WO2022110206A1 - 位置确定方法、装置和通信设备 - Google Patents

位置确定方法、装置和通信设备 Download PDF

Info

Publication number
WO2022110206A1
WO2022110206A1 PCT/CN2020/132921 CN2020132921W WO2022110206A1 WO 2022110206 A1 WO2022110206 A1 WO 2022110206A1 CN 2020132921 W CN2020132921 W CN 2020132921W WO 2022110206 A1 WO2022110206 A1 WO 2022110206A1
Authority
WO
WIPO (PCT)
Prior art keywords
ntn
satellite
signal
serving
serving satellite
Prior art date
Application number
PCT/CN2020/132921
Other languages
English (en)
French (fr)
Inventor
于磊
洪伟
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP20963094.6A priority Critical patent/EP4254990A1/en
Priority to JP2023532427A priority patent/JP2023551493A/ja
Priority to CN202080003798.9A priority patent/CN115606200A/zh
Priority to KR1020237021664A priority patent/KR20230107884A/ko
Priority to US18/254,294 priority patent/US20240098686A1/en
Priority to PCT/CN2020/132921 priority patent/WO2022110206A1/zh
Publication of WO2022110206A1 publication Critical patent/WO2022110206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/428Determining position using multipath or indirect path propagation signals in position determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/252Monitoring; Testing of receivers taking multiple measurements measuring signals from different transmission points or directions of arrival, e.g. in multi RAT or dual connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/254Monitoring; Testing of receivers taking multiple measurements measuring at different reception times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a method, apparatus and communication device for determining a position.
  • Satellite communication has the characteristics of wide coverage and high reliability. Satellite communication has a wide range of application scenarios in remote areas, disaster relief and other fields. Satellite communication technology is considered to be an important part of future cellular mobile communication.
  • the network needs to know the actual trusted location of the user equipment (UE, User Equipment). Location to determine whether the UE is within the national border, so as to authorize and so on.
  • UE user equipment
  • the embodiments of the present disclosure provide a position determination method, apparatus, and communication device.
  • a method for determining a position wherein the method includes:
  • the position information of the satellites is used to determine the position information of the UE; wherein, at the at least three different times, the orbital positions of the NTN serving satellites of the UE are different, and the orbital positions of the NTN serving satellites of the UE belong to at least two. different satellite orbits.
  • a position determination device wherein the device includes: a first determination module, wherein,
  • the first determining module is configured to be based on the distance between the user equipment UE and the NTN serving satellite of the UE at at least three different moments, and the NTN serving satellite of the UE at the at least three different moments
  • the position information of the UE is determined, and the position information of the UE is determined; wherein, at the at least three different times, the orbital positions of the NTN serving satellites of the UE are different, and the orbital positions of the NTN serving satellites of the UE belong to at least two Different satellite orbits.
  • a communication device including a processor, a memory, and an executable program stored on the memory and executable by the processor, wherein the processor executes the executable program During the program, the steps of the position determination method described in the first aspect are executed.
  • the UE or the NTN serving satellite is based on the distance between the user equipment UE and the NTN serving satellite of the UE at at least three different times, and At three different times, the position information of the NTN serving satellite of the UE determines the position information of the UE; wherein, at the at least three different times, the orbital positions of the NTN serving satellites of the UE are different, and the The orbital positions of the NTN serving satellites of the UE belong to at least two different satellite orbits. In this way, the position of the UE is determined through the NTN serving satellites at three times.
  • the situation of inability to locate due to the fact that the UE does not have a positioning capability such as GPS is reduced, and the positioning of the UE is realized.
  • the UE is positioned by the NTN service satellite, which reduces the intermediate links in the transmission of UE position information and improves the reliability of the UE position information obtained by the NTN service satellite.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic flowchart of a method for determining a position according to an exemplary embodiment
  • FIG. 3 is a schematic diagram showing the location of an NTN serving satellite and a UE according to an exemplary embodiment
  • FIG. 4 is a schematic diagram showing the location of another NTN serving satellite and UE according to an exemplary embodiment
  • FIG. 5 is a schematic diagram showing the location of yet another NTN serving satellite and UE according to an exemplary embodiment
  • FIG. 6 is a schematic diagram showing yet another NTN serving satellite and UE positions according to an exemplary embodiment
  • FIG. 7 is a schematic flowchart of another method for determining a position according to an exemplary embodiment
  • FIG. 8 is a block diagram of another position determination apparatus according to an exemplary embodiment
  • Fig. 9 is a block diagram of an apparatus for location determination according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 may communicate with one or more core networks via a radio access network (RAN), and the terminal 11 may be an IoT terminal such as a sensor device, a mobile phone (or "cellular" phone) and a
  • RAN radio access network
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or a vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device externally connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • the execution subjects involved in the embodiments of the present disclosure include, but are not limited to: UEs such as mobile phone terminals that support NTN cellular mobile communication, and satellites.
  • An application scenario of the embodiments of the present disclosure is that, generally, the non-terrestrial network NTN network can obtain the location information of the UE in the following two ways:
  • the first way the UE informs the network of the location of the UE itself. This method has the following problems:
  • the UE may not have the ability to obtain its own location.
  • the location of the UE may be unreal. When it is necessary to judge whether the UE is in the authorized area, the UE may report the wrong location.
  • the location information of the UE may be intercepted and tampered with.
  • the second way positioning the UE through the base station, which has the following problems
  • UEs that use non-terrestrial network NTN satellites for communication can usually only connect to one satellite at the same time, and cannot use the multi-base station positioning technology used in terrestrial mobile communications.
  • the coverage of a non-terrestrial network NTN satellite is very wide, and the specific location of the UE cannot be confirmed according to the satellite used.
  • this exemplary embodiment provides a method for determining a position, including:
  • Step 201 Based on the distance between the user equipment UE and the NTN serving satellite of the UE at at least three different times, and the position information of the NTN serving satellite of the UE at the at least three different times, determine the The position information of the UE; wherein, at the at least three different times, the orbital positions of the NTN serving satellites of the UE are different, and the orbital positions of the NTN serving satellites of the UE belong to at least two different satellite orbits.
  • the location determination method provided by this embodiment may be performed by a UE of NTN cellular mobile communication, or a satellite in an NTN cellular mobile communication system, or the like.
  • the UE can establish a communication connection with the serving base station through a feeder connection between a high-altitude platform such as a satellite and a satellite ground station such as a gateway (GW).
  • the NTN serving satellite may be the satellite in the feeder connection between the UE and the serving base station.
  • the UE can establish a connection with the serving base station through an NTN serving satellite at the same time.
  • the NTN serving satellites of the UE at different times may be the same or different.
  • the UE or the NTN serving satellite may measure the distance between the UE and the NTN serving satellite at at least three different times.
  • the UE or the NTN serving satellite can determine the distance between the UE and the NTN serving satellite according to the signal flight time between the UE and the NTN serving satellite, and the like.
