam information of the first beam in step S41.
  • the first identification information is sent after the UE fails to receive a downlink signal sent by a neighboring base station.
  • the first identification information is sent by the UE after it does not receive a downlink signal sent by a neighboring base station within a predetermined time.
  • the predetermined time may be pre-configured by the UE or determined based on historical experience information or determined based on negotiation between the UE and a base station (e.g., a serving base station or a neighboring base station).
  • the first identification information includes but is not less than at least one of the following: PCI, GCI, and TRP identification.
  • the TRP identification can be used to uniquely identify the TRP.
  • the LMF can know which neighboring base stations are unable to receive the positioning signal (eg UL-SRS).
  • An embodiment of the present disclosure provides an information processing method, which is executed by LMF, including: receiving response information sent by a serving base station, wherein the response information is used to indicate beam information of a first beam.
  • receiving the response information sent by the serving base station may include: receiving the response information sent by the serving base station through the NRPPa protocol.
  • the response information is determined based on the request information, that is, the LMF sends the request information as described above to the service base station, and the service base station sends the development information to the LMF according to the received request information.
  • the LMF can obtain the beam information of the first beam by receiving the beam information of the first beam sent by the serving base station, which is conducive to subsequently sending the beam information of the first beam to the neighboring base station to control the beam configuration of the second beam.
  • the embodiment of the present disclosure provides an information processing method, which is executed by LMF, including: receiving beam information of a first beam sent by a serving base station. In this way, LMF can also directly receive the beam information of the first beam.
  • An embodiment of the present disclosure provides an information processing method, which is executed by LMF, and includes: sending first indication information to a neighboring base station, wherein the first indication information is used to indicate beam information of a first beam.
  • the first indication information may be one or more bits of information.
  • the neighboring base station can be beneficial for the neighboring base station to receive the first indication information to obtain the beam information of the first beam, thereby facilitating the neighboring base station or the neighboring satellite to adjust the beam configuration of the second beam based on the beam information of the first beam, and then successfully complete the transmission of the positioning signal between the neighboring satellite and the UE based on the adjusted second beam, or successfully complete the transmission of the positioning signal between the neighboring base station and the UE.
  • the disclosed embodiment provides an information processing method, which is executed by LMF, including: sending beam information of a first beam to a neighboring base station.
  • LMF sends request information to a serving base station, and the request information is used to request the beam information of the first beam of the serving base station; after receiving the beam information of the first beam sent by the serving base station, LMF sends the beam information of the first beam to the neighboring base station. In this way, LMF can also directly send the beam information of the first beam to the neighboring base station.
  • the LMF sends a request message to the serving base station; wherein the request message includes first identification information, and the request message is used to request first configuration information of beam information of the first beam of the serving base station; wherein the first configuration information is used by a neighboring base station to receive beam information of the first beam sent by the serving base station.
  • An embodiment of the present disclosure provides an information processing method, which is executed by LMF, including: sending a request message to a service base station, wherein the request message includes first identification information; the request message is used for first configuration information sent by the service base station, and the first configuration information is used to instruct a neighboring base station to receive beam information of the first beam sent by the service base station.
  • An embodiment of the present disclosure provides an information processing method, which is executed by LMF, including: receiving first configuration information sent by a serving base station; and sending the first configuration information to a neighboring base station.
  • the LMF determines based on the first identification information that the neighboring base station corresponding to the first identification information cannot receive the positioning signal sent by the UE; the LMF sends a request message including the first identification information to the serving base station to request the first configuration information, wherein the first configuration information is used to instruct the neighboring base station to receive the beam information of the first beam sent by the serving base station; the LMF receives the first configuration information sent by the serving base station based on the request information, and sends the first configuration information to the neighboring base station. In this way, the neighboring base station can directly receive the beam information of the first beam sent by the serving base station based on the first configuration information.
  • the neighboring base station can also obtain the first configuration information of the beam information of the first beam sent by the serving base station, so as to directly obtain the beam information of the first beam sent by the serving base station; in this way, there is no need for LMF to forward the beam information of the first beam, thereby reducing the waste of transmission resources.
  • the request information is sent after the LMF receives the first identification information, that is, the LMF can control the configuration information of the second beam (for example, control the direction of the second beam, etc.) to enable the transmission of the positioning signal between the neighboring base station and the UE only after determining that the neighboring base station cannot receive the positioning signal sent by the UE; in this way, the power consumption of the neighboring base station, etc. can be reduced without the need to control the configuration information of the second beam in real time while improving the transmission of the positioning signal between the neighboring base station and the UE.
  • the LMF can control the configuration information of the second beam (for example, control the direction of the second beam, etc.) to enable the transmission of the positioning signal between the neighboring base station and the UE only after determining that the neighboring base station cannot receive the positioning signal sent by the UE; in this way, the power consumption of the neighboring base station, etc. can be reduced without the need to control the configuration information of the second beam in real time while improving the transmission of the positioning signal between the neighboring base station
  • An embodiment of the present disclosure provides an information processing method, which is executed by LMF, and includes: sending second indication information to a neighboring base station, wherein the second indication information is used to indicate that the beam configuration of the second beam is restored after the positioning measurement is completed.
  • the second indication information may be one or more bits.
  • the second indication information can be used to indicate whether the positioning measurement is completed; for example, when the second indication information is the first value, it is used to indicate that the positioning measurement is completed, or when the second indication information is the second value, it is used to indicate that the positioning measurement is not completed.
  • the second indication information may be used to indicate restoration of the beam configuration of the second beam; for example, when the second indication information is the third value, it is used to indicate restoration of the beam configuration of the second beam, or, when the second indication information is the fourth value, it is used to indicate not restoration of the beam configuration of the second beam.
  • the third value may be the same as or different from the first value; the fourth value may be the same as or different from the second value.
  • the beam configuration of the second beam is restored, that is, the beam configuration of the second beam is restored to the beam configuration before adjustment based on the beam information of the first beam.
  • the beam configuration of the second beam is the first beam configuration; after adjusting the beam configuration of the second beam based on the beam information of the first beam, the beam configuration of the second beam is the second beam configuration; after the positioning measurement is completed, the beam configuration of the first beam is restored, that is, the beam configuration of the second beam is adjusted to the first beam configuration.
  • the beam configuration of the second beam can be restored after the positioning measurement is completed, so as to facilitate the neighboring base station or neighboring satellite to perform other transmission operations based on the second beam before adjustment.
  • the following is an information processing method, which is executed by the UE and is similar to the description of the information processing method executed by the LMF mentioned above; and for technical details not disclosed in the information processing method embodiment executed by the UE, please refer to the description of the information processing method example executed by the LMF, which will not be described in detail here.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a UE and includes:
  • Step S61 Sending first identification information of a neighboring base station to the LMF; wherein the first identification information is used by the LMF to send a request message to the serving base station;
  • the request information is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the LMF, UE, service base station and neighboring base station may respectively be the LMF, UE, service base station and neighboring base station in the above-mentioned embodiments;
  • the first identification information may be the first identification information in the above-mentioned embodiments;
  • the service request may be the service request in the above-mentioned embodiments;
  • the beam information of the first beam and the beam configuration of the second beam may respectively be the beam information of the first beam and the beam configuration of the second beam in the above-mentioned embodiments;
  • the positioning signal may be the positioning signal in the above-mentioned embodiments.
  • the first identification information includes but is not limited to at least one of the following: PCI, GCI and TRP identification.
  • the positioning signal may be used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, and Multi-RTT positioning.
  • the positioning signal may be used for at least one of the following positioning: DL-AOD positioning and UL-AOA positioning.
  • the positioning signal includes but is not limited to at least one of the following: DL-PRS, UL-SRS and SBB.
  • the beam information of the first beam may be, but is not limited to, information related to the geographic location of the first beam and/or information related to the direction of the first beam.
  • the beam information of the first beam includes, but is not limited to, the location information of the beam center point of the first beam and/or the direction of at least one beam of the first beam.
  • the beam configuration of the second beam includes but is limited to at least one of the following: the geographical location of at least one of the second beams, the number of the second beams, the direction of at least one of the second beams, and the coverage area of at least one of the second beams.
  • sending the first identification information of the neighboring base station to the LMF in step S61 includes: sending the first identification information of the neighboring base station to the LMF based on not receiving a downlink signal sent by the neighboring base station.
  • An embodiment of the present disclosure provides an information processing method, which is executed by a UE, and includes: based on not receiving a downlink signal sent by the neighboring base station, sending first identification information of a neighboring base station to an LMF.
  • sending the first identification information of the neighboring base station to the LMF in step S61 includes: sending the first identification information of the neighboring base station to the LMF based on not receiving a downlink signal sent by the neighboring base station within a predetermined time.
  • An embodiment of the present disclosure provides an information processing method executed by a UE, comprising: sending first identification information of a neighboring base station to an LMF based on not receiving a downlink signal sent by the neighboring base station within a predetermined time.
  • the transmission of the signal between the neighboring base station and the UE may be: direct transmission between the neighboring base station and the UE, or the transmission of the signal between the neighboring base station and the UE may be forwarded by a neighboring satellite.
  • the UE may not receive the positioning signal (e.g., DL-PRS) sent by the neighboring base station.
  • the predetermined time may be specified by the protocol, or may be pre-configured or configured as needed through other signaling.
  • the disclosed embodiment provides an information processing method, which is executed by a UE, including: determining not to send UL-SRS to a neighboring base station. If the UE cannot receive a positioning signal (e.g., DL-PRS) sent by a neighboring base station, the UE does not send UL-SRS to the neighboring base station, which can reduce UE power consumption and reduce the failure rate of sending UL-SRS.
  • a positioning signal e.g., DL-PRS
  • it can adapt to the scenarios of UL-TDOA positioning, DL-TDOA positioning and/or Multi-RTT positioning.
  • the present disclosure provides an information processing method, which is executed by a UE and includes:
  • the second configuration information is used to indicate a configuration of an uplink sounding reference signal UL-SRS and/or SSB;
  • a downlink signal sent by a neighboring base station is received based on the second configuration information.
  • obtaining the second configuration information includes:
  • the present disclosure provides an information processing method, which is executed by a UE and includes:
  • a downlink signal sent by a neighboring base station is received based on the second configuration information.
  • the UE receives second configuration information sent by the LMF service base station, where the second configuration information is used to indicate the configuration of UL-SRS; the UE receives a downlink signal sent by a neighboring base station based on the second configuration information; if the UE does not receive a downlink signal sent by the neighboring base station within a predetermined time, it determines not to send UL-SRS to the neighboring base station, and sends the first identification information of the neighboring base station to the service base station.
  • the present disclosure provides an information processing method, which is executed by a UE and includes:
  • a downlink signal sent by a neighboring base station is received based on the second configuration information.
  • the UE receives second configuration information of a neighboring base station sent by the LMF, where the second configuration information is used to indicate the configuration of the SSB, and the second configuration information is sent by the neighboring base station to the LMF; the UE receives a downlink signal sent by the neighboring base station based on the second configuration information; if the UE does not receive a downlink signal sent by the neighboring base station within a predetermined time; if the UE does not receive a downlink signal sent by the neighboring base station within a predetermined time, it does not send UL-SRS to the neighboring base station, and the serving base station sends the first identification information of the neighboring base station.
  • the embodiment of the present disclosure provides an information processing method, which is executed by a UE, and includes: sending a UL-SRS to a neighboring base station.
  • the method can be adapted to the scenario of UL-TDOA positioning and/or Multi-RTT positioning.
  • the UE receives a downlink signal sent by a neighboring signal and sends a UL-SRS to a neighboring base station; or, the UE does not receive a downlink signal sent by a neighboring signal (within a predetermined time) and sends a UL-SRS to a neighboring base station.
  • the neighboring base station when the neighboring base station does not receive the UL-SRS sent by the UE, the neighboring base station sends an indication message of not receiving the UL-SRS sent by the UE to the LMF; in this way, the LMF requests the beam information of the first beam or the first configuration information indicating the beam information of the first beam to be sent to the neighboring base station.
  • the UE sends a UL-SRS.
  • the present disclosure provides an information processing method, which is executed by a UE and includes:
  • a third beam for the UE to send a UL-SRS is determined.
  • the second beam and the third beam are a beam pair.
  • positioning signals can be transmitted between the neighboring base station and the UE through the beam pair.
  • the UE can send a UL-SRS to the neighboring base station based on the third beam to increase the probability that the neighboring base station or the neighboring satellite receives the UL-SRS.
  • the following is an information processing method, which is executed by a service base station and is similar to the description of the information processing method executed by the LMF and/or UE mentioned above; and for technical details not disclosed in the information processing method embodiment executed by the service base station, please refer to the description of the information processing method example executed by the LMF and/or UE, which will not be described in detail here.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a serving base station and includes:
  • Step S71 receiving a request message sent by the LMF, wherein the request message is used to request beam information of a first beam of a serving base station;
  • the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; the second beam after the adjusted beam configuration is used for transmission of positioning signals between the neighboring base station and the UE.
  • the LMF, UE, serving base station and neighboring base station may respectively be the LMF, UE, serving base station and neighboring base station in the above-mentioned embodiments;
  • the service request may be the service request in the above-mentioned embodiments;
  • the beam information of the first beam and the beam configuration of the second beam may respectively be the beam information of the first beam and the beam configuration of the second beam in the above-mentioned embodiments;
  • the positioning signal may be the positioning signal in the above-mentioned embodiments.
  • the positioning signal may be used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, and Multi-RTT positioning.
  • the positioning signal may be used for at least one of the following positioning: DL-AOD positioning and UL-AOA positioning.
  • the positioning signal includes but is not limited to at least one of the following: DL-PRS, UL-SRS and SBB.
  • the beam information of the first beam may be, but is not limited to, information related to the geographic location of the first beam and/or information related to the direction of the first beam.
  • the beam information of the first beam includes, but is not limited to, the location information of the beam center point of the first beam and/or the direction of at least one beam of the first beam.
  • the beam configuration of the second beam includes but is limited to at least one of the following: the geographical location of at least one of the second beams, the number of the second beams, the direction of at least one of the second beams, and the coverage area of at least one of the second beams.
  • an information processing method which is executed by a serving base station, and includes: sending response information to an LMF, wherein the response information is used to indicate beam information of a first beam.
  • the response information is used for the LMF to send beam information of the first beam to a neighboring base station or to send first indication information indicating beam information of the first beam.
  • an information processing method which is executed by a serving base station, and includes: sending beam information of a first beam to an LMF.
  • the beam information of the first beam is used by the LMF to forward the beam information of the first beam to a neighboring base station.
