WO2024128870A1 - 수지상세포 모방 기능성 나노구조체 및 이의 제조방법 - Google Patents

수지상세포 모방 기능성 나노구조체 및 이의 제조방법 Download PDF

Info

Publication number
WO2024128870A1
WO2024128870A1 PCT/KR2023/020791 KR2023020791W WO2024128870A1 WO 2024128870 A1 WO2024128870 A1 WO 2024128870A1 KR 2023020791 W KR2023020791 W KR 2023020791W WO 2024128870 A1 WO2024128870 A1 WO 2024128870A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
dendritic cell
spherical core
mimicking
nanoparticles
Prior art date
Application number
PCT/KR2023/020791
Other languages
English (en)
French (fr)
Inventor
하상준
문채원
김다혜
홍진기
김태현
이유진
Original Assignee
주식회사 포투가바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220176132A external-priority patent/KR20230091817A/ko
Application filed by 주식회사 포투가바이오 filed Critical 주식회사 포투가바이오
Publication of WO2024128870A1 publication Critical patent/WO2024128870A1/ko

Links

Images

Definitions

  • the present invention relates to dendritic cell-mimicking functional nanostructures and methods for manufacturing the same.
  • Cancer ranks first among the causes of death in Korea.
  • Representative cancer treatment methods include surgery to remove the cancer, radiation therapy, and chemical treatment, but these treatment methods have the problem of poor prognosis and serious side effects.
  • immunotherapy that can help treat cancer by increasing the patient's own immune response can be a fundamental cancer treatment.
  • developed immunotherapy treatments mostly involve direct injection of drugs that enhance immune function, but drug injection still has limitations in that the delivery efficiency is very low and additional side effects may exist. Accordingly, research is focusing on the development of treatments that can dramatically increase cancer treatment efficiency, reduce recurrence rates and side effects, and increase immune function.
  • nanoparticle-cellularization technology is a technology that physically cloaks the surface of nanoparticles by using the entire cell membrane of a specific cell as a coating material. It can maintain the complex properties of the cell membrane along with proteins, lipids, and carbohydrates, thereby maintaining the surface of the nanoparticle.
  • the characteristics of specific cells can be implemented as is.
  • Doxorubicin is loaded onto a PLGA core and then coated with a red blood cell membrane to produce an immunocompatible nanocarrier to remove solid tumors, or the red blood cell membrane and the cell membrane of cancer cells are simultaneously coated with melanin nanoparticles to create nanoparticles with a hybrid cell membrane.
  • a study was reported to increase circulation time in the body and increase tumor targeting ability by manufacturing .
  • the present disclosure aims to more effectively realize the cancer treatment effect by increasing the immune response by using cells with an antigen presentation function, breaking away from the material limitations of the prior art. Specifically, through a structure that mimics dendritic cells, it directly activates cytotoxic T cells according to the antigen presentation function of dendritic cells in the body, induces selective death of cancer cells, and increases immune response, providing excellent immunotherapy effects. It is done.
  • the present disclosure aims to provide functionality through the design of nanostructures to more significantly activate cytotoxic T cells and provide enhanced anti-cancer immunotherapy effects.
  • the dendritic cell-mimicking structure includes non-spherical core particles; and a shell including a cell membrane of lipid molecules derived from dendritic cells, wherein the shell includes a double layer of the lipid molecules.
  • the non-spherical core particle may be manufactured by using the shape of a dendritic cell as a template.
  • the non-spherical core particle may have an oval shape, a rod shape, a plate shape, or an irregular shape.
  • the non-spherical core particle may be a one-dimensional or two-dimensional nanostructure.
  • the surface of the non-spherical core particle may be negatively charged.
  • the surface of the non-spherical core particle may form a bond with at least one component included in the shell.
  • the non-spherical core particles are organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, It may be one or more than one selected from the group consisting of light-to-heat conversion nanoparticles, nucleic acid-containing nanoparticles, and protein-containing nanoparticles.
  • the non-spherical core particles may have an average particle diameter of 50 nm to 50 ⁇ m.
  • the non-spherical core particle may have an aspect ratio of 1.1 to 6.0.
  • the shell may further include a component derived from the cell membrane of a cell different from dendritic cells.
  • the surface of the shell may be labeled with a bioactive polymer, bioactive ingredient, or protein.
  • the method for manufacturing a dendritic cell mimicking structure includes the steps of (S10) purifying cell membranes from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasound; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; And (S40) mixing the non-spherical core particles and the liposomes and then filter compressing them to obtain non-spherical particles into which a cell membrane is introduced.
  • the step of negatively charging the surface of the non-spherical core particle may be further included.
  • the dendritic cell-mimicking structure according to the present disclosure introduces the antigen-presenting ability onto the surface of the nanoparticle as is, thereby preserving the antigen-presenting function of the dendritic cells and adding the targeting function and photothermal effect function of the nanoparticle without killing them. It can provide functional immunotherapy effects.
  • the dendritic cell-mimicking structure according to the present disclosure can stay in the body for a long period of time and provide the effect of increasing the immune response by continuously inducing proliferation and differentiation of T cells.
  • the dendritic cell mimicking structure according to the present disclosure has the advantage of being able to minimize side effects by stimulating the patient's own immune system and selectively removing microscopic cancer cells or metastasized cancer cells that are difficult to diagnose.
  • the dendritic cell mimicking structure according to the present disclosure has anticancer activity on its own and can be used as an immunotherapy for cancer, and stronger anticancer activity can be expected through combination with other anticancer agents, making it useful for developing new anticancer agents that exhibit strong anticancer effects. It can be utilized effectively.
  • the dendritic cell mimicking structure according to the present disclosure is designed to minimize uptake due to recognition as a foreign antigen by immune cells in the body, thereby realizing a more excellent activation effect of cytotoxic T cells and a more enhanced immunotherapy effect. can be provided.
  • Figure 1 relates to gold nanorods of various colors prepared according to Preparation Example 1 of the present invention.
  • Rod 1 to Rod 5 all have different colors, and accordingly, the UV-Vis absorption wavelengths also show different results.
  • Figure 2 shows a TEM image of gold nanorods prepared according to Preparation Example 1 of the present invention.
  • Figure 3 is a graph showing the results of ICP-MS analysis of gold nanorod particles prepared according to Preparation Example 1 of the present invention. It can be confirmed that a sufficient amount of particles were produced for all of Rod 1 to Rod 5 at a concentration of 50 ⁇ g/ml or more.
  • FIG 4 is a graph showing the surface charge of gold nanorods (GNRs) prepared according to Preparation Example 1, where positively charged CTAB GNRs were surface modified to finally obtain negatively charged particles (Citrate GNRs).
  • Figure 5 is a graph showing the results of analyzing the cell viability of Rod 1 to Rod 3 after CTAB treatment and citration.
  • Figure 6 shows a TEM image of a gold nanorod coated with a dendritic cell membrane.
  • Figure 7 is a graph showing surface zeta potential values before and after coating dendritic cells (DC) and dendritic cell membranes.
  • Figure 8 shows the results of protein quantification measured using a BCA assay after coating a dendritic cell membrane on a gold nanorod, verifying that the cell membrane was successfully coated.
  • Figure 9 shows the FACS results of bone marrow dendritic cells (BMDC) and dendritic cell membrane-coated gold nanorods (DC rod3) according to the present invention, through which the T cell proliferation effect was evaluated.
  • BMDC bone marrow dendritic cells
  • DC rod3 dendritic cell membrane-coated gold nanorods
  • Numerical ranges used herein include lower and upper limits and all values within that range, increments logically derived from the shape and width of the range being defined, all doubly defined values, and upper and lower limits of numerical ranges defined in different forms. Includes all possible combinations of Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • AR Application Ratio
  • nanoparticle or “nanostructure” may mean a length, width, or diameter ranging from 1 nm to 50 ⁇ m.
  • the dendritic cell-mimicking structure according to the present disclosure preserves the antigen-presenting function of dendritic cells by introducing the antigen-presenting ability of dendritic cells to the surface of the nanoparticles, while at the same time significantly enhancing immune anti-cancer treatment through the targeting function and photothermal effect of the nanoparticles. We want to provide an effect.
  • DC Dendritic cells
  • APC antigen presenting cells
  • Naive T cells that have never encountered antigen (na ve ell) it can induce a primary immune response and function as an immune cell that can induce antigen-specific acquired memory immunity.
  • MHC I/II major histocompatibility complex I/II
  • co-stimulatory molecules such as CD80 and CD86 and cell adhesion molecules such as ICAM-1. molecules
  • cytokines such as interferon, IL-12, and IL-18, which are related to T cell activation.
  • the dendritic cell mimicking structure includes a non-spherical core particle; and a shell including a cell membrane of lipid molecules derived from dendritic cells, wherein the shell includes a double layer of the lipid molecules.
  • TCR T cell receptor
  • the costimulatory ligand binds to CD28, a costimulatory receptor expressed on T cells, and completely activates the T cells. Activated T cells proliferate and differentiate, migrate from lymph nodes to peripheral tissues, and can eliminate cells expressing foreign antigens (e.g. cancer cells).
  • the dendritic cell mimicking structure functions as a powerful T cell activator to activate the cellular immune function and can further act as an immune cell therapeutic agent.
  • Non-spherical core particles according to the present disclosure may be one-dimensional or two-dimensional nanostructures.
  • Specific examples of the one-dimensional or two-dimensional nanostructure include carbon nanoribbons, carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, MXene, metal nanorods, metal nanowires, or metal nanoplatelets ( platelet), but is not limited thereto.
  • non-spherical core particles include biocompatible organic polymer nanoparticles, metal organic framework nanoparticles, metal nanoparticles, metal oxide nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, and photothermal conversion nanoparticles.
  • it may be one or two or more selected from the group consisting of nucleic acid-containing nanoparticles and protein-containing nanoparticles. Specifically, it is more desirable if the nanomaterial itself is non-toxic and has light sensitivity so that it can be applied to photothermal therapy.
  • organic polymer nanoparticles include polyacetylene, polyaniline, polypyrrole, polythiophene, poly(1,4-phenylenevinylene), poly(1,4-phenylene sulfide), and poly(fluorenylene). It may be at least one selected from the group consisting of tinylene) and their derivatives.
  • metal nanoparticles include copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn), titanium (Ti), chromium (Cr), silver (Ag), and gold. It may be at least one selected from the group consisting of (Au), platinum (Pt), aluminum (Al), and composites thereof.
  • the metal oxide nanoparticle may be a single metal oxide nanoparticle or a multi-metal oxide nanoparticle, and the metal may be one or more selected from cerium (Ce), manganese (Mn), or iron (Fe).
  • Ce cerium
  • Mn manganese
  • Fe iron