  • the orbital positions of the NTN service satellites at three different times can be determined by ephemeris or the like. Based on the orbital positions of the NTN service satellites, the projected position of the orbital positions of the NTN service satellites on the ground, and position information such as the height of the NTN service satellites can be determined. Based on the distance between the UE and the NTN serving satellite, and the altitude of the NTN serving satellite, the distance between the ground projection of the UE and the NTN serving satellite can be determined. Based on the ground projection positions of the NTN serving satellites at at least three different times, and the distances between the UE and the ground projections of the NTN serving satellites at each of the three different times, the position of the UE can be determined according to the triangulation method.
  • the three NTN service satellites at different times may be the same satellite or different satellites.
  • the ground projection positions of the three NTN service satellites at different times need to be triangular.
  • the NTN serving satellites of the UE include at least two satellites with different satellite orbits.
  • Positioning is performed using the same NTN serving satellite in two different orbital positions in one orbit, and one NTN serving satellite in another orbit.
  • Positioning may also be performed using at least three NTN serving satellites in at least three orbits, where the at least three NTN serving satellites are not on the same straight line when performing distance measurement.
  • satellites used for mobile communication are usually located in orbits above 600 km from the ground, and the altitude distance between the NTN service satellite and the ground can be determined by ephemeris or the like. As shown in Figure 3, if the distance between the NTN serving satellite and the UE is known, and the height distance between the NTN serving satellite and the ground is known, then the ground between the NTN serving satellite projection and the UE can be obtained according to the Pythagorean Theorem. distance.
  • Figures 4 to 6 are top views of the relative positions of the NTN serving satellite and the UE. As shown in Figure 4, when the NTN serving satellite is at position 1, the distance L1 between the ground projection position of the NTN serving satellite and the UE can be determined, and then it can be known that the UE is located at the ground projection position of the NTN serving satellite at position 1 as the center , L1 is the radius of the circle A.
  • the NTN service satellite is at position 2
  • the distance L2 between the ground projection position of the NTN service satellite and the UE can be determined, and then it can be known that the UE distribution is located at the ground projection position of the NTN service satellite at position 2 as the center
  • L2 is the radius of the circumference B.
  • Circle A and circle B intersect at 2 points, where one point is the real position of the UE and one point is the "ghost point".
  • the NTN service satellite is at position 3, the distance L3 between the ground projection position of the NTN service satellite and the UE can be determined, and then it can be known that the UE is distributed at the ground projection position of the NTN service satellite at position 3 as the center, L3 is on the circumference C of the radius.
  • the circle A, circle B, and circle C intersect at 1 point, which is the real position of the UE.
  • position 1, position 2 and position 3 may not all belong to the same satellite orbit.
  • the NTN service satellites at the three locations may or may not be all the same satellite.
  • the position of the UE is determined through the NTN serving satellites at three times.
  • the situation of inability to locate due to the fact that the UE does not have a positioning capability such as GPS is reduced, and the positioning of the UE is realized.
  • the positioning of the UE is performed by the NTN serving satellite, which reduces the intermediate links in transmitting the UE's position information, and improves the reliability of the UE's position information obtained by the NTN serving satellite.
  • the method further includes:
  • Step 202 Determine the distance between the NTN serving satellite and the UE based on the signal flight time between the UE and the NTN serving satellite.
  • the distance between the UE and the NTN serving satellite may be determined according to the transmission time of the signal between the UE and the NTN serving satellite.
  • the propagation speed of the signal between the UE and the NTN serving satellite is approximately the speed of light, and the distance between the serving satellite and the UE can be determined as the product of the speed of light multiplied by the transmission time of the signal between the UE and the NTN serving satellite.
  • the determining the distance between the NTN serving satellite and the UE based on the signal flight time between the UE and the NTN serving satellite includes:
  • the distance between the NTN serving satellite and the UE is determined based on the signal flight time of the first round-trip signal.
  • the first positioning signal and the second positioning signal may be specially defined signals for distance measurement, or may be existing signals transmitted between the UE and the NTN serving satellite.
  • the distance measurement can be initiated by the NTN serving satellite, the NTN serving satellite can send the first positioning signal to the UE, and record the sending time of the first positioning signal.
  • the UE may return the second positioning signal to the NTN serving satellite. Since the UE needs to parse, decode, etc. the first positioning signal, the UE has a first transmission response duration between receiving the first positioning signal and sending the second positioning signal.
  • the receiving time of the second positioning signal may be recorded.
  • the NTN serving satellite can determine the round-trip duration of the signal between the NTN serving satellite and the UE according to the sending time of the first positioning signal, the receiving time of the second positioning signal, and the first transmission response duration. Further, the distance between the NTN serving satellite and the UE is determined.
  • the method in response to the NTN serving satellite determining the distance between the NTN serving satellite and the UE based on a signal time-of-flight of the first round-trip signal, the method further comprises: the NTN serving satellite The satellite receives the indication information that is sent by the UE and indicates the duration of the first transmission response.
  • the UE may record the time when the first positioning signal is received and the time when the second positioning signal is sent, so as to determine the duration of the first transmission response.
  • the UE sends the indication information indicating the first transmission response duration to the NTN serving satellite, and the NTN serving satellite may determine the signal flight time of the first round-trip signal based on the first transmission response duration indicated by the received indication information.
  • the determining the distance between the NTN serving satellite and the UE based on the signal flight time between the UE and the NTN serving satellite includes:
  • a distance between the NTN serving satellite and the UE is determined based on the signal flight time of the second round-trip signal.
  • the third positioning signal and the fourth positioning signal may be specially defined signals for distance measurement, or may be existing signals transmitted between the UE and the NTN serving satellite.
  • the distance measurement may be initiated by the UE, the UE may send the first positioning signal to the NTN serving satellite, and record the sending time of the third positioning signal.
  • the UE may return the fourth positioning signal. Since the NTN serving satellite needs to parse, decode, etc. the third positioning signal, the NTN serving satellite has a second transmission response time period between receiving the third positioning signal and sending the fourth positioning signal.
  • the UE may record the receiving time of receiving the fourth positioning signal.
  • the UE may determine the round-trip duration of the signal between the NTN serving satellite and the UE according to the transmission time of the third positioning signal, the reception time of the fourth positioning signal, and the second transmission response duration. Further, the distance between the NTN serving satellite and the UE is determined.
  • the method in response to the UE determining the distance between the NTN serving satellite and the UE based on a signal time of flight of the second round-trip signal, the method further comprises: receiving the NTN serving satellite The sent indication information indicating the third moment and the fourth moment.
  • the NTN serving satellite can record the time when the third positioning signal is received and the time when the fourth positioning signal is sent, so as to determine the second transmission response time.
  • the NTN serving satellite sends indication information indicating the second transmission response duration to the UE, and the UE may determine the signal flight time of the second round-trip signal based on the second transmission response duration indicated by the received indication information.
  • Satellites used for mobile communications usually low-orbit satellites, travel very fast relative to the ground. Compared with the speed of the satellite, the speed of the UE relative to the ground can be regarded as relatively stationary.
  • the satellites used for mobile communication are usually located in orbits above 600km from the ground.