  • the request information further includes first identification information of a neighboring base station, and the request information is used to request first configuration information of beam information of a first beam of the serving base station.
  • An information processing method is provided in an embodiment of the present disclosure, which is executed by a service base station, including: receiving a request message sent by an LMF, wherein the request message includes first identification information; wherein the request message is used to request beam information of the first beam of the service base station, and the first configuration information is used to instruct a neighboring base station to receive beam information of a fixed first beam sent by the service base station.
  • the first identification information may be the first identification information in the above embodiment.
  • the first identification information includes at least one of the following: PCI, GCI and TRP identification.
  • an information processing method which is executed by a serving base station, and includes: sending first configuration information to an LMF.
  • the first configuration information is used by the LMF to forward the first configuration information to a neighboring base station.
  • the following is an information processing method, which is performed by a neighboring base station and is similar to the description of the information processing method performed by the LMF and/or UE and/or service base station mentioned above; and for technical details not disclosed in the information processing method embodiment performed by the neighboring base station, please refer to the description of the example of the information processing method performed by the LMF and/or UE and/or service base station, which will not be described in detail here.
  • an embodiment of the present disclosure provides an information processing method, which is performed by a neighboring base station, and includes:
  • Step S81 Obtain beam information of a first beam of a serving base station
  • Step S82 Based on the beam information of the first beam, adjust the beam configuration of the second beam of the neighboring base station; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals with the UE.
  • the LMF, UE, serving base station and neighboring base station may respectively be the LMF, UE, serving base station and neighboring base station in the above-mentioned embodiments;
  • the beam information of the first beam and the beam configuration of the second beam may respectively be the beam information of the first beam and the beam configuration of the second beam in the above-mentioned embodiments;
  • the positioning signal may be the positioning signal in the above-mentioned embodiments.
  • the positioning signal may be used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, and Multi-RTT positioning.
  • the positioning signal may be used for at least one of the following positioning: DL-AOD positioning and UL-AOA positioning.
  • the positioning signal includes but is not limited to at least one of the following: DL-PRS, UL-SRS and SBB.
  • the beam information of the first beam may be, but is not limited to, information related to the geographic location of the first beam and/or information related to the direction of the first beam.
  • the beam information of the first beam includes, but is not limited to, the location information of the beam center point of the first beam and/or the direction of at least one beam of the first beam.
  • the beam configuration of the second beam includes but is limited to at least one of the following: the geographical location of at least one of the second beams, the number of the second beams, the direction of at least one of the second beams, and the coverage area of at least one of the second beams.
  • the beam information of the first beam is sent by the LMF; the beam information of the first beam is obtained after the LMF sends a request message to the serving base station.
  • the first identification information may be the first identification information in the above embodiment; the service request may be the service request in the above embodiment; exemplarily, the first identification information includes but is not limited to at least one of the following: PCI, GCI and TRP identification.
  • step S81 includes: receiving first indication information sent by the LMF, wherein the first indication information is used to indicate beam information of the first beam.
  • An embodiment of the present disclosure provides an information processing method, which is executed by a neighboring base station, including: receiving first indication information sent by an LMF, wherein the first indication information is used to indicate beam information of a first beam.
  • An embodiment of the present disclosure provides an information processing method, which is executed by a neighboring base station, and includes: receiving beam information of a first beam sent by an LMF.
  • the neighboring base station can obtain the beam information of the first beam sent by the serving base station through the first indication information forwarded by the LMF, or can obtain the beam information of the first beam sent by the serving base station through the LMF.
  • the method includes: receiving first configuration information sent by the LMF;
  • Step S81 includes: based on the first configuration information, receiving beam information of the first beam sent by the serving base station.
  • the present disclosure provides an information processing method, which is performed by a neighboring base station and includes:
  • beam information of the first beam sent by the serving base station is received.
  • the neighboring base station can receive the first configuration information of the serving base station regarding the beam information of the first beam, and directly receive the beam information of the first beam of the serving base station based on the first configuration information.
  • adjusting the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam in step S82 may be: adjusting the beam configuration of the beam of the neighboring satellite based on the beam information of the first beam.
  • the second beam may be a beam of a neighboring base station, or the second beam may be a beam of a neighboring satellite.
  • the disclosed embodiment provides an information processing method, which is performed by a neighboring base station, including: sending a DL-PRS to a UE based on a second beam after adjusting the beam configuration; and/or, receiving a UL-SRS sent by the UE based on the second beam after adjusting the beam configuration.
  • the UL-SRS may also be sent by the UE based on a third beam, and the third beam and the second beam are a beam pair.
  • the method before step S81, further includes: sending a downlink signal to the UE.
  • the neighboring base station sends the downlink signal to the UE before step S81, that is, sends the downlink signal to the UE by adjusting the second beam before the beam.
  • the disclosed embodiment provides an information processing method, which is performed by a neighboring base station, including: sending a downlink signal to a UE based on a second beam before adjusting the beam configuration.
  • the downlink signal is used to send a request information to a serving base station when the base station does not receive it; the request information is used to request beam information of the first beam.
  • the method before sending a downlink beam to the UE, the method further includes: sending second configuration information of a neighboring base station to the LMF.
  • An embodiment of the present disclosure provides an information processing method, which is executed by a neighboring base station, including: sending second configuration information of the neighboring base station to the LMF, wherein the second configuration information is used by the LMF to send to the UE, and the second configuration information is used to indicate the configuration of the SSB.
  • the neighboring base station is a base station in a regeneration architecture
  • the method includes: adjusting the transmission power to a predetermined transmission power; and sending a downlink signal based on the predetermined transmission power.
  • the disclosed embodiment provides an information processing method, which is executed by a neighboring base station, and includes: adjusting the transmission power to a predetermined transmission power; and sending a downlink signal based on the predetermined transmission power.
  • the predetermined transmission power is a power greater than or equal to the first power.
  • the predetermined transmission power is greater than 22 dBm or 23 dBm.
  • the predetermined transmission power is the maximum transmission power.
  • the maximum transmission power is 23 dBm.
  • the transmission power of the neighboring base station or neighboring satellite can be adjusted to the maximum transmission power (23dBm); if the UE has not received the downlink signal sent by the neighboring base station or neighboring satellite, it is considered that the neighboring base station or neighboring satellite is also unable to receive the UL-SRS sent by the UE.
  • adjusting the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam in step S8 includes:
  • a neighboring base station of a transparent forwarding architecture After determining that the neighboring satellite can receive a signal of the neighboring base station, adjusting the beam configuration of the second beam based on the beam information of the first beam;
  • the beam configuration of the second beam is adjusted based on the beam information of the first beam.
  • the disclosed embodiment provides an information processing method, which is executed by a neighboring base station in a transparent forwarding architecture, including: after determining that the neighboring satellite can receive the signal of the neighboring base station, adjusting the beam configuration of the second beam based on the beam information of the first beam.
  • the transparent forwarding architecture since the neighboring base station and the neighboring satellite are not in the same position, it is necessary to determine that the neighboring satellite can receive the signal of the neighboring base station (such as a downlink signal, etc.) before adjusting the beam configuration of the second beam, so as to ensure that the signal transmitted between the neighboring base station and the UE can be forwarded by the neighboring satellite.
  • the disclosed embodiment provides an information processing method, which is performed by a neighboring base station in a regeneration architecture, including: after acquiring beam information of a first beam, adjusting the beam configuration of a second beam based on the beam information of the first beam.
  • the regeneration architecture since the neighboring base station is on a neighboring satellite, directly adjusting the beam configuration of the second beam can also ensure that the signal transmitted between the neighboring base station and the UE can be forwarded by the neighboring satellite.
  • the present disclosure provides an information processing method, which is performed by a neighboring base station and includes:
  • the second indication information may be the second indication information in the above embodiment.
  • the second indication information may be used to indicate that the positioning side measurement is completed and/or to indicate restoring the beam configuration of the second beam.
  • the following information processing system is similar to the description of the information processing method performed by LMF and/or UE and/or service base station mentioned above; and for technical details not disclosed in the information processing system embodiment, please refer to the description of the example of the information processing method performed by LMF and/or UE and/or service base station, which will not be described in detail here.
  • the embodiment of the present disclosure provides an information processing system, including: LMF, UE, serving base station and neighboring base station; wherein,
  • the UE is configured to send first identification information of a neighboring base station to the LMF;
  • the LMF is configured to send request information to the serving base station, wherein the request information is used to request beam information of the first beam of the serving base station;
  • the serving base station is configured to send beam information of the first beam to the LMF;
  • the LMF is configured to send beam information of the first beam to the neighboring base station;
  • the neighboring base station is configured to adjust the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals with the UE.
  • the embodiment of the present disclosure provides an information processing system, including: LMF, UE, serving base station and neighboring base station; wherein,
  • the UE is configured to send first identification information of a neighboring base station to the LMF;
  • the LMF is configured to send a request message to the serving base station, wherein the request message includes first identification information, and the request message is used to request first configuration information of beam information of a first beam of the serving base station;
  • the serving base station is configured to send first configuration information to the LMF;
  • the LMF is configured to send first configuration information to the neighboring base station
  • the neighboring base station is configured to receive beam information of the first beam sent by the serving base station based on the first configuration information; and adjust the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals between the UE and the UE.
  • the UE is configured to send the first identification information of the neighboring base station to the LMF if it does not receive a downlink signal sent by the neighboring base station within a predetermined time.
  • the present disclosure provides an information processing method, which is performed by a communication device, wherein the communication device includes an LMF, a UE, a neighboring base station and/or a serving base station; the information processing method includes the following steps:
  • Step 1 The UE determines that it cannot receive a downlink signal sent by a neighboring base station (or neighboring satellite). This step may include the following two situations:
  • the second configuration information is used to indicate the configuration of UL-SRS, or when the UE receives the second configuration information of the neighboring base station sent by the LMF, the second configuration information is used to indicate the configuration of SSB, the UE starts to receive the downlink signal sent by the neighboring base station based on the second configuration information.
  • the UE does not receive the downlink signal sent by the neighboring base station within a predetermined time, determines that the downlink signal of the neighboring base station cannot be received, and determines not to send UL-SRS to the neighboring base station; the UE sends the first identification information of the neighboring base station from which the UE does not receive the downlink signal to the LMF through the LTE Positioning Protocol (LTE Positioning Protocol, LPP), wherein the first identification information includes PCI, GCI and/or TRP identification.
  • LTE Positioning Protocol LTE Positioning Protocol
  • a neighboring base station or a neighboring satellite may adjust the transmission power to the maximum transmission power (23dBm) of the UE, and send a downlink signal based on the maximum transmission power; if the UE does not receive a downlink signal from the neighboring base station or the neighboring satellite, it can be considered that the neighboring base station or the neighboring satellite is also unable to receive the UL-SRS signal.
  • the method of adjusting the transmission power to the maximum transmission power to send a downlink signal is suitable for the regenerative architecture.
  • Case 2 Regardless of whether the UE receives the downlink signal sent by the neighboring base station, the UE sends the UL-SRS to the neighboring base station. If a neighboring base station does not receive the UL-SRS sent by the UE, the neighboring base station sends information indicating that the UL-SRS is not received to the LMF through the NRPPa protocol.
  • UL-TDOA positioning and/or Multi-RTT positioning can both adapt to the situations in Case 1 and Case 2; or, DL-TDOA positioning and/or Multi-RTT positioning can adapt to the situation in Case 1.
  • Step 2 Information exchange between the LMF and the base station (the serving base station and/or the neighboring base station) controls the beam configuration of the second beam; the second step includes the following two cases:
  • the LMF determines the neighboring base station that cannot receive the UL-SRS; the LMF sends a request message to the serving base station through the NRPPa protocol, and the request message is used to request the beam information of the first beam of the serving base station (for example, the geographic location of the first beam).
  • the serving base station sends a response message indicating the beam information of the first beam to the LMF through the NRPPa protocol or sends the beam information of the first beam.
  • the LMF sends a first indication message indicating the beam information of the first beam to the neighboring base station or sends the beam information of the first beam.
  • the neighboring base station adjusts the configuration information of the second beam based on the beam information of the first beam.
  • the first beam and the second beam may be beamformed.
  • the UE may obtain a beam pair with the best direction with the neighboring base station or the neighboring satellite (for example, the third beam in the above embodiment may be obtained); and send the UL-SRS based on the third beam pair to increase the receiving power of the satellite for the UL-SRS.
  • the beam information of the first beam sent by the serving base station may be, but is not limited to: location information of a beam center point of the first beam and/or the direction of at least one beam.
  • the beam configuration of the second beam is adjusted based on the beam information of the first beam; and/or, for a neighboring base station of a regeneration architecture, after acquiring the beam information of the first beam, the beam configuration of the second beam is adjusted based on the beam information of the first beam.
  • the LMF determines the neighboring base station that cannot receive the UL-SRS; the LMF sends a request message to the serving base station through the NRPPa protocol, the request message includes the first identification information, and the request message is used to request the first configuration information of the beam information of the first beam of the serving base station (for example, the geographic location of the first beam).
  • the serving base station sends the first configuration information to the LMF through the NRPPa protocol.
  • the LMF sends the first configuration information to the neighboring base station.
  • the neighboring base station directly receives the beam information of the first beam sent by the serving base station based on the first configuration information, and adjusts the configuration information of the second beam based on the beam information of the first beam.
  • the first beam and the second beam may be beamformed.
  • the UE may obtain a beam pair with the best direction with the neighboring base station or the neighboring satellite (for example, the third beam in the above embodiment may be obtained); and send the UL-SRS based on the third beam pair to increase the receiving power of the satellite to the UL-SRS.
  • the configuration information of the beam of the adjacent satellite is adjusted based on the beam information of the first beam; and/or, for an adjacent satellite of a regeneration architecture, signals can be transmitted via Starlink (i.e., intersatellite link).
  • Starlink i.e., intersatellite link
  • Step 3 After positioning is completed, each neighboring base station restores the beam configuration of the second beam to its original state; the third step includes: after LMF determines that the positioning measurement is completed, LMF sends a second indication message to the neighboring base station, and the second indication message indicates that the beam configuration of the second beam is restored after the positioning measurement is completed; the neighboring base station restores the beam configuration of the second beam to its original state based on the second indication message.
  • the neighboring base station instructs the neighboring satellite to restore the beam configuration of the second beam (for example, the neighboring base station sends a second indication message to the neighboring satellite); and/or, for a regeneration architecture, the neighboring base station directly restores the beam configuration of the second beam.
  • the first step, the second step and the third step of the embodiment of the present disclosure are all suitable for UL-TDOA positioning or Multi-RTT positioning; except for the second situation in the first step in the embodiment of the present disclosure which is not suitable for DL-TDOA positioning, other situations are all suitable for DL-TDOA positioning.