  • additional ligand compounds such as albumin and dextran may be combined.
  • the non-spherical core particle may be elliptical, rod-shaped, plate-shaped, or irregular.
  • a dendritic cell-mimetic structure comprising a non-spherical core particle and a shell containing a dendritic cell-derived cell membrane can be designed to minimize the uptake rate by immune cells due to recognition as a foreign antigen when introduced into the body. .
  • Non-spherical core particles according to the present disclosure may have an average particle diameter of 50 nm to 50 ⁇ m, 60 to 1000 nm, or 80 to 500 nm.
  • the non-spherical core particle may be a one-dimensional nanostructure, and the aspect ratio (length/width) of the non-spherical core particle may be greater than 1.
  • the aspect ratio is 1.1 to 10.0, 1.1 to 8.0, 1,1 to 6.0, 1.2 to 10.0, 1.2 to 8.0, 1.2 to 6.0, 1.5 to 10.0, 1.5 to 8.0, 1.5 to 6.0, 2.0 to 6.0 or 2.0 to It could be 5.0.
  • the non-spherical core particle may be a gold nanorod and may have a maximum absorption wavelength of 700 to 800 nm. Since the non-spherical core particles have a non-spherical shape and the maximum absorption wavelength as described above, uptake by macrophages can be minimized and the activation of T cells can be maximized.
  • the non-spherical core particles may be gold nanoparticles that can maintain a safe state in the body due to a high reduction potential and are easy to modify the surface, but are not limited thereto.
  • the shell formed on the outside of the non-spherical core particle may include a cell membrane of lipid molecules derived from dendritic cells, and may specifically include a double layer of lipid molecules.
  • the first lipid molecule layer facing the outside of the shell may be oriented to exhibit a stronger electrical negative charge than the second lipid molecule layer facing the surface of the non-spherical core particle.
  • the shell containing the cell membrane of the lipid molecules may be thinly and uniformly coated on the surface of the non-spherical core particle in the range of 2 to 50 nm, narrowly 5 to 20 nm.
  • the surface of the non-spherical core particle may be negatively charged.
  • Methods known in the art can be used to obtain negatively charged non-spherical core particles.
  • particles with negatively charged surfaces can be obtained through citric acid treatment.
  • the surface of the non-spherical core particle may form a bond with at least one component included in the shell.
  • the bond may be a variety of chemical bonds such as covalent bonds, ionic bonds, or complexes.
  • the shell may further include components derived from cell membranes of cells different from dendritic cells.
  • the surface of the shell may be labeled with a bioactive polymer, bioactive ingredient, or protein.
  • the bioactive ingredient may refer to a cytokine for cell signaling.
  • Non-limiting examples may include chemokines, interferons, interleukins, lymphokines, tumor necrosis factor, monokines, and colony stimulating factors.
  • cytokines include the BMP (Bone morphogenetic protein) family, CCL (Cheomkine ligands) family, CMTM (CKLF-like MARVEL transmembrane domain containing member) family, CXCL (C-X-C motif ligand ligand) family, and GDF (Growth/differentiation factor) family.
  • the dendritic cell mimicking structure according to the present disclosure can be used for various purposes, such as for cancer treatment, immune disease treatment or prevention, and can specifically be provided in the form of a pharmaceutical composition for cancer treatment.
  • cancer is a general term for various malignant solid tumors that can expand locally and through metastasis by invasion, and specific examples include B-cell lymphoma, non-small cell lung cancer, small cell lung cancer, basal cell carcinoma, and squamous cell carcinoma of the skin. , colorectal cancer, melanoma, head and neck squamous cancer, hepatocellular carcinoma, gastric cancer, sarcoma, gastroesophageal cancer, renal cell carcinoma, glioblastoma, pancreatic cancer, bladder cancer, prostate cancer, breast cancer, cutaneous T-cell lymphoma, Merkel cell carcinoma, or multiple myeloma. may, but is not limited to this.
  • the pharmaceutical composition for the treatment of cancer may be modified, maintained or preserved in terms of pH, osmolality, viscosity, sterility, clarity, color, isotonicity, odor, stability, dissolution or release rate, adsorption or penetration. It may contain formulation substances.
  • the pharmaceutical composition may be administered orally or parenterally.
  • parenteral include: intravenous, intramuscular, subcutaneous, intraorbital, intracapsular, intraperitoneal, intrarectal, intracisternal, intravascular, intradermal, skin patch, or transdermal. It can also be administered through the skin using iontophoresis.
  • the present disclosure can provide a method for manufacturing a dendritic cell mimicking structure.
  • the dendritic cell-mimicking nanostructure according to the present disclosure is manufactured by extracting the cell membrane of activated dendritic cells and filter-extruding it together with the nanoparticles to induce the cell membrane to be introduced to the surface of the nanoparticles.
  • (S10) purifying cell membranes from dendritic cells; (S20) forming a cell membrane suspension by treating the cell membrane with ultrasound; (S30) filtering the cell membrane suspension through a membrane filter to obtain liposomes; And (S40) mixing the non-spherical core particles and the liposomes and then filter compressing them to obtain non-spherical particles into which a cell membrane is introduced.
  • the step of purifying cell membranes from dendritic cells can be carried out through rapid freezing-thawing and centrifugation. Afterwards, the purified cell membrane can be treated with ultrasound to form a cell membrane suspension of hundreds of nanometers or several micrometers. By filtering the cell membrane suspension through a membrane filter, cell membrane liposomes of the desired size can be obtained.
  • the prepared non-spherical core particles and cell membrane liposomes are mixed and filter compressed to obtain non-spherical core-shell particles into which cell membranes are introduced.
  • non-spherical core-shell particles into which cell membranes are introduced.
  • a form in which the cell membrane of dendritic cells is coated on the surface of the non-spherical core particle is obtained.
  • (S50) pulsing the antigen to the non-spherical particles into which the cell membrane is introduced can be further included to complete a dendritic cell-mimicking functional structure that functions as a dendritic cell.
  • the step of pulsing the antigen to the nanoparticles into which the cell membrane has been introduced is a step in which the antigen is loaded onto the cell membrane by exposing the non-spherical particles transformed into dendritic cells to the antigen, which can induce the activation of strong antigen-specific T cells. there is.
  • the antigen may be a peptide or protein derived from a tumor antigen, and the tumor antigen may be a tumor-related antigen or a tumor-specific antigen.
  • the tumor antigen may be a tumor-related antigen or a tumor-specific antigen.
  • it may be a protein or peptide derived from ovalbumin (OVA), LCMV (Lymphocytic choriomeningitis mammarenavirus) glycoprotein, or retrovirus protein. More specifically, it may be a cancer antigen peptide or protein of the OVA 257-264 , GP 33-41 , or p15E models.
  • HER2/Neu tyrosinase
  • gp100 MART
  • HPV E6/E7 EBV EBNA-1
  • carcinoembryonic antigen carcinoembryonic antigen
  • GM2 GM2, GD2
  • testis antigen prostate antigen
  • CD20 It may be a peptide or protein derived from (2) a tumor-specific antigen, including a tumor-related antigen and (2) a neoantigen that can be produced by various mutations.
  • the antigen may be one of the cancer antigen peptides described above or two or more different peptides.
  • the pulsing can be performed using various pulsing protocols known in the art, but more preferably, pulsing may be performed by mixing and culturing with tumor antigen-derived peptides or proteins for 0.5 to 6 hours under humidified conditions of 5% CO 2 and 37°C.
  • the concentration when treating the OVA 257-264 and GP 33-41 antigens, the concentration is 0.1 to 0.3 ⁇ g/ml, and when treating the p15E antigen, the concentration is 2 to 7 ⁇ g/ml.
  • the antigen can be pulsed by storing in an incubator at 37° C. for 30 minutes after treatment.
  • the antigen-pulsed dendritic cell-mimicking functional structure has an excellent cancer targeting function (negative targeting) due to its nano-sized size, is stable, and has a large surface area relative to its volume, so it can easily contact T cells. Therefore, an effective anti-cancer immune response can be induced through activation of the dendritic cell-mimicking functional structure and subsequent activation of a specific T cell response. Additionally, since there is no risk of death within the body, it has the advantage of having a very long circulation time in the body.
  • the dendritic cell-mimicking functional structure according to the present disclosure is manufactured by fusing liposomes and nanoparticles prepared by sonicating dendritic cell-derived cell membranes, and the fusion may mean mixing liposomes and nanoparticles and co-extruding them. .
  • the cell membrane derived from the dendritic cells is sonicated and then filtered through a nano-sized membrane filter to obtain liposomes with a particle diameter of 200 nm or less.
  • the particle size of the liposome may specifically be 50 to 150 nm.
  • the surface zeta potential of the dendritic cell-mimicking nanostructure according to the present disclosure may be -40 to -20 mV, specifically -35 to -25 mV.
  • the present disclosure can provide a drug delivery system or device including the dendritic cell-mimicking nanostructure described above.
  • the present disclosure may provide a pharmaceutical composition containing the above-described dendritic cell-mimicking nanostructure and a pharmaceutically acceptable carrier or excipient.
  • the suspension of 40 ml of CTAB-GNR diluted with water was concentrated in an ultrafiltration cell using a membrane filter, the residue was diluted in water, and the suspension was centrifuged again.
  • the residue was redispersed in 0.15% by weight of Na-PSS, the suspension was centrifuged again, and the residue was redispersed in 0.7% by weight of Na-PSS to obtain PSS-stabilized gold nanorods (PSS-GNR).
  • PSS-GNR PSS-stabilized gold nanorods
  • Gold nanorods with negatively charged surfaces after citric acid treatment have a surface potential of -30 to -40 mV in distilled water, so coating can be achieved through interaction with cell membranes without problems due to electrostatic repulsion, and without aggregation.
  • the shape can be stably preserved.
  • Differentiated dendritic cells were extracted from bone marrow cells isolated from the femurs of 6- to 8-week-old Naive 6 mice (Orient Bio), and centrifuged at 2,000 rpm for 5 minutes to obtain pure dendritic cells. Afterwards, it was treated with Protease Inhibitor Tablet-PBS buffer and dispersed at a concentration of 1 ⁇ 2 ⁇ 10 6 cells/ml. Then, only the cell membrane was purified through rapid freezing at -70°C, thawing at room temperature, and centrifugation.
  • ultrasonic waves (VC505, Sonics & Materials) were processed at an amplitude of 20%, performing a total of 60 rounds of 3 seconds with 3 seconds on/off and a 2 second cooling period between cycles to obtain a micro-scale cell membrane suspension. , this was filtered through a polycarbonate membrane with a nano-sized filter (pore size 1 ⁇ m, 400 nm, 100 nm) to generate nano liposomes with the diameter of each pore size.
  • Figure 6 shows a TEM image after manufacturing a dendritic cell-mimicking structure.
  • the dendritic cell mimicking structure has a length-width of [1] 110 nm ⁇ 20 nm (Aspect Ratio 5.5), [2] 120 nm ⁇ 65 nm (Aspect Ratio 1.85), [3] 60 nm ⁇ 20 nm (Aspect Ratio 3.5). , [4] 180 nm ⁇ 100 nm (Aspect Ratio 1.8), and [5] 135 nm ⁇ 75 nm (Aspect Ratio 1.8) A cell membrane coating with a thickness of about 10-20 nm was formed on the surface of the gold nanorod. You can check it.
  • the strong negative zeta potential of the gold nanorods dispersed with citric acid before coating the dendritic cell membrane shows a relatively lower value after coating the cell membrane.
  • the dendritic cell-mimicking structures according to the present invention showed potential values similar to dendritic cell membranes, confirming that cell membrane coating was successfully achieved.