  • the ground fluctuation of the satellite communication coverage area will only exceed 1km under extreme conditions, so the ground can be regarded as flat, and the distance between the satellite and the ground is known. of. Therefore, as shown in FIG. 3 , if the satellite can measure the distance between it and the UE, the distance between the satellite projection and the UE can be obtained according to the Pythagorean Theorem.
  • the satellite is used to measure the distance between the satellite and the UE at different times, which is equivalent to measuring the distance between the satellite and the UE at different positions, and the real position of the UE can be finally obtained.
  • the communication satellite or UE sends a positioning signal to the other party, and records the sending time t1 of the signal.
  • the UE or the satellite After the UE or the satellite receives the positioning signal, it immediately sends the positioning signal to the other party, and records the time difference ⁇ t between the received signal and the sent signal.
  • the time t2 when the signal is received is recorded.
  • the flight time of the signal can be obtained, and then the distance between the communication satellite and the UE can be calculated.
  • the satellite 1 can detect the distance between the satellite and the UE at position 1, and can obtain the direct distance L1 between the ground projection of the satellite and the UE, and then it can be known that the UE is distributed at a distance L1 from the ground projection of the satellite. on the circumference.
  • the satellite 1 can determine the distance L2 between the satellite's ground projection and the UE at position 2, and then it can be known that the UE is distributed on the circumference L2 from the satellite's ground projection.
  • the possible positions of the UE can be determined, one of which is the real position of the UE, and the other is the possible position of the UE, that is, the "ghost spot".
  • the satellite 2 can determine the distance L3 between the satellite's ground projection and the UE at position 3, and then it can be known that the UE is distributed on the circumference L3 from the satellite's ground projection, and the circumference of the circumference obtained by three measurements.
  • the intersection point is the real position of the UE.
  • An embodiment of the present invention further provides a position determination apparatus, which is applied to an NTN communication device of wireless communication.
  • the position determination apparatus 100 includes: a first determination module 110, wherein:
  • the first determination module 110 is configured to be based on the distance between the user equipment UE and the NTN serving satellite of the UE at at least three different times, and the NTN service of the UE at the at least three different times
  • the position information of the satellite is used to determine the position information of the UE; wherein, at the at least three different times, the orbital positions of the NTN serving satellites of the UE are different, and the orbital positions of the NTN serving satellites of the UE belong to at least two. different satellite orbits.
  • the apparatus 100 further includes:
  • the second determining module 120 is configured to determine the distance between the NTN serving satellite and the UE based on the signal flight time between the UE and the NTN serving satellite.
  • the second determining module 120 includes:
  • the first determination submodule 121 is configured to compare the first moment when the NTN serving satellite transmits the first positioning signal to the UE, and the second moment when the NTN serving satellite receives the second positioning signal transmitted by the UE.
  • the first interval duration, minus the first transmission response duration of the UE is determined as the signal flight time of the first round-trip signal between the NTN serving satellite and the UE; wherein, the second positioning signal is sent by the UE in response to receiving the first positioning signal; the first transmission response duration includes: the time between the UE receiving the first positioning signal and sending the second positioning signal interval;
  • the second determination sub-module 122 is configured to determine the distance between the NTN serving satellite and the UE based on the signal flight time of the first round-trip signal.
  • the apparatus 100 further includes: a first receiving module 130, configured to determine the relationship between the NTN serving satellite and the UE in response to a signal flight time of the NTN serving satellite based on the first round-trip signal The distance between them is received, and the indication information that is sent by the UE and indicates the duration of the first transmission response is received.
  • a first receiving module 130 configured to determine the relationship between the NTN serving satellite and the UE in response to a signal flight time of the NTN serving satellite based on the first round-trip signal The distance between them is received, and the indication information that is sent by the UE and indicates the duration of the first transmission response is received.
  • the second determining module 120 includes:
  • the third determining submodule 123 is configured to compare the third moment when the UE transmits the third positioning signal to the NTN serving satellite and the fourth moment when the UE receives the fourth positioning signal transmitted by the NTN serving satellite
  • the second interval duration, minus the second transmission response duration of the NTN serving satellite is determined as the signal flight time of the second round-trip signal between the NTN serving satellite and the UE; wherein the fourth The positioning signal is sent by the NTN serving satellite in response to receiving the third positioning signal, and the second transmission response duration includes: the time when the NTN serving satellite receives the third positioning signal and sends the fourth positioning signal. time interval between positioning signals;
  • the fourth determination sub-module 124 is configured to determine the distance between the NTN serving satellite and the UE based on the signal flight time of the second round-trip signal.
  • the apparatus 100 further includes: a second receiving module 140, configured for the UE to determine the distance between the NTN serving satellite and the UE based on the signal flight time of the second round-trip signal , receiving the indication information indicating the third time and the fourth time sent by the NTN serving satellite.
  • a second receiving module 140 configured for the UE to determine the distance between the NTN serving satellite and the UE based on the signal flight time of the second round-trip signal , receiving the indication information indicating the third time and the fourth time sent by the NTN serving satellite.
  • the NTN serving satellites of the UE include at least two satellites with different satellite orbits.
  • the first determining module 110, the second determining module 120, the first receiving module 130, the second receiving module 140, etc. may be processed by one or more central processing units (CPU, Central Processing Unit), graphics processor (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application specific integrated circuit (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), General Purpose Processor, Controller, Micro Controller (MCU, Micro Controller Unit), Microprocessor (Microprocessor), or other electronic components to implement the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • General Purpose Processor Controller
  • FIG. 9 is a block diagram of an apparatus 3000 for position determination according to an exemplary embodiment.
  • apparatus 3000 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operation of the device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 can include one or more processors 3020 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operation at device 3000 . Examples of such data include instructions for any application or method operating on the device 3000, contact data, phonebook data, messages, pictures, videos, and the like. Memory 3004 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 3006 provides power to various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000.
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 3008 includes a front-facing camera and/or a rear-facing camera. When the apparatus 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) that is configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 3004 or transmitted via communication component 3016.
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessment of various aspects of device 3000 .
  • the sensor assembly 3014 can detect the open/closed state of the device 3000, the relative positioning of the components, such as the display and keypad of the device 3000, the sensor assembly 3014 can also detect the position change of the device 3000 or a component of the device 3000, the user The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000 and the temperature change of the device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 3016 is configured to facilitate wired or wireless communication between apparatus 3000 and other devices.
  • the apparatus 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which are executable by the processor 3020 of the apparatus 3000 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本公开实施例是关于位置确定方法、装置和通信设备,基于在至少三个不同时刻,用户设备(UE)与所述UE的非地面网络(NTN)服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。