  • an embodiment of the present disclosure provides an information processing method, which is performed by a communication device, and the communication device includes an LMF, a UE, a neighboring base station and/or a serving base station; the information processing method includes the following steps:
  • the steps executed by the serving base station may also be executed by the TRP of the serving base station; the steps executed by the neighboring base station may also be executed by the TRP of the neighboring base station.
  • Step S900 The neighboring base station or the serving base station interacts with the LMF through the NRPPa protocol for the third configuration information, so that the LMF, the neighboring base station or the serving base station obtains the third configuration information;
  • the third configuration information may be, but is not limited to, the above-mentioned second configuration information and/or the first identification information of the neighboring base station and/or positioning-related configuration information.
  • Step S901 LMF obtains the positioning capability of UE through LPP protocol
  • Step S902 LMF requests the serving base station to configure the UL-SRS of the UE through NRPPa positioning request information;
  • the LMF may also indicate the configuration of the SSB of other base stations (e.g., base stations other than the serving base station) to the serving base station for path loss estimation;
  • the configuration of UL-SRS and/or the configuration of SSB may be indicated by the second configuration information in the above embodiment.
  • the NRPPa positioning request information can be NRPPa POSITIONING INFORMATION REQUEST.
  • Step S903 The serving base station determines the resource configuration of UL-SRS and sends it to the UE;
  • Step S904 The serving base station sends the U-SRS configuration to the LMF through the NRPPa positioning response information;
  • the NRPPa positioning response information can be NRPPa POSITIONING INFORMATION RESPONSE.
  • Step S905 The UE detects downlink signals (such as SSB, etc.) sent by neighboring base stations; if downlink signals of all neighboring base stations are detected, a normal positioning measurement process is performed; if downlink signals of some neighboring base stations are not detected, the UE sends the PCI, GCI and/or TRP identifiers of these neighboring base stations to the LMF;
  • downlink signals such as SSB, etc.
  • step S905 uses “case one" of the "first step” in the above embodiment, "case two" of the "first step” in the above embodiment is ignored.
  • Step S906A LMF sends an NRPPa positioning activation request message to the serving base station to request activation of UL-SRS transmission;
  • the NRPPa positioning activation request message can be an NRPPa Positioning Activation Request message.
  • LMF sends an NRPPa positioning activation request message to the serving base station.
  • Step S906B The serving base station sends an NRPPa positioning activation request message to the UE;
  • Step S906C The serving base station activates the transmission of UL-SRS and sends an NRPPa positioning activation response message to the LMF;
  • the NRPPa positioning activation response message can be an NRPPa Positioning Activation Response message.
  • the UE starts to transmit the UL-SRS according to the time domain configured by the UL-SRS resource, or the UE does not transmit the UL-SRS.
  • Step S907 The LMF sends the configuration of the UL-SRS to the serving base station that needs to perform positioning measurement;
  • LMF may also send the information required for UL-SRS measurement to the serving base station that needs to perform positioning measurement through an NRPPa measurement request.
  • Step S908 If the neighboring base station does not detect the UL-SRS, the neighboring base station sends the first identification information of the neighboring base station to the LMF;
  • the first identification information includes at least one of the following: PCI, GCI and TRP identification.
  • Step S909 the serving base station sends a request message to the LMF through the NRPPa protocol, where the request message is used to request beam information of the first beam;
  • Step S910 the serving base station sends a response message to the LMF through NRPPa, where the response message is used to indicate beam information of the first beam;
  • Step S911 The LMF sends first indication information to a neighboring base station that cannot receive UL-SRS through the NRPPa protocol, where the first indication information is used to indicate beam information of the first beam;
  • the method includes the following steps (step S912 to step S915):
  • Step S912 The LMF sends a request message to the neighboring base station through the NRPPa protocol, where the request message includes first identification information of the neighboring base station that cannot receive the UL-SRS, and the request message is used to request first configuration information of the beam information of the first beam;
  • Step S913 The serving base station sends the first configuration information to the LMF;
  • Step S914 LMF first configuration information is sent to a neighboring base station that cannot receive UL-SRS;
  • Step S915 The serving base station sends beam information of the first beam to a neighboring base station that cannot receive UL-SRS;
  • Step S916 The neighboring base station adjusts the configuration information of the second beam based on the beam information of the first beam;
  • Step S917 The neighboring base station and/or the serving base station performs positioning measurement operations with the LMF;
  • Step S918 After positioning is completed, LMF sends an NRPPa positioning deactivation message to the serving base station;
  • the NRPPa positioning deactivation message may be a NRPPa POSITIONING DEACTIVATION message.
  • Step S919 LMF indicates through NRPPa that the neighboring base station positioning measurement has been completed and restores the beam configuration of the second beam.
  • the embodiments of the present disclosure can solve the problem in satellite communications where the multiple satellites in the satellite constellation are widely spaced, resulting in the inability to receive downlink and/or uplink signals between the UE and the adjacent base station, which is beneficial to improving the accuracy of positioning measurements of the UE or verifying the correctness of the UE's location.
  • an information processing device including:
  • the first sending module 31 is configured to send a request message to the serving base station, wherein the request message is used to request the beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for the transmission of the positioning signal between the neighboring base station and the UE.
  • the information processing device provided by the embodiment of the present disclosure may be an LMF.
  • the present disclosure provides an information processing device, including:
  • a first receiving module is configured to receive first identification information of a neighboring base station sent by a UE
  • the first sending module 31 is configured to send request information to the serving base station based on the first identification information; wherein the first identification information is sent after the UE fails to receive a downlink signal sent by a neighboring base station.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • An embodiment of the present disclosure provides an information processing device, including: a first receiving module, configured to receive response information sent by a serving base station, wherein the response information is used to indicate beam information of a first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • An embodiment of the present disclosure provides an information processing device, including: a first sending module 31, configured to send first indication information to a neighboring base station, wherein the first indication information is used to indicate beam information of a first beam.
  • the request information also includes first identification information, and the request information is used to request first configuration information of beam information of the first beam of the serving base station; wherein the first configuration information is used by the neighboring base station to receive beam information of the first beam sent by the serving base station.
  • An embodiment of the present disclosure provides an information processing device, including: a first receiving module, configured to receive first configuration information sent by a serving base station.
  • An embodiment of the present disclosure provides an information processing device, including: a first sending module 31, configured to send first configuration information to a neighboring base station.
  • An embodiment of the present disclosure provides an information processing device, including: a first sending module 31, configured to send second indication information to a neighboring base station, wherein the second indication information is used to indicate that the beam configuration of the second beam is restored after the positioning measurement is completed.
  • the positioning signal includes at least one of the following: DL-PRS and UL-SRS.
  • an information processing device including:
  • the second sending module 41 is configured to send first identification information of the neighboring base station to the LMF; wherein the first identification information is used by the LMF to send request information to the serving base station;
  • the request information is used to request the beam information of the first beam of the serving base station; the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the information processing device provided by the embodiment of the present disclosure may be a UE.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • An embodiment of the present disclosure provides an information processing device, including: a second sending module 41, configured to send first identification information of a neighboring base station to an LMF based on not receiving a downlink signal sent by the neighboring base station.
  • the present disclosure provides an information processing device, including:
  • a second receiving module is configured to obtain second configuration information, wherein the second configuration information is used to indicate the configuration of UL-SRS and/or SSB;
  • the second receiving module is further configured to receive a downlink signal sent by a neighboring base station based on the second configuration information.
  • the present disclosure provides an information processing device, including:
  • a second receiving module configured to receive second configuration information sent by a serving base station, wherein the second configuration information is used to indicate the configuration of the UL-SRS;
  • the second receiving module is configured to receive second configuration information of the neighboring base station sent by the LMF, wherein the second configuration information is used to indicate the configuration of the SSB.
  • An embodiment of the present disclosure provides an information processing device, including: a first processing module, configured to determine not to send a UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning: UL-TDOA positioning, DL-TDOA positioning, and Multi-RTT positioning.
  • An embodiment of the present disclosure provides an information processing device, including: a second sending module, configured to send a UL-SRS to a neighboring base station.
  • the positioning signal is used for at least one of the following positioning: UL-TDOA positioning, and Multi-RTT.
  • the present disclosure provides an information processing device, including:
  • a second receiving module is configured to receive an SSB and/or a downlink positioning reference signal DL-PRS signal sent by a neighboring base station based on a second beam after adjusting the beam configuration;
  • the first processing module is configured to determine a third beam for the UE to send a UL-SRS based on the second beam after the beam configuration is adjusted.
  • an information processing device including:
  • the third receiving module 51 is configured to receive request information sent by the LMF, wherein the request information is used to request beam information of the first beam of the serving base station; wherein the beam information of the first beam is used by the neighboring base station to adjust the beam configuration of the second beam; and the second beam after adjusting the beam configuration is used for the transmission of positioning signals between the neighboring base station and the UE.
  • the information processing device provided by the embodiment of the present disclosure may be a serving base station.
  • An embodiment of the present disclosure provides an information processing device, including: a third sending module, configured to send response information to the LMF, wherein the response information is used to indicate beam information of the first beam.
  • the beam information of the first beam includes at least one of the following:
  • the pointing direction of at least one beam of the first beam is a pointing direction of at least one beam of the first beam.
  • the request information further includes first identification information of a neighboring base station, and the request information is used to request first configuration information of beam information of a first beam of the serving base station.
  • An embodiment of the present disclosure provides an information processing device, including: a third sending module, configured to send first configuration information to the LMF.
  • the first identification information includes at least one of the following: PCI, GCI, and TRP identification.
  • an information processing device including:
  • the fourth receiving module 61 is configured to not obtain beam information of the first beam of the serving base station
  • the second processing module 62 is configured to adjust the beam configuration of the second beam of the neighboring base station based on the beam information of the first beam; wherein the second beam after the adjusted beam configuration is used for transmission of positioning signals with the UE.
  • the information processing device provided by the embodiment of the present disclosure may be a neighboring base station.
  • An embodiment of the present disclosure provides an information processing device, including: a fourth receiving module 61, configured to receive first indication information sent by the LMF, wherein the first indication information is used to indicate beam information of the first beam.
  • the present disclosure provides an information processing device, including:
  • the fourth receiving module 61 is configured to receive the first configuration information sent by the LMF;
  • the fourth receiving module 61 is further configured to receive beam information of the first beam sent by the serving base station based on the first configuration information.
  • the present disclosure provides an information processing device, including:
  • the fourth receiving module 61 is configured to receive the second indication information sent by the LMF;
  • the second processing module 62 is configured to determine, based on the second indication information, to restore the beam configuration of the second beam after the positioning measurement is completed.
  • An embodiment of the present disclosure provides an information processing device, including: a fourth sending module, configured to send a downlink signal to a UE based on a second beam before adjusting the beam configuration, wherein the downlink signal is used to send request information to a serving base station when the base station has not received it; the request information is used to request beam information of the first beam.
  • a fourth sending module configured to send a downlink signal to a UE based on a second beam before adjusting the beam configuration, wherein the downlink signal is used to send request information to a serving base station when the base station has not received it; the request information is used to request beam information of the first beam.
  • An embodiment of the present disclosure provides an information processing device, including: a fourth sending module, configured to send second configuration information of a neighboring base station to the LMF, wherein the second configuration information is used by the LMF to send to the UE, and the second configuration information is used to indicate the configuration of the SSB.
  • the neighboring base station is a base station in a regenerative architecture.
  • the present disclosure provides an information processing device, including:
  • the second processing module 62 is configured to adjust the transmission power to a predetermined transmission power
  • the fourth sending module is configured to send a downlink signal based on a predetermined transmission power.
  • the present disclosure provides an information processing device, including:
  • the second processing module 62 is configured to adjust the beam configuration of the second beam based on the beam information of the first beam for the neighboring base station of the transparent forwarding architecture after determining that the neighboring satellite can receive the signal of the neighboring base station;
  • the second processing module is configured to adjust the beam configuration of the second beam based on the beam information of the first beam after acquiring the beam information of the first beam for the neighboring base station of the regeneration architecture.
  • the present disclosure provides a communication device, including:
  • a memory for storing processor-executable instructions
  • the processor is configured to implement the information processing method of any embodiment of the present disclosure when running executable instructions.
  • the communication device may include but is not limited to at least one of: a UE and a LMF, a serving base station and a neighboring base station.
  • the processor may include various types of storage media, which are non-temporary computer storage media that can continue to memorize information stored thereon after the user device loses power.
  • the processor may be connected to the memory via a bus or the like, and may be used to read an executable program stored in the memory, for example, at least one of the methods shown in FIG. 4 to FIG. 9 .
  • the present disclosure also provides a computer storage medium storing a computer executable program, which implements the information processing method of any embodiment of the present disclosure when the executable program is executed by a processor, for example, at least one of the methods shown in FIG. 4 to FIG. 9 .
  • Fig. 14 is a block diagram of a user device 800 according to an exemplary embodiment.
  • the user device 800 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the user device 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
  • the processing component 802 generally controls the overall operation of the user device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations on the user device 800. Examples of such data include instructions for any application or method operating on the user device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 806 provides power to the various components of the user device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the user device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the user device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the user device 800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and the rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the user device 800 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 804 or sent via the communication component 816.
  • the audio component 810 also includes a speaker for outputting audio signals.
  • I/O interface 812 provides an interface between processing component 802 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 814 includes one or more sensors for providing various aspects of status assessment for the user device 800.
  • the sensor assembly 814 can detect the open/closed state of the device 800, the relative positioning of the components, such as the display and keypad of the user device 800, and the sensor assembly 814 can also detect the position change of the user device 800 or a component of the user device 800, the presence or absence of contact between the user and the user device 800, the orientation or acceleration/deceleration of the user device 800, and the temperature change of the user device 800.
  • the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the user device 800 and other devices.
  • the user device 800 can access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the user device 800 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 804 including instructions, and the instructions can be executed by the processor 820 of the user device 800 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • an embodiment of the present disclosure illustrates a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as an application.
  • the application stored in the memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any method of the aforementioned method applied to the base station.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input/output (I/O) interface 958.
