WO2024128130A1 - Substrate retention device and film formation device - Google Patents

Substrate retention device and film formation device Download PDF

Info

Publication number
WO2024128130A1
WO2024128130A1 PCT/JP2023/043847 JP2023043847W WO2024128130A1 WO 2024128130 A1 WO2024128130 A1 WO 2024128130A1 JP 2023043847 W JP2023043847 W JP 2023043847W WO 2024128130 A1 WO2024128130 A1 WO 2024128130A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
substrate
temperature
temperature control
holding device
Prior art date
Application number
PCT/JP2023/043847
Other languages
French (fr)
Japanese (ja)
Inventor
慈 河合
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022199478A external-priority patent/JP2024085121A/en
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2024128130A1 publication Critical patent/WO2024128130A1/en

Links

Images

Definitions

  • the present invention relates to a substrate holding device used in a film forming apparatus.
  • the panel of an organic EL display device has a structure in which an organic layer that emits light is formed between two opposing electrodes (a cathode electrode and an anode electrode).
  • a cathode electrode and an anode electrode two opposing electrodes
  • an evaporation source installed at the bottom of the chamber is heated to release a metal or organic evaporation material, which is then evaporated onto the underside of the substrate through a mask.
  • Patent Document 1 proposes a technology for holding the substrate using an electrostatic chuck (ESC: Electrostatic chuck).
  • ESC Electrostatic chuck
  • the evaporation source in the deposition chamber is extremely hot, and there is a large temperature difference between the evaporation source and other parts in the deposition chamber. This makes it difficult to control the temperature of the electrostatic chuck, substrate, and mask, and they may deform or change in size due to thermal expansion. The effects of this size change can lead to a decrease in alignment accuracy and a deterioration in film quality.
  • the present invention aims to provide technology that allows for highly accurate temperature control in a film deposition device.
  • the substrate holding device of the present invention comprises: A substrate holding device used in a film forming apparatus that forms a film on a substrate, an electrostatic chuck for adsorbing the substrate; a member having a thermal conductivity higher than the thermal conductivity of the electrostatic chuck and in contact with the electrostatic chuck; A temperature control means for controlling the temperature of the member;
  • the present invention is characterized by comprising:
  • the film forming apparatus of the present invention comprises: A chamber; an evaporation source provided in the chamber; an electrostatic chuck provided in the chamber and configured to attract a substrate; a mask bonded to a film-forming surface of the substrate attracted to the electrostatic chuck;
  • a temperature control means for controlling the temperature of the member is characterized by comprising:
  • the present invention allows for highly accurate temperature control in a film forming device.
  • FIG. 1 is a schematic plan view showing a configuration of a film forming apparatus; Cross-sectional view showing the internal configuration of the film forming chamber Schematic diagram showing an example of a manufacturing line for an organic EL display device.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a second embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the arrangement and control configuration of a plurality of temperature control members; FIG.
  • FIG. 11 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a third embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a fifth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a sixth embodiment of the present invention.
  • the present invention is suitable for a film formation apparatus that forms a thin film of a film formation material on the surface of a film formation target such as a substrate by deposition or sputtering.
  • the present invention can be understood as a temperature adjustment mechanism, a substrate holding device, a film formation apparatus, and a temperature adjustment method or control method using these devices.
  • the present invention can also be understood as an electronic device manufacturing apparatus and a control method thereof, and an electronic device manufacturing method.
  • the present invention can also be understood as a program that causes a computer to execute the temperature adjustment method or control method, or a storage medium that stores the program.
  • the storage medium may be a non-transitory storage medium that is readable by a computer.
  • any material can be used for the substrate, such as glass, resin, metal, or silicon.
  • Any material can be used for the film formation, such as organic materials or inorganic materials (metals, metal oxides).
  • substrate includes substrate materials on whose surfaces one or more films have already been formed.
  • the technology of the present invention is typically applied to manufacturing equipment for electronic devices and optical components. It is particularly suitable for organic electronic devices, such as organic EL displays equipped with organic EL elements and organic EL display devices using such displays.
  • the present invention can also be used for thin-film solar cells and organic CMOS image sensors.
  • FIG. 1 is a plan view showing a schematic configuration of a film forming apparatus 1.
  • a manufacturing line for an organic EL display will be described.
  • a substrate of a predetermined size is carried into the manufacturing line, and after the organic EL and metal layers are formed, post-processing steps such as cutting the substrate are performed.
  • the film forming apparatus 1 includes a transfer chamber 130 located in the center, and multiple film forming chambers 110 (110a-110d) and mask stock chambers 120 (120a, 120b) located around the transfer chamber 130.
  • the film forming chamber 110 includes a chamber in which film forming processing is performed on a substrate 10.
  • the mask stock chamber 120 stores masks before and after use.
  • a transfer robot 140 installed in the transfer chamber 130 transfers substrates S and masks M into and out of the transfer chamber 130.
  • the transfer robot 140 is, for example, a robot in which a robot hand for holding substrates S and masks M is attached to an articulated arm.
  • the pass chamber 150 transports the substrate S flowing from the upstream side in the substrate transport direction to the transport chamber 130.
  • the buffer chamber 160 transports the substrate S, for which the film formation process in the transport chamber 130 has been completed, to another film formation cluster downstream.
  • the transport robot 140 receives the substrate S from the pass chamber 150, it transports it to one of the multiple film formation chambers 110.
  • the transport robot 140 also receives the substrate S, for which the film formation process has been completed, from the film formation chamber 110 and transports it to the buffer chamber 160.
  • the film formation apparatus 1 shown in FIG. 1 constitutes one film formation cluster, and another film formation cluster can be connected to the upstream or downstream side.
  • a swirl chamber 170 that changes the direction of the substrate 10 is provided further upstream of the pass chamber 150 and further downstream of the buffer chamber 160.
  • the film forming materials in the multiple film forming chambers 110a to 110d of the film forming apparatus 1 may be the same or different.
  • a film forming source of a different film forming material may be arranged in each of the film forming chambers 110a to 110d, and a layered structure may be formed as the substrate S moves sequentially through the film forming chambers 110a to 110d.
  • film formation may be performed on multiple substrates S in parallel.
  • a first film forming material may be arranged in the film forming chambers 110a and 110c, and a second film forming material may be arranged in the film forming chambers 110b and 110d, and the first layer may be formed in the film forming chamber 110a or 110c, and then the second layer may be formed in the film forming chamber 110b or 110.
  • the adhesion force of the substrate can be increased when a conductive material is attached to the substrate.
  • the electrostatic chuck can be effectively attached when a thin film of a metal material that will become an electrode layer has already been formed in the region of the substrate where the organic EL element is to be formed (typically the center of the substrate).
  • (Film formation chamber) 2 is a cross-sectional view showing the internal configuration of the film formation chamber 110.
  • a series of film formation processes are performed, such as receiving the substrate S and mask M from the transfer robot 140, transferring the substrate S and mask M to the transfer robot 140, aligning the substrate S and mask M relative to each other, fixing the substrate S to the mask M, and forming a film.
  • an XYZ orthogonal coordinate system is used in which the vertical direction is the Z direction, and rotation around the Z axis is represented by ⁇ .
  • the film formation chamber 110 has a chamber 200.
  • the interior of the chamber 200 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas during film formation.
  • an electrostatic chuck C, a magnet plate MP, a temperature control member TM, a cooling plate CP, a substrate support part 210, a mask table 221, an evaporation source 240 (film formation source), etc. are provided inside the chamber 200.
  • the mask M has an opening pattern that corresponds to the thin film pattern to be formed on the substrate.
  • a metal mask in which a metal foil on which a pattern is formed is supported by a frame around the periphery can be used as the mask M.
  • the mask M is placed on the mask table 221.
  • the substrate S is positioned and placed on the mask M, and then film formation is performed.
  • the substrate support part 210 has multiple claw-shaped supports 210a for receiving the substrate S transported into the film formation chamber.
  • the electrostatic chuck C is a substrate holding means inside the film formation chamber, and attracts and holds the substrate S supported by the substrate support part 210 by electrostatic force.
  • the electrostatic chuck C abuts against the surface of the substrate S opposite the surface that contacts the mask M (the surface on which a film is to be formed).
  • the substrate support part 210 may have a pressing tool corresponding to the support tool 210a. By clamping the end of the substrate S between the support tool 210a and the pressing tool, the substrate S can be held by the substrate support part 210 in addition to the electrostatic chuck C, making the substrate S more stable.
  • the magnet plate MP is provided to attract the mask M and adhere it to and adsorb it to the film-forming surface of the substrate S.
  • the substrate S which has been attracted to the electrostatic chuck C and has its relative position adjusted (aligned), is placed on the upper surface of the mask M (the film-forming surface of the substrate S is joined to the mask M), and the magnet plate MP is lowered from above the electrostatic chuck C to abut against the upper surface of the electrostatic chuck C (via the highly thermally conductive sheet HT in Example 1, etc.).
  • the magnet plate MP applies a magnetic force to the mask M between the electrostatic chuck C and the substrate S (applying a magnetic attraction force to attract it upward (towards the substrate S)), thereby adhering the mask M to the substrate S.
  • the film forming apparatus is equipped with a temperature control unit T as a temperature control mechanism (temperature control means) for preventing the temperature rise of the substrate S during film formation and preventing the organic material from changing or deteriorating.
  • a temperature control unit T is composed of a temperature control member TM, a cooling plate CP, etc., and the specific configuration will be described later.
  • the evaporation source 240 is a film-forming means including a container such as a crucible for containing the evaporation material, a heater, a shutter, a driving mechanism, an evaporation rate monitor, etc. Note that the film-forming source is not limited to an evaporation source, and a sputtering device may also be used.
  • An alignment stage 280, an electrostatic chuck lifting mechanism 291, a magnet plate lifting mechanism 292, etc. are provided on the upper outside of the chamber 200.
  • the alignment stage 280 is a mechanism for moving the electrostatic chuck C and the magnet plate MP horizontally (XY ⁇ directions).
  • the electrostatic chuck lifting mechanism 291 is a mechanism for raising and lowering the electrostatic chuck C in the Z-axis direction.
  • the magnet plate lifting mechanism 292 is a mechanism for raising and lowering the magnet plate MP in the Z-axis direction.
  • the alignment stage 280 is configured to be movable in the horizontal direction (XY ⁇ direction) relative to the chamber 200 by receiving the driving force of the motor 281 for driving the alignment stage via, for example, a UVW type actuator.
  • a UVW type actuator On the outer upper surface of the chamber 200, three linear actuators consisting of a guide rail (not shown) fixedly installed on the upper surface of the chamber 200 and a linear block movably installed on the guide rail are arranged, two parallel to each other and one perpendicular to each other.
  • the base plate 282 is supported by the three linear blocks, and the base plate 282 moves in the horizontal direction (XY ⁇ direction) by moving the three linear blocks in a predetermined direction by the driving force of the motor 281 installed on the outer upper surface of the chamber 200.
  • the base plate 282 can move to any position in the horizontal direction and change its direction in any direction. This movement of the base plate 282 allows the entire alignment stage 280 to move relative to the chamber 200 in the horizontal direction (XY ⁇ direction).
  • the alignment stage 280 moves the electrostatic chuck C by driving a motor 281 in accordance with a control signal transmitted from the control unit 270 (described later), thereby moving the substrate S attracted and held by the electrostatic chuck C in the X and Y directions and rotating it in the ⁇ direction.
  • the drive mechanism for the alignment stage 280 is not limited to the UVW type actuator described above, and other known configurations may be used.
  • the electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 are mounted on the alignment stage 280. Therefore, when the alignment stage 280 moves horizontally (XY ⁇ directions) with respect to the chamber 200, the electrostatic chuck C and the magnet plate MP also move horizontally (XY ⁇ directions) relative to the chamber 200.
  • the electrostatic chuck lifting mechanism 291 is a mechanism for raising and lowering the electrostatic chuck C in the Z-axis direction, and is mounted on the alignment stage base plate 282.
  • the electrostatic chuck C inside the chamber 200 is connected to the electrostatic chuck lifting mechanism 291 outside the chamber 200 via a shaft that airtightly penetrates the top plate of the chamber 200.