Description

位置确定方法、装置和通信设备 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及位置确定方法、装置和通信设备。
背景技术
卫星通信有着覆盖范围广、可靠性高的特点,因此。卫星通信在偏远地区、救灾抢险等领域有着广泛的应用场景。卫星通信技术被认为是未来蜂窝移动通信的重要组成部分。在使用卫星进行蜂窝移动通信时,网络需要知道用户设备(UE,User Equipment)的实际可信位置,如在救灾抢险的过程中需要知道UE位置,进而可以进行施救;又如网络可以获取UE位置以判断UE是否在国境线内,从而进行授权等等。
发明内容
有鉴于此,本公开实施例提供了一种位置确定方法、装置和通信设备。
根据本公开实施例的第一方面,提供一种位置确定方法,其中,所述方法包括:
基于在至少三个不同时刻,用户设备UE与所述UE的非地面网络(NTN,Non-Terrestrial Networks)服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
根据本公开实施例的第二方面,提供一种位置确定装置,其中,所述 装置包括:第一确定模块,其中,
所述第一确定模块,配置为基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
根据本公开实施例的第三方面,提供一种通信设备,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述位置确定方法的步骤。
根据本公开实施例提供的位置确定方法、装置和通信设备,UE或NTN服务卫星基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。如此,通过三个时刻的NTN服务卫星,确定UE的位置。一方面,减少了由于UE不具备GPS等定位能力产生的无法定位的情况,实现UE的定位。另一方面,由NTN服务卫星对UE进行定位,减少UE位置信息传递的中间环节,提高NTN服务卫星获取的UE位置信息的可靠性
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种位置确定方法的流程示意图;
图3是根据一示例性实施例示出的一种NTN服务卫星与UE位置示意图;
图4是根据一示例性实施例示出的另一种NTN服务卫星与UE位置示意图;
图5是根据一示例性实施例示出的又一种NTN服务卫星与UE位置示意图;
图6是根据一示例性实施例示出的再一种NTN服务卫星与UE位置示意图;
图7是根据一示例性实施例示出的另一种位置确定方法的流程示意图;
图8是根据一示例性实施例示出的另一种位置确定装置的框图;
图9是根据一示例性实施例示出的一种用于位置确定的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来 描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系 统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其 它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持NTN蜂窝移动通信的手机终端等UE,以及卫星等。
本公开实施例的一个应用场景为,通常,非地面网络NTN网络可以通过以下2种方式获取UE的位置信息:
第一种方式:UE告知网络UE自身的位置,该方法存在以下问题:
1.UE可能没有获取自身位置的能力。
2.UE的位置可能是不真实的,在需要判断UE是否在授权区域的时候,UE可能汇报错误的位置。
3.UE的位置信息可能被截获并篡改。
第二种方式:通过基站对UE进行定位,这存在以下问题
1.使用非地面网络NTN卫星进行通信的UE,在同一时刻通常只能连接1个卫星,无法使用地面移动通信所使用的多基站定位技术。
2.一颗非地面网络NTN卫星的覆盖范围很广,无法根据所使用的卫星确认UE的具体位置。
如图2所示,本示例性实施例提供一种位置确定方法,包括:
步骤201:基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
这里,可以由NTN蜂窝移动通信的UE,或者NTN蜂窝移动通信系统中的卫星等执行本实施例提供的位置确定方法。
UE可以通过卫星等高空平台与网关(GW)等卫星地面站之间的馈线连接,与服务基站建立通信连接。NTN服务卫星可以是UE和服务基站之间的馈线连接中的卫星。UE在同一时间可以通过一个NTN服务卫星与服务基站建立连接。不同时刻UE的NTN服务卫星可以相同也可以不同。
这里,UE或NTN服务卫星可以在至少三个不同时刻测量UE和NTN服务卫星之间的距离。UE或NTN服务卫星可以根据UE和NTN服务卫星之间的信号飞行时间等,确定UE和NTN服务卫星之间的距离。
三个不同时刻NTN服务卫星的轨道位置可以通过星历表等确定。基于NTN服务卫星的轨道位置可以确定NTN服务卫星的轨道位置在地面的投影位置,以及NTN服务卫星的高度等位置信息。基于UE和NTN服务卫星之间的距离,以及NTN服务卫星的高度,可以确定UE和NTN服务卫星地面投影之间的距离。基于至少三个不同时刻NTN服务卫星的地面投影位置,以及上述三个不同时刻中各时刻UE和NTN服务卫星地面投影之间的距离,根据三角定位方法可以确定UE的位置。这里,三个不同时刻的NTN服务卫星可以是同一颗卫星,也可以是不同的卫星。三个不同时刻的NTN服务卫星的地面投影位置需要呈三角形。
在一个实施例中,在所述至少三个不同时刻,所述UE的NTN服务卫星,至少包括两颗具有不同卫星轨道的卫星。
利用一个轨道上的两个不同轨道位置的同一颗NTN服务卫星,以及另一个轨道上的一颗NTN服务卫星进行定位。
也可以利用至少三个轨道上的至少三颗NTN服务卫星进行定位,这里,至少三颗NTN服务卫星进行距离测量时不在同一直线上。
示例性的,用于移动通信的卫星通常位于距离地面600km以上的轨道, NTN服务卫星与地面之间的高度距离可以通过星历等确定。如图3所述,如果已知NTN服务卫星与UE之间的距离,并且知道了NTN服务卫星与地面之间的高度距离,则可以根据勾股定理得到NTN服务卫星投影与UE之间的地面距离。