  • the base station 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, FreeBSD TM or the like.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信息处理方法以及装置、通信设备及存储介质;信息处理方法由LMF执行,包括:向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。

Description

信息处理方法以及装置、通信设备及存储介质 技术领域
本公开涉及但不限于无线通信技术领域,尤其涉及一种信息处理方法以及装置、通信设备及存储介质。
背景技术
非地面网络(NTN)通信,例如卫星通信,因为具有广覆盖、强灾害抵抗能力和大容量的特性,已适应越来越多的应用场景。当卫星,例如邻近卫星(neighbor satellite)与用户设备(User Equipment,UE)进行通信时,很可能由于卫星星座部署不是特别密集的原因,导致邻近卫星接收不到UE发送的信号和/或UE接收不到邻近卫星发送的信号,例如UE或者卫星无法接收到下行定位参考信号(Downlink Positioning Reference Signal,DL-PRS)或者上行探测参考信号(Uplink Sounding Reference Signal,UL-SRS)。
而如果UE或者卫星无法接收到希望接收到的的定位信号,例如DL-PRS或者UL-SRS等,则无法进行网络的定位测量,进而导致无法完成网络的定位或者使用该些定位信号验证UE的位置是否正确等。
发明内容
本公开实施例提供一种信息处理方法以及装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种信息处理方法,由定位管理功能(Location Management Function,LMF)执行,包括:
向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,所述方法包括:接收UE发送的邻近基站的第一标识信息;
向服务基站发送请求信息,包括:
基于第一标识信息,向服务基站发送请求信息;其中,第一标识信息是UE未接收到邻近基站发送的下行信号后发送的。
在一些实施例中,第一标识信息包括以下至少之一:
物理小区标识(Physical Cell Identifier,PCI);
全球小区标识(Cell Global Identifier,GCI);
传输接收点(Transmitter Receiver Point,TRP)标识。
在一些实施例中,方法包括:接收服务基站发送的响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
在一些实施例中,方法包括:向邻近基站发送第一指示信息,其中,第一指示信息用于指示第一波束的波束信息。
在一些实施例中,请求信息还包括第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息;其中,第一配置信息用于邻近基站接收服务基站发送的第一波束的波束信息。
在一些实施例中,方法包括:
接收服务基站发送的第一配置信息;
将第一配置信息发送给邻近基站。
在一些实施例中,方法包括:向邻近基站发送第二指示信息,其中,第二指示信息用于指示定位测量完成后恢复第二波束的波束配置。
在一些实施例中,定位信号包括以下至少之一:
下行定位参考信号DL-PRS;
上行探测参考信号UL-SRS。
根据本公开实施例的第二方面,提供一种信息处理方法,由UE执行,包括:
向LMF发送邻近基站的第一标识信息;其中,第一标识信息用于LMF向服务基站发送请求信息;
其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
在一些实施例中,向LMF发送邻近基站的第一标识信息,包括:
基于未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
在一些实施例中,方法包括:
获取第二配置信息,其中,第二配置信息用于指示UL-SRS和/或SSB的配置;
基于第二配置信息接收邻近基站发送的下行信号。
在一些实施例中,获取第二配置信息,包括:
接收服务基站发送的第二配置信息,其中,第二配置信息用于指示UL-SRS的配置;
和/或,
接收LMF发送的邻近基站的第二配置信息,其中,第二配置信息用于指示SSB的配置。
在一些实施例中,方法包括:确定不向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:
上行到达时差(Uplink Time Difference of Arrival,UL-TDOA)定位;
下行到达时差(Downlink Time Difference Of Arrival,DL-TDOA)定位;
多往返时间(Multi-Round Trip Time,Multi-RTT)定位。
在一些实施例中,方法包括:向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:UL-TDOA定位、以及Multi-RTT。
在一些实施例中,方法包括:
接收邻近基站基于调节波束配置后的第二波束发送的SSB和/或下行定位参考信号DL-PRS信号;
基于调节波束配置后的第二波束,确定UE发送UL-SRS的第三波束。
根据本公开实施例的第三方面,提供一种信息处理方法,由服务基站执行,包括:
接收LMF发送的请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,方法包括:向LMF发送响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
在一些实施例中,请求信息还包括邻近基站的第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息。
在一些实施例中,方法包括:向LMF发送第一配置信息。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
根据本公开实施例的第四方面,提供一种信息处理方法,由邻近基站执行,包括:
获取服务基站的第一波束的波束信息;
基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
在一些实施例中,获取服务基站的第一波束的波束信息,包括:
接收LMF发送的第一指示信息,其中,第一指示信息,用于指示第一波束的波束信息。
在一些实施例中,方法包括:接收LMF发送的第一配置信息;
获取服务基站的第一波束的波束信息,包括:基于第一配置信息,接收服务基站发送的第一波束的波束信息。
在一些实施例中,方法包括:
接收LMF发送的第二指示信息;
基于定位测量完成后,根据第二指示信息确定恢复第二波束的波束配置。
在一些实施例中,方法包括:基于调节波束配置前的第二波束向UE发送下行信号,其中,下行信号用于基站未接收到时向服务基站发送请求信息;请求信息用于请求第一波束的波束信息。
在一些实施例中,方法包括:向LMF发送邻近基站的第二配置信息,其中,第二配置信息用于LMF发送给UE,第二配置信息用于指示SSB的配置。
在一些实施例中,邻近基站为再生构架中基站;
方法包括:
调节发射功率为预定发射功率;
基于预定发射功率发送下行信号。
在一些实施例中,基于第一波束的波束信息,调节邻近基站的第二波束的波束配置,包括:
对于透明转发构架的邻近基站,在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置;
和/或,
对于再生构架的邻近基站,在获取到第一波束的波束信息后,基于第一波束的波束信息调节第二波束的波束配置。
根据本公开实施例的第五方面,提供一种信息处理装置,包括:
第一发送模块,被配置为向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,装置包括:第一发送模块,被配置为接收UE发送的邻近基站的第一标识信息;
第一发送模块,被配置为基于第一标识信息,向服务基站发送请求信息;其中,第一标识信息是UE未接收到邻近基站发送的下行信号后发送的。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
在一些实施例中,第一接收模块,被配置为接收服务基站发送的响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
在一些实施例中,第一发送模块,被配置为向邻近基站发送第一指示信息,其中,第一指示信息用于指示第一波束的波束信息。
在一些实施例中,请求信息还包括第一标识信息,请求信息用于请求服务基站的第一波束的波 束信息的第一配置信息;其中,第一配置信息用于邻近基站接收服务基站发送的第一波束的波束信息。
在一些实施例中,第一接收模块,被配置为接收服务基站发送的第一配置信息;
第一发送模块,被配置为将第一配置信息发送给邻近基站。
在一些实施例中,第一发送模块,被配置为向邻近基站发送第二指示信息,其中,第二指示信息用于指示定位测量完成后恢复第二波束的波束配置。
在一些实施例中,定位信号包括以下至少之一:DL-PRS以及UL-SRS。
根据本公开实施例的第六方面,提供一种信息处理装置,包括:
第二发送模块,被配置为向LMF发送邻近基站的第一标识信息;其中,第一标识信息用于LMF向服务基站发送请求信息;
其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
在一些实施例中,第二发送模块,被配置为基于未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
在一些实施例中,装置包括:
第二接收模块,被配置为获取第二配置信息,其中,第二配置信息用于指示UL-SRS和/或SSB的配置;
第二接收模块,还被配置为基于第二配置信息接收邻近基站发送的下行信号。
在一些实施例中,第二接收模块,被配置为接收服务基站发送的第二配置信息,其中,第二配置信息用于指示UL-SRS的配置;
和/或,第二接收模块,被配置为接收LMF发送的邻近基站的第二配置信息,其中,第二配置信息用于指示SSB的配置。
在一些实施例中,装置包括:第一处理模块,被配置为确定不向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位以及Multi-RTT定位。
在一些实施例中,第二发送模块,被配置为向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:UL-TDOA定位、以及Multi-RTT。
在一些实施例中,第二接收模块,被配置为接收邻近基站基于调节波束配置后的第二波束发送的SSB和/或下行定位参考信号DL-PRS信号;
第一处理模块,被配置为基于调节波束配置后的第二波束,确定UE发送UL-SRS的第三波束。
根据本公开实施例的第七方面,提供一种信息处理装置,包括:
第三接收模块,被配置为接收LMF发送的请求信息,其中,请求信息用于请求服务基站的第一 波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在一些实施例中,装置包括:第三发送模块,被配置为向LMF发送响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
在一些实施例中,请求信息还包括邻近基站的第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息。
在一些实施例中,第三发送模块,被配置为向LMF发送第一配置信息。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
根据本公开实施例的第八方面,提供一种信息处理装置,包括:
第四接收模块,被配置未获取服务基站的第一波束的波束信息;
第二处理模块,被配置为基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
在一些实施例中,第四接收模块,被配置为接收LMF发送的第一指示信息,其中,第一指示信息,用于指示第一波束的波束信息。
在一些实施例中,第四接收模块,被配置为接收LMF发送的第一配置信息;
第四接收模块,还被配置为基于第一配置信息,接收服务基站发送的第一波束的波束信息。
在一些实施例中,第四接收模块,被配置为接收LMF发送的第二指示信息;
第二处理模块,被配置为基于定位测量完成后,根据第二指示信息确定恢复第二波束的波束配置。
在一些实施例中,装置包括:第四发送模块,被配置为基于调节波束配置前的第二波束向UE发送下行信号,其中,下行信号用于基站未接收到时向服务基站发送请求信息;请求信息用于请求第一波束的波束信息。
在一些实施例中,第四发送模块,被配置为向LMF发送邻近基站的第二配置信息,其中,第二配置信息用于LMF发送给UE,第二配置信息用于指示SSB的配置。
在一些实施例中,邻近基站为再生构架中基站;
第二处理模块,被配置为调节发射功率为预定发射功率;
第四发送模块,被配置为基于预定发射功率发送下行信号。
在一些实施例中,第二处理模块,被配置为对于透明转发构架的邻近基站,在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置;
和/或,
第二处理模块,被配置为对于再生构架的邻近基站,在获取到第一波束的波束信息后,基于第 一波束的波束信息调节第二波束的波束配置。
根据本公开的第九方面,提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的信息处理方法。
根据本公开的第十方面,提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的信息处理方法。
本公开实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,LMF向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;该第一波束的波束信息用于邻近基站调节第二波束的波束配置,调节波配置后的第二波束用于邻近基站与UE之间定位信号的传输。
如此,可以通过LMF或者基站(例如邻近基站)控制邻近基站和/或邻近卫星的波束的波束配置(例如波束指向等),使得邻近基站和UE能够相互接收到对方发送的定位信号,从而可以使得邻近基站与UE之间的定位测量或者对UE的位置验证能够进行;即可以提高邻近基站和UE之间定位信号传输的可靠性,以及可以有利于提高对UE的定位的准确性和对UE位置验证的正确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种NTN网络结构的示意图。
图3是根据一示例性实施例示出的一种UE和卫星的位置的关系的示意图。
图4是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图5是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图6是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图7是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图8是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图9是根据一示例性实施例示出的一种信息处理方法的流程示意图。
图10是根据一示例性实施例示出的一种信息处理装置的示意图。
图11是根据一示例性实施例示出的一种信息处理装置的示意图。
图12是根据一示例性实施例示出的一种信息处理装置的示意图。
图13是根据一示例性实施例示出的一种信息处理装置的示意图。
图14是根据一示例性实施例示出的一种UE的框图。
图15是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G新空口(New Radio,NR)系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体接入控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的车对车(vehicle to vehicle,V2V)通信、车对路边设备(vehicle to Infrastructure,V2I)通信和车对人(vehicle to pedestrian,V2P)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等;或者核心网设备也可以是是5G中的核心网设备;比如可以是接入和移动性管理功能(Access and Mobility Management Function,AMF)、策略控制功能(Policy Control Function,PCF)或者会话管理功能(Session Management Function,SMF)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
需要说明的是,本公开实施例中涉及到多个执行主体时,当一个执行主体向另一个执行主体发送某一传输时,可以是指一个执行主体直接向另一个执行主体发送传输,也可以是指一个执行主体通过其他任意设备向另一个执行主体发送传输;本公开实施例中并不对此进行限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对相关技术中进行部分说明:
非地面网络(Non-Terrestrial Network,NTN)通信,例如卫星通信,因为具有广覆盖、强灾害抵抗能力和大容量的特性,已被纳入3GPP有关5G标准的讨论之中。TR38.821中定义的NTN场景包括基于对地静止轨道(Geostationary Earth Orbiting,GEO)卫星的场景以及基于非对地静止轨道(Non-Geostationary Earth Orbiting,NGSO)卫星的场景。NTN网络结构可如图2所示;该NTN网络架构存在透明转发构架和再生构架两种。其中,透明构架即卫星具有透明转发的作用,即基站和UE之间的通信是通过卫星进行转发的;一般默认为NTN网关和基站离得很近可近似的认为两者在同一位置。再生构架即基站的一部分(DU)在卫星上或者基站的全部结构在卫星上,卫星上具有数据处理的能力。
目前5G NR中的定位方法有以下几种类型:下行达到时差(Downlink Time Difference Of Arrival,DL-TDOA)、上行达到时差(Uplink Time Difference of Arrival,UL-TDOA)、多往返时间(Multi-Round Trip Time,Multi-RTT)、下行出发角(Downlink Angle-of-Departure,DL-AOD)、或者上行出发角(Uplink Angle of Arrival,UL-AOA)。考虑到卫星的波束范围较大,UE和卫星无法精确的测量关于角度的变量,通常可以考虑DL-TDOA、UL-TDOA和/或Multi-RTT的定位方法。
DL-TDOA定位方法可以是:UE通过接收不同传输接收点(Transmitter Receiver Point,TRP)发送的下行定位参考信号(Downlink Positioning Reference Signal,DL-PRS)信号以测量下行参考信号时差(Downlink Reference Signal Time Difference,DL-RSTD),UE或者LMF利用多个RSTD测量值以及各个TRP的位置进行UE的定位估计。UL-TDOA定位方法可以是:不同的TRP通过接收UE发送的上行探测参考信号(Uplink Sounding Reference Signal,UL-SRS)信号以测量上行相对达到时间(Uplink Relative Time of Arrival,UL-RTOA),LMF利用多个UL-RTOA测量值以及各个TRP的位置进行UE的定位估计。Multi-RTT定位方法可以是:不同的TRP发送DL-PRS信号并且接收UE发送的UL-SRS信号,LMF通过UE-Rx-Tx time difference、各个TRP-Rx-Tx time difference和各个TRP的位置进行UE的定位估计;这里,UE-Rx-Tx time difference为UE测量接收DL-PRS信号以及发送UL-SRS信号的时间间隔TRP-Rx-Tx time difference为TRP测量发送DL-PRS信号以及接收UL-SRS信号的时间间隔。这里,TRP-Rx-Tx time difference是卫星发射DL-PRS和接收UL-SRS的时间差。
如果NTN网络是再生构架,则卫星直接发送的定位相关的信号;如果NTN网络是透明构架,则gNB发送定位相关的信号通过卫星转发给UE;该两种构架都是由卫星和UE直接进行信号传输。
在Rel-18的WI阶段,提到了网络验证UE位置的准确性(network-verified UE location)以及基于网络的定位(network-based positioning),Rel-18讨论了网络验证UE位置这一课题并降低了网络的定位的优先级,但是网络的的定位在将来仍然可能讨论,并且对于网络验证UE位置,在目前讨论的网络侧验证UE的全球卫星导航系统(Global Navigation Satellite System,GNSS)位置的方法中也存在继续使用传统的时间反转(Time-Reversal,TR)定位方法,如Multi-RTT等,所以讨论NTN网络的定位是必须的。
当卫星使用3GPP TR 38.821中规定的发射功率发送DL-PRS时,或者UE使用3GPP TR 38.821 中规定的发射功率发送UL-SRS时,可能会存在UE接收到的DL-PRS信号微弱,或者卫星接收到的UL-SRS信号微弱的情况。
当用户以目前的最大发射功率(23dBm)发射UL-SRS信号时,进行定位测量的其他卫星,例如,邻近卫星(neighbor satellite)可能无法接收该信号:对星链(Starlink)的steam-1星座的两个相邻卫星进行上行链路预算分析(仿真参数参考3GPP 38.821 set1 2GHz 0.4MHz),得到的仿真结果如表1所示。
Figure PCTCN2022140155-appb-000001
表1
当进行定位的所有卫星对用户发送DL-PRS信号时,用户可能无法接收某些邻近卫星的信号:对星链(Starlink)的steam-1星座的两个相邻卫星进行下行链路预算分析(仿真参数参考3GPP 38.821 set1 2GHz 30MHz),得到的仿真结果如表2所示。
Figure PCTCN2022140155-appb-000002
表2
从以上仿真中可以看出,当邻近卫星(neighbor satellite)与UE进行通信时,邻近卫星很可能接收不到UE发送的UL-SRS信号;因为satellite的大发射功率,UE可能可以接收到邻近发送的DL-PRS,但是如果卫星星座部署的不是非常密集,则UE也可能无法接收邻近卫星发送的DL-PRS信号。如果UE或者邻近卫星无法接收到希望接收到的信号(DL-PRS或者UL-SRS),则无法进行定位测量,由此无法完成定位或者使用这些参数验证UE的位置是否正确。如图3所示,提供一种UE和卫星(例如邻近卫星)的位置的关系;其中,UE1可以是不在卫星上的UE,UE2可以是在卫 星上的UE。可以看到,存在UE1和UE2无法与邻近卫星通信的情况,无论UE是否在卫星上,均存在无法与邻近卫星通信的情况。
本公开提供一种信息处理方法,该信息处理方法可以解决上述UE与卫星无法通信的问题。如图4所示,本公开实施例提供一种信息处理方法,由LMF执行,包括:
步骤S41:向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
这里,邻近基站通过该第一波束的波束信息调节第二波束的波束配置,并且其中,经调节波束配置的第二波束用于邻近基站与UE之间定位信号的传输。
这里,邻近基站可以在邻近卫星上,或者,邻近卫星是用于转发邻近基站与UE之间信号的卫星。
在一个实施例中,服务基站及邻近基站均可以是但不限于是以下至少之一:3G基站、4G基站、5G基站及其它演进型基站。在另一个实施例中,服务基站及邻近基站均可以是卫星通信中的基站。
在另一个实施例中,服务基站是UE已注册到的基站或者或者已定位该UE的基站;邻近基站是UE在预定范围内的基站或者还未定位UE的基站等。
示例性的,服务基站可以是第一基站;邻近基站可以是第二基站。示例性的,服务基站可以是service gNB,邻近基站可以是neighbor gNB。
在一个实施例中,UE可以是各种移动终端或固定终端。例如,该UE可以是但不限于是手机、计算机、服务器、可穿戴设备、游戏控制平台、多媒体设备或者各种传感器等。
在一个实施例中,LMF是核心网中灵活灵活布置的逻辑节点或者功能或者实现功能的实体等。
在一个实施例中,步骤S41中向服务基站发送请求信息可以是:通过NR定位协议A(NR Positioning Protocol A,NRPPa)协议向服务基站发送服务基站(service gNB)请求。
在一个实施例中,第一波束的波束信息可以是但不限于是:与第一波束的地理位置相关的信息和/或与第一波束的指向相关的信息。第一波束的指向是指第一波束中任意一个波束指向。该第一波束的地理位置相关的信息可以是但不限于是第一波束中心点的位置、第一波束的两个边界的地理位置和/或第一波束中任意点的位置。
在一个实施例中,第一波束的波束信息,包括但不限于第一波束的波束中心点的位置信息和/或第一波束的至少一个波束的指向。
在一个实施例中,第一波束可以是服务基站的波束。例如,该第一波束为服务基站的服务波束。
在一个实施例中,第二波束的波束配置,包括但限于以下至少之一:第二波束中至少一个波束的地理位置、第二波束的数量、第二波束中至少一个波束的指向以及第二波束中至少一个波束的覆盖面积。
在一个实施例中,第二波束可以是邻近基站的波束。示例性的,第一波束的波束信息可用于邻 近基站调节邻近基站的第二波束的波束配置。这里,对于再生构架,该邻近基站部署在邻近卫星上,调节邻近基站的波束,即为调节卫星的波束。或者,对于透明转发构架,邻近基站可以通过调节邻近基站与卫星波束之间传输的信号来调节邻近基站的波束。
在另一个实施例中,第二波束也可以是邻近卫星的波束。示例性的,第一波束的波束信息可用于邻近卫星调节邻近卫星的第二波束的波束配置。这里,对于透明转发构架,该邻近卫星的第二波束的波束配置可用于邻近基站调节第二波束的波束配置。
在一个实施例中,第一波束和第二波束均可以是一个或多个波束。在本公开的实施例中,多个是指两个或两个以上。这里,第一波束和第二波束均可以包括发送波束和/接收波束;发送波束可以是至少一个,和/或接收波束可以是至少一个。及,第一波束与第二波束可以包括一个或多个发送波束,一个或多个接收波束,或者可以包含一部分接收波束,一部分发送波束。
在另一个实施例中,若UE为阵列天线,则该第一波束和第二波束均可以波束赋形后的波束。
在一个实施例中,定位信号包括但不限于以下至少之一:DL-PRS以及UL-SRS。
示例性的,调节波束配置后的第二波束用于邻近基站将DL-PRS发送给UE,和/或调节波束配置后的第二波束用于UE将UL-SRS发送给邻近基站;如此通过DL-PRS和/或UL-SRS的成功传输,可利于邻近基站与UE之间的定位。
在另一个实施例中,定位信号还可以是任意一种与NTN网络中定位相关的信号;例如可以是SSB;在此不对定位信号作限制。
在一个实施例中,定位信号可以用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位、Multi-RTT定位、DL-AOD定位以及UL-AOA定位。如此,本公开实施例邻近基站和/或邻近卫星的波束的调节可适应于UL-TDOA定位、DL-TDOA定位、Multi-RTT)定位、DL-AOD定位和/或UL-AOA定位等定位场景下的调节,因此可以适应更多的应用场景。
如此,在本公开实施例中,LMF向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;该第一波束的波束信息用于邻近基站调节第二波束的波束配置,调节波配置后的第二波束用于邻近基站与UE之间定位信号的传输。如此,可以通过LMF或者基站(例如邻近基站)控制邻近基站和/或邻近卫星的波束的波束配置(例如波束指向等),使得邻近基站和UE能够相互接收到对方发送的定位信号,从而可以使得邻近基站与UE之间的定位测量或者对UE的位置验证能够进行;即可以提高邻近基站和UE之间定位信号传输的可靠性,以及可以有利于提高对UE的定位的准确性和对UE位置验证的正确性。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,步骤S41中向服务基站发送请求信息,包括:基于接收到UE发送的邻近基站的第一标识信息,向服务基站发送请求信息。这里,第一标识信息是UE未接收到邻近基站发送的下行信号后发送的。
如图5所示,本公开实施例提供一种信息处理方法,由LMF执行,包括:
步骤S50:接收UE发送的邻近基站的第一标识信息;
步骤S51:基于第一标识信息,向服务基站发送请求信息。
在本公开的一些可能的实施方式中,UE可以向LFM发送邻近基站的第一标识信息,在一些实施例中,第一标识信息包括以下至少之一:
物理小区标识(Physical Cell Identifier,PCI);
全球小区标识(Cell Global Identifier,GCI);
传输接收点(Transmitter Receiver Point,TRP)标识。
如此,UE告知LMF有关邻近基站的信息,以使得LMF可以后续与对应的邻近基站交互。
在本公开的一些实施例中,请求信息可以为步骤S41中请求信息;第一波束的波束信息可以为步骤S41中第一波束的波束信息。
在一个实施例中,第一标识信息是UE未接收到邻近基站发送的下行信号后发送的。
在另一个实施例中,第一标识信息是UE在预定时间内未接收到邻近基站发送的下行信号后发送的。这里,预定时间可以是UE预先配置的或者基于历史经验信息确定或者基于UE与基站(例如服务基站或者邻近基站)的协商确定。
在一个实施例中,第一标识信息包括但不下于以下至少之一:PCI、GCI、以及TRP标识。这里,TRP标识可用于唯一标识TRP。
如此,LMF通过接收邻近基站的该些第一标识信息,可以知晓是哪个或者哪些邻近基站无法接收到定位信号(例如UL-SRS)。
本公开实施例提供一种信息处理方法,由LMF执行,包括:接收服务基站发送的响应信息,其中,该响应信息,用于指示第一波束的波束信息。
在一个实施例中,接收服务基站发送的响应信息,可以是:接收服务基站通过NRPPa协议发送的响应信息。
这里,响应信息是基于请求信息确定的,即,LMF向服务基站发送如上文所述的请求信息,服务基站根据接收到的请求信息而向LMF发送显影信息。
如此,在本公开实施例中,LMF可以通过接收服务基站发送的第一波束的波束信息而获取到第一波束的波束信息,这个有利于后续将第一波束的波束信息发送给邻近基站以控制第二波束的波束配置。
本公开实施例提供一种信息处理方法,由LMF执行,包括:接收服务基站发送的第一波束的波束信息。如此,LMF也可以直接接收第一波束的波束信息。
本公开实施例提供一种信息处理方法,由LMF执行,包括:向邻近基站发送第一指示信息,其中,第一指示信息用于指示第一波束的波束信息。
这里,第一指示信息可以是一个或多个比特的信息。
如此,在本公开实施例中,可以有利于邻近基站接收到第一指示信息以获取第一波束的波束信 息,从而有利于邻近基站或者邻近卫星基于第一波束的波束信息调节第二波束的波束配置,进而基于调节后的第二波束成功完成邻近卫星与UE之间的定位信号的传输或者成功完成邻近基站与UE之间的定位信号的传输。
本公开实施例提供一种信息处理方法,由LMF执行,包括:向邻近基站发送第一波束的波束信息。在本公开实施例中,LMF向服务基站发送请求信息,请求信息用于请求服务基站的第一波束的波束信息;LMF在接收到服务基站发送的第一波束的波束信息后,向邻近基站发送第一波束的波束信息。如此,LMF也可以直接将第一波束的波束信息发送给邻近基站。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,LMF向服务基站发送请求信息;其中,请求信息包括第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息;其中,第一配置信息用于邻近基站接收服务基站发送的第一波束的波束信息。
本公开实施例提供一种信息处理方法,由LMF执行,包括:向服务基站发送请求信息,其中,请求信息包括第一标识信息;请求信息用于服务基站发送的第一配置信息,第一配置信息用于指示邻近基站接收服务基站发送的第一波束的波束信息。
本公开实施例提供一种信息处理方法,由LMF执行,包括:接收服务基站发送的第一配置信息;将第一配置信息发送给邻近基站。
示例性的,LMF接收到UE发送的邻近基站的第一标识信息后,基于该第一标识信息确定与第一标识信息对应的邻近基站不能接收到UE发送的定位信号;LMF将包括第一标识信息的请求信息发送给服务基站,以用于请求第一配置信息,其中,第一配置信息用于指示邻近基站接收服务基站发送的第一波束的波束信息;LMF接收到服务基站基于请求信息发送的第一配置信息,并将第一配置信息发送给邻近基站。如此,邻近基站可基于第一配置信息直接接收服务基站发送的第一波束的波束信息。
如此,在本公开实施例中,也可以使得邻近基站获取服务基站发送的第一波束的波束信息的第一配置信息,以直接获取服务基站发送的第一波束的波束信息;如此无需LMF转发第一波束的波束信息,从而可以降低传输资源的浪费。
并且,本公开实施例中是在LMF接收到第一标识信息后发送请求信息,即可以使得LMF确定邻近基站无法接收到UE发送定位信号后,才控制第二波束的配置信息(例如控制第二波束的指向等)以使得邻近基站与UE之间的定位信号的传输;如此可以提高邻近基站与UE之间的定位信号的传输的前提下,无需实时控制第二波束的配置信息而降低邻近基站等的功耗。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种信息处理方法,由LMF执行,包括:向邻近基站发送第二指示信息,其中,第二指示信息用于指示定位测量完成后恢复第二波束的波束配置。
这里,第二指示信息可以是一个或多个比特。
示例性的,第二指示信息可用于指示定位测量是否完成;例如,第二指示信息为第一取值时,用于指示定位测量完成,或者,第二指示信息为第二取值时,用于指示定位测量未完成。
示例性的,第二指示信息可用于指示恢复第二波束的波束配置;例如,第二指示信息为第三取值时,用于指示恢复第二波束的的波束配置,或者,第二指示信息为第四取值时,用于指示不恢复第二波束的波束配置。这里,第三取值可以与第一取值相同或者不同;第四取值可以第二取值相同或者不同。