Landscapes

  • Medicinal Preparation (AREA)

Abstract

본 발명은 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 수지상세포 모방 기능성 구조체 및 이의 제조방법에 관한 것으로서, 체내에서 안정적으로 T 세포의 활성화 효과를 현저하게 구현함으로써 강화된 면역항암 치료 효과를 제공할 수 있다.

Description

수지상세포 모방 기능성 나노구조체 및 이의 제조방법
본 발명은 수지상세포 모방 기능성 나노구조체 및 이의 제조방법에 관한 것이다.
암은 우리나라 국민 사망원인 중 1위를 차지하고 있다. 대표적인 암치료방법은 암을 절제하는 외과적 수술, 방사선 치료, 화학약물 치료가 있을 수 있는데, 이들 치료방법은 예후가 불량하고 심각한 부작용이 뒤따른다는 문제점이 있다.
암 발생은 면역력 감소 또는 암세포의 면역회피 작용으로 인해 면역반응에 따라 제거되지 못한 암세포의 종양 형성을 주요 원인으로 들 수 있다. 따라서 환자 본인의 면역 반응을 증대시켜 암 치료를 도울 수 있는 면역항암치료제는 근본적인 암 치료법이 될 수 있다. 현재 개발된 면역항암치료제는 면역기능을 높이는 약물을 직접 주입하는 것이 대부분인데, 약물 주입술은 전달 효율이 매우 낮고, 추가 부작용이 존재할 수 있다는 점에서 여전히 한계가 존재한다. 이에 따라 암 치료 효율을 획기적으로 높이고, 재발율 및 부작용을 낮추면서 면역기능을 증대시킬 수 있는 치료제의 개발에 연구가 집중되고 있다.
한편, 나노기술을 바이오 의료 분야에 접목한 나노-바이오 융합기술에 대한 연구가 지속되어 오고 있다. 하지만 대부분의 나노재료는 합성을 통해 얻어지며, 나노재료를 이용한 표면 개질 시, 합성물이 첨가되는 과정이 수반되므로 체내 독성, 원치 않는 면역반응 유도, 암 유발 등의 부작용이 생길 수 있다. 그러므로 생체를 직접 모사하는 방식의 표면 개질 방법을 사용하여 부작용을 최소화하고, 생체특성에 따라 다양한 기능을 구현할 수 있도록 함으로써 기존 나노기술이 가진 한계점을 극복할 수 있다.
특히 나노입자-세포화 기술은 특정 세포의 전체 세포막을 코팅 재료로 활용하여 나노입자 표면을 물리적으로 클로킹(Cloaking)하는 기술로 단백질, 지질 및 탄수화물과 함께 세포막의 복합적 성질을 유지할 수 있어 나노입자 표면에 특정 세포의 특성을 그대로 구현할 수 있다.
2015년 University of California의 Liangfang Zhang연구팀에서 처음으로 혈소판을 PLGA(poly(lactic-co-glycolic) acid) 입자 표면에 도입한 기술을 바탕으로, 현재까지 다양한 세포에 적용되고 있다.
PLGA 코어에 독소루비신(doxorubicin)을 담지한 후, 적혈구 막으로 코팅하여 면역적합성 나노캐리어를 제조해 고형 종양을 제거하거나, 적혈구 막과 암세포의 세포막을 멜라닌 나노입자에 동시에 코팅하여 하이브리드 세포막을 지닌 나노입자를 제조해 체내 순환시간을 증가시키고 종양 표적능을 증대시킨 연구가 보고되었다.
하지만 종래의 세포막 코팅 기술은 대부분 암세포, 혈액세포 위주로 진행되었고, 그 응용 역시 혈액 내 안정적 전달 등을 목표로 하는 연구들이 주를 이루었다. 또한 암세포막을 항원으로 직접 도입하여 체내에 전달하는 경우, 항원 내성으로 인한 면역반응 저하, 암세포 유래 물질에 대한 거부감 등의 단점이 존재한다. 따라서 직접적인 항원제시 면역세포의 기능을 가질 수 있는 면역치료제를 개발하여 중간 과정 없이 T 세포의 분화 및 증식을 유도하는 것이 매우 필요하다.
본 개시는 종래기술의 재료적인 한계에서 벗어나 항원제시 기능을 가지는 세포를 사용하여 면역반응 증대에 따른 암치료 효과를 보다 효과적으로 구현하고자 한다. 구체적으로, 수지상세포를 모방하는 구조체를 통해, 체내에서 수지상세포의 항원제시 기능에 따라 세포독성 T 세포를 직접 활성화하여 암세포의 선택적 사멸을 유도하고, 면역 반응을 증대시켜 우수한 면역항암치료 효과를 제공하는 것이다.
또한 본 개시는 나노구조체의 설계를 통해 기능성을 부여하여 세포독성 T 세포의 활성화를 보다 현저하게 구현하며 보다 더 강화된 면역항암치료 효과를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 개시에 따른 수지상세포 모방 구조체는 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하는 구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 할 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 수지상세포의 형상을 템플레이트하여 제조된 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형 형상을 가질 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 1차원 또는 2차원 나노구조체인 것일 수 있다.
*본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자의 표면은 음으로 하전된 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 유기 고분자 나노입자, 금속 유기골격체 나노입자, 금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid nanoparticle), 자성 나노입자, 광열 변환 나노입자 및 핵산 함유 나노입자, 단백질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 50 ㎚ 내지 50 ㎛의 평균입경을 가질 수 있다.
본 발명의 일 구현예에 있어서, 상기 비구형 코어 입자는 종횡비가 1.1 내지 6.0일 수 있다.
본 발명의 일 구현예에 있어서, 상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것일 수 있다.
또한 본 개시에 따른 수지상세포 모방 구조체 제조방법은 (S10) 수지상세포로부터 세포막을 정제하는 단계; (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계; (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및 (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 (S40) 단계 이전, 비구형 코어 입자의 표면을 음으로 하전시키는 단계를 더 포함할 수 있다.
본 개시에 따른 수지상세포 모방 구조체는 항원제시능을 그대로 나노입자 표면에 도입하여, 수지상세포의 항원제시기능은 보존함과 동시에 사멸하지 않고 나노입자의 표적화 기능 및 광열효과 기능을 추가적으로 부여하여 강화된 기능의 면역항암치료 효과를 제공할 수 있다.
본 개시에 따른 수지상세포 모방 구조체는 장기간 체내에서 체류하며 T 세포의 증식 및 분화를 지속적으로 유도함으로써 면역반응을 증대시키는 효과를 제공할 수 있다.
본 개시에 따른 수지상세포 모방 구조체는 환자 자신의 면역 시스템을 자극하는 방법을 통해 부작용을 최소화할 수 있고, 진단이 어려운 미세 크기의 암세포 또는 전이된 암세포를 선택적으로 제거할 수 있는 이점이 있다.
본 개시에 따른 수지상세포 모방 구조체는 그 자체로도 항암활성을 가져 면역항암치료제로 사용될 수 있으며, 다른 항암제와의 병용을 통해 더욱 강한 항암활성을 기대할 수 있으므로 강력한 항암효과를 나타내는 새로운 항암제 개발에 유용하게 활용될 수 있다.
본 개시에 따른 수지상세포 모방 구조체는 체내 면역세포에 의해 외부 항원으로 인식됨으로 인한 섭취를 최소화하기 위한 구조로 설계됨으로써 세포독성 T 세포의 활성화 효과를 보다 탁월하게 구현하며 보다 더 강화된 면역항암치료 효과를 제공할 수 있다.
도 1은 본 발명 제조예 1에 따라 제조된 다양한 색상을 띠는 금 나노로드에 관한 것으로, Rod 1 내지 Rod 5는 색상이 모두 다르며, 이에 따라 UV-Vis 흡수 파장 역시 모두 상이한 결과를 보여준다.
도 2는 본 발명 제조예 1에 따라 제조된 금 나노로드의 TEM 이미지를 나타낸 것이다.
도 3은 본 발명 제조예 1에 따라 제조된 금 나노로드 입자의 ICP-MS 분석 결과를 나타낸 그래프이다. Rod 1 내지 Rod 5 모두 농도가 50 ㎍/㎖ 이상으로 충분한 양의 입자가 제조됨을 확인할 수 있다.
도 4는 제조예 1에 따라 제조된 금 나노로드(GNR)의 표면 전하를 나타낸 그래프로서, 양으로 하전된 CTAB GNR에서 표면 개질처리되어 최종적으로 음으로 하전된 입자(Citrate GNR)를 수득하였다.