如图4至图6为NTN服务卫星与UE相对位置的俯视图。如图4所示,NTN服务卫星在位置1时,可以确定NTN服务卫星的地面投影位置与UE之间的距离L1,进而可以知道UE分布位于以位置1的NTN服务卫星的地面投影位置为中心,L1为半径的圆周A上。
如图5所示,NTN服务卫星在位置2,可以确定NTN服务卫星的地面投影位置与UE之间的距离L2,进而可以知道UE分布位于以位置2的NTN服务卫星的地面投影位置为中心,L2为半径的圆周B上。圆周A与圆周B相交2点,其中,一点为UE真实位置,一点为“鬼点”。
如图6所示,NTN服务卫星在位置3,可以确定NTN服务卫星的地面投影位置与UE之间的距离L3,进而可以知道UE分布位于以位置3的NTN服务卫星的地面投影位置为中心,L3为半径的圆周C上。圆周A、圆周B、圆周C相交于1点,即UE的真实位置。
这里,位置1、位置2和位置3可以不全属于同一个卫星轨道。三个位置的NTN服务卫星可以是同一个卫星,也可以不全是同一个卫星。
如此,通过三个时刻的NTN服务卫星,确定UE的位置。一方面,减少了由于UE不具备GPS等定位能力产生的无法定位的情况,实现UE的定位。另一方面,由NTN服务卫星对UE进行定位,减少UE位置信息传递的中间环节,提高NTN服务卫星获取的UE位置信息的可靠性。
在一个实施例中,如图7所示,所述方法还包括:
步骤202:基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
这里,可以根据UE与NTN服务卫星之间信号的传输时间确定UE与NTN服务卫星之间的距离。
UE与NTN服务卫星之间信号的传播速度近似于光速,可以将光速与UE与NTN服务卫星之间信号的传输时间相乘之积确定为服务卫星与UE之间的距离。
在一个实施例中,所述基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,包括:
将所述NTN服务卫星向所述UE发射第一定位信号的第一时刻,与所述NTN服务卫星接收到所述UE发射的第二定位信号的第二时刻之间的第一间隔时长,减去所述UE的第一发射响应时长,确定为所述NTN服务卫星与所述UE之间第一往返信号的信号飞行时间;其中,所述第二定位信号是所述UE响应于接收到所述第一定位信号发送的;所述第一发射响应时长,包括:所述UE接收到所述第一定位信号到发送所述第二定位信号之间的时间间隔;
基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
第一定位信号和第二定位信号可以是专门定义的用于进行距离测量的信号,也可以是UE与NTN服务卫星之间传输的现有的信号。
这里,可以由NTN服务卫星发起距离测量,NTN服务卫星可以发送第一定位信号给UE,并记录第一定位信号的发送时间。
UE接收到第一定位信号后,可以向NTN服务卫星返回第二定位信号。由于UE需要对第一定位信号进行解析、解码等,因此,UE在接收到第一定位信号到发送第二定位信号之间存在第一发射响应时长。
NTN服务卫星接收到第二定位信号后,可以记录接收第二定位信号的接收时间。NTN服务卫星可以根据第一定位信号的发送时间、第二定位信 号的接收时间、以及第一发射响应时长,确定信号在NTN服务卫星与UE之间的往返时长。进而确定NTN服务卫星与UE之间的距离。
在一个实施例中,响应于所述NTN服务卫星基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,所述方法还包括:所述NTN服务卫星接收所述UE发送的指示所述第一发射响应时长的指示信息。
这里,UE可以记录接收到第一定位信号的时间,以及发送第二定位信号的时间,进而确定第一发射响应时长。UE将指示第一发射响应时长的指示信息发送给NTN服务卫星,NTN服务卫星可以基于接收到的指示信息所指示的第一发射响应时长确定第一往返信号的信号飞行时间。
在一个实施例中,所述基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,包括:
将所述UE向所述NTN服务卫星发射第三定位信号的第三时刻,与所述UE接收到所述NTN服务卫星发射的第四定位信号的第四时刻之间的第二间隔时长,减去所述NTN服务卫星的第二发射响应时长,确定为所述NTN服务卫星与所述UE之间第二往返信号的信号飞行时间;其中,所述第四定位信号是所述NTN服务卫星响应于接收到所述第三定位信号发送的,所述第二发射响应时长,包括:所述NTN服务卫星接收到所述第三定位信号到发送所述第四定位信号之间的时间间隔;
基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
第三定位信号和第四定位信号可以是专门定义的用于进行距离测量的信号,也可以是UE与NTN服务卫星之间传输的现有的信号。
这里,可以由UE发起距离测量,UE可以发送第一定位信号给NTN服务卫星,并记录第三定位信号的发送时间。
NTN服务卫星接收到第三定位信号后,可以UE返回第四定位信号。由于NTN服务卫星需要对第三定位信号进行解析、解码等,因此,NTN服务卫星在接收到第三定位信号到发送第四定位信号之间存在第二发射响应时长。
UE接收到第四定位信号后,可以记录接收第四定位信号的接收时间。UE可以根据第三定位信号的发送时间、第四定位信号的接收时间、以及第二发射响应时长,确定信号在NTN服务卫星与UE之间的往返时长。进而确定NTN服务卫星与UE之间的距离。
在一个实施例中,响应于所述UE基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,所述方法还包括:接收所述NTN服务卫星发送的指示所述第三时刻和所述第四时刻的指示信息。
这里,NTN服务卫星可以记录接收到第三定位信号的时间,以及发送第四定位信号的时间,进而确定第二发射响应时长。NTN服务卫星将指示第二发射响应时长的指示信息发送给UE,UE可以基于接收到的指示信息所指示的第二发射响应时长确定第二往返信号的信号飞行时间。
以下结合上述任意实施例提供一个具体示例:
用于移动通信的卫星,通常是低轨卫星,相对于地面的飞行速度非常快。与卫星的速度相比,UE相对于地面的速度可以看作相对静止的。