这里,恢复第二波束的波束配置,即将第二波束的波束配置恢复到基于第一波束的波束信息调节前的波束配置。示例性的,第二波束的波束配置为第一波束配置;基于第一波束的波束信调节第二波束的波束配置后,第二波束的波束配置为第二波束配置;在定位测量完成后,恢复第一波束的波束配置,即将第二波束的波束配置调节为第一波束配置。
如此,在本公开实施例中,可以在定位测量完成后恢复第二波束的波束配置,以有利于邻近基站或者邻近卫星基于调节前的第二波束进行其它的传输操作等。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种基于信息处理方法,是由UE执行的,与上述由LMF执行的信息处理方法的描述是类似的;且,对于由UE执行的信息处理方法实施例中未披露的技术细节,请参照由LMF执行的信息处理方法示例的描述,在此不做详细描述说明。
如图6所示,本公开实施例提供一种信息处理方法,由UE执行,包括:
步骤S61:向LMF发送邻近基站的第一标识信息;其中,第一标识信息用于LMF向服务基站发送请求信息;
其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在本公开的一些实施例中,LMF、UE、服务基站以及邻近基站分别可以是上述实施例中LMF、UE、服务基站以及邻近基站;第一标识信息可以是上述实施例中第一标识信息;服务请求可以是上述实施例中服务请求;第一波束的波束信息以及第二波束的波束配置分别可以是上述实施例中第一波束的波束信息以及第二波束的波束配置;定位信号可以是上述实施例中定位信号。
示例性的,第一标识信息包括但不限于以下至少之一:PCI、GCI以及TRP标识。
示例性的,定位信号可用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位以及Multi-RTT定位。示例性的,定位信号可用于以下定位中的至少一个:DL-AOD定位以及UL-AOA定位。
示例性的,定位信号包括但不限于以下至少之一:DL-PRS、UL-SRS以及SBB。
示例性的,第一波束的波束信息可以是但不限于是:与第一波束的地理位置相关的信息和/或与第一波束的指向相关的信息。例如,第一波束的波束信息包括但不限于第一波束的波束中心点的位置信息和/或第一波束的至少一个波束的指向
示例性的,第二波束的波束配置,包括但限于以下至少之一:第二波束中至少一个波束的地理位置、第二波束的数量、第二波束中至少一个波束的指向以及第二波束中至少一个波束的覆盖面积。
在一些实施例中,步骤S61中向LMF发送邻近基站的第一标识信息,包括:基于未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
本公开实施例提供一种信息处理方法,由UE执行,包括:基于未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
在一些实施例中,步骤S61中向LMF发送邻近基站的第一标识信息,包括:基于预定时间内未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
本公开实施例提供一种信息处理方法,由UE执行,包括:基于预定时间内未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
这里,邻近基站与UE之间的信号的传输可以是:邻近基站与UE之间直接传输,或者,邻近基站与UE之间的信号传输通过邻近卫星的转发。
如此,在本公开实施例中,若(在预定时间内)未接收到邻近基站发送的下行信号,则确定UE可能接收不到邻近基站发送的定位信号(例如DL-PRS)。该预定时间可以由协议规定,也可以预先配置或者通过其他信令根据需要配置。
本公开实施例提供一种信息处理方法,由UE执行,包括:确定不向邻近基站发送UL-SRS。若UE接收不到邻近基站发送的定位信号(例如DL-PRS),则UE也不向邻近基站发送UL-SRS,如此可以降低UE功耗,降低发送UL-SRS的失败率。这里,可以适应UL-TDOA定位、DL-TDOA定位和/或Multi-RTT定位的场景。
本公开实施例提供一种信息处理方法,由UE执行,包括:
获取第二配置信息,其中,第二配置信息用于指示上行探测参考信号UL-SRS和/或SSB的配置;
基于第二配置信息接收邻近基站发送的下行信号。
在一些实施例中,获取第二配置信息,包括:
接收服务基站发送的第二配置信息,其中,第二配置信息用于指示UL-SRS的配置;
和/或,
接收LMF发送的邻近基站的第二配置信息,其中,第二配置信息用于指示SSB的配置。
本公开实施例提供一种信息处理方法,由UE执行,包括:
接收服务基站发送的第二配置信息,其中,第二配置信息用于指示UL-SRS的配置;
基于第二配置信息接收邻近基站发送的下行信号。
示例性的,UE接收LMF服务基站发送的第二配置信息,该第二配置信息用于指示UL-SRS的配置;UE基于第二配置信息接收邻近基站发送的下行信号;UE若在预定时间内未接收到邻近基站 发送的下行信号,确定不向邻近基站发送UL-SRS,且向服务基站发送该邻近基站的第一标识信息。
本公开实施例提供一种信息处理方法,由UE执行,包括:
接收LMF发送的邻近基站的第二配置信息,其中,第二配置信息用于指示SSB的配置
基于第二配置信息接收邻近基站发送的下行信号。
示例性的,UE接收LMF发送的邻近基站第二配置信息,该第二配置信息用于指示SSB的配置,该第二配置信息是邻近基站发送给LMF的;UE基于第二配置信息接收邻近基站发送的下行信号;UE若在预定时间内未接收到邻近基站发送的下行信号;UE若在预定时间内未接收到邻近基站发送的下行信号,去等不向邻近基站发送UL-SRS,且服务基站发送该邻近基站第一标识信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种信息处理方法,由UE执行,包括:向邻近基站发送UL-SRS。这里,可以适应UL-TDOA定位和/或Multi-RTT定位的场景。
示例性的,UE接收到邻近信号发送的下行信号,向邻近基站发送UL-SRS;或者,UE(在预定时间内)未接收到邻近信号发送的下行信号,向邻近基站发送UL-SRS。这里,当邻近基站未接收到UE发送的UL-SRS,邻近基站将未接收到UE发送的UL-SRS的指示信息发送给LMF;如此,LMF会请求第一波束的波束信息或者指示第一波束的波束信息的第一配置信息发送给邻近基站。
在本公开实施例中,无论UE是否接收到邻近基站发送的下行信号,UE都进行UL-SRS发送。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种信息处理方法,由UE执行,包括:
接收邻近基站基于调节波束配置后的第二波束发送的SSB和/或下行定位参考信号DL-PRS信号;
基于调节波束配置后的第二波束,确定UE发送UL-SRS的第三波束。
这里,第二波束和第三波束为波束对。如此,邻近基站与UE之间可以通过波束对传输定位信号。例如,UE可以基于该第三波束向邻近基站发送UL-SRS,以增大邻近基站或者邻近卫星对该UL-SRS接收的概率。
以上实施方式,具体可以参见LMF侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种基于信息处理方法,是由服务基站执行的,与上述由LMF和/或UE执行的信息处理方法的描述是类似的;且,对于由服务基站执行的信息处理方法实施例中未披露的技术细节,请参照由LMF和/或UE执行的信息处理方法示例的描述,在此不做详细描述说明。
如图7所示,本公开实施例中提供一种信息处理方法,由服务基站执行,包括:
步骤S71:接收LMF发送的请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;
其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
在本公开的一些实施例中,LMF、UE、服务基站以及邻近基站分别可以是上述实施例中LMF、UE、服务基站以及邻近基站;服务请求可以是上述实施例中服务请求;第一波束的波束信息以及第二波束的波束配置分别可以是上述实施例中第一波束的波束信息以及第二波束的波束配置;定位信号可以是上述实施例中定位信号。
示例性的,定位信号可用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位以及Multi-RTT定位。示例性的,定位信号可用于以下定位中的至少一个:DL-AOD定位以及UL-AOA定位。
示例性的,定位信号包括但不限于以下至少之一:DL-PRS、UL-SRS以及SBB。
示例性的,第一波束的波束信息可以是但不限于是:与第一波束的地理位置相关的信息和/或与第一波束的指向相关的信息。例如,第一波束的波束信息包括但不限于第一波束的波束中心点的位置信息和/或第一波束的至少一个波束的指向
示例性的,第二波束的波束配置,包括但限于以下至少之一:第二波束中至少一个波束的地理位置、第二波束的数量、第二波束中至少一个波束的指向以及第二波束中至少一个波束的覆盖面积。
本公开实施例中提供一种信息处理方法,由服务基站执行,包括:向LMF发送响应信息,其中,响应信息,用于指示第一波束的波束信息。这里,响应信息用于LMF向邻近基站发送第一波束的波束信息或者发送指示第一波束的波束信息的第一指示信息。
本公开实施例中提供一种信息处理方法,由服务基站执行,包括:向LMF发送第一波束的波束信息。这里,第一波束的波束信息用于LMF向邻近基站转发第一波束的波束信息。
在一些实施例中,请求信息还包括邻近基站的第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息。
本公开实施例中提供一种信息处理方法,由服务基站执行,包括:接收LMF发送的请求信息,其中,请求信息包括第一标识信息;其中,请求信息用于请求服务基站的第一波束的波束信息,第一配置信息用于指示邻近基站接收服务基站发送固定第一波束的波束信息。
在本公开的一些实施例中,第一标识信息可以是上述实施例中第一标识信息。示例性的,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
本公开实施例中提供一种信息处理方法,由服务基站执行,包括:向LMF发送第一配置信息。这里,第一配置信息用于LMF向邻近基站转发第一配置信息。
以上实施方式,具体可以参见LMF和/或UE侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种基于信息处理方法,是由邻近基站执行的,与上述由LMF和/或UE和/或服务基站执行的信息处理方法的描述是类似的;且,对于由邻近基站执行的信息处理方法实施例中未披露的技术细节,请参照由LMF和/或UE和/或服务基站执行的信息处理方法示例的描述,在此不做详细描述说明。
如图8所示,本公开实施例提供一种信息处理方法,由邻近基站执行,包括:
步骤S81:获取服务基站的第一波束的波束信息;
步骤S82:基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
在本公开的一些实施例中,LMF、UE、服务基站以及邻近基站分别可以是上述实施例中LMF、UE、服务基站以及邻近基站;第一波束的波束信息以及第二波束的波束配置分别可以是上述实施例中第一波束的波束信息以及第二波束的波束配置;定位信号可以是上述实施例中定位信号。
示例性的,定位信号可用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位以及Multi-RTT定位。示例性的,定位信号可用于以下定位中的至少一个:DL-AOD定位以及UL-AOA定位。
示例性的,定位信号包括但不限于以下至少之一:DL-PRS、UL-SRS以及SBB。
示例性的,第一波束的波束信息可以是但不限于是:与第一波束的地理位置相关的信息和/或与第一波束的指向相关的信息。例如,第一波束的波束信息包括但不限于第一波束的波束中心点的位置信息和/或第一波束的至少一个波束的指向
示例性的,第二波束的波束配置,包括但限于以下至少之一:第二波束中至少一个波束的地理位置、第二波束的数量、第二波束中至少一个波束的指向以及第二波束中至少一个波束的覆盖面积。
在一个实施例中,第一波束的波束信息是LMF发送的;第一波束的波束信息是LMF向服务基站发送请求信息后获取的。
在本公开的一些实施例中,第一标识信息可以是上述实施例中第一标识信息;服务请求可以是上述实施例中服务请求;示例性的,第一标识信息包括但不限于以下至少之一:PCI、GCI以及TRP标识。
在一些实施例中,步骤S81,包括:接收LMF发送的第一指示信息,其中,第一指示信息,用于指示第一波束的波束信息。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:接收LMF发送的第一指示信息,其中,第一指示信息,用于指示第一波束的波束信息。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:接收LMF发送的第一波束的波束信息。
如此,邻近基站可以通过LMF转发的第一指示信息获得服务基站发送的第一波束的波束信息或者可以通过LMF获取到服务基站发送的第一波束的波束信息。
在一些实施例中,方法包括:接收LMF发送的第一配置信息;
步骤S81,包括:基于第一配置信息,接收服务基站发送的第一波束的波束信息。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:
接收LMF发送的第一配置信息;
基于第一配置信息,接收服务基站发送的第一波束的波束信息。
如此,邻近基站可以接收服务基站关于第一波束的波束信息的第一配置信息,并基于第一配置信息直接接收服务基站的第一波束的波束信息。
在一个实施例中,步骤S82中基于第一波束的波束信息,调节邻近基站的第二波束的波束配置,可以是:基于第一波束的波束信息,调节邻近卫星的波束的波束配置。
这里,该第二波束可以是邻近基站的波束,或者,该第二波束可以是邻近卫星的波束。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:基于调节波束配置后的第二波束,向UE发送DL-PRS;和/或,基于调节波束配置后的第二波束,接收UE发送的UL-SRS。这里,该UL-SRS也可以是UE基于第三波束发送的,该第三波束与第二波束是波束对。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,在步骤S81之前,方法还包括:向UE发送下行信号。这里,邻近基站在步骤S81之前向UE发送下行信号,即是通过调节波束前的第二波束向UE发送下行信号。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:基于调节波束配置前的第二波束向UE发送下行信号。这里,下行信号用于基站未接收到时向服务基站发送请求信息;请求信息用于请求第一波束的波束信息。
在一些实施例中,在向UE发送下行波束之前,方法还包括:向LMF发送邻近基站的第二配置信息。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:向LMF发送邻近基站的第二配置信息,其中,第二配置信息用于LMF发送给UE,第二配置信息用于指示SSB的配置。
在一些实施例中,邻近基站为再生构架中基站;
方法包括:调节发射功率为预定发射功率;基于预定发射功率发送下行信号。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:调节发射功率为预定发射功率;基于预定发射功率发送下行信号。
在一个实施例中,预定发射功率为大于或等于第一功率的功率。例如,该预定发生功率为大于22dBm或者23dBm等。
在另一个实施例中,预定发生功率为最大发射功率。例如,该最大发射功率为23dBm。
如此,对于再生构架中邻近基站或者邻近卫星,该邻近基站或者邻近卫星的发射功率可以调节为最大发射功率(23dBm);如果UE还没有接收到邻近基站或者邻近卫星发送的下行信号,则认为邻近基站或者邻近卫星也无法接收到UE发送的UL-SRS。
而对于透明转发构架中邻近基站或者邻近卫星,因为馈线链路和服务链路的路径损耗以及接收 收益不一致,UE是否能够接收到邻近基站的下行信号不能作为UL-SRS发送能被邻近卫星或者邻近基站接收的准则。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,步骤S8中基于第一波束的波束信息,调节邻近基站的第二波束的波束配置,包括:
对于透明转发构架的邻近基站,在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置;
和/或,
对于再生构架的邻近基站,在获取到第一波束的波束信息后,基于第一波束的波束信息调节第二波束的波束配置。
本公开实施例提供一种信息处理方法,由透明转发构架中邻近基站执行,包括:在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置。这里,在透明转发构架中,由于邻近基站和邻近卫星不在同一位置,则需要确定邻近卫星能够接收到邻近基站的信号(例如下行信号等)才调节第二波束的波束配置,如此可以确保邻近基站和UE之间传输的信号可以通过邻近卫星转发。