  • the electrostatic chuck lifting mechanism 291 includes a motor (not shown) for driving the electrostatic chuck to lift and lower, and an actuator (not shown) for driving the electrostatic chuck to lift and lower.
  • the actuator is configured to receive the driving force of the motor to raise and lower the shaft supporting the electrostatic chuck C. Specific examples of the actuator include a linear guide and a ball screw.
  • the magnet plate lifting mechanism 292 is a mechanism for raising and lowering the magnet plate MP in the Z-axis direction, and is mounted on the alignment stage base plate 282.
  • the magnet plate MP inside the chamber 200 is connected to the magnet plate lifting mechanism 292 outside the chamber 200 via a shaft that airtightly penetrates the top plate of the chamber 200.
  • the magnet plate lifting mechanism 292 includes a motor (not shown) for driving the magnet plate to lift and lower, and an actuator (not shown) for driving the magnet plate to lift and lower.
  • the actuator is configured to receive the driving force of the motor and raise and lower the shaft supporting the magnet plate MP. Specific examples of the actuator include a linear guide and a ball screw.
  • the electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 are installed on the base plate 282 of the alignment stage 280. Therefore, when the alignment stage 280 moves in the horizontal direction (XY ⁇ direction), the electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 (and therefore the electrostatic chuck C and the magnet plate MP) also move in the horizontal direction (XY ⁇ direction). As a result, even if, for example, a positional deviation occurs between the substrate S and the electrostatic chuck C, the relative position between them can be adjusted. Similarly, even if, for example, a positional deviation occurs between the mask M and the magnet plate MP, the relative position between them can be adjusted.
  • the substrate support part 210 and the mask table 221 are fixed in the horizontal direction (XY ⁇ direction) with respect to the chamber 200, but are configured to be able to move up and down in the vertical direction (Z axis direction).
  • the lifting mechanism for raising and lowering the substrate support part 210 and the mask table 221 in the vertical direction is provided on the external upper surface of the chamber 200 so as to be separate and independent from the alignment stage.
  • the lifting mechanism (not shown) for the substrate support part 210 and the mask table 221 is installed on a base plate (not shown) separate from the base plate 282, which is fixed to the external upper surface of the chamber 200, and is separate and independent from the alignment stage 280. Therefore, even if the alignment stage 280 moves in the horizontal (XY ⁇ ) direction, the substrate support part 210 and the mask table 221 do not move in the horizontal (XY ⁇ ) direction.
  • the position of the substrate S is adjusted (by adjusting the position of the electrostatic chuck C), but as long as the substrate S and mask M can be aligned relative to each other, the position of the mask M may be adjusted, or both the substrate S and mask M may be adjusted.
  • the electrostatic chuck lifting mechanism 291 When the electrostatic chuck C holds the substrate S supported by the substrate support part 210, the electrostatic chuck lifting mechanism 291 first lowers the electrostatic chuck C so that the electrostatic chuck C abuts or is sufficiently close to the substrate S. Then, the control part 270 controls the power supply 290 to apply a predetermined adsorption voltage to the electrode embedded in the electrostatic chuck C. This causes the substrate S to be held by the electrostatic chuck C.
  • the electrostatic chuck lift mechanism 291 further lowers the electrostatic chuck C to bring the substrate S closer to the mask M.
  • the alignment stage 280 then performs the alignment.
  • the electrostatic chuck C in this embodiment is an element that constitutes the substrate holding device of the present invention.
  • the elements that constitute the substrate holding device of the present invention may include a power supply 290, a control unit 270, an electrostatic chuck lifting mechanism 291, etc.
  • the temperature adjustment unit T of various forms described below or the components of the temperature adjustment unit T are included in the elements that constitute the substrate holding device and film forming apparatus of the present invention as the temperature control means, etc. of the present invention.
  • the evaporation source 240 releases the film-forming material.
  • the magnet plate lifting mechanism 292 raises the magnet plate MP
  • the electrostatic chuck lifting mechanism 291 raises the electrostatic chuck C
  • the substrate S on which the film has been formed is handed over to the transfer robot.
  • the voltage applied to the electrostatic chuck C is set to a predetermined peeling voltage (e.g., 0 V), thereby releasing the substrate S from its hold.
  • a camera 262 is provided on the upper outside of the chamber 200, which performs optical imaging to generate image data.
  • the camera 262 images through a vacuum sealing window provided in the chamber 200.
  • multiple cameras 262 are provided corresponding to the four corners of the substrate S.
  • Each camera 262 is positioned so that its imaging range includes the substrate alignment mark provided at the corner of the substrate S and the mask alignment mark provided at the corner of the mask M.
  • the camera 262 captures images of the substrate S and mask M and outputs image data to the control unit 270.
  • the control unit 270 analyzes the captured image data and acquires position information of the substrate alignment mark and mask alignment mark using techniques such as pattern matching processing. Then, based on the amount of misalignment between the substrate alignment mark and the mask alignment mark, it calculates the XY directions, movement distance, and rotation angle ⁇ for moving the substrate S. Then, it converts the calculated movement amount into the drive amount of the stepping motor or servo motor equipped in each actuator of the alignment stage 280, and generates a control signal. Note that two-stage alignment may be performed using a low-resolution but wide-field-of-view camera for rough alignment and a narrow-field-of-view but high-resolution camera for fine alignment.
  • the control unit 270 is an information processing device that communicates with each component of the film forming apparatus 1 via a control line or wireless communication (not shown), receives data from each component, and sends signals to each component to control their operation.
  • the control unit 270 can be configured, for example, by a computer having a processor, memory, storage, I/O, etc. In this case, the functions of the control unit 270 are realized by the processor executing a program stored in the memory or storage.
  • a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logic controller) may be used.
  • some or all of the functions of the control unit 270 may be configured by a circuit such as an ASIC or FPGA. Note that a control unit 270 may be provided for each film forming chamber, or one control unit 270 may control multiple film forming chambers.
  • the power supply 290 is a high-voltage power supply device capable of supplying voltage to each component of the film forming apparatus 1 via conductive wires (not shown).
  • the power supply 290 controls the polarity and magnitude of the applied voltage according to instructions from the control unit 270.
  • the power supply 290 can be considered a voltage supplying means. By controlling the polarity and magnitude of the voltage (adsorption voltage) applied to the electrodes of the electrostatic chuck C, the adsorption force on the substrate S can be controlled.
  • the power supply 290 and the control unit 270 may be considered to collectively constitute the power supply for the film forming apparatus.
  • the application of the present invention is not limited to cluster-type deposition apparatus as described above.
  • the present invention can also be applied to in-line deposition apparatus in which multiple chambers are connected through a vacuum, and a substrate held by a substrate carrier is moved between the chambers while a film is deposited thereon.
  • the electrostatic chuck C has a structure in which an electric circuit, such as a metal electrode, is embedded in a plate-shaped base material made of ceramic or the like.
  • an electric circuit such as a metal electrode
  • electrostatic chucks such as a gradient force type, a Coulomb force type, and a Johnsen-Rahbek force type, depending on the principle by which the substrate is attracted to the electrostatic chuck.
  • the attracting force can be increased by increasing the attracting voltage applied.
  • Gradient force type electrostatic chucks attract objects by utilizing the attraction force that occurs toward an area with a potential gradient (gradient) generated by the potential difference between the electrodes.
  • a gradient force is generated even if the object to be attracted is an insulator, so it can hold even plain glass or glass substrates on which no conductive film has been formed.
  • an attraction voltage is applied so that the potential of the first electrode is higher than the reference potential of the object to be attracted and the potential of the second electrode is lower than the reference potential, based on the potential of the object to be attracted.
  • Coulomb force type electrostatic chucks attract objects by electrostatic attraction generated by applying positive and negative voltages to two electrodes, respectively, and are effective when the object is a conductor. Therefore, they can be effectively attached to a substrate on which an electrode layer of a metal material has already been formed.
  • both the positive and negative electrodes can be placed facing the object to generate polarization within the object, which allows it to be attracted.
  • the object When the object is grounded, it can be attracted by at least one of the positive and negative electrodes.
  • Coulomb force is generally stronger than gradient force. Also, the larger the area of the electrode facing the object, the stronger the chucking force. Therefore, in order to increase the chucking force, it is necessary to increase the ratio of the electrode area to the area of the electrostatic chuck as much as possible.
  • Johnson-Rahbek force type electrostatic chucks attract conductive objects by passing a leakage current through the positive electrode, the object to be attracted, and the negative electrode in that order, and require a dielectric with a volume resistance value within a specified range to be placed between the electrode and the object to be attracted.
  • the Johnson-Rahbek force is generally stronger than the Coulomb force. Also, with the Johnson-Rahbek force type electrostatic chuck, the greater the contact area with the object to be attracted, the stronger the suction force can be.
  • FIG. 3 An example of a manufacturing line for an organic EL display device is shown in Fig. 3.
  • the manufacturing line shown in Fig. 3 is a line in which five film formation clusters (film formation devices) 1 (film formation clusters 1-1 to 1-5), each having four film formation chambers 11 as shown in Fig. 1, and one film formation cluster 1b (film formation cluster 1-6), each having two film formation chambers 11, are connected in series.
  • the four deposition clusters 1-1 to 1-4 located upstream in the line constitute a first organic vapor deposition section 102 that forms a total of eight organic layers in the production line, and two organic layers are deposited on the substrate S in each deposition cluster.
  • the deposition cluster 1-5 located downstream in the line from the first organic vapor deposition section 102 constitutes the metal vapor deposition section 103 in the production line, and two metal layers are deposited on the substrate S.
  • the deposition cluster 1b located downstream in the line constitutes the second organic vapor deposition section 104 in the production line, and one organic layer is deposited on the substrate S.
  • a substrate S is first fed into a pre-processing section 101, where it undergoes the necessary pre-processing steps, and then is transported to a post-processing step via a first organic vapor deposition section 102, a metal vapor deposition section 103, and a second organic vapor deposition section 104.
  • the substrate S flows to a post-processing step, for example, via route A or route B indicated by the arrows in the figure.
  • the substrate S is heated in each of the deposition sections 102-104. In other words, the substrate S is repeatedly heated as it passes through the production line.
  • the deposition source is heated to approximately 450°C for forming an organic film, and to approximately 1300°C for forming a metal film.
  • the substrate S and mask M are aligned to within ⁇ 2.0 ⁇ m, for example, the substrate S may stretch and cause misalignment, which may reduce the alignment accuracy. Furthermore, the reduced alignment accuracy may lead to a deterioration in film quality, making it difficult to obtain good deposition results. Furthermore, size changes due to high temperatures during deposition may also occur in the electrostatic chuck C, and the size change of the electrostatic chuck C may also exacerbate the reduction in alignment accuracy.
  • the film forming apparatus in this embodiment includes a temperature control mechanism (temperature control means) for controlling the temperature of the electrostatic chuck C to which the substrate S is attached, as a means for controlling the temperature of the substrate S to suppress the influence of the elongation of the substrate S in the organic EL manufacturing line described above.
  • a temperature control mechanism for controlling the temperature of the electrostatic chuck C to which the substrate S is attached, as a means for controlling the temperature of the substrate S to suppress the influence of the elongation of the substrate S in the organic EL manufacturing line described above.
  • the temperature of the substrate may be lowered during the transfer process. In that case, the temperature is controlled so that the substrate S can be sent to the next process after the temperature is raised to a suitable input temperature in the next process.
  • the temperature of the substrate is not limited to being kept constant, and may be controlled to a different target substrate temperature in each chamber.
  • the temperature control means may be appropriately adopted, which performs both heating and cooling, only heating, or only cooling.
  • temperature control units T1 to T7 for Examples 1 to 7 are shown as specific configuration examples of the temperature control mechanism.
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of the temperature adjustment mechanism according to the first embodiment of the present invention.
  • the temperature adjustment means in the film forming apparatus of this embodiment includes a temperature adjustment unit T1.
  • the temperature adjustment unit T1 includes a temperature adjustment member TM, a high thermal conductivity sheet HT, a cooling plate CP, etc.