도 5는 CTAB 처리 및 citration 이후의 Rod 1 내지 Rod 3의 cell viability를 분석한 결과를 나타낸 그래프이다.
도 6은 수지상세포막으로 코팅된 금 나노로드의 TEM 이미지를 나타낸 것이다.
도 7은 수지상세포(DC) 및 수지상세포막 코팅 전후의 표면 제타전위값을 나타낸 그래프이다.
도 8은 금 나노로드에 수지상세포막을 코팅시킨 후, 이를 BCA assay를 이용하여 protein 정량을 측정한 결과를 나타낸 것으로서, 세포막이 성공적으로 코팅되었음을 검증하였다.
도 9는 골수유래 수지상세포(Bone marrow Dendritic cell, BMDC)와 본 발명에 따른 수지상세포막 코팅된 금 나노라드(DC rod3)의 FACS 수행 결과를 나타낸 것으로서 이를 통해 T cell 증식효과를 평가하였다.
이하, 첨부된 도면 및 실시예들을 참조하여 본 발명에 따른 수지상세포 모방 기능성 구조체 및 이의 제조방법에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 다만, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 구현예에 한정되지 않는다. 또한, 청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것도 아니다.
본 발명의 설명에 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
본 명세서의 용어, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.
본 명세서의 용어, “종횡비 (Aspect Ratio, AR)”는 길이를 폭으로 나눈 비율로서 정의되며, 이때 길이는 입자의 가장 긴 치수의 길이이며, 폭은 입자의 가장 짧은 길이로서 정의될 수 있다.
본 명세서의 용어, “나노입자” 또는 “나노구조체”는 1 ㎚ 내지 50 ㎛ 범위의 길이, 폭 또는 직경을 의미할 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
본 개시에 따른 수지상세포 모방 구조체는 수지상세포의 항원제시능을 나노입자 표면에 도입하여, 수지상세포의 항원 제시 기능을 보존하면서, 동시에 나노입자의 표적화 기능 및 광열 효과를 통해 현저히 증대된 면역 항암 치료 효과를 제공하고자 한다.
수지상세포 (Dendrictic cell, DC)는 강력한 항원제시 세포 (antigen presenting cells, APC)로서, 체내 면역반응 유도 및 면역 조절에 중요한 역할을 담당한다. 항원과 접한 적이 없는 원시 T 세포 (na
Figure PCTKR2023020791-appb-img-000001
ve ell)를 활성화시켜, 1차면역반응 (primary immune response)을 유도할 수 있고, 항원 특이적인 후천성 기억면역을 유도할 수 있는 면역세포로 기능할 수 있다. 또한 세포막 표면에 주조직 적합성 복합체 (major histocompatibility complex I/II: MHC I/II)뿐만 아니라, CD80 및 CD86과 같은 보조자극인자 (co-stimulatory molecules) 및 ICAM-1과 같은 세포부착 분자 (cell adhesion molecules)가 고도로 발현되어 있으며, T 세포 활성화와 관련된 인터페론, IL-12, IL-18 등의 다양한 사이토카인을 다량 분비함으로써, 강력한 항원제시 기능을 나타낼 수 있다.
수지상세포의 상기 항원제시 기능을 구현하기 위한, 본 개시에 따른 수지상세포 모방 구조체는 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함하는 쉘;을 포함하고, 상기 쉘은 상기 지질 분자의 이중층을 포함하는 것을 특징으로 할 수 있다.
수지상세포는 말초 조직에 존재하여, 외부자극 신호에 의해 활성 신호를 받게 되어 성숙된다. 동시에 외부 단백질 항원을 펩타이드 형태로 MHC class I, II 에 제시한다. 이후, 수지상세포는 배수 림프절(draining lymphnode)로 이동하여, 수지상세포 표면의 MHC-펩타이드 복합체와 결합가능한 T 세포 수용체(TCR)을 보유한 T 세포와 결합하고, 수지상세포에서 발현되는 CD80, CD86과 같은 공동자극 리간드가 T 세포에서 발현되는 공동자극 수용체인 CD28과 보조적으로 결합하여 T 세포를 완전하게 활성화한다. 활성화된 T 세포는 증식 및 분화하여 림프절에서 말초조직으로 이동하며, 외부 항원을 발현하는 세포(예. 암세포)를 제거할 수 있다.
본 개시에 따른 수지상세포 모방 구조체는 상기 세포성 면역 기능을 활성화하기 위한 강력한 T 세포 activator로 기능하며, 나아가 면역 세포 치료제로 작용할 수 있다.
본 개시에 따른 비구형 코어 입자는 1차원 또는 2차원 나노구조체일 수 있다. 상기 1차원 또는 2차원 나노구조체의 구체적인 예를 들면, 탄소 나노리본, 탄소 나노튜브, 그래핀, 산화그래핀, 환원된 산화그래핀, 맥신, 금속 나노로드, 금속 나노와이어 또는 금속 나노 판상체(platelet)일 수 있으나, 이에 제한되지 않는다.
또한 상기 비구형 코어 입자는 생체적합성을 가지는 유기 고분자 나노입자, 금속 유기골격체 나노입자, 금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid nanoparticle), 자성 나노입자, 광열 변환 나노입자 및 핵산 함유 나노입자, 단백질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다. 구체적으로 나노물질 자체의 독성이 없으면서 광 감응성을 가지고 있어 광열치료에 적용이 가능한 것이면 더욱 바람직하다.
유기 고분자 나노입자의 구체적인 예를 들면, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(1,4-페닐렌비닐렌), 폴리(1,4-페닐렌 설파이드), 폴리(플루오레닐렌에티닐렌) 및 이들의 유도체로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
금속 나노입자의 구체적인 예를 들면, 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 아연(Zn), 티탄(Ti), 크롬(Cr), 은(Ag), 금(Au), 백금(Pt), 알루미늄(Al) 및 이들의 복합체로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
금속 산화물 나노입자는 단일금속 산화물 나노입자 또는 다중금속 산화물 나노입자일 수 있고, 상기 금속은 세륨(Ce), 망간(Mn) 또는 철(Fe)에서 선택되는 하나 이상일 수 있다. 이때 생체 내 분산성을 위해 추가로 알부민, 덱스트란 등의 리간드 화합물이 결합될 수 있다.
일 예에 있어서, 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형일 수 있다. 외부 항원으로 인식될 경우 사이즈가 큰 입자일수록, 구형에 가까운 입자일수록 대식세포에 의한 섭취율이 증가한다. 이러한 측면에서 비구형 코어 입자 및 수지상세포 유래 세포막을 포함하는 쉘을 포함하는 수지상세포 모방 구조체는 생체 내 도입 시 외부 항원으로의 인식에 따른 면역세포에 의한 섭취율을 최소화하기 위한 구조로 설계될 수 있다.
본 개시에 따른 비구형 코어 입자는 50 ㎚ 내지 50 ㎛, 60 내지 1000 ㎚, 또는 80 내지 500 ㎚의 평균 입경을 가질 수 있다.
구체적인 일 예에 있어서, 비구형 코어 입자는 1차원 나노구조체일 수 있으며, 비구형 코어 입자의 종횡비 (길이/폭)는 1보다 큰 값을 가질 수 있다. 구체적으로 종횡비는 1.1 내지 10.0, 1.1 내지 8,0, 1,1 내지 6.0, 1.2 내지 10.0, 1.2 내지 8.0, 1.2 내지 6.0, 1.5 내지 10.0, 1.5 내지 8.0, 1.5 내지 6.0, 2.0 내지 6.0 또는 2.0 내지 5.0일 수 있다.
비한정적인 일 예에 있어서, 비구형 코어 입자는 금 나노로드일 수 있고, 최대 흡광 파장이 700 내지 800 ㎚인 것일 수 있다. 비구형 코어 입자가 비구형 형상을 가지며 상술한 바와 같은 최대 흡광 파장을 가짐에 따라 대식세포에 의한 섭취를 최소화하여, T 세포의 활성화 작용을 극대화할 수 있다.
본 개시에 따른 비제한적인 일 실시형태로서 비구형 코어 입자는 환원전위가 높아 체내에서 안전한 상태를 유지할 수 있고, 표면 개질이 용이한 금 나노입자일 수 있으나, 이에 제한되지 않는다.