本公开实施例提供一种信息处理方法,由再生构架中邻近基站执行,包括:在获取到第一波束的波束信息后,基于第一波束的波束信息调节第二波束的波束配置。这里,在再生构架中,由于邻近基站在邻近卫星上,如此直接调节第二波束的波束配置,也能确保邻近基站和UE之间传输的信号可由邻近卫星转发。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种信息处理方法,由邻近基站执行,包括:
接收LMF发送的第二指示信息;
基于定位测量完成后,根据第二指示信息确定恢复第二波束的波束配置。
在本公开的一些实施例中,第二指示信息可以为上述实施例中第二指示信息。示例性的,第二指示信息可用于指示定位侧测量完成和/或用于指示恢复第二波束的波束配置。
以上实施方式,具体可以参见LMF和/或UE和/或服务基站侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种信息处理系统,与上述由LMF和/或UE和/或服务基站执行的信息处理方法的描述是类似的;且,对于信息处理系统实施例中未披露的技术细节,请参照由LMF和/或UE和/或服务基站执行的信息处理方法示例的描述,在此不做详细描述说明。
本公开实施例提供一种信息处理系统,包括:LMF、UE、服务基站和邻近基站;其中,
UE被配置为向LMF发送邻近基站的第一标识信息;
LMF被配置为向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;
服务基站被配置为向LMF发送第一波束的波束信息;
LMF被配置为向邻近基站发送第一波束的波束信息;
邻近基站被配置为基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
本公开实施例提供一种信息处理系统,包括:LMF、UE、服务基站和邻近基站;其中,
UE被配置为向LMF发送邻近基站的第一标识信息;
LMF被配置为向服务基站发送请求信息,其中,请求信息包括第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息;
服务基站被配置为向LMF发送第一配置信息;
LMF被配置为向邻近基站发送第一配置信息;
邻近基站被配置为基于第一配置信息,接收服务基站发送的第一波束的波束信息;并基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
本公开实施例提供一种信息处理系统,包括:LMF、UE、服务基站和邻近基站;其中,
UE被配置为在预定时间内未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
以上实施方式,具体可以参见LMF和/或UE和/或服务基站和/或邻近基站侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
为了进一步解释本公开任意实施例,以下提供几个具体实施例。
示例一:
本公开实施例提供一种信息处理方法,由通信设备执行,通信设备包括LMF、UE、邻近基站和/或服务基站;该信息处理方法包括以下步骤:
第一步:UE确定不能接收邻近基站(或邻近卫星)发送的下行信号;该第一步可包括以下两种情况:
情况一:
UE在接收到服务基站发送的第二配置信息,该第二配置信息用于指示UL-SRS的配置,或者UE在接收到LMF发送的邻近基站的第二配置信息,该第二配置信息用于指示SSB的配置,UE基于第二配置信息开始接收邻近基站发送的下行信号。UE在预定时间内未接收到邻近基站发送的下行信号,确定不能接收到邻近基站的下行信号,并确定不向邻近基站发送UL-SRS;UE通过LTE定位协议(LTE Positioning Protocol,LPP)将UE未接收到下行信号的邻近基站的第一标识信息发送给LMF,其中,第一标识信息包括PCI、GCI和/或TRP标识。
示例性的,UL-TDOA定位中,LMF会在请求UL-SRS传输特性信息时将邻近基站的SSB配置信息指示给服务基站。
示例性的,对于再生构架,邻近基站或者邻近卫星可将发射功率调节为UE的最大发射功率(23dBm),并基于最大发射功率发送下行信号;若UE没有接收到邻近基站或者邻近卫星的下行信号,则可以认为邻近基站或者邻近卫星也无法接收UL-SRS信号。该将发送功率调节为最大发射功率发送下行信号的方式适应于再生构架。
情况二:无论UE是否接收到邻近基站发送的下行信号,UE均向邻近基站发送UL-SRS。若某一邻近基站未接收到UE发送的UL-SRS,则该邻近基站通过NRPPa协议将指示未接收到UL-SRS的信息发送给LMF。
UL-TDOA定位和/或Multi-RTT定位均可以适应情况一和情况二的情况;或者,DL-TDOA定位和/或Multi-RTT定位可适应情况一的情况。
第二步:LMF与基站(服务基站和/或邻近基站)之间的信息交互,控制第二波束的波束配置;该第二步包括以下两种情况:
情况一:
LMF基于接收到的第一标识信息,确定不能接收UL-SRS的邻近基站;LMF通过NRPPa协议向服务基站发送请求信息,请求信息用于请求服务基站的第一波束的波束信息(例如,第一波束的地理位置)。服务基站通过NRPPa协议向LMF发送指示第一波束的波束信息的响应信息或者发送第一波束的波束信息。LMF向邻近基站发送指示第一波束的波束信息的第一指示信息或者发送第一波束的波束信息。邻近基站基于第一波束的波束信息,调节第二波束的配置信息。
示例性的,若UE为阵列天线,第一波束和第二波束可进行波束赋形。UE可以在接收到邻近基站或者邻近卫星发送的SSB和/或DL-PRS后,得到与邻近基站或者邻近卫星最好方向的波束对(例如可得到上述实施例中第三波束);并基于第三波束对发送UL-SRS,以增大卫星对UL-SRS的接收功率。
示例性的,服务基站发送第一波束的波束信息可以是但不限于是:发送第一波束的波束中心点的位置信息和/或至少一个波束的指向。
示例性的,对于透明转发构架的邻近基站,在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置;和/或,对于再生构架的邻近基站,在获取到第一波束的波束信息后,基于第一波束的波束信息调节第二波束的波束配置。
情况二:
LMF基于接收到的第一标识信息,确定不能接收UL-SRS的邻近基站;LMF通过NRPPa协议向服务基站发送请求信息,请求信息包括第一标识信息,请求信息用于请求服务基站的第一波束的波束信息(例如,第一波束的地理位置)的第一配置信息。服务基站通过NRPPa协议向LMF发送第一配置信息。LMF向邻近基站发送指示第一配置信息。邻近基站基于第一配置信息直接接收服务基站发送的第一波束的波束信息,并基于第一波束的波束信息,调节第二波束的配置信息。
示例性的,若UE为阵列天线,第一波束和第二波束可进行波束赋形。UE可以在接收到邻近基站或者邻近卫星发送的SSB和/或DL-PRS后,得到与邻近基站或者邻近卫星最好方向的波束对(例如可得到上述实施例中第三波束);并基于第三波束对发送UL-SRS,以增大卫星对UL-SRS的接收功率。
示例性的,对于透明转发构架的邻近卫星,在确定紧邻卫星还能够接收到邻近基站的信号后,基于第一波束的波束信息调节邻近卫星的波束的配置信息;和/或,对于再生构架的邻近卫星,可通过星链(即星间链路)传输信号。
第三步:定位结束,各邻近基站恢复第二波束的波束配置到原状态;对于第三步包括:在LMF确定定位测量完成后,LMF向邻近基站发送第二指示信息,第二指示信息指示定位测量完成后恢复第二波束的波束配置;邻近基站基于第二指示信息,恢复第二波束的波束配置到原状态。
示例性的,对于透明转发构架的邻近基站,邻近基站指示邻近卫星恢复第二波束的波束配置(例如,邻近基站向邻近卫星发送第二指示信息);和/或,对于再生构架,邻近基站直接恢复第二波束的波束配置。
本公开实施例的第一步、第二步及第三步均适应UL-TDOA定位或Multi-RTT定位;本公开实施例中除第一步中第二情况不适应DL-TDOA定位外,其它情况均适应DL-TDOA定位。
示例二
如图9所示,本公开实施例提供一种信息处理方法,由通信设备执行,通信设备包括LMF、UE、邻近基站和/或服务基站;该信息处理方法包括以下步骤:
这里,由服务基站执行的步骤也可以是服务基站的TRP执行;由邻近基站执行的步骤也可以是邻近基站的TRP执行。
步骤S900:邻近基站或者服务基站通过NRPPa协议与LMF进行第三配置信息的交互,以使LMF、邻近基站或者服务基站获得第三配置信息;
这里,第三配置信息可以是但不限于是上述的第二配置信息和/或邻近基站的第一标识信息和/或定位相关的配置信息。
步骤S901:LMF通过LPP协议获得UE的定位能力;
步骤S902:LMF通过NRPPa定位请求信息请求服务基站对UE的UL-SRS的配置;
这里,LMF还可将其它基站(例如,除服务基站之外的基站)的SSB的配置指示给服务基站以进行路径损耗估计;
这里,UL-SRS的配置和/或SSB的配置可由上述实施例中第二配置信息指示。
这里,NRPPa定位请求信息可以是NRPPa POSITIONING INFORMATION REQUEST。
步骤S903:服务基站确定UL-SRS的资源配置,并发送给UE;
步骤S904:服务基站通过NRPPa定位响应信息将U-SRS的配置给LMF;
这里,NRPPa定位响应信息可以是NRPPa POSITIONING INFORMATION RESPONSE。
步骤S905:UE检测邻近基站发送的下行信号(例如SSB等);若检测到所有邻近基站的下行信号,则进行正常的定位测量流程;若未检测到某些邻近基站的下行信号,则UE将该些邻近基站的PCI、GCI和/或TRP标识发送给LMF;
这里,若步骤S905使用的是上述实施例中“第一步”的“情况一”,则上述实施例中“第一步”的“情况二”忽略。
步骤S906A:LMF向服务基站发送NRPPa定位激活请求消息,用于请求激活UL-SRS的传输;
这里,NRPPa定位激活请求消息可以是NRPPa Positioning Activation Request消息。
这里,在非周期或者半静态的配置下,LMF向服务基站发送NRPPa定位激活请求消息。
步骤S906B:服务基站向UE发送NRPPa定位激活请求消息;
步骤S906C:服务基站激活UL-SRS的传输,并向LMF发送NRPPa定位激活响应消息;
这里,NRPPa定位激活响应消息可以是NRPPa Positioning Activation Response消息。
这里,UE根据UL-SRS资源配置的时域开始传输UL-SRS,或者UE不进行UL-SRS的传输。
步骤S907:LMF将UL-SRS的配置发送给需要进行定位测量的服务基站;
这里,LMF还可将UL-SRS测量需要的信息通过NRPPa测量请求发送给需要进行定位测量的服务基站。
步骤S908:邻近基站若未检测到UL-SRS,将邻近基站的第一标识信息发送给LMF;
这里,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
步骤S909:服务基站通过NRPPa协议向LMF发送请求信息,请求信息用于请求第一波束的波束信息;
步骤S910:服务基站通过NRPPa向LMF发送响应信息,响应信息用于指示第一波束的波束信息;
步骤S911:LMF通过NRPPa协议向无法接收UL-SRS的邻近基站发送第一指示信息,第一指示信息用于指示第一波束的波束信息;
在一个可选实施例中,方法包括以下步骤(步骤S912至步骤S915):
步骤S912:LMF通过NRPPa协议将请求信息发送给邻近基站,请求信息包括无法接收UL-SRS的邻近基站第一标识信息,请求信息用于请求第一波束的波束信息的第一配置信息;
步骤S913:服务基站将第一配置信息发送给LMF;
步骤S914:LMF第一配置信息发送给无法接收UL-SRS的邻近基站;
步骤S915:服务基站第一波束的波束信息发送给无法接收UL-SRS的邻近基站;
步骤S916:邻近基站基于第一波束的波束信息,调节第二波束的配置信息;
步骤S917:邻近基站和/或服务基站与LMF进行定位测量操作;
步骤S918:定位结束后,LMF发送NRPPa定位去激活消息给服务基站;
这里,NRPPa定位去激活消息可以为NRPPa POSITIONING DEACTIVATION消息。
步骤S919:LMF通过NRPPa指示邻近基站定位测量已完成,恢复第二波束的波束配置。
如此,本公开实施例可以解决卫星通信中,卫星星座中多颗卫星间隔较大,导致UE和邻近基站之间无法接收下行和/或上行信号的问题,有利于提高对UE进行定位测量的准确性或者验证UE所在位置的正确性。
以上实施方式,具体可以参见LMF和/或UE和/或服务基站和/或邻近基站侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本公开实施例提供一种信息处理装置,包括:
第一发送模块31,被配置为向服务基站发送请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
本公开实施例提供的信息处理装置,可以是LMF。
本公开实施例提供一种信息处理装置,包括:
第一接收模块,被配置为接收UE发送的邻近基站的第一标识信息;
第一发送模块31,被配置为基于第一标识信息,向服务基站发送请求信息;其中,第一标识信息是UE未接收到邻近基站发送的下行信号后发送的。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
本公开实施例提供一种信息处理装置,包括:第一接收模块,被配置为接收服务基站发送的响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
本公开实施例提供一种信息处理装置,包括:第一发送模块31,被配置为向邻近基站发送第一指示信息,其中,第一指示信息用于指示第一波束的波束信息。
在一些实施例中,请求信息还包括第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息;其中,第一配置信息用于邻近基站接收服务基站发送的第一波束的波束信息。
本公开实施例提供一种信息处理装置,包括:第一接收模块,被配置为接收服务基站发送的第 一配置信息。
本公开实施例提供一种信息处理装置,包括:第一发送模块31,被配置为将第一配置信息发送给邻近基站。
本公开实施例提供一种信息处理装置,包括:第一发送模块31,被配置为向邻近基站发送第二指示信息,其中,第二指示信息用于指示定位测量完成后恢复第二波束的波束配置。
在一些实施例中,定位信号包括以下至少之一:DL-PRS以及UL-SRS。
如图11所示,本公开实施例提供一种信息处理装置,包括:
第二发送模块41,被配置为向LMF发送邻近基站的第一标识信息;其中,第一标识信息用于LMF向服务基站发送请求信息;
其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
本公开实施例提供的信息处理装置,可以是UE。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
本公开实施例提供一种信息处理装置,包括:第二发送模块41,被配置为基于未接收到邻近基站发送的下行信号,向LMF发送邻近基站的第一标识信息。
本公开实施例提供一种信息处理装置,包括:
第二接收模块,被配置为获取第二配置信息,其中,第二配置信息用于指示UL-SRS和/或SSB的配置;
第二接收模块,还被配置为基于第二配置信息接收邻近基站发送的下行信号。
本公开实施例提供一种信息处理装置,包括:
第二接收模块,被配置为接收服务基站发送的第二配置信息,其中,第二配置信息用于指示UL-SRS的配置;和/或,
第二接收模块,被配置为接收LMF发送的邻近基站的第二配置信息,其中,第二配置信息用于指示SSB的配置。
本公开实施例提供一种信息处理装置,包括:第一处理模块,被配置为确定不向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:UL-TDOA定位、DL-TDOA定位以及Multi-RTT定位。
本公开实施例提供一种信息处理装置,包括:第二发送模块,被配置为向邻近基站发送UL-SRS。
在一些实施例中,定位信号用于以下定位中的至少一个:UL-TDOA定位、以及Multi-RTT。
本公开实施例提供一种信息处理装置,包括:
第二接收模块,被配置为接收邻近基站基于调节波束配置后的第二波束发送的SSB和/或下行定位参考信号DL-PRS信号;
第一处理模块,被配置为基于调节波束配置后的第二波束,确定UE发送UL-SRS的第三波束。
如图12所示,本公开实施例提供一种信息处理装置,包括:
第三接收模块51,被配置为接收LMF发送的请求信息,其中,请求信息用于请求服务基站的第一波束的波束信息;其中,第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的第二波束用于邻近基站与UE之间定位信号的传输。
本公开实施例提供的信息处理装置,可以是服务基站。
本公开实施例提供一种信息处理装置,包括:第三发送模块,被配置为向LMF发送响应信息,其中,响应信息,用于指示第一波束的波束信息。
在一些实施例中,第一波束的波束信息,包括以下至少之一:
第一波束的波束中心点的位置信息;
第一波束的至少一个波束的指向。
在一些实施例中,请求信息还包括邻近基站的第一标识信息,请求信息用于请求服务基站的第一波束的波束信息的第一配置信息。
本公开实施例提供一种信息处理装置,包括:第三发送模块,被配置为向LMF发送第一配置信息。
在一些实施例中,第一标识信息包括以下至少之一:PCI、GCI以及TRP标识。
如图13所示,本公开实施例提供一种信息处理装置,包括:
第四接收模块61,被配置未获取服务基站的第一波束的波束信息;