  • the elements constituting the temperature adjustment means include a temperature sensor TS1, a temperature sensor TS2 (see FIG. 2), a magnet plate MP as a first heat transfer member, and an electrostatic chuck C as a second heat transfer member.
  • the temperature control member TM in this embodiment is a plate-shaped temperature control member incorporating a Peltier element.
  • the temperature control member TM is provided integrally with the magnet plate MP and moves up and down together with the magnet plate MP. Specifically, the temperature control member TM is disposed in contact with the upper surface (the surface opposite to the surface facing the electrostatic chuck C) of the base plate BP of the magnet plate MP.
  • the temperature control member TM is divided and arranged in multiple parts. That is, multiple temperature control members TM are arranged at equal intervals on the upper surface of the base plate BP of the magnet plate MP. Note that the temperature control member TM may be formed from a single member so that the temperature control member TM is in contact with almost the entire upper surface of the base plate BP. In other words, the configuration of the temperature control member TM is not limited to the configuration shown in FIG. 4.
  • the cooling plate CP is arranged in contact with the upper surface of the temperature control member TM (the surface opposite to the surface in contact with the magnet plate MP).
  • the temperature control member TM is arranged between the magnet plate MP and the cooling plate CP in the Z-axis direction, and is configured to directly exchange heat between the magnet plate MP and the cooling plate CP.
  • a Peltier element is a plate-shaped element in which P-type and N-type semiconductors are arranged alternately.
  • heat is transferred between both sides of the element, with one side generating heat and increasing its temperature, and the other side absorbing heat and decreasing its temperature. Heating and cooling can be achieved by switching the direction of the current input to this Peltier element.
  • Peltier elements have a fast response among temperature control elements, and can be switched at high speed, allowing for highly accurate temperature control.
  • the highly thermally conductive sheet HT (high thermally conductive member) is a sheet-like member made of a material having a higher thermal conductivity than the electrostatic chuck C and the magnet plate MP.
  • the highly thermally conductive sheet HT is arranged in contact with the upper surface 261 of the electrostatic chuck C (the surface opposite to the adsorption surface 260 that adsorbs the substrate S).
  • the magnet plate MP descends toward the electrostatic chuck C to attract (adsorb) the mask M to the substrate S
  • the magnet MG of the magnet plate MP comes into contact with the upper surface of the highly thermally conductive sheet HT (the surface opposite to the surface that contacts the electrostatic chuck C).
  • the highly thermally conductive sheet HT is sandwiched between the electrostatic chuck C and the magnet plate MP in the Z-axis direction. In this state, the highly thermally conductive sheet HT is configured to exchange heat between the electrostatic chuck C and the magnet plate MP.
  • the highly thermally conductive sheet HT which has a higher thermal conductivity than the electrostatic chuck C, comes into contact with the electrostatic chuck C, thereby making it possible to efficiently cool the electrostatic chuck C.
  • This cooling effect can be obtained regardless of the size of the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C, but the larger the contact area, the greater the cooling effect.
  • the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is configured to be larger than the projected area in the Z-axis direction of the multiple magnets MG of the magnet plate MP (the total contact area of the multiple magnets MG with the highly thermally conductive sheet HT). This makes it possible to improve the cooling effect compared to when the multiple magnets MG of the magnet plate MP are in direct contact with the electrostatic chuck C.
  • the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is configured to be larger than the projection area of the temperature control member TM in the Z-axis direction (the total contact area of the multiple temperature control members TM with the magnet MG (base plate BP)). This makes it possible to improve the cooling effect compared to when the multiple temperature control members TM are in direct contact with the electrostatic chuck C.
  • the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is secured to be as large as possible, and the highly thermally conductive sheet HT is configured to be in contact with the entire upper surface 261 of the electrostatic chuck C evenly.
  • the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is 50% or more of the area of the electrostatic chuck C projected in the Z-axis direction. This makes it possible to lower the temperature of the electrostatic chuck C uniformly all over.
  • the cooling plate CP is a plate-shaped cooling member made of stainless steel, and has a water channel WP inside, which is a cooling pipe for flowing a refrigerant.
  • the water channel WP is configured to be able to circulate cooling water as a refrigerant between the chamber 200 and the outside, and the heat applied to the cooling plate CP can be absorbed by the cooling water and discharged to the outside.
  • the cooling plate CP is an optional component for further enhancing the cooling effect, and may be omitted from the temperature adjustment unit T1.
  • the temperature sensor TS1 (first temperature detection means) is a temperature sensor that detects the temperature of the electrostatic chuck C, is incorporated in the base material 250 of the electrostatic chuck C, and is configured to be able to send the detected temperature to the control unit 270.
  • a thermistor, a diode, or the like can be used as the temperature sensor TS1 for example.
  • the temperature of the electrostatic chuck C to which the substrate S is attached is constantly monitored by the temperature sensor TS1.
  • the temperature of the substrate S rises when it receives thermal energy from deposition, and this thermal energy is transferred to the electrostatic chuck C.
  • the temperature of the electrostatic chuck C at this time is detected by the temperature sensor TS1 and fed back to the cooling operation by the temperature control unit T1 (particularly the temperature control member TM).
  • the temperature sensor TS2 (second temperature detection means) is provided on the side wall of the chamber 200 and is configured to be able to send the detected temperature to the control unit 270.
  • the temperature sensor TS2 for example, a radiation thermometer that measures the temperature of the mask M from electromagnetic waves (light) emitted from the mask M can be used.
  • the control unit 270 includes a current supply unit (see FIG. 7) that supplies current to the Peltier element of the temperature adjustment member TM based on the power supplied from the power source 290.
  • the control unit 270 as a control unit in the temperature control means, controls the temperature (heat exchange state) of the temperature adjustment member TM by controlling the current that the current supply unit supplies to the Peltier element of the temperature adjustment member TM.
  • the control unit 270 together with the power source 290, may be considered to be included in the configuration (temperature control unit) of the temperature control means of the present invention.
  • the control unit 270 controls the temperature adjustment member TM based on the temperature detected by the temperature sensor TS1 and the temperature detected by the temperature sensor TS2. Specifically, for example, when a substrate S is subjected to film formation across multiple film formation chambers, the temperature of the electrostatic chuck C provided in the current film formation chamber (first film formation chamber) is controlled to approach the temperature of the mask M provided in the next film formation chamber (second film formation chamber). At this time, the temperature of the mask M provided in the next film formation chamber (second film formation chamber) is detected using the temperature sensor TS2 provided in the chamber 200 of the next film formation chamber.
  • the temperature of the electrostatic chuck C (first electrostatic chuck) in the current film formation chamber (first film formation chamber) is monitored by the temperature sensor TS1 (first temperature sensor) provided on the electrostatic chuck C (first electrostatic chuck) in the current film formation chamber (first film formation chamber).
  • the temperature of the mask M (second mask) in the next film formation chamber (second film formation chamber) is detected by the temperature sensor TS2 (second temperature sensor) provided in the next film formation chamber (second film formation chamber).
  • the current applied to the temperature adjustment member TM (first temperature adjustment member) in the current film formation chamber (first film formation chamber) is controlled so that the temperature detected by the temperature sensor TS1 (first temperature sensor) approaches the temperature detected by the temperature sensor TS2 (second temperature sensor).
  • FIG. 5 is a schematic diagram showing an example of temperature control in an organic EL production line.
  • an organic EL production line it may be required to match the temperature of the substrate S to the temperature inside the chamber 200 in each process or to the temperature of the mask M in each process.
  • the temperature of the mask M may differ in each film formation cluster 1-1 to 1-5, 1b due to differences in film formation conditions, etc.
  • the temperature difference between the substrate S and the mask M becomes more noticeable, especially in the latter half of the line.
  • the temperature of the electrostatic chuck C i.e., the temperature of the substrate S
  • the temperature inside each chamber 200 and the temperature of the mask M it is possible to control the temperature of the substrate S to match the temperature of the mask M of each of the deposition clusters 1-1 to 1-5 and 1b shown in FIG. 5.
  • the magnet plate MP is a member that comes into contact with the electrostatic chuck C, and depending on the specific embodiment of the temperature adjustment unit T, can be regarded as a heat transfer member that transfers heat between the substrate S and the temperature adjustment member TM together with the electrostatic chuck C. In other words, it can be considered to be included in the configuration of the temperature control means of the present invention.
  • the magnet plate MP is a magnetic force generating means composed of a base plate BP and multiple magnets MG.
  • the multiple magnets MG are attached at equal intervals to the underside of the base plate BP (the surface of the base plate BP facing the electrostatic chuck C).
  • Each magnet MG is configured as a protrusion that protrudes in the Z-axis direction from the underside of the base plate BP toward the side where the electrostatic chuck C is located, and its tip surface comes into contact with the upper surface of the highly thermally conductive sheet HT.
  • the magnets MG attract the mask M toward the substrate S (in the Z-axis direction) with their magnetic force, and although there are no particular limitations on their arrangement, for example, an arrangement corresponding to the frame shape of the mask M may be adopted. In other words, instead of being evenly distributed over the entire area of the upper surface 261 of the electrostatic chuck C, they may be arranged in a biased manner.
  • the electrostatic chuck C is a member that comes into contact with the substrate S, the temperature of which is to be controlled, and from the viewpoint of controlling the temperature of the substrate S, it can be considered as a heat transfer member that transfers heat between the substrate S and the temperature control member TM.
  • the electrostatic chuck C is configured such that a positive electrode 251 and a negative electrode 252 are embedded in a base material 250 made of ceramic or the like.
  • the positive electrode 251 and the negative electrode 252 are connected to a power source 290, and a voltage of a desired magnitude is applied to them under the control of the control unit 270, generating an adsorption force corresponding to the magnitude of the voltage to attract the substrate S.
  • the temperature adjustment unit T1 of this embodiment is configured to use a temperature adjustment member formed of a Peltier element or the like, and to control the temperature of the electrostatic chuck C while monitoring the temperature of the electrostatic chuck C and the temperature of the mask M.
  • a highly thermally conductive sheet HT is brought into contact with the electrostatic chuck C, and the temperature of the electrostatic chuck C is controlled via the highly thermally conductive member (by controlling the temperature of the highly thermally conductive member).
  • the temperature control unit T1 is configured such that, as viewed from the mask M side, the mask M, electrostatic chuck C, magnet plate MP, and temperature control means (temperature control member TM, cooling plate CP, etc.) are arranged in this order in the Z-axis direction (the direction intersecting the adsorption surface 260 of the electrostatic chuck C).
  • temperature control means temperature control member TM, cooling plate CP, etc.
  • the temperature control means used in the film forming apparatus.
  • a configuration in which a separate cooling member is placed between the magnet plate MP and the mask M in addition to the above-mentioned temperature control means of this embodiment is also conceivable.
  • the configuration of the temperature adjustment unit T1 of this embodiment by adopting the configuration of the temperature adjustment unit T1 of this embodiment, at least a part of the cooling means is placed in a position that has little effect on the magnet plate MP's attraction to the mask, and the same effect as above can be obtained.
  • the effect of reducing the effect of the magnet plate MP's attraction to the mask is further enhanced.
  • the temperature control of the electrostatic chuck C using the temperature control unit T1 of this embodiment is most effective when the magnet plate MP is lowered from a position (first position) spaced apart from the electrostatic chuck C to a position (second position) in which it comes into contact with the electrostatic chuck C (through the highly thermally conductive sheet HT).
  • the magnet plate MP is typically brought into contact with the electrostatic chuck C (lowered) after the aligned substrate S is placed on the mask M, that is, when the mask M is brought into close contact with the substrate S by the magnetic force of the magnet plate MP.
  • the timing and period for controlling the temperature control member TM is typically when the evaporation source 240 releases the film-forming material, i.e., when the substrate S is exposed to the highest temperature.
  • temperature control may be continued with the magnet plate MP in contact with the electrostatic chuck C, i.e., with the substrate S in close contact with the mask M, for example, with the shutter closed if the film formation device is equipped with a shutter.
  • temperature control may not be performed during film formation, and temperature control may only begin after film formation is completed, with the magnet plate MP in contact with the electrostatic chuck C.