비구형 코어 입자의 외부에 형성되는 쉘은 수지상세포로부터 유래된 지질 분자의 세포막을 포함할 수 있고, 구체적으로 지질 분자의 이중층을 포함하는 것일 수 있다. 이때 쉘 외부를 향한 제1 지질 분자층은 비구형 코어 입자 표면을 향한 제2 지질 분자층에 비하여 전기적으로 더 강한 음전하를 나타내도록 배향될 수 있다.
상기 지질 분자의 세포막을 포함하는 쉘은 2 내지 50 ㎚, 좁게는 5 내지 20 ㎚의 범위로 비구형 코어 입자의 표면에 얇고 균일하게 코팅될 수 있다.
상기 지질 분자의 세포막 코팅 시 개선된 콜로이드 안정성을 위해 비구형 코어 입자의 표면은 음전하로 하전된 것일 수 있다. 음으로 하전된 비구형 코어 입자를 수득하기 위하여 이 기술분야에 공지된 방법을 사용할 수 있다. 일 예시로서, 시트르산 처리를 통해 음으로 하전된 표면을 갖는 입자를 수득할 수 있다.
또한 쉘과의 안정적인 결합을 위하여 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는 것일 수 있다. 상기 결합은 공유결합, 이온결합 또는 착체 등의 다양한 화학결합이 가능할 수 있다.
상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함할 수 있다.
상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것일 수 있다. 구체적으로 상기 생리활성 성분은 세포 신호전달을 위한 사이토카인을 의미할 수 있다. 비제한적인 예로서, 케모카인, 인터페론, 인터루킨, 림포카인, 종양 괴사 인자, 모노카인 및 콜로니 자극 인자들을 포함할 수 있다. 보다 구체적으로 사이토카인은 BMP (Bone morphogenetic protein) 패밀리, CCL (Cheomkine ligands) 패밀리, CMTM (CKLF-like MARVEL transmembrane domain containing member) 패밀리, CXCL (C-X-C motif ligand ligand) 패밀리, GDF (Growth/differentiation factor) 패밀리, 성장 호르몬, IFN (Interferon) 패밀리, IL (Interleukin) 패밀리, TNF (Tumor necrosis factors) 패밀리, GPI(glycophosphatidylinositol), SLUPR-1(Secreted Ly-6/uPAR-Related Protein 1), SLUPR-2(Secreted Ly-6/uPAR-Related Protein 2) 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 상기 사이토카인은 T 세포의 분화에 필수적인 전사인자 또는 성장인자를 유도 또는 억제하며, 다른 면역세포의 성장 및 분화를 매개함으로써, 본 개시에 따른 수지상세포 모방 구조체의 면역항암 치료의 효과를 보다 강화할 수 있다. 본 개시에 따른 수지상세포 모방 구조체는 암 치료용, 면역질환 치료 또는 예방용 등 다양한 용도로 사용될 수 있으며, 구체적으로 암 치료용 약학적 조성물의 형태로 제공될 수 있다.
일 예시에 따르면, 암은 침윤에 의해 국부적 및 전이를 통해 확장가능한 각종 악성 고형 종양 등을 총징하는 것으로서, 구체적인 예로는 B-세포 림프종, 비소세포 폐암, 소세포 폐암, 기저세포 암종, 피부 편평세포암종, 직장결장암, 흑색종, 두경부 편평암, 간세포암, 위암, 육종, 위식도암, 신세포 암종, 교모세포종, 췌장암, 방광암, 전립선암, 유방암, 피부 T-세포 림프종, 머켈세포 암종 또는 다발성 골수종일 수 있으나 이에 제한되지 않는다.
일 예시에 따르면, 암 치료용 약학적 조성물은 pH, 삼투도, 점도, 무균성, 투명도, 색상, 등장성, 냄새, 안정성, 용해 속도 또는 방출 속도, 흡착 또는 침투를 변형, 유지 또는 보존하기 위한 제형 물질을 포함할 수 있다.
상기 약학적 조성물은 경구 또는 비경구로 투여될 수 있다. 비경구의 예로는, 정맥내, 근육내, 피하, 안와내, 피막내, 복강내, 직장내, 수조내, 혈관내, 진피내를 포함하는 다양한 경로로 환자에게 투여될 수 있으며, 피부 패치 또는 경피 이온도입법을 각각 이용하여 피부를 통해서도 투여될 수 있다.
또한 본 개시는 수지상세포 모방 구조체 제조방법을 제공할 수 있다.
본 개시에 따른 수지상세포 모방 나노구조체는 활성화된 수지상세포의 세포막을 추출하고, 나노입자와 함께 필터압출하여 세포막이 나노입자 표면에 도입되도록 유도하는 방식에 따라 제조된다.
구체적으로, (S10) 수지상세포로부터 세포막을 정제하는 단계; (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계; (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및 (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함할 수 있다.
수지상세포로부터 세포막을 정제하는 단계는 급속 냉동-해동 및 원심분리를 통하여 진행될 수 있다. 이후 정제된 세포막에 초음파를 처리하여, 수백 나노 또는 수 마이크로 단위의 세포막 현탁액을 형성할 수 있다. 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하면 원하는 크기의 세포막 리포좀을 수득할 수 있다.
준비된 비구형 코어 입자와 세포막 리포좀을 혼합하고, 필터압축하여 세포막이 도입된 비구형 코어-쉘 입자를 수득할 수 있다. 즉, 수지상세포의 세포막이 상기 비구형 코어 입자 표면에 코팅된 형태가 얻어진다.
이때 (S50) 세포막이 도입된 비구형 입자에 항원을 펄싱하는 단계;를 더 포함하여, 수지상세포의 기능을 하는 수지상세포 모방 기능성 구조체를 완성할 수 있다.
상기 세포막이 도입된 나노입자에 항원을 펄싱하는 단계는 수지상세포화된 상기 비구형 입자를 항원에 노출시킴으로써 항원이 세포막에 탑재되는 단계로서, 이를 통해 강력한 항원 특이적 T 세포의 활성화를 유도할 수 있다.
상기 항원은 종양 항원 유래 펩타이드 또는 단백질일 수 있고, 상기 종양 항원은 종양 연관 항원 또는 종양 특이 항원일 수 있다. 구체적으로 예를 들면, 생쥐 암 모델에 있어서, 오브알부민(ovalbumin, OVA), LCMV(Lymphocytic choriomeningitis mammarenavirus) glycoprotein, retrovirus protein 유래의 단백질 또는 펩타이드일 수 있다. 보다 구체적으로 OVA257-264, GP33-41, p15E 모델의 암 항원 펩타이드 또는 단백질일 수 있다.
또한 인간 암 항원에 있어서, (1) HER2/Neu, tyrosinase, gp100, MART, HPV E6/E7, EBV EBNA-1, carcinoembryonic antigen, a-fetoprotein, GM2, GD2, testis antigen, prostate antigen, 및 CD20를 포함하는 종양 연관 항원 및 (2) 다양한 돌연변이에 의해 생성될 수 있는 신생항원(neoantigen)을 포함하는 종양 특이 항원으로부터 유래된 펩타이드 또는 단백질일 수 있다. 바람직하게는 상기 항원은 상술한 암 항원 펩타이드 1종 또는 2종 이상의 상이한 펩타이드일 수 있다.
상기 펄싱은 당업계에 알려진 다양한 펄싱 프로토콜이 가능하나, 보다 좋게는 5% CO2 및 37℃ 가습 조건에서 0.5 내지 6 시간 동안 종양 항원 유래 펩타이드 또는 단백질과 혼합 배양하여 펄싱을 수행하는 것일 수 있다.
구체적으로 본 발명의 비제한적인 일 예로서, OVA257-264, GP33-41 항원을 처리하는 경우 0.1 내지 0.3 ㎍/㎖, p15E 항원을 처리하는 경우 2 내지 7 ㎍/㎖의 농도로 처리하며, 처리 후 30분간 37 ℃ 인큐베이터에서 보관함으로써 상기 항원을 펄싱할 수 있다.
항원이 펄싱된 수지상세포 모방 기능성 구조체는 나노사이즈의 크기로 인하여 암 표적기능이 매우 뛰어나며(negative targeting), 안정적이고, 부피 대비 넓은 표면적을 가지고 있기 때문에 T 세포와 쉽게 접촉할 수 있다. 따라서 수지상세포 모방 기능성 구조체의 활성화 및 그에 따른 특이적인 T 세포 반응의 활성화를 통해 효과적인 항암 면역반응을 유발할 수 있다. 또한, 체내에서 사멸의 위험이 없기 때문에 체내 순환 시간이 굉장히 길다는 장점이 있다.
본 개시에 따른 수지상세포 모방 기능성 구조체는 수지상세포 유래의 세포막을 초음파 처리하여 제조된 리포좀과 나노입자를 융합하여 제조한 것으로서, 상기 융합은 리포좀 및 나노입자를 혼합하여 공압출하는 것을 의미할 수 있다.