第二处理模块62,被配置为基于第一波束的波束信息,调节邻近基站的第二波束的波束配置;其中,调节波束配置后的第二波束用于与UE之间定位信号的传输。
本公开实施例提供的信息处理装置,可以是邻近基站。
本公开实施例提供一种信息处理装置,包括:第四接收模块61,被配置为接收LMF发送的第一指示信息,其中,第一指示信息,用于指示第一波束的波束信息。
本公开实施例提供一种信息处理装置,包括:
第四接收模块61,被配置为接收LMF发送的第一配置信息;
第四接收模块61,还被配置为基于第一配置信息,接收服务基站发送的第一波束的波束信息。
本公开实施例提供一种信息处理装置,包括:
第四接收模块61,被配置为接收LMF发送的第二指示信息;
第二处理模块62,被配置为基于定位测量完成后,根据第二指示信息确定恢复第二波束的波束配置。
本公开实施例提供一种信息处理装置,包括:第四发送模块,被配置为基于调节波束配置前的第二波束向UE发送下行信号,其中,下行信号用于基站未接收到时向服务基站发送请求信息;请求信息用于请求第一波束的波束信息。
本公开实施例提供一种信息处理装置,包括:第四发送模块,被配置为向LMF发送邻近基站的 第二配置信息,其中,第二配置信息用于LMF发送给UE,第二配置信息用于指示SSB的配置。
在一些实施例中,邻近基站为再生构架中基站。
本公开实施例提供一种信息处理装置,包括:
第二处理模块62,被配置为调节发射功率为预定发射功率;
第四发送模块,被配置为基于预定发射功率发送下行信号。
本公开实施例提供一种信息处理装置,包括:
第二处理模块62,被配置为对于透明转发构架的邻近基站,在确定邻近卫星能够接收到邻近基站的信号后,基于第一波束的波束信息调节第二波束的波束配置;
和/或,
第二处理模块,被配置为对于再生构架的邻近基站,在获取到第一波束的波束信息后,基于第一波束的波束信息调节第二波束的波束配置。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的信息处理方法。
在一个实施例中,通信设备可以包括但不限于至少之一:UE和、LMF、服务基站和邻近基站。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图4至图9所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的信息处理方法。例如,如图4至图9所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种用户设备800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的 温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图15所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种信息处理方法,其中,由定位管理功能LMF执行,包括:
    向服务基站发送请求信息,其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  2. 根据权利要求1所述的方法,其中,所述方法包括:接收所述UE发送的所述邻近基站的第一标识信息;
    所述向服务基站发送请求信息,包括:基于所述第一标识信息,向所述服务基站发送所述请求信息;其中,所述第一标识信息是所述UE未接收到所述邻近基站发送的下行信号后发送的。
  3. 根据权利要求2所述的方法,其中,所述第一标识信息包括以下至少之一:
    物理小区标识PCI;
    全球小区标识GCI;
    传输接收点TRP标识。
  4. 根据权利要求1至3任一项所述的方法,其中,所述方法包括:
    接收所述服务基站发送的响应信息,其中,所述响应信息,用于指示所述第一波束的波束信息。
  5. 根据权利要求4所述的方法,其中,所述第一波束的波束信息,包括以下至少之一:
    所述第一波束的波束中心点的位置信息;
    所述第一波束的至少一个波束的指向。
  6. 根据权利要求5所述的方法,其中,所述方法包括:
    向所述邻近基站发送第一指示信息,其中,所述第一指示信息用于指示所述第一波束的波束信息。
  7. 根据权利要求1至3任一项所述的方法,其中,所述请求信息还包括所述第一标识信息,所述请求信息用于请求所述服务基站的所述第一波束的波束信息的第一配置信息;
    其中,所述第一配置信息用于邻近基站接收所述服务基站发送的所述第一波束的波束信息。
  8. 根据权利要求7所述的方法,其中,所述方法包括:
    接收所述服务基站发送的所述第一配置信息;
    将所述第一配置信息发送给所述邻近基站。
  9. 根据权利要求1至3任一项所述的方法,其中,所述方法包括:
    向邻近基站发送第二指示信息,其中,所述第二指示信息用于指示定位测量完成后恢复所述第二波束的波束配置。
  10. 根据权利要求1至3任一项所述的方法,其中,所述定位信号包括以下至少之一:
    下行定位参考信号DL-PRS;
    上行探测参考信号UL-SRS。
  11. 一种信息处理方法,其中,由用户设备UE执行,包括:
    向定位管理功能LMF发送邻近基站的第一标识信息;其中,所述第一标识信息用于所述LMF向服务基站发送请求信息;
    其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  12. 根据权利要求11所述的方法,其中,所述第一标识信息包括以下至少之一:
    物理小区标识PCI;
    全球小区标识GCI;
    传输接收点TRP标识。
  13. 根据权利要求11或12所述的方法,其中,所述向定位管理功能LMF发送邻近基站的第一标识信息,包括:
    基于未接收到所述邻近基站发送的下行信号,向所述LMF发送所述邻近基站的所述第一标识信息。
  14. 根据权利要求13所述的方法,其中,所述方法包括:
    获取第二配置信息,其中,所述第二配置信息用于指示上行探测参考信号UL-SRS和/或同步信号块SSB的配置;
    基于所述第二配置信息接收所述邻近基站发送的下行信号。
  15. 根据权利要求14所述的方法,其中,所述获取第二配置信息,包括:
    接收所述服务基站发送的所述第二配置信息,其中,所述第二配置信息用于指示所述UL-SRS的配置;
    和/或,
    接收所述LMF发送的所述邻近基站的所述第二配置信息,其中,所述第二配置信息用于指示所述SSB的配置。
  16. 根据权利要求13所述的方法,其中,所述方法包括:
    确定不向所述邻近基站发送所述UL-SRS。
  17. 根据权利要求16所述的方法,其中,所述定位信号用于以下定位中的至少一个:
    上行到达时差UL-TDOA定位;
    下行到达时差DL-TDOA定位;
    多往返时间Multi-RTT定位。
  18. 根据权利要求11或12所述的方法,其中,所述方法包括:
    向所述邻近基站发送UL-SRS。
  19. 根据权利要求18所述的方法,其中,所述定位信号为于以下定位中的至少一个:
    UL-TDOA定位;以及
    Multi-RTT定位。
  20. 根据权利要求11或12所述的方法,其中,所述方法包括:
    接收所述邻近基站基于调节波束配置后的所述第二波束发送的SSB和/或下行定位参考信号DL-PRS信号;
    基于调节波束配置后的所述第二波束,确定所述UE发送UL-SRS的第三波束。
  21. 一种信息处理方法,其中,由服务基站执行,包括:
    接收定位管理功能LMF发送的请求信息,其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  22. 根据权利要求21所述的方法,其中,所述方法包括:
    向所述LMF发送响应信息,其中,所述响应信息,用于指示所述第一波束的波束信息。
  23. 根据权利要求22所述的方法,其中,所述第一波束的波束信息,包括以下至少之一:
    所述第一波束的波束中心点的位置信息;
    所述第一波束的至少一个波束的指向。
  24. 根据权利要求21所述的方法,其中,所述请求信息还包括所述邻近基站的第一标识信息,所述请求信息用于请求所述服务基站的所述第一波束的波束信息的第一配置信息。
  25. 根据权利要求24所述的方法,其中,所述方法包括:
    向所述LMF发送所述第一配置信息。
  26. 根据权利要求25所述的方法,其中,所述第一标识信息包括以下至少之一:
    物理小区标识PCI;
    全球小区标识GCI;
    传输接收点TRP标识。
  27. 一种信息处理方法,其中,由邻近基站执行,包括:
    获取所述服务基站的第一波束的波束信息;
    基于所述第一波束的波束信息,调节所述邻近基站的第二波束的波束配置;其中,调节波束配置后的所述第二波束用于与用户设备UE之间定位信号的传输。
  28. 根据权利要求27所述的方法,其中,所述获取所述服务基站的第一波束的波束信息,包括:
    接收定位管理功能LMF发送的第一指示信息,其中,所述第一指示信息,用于指示所述第一波束的波束信息。
  29. 根据权利要求27所述的方法,其中,
    所述方法包括:接收LMF发送的第一配置信息;
    所述获取所述服务基站的第一波束的波束信息,包括:基于所述第一配置信息,接收所述服务基站发送的所述第一波束的波束信息。
  30. 根据权利要求27至29任一项所述的方法,其中,所述方法包括:
    接收LMF发送的第二指示信息;
    基于定位测量完成后,根据所述第二指示信息确定恢复所述第二波束的波束配置。
  31. 根据权利要求27至29任一项所述的方法,其中,所述方法包括:
    基于调节波束配置前的所述第二波束向所述UE发送下行信号,其中,所述下行信号用于所述基站未接收到时向所述服务基站发送请求信息;所述请求信息用于请求所述第一波束的波束信息。
  32. 根据权利要求31所述的方法,其中,所述方法包括:
    向LMF发送所述邻近基站的第二配置信息,其中,所述第二配置信息用于所述LMF发送给所述UE,所述第二配置信息用于指示同步信号块SSB的配置。
  33. 根据权利要求31所述的方法,其中,所述邻近基站为再生构架中基站;
    所述方法包括:
    调节发射功率为预定发射功率;
    基于所述预定发射功率发送所述下行信号。
  34. 根据权利要求27至29任一项所述的方法,其中,所述基于所述第一波束的波束信息,调节所述邻近基站的第二波束的波束配置,包括:
    对于透明转发构架的邻近基站,在确定邻近卫星能够接收到所述邻近基站的信号后,基于所述第一波束的波束信息调节所述第二波束的波束配置;
    和/或,
    对于再生构架的邻近基站,在获取到所述第一波束的波束信息后,基于所述第一波束的波束信息调节所述第二波束的波束配置。
  35. 一种信息处理装置,其中,包括:
    第一发送模块,被配置为向服务基站发送请求信息,其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  36. 一种信息处理装置,其中,包括:
    第二发送模块,被配置为向定位管理功能LMF发送邻近基站的第一标识信息;其中,所述第一标识信息用于所述LMF向服务基站发送请求信息;
    其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  37. 一种信息处理装置,其中,包括:
    第三接收模块,被配置为接收定位管理功能LMF发送的请求信息,其中,所述请求信息用于请求所述服务基站的第一波束的波束信息;其中,所述第一波束的波束信息用于邻近基站调节第二波束的波束配置;调节波束配置后的所述第二波束用于邻近基站与用户设备UE之间定位信号的传输。
  38. 一种信息处理装置,其中,包括:
    第四接收模块,被配置为获取所述服务基站的第一波束的波束信息;
    处理模块,被配置为基于所述第一波束的波束信息,调节所述邻近基站的第二波束的波束配置;其中,调节波束配置后的所述第二波束用于与用户设备UE之间定位信号的传输。
  39. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至10、或者权利要求11至20、或者权利要求21至26、或者权利要求27至34任一项所述的信息处理方法。
  40. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至10、或者权利要求11至20、或者权利要求21至26、或者权利要求27至34任一项所述的信息处理方法。
PCT/CN2022/140155 2022-12-19 2022-12-19 信息处理方法以及装置、通信设备及存储介质 WO2024130516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/140155 WO2024130516A1 (zh) 2022-12-19 2022-12-19 信息处理方法以及装置、通信设备及存储介质
CN202280006262.1A CN116472768A (zh) 2022-12-19 2022-12-19 信息处理方法以及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/140155 WO2024130516A1 (zh) 2022-12-19 2022-12-19 信息处理方法以及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024130516A1 true WO2024130516A1 (zh) 2024-06-27

Family

ID=87181135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140155 WO2024130516A1 (zh) 2022-12-19 2022-12-19 信息处理方法以及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN116472768A (zh)
WO (1) WO2024130516A1 (zh)

Also Published As

Publication number Publication date
CN116472768A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2022006821A1 (zh) 无线通信的方法、装置、设备及存储介质
CN111264068B (zh) 定位的处理方法、装置、基站、终端设备及存储介质
WO2022120601A1 (zh) 小区切换方法及装置、通信设备和存储介质
WO2022094809A1 (zh) 中继ue的重选方法、装置、通信设备及存储介质
EP4145864A1 (en) Prs configuration processing method and apparatus, and communication device and storage medium
US20240098595A1 (en) Method and apparatus for determining handover configuration, and communication device
WO2021184217A1 (zh) 信道状态信息测量方法、装置及计算机存储介质
CN115136655A (zh) 小区切换方法及装置、通信设备及存储介质
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
US20230075773A1 (en) Information transmission method and apparatus, and communication device and storage medium
WO2024130516A1 (zh) 信息处理方法以及装置、通信设备及存储介质
US20240098667A1 (en) Timing adjustment method and apparatus, communication device, and storage medium
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2022110206A1 (zh) 位置确定方法、装置和通信设备
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
CN115581125A (zh) 通信设备检测方法、装置、通信设备和存储介质
CN111727653A (zh) 转移业务的方法、装置、通信设备及存储介质
WO2024130512A1 (zh) 定位方法、装置、通信设备和存储介质
WO2024138418A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2021223111A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2024130509A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023197329A1 (zh) 定位方法、装置、通信设备和存储介质
WO2023164796A1 (zh) 信息处理方法、装置、通信设备及存储介质