  • temperature control by controlling the temperature control member TM may be performed at a timing other than during the film formation operation.
  • a configuration may be adopted in which the magnet plate MP is brought into contact with the electrostatic chuck C to control the temperature of the electrostatic chuck C while the substrate S is being transported before and after the film formation operation.
  • the magnet plate MP may be brought into contact with the electrostatic chuck C (lowered) without adhering the mask M to the substrate S, and temperature control may be performed by controlling the temperature control member TM (Peltier element).
  • the temperature of the electrostatic chuck C may be controlled at any time regardless of the operating status of the film forming apparatus.
  • the temperature control by the temperature adjustment unit T1 typically involves cooling the substrate S.
  • the electrostatic chuck C may be heated by the operation of the Peltier element of the temperature adjustment member TM. Therefore, the temperature adjustment member TM is not limited to one that uses a Peltier element, and may also use a heater composed of an electric heating wire or the like.
  • one of the purposes of the temperature control by the temperature adjustment unit T1 is to adjust the temperature of the substrate S to match the temperature of the mask M to be used in the next film formation in a series of film formation lines (multiple film formation operations across multiple film formation chambers) as shown in FIG. 5.
  • the purpose of the temperature control by the temperature adjustment unit T1 is not limited to the above.
  • the temperature of the electrostatic chuck C (i.e., the substrate S) may be controlled by the temperature adjustment unit T1 based on the detected temperature of the electrostatic chuck C.
  • the cooling or heating by the Peltier element changes the temperature of the member in contact with the temperature adjustment member TM, and further changes the temperature of other members in contact with that member in a chain reaction due to thermal conduction. That is, when the temperature adjustment member TM cools the magnet plate MP, the highly thermally conductive sheet HT in contact with the magnet plate MP, the electrostatic chuck C in contact with the highly thermally conductive sheet HT, and the substrate S in contact with the electrostatic chuck C are sequentially cooled. And, naturally, the mask M in contact with the substrate S is also cooled (the temperature adjustment member TM is a temperature control means that controls the temperature of each of the above-mentioned members).
  • the heat sources in the film formation chamber are the vaporized film formation material and radiant heat from the evaporation source, which mainly heat the mask M and substrate S.
  • the temperatures of the substrate S and mask M ultimately change depending on the difference between the amount of heating energy and the cooling capacity via the electrostatic chuck C, and although a temperature gradient in which the temperature is higher on the side closer to the evaporation source can occur, the temperature rise of both the substrate S and the mask M is suppressed compared to the case where cooling by the temperature adjustment unit T1 of this embodiment is not performed.
  • the temperature adjustment control by the temperature adjustment unit T1 of this embodiment is primarily intended to regulate (cool) the temperature of the substrate S, it can also be said to indirectly suppress the temperature rise of the mask M.
  • Example 2 A temperature adjustment unit T2 according to a second embodiment of the present invention will be described with reference to Fig. 6 and Fig. 7.
  • Fig. 6 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the second embodiment of the present invention.
  • Fig. 7 is a schematic plan view corresponding to the view taken along the line AA in Fig. 6, illustrating another example of the arrangement and control configuration of a plurality of temperature adjustment members.
  • Example 2 the same reference numerals will be used for the same parts as in Example 1, and the description will be omitted.
  • the temperature control member TM In the temperature control unit T1 of Example 1, the temperature control member TM is not in direct contact with the electrostatic chuck C, but controls the temperature of the electrostatic chuck C via the magnet plate MP and the highly thermally conductive sheet HT. In contrast, in the temperature control unit T2 of Example 2, as shown in FIG. 6, the temperature control member TM is arranged so as to be in direct contact with the upper surface 261 of the electrostatic chuck C.
  • the thermal energy transferred to the electrostatic chuck C is directly recovered by the temperature control member TM made of a Peltier element, cooling the electrostatic chuck C while radiating the thermal energy to the magnet plate MP.
  • the thermal energy transferred to the magnet plate MP is recovered by the water passage WP provided in the cooling plate CP. This makes it possible to send the substrate S to the next process while suppressing the temperature rise.
  • the temperature adjustment unit T2 of the second embodiment is configured to divide the upper surface 261 of the electrostatic chuck C into a plurality of regions 261-1 to 261-4, and to place independent temperature adjustment members TM1 to TM4 in each of the divided regions 261-1 to 261-4.
  • Each of the temperature adjustment members TM1 to TM4 is configured to be independently controllable.
  • a plurality of power supply circuit sections TC1 to TC4 are provided corresponding to the plurality of temperature adjustment members TM1 to TM4.
  • Each of the power supply circuit sections TC1 to TC4 is configured with two power supplies and two switches connected in parallel, and is configured to be able to individually switch between the heating state and the cooling state of each Peltier element by switching the direction of the current input to the Peltier element.
  • the temperature adjustment unit T2 of the second embodiment is configured to have multiple temperature sensors TS1-1 to TS1-4 corresponding to the multiple divided regions 261-1 to 261-4 and the multiple temperature adjustment members TM1 to TM4 as temperature detection means for the electrostatic chuck C.
  • the electrostatic chuck C is divided into multiple regions, a temperature sensor is placed in each region to monitor the temperature of each region, and a current is passed through the Peltier element so that each region reaches the desired temperature, thereby controlling the temperature of the electrostatic chuck C. This makes it possible to perform temperature control corresponding to the temperature difference between the divided regions 261-1 to 261-4, for example, control to reduce the temperature difference.
  • a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
  • the upper surface 261 of the electrostatic chuck C is divided into four divided regions 261-1 to 261-4, two vertically and two horizontally, and four temperature adjustment members TM1 to TM4, four power supply circuit units TC1 to TC4, and four temperature sensors TS1-1 to TS1-4 are provided, but the number of divisions and the method of division are not limited to this.
  • Example 3 A temperature adjustment unit T3 according to a third embodiment of the present invention will be described with reference to Fig. 8.
  • Fig. 8 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the third embodiment of the present invention.
  • Example 3 the same reference numerals will be used for the same parts as those in the configurations of Examples 1 and 2, and the description will be omitted.
  • the temperature control unit T3 of Example 3 is configured by attaching a non-magnetic metal member MM, which has a higher thermal conductivity than the electrostatic chuck C and also has a higher thermal conductivity than the magnet plate MP, to the base plate BP of the magnet plate MP. Instead of providing the non-magnetic metal member MM, the temperature control unit T3 of Example 3 is configured without the high thermal conductivity sheet HT of the temperature control unit T1 of Example 1.
  • the multiple magnets MG of the magnet plate MP may not be evenly arranged over the entire area of the upper surface 261 of the electrostatic chuck C, but may be arranged in a biased manner. Furthermore, from the standpoint of heat transfer, the arrangement may be such that a sufficient contact area cannot be ensured.
  • the magnet plate MP at least the magnets MG are components that are arranged primarily to ensure the magnetic attraction effect of the mask M. Therefore, it is preferable to arrange a component separate from the magnets MG that prioritizes ensuring heat transfer.
  • the temperature control unit T3 of Example 3 arranges multiple non-magnetic metal members MM in the spaces between multiple magnets MG on the surface of the magnet plate MP facing the electrostatic chuck C.
  • Each non-magnetic metal member MM protrudes from the above-mentioned facing surface of the magnet MG toward the electrostatic chuck C beyond the magnet MG. Therefore, when the magnet plate MP descends, the tip surface of the non-magnetic metal member MM comes into contact with the upper surface 261 of the electrostatic chuck C.
  • a gap is formed between the magnet MG and the upper surface 261 of the electrostatic chuck C, but the height of the magnet MG is configured so that the magnetic attraction force of the mask M is sufficiently ensured.
  • the highly thermally conductive sheet HT of the temperature control unit T1 of Example 1 may be disposed on the upper surface 261 of the electrostatic chuck C, and the non-magnetic metal member MM may be connected to the electrostatic chuck C via the highly thermally conductive sheet HT.
  • Example 4 A temperature adjustment unit T4 according to a fourth embodiment of the present invention will be described with reference to Fig. 9.
  • Fig. 9 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the fourth embodiment of the present invention.
  • Example 4 the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 3, and the description will be omitted.
  • the cooling plate CP is an optional component of the temperature control unit T. Therefore, unlike the temperature control unit T4 of Example 4 in Examples 1 to 3, the cooling plate CP is omitted as shown in FIG. 9. In cases where the temperature control capacity of the temperature control member TM is sufficient to control the temperature of the substrate S, there is a cost advantage in omitting the cooling plate CP.
  • a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
  • Example 5 A temperature adjustment unit T5 according to a fifth embodiment of the present invention will be described with reference to Fig. 10.
  • Fig. 10 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the fifth embodiment of the present invention.
  • Example 5 the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 4, and the description will be omitted.
  • the temperature control unit T5 of Example 5 is configured to have a water channel WP, which is a cooling pipe that flows a refrigerant through the base plate BP of the magnet plate MP, as a cooling means that replaces the temperature control member TM using a Peltier element in the temperature control units T1 to T4 of Examples 1 to 4.
  • a water channel WP which is a cooling pipe that flows a refrigerant through the base plate BP of the magnet plate MP, as a cooling means that replaces the temperature control member TM using a Peltier element in the temperature control units T1 to T4 of Examples 1 to 4.
  • cooling water as a refrigerant circulates through the water channel WP as a temperature control means embedded in the magnet plate MP. This cools the base plate BP, and heat is exchanged with the electrostatic chuck C via the highly thermally conductive sheet HT and magnet MG.
  • the water-cooled temperature control configuration offers cost benefits by eliminating the temperature control member TM (and the power supply circuitry that controls it).
  • a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
  • Example 6 A temperature adjustment unit T6 according to a sixth embodiment of the present invention will be described with reference to Fig. 11.
  • Fig. 11 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the sixth embodiment of the present invention.
  • Example 6 the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 5, and the description will be omitted.
  • the temperature control unit T6 of the sixth embodiment is configured with a heat sink HS as a cooling means to replace the temperature control member TM using a Peltier element and the cooling plate CP in the temperature control units T of the other embodiments.
  • the heat sink HS is provided on the upper surface of the base plate BP of the magnet plate MP (the surface opposite to the surface facing the electrostatic chuck C).
  • the heat sink HS has multiple protrusions on the surface opposite the contact surface with the base plate BP, and has a heat dissipation structure (heat sink structure) in which the surface area of the uneven shape on the side where the protrusions are provided is larger than the area of the contact surface.
  • the heat sink HS is configured to dissipate heat from the electrostatic chuck C transferred to the contact surface with the base plate BP on the uneven surface opposite the contact surface, promoting cooling of the electrostatic chuck C.
  • the specific configuration of the heat dissipation shape portion of the heat sink HS is not limited to a specific one.
  • the shape of the protrusions of the heat dissipation shape portion may be, for example, a plate-shaped protrusion, a columnar protrusion, or a protrusion of another shape. Furthermore, it may be a combination of multiple protrusions of different shapes.
  • the temperature control unit T6 of this embodiment can be particularly suitable for use in a film formation apparatus in which the heat stored by vapor deposition is equal to or less than the heat dissipated from the magnet plate MP.
  • effective cooling can be achieved with the simple configuration of the temperature control unit T6 of this embodiment, which simply adds a heat sink HS to the magnet plate MP.
  • a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
  • cooling means in each embodiment can be replaced with a heating means or a temperature control means that performs both heating and cooling.
  • a heating means for example, it is possible to use an electric wire heater or to apply a current in the opposite direction to a Peltier element, thereby switching between cooling and heating the temperature control target.
  • Figure 12(a) is an overall view of the organic EL display device 700, and Figure 12(b) shows the cross-sectional structure of one pixel.
  • a plurality of pixels 702 each including a plurality of light-emitting elements are arranged in a matrix in a display area 701 of an organic EL display device 700.
  • each light-emitting element has a structure including an organic layer sandwiched between a pair of electrodes.
  • the pixel referred to here refers to the smallest unit that allows a desired color to be displayed in the display area 701.