구체적으로 상기 수지상세포 유래의 세포막을 초음파 처리한 후, 나노사이즈의 멤브레인 필터를 통해 여과하여, 입경 200 ㎚이하의 리포좀을 수득할 수 있다. 상기 리포좀의 입경은 구체적으로 50 내지 150 ㎚일 수 있다.
본 개시에 따른 수지상세포 모방 나노구조체의 표면 제타전위는 -40 내지 -20 ㎷, 구체적으로 -35 내지 -25 ㎷일 수 있다.
또한 본 개시는 상술한 수지상세포 모방 나노구조체를 포함하는 약물전달시스템 또는 디바이스를 제공할 수 있다.
또한 본 개시는 다른 양태로서, 상술한 수지상세포 모방 나노구조체 및 약학적으로 허용되는 담체 또는 부형제를 포함하는 약학적 조성물을 제공할 수 있다.
이하 실시예를 통해 본 발명에 대해 더욱 상세히 설명한다. 다만 하기의 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
제조예 1. 비구형 코어 입자 제조
바이알에 0.1 M CTAB 10 ㎖, 및 0.001 M HAuCl4 2.5 ㎖를 넣고 교반하여, 추가로 환원제로서 0.01 M NaBH4 600 ㎕를 넣고 교반 속도를 높여 2분 간 섞어준 뒤 3~5 ㎚의 금 나노입자가 형성된 금 시드를 수득하였다. 30분간 금 시드를 숙성시킨 후, 5개의 250 ㎖ 삼각 플라스크에 각각 CTAB 0.075 M, 0.075 M, 0.1 M, 0.1 M, 0.1 M을 첨가하고, 온도를 30 ℃로 맞춰주었다. 여기에 각각 0.004 M AgNO3 4.8 ㎖, 3.6 ㎖, 2.4 ㎖, 2.4 ㎖, 4.8 ㎖를 첨가하고 15분간 방치한 뒤 0.064 M 아스코르브산을 250 ㎕씩 첨가하여 제조된 성장 용액에 앞서 수득한 금 시드를 각각 80 ㎕, 80 ㎕, 160 ㎕, 2 ㎕, 40 ㎕씩 첨가하여 12시간 동안 어두운 상태에서 교반하지 않고 실온에 보관하였다. 투명한 성장 용액이 와인색으로 변하게 되면 금 나노로드가 성장하는 것을 의미한다. 색변화 발생 후, 금 나노로드의 결정성장 반응을 완료하였다. 이후 원심분리하고 증류수로 2회 세척하여, 5가지 CTAB로 안정화된 금 나노로드(CTAB-GNR)를 수득하였다.
CTAB-GNR 40 ㎖를 물로 희석한 현탁액을 멤브레인 필터를 사용하여 한외여과 셀에서 농축하고, 잔류물을 물에 희석한 후 다시 현탁액을 원심분리하였다. 잔류물을 0.15 중량%의 Na-PSS에 재분산시키고, 다시 현탁액을 원심분리한 후, 잔류물을 0.7 중량%의 Na-PSS에 재분산시켜, PSS로 안정화된 금 나노로드(PSS-GNR)를 합성하였다. 이를 5 mM 30 ㎖의 시트르산나트륨을 처리하여 재분산시키고 12시간 동안 실온에 보관하였다. 이와 같은 방식으로 2회 반복하여 음으로 하전된 citrate-GNR을 수득하였다.
*GNR: Gold Nano Rod
*CTAB: cetyltrimethylammonium bromide
*PSS: polystyrenesulfonate
실험예 1. 제조예 1에 따라 제조된 비구형 코어 입자의 안정성 평가
<1-1. 표면 제타 전위>
제조된 CTAB-GNR의 경우 콜로이드 안정성이 떨어져 하루가 경과하기도 전 입자의 응집이 육안으로 관찰되었다. 동적광산란식 나노입도분석기(DLS, SZ100, Horiba)를 이용하여 콜로이드 안정성을 위한 시트르산 처리 전후의 금 나노로드 입자의 표면 제타 전위를 측정하여 도 4에 나타내었다.
시트르산 처리 후 표면이 음으로 하전된 금 나노로드는 증류수 내에서 -30~-40 ㎷의 표면 전위를 가짐으로써 정전기적 반발로 인한 문제없이, 세포막과 상호작용을 통해 코팅이 이루어질 수 있고, 응집없이 안정적으로 형태를 보존할 수 있다.
<1-2. 세포 생존율>
CTAB-GNR 및 시트르산 처리된 금 나노로드에 대하여 인간 진피 섬유아세포의 세포 생존율을 평가한 결과를 도 5에 나타내었다. 40% 이하로 낮았던 cell viability가 시트르산 처리 후, 100%에 달하여 세포의 독성이 대부분 제거됨을 확인할 수 있다.
실시예 1. 수지상세포 모방 구조체 제조
6주~8주령 Naive 6 마우스(Orient Bio)의 대퇴골에서 분리된 골수세포로부터 분화된 수지상세포를 추출하여, 2,000 rpm에서 5분간 원심분리하여 순수한 수지상세포를 수득하였다. 이후, Protease Inhibitor Tablet-PBS buffer를 처리하여 1~2×106 cells/㎖ 농도로 분산시켰다. 그리고 -70 ℃에서 급속 냉동, 상온에서의 해동 과정 및 원심분리를 거쳐 세포막만을 정제하였다. 이후 20%의 진폭으로, 3초 켜기/끄기 및 사이클간 2초의 냉각기를 갖는 3초 1회전을 총 60회 수행하는 초음파(VC505, Sonics & materials)를 처리하여, 마이크로 단위의 세포막 현탁액을 확보하였으며, 이를 나노 사이즈의 필터를 갖는 폴리카보네이트 막 (기공크기 1 ㎛, 400 ㎚, 100 ㎚)으로 걸러내 각 기공 크기의 직경을 갖는 나노 리포좀을 생성하였다.
상기 제조예 1에 따라 제조된 비구형 코어 입자 5 ㎕ 및 상기 나노 리포좀 1 ㎖을 혼합한 후, 함께 필터압축 (filter extrusion)하여, 수지상세포 모방 구조체를 제조하였다. 상기 제조된 수지상세포 모방 구조체에 0.2 ㎍/㎖의 OVA257-264 항원을 약 30분간 37 ℃에서 처리함으로써 MHC class I, II 표면에 항원을 제시할 수 있도록 유도하여, 항원이 펄싱된 수지상세포 모방 나노구조체를 제조하였다.
실험예 2. 수지상세포 모방 구조체의 특성 분석
실시예 1에 따른 수지상세포 모방 구조체가 제대로 제조되었는지를 확인하기 위하여 물리화학적 및 생물학적 분석을 실시하였다.
<2-1. TEM 이미지 분석>
도 6은 수지상세포 모방 구조체 제조 후, TEM 이미지를 나타낸 것이다. 수지상세포 모방 구조체는 길이-폭이 [1] 110 ㎚~20 ㎚ (Aspect Ratio 5.5), [2] 120 ㎚~65 ㎚ (Aspect Ratio 1.85), [3] 60 ㎚~20 ㎚ (Aspect Ratio 3.5), [4] 180 ㎚~100 ㎚ (Aspect Ratio 1.8), 및 [5] 135 ㎚~75 ㎚ (Aspect Ratio 1.8)인 금 나노로드 표면에 약 10-20 ㎚ 정도의 두께를 가지는 세포막 코팅이 이루어진 것을 확인할 수 있다.
<2-2. 표면 제타전위 측정>
수지상세포막(DC), 수지상세포 모방 구조체 (Rod1~Rod5) 및 구형을 나타내는 수지상세포 모방 구조체 (S60)의 제타전위 측정을 통해 표면 전하를 확인하였고, 그 결과는 도 7에 나타내었다.
수지상세포막 코팅 전 시트르산으로 분산된 금 나노로드의 강한 음의 제타 전위는 세포막 코팅 이후, 상대적으로 낮아진 값을 나타냄을 확인할 수 있다. 또한 본 발명에 따른 수지상세포 모방 구조체들의 경우 수지상세포막과 유사한 전위 값을 나타나 성공적으로 세포막 코팅이 이루어졌음을 확인할 수 있다.
실험예 3. 수지상세포 모방 구조체의 T 세포 활성화
96 well U bottom plate에 P14 mouse로부터 분리한 CD8 T 세포 5×104개, DC를 1×104개를 활용하여 실시예 1에 따라 제조된 수지상세포 모방 구조체 중 일부(rod 3)를 같은 well에 배양액 10% RPMI 200 ㎕을 통해 넣고, 37 ℃에서 3일간 공배양하였다. 3일 후, 해당 플레이트를 인큐베이터에서 회수하여 형광이 달린 항체를 통해 염색을 진행하고 유세포 분석기를 통하여 CD8 T 세포의 활성화 정도를 분석하였다. 그 결과는 도 9에 나타내었다.
수지상세포 모방 나노구조체에 OVA257-264를 처리하지 않고 CD8 T 세포와 공배양을 진행한 경우에는 T 세포 증식척도인 CTV가 늘어나지 않는 것을 확인할 수 있었으며, 마찬가지로 해당 그룹에서 활성화 척도인 CD44나, 기능성 사이토카인인 IFNγ, IL-2, TNFα 등도 CD8 T 세포에서 거의 나오지 않는 것을 확인할 수 있다. 반면, 수지상세포 모방 나노구조체에 OVA257-264를 처리하여 P14에서 분리한 CD8 T 세포의 T 세포 수용체에 결합할 수 있도록 처리한 결과, CTV가 진행되어 CD8 T 세포가 증식한 것을 확인할 수 있다. 대조군으로서 골수 유래 수지상세포(BMDC)와 균등한 정도로 CD44, IFNγ, TNFα, IL-2 모두 발현율이 높아 T 세포의 증식 및 활성화 효과가 우수하게 나타났음을 확인할 수 있다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (13)