用于移动通信的卫星通常位于距离地面600km以上的轨道,卫星通信覆盖面积的地面起伏只有在极端条件下会超过1km,因此地面可以看作是平的,卫星与地面之间的距离是已知的。因此,如图3所示,若卫星能够测量其与UE之间的距离,则可以根据勾股定理得到卫星投影与UE之间的距离。
本实施例使用卫星在不同的时刻测量其与UE的距离,则相当于在不同 的位置测量其与UE之间的距离,可以最终得到UE的真实位置。
具体方案如下:
1、通信卫星或UE向对方发送定位信号,并记录该信号的发送时间t1。
2、UE或卫星收到定位信号后,立即向对方发送定位信号,并记录从收到信号到发送信号之间的时间差Δt。
3、卫星或UE收到对方发送的信号后,记录收到信号的时间t2。
4、可以得到信号的飞行时间,进而算出通信卫星与UE之间的距离。
5、如图4所示,卫星1在位置1可以探测卫星与UE之间的距离,可以得到卫星的地面投影与UE直接的距离L1,进而可以知道UE分布于与卫星的地面投影相距L1的圆周上。
6、同样,如图5所示,卫星1在位置2可以确定卫星的地面投影与UE之间的距离L2,进而可以知道UE分布于与卫星的地面投影相距L2的圆周上,通过两个位置的测量,可以确定出UE可能的位置,其中一个为UE真实位置,一个为UE可能的位置,即“鬼点”。
7、如图6所示,卫星2在位置3可以确定卫星的地面投影与UE之间的距离L3,进而可以知道UE分布于与卫星的地面投影相距L3的圆周上,三次测量得到的圆周的交点即为UE的真实位置。
本发明实施例还提供了一种位置确定装置,应用于无线通信的NTN通信设备中,如图8所示,所述位置确定装置100包括:第一确定模块110,其中,
所述第一确定模块110,配置为基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
在一个实施例中,所述装置100还包括:
第二确定模块120,配置为基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
在一个实施例中,所述第二确定模块120,包括:
第一确定子模块121,配置为将所述NTN服务卫星向所述UE发射第一定位信号的第一时刻,与所述NTN服务卫星接收到所述UE发射的第二定位信号的第二时刻之间的第一间隔时长,减去所述UE的第一发射响应时长,确定为所述NTN服务卫星与所述UE之间第一往返信号的信号飞行时间;其中,所述第二定位信号是所述UE响应于接收到所述第一定位信号发送的;所述第一发射响应时长,包括:所述UE接收到所述第一定位信号到发送所述第二定位信号之间的时间间隔;
第二确定子模块122,配置为基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
在一个实施例中,所述装置100还包括:第一接收模块130,配置为响应于所述NTN服务卫星基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,接收所述UE发送的指示所述第一发射响应时长的指示信息。
在一个实施例中,所述第二确定模块120,包括:
第三确定子模块123,配置为将所述UE向所述NTN服务卫星发射第三定位信号的第三时刻,与所述UE接收到所述NTN服务卫星发射的第四定位信号的第四时刻之间的第二间隔时长,减去所述NTN服务卫星的第二发射响应时长,确定为所述NTN服务卫星与所述UE之间第二往返信号的信号飞行时间;其中,所述第四定位信号是所述NTN服务卫星响应于接收到所述第三定位信号发送的,所述第二发射响应时长,包括:所述NTN服务卫星接收到所述第三定位信号到发送所述第四定位信号之间的时间间 隔;
第四确定子模块124,配置为基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
在一个实施例中,所述装置100还包括:第二接收模块140,配置为所述UE基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,接收所述NTN服务卫星发送的指示所述第三时刻和所述第四时刻的指示信息。
在一个实施例中,在所述至少三个不同时刻,所述UE的NTN服务卫星,至少包括两颗具有不同卫星轨道的卫星。
在示例性实施例中,第一确定模块110、第二确定模块120、第一接收模块130和第二接收模块140等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图9是根据一示例性实施例示出的一种用于位置确定的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼 叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种位置确定方法,其中,所述方法包括:
    基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  3. 根据权利要求2所述的方法,其中,所述基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,包括:
    将所述NTN服务卫星向所述UE发射第一定位信号的第一时刻,与所述NTN服务卫星接收到所述UE发射的第二定位信号的第二时刻之间的第一间隔时长,减去所述UE的第一发射响应时长,确定为所述NTN服务卫星与所述UE之间第一往返信号的信号飞行时间;其中,所述第二定位信号是所述UE响应于接收到所述第一定位信号发送的;所述第一发射响应时长,包括:所述UE接收到所述第一定位信号到发送所述第二定位信号之间的时间间隔;
    基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  4. 根据权利要求3所述的方法,其中,响应于所述NTN服务卫星基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,所述方法还包括:所述NTN服务卫星接收所述UE发送的指 示所述第一发射响应时长的指示信息。
  5. 根据权利要求2所述的方法,其中,所述基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,包括:
    将所述UE向所述NTN服务卫星发射第三定位信号的第三时刻,与所述UE接收到所述NTN服务卫星发射的第四定位信号的第四时刻之间的第二间隔时长,减去所述NTN服务卫星的第二发射响应时长,确定为所述NTN服务卫星与所述UE之间第二往返信号的信号飞行时间;其中,所述第四定位信号是所述NTN服务卫星响应于接收到所述第三定位信号发送的,所述第二发射响应时长,包括:所述NTN服务卫星接收到所述第三定位信号到发送所述第四定位信号之间的时间间隔;
    基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  6. 根据权利要求5所述的方法,其中,响应于所述UE基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,所述方法还包括:所述UE接收所述NTN服务卫星发送的指示所述第三时刻和所述第四时刻的指示信息。
  7. 根据权利要求1至6任一项所述的方法,其中,在所述至少三个不同时刻,所述UE的NTN服务卫星,至少包括两颗具有不同卫星轨道的卫星。
  8. 一种位置确定装置,其中,所述装置包括:第一确定模块,其中,
    所述第一确定模块,配置为基于在至少三个不同时刻,用户设备UE与所述UE的NTN服务卫星之间的距离,以及在所述至少三个不同时刻,所述UE的NTN服务卫星的位置信息,确定所述UE的位置信息;其中,在所述至少三个不同时刻,所述UE的NTN服务卫星的轨道位置不同,并 且所述UE的NTN服务卫星的轨道位置至少属于两个不同的卫星轨道。
  9. 根据权利要求8所述的装置,其中,所述装置还包括:
    第二确定模块,配置为基于所述UE与所述NTN服务卫星之间的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  10. 根据权利要求9所述的装置,其中,所述第二确定模块,包括:
    第一确定子模块,配置为将所述NTN服务卫星向所述UE发射第一定位信号的第一时刻,与所述NTN服务卫星接收到所述UE发射的第二定位信号的第二时刻之间的第一间隔时长,减去所述UE的第一发射响应时长,确定为所述NTN服务卫星与所述UE之间第一往返信号的信号飞行时间;其中,所述第二定位信号是所述UE响应于接收到所述第一定位信号发送的;所述第一发射响应时长,包括:所述UE接收到所述第一定位信号到发送所述第二定位信号之间的时间间隔;
    第二确定子模块,配置为基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:第一接收模块,配置为响应于所述NTN服务卫星基于所述第一往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,接收所述UE发送的指示所述第一发射响应时长的指示信息。
  12. 根据权利要求9所述的装置,其中,所述第二确定模块,包括:
    第三确定子模块,配置为将所述UE向所述NTN服务卫星发射第三定位信号的第三时刻,与所述UE接收到所述NTN服务卫星发射的第四定位信号的第四时刻之间的第二间隔时长,减去所述NTN服务卫星的第二发射响应时长,确定为所述NTN服务卫星与所述UE之间第二往返信号的信号飞行时间;其中,所述第四定位信号是所述NTN服务卫星响应于接收到所述第三定位信号发送的,所述第二发射响应时长,包括:所述NTN服务卫 星接收到所述第三定位信号到发送所述第四定位信号之间的时间间隔;
    第四确定子模块,配置为基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离。
  13. 根据权利要求12所述的装置,其中,所述装置还包括:第二接收模块,配置为所述UE基于所述第二往返信号的信号飞行时间,确定所述NTN服务卫星与所述UE之间的距离,接收所述NTN服务卫星发送的指示所述第三时刻和所述第四时刻的指示信息。
  14. 根据权利要求8至13任一项所述的装置,其中,在所述至少三个不同时刻,所述UE的NTN服务卫星,至少包括两颗具有不同卫星轨道的卫星。
  15. 一种通信设备,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至7任一项所述位置确定方法的步骤。
PCT/CN2020/132921 2020-11-30 2020-11-30 位置确定方法、装置和通信设备 WO2022110206A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20963094.6A EP4254990A1 (en) 2020-11-30 2020-11-30 Location determination method and apparatus, and communication device
JP2023532427A JP2023551493A (ja) 2020-11-30 2020-11-30 位置決定方法、装置及び通信機器
CN202080003798.9A CN115606200A (zh) 2020-11-30 2020-11-30 位置确定方法、装置和通信设备
KR1020237021664A KR20230107884A (ko) 2020-11-30 2020-11-30 위치 결정 방법, 장치, 및 통신 기기(location determinationmethod and apparatus, and communication device)
US18/254,294 US20240098686A1 (en) 2020-11-30 2020-11-30 Location determination method and apparatus, and communication device
PCT/CN2020/132921 WO2022110206A1 (zh) 2020-11-30 2020-11-30 位置确定方法、装置和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132921 WO2022110206A1 (zh) 2020-11-30 2020-11-30 位置确定方法、装置和通信设备