  • the pixel 702 is configured by a combination of a first light-emitting element 702R, a second light-emitting element 702G, and a third light-emitting element 702B that emit light different from each other.
  • the pixel 702 is often configured by a combination of a red light-emitting element, a green light-emitting element, and a blue light-emitting element, but may also be a combination of a yellow light-emitting element, a cyan light-emitting element, and a white light-emitting element, and is not particularly limited as long as it is at least one color.
  • FIG. 12(b) is a schematic partial cross-sectional view taken along line B-B in FIG. 12(a).
  • a pixel 702 is made up of a plurality of light-emitting elements, each of which has a first electrode (anode) 704, a hole transport layer 705, one of light-emitting layers 706R, 706G, and 706B, an electron transport layer 707, and a second electrode (cathode) 708 on a substrate 703.
  • the hole transport layer 705, the light-emitting layers 706R, 706G, and 706B, and the electron transport layer 707 are organic layers.
  • the light-emitting layer 706R is an organic EL layer that emits red light
  • the light-emitting layer 706G is an organic EL layer that emits green light
  • the light-emitting layer 706B is an organic EL layer that emits blue light.
  • the light-emitting layers 706R, 706G, and 706B are formed in patterns that correspond to the light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue light, respectively.
  • the first electrode 704 is formed separately for each light-emitting element.
  • the hole transport layer 705, the electron transport layer 707, and the second electrode 708 may be formed in common for the multiple light-emitting elements 702R, 702G, and 702B, or may be formed for each light-emitting element.
  • an insulating layer 709 is provided between the first electrodes 704.
  • a protective layer 710 is provided to protect the organic EL element from moisture and oxygen.
  • the hole transport layer 705 and the electron transport layer 707 are shown as a single layer, but depending on the structure of the organic EL display element, they may be formed of multiple layers including a hole blocking layer and an electron blocking layer.
  • a hole injection layer having an energy band structure that can smoothly inject holes from the first electrode 704 to the hole transport layer 705 can be formed between the first electrode 704 and the hole transport layer 705.
  • an electron injection layer can be formed between the second electrode 708 and the electron transport layer 707.
  • a circuit (not shown) for driving the organic EL display device and a substrate (mother glass) 703 on which a first electrode 704 is formed are prepared.
  • Acrylic resin is formed by spin coating on the substrate 703 on which the first electrode 704 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the area where the first electrode 704 is formed, forming an insulating layer 709. This opening corresponds to the light-emitting area where the light-emitting element actually emits light.
  • the substrate 703 with the patterned insulating layer 709 is placed on a substrate carrier on which an adhesive member is arranged.
  • the substrate 703 is held by the adhesive member.
  • It is then carried into a first organic material deposition apparatus and, after inversion, a hole transport layer 705 is deposited as a common layer on top of the first electrode 704 in the display area.
  • the hole transport layer 705 is deposited by vacuum deposition. In practice, the hole transport layer 705 is formed to be larger than the display area 701, so no high-definition mask is required.
  • the substrate 703 on which the hole transport layer 705 has been formed is carried into a second organic material deposition apparatus.
  • the substrate and the mask are aligned, the substrate is placed on the mask, and a red-emitting light-emitting layer 706R is deposited on the portion of the substrate 703 where the red-emitting element is to be located.
  • Electron transport layer 707 is deposited over the entire display area 701 by a fifth deposition apparatus. Electron transport layer 707 is formed as a layer common to the three color light-emitting layers 706R, 706G, and 706B.
  • the substrate on which the electron transport layer 707 has been formed is moved by a metallic deposition material deposition device to deposit the second electrode 708.
  • the adhesive member is peeled off from the substrate 703, thereby separating the substrate 703 from the substrate carrier. After that, it is cut to complete the organic EL display device 700.
  • the substrate 703 with the patterned insulating layer 709 is exposed to an atmosphere containing moisture or oxygen from the time it is carried into the deposition apparatus until the deposition of the protective layer 710 is completed, the light-emitting layer made of the organic EL material may be deteriorated by moisture or oxygen. Therefore, in this embodiment, the substrate is carried in and out of the deposition apparatus in a vacuum atmosphere or an inert gas atmosphere.

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Provided is a technology that can increase substrate alignment accuracy in a film formation device. This substrate retention device is used in a film formation device for forming a film on a substrate, and is characterized by comprising: an electrostatic chuck that clamps the substrate; a member that is in contact with the electrostatic chuck and has a higher thermal conductance than the thermal conductance of the electrostatic chuck; and a temperature control means that controls the temperature of the member.

Description

基板保持装置、及び成膜装置Substrate holding device and film forming device
 本発明は、成膜装置に用いられる基板保持装置に関する。 The present invention relates to a substrate holding device used in a film forming apparatus.
 近年、モニタ、テレビ、スマートフォンなどの表示画面として、有機EL表示装置などのフラットパネル表示装置が用いられている。有機EL表示装置のパネルは、2つの向かい合う電極(カソード電極、アノード電極)の間に発光を起こす有機物層が形成された構造を持つ。成膜装置を用いて有機EL表示パネルを形成する際は、成膜装置のチャンバに配置された基板ホルダによって基板の周縁部を保持し、チャンバ下部に設けられた蒸発源を加熱して金属または有機物の蒸着材料を放出し、マスクを介して基板の下面に蒸着させる。 In recent years, flat panel display devices such as organic electroluminescence (EL) display devices have been used as display screens for monitors, televisions, smartphones, and other devices. The panel of an organic EL display device has a structure in which an organic layer that emits light is formed between two opposing electrodes (a cathode electrode and an anode electrode). When forming an organic EL display panel using a film-forming device, the peripheral edge of the substrate is held by a substrate holder placed in the chamber of the film-forming device, and an evaporation source installed at the bottom of the chamber is heated to release a metal or organic evaporation material, which is then evaporated onto the underside of the substrate through a mask.
 ここで、周縁部を保持される基板は、その中央部が自重により撓みを生じることがある。基板サイズの大型化が進むと、上記中央部の撓みもより大きくなり、蒸着精度に対する影響も大きくなる。そのような基板の撓みを軽減するための手法として、特許文献1では、静電チャック(ESC:Electrostatic chuck)を用いて基板を保持する技術が提案されている。 Here, the center of the substrate, which is held by its peripheral portion, may bend due to its own weight. As the size of the substrate increases, the bending of the center portion also becomes greater, and the impact on deposition accuracy also becomes greater. As a method for reducing such bending of the substrate, Patent Document 1 proposes a technology for holding the substrate using an electrostatic chuck (ESC: Electrostatic chuck).
特開2019-099910号公報JP 2019-099910 A
 成膜室内において蒸発源は非常に高温であり、成膜室内の他の部材と蒸発源との間には大きな温度差がある。そのため、静電チャックや基板、マスクの温度を制御することが困難であり、これらには、熱膨張による変形、サイズ変化が生じることがある。このサイズ変化の影響により、アライメント精度の低下や、膜質の低下が生じる可能性がある。 The evaporation source in the deposition chamber is extremely hot, and there is a large temperature difference between the evaporation source and other parts in the deposition chamber. This makes it difficult to control the temperature of the electrostatic chuck, substrate, and mask, and they may deform or change in size due to thermal expansion. The effects of this size change can lead to a decrease in alignment accuracy and a deterioration in film quality.
 本発明は、成膜装置において高い精度で温度制御を行うことができる技術を提供することを目的とする。 The present invention aims to provide technology that allows for highly accurate temperature control in a film deposition device.
 上記課題を解決するために、本発明の基板保持装置は、
 基板に成膜を行う成膜装置に用いられる基板保持装置であって、
 基板を吸着する静電チャックと、
 前記静電チャックの熱伝導率よりも高い熱伝導率を有し、前記静電チャックに接触する部材と、
 前記部材の温度を制御する温度制御手段と、
を備えることを特徴とする。
 上記課題を解決するために、本発明の成膜装置は、
 チャンバと、
 前記チャンバ内に設けられる蒸発源と、
 前記チャンバ内に設けられ、基板を吸着する静電チャックと、
 前記静電チャックに吸着された基板の被成膜面に接合されるマスクと、
を備える成膜装置において、
 前記静電チャックの熱伝導率よりも高い熱伝導率を有し、前記静電チャックに接触する部材と、
 前記部材の温度を制御する温度制御手段と、
を備えることを特徴とする。
In order to solve the above problems, the substrate holding device of the present invention comprises:
A substrate holding device used in a film forming apparatus that forms a film on a substrate,
an electrostatic chuck for adsorbing the substrate;
a member having a thermal conductivity higher than the thermal conductivity of the electrostatic chuck and in contact with the electrostatic chuck;
A temperature control means for controlling the temperature of the member;
The present invention is characterized by comprising:
In order to solve the above problems, the film forming apparatus of the present invention comprises:
A chamber;
an evaporation source provided in the chamber;
an electrostatic chuck provided in the chamber and configured to attract a substrate;
a mask bonded to a film-forming surface of the substrate attracted to the electrostatic chuck;
In a film forming apparatus comprising:
a member having a thermal conductivity higher than the thermal conductivity of the electrostatic chuck and in contact with the electrostatic chuck;
A temperature control means for controlling the temperature of the member;
The present invention is characterized by comprising:
 本発明によれば、成膜装置において高い精度で温度制御を行うことができる。 The present invention allows for highly accurate temperature control in a film forming device.
成膜装置の構成を示す模式的な平面図FIG. 1 is a schematic plan view showing a configuration of a film forming apparatus; 成膜室の内部構成を示す断面図Cross-sectional view showing the internal configuration of the film forming chamber 有機EL表示装置の製造ラインの一例を示す模式図Schematic diagram showing an example of a manufacturing line for an organic EL display device. 本発明の実施例1に係る温調機構の構成を説明する模式的断面図FIG. 1 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a first embodiment of the present invention. 有機EL製造ラインにおける温調制御の一例を示す模式図A schematic diagram showing an example of temperature control in an organic EL production line. 本発明の実施例2に係る温調機構の構成を説明する模式的断面図FIG. 5 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a second embodiment of the present invention. 複数の温調部材の配置構成、制御構成を示す模式的平面図FIG. 2 is a schematic plan view showing the arrangement and control configuration of a plurality of temperature control members; 本発明の実施例3に係る温調機構の構成を説明する模式的断面図FIG. 11 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a third embodiment of the present invention. 本発明の実施例4に係る温調機構の構成を説明する模式的断面図FIG. 11 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a fourth embodiment of the present invention. 本発明の実施例5に係る温調機構の構成を説明する模式的断面図FIG. 13 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a fifth embodiment of the present invention. 本発明の実施例6に係る温調機構の構成を説明する模式的断面図FIG. 13 is a schematic cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to a sixth embodiment of the present invention. 電子デバイスの製造方法を説明する図A diagram explaining a method for manufacturing an electronic device.
 以下に、本発明の実施形態について詳細に説明する。ただし、以下の実施形態は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲をそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成およびソフトウェア構成、処理フロー、製造条件、寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Below, embodiments of the present invention are described in detail. However, the following embodiments merely exemplify preferred configurations of the present invention, and the scope of the present invention is not limited to these configurations. Furthermore, unless otherwise specified, the hardware and software configurations of the device, processing flow, manufacturing conditions, dimensions, materials, shapes, relative positions, etc. in the following description are not intended to limit the scope of the present invention to only those.
 本発明は、基板等の成膜対象物の表面に蒸着やスパッタリングにより成膜材料の薄膜を形成する成膜装置に好適である。本発明は、温調機構、基板保持装置および成膜装置、ならびに、これらの装置を用いた温調方法または制御方法として捉えられる。本発明はまた、電子デバイスの製造装置やその制御方法、電子デバイスの製造方法としても捉えられる。本発明はまた、温調方法や制御方法をコンピュータに実行させるプログラムや、当該プログラムを格納した記憶媒体としても捉えられる。記憶媒体は、コンピュータにより読み取り可能な非一時的な記憶媒体であってもよい。 The present invention is suitable for a film formation apparatus that forms a thin film of a film formation material on the surface of a film formation target such as a substrate by deposition or sputtering. The present invention can be understood as a temperature adjustment mechanism, a substrate holding device, a film formation apparatus, and a temperature adjustment method or control method using these devices. The present invention can also be understood as an electronic device manufacturing apparatus and a control method thereof, and an electronic device manufacturing method. The present invention can also be understood as a program that causes a computer to execute the temperature adjustment method or control method, or a storage medium that stores the program. The storage medium may be a non-transitory storage medium that is readable by a computer.