  1. 비구형 코어 입자; 및 수지상세포로부터 유래된 지질 분자의 세포막을 포함
    하는 쉘;을 포함하는 구조체로서, 상기 쉘은 상기 지질 분자의 이중층을 포함하는
    것을 특징으로 하는 수지상세포 모방 구조체.
  2. 제 1항에 있어서,
    상기 비구형 코어 입자는 타원형, 로드형, 판상형 또는 비정형 형상을 가지
    는, 수지상세포 모방 구조체.
  3. 제 1항에 있어서,
    상기 비구형 코어 입자는 1차원 또는 2차원 나노구조체인, 수지상세포 모방
    구조체.
  4. 제 1항에 있어서,
    상기 비구형 코어 입자의 표면은 음으로 하전된, 수지상세포 모방 구조체.
  5. 제 1항에 있어서,
    상기 비구형 코어 입자의 표면은 상기 쉘에 포함되는 적어도 하나의 성분과 결합을 형성하는, 수지상세포 모방 구조체.
  6. 제 1항에 있어서,
    상기 비구형 코어 입자는 유기 고분자 나노입자, 금속 유기골격체 나노입자,
    금속 나노입자, 금속산화물 나노입자, 고체상 지질 나노입자(solid lipid
    nanoparticle), 자성 나노입자, 광열 변환 나노입자, 핵산 함유 나노입자, 및 단백
    질 함유 나노입자로 이루어진 군에서 선택되는 하나 또는 둘 이상인, 수지상세포모방 구조체.
  7. 제 1항에 있어서,
    상기 비구형 코어 입자는 50 ㎚ 내지 50 ㎛의 평균입경을 가지는, 수지상세
    포 모방 구조체.
  8. 제 1항에 있어서,
    상기 비구형 코어 입자는 종횡비가 1.1 내지 6.0인, 수지상세포 모방 구조체.
  9. 제 1항에 있어서,
    상기 쉘은 수지상세포와는 상이한 세포의 세포막으로부터 유래된 성분을 더 포함하는, 수지상세포 모방 구조체.
  10. 제 1항에 있어서,
    상기 쉘의 표면은 생리활성 고분자, 생리활성 성분 또는 단백질이 표지된 것인, 수지상세포 모방 구조체.
  11. (S10) 수지상세포로부터 세포막을 정제하는 단계;
    (S20) 상기 세포막에 초음파를 처리하여 세포막 현탁액을 형성하는 단계;
    (S30) 상기 세포막 현탁액을 멤브레인 필터를 통해 여과하여 리포좀을 수득하는 단계; 및
    (S40) 비구형 코어 입자 및 상기 리포좀을 혼합한 후, 필터압축하여 세포막이 도입된 비구형 입자를 수득하는 단계;를 포함하는 수지상세포 모방 구조체 제조 방법.
  12. 제 11항에 있어서,
    상기 (S40) 단계 이전, 비구형 코어 입자의 표면을 음으로 하전시키는 단계를 더 포함하는, 수지상세포 모방 구조체 제조방법.
  13. 제 11항에 있어서,
    상기 비구형 코어 입자의 종횡비는 1.1 내지 6.0인, 수지상세포 모방 구조체 제조방법.
PCT/KR2023/020791 2022-12-15 2023-12-15 수지상세포 모방 기능성 나노구조체 및 이의 제조방법 WO2024128870A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0176132 2022-12-15
KR1020220176132A KR20230091817A (ko) 2021-12-16 2022-12-15 수지상세포 모방 기능성 나노구조체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2024128870A1 true WO2024128870A1 (ko) 2024-06-20