Publications (1)

Publication Number Publication Date
WO2022110206A1 true WO2022110206A1 (zh) 2022-06-02

Family

ID=81753936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132921 WO2022110206A1 (zh) 2020-11-30 2020-11-30 位置确定方法、装置和通信设备

Country Status (6)

Country Link
US (1) US20240098686A1 (zh)
EP (1) EP4254990A1 (zh)
JP (1) JP2023551493A (zh)
KR (1) KR20230107884A (zh)
CN (1) CN115606200A (zh)
WO (1) WO2022110206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065495A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 位置指示方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212375A (zh) * 1997-08-25 1999-03-31 阿尔卡塔尔-阿尔斯托姆通用电气公司 利用卫星阵定位固定终端的方法
US20120026033A1 (en) * 2010-08-02 2012-02-02 Honda Motor Co., Ltd. Position calculation method and apparatus with gps
CN102540227A (zh) * 2010-10-22 2012-07-04 泰勒斯公司 搜救系统中无线电信标的地理定位的方法和系统
CN109084762A (zh) * 2018-08-12 2018-12-25 西北工业大学 基于惯导辅助单星定位的卡尔曼滤波动目标定位方法
CN111158034A (zh) * 2020-01-15 2020-05-15 东方红卫星移动通信有限公司 一种基于低轨卫星多重覆盖场景下的快速定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212375A (zh) * 1997-08-25 1999-03-31 阿尔卡塔尔-阿尔斯托姆通用电气公司 利用卫星阵定位固定终端的方法
US20120026033A1 (en) * 2010-08-02 2012-02-02 Honda Motor Co., Ltd. Position calculation method and apparatus with gps
CN102540227A (zh) * 2010-10-22 2012-07-04 泰勒斯公司 搜救系统中无线电信标的地理定位的方法和系统
CN109084762A (zh) * 2018-08-12 2018-12-25 西北工业大学 基于惯导辅助单星定位的卡尔曼滤波动目标定位方法
CN111158034A (zh) * 2020-01-15 2020-05-15 东方红卫星移动通信有限公司 一种基于低轨卫星多重覆盖场景下的快速定位方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065495A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 位置指示方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115606200A (zh) 2023-01-13
EP4254990A1 (en) 2023-10-04
US20240098686A1 (en) 2024-03-21
KR20230107884A (ko) 2023-07-18
JP2023551493A (ja) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2022120601A1 (zh) 小区切换方法及装置、通信设备和存储介质
WO2022006826A1 (zh) 卫星通信方法及装置、核心网网元及存储介质
US20230034681A1 (en) Positioning processing method and apparatus, base station, terminal device, and storage medium
WO2022155972A1 (zh) 小区切换方法及装置、通信设备及存储介质
WO2022000361A1 (zh) Ue之间的定位方法及装置、通信设备及存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022021100A1 (zh) 位置确定方法、装置、通信设备和存储介质
WO2022155835A1 (zh) 切换配置确定方法、装置和通信设备装置
US20230213607A1 (en) Method and apparatus for position determining, and communication device
WO2022000200A1 (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2022141095A1 (zh) 辅助ue的选择方法、装置及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022110206A1 (zh) 位置确定方法、装置和通信设备
WO2021248284A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022126642A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2022141162A1 (zh) 一种通信方法、装置、通信设备和存储介质
WO2022011507A1 (zh) 测量反馈方法及装置、网络设备、终端及存储介质
RU2811078C1 (ru) Способ и устройство для определения местоположения, а также устройство связи
WO2022188088A1 (zh) 重选小区的方法、装置、通信设备及存储介质
WO2022077401A1 (zh) 业务参与确定的方法及装置、网元设备、用户设备及存储介质
WO2024000131A1 (zh) 测距方法、装置、通信设备和存储介质
WO2022198523A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023010443A1 (zh) 小区重选方法、装置、通信设备及存储介质
WO2023010415A1 (zh) 信息传输方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254294

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023532427

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023010449

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237021664

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020963094

Country of ref document: EP

Effective date: 20230630

ENP Entry into the national phase

Ref document number: 112023010449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230529