 本発明における基板の材料としては、ガラス、樹脂、金属、シリコンなど任意のものを利用できる。成膜材料としては、有機材料、無機材料(金属、金属酸化物)など任意のものを利用できる。以下の説明における「基板」とは、基板材料の表面に既に1つ以上の成膜が行われたものを含む。本発明の技術は、典型的には、電子デバイスや光学部材の製造装置に適用される。特に、有機EL素子を備える有機ELディスプレイ、それを用いた有機EL表示装置などの有機電子デバイスに好適である。本発明はまた、薄膜太陽電池、有機CMOSイメージセンサにも利用できる。 In the present invention, any material can be used for the substrate, such as glass, resin, metal, or silicon. Any material can be used for the film formation, such as organic materials or inorganic materials (metals, metal oxides). In the following explanation, "substrate" includes substrate materials on whose surfaces one or more films have already been formed. The technology of the present invention is typically applied to manufacturing equipment for electronic devices and optical components. It is particularly suitable for organic electronic devices, such as organic EL displays equipped with organic EL elements and organic EL display devices using such displays. The present invention can also be used for thin-film solar cells and organic CMOS image sensors.
<実施形態>
(装置構成)
 図1は、成膜装置1の構成を模式的に示す平面図である。ここでは、有機ELディスプレイの製造ラインについて説明する。有機ELディスプレイを製造する場合、製造ラインに所定のサイズの基板を搬入し、有機ELや金属層の成膜を行った後、基板のカットなどの後処理工程を実施する。
<Embodiment>
(Device configuration)
1 is a plan view showing a schematic configuration of a film forming apparatus 1. Here, a manufacturing line for an organic EL display will be described. When manufacturing an organic EL display, a substrate of a predetermined size is carried into the manufacturing line, and after the organic EL and metal layers are formed, post-processing steps such as cutting the substrate are performed.
 成膜装置1は、中央に配置される搬送室130と、搬送室130の周囲に配置される複数の成膜室110(110a~110d)およびマスクストック室120(120a、120b)を含む。成膜室110は、基板10に対する成膜処理が行われるチャンバを備える。マスクストック室120は使用前後のマスクを収納する。搬送室130内に設置された搬送ロボット140は、基板SやマスクMを搬送室130に搬入および搬出する。搬送ロボット140は、例えば、多関節アームに基板SやマスクMを保持するロボットハンドが取り付けられたロボットである。 The film forming apparatus 1 includes a transfer chamber 130 located in the center, and multiple film forming chambers 110 (110a-110d) and mask stock chambers 120 (120a, 120b) located around the transfer chamber 130. The film forming chamber 110 includes a chamber in which film forming processing is performed on a substrate 10. The mask stock chamber 120 stores masks before and after use. A transfer robot 140 installed in the transfer chamber 130 transfers substrates S and masks M into and out of the transfer chamber 130. The transfer robot 140 is, for example, a robot in which a robot hand for holding substrates S and masks M is attached to an articulated arm.
 パス室150は、基板搬送方向において上流側から流れてくる基板Sを搬送室130に搬送する。バッファ室160は、搬送室130での成膜処理が完了した基板Sを下流側の他の成膜クラスタに搬送する。搬送ロボット140は、パス室150から基板Sを受け取ると、複数の成膜室110のうちの一つに搬送する。搬送ロボット140はまた、成膜処理が完了した基板Sを成膜室110から受け取り、バッファ室160に搬送する。 The pass chamber 150 transports the substrate S flowing from the upstream side in the substrate transport direction to the transport chamber 130. The buffer chamber 160 transports the substrate S, for which the film formation process in the transport chamber 130 has been completed, to another film formation cluster downstream. When the transport robot 140 receives the substrate S from the pass chamber 150, it transports it to one of the multiple film formation chambers 110. The transport robot 140 also receives the substrate S, for which the film formation process has been completed, from the film formation chamber 110 and transports it to the buffer chamber 160.
 図1に示す成膜装置1は、1つの成膜クラスタを構成しており、上流側や下流側に別の成膜クラスタを接続することができる。パス室150のさらに上流側や、バッファ室160のさらに下流側には、基板10の方向を変える旋回室170が設けられる。成膜室110、マスクストック室120、搬送室130、バッファ室160、旋回室170などの各チャンバは、製造過程で高真空状態に維持される。 The film formation apparatus 1 shown in FIG. 1 constitutes one film formation cluster, and another film formation cluster can be connected to the upstream or downstream side. A swirl chamber 170 that changes the direction of the substrate 10 is provided further upstream of the pass chamber 150 and further downstream of the buffer chamber 160. Each chamber, such as the film formation chamber 110, mask stock chamber 120, transfer chamber 130, buffer chamber 160, and swirl chamber 170, is maintained in a high vacuum state during the manufacturing process.
 成膜装置1の複数の成膜室110a~110dにおける成膜材料は、同じであってもよく、異なっていてもよい。例えば、成膜室110a~110dそれぞれに異なる成膜材料の成膜源を配置し、基板Sが成膜室110a~110dを順に移動しながら積層構造を形成されるようにしてもよい。また、成膜室110a~110dに同じ成膜材料の成膜源を配置することで、複数の基板Sに並行して成膜を行ってもよい。また、成膜室110aと110cに第1の成膜材料を、成膜室110bと110dに第2の成膜材料を配置しておき、成膜室110aまたは110cで第1の層を成膜したのち、成膜室110bまたは110で第2の層を成膜するように制御してもよい。 The film forming materials in the multiple film forming chambers 110a to 110d of the film forming apparatus 1 may be the same or different. For example, a film forming source of a different film forming material may be arranged in each of the film forming chambers 110a to 110d, and a layered structure may be formed as the substrate S moves sequentially through the film forming chambers 110a to 110d. Also, by arranging film forming sources of the same film forming material in the film forming chambers 110a to 110d, film formation may be performed on multiple substrates S in parallel. Also, a first film forming material may be arranged in the film forming chambers 110a and 110c, and a second film forming material may be arranged in the film forming chambers 110b and 110d, and the first layer may be formed in the film forming chamber 110a or 110c, and then the second layer may be formed in the film forming chamber 110b or 110.
 静電チャックの種類によっては、基板に導電体が付着している場合に基板の吸着力を高めることができる。そのような場合、基板のうち有機EL素子が形成される領域(典型的には基板の中央部)に、電極層となる金属材料の薄膜が既に形成されているときに効果的に吸着できる。例えば、成膜室110aで電極層が成膜された基板上に、成膜室110b~110dで有機層が順次成膜される場合、成膜室110b~110dに静電チャックを配置すると効果的である。 Depending on the type of electrostatic chuck, the adhesion force of the substrate can be increased when a conductive material is attached to the substrate. In such a case, the electrostatic chuck can be effectively attached when a thin film of a metal material that will become an electrode layer has already been formed in the region of the substrate where the organic EL element is to be formed (typically the center of the substrate). For example, when organic layers are sequentially formed in deposition chambers 110b to 110d on a substrate on which an electrode layer has been formed in deposition chamber 110a, it is effective to place electrostatic chucks in deposition chambers 110b to 110d.
(成膜室)
 図2は、成膜室110の内部構成を示す断面図である。成膜室110では、搬送ロボット140からの基板SやマスクMの受け取り、搬送ロボット140への基板SやマスクMの受け渡し、基板SとマスクMの相対的な位置関係を調整するアライメント、マスクMへの基板Sの固定、成膜などの一連の成膜プロセスが行われる。以下の説明においては、鉛直方向をZ方向とするXYZ直交座標系を用い、Z軸まわりの回転をθで表す。
(Film formation chamber)
2 is a cross-sectional view showing the internal configuration of the film formation chamber 110. In the film formation chamber 110, a series of film formation processes are performed, such as receiving the substrate S and mask M from the transfer robot 140, transferring the substrate S and mask M to the transfer robot 140, aligning the substrate S and mask M relative to each other, fixing the substrate S to the mask M, and forming a film. In the following description, an XYZ orthogonal coordinate system is used in which the vertical direction is the Z direction, and rotation around the Z axis is represented by θ.
 成膜室110は、チャンバ200を有する。チャンバ200の内部は、成膜の間、真空雰囲気、または、窒素ガスなどの不活性ガス雰囲気に維持される。チャンバ200の内部には、静電チャックC、マグネット板MP、温調部材TM、冷却板CP、基板支持部210、マスク台221、蒸発源240(成膜源)などが設けられる。 The film formation chamber 110 has a chamber 200. The interior of the chamber 200 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas during film formation. Inside the chamber 200, an electrostatic chuck C, a magnet plate MP, a temperature control member TM, a cooling plate CP, a substrate support part 210, a mask table 221, an evaporation source 240 (film formation source), etc. are provided.
 マスクMは、基板上に形成される薄膜パターンに対応する開口パターンを持つ。マスクMとして例えば、パターンが形成された金属箔の周囲をフレームで支持するメタルマスクを利用できる。マスクMは、マスク台221の上に設置されている。本実施例の構成では、マスクM上に基板Sが位置決めされて載置されたのち、成膜が行われる。 The mask M has an opening pattern that corresponds to the thin film pattern to be formed on the substrate. For example, a metal mask in which a metal foil on which a pattern is formed is supported by a frame around the periphery can be used as the mask M. The mask M is placed on the mask table 221. In the configuration of this embodiment, the substrate S is positioned and placed on the mask M, and then film formation is performed.
 基板支持部210は、成膜室内部に搬送されてきた基板Sを受け取るための、複数の受け爪状の支持具210aを有する。静電チャックCは、成膜室内部における基板保持手段であり、基板支持部210に支持された基板Sを静電気力により吸着保持する。静電チャックCは、基板Sの、マスクMと接触する面(被成膜面)とは反対側の面に当接する。 The substrate support part 210 has multiple claw-shaped supports 210a for receiving the substrate S transported into the film formation chamber. The electrostatic chuck C is a substrate holding means inside the film formation chamber, and attracts and holds the substrate S supported by the substrate support part 210 by electrostatic force. The electrostatic chuck C abuts against the surface of the substrate S opposite the surface that contacts the mask M (the surface on which a film is to be formed).
 なお、基板支持部210は、支持具210aに対応する押圧具を有していてもよい。支持具210aと押圧具が基板Sの端部を挟持することで、静電チャックCに加えて基板支持部210でも基板Sを保持できるので、基板Sがより安定する。 The substrate support part 210 may have a pressing tool corresponding to the support tool 210a. By clamping the end of the substrate S between the support tool 210a and the pressing tool, the substrate S can be held by the substrate support part 210 in addition to the electrostatic chuck C, making the substrate S more stable.
 マグネット板MPは、マスクMを引きつけ基板Sの被成膜面に密着、吸着させるために設けられている。静電チャックCに吸着され相対的位置が調整(アライメント)された基板SをマスクMの上面に載置した(基板Sの被成膜面をマスクMに接合した)状態で、マグネット板MPを静電チャックCの上方から下降させて静電チャックCの上面(実施例1等では高熱伝導シートHTを介して)に当接させる。マグネット板MPは、静電チャックC及び基板Sを挟んでマスクMに磁力を印加する(磁気吸引力を作用させて上方(基板S側)に引き付ける)ことにより、マスクMを基板Sに密着させる。 The magnet plate MP is provided to attract the mask M and adhere it to and adsorb it to the film-forming surface of the substrate S. The substrate S, which has been attracted to the electrostatic chuck C and has its relative position adjusted (aligned), is placed on the upper surface of the mask M (the film-forming surface of the substrate S is joined to the mask M), and the magnet plate MP is lowered from above the electrostatic chuck C to abut against the upper surface of the electrostatic chuck C (via the highly thermally conductive sheet HT in Example 1, etc.). The magnet plate MP applies a magnetic force to the mask M between the electrostatic chuck C and the substrate S (applying a magnetic attraction force to attract it upward (towards the substrate S)), thereby adhering the mask M to the substrate S.