Family

ID=91486136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020791 WO2024128870A1 (ko) 2022-12-15 2023-12-15 수지상세포 모방 기능성 나노구조체 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2024128870A1 (ko)

Similar Documents

Publication Publication Date Title
Zhou et al. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment
Zhao et al. In situ photothermal activation of necroptosis potentiates black phosphorus-mediated cancer photo-immunotherapy
CN109078176B (zh) 肿瘤细胞膜包覆的纳米材料及其制备方法与应用
Iranpour et al. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens
CN110623939B (zh) 一种负载斑蝥素的肿瘤细胞膜包封碲单质纳米颗粒的制备方法
Zhao et al. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy
CN112294776B (zh) 一种包覆细胞膜的还原响应型碳点载药纳米团簇及其制备和应用
WO2022199138A1 (zh) 一种纳米人工抗原呈递细胞及其制备方法和应用
WO2021127814A1 (zh) 用于癌症治疗的光纳米疫苗及其制备方法和应用
CN115197908A (zh) 一种自然杀伤细胞来源外泌体的提取、修饰方法及其应用
CN107648667B (zh) 一种磁控蛋白复合细胞膜片的制备方法
WO2024128870A1 (ko) 수지상세포 모방 기능성 나노구조체 및 이의 제조방법
CN109468275B (zh) 一种树突状细胞诱导剂及其制备方法与应用
WO2023113550A1 (ko) 수지상세포 모방 기능성 나노구조체 및 이의 제조방법
Du et al. A biomimetic nanoplatform for precise reprogramming of tumor-associated macrophages and NIR-II mediated antitumor immune activation
KR20230091817A (ko) 수지상세포 모방 기능성 나노구조체 및 이의 제조방법
WO2023113545A1 (ko) αPD-1를 포함하는 수지상 세포 모방 기능성 나노구조체 및 이의 제조방법
Bhargava et al. Assessment of tumor antigen-loaded solid lipid nanoparticles as an efficient delivery system for dendritic cell engineering
KR20220080681A (ko) 면역항암치료제로의 적용을 위한 수지상세포 모방 나노구조체 및 이의 제조방법
WO2023113546A1 (ko) αCTLA-4를 포함하는 수지상 세포 모방 기능성 나노구조체 및 이의 제조방법
WO2024128868A1 (ko) αPD-1를 포함하는 수지상 세포 모방 기능성 나노구조체 및 이의 제조방법
WO2007105171A2 (en) Killing of selected cells
KR102567421B1 (ko) αCTLA-4를 포함하는 수지상 세포 모방 기능성 나노구조체 및 이의 제조방법
EP4101471A1 (en) Nanoparticles for cancer treatment
CN115192708A (zh) 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用