 本実施例に係る成膜装置は、温調機構(温度制御手段)として、成膜時の基板Sの温度上昇を抑えて有機材料の変質や劣化を防ぐための温調ユニットTを備える。温調ユニットTは、一例として、温調部材TM、冷却板CPなどから構成されるが、具体構成については後述する。 The film forming apparatus according to this embodiment is equipped with a temperature control unit T as a temperature control mechanism (temperature control means) for preventing the temperature rise of the substrate S during film formation and preventing the organic material from changing or deteriorating. As an example, the temperature control unit T is composed of a temperature control member TM, a cooling plate CP, etc., and the specific configuration will be described later.
 蒸発源240は、蒸着材料を収容するルツボ等の容器、ヒータ、シャッタ、駆動機構、蒸発レートモニタなどを含む成膜手段である。なお、成膜源は蒸発源には限られず、スパッタリング装置を用いてもよい。 The evaporation source 240 is a film-forming means including a container such as a crucible for containing the evaporation material, a heater, a shutter, a driving mechanism, an evaporation rate monitor, etc. Note that the film-forming source is not limited to an evaporation source, and a sputtering device may also be used.
 チャンバ200の外側上部には、アライメントステージ280、静電チャック昇降機構291、マグネット板昇降機構292などが設けられる。アライメントステージ280は、静電チャックC及びマグネット板MPを水平方向(XYθ方向)に移動させるための機構である。静電チャック昇降機構291は、静電チャックCをZ軸方向に昇降させるための機構である。マグネット板昇降機構292は、マグネット板MPをZ軸方向に昇降させるための機構である。これらにより、基板Sの被成膜面に沿った平面に交差する方向における、静電チャックCの基板Sに対する位置調整(相対距離の調整)、マグネット板MPのマスクMに対する位置調整が可能となる。  An alignment stage 280, an electrostatic chuck lifting mechanism 291, a magnet plate lifting mechanism 292, etc. are provided on the upper outside of the chamber 200. The alignment stage 280 is a mechanism for moving the electrostatic chuck C and the magnet plate MP horizontally (XYθ directions). The electrostatic chuck lifting mechanism 291 is a mechanism for raising and lowering the electrostatic chuck C in the Z-axis direction. The magnet plate lifting mechanism 292 is a mechanism for raising and lowering the magnet plate MP in the Z-axis direction. These make it possible to adjust the position of the electrostatic chuck C with respect to the substrate S (adjust the relative distance) and adjust the position of the magnet plate MP with respect to the mask M in a direction intersecting a plane along the film-forming surface of the substrate S.
 アライメントステージ280は、アライメントステージ駆動用のモータ281の駆動力を、例えばUVW方式のアクチュエータ等を介して受けることで、チャンバ200に対して水平方向(XYθ方向)に相対移動可能に構成されている。チャンバ200の外側上面には、チャンバ200上面に固定設置されたガイドレール(不図示)や、ガイドレール上に移動可能に設置されたリニアブロックなどからなる3つの直動アクチュエータが、二つを互いに平行、一つを直交に配置されている。ベース板282は、3つのリニアブロックによって支持されており、チャンバ200の外側上面に設けられたモータ281の駆動力によって3つのリニアブロックをそれぞれ所定の方向に移動させることで、ベース板282が水平方向(XYθ方向)に移動する。3つのリニアブロックの移動方向の組み合わせにより、ベース板282は、水平方向の任意の位置に移動し、任意の方向に向きを変えることができる。このベース板282の動きにより、アライメントステージ280全体をチャンバ200に対して水平方向(XYθ方向)に相対移動させることができる。 The alignment stage 280 is configured to be movable in the horizontal direction (XYθ direction) relative to the chamber 200 by receiving the driving force of the motor 281 for driving the alignment stage via, for example, a UVW type actuator. On the outer upper surface of the chamber 200, three linear actuators consisting of a guide rail (not shown) fixedly installed on the upper surface of the chamber 200 and a linear block movably installed on the guide rail are arranged, two parallel to each other and one perpendicular to each other. The base plate 282 is supported by the three linear blocks, and the base plate 282 moves in the horizontal direction (XYθ direction) by moving the three linear blocks in a predetermined direction by the driving force of the motor 281 installed on the outer upper surface of the chamber 200. By combining the moving directions of the three linear blocks, the base plate 282 can move to any position in the horizontal direction and change its direction in any direction. This movement of the base plate 282 allows the entire alignment stage 280 to move relative to the chamber 200 in the horizontal direction (XYθ direction).
 アライメントステージ280は、後述する制御部270から送信される制御信号に従ったモータ281の駆動により静電チャックCを移動させることで、静電チャックCで吸着保持する基板SをX方向およびY方向に移動させ、θ方向に回転させる。なお、アライメントステージ280の駆動機構としては、上述したUVW方式のアクチュエータに限定されるものではなく、他の既知の構成を用いてもよい。 The alignment stage 280 moves the electrostatic chuck C by driving a motor 281 in accordance with a control signal transmitted from the control unit 270 (described later), thereby moving the substrate S attracted and held by the electrostatic chuck C in the X and Y directions and rotating it in the θ direction. Note that the drive mechanism for the alignment stage 280 is not limited to the UVW type actuator described above, and other known configurations may be used.
 静電チャック昇降機構291及びマグネット板昇降機構292は、アライメントステージ280に搭載されている。したがって、アライメントステージ280がチャンバ200に対して水平方向(XYθ方向)に移動することで、静電チャックC及びマグネット板MPもチャンバ200に対して水平方向(XYθ方向)に相対移動する。 The electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 are mounted on the alignment stage 280. Therefore, when the alignment stage 280 moves horizontally (XYθ directions) with respect to the chamber 200, the electrostatic chuck C and the magnet plate MP also move horizontally (XYθ directions) relative to the chamber 200.
 静電チャック昇降機構291は、静電チャックCをZ軸方向に昇降させる機構であり、アライメントステージベース板282上に搭載される。チャンバ200内の静電チャックCは、チャンバ200の天板を気密に貫通するシャフトを介して、チャンバ200外の静電チャック昇降機構291に連結されている。静電チャック昇降機構291は、静電チャック昇降駆動用のモータ(不図示)や、静電チャック昇降駆動用のアクチュエータ(不図示)などを備える。アクチュエータは、モータの駆動力を受けて、静電チャックCを支持するシャフトを昇降可能に構成されている。アクチュエータの具体例としては、例えば、リニアガイドや、ボールねじなどが挙げられる。 The electrostatic chuck lifting mechanism 291 is a mechanism for raising and lowering the electrostatic chuck C in the Z-axis direction, and is mounted on the alignment stage base plate 282. The electrostatic chuck C inside the chamber 200 is connected to the electrostatic chuck lifting mechanism 291 outside the chamber 200 via a shaft that airtightly penetrates the top plate of the chamber 200. The electrostatic chuck lifting mechanism 291 includes a motor (not shown) for driving the electrostatic chuck to lift and lower, and an actuator (not shown) for driving the electrostatic chuck to lift and lower. The actuator is configured to receive the driving force of the motor to raise and lower the shaft supporting the electrostatic chuck C. Specific examples of the actuator include a linear guide and a ball screw.
 マグネット板昇降機構292は、マグネット板MPをZ軸方向に昇降させる機構であり、アライメントステージベース板282上に搭載される。チャンバ200内のマグネット板MPは、チャンバ200の天板を気密に貫通するシャフトを介して、チャンバ200外のマグネット板昇降機構292に連結されている。マグネット板昇降機構292は、マグネット板昇降駆動用のモータ(不図示)や、マグネット板昇降駆動用のアクチュエータ(不図示)などを備える。アクチュエータは、モータの駆動力を受けて、マグネット板MPを支持するシャフトを昇降可能に構成されている。アクチュエータの具体例としては、例えば、リニアガイドや、ボールねじなどが挙げられる。 The magnet plate lifting mechanism 292 is a mechanism for raising and lowering the magnet plate MP in the Z-axis direction, and is mounted on the alignment stage base plate 282. The magnet plate MP inside the chamber 200 is connected to the magnet plate lifting mechanism 292 outside the chamber 200 via a shaft that airtightly penetrates the top plate of the chamber 200. The magnet plate lifting mechanism 292 includes a motor (not shown) for driving the magnet plate to lift and lower, and an actuator (not shown) for driving the magnet plate to lift and lower. The actuator is configured to receive the driving force of the motor and raise and lower the shaft supporting the magnet plate MP. Specific examples of the actuator include a linear guide and a ball screw.
 このように、静電チャック昇降機構291及びマグネット板昇降機構292がアライメントステージ280のベース板282上に設置されている。したがって、アライメントステージ280が水平方向(XYθ方向)に移動することで、静電チャック昇降機構291及びマグネット板昇降機構292も(したがって、静電チャックCとマグネット板MPも)水平方向(XYθ方向)に移動する。その結果、例えば、基板Sと静電チャックCとの間に位置ずれが生じたような場合にも、これらの間の相対位置を調整することができる。同様に、例えば、マスクMとマグネット板MPとの間に位置ずれが生じたような場合にも、これらの間の相対位置を調整することができる。 In this way, the electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 are installed on the base plate 282 of the alignment stage 280. Therefore, when the alignment stage 280 moves in the horizontal direction (XYθ direction), the electrostatic chuck lifting mechanism 291 and the magnet plate lifting mechanism 292 (and therefore the electrostatic chuck C and the magnet plate MP) also move in the horizontal direction (XYθ direction). As a result, even if, for example, a positional deviation occurs between the substrate S and the electrostatic chuck C, the relative position between them can be adjusted. Similarly, even if, for example, a positional deviation occurs between the mask M and the magnet plate MP, the relative position between them can be adjusted.
 また、本実施例では、基板支持部210及びマスク台221は、チャンバ200に対して、水平方向(XYθ方向)には固定されているが、鉛直方向(Z軸方向)には昇降可能に構成されている。基板支持部210及びマスク台221を鉛直方向に昇降させるための昇降機構は、チャンバ200の外部上面上にアライメントステージと分離、独立されるように設けられている。 In addition, in this embodiment, the substrate support part 210 and the mask table 221 are fixed in the horizontal direction (XYθ direction) with respect to the chamber 200, but are configured to be able to move up and down in the vertical direction (Z axis direction). The lifting mechanism for raising and lowering the substrate support part 210 and the mask table 221 in the vertical direction is provided on the external upper surface of the chamber 200 so as to be separate and independent from the alignment stage.
 基板支持部210及びマスク台221の昇降機構(不図示)は、チャンバ200の外部上面に固定された、ベース板282とは別のベース板(不図示)に設置されており、アライメントステージ280とは分離、独立されている。したがって、アライメントステージ280が水平(XYθ)方向に移動しても、基板支持部210及びマスク台221は水平(XYθ)方向には移動しない。 The lifting mechanism (not shown) for the substrate support part 210 and the mask table 221 is installed on a base plate (not shown) separate from the base plate 282, which is fixed to the external upper surface of the chamber 200, and is separate and independent from the alignment stage 280. Therefore, even if the alignment stage 280 moves in the horizontal (XYθ) direction, the substrate support part 210 and the mask table 221 do not move in the horizontal (XYθ) direction.
 なお、本実施例では、(静電チャックCの位置を調整することで)基板Sの位置を調整する構成としたが、基板SとマスクMを相対的に位置合わせできるのであれば、マスクMの位置を調整する構成や、基板SとマスクMの両方を調整する構成でもよい。 In this embodiment, the position of the substrate S is adjusted (by adjusting the position of the electrostatic chuck C), but as long as the substrate S and mask M can be aligned relative to each other, the position of the mask M may be adjusted, or both the substrate S and mask M may be adjusted.
 静電チャックCが基板支持部210に支持された基板Sを保持する際には、まず静電チャック昇降機構291が静電チャックCを下降させ、静電チャックCを基板Sに当接または十分に接近させる。そして、制御部270が電源290を制御して、静電チャックCに埋設された電極に所定の吸着電圧を印加する。これにより静電チャックCにより基板Sが保持される。 When the electrostatic chuck C holds the substrate S supported by the substrate support part 210, the electrostatic chuck lifting mechanism 291 first lowers the electrostatic chuck C so that the electrostatic chuck C abuts or is sufficiently close to the substrate S. Then, the control part 270 controls the power supply 290 to apply a predetermined adsorption voltage to the electrode embedded in the electrostatic chuck C. This causes the substrate S to be held by the electrostatic chuck C.
 続いてアライメントの際には、静電チャック昇降機構291が静電チャックCをさらに下降させて、基板SをマスクMに接近させる。そして、アライメントステージ280がアライメントを行う。 Next, during alignment, the electrostatic chuck lift mechanism 291 further lowers the electrostatic chuck C to bring the substrate S closer to the mask M. The alignment stage 280 then performs the alignment.
 ここで、本実施例における静電チャックCは、本発明の基板保持装置を構成する要素となる。本発明の基板保持装置を構成する要素には、電源290や制御部270、静電チャック昇降機構291などが含まれる場合がある。後述する種々の形態の温調ユニットTあるいは温調ユニットTの構成要素は、本発明における温度制御手段等として、本発明の基板保持装置や成膜装置を構成する要素に含まれる。 Here, the electrostatic chuck C in this embodiment is an element that constitutes the substrate holding device of the present invention. The elements that constitute the substrate holding device of the present invention may include a power supply 290, a control unit 270, an electrostatic chuck lifting mechanism 291, etc. The temperature adjustment unit T of various forms described below or the components of the temperature adjustment unit T are included in the elements that constitute the substrate holding device and film forming apparatus of the present invention as the temperature control means, etc. of the present invention.
 続いて成膜の際には、蒸発源240が成膜材料を放出する。成膜が完了すると、マグネット板昇降機構292がマグネット板MPを上昇させるとともに、静電チャック昇降機構291が静電チャックCを上昇させて、成膜済みの基板Sを搬送ロボットに受け渡す。そして、静電チャックCへの印加電圧を所定の剥離電圧(例えば0V)とすることで、基板Sの保持を解除する。 Next, when the film is formed, the evaporation source 240 releases the film-forming material. When the film formation is completed, the magnet plate lifting mechanism 292 raises the magnet plate MP, and the electrostatic chuck lifting mechanism 291 raises the electrostatic chuck C, and the substrate S on which the film has been formed is handed over to the transfer robot. Then, the voltage applied to the electrostatic chuck C is set to a predetermined peeling voltage (e.g., 0 V), thereby releasing the substrate S from its hold.
 チャンバ200の外側上部には、光学撮像を行って画像データを生成するカメラ262が設けられている。カメラ262は、チャンバ200に設けられた真空用の封止窓を通して撮像を行う。本実施例では基板Sの四隅に対応する複数のカメラ262が設けられている。それぞれのカメラ262は、撮像範囲に、基板Sの隅部に設けられた基板アライメントマークと、マスクMの隅部に設けられたマスクアライメントマークが含まれるように配置される。 A camera 262 is provided on the upper outside of the chamber 200, which performs optical imaging to generate image data. The camera 262 images through a vacuum sealing window provided in the chamber 200. In this embodiment, multiple cameras 262 are provided corresponding to the four corners of the substrate S. Each camera 262 is positioned so that its imaging range includes the substrate alignment mark provided at the corner of the substrate S and the mask alignment mark provided at the corner of the mask M.
 アライメント時には、カメラ262は、基板SおよびマスクMを撮像して画像データを制御部270に出力する。制御部270は撮像画像データを解析し、パターンマッチング処理などの手法により、基板アライメントマークとマスクアライメントマークの位置情報を取得する。そして、基板アライメントマークとマスクアライメントマークの位置ずれ量に基づき、基板Sを移動させるXY方向、移動距離、回転角度θを算出する。そして、算出された移動量を、アライメントステージ280の各アクチュエータが備えるステッピングモータやサーボモータ等の駆動量に変換し、制御信号を生成する。なお、低解像だが広視野のラフアライメント用のカメラと、狭視野だが高解像のファインアライメント用のカメラを用いて、二段階アライメントを行ってもよい。 During alignment, the camera 262 captures images of the substrate S and mask M and outputs image data to the control unit 270. The control unit 270 analyzes the captured image data and acquires position information of the substrate alignment mark and mask alignment mark using techniques such as pattern matching processing. Then, based on the amount of misalignment between the substrate alignment mark and the mask alignment mark, it calculates the XY directions, movement distance, and rotation angle θ for moving the substrate S. Then, it converts the calculated movement amount into the drive amount of the stepping motor or servo motor equipped in each actuator of the alignment stage 280, and generates a control signal. Note that two-stage alignment may be performed using a low-resolution but wide-field-of-view camera for rough alignment and a narrow-field-of-view but high-resolution camera for fine alignment.
 制御部270は、不図示の制御線や無線通信を介して成膜装置1の各構成要素との間で通信を行い、各構成要素からデータを受信したり、各構成要素に信号を送って動作を制御したりする、情報処理装置である。制御部270は、例えば、プロセッサ、メモリ、ストレージ、I/Oなどを有するコンピュータにより構成可能である。この場合、制御部270の機能は、メモリ又はストレージに記憶されたプログラムをプロセッサが実行することにより実現される。コンピュータとしては、汎用のパーソナルコンピュータを用いてもよいし、組込型のコンピュータ又はPLC(programmable logic controller)を用いてもよい。あるいは、制御部270の機能の一部又は全部をASICやFPGAのような回路で構成してもよい。なお、成膜室ごとに制御部270が設けられていてもよいし、1つの制御部270が複数の成膜室を制御してもよい。 The control unit 270 is an information processing device that communicates with each component of the film forming apparatus 1 via a control line or wireless communication (not shown), receives data from each component, and sends signals to each component to control their operation. The control unit 270 can be configured, for example, by a computer having a processor, memory, storage, I/O, etc. In this case, the functions of the control unit 270 are realized by the processor executing a program stored in the memory or storage. As the computer, a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logic controller) may be used. Alternatively, some or all of the functions of the control unit 270 may be configured by a circuit such as an ASIC or FPGA. Note that a control unit 270 may be provided for each film forming chamber, or one control unit 270 may control multiple film forming chambers.
 電源290は、不図示の導電線を介して成膜装置1の各構成要素に電圧を供給することが可能な高圧電源装置である。電源290は、制御部270からの指令に従って印加電圧の極性や大きさを制御する。電源290は、電圧供給手段と言える。静電チャックCの電極に対する印加電圧(吸着電圧)の極性や大きさを制御することで、基板Sに対する吸着力を制御することができる。なお、電源290と制御部270を合わせて、成膜装置の電源を構成すると考えてもよい。 The power supply 290 is a high-voltage power supply device capable of supplying voltage to each component of the film forming apparatus 1 via conductive wires (not shown). The power supply 290 controls the polarity and magnitude of the applied voltage according to instructions from the control unit 270. The power supply 290 can be considered a voltage supplying means. By controlling the polarity and magnitude of the voltage (adsorption voltage) applied to the electrodes of the electrostatic chuck C, the adsorption force on the substrate S can be controlled. The power supply 290 and the control unit 270 may be considered to collectively constitute the power supply for the film forming apparatus.
 なお、本発明の適用対象は、上述のようなクラスタ型の成膜装置に限定されない。本発明は、複数のチャンバが真空一貫に連結され、基板キャリアに保持された基板がチャンバ間を移動しながら成膜されるようなインライン型の成膜装置にも適用できる。 The application of the present invention is not limited to cluster-type deposition apparatus as described above. The present invention can also be applied to in-line deposition apparatus in which multiple chambers are connected through a vacuum, and a substrate held by a substrate carrier is moved between the chambers while a film is deposited thereon.
(静電チャック)
 静電チャックCは、セラミック等で構成された板状の基材に、金属電極などの電気回路が埋設された構造を有する。一般に静電チャックには、基板を吸着する原理に応じて、グラディエント力タイプ、クーロン力タイプ、ジョンソン・ラーベック力タイプなどの種類があるが、いずれにおいても印加する吸着電圧を高めるほど吸着力を高くすることができる。
(Electrostatic chuck)
The electrostatic chuck C has a structure in which an electric circuit, such as a metal electrode, is embedded in a plate-shaped base material made of ceramic or the like. Generally, there are various types of electrostatic chucks, such as a gradient force type, a Coulomb force type, and a Johnsen-Rahbek force type, depending on the principle by which the substrate is attracted to the electrostatic chuck. In any case, the attracting force can be increased by increasing the attracting voltage applied.
 グラディエント力タイプの静電チャックは、電極間の電位差により発生した電位勾配(グラディエント)のある領域に向かって生じる吸引力を利用して、吸着対象物を吸着する。グラディエント力は、吸着対象物が絶縁体であっても発生するという特徴があるため、素ガラスや、導電体が未成膜のガラス基板であっても保持可能である。グラディエント力を発生させる際は、吸着対象物の電位を基準として、第1電極の電位が基準より高くなり、第2電極の電位が基準より低くなるように吸着電圧を印加する。このグラディエント力を大きくするためには、電位勾配をできるだけ急峻にするために、電極間のスペースを小さくすることと、電極を緻密に配置することが必要である。したがってグラディエント力タイプの静電チャックに用いる電極としては、突出した櫛歯が互いに噛み合うような構造を持つ、2つの櫛歯電極が好適である。 Gradient force type electrostatic chucks attract objects by utilizing the attraction force that occurs toward an area with a potential gradient (gradient) generated by the potential difference between the electrodes. A gradient force is generated even if the object to be attracted is an insulator, so it can hold even plain glass or glass substrates on which no conductive film has been formed. When generating a gradient force, an attraction voltage is applied so that the potential of the first electrode is higher than the reference potential of the object to be attracted and the potential of the second electrode is lower than the reference potential, based on the potential of the object to be attracted. In order to increase this gradient force, it is necessary to reduce the space between the electrodes and to arrange the electrodes closely together in order to make the potential gradient as steep as possible. Therefore, two comb-tooth electrodes with a structure in which the protruding comb teeth interdigitate with each other are suitable as electrodes for use in gradient force type electrostatic chucks.
 クーロン力タイプの静電チャックは、2つの電極にそれぞれ正電位と負電位の電圧を印加することで発生する静電引力により吸着対象物を吸着するものであり、吸着対象物が導電体である場合に効果的である。そのため、金属材料の電極層が成膜済みの基板であれば効果的に吸着できる。吸着対象物がグランドに接続されていないフローティング状態の場合は、正電極と負電極の両方を吸着対象物に対向させることで、吸着対象物内に分極を発生させ、吸着することができる。また吸着対象物が接地されている場合は、正電極と負電極の少なくともいずれかにより吸着することができる。クーロン力は一般にグラディエント力よりも強い。また、吸着対象物に対向する電極の面積が大きくなるほど、吸着力が強くなる。したがって吸着力を高めるためには、静電チャックの面積に占める電極面積の割合をできるだけ大きくする必要がある。  Coulomb force type electrostatic chucks attract objects by electrostatic attraction generated by applying positive and negative voltages to two electrodes, respectively, and are effective when the object is a conductor. Therefore, they can be effectively attached to a substrate on which an electrode layer of a metal material has already been formed. When the object is in a floating state and not connected to ground, both the positive and negative electrodes can be placed facing the object to generate polarization within the object, which allows it to be attracted. When the object is grounded, it can be attracted by at least one of the positive and negative electrodes. Coulomb force is generally stronger than gradient force. Also, the larger the area of the electrode facing the object, the stronger the chucking force. Therefore, in order to increase the chucking force, it is necessary to increase the ratio of the electrode area to the area of the electrostatic chuck as much as possible.
 ジョンソン・ラーベック力タイプの静電チャックは、正電極、吸着対象物、負電極の順に漏れ電流を流すことで、導電体の吸着対象物を吸着するものであり、電極と吸着対象物の間に所定の範囲の体積抵抗値を持つ誘電体を配置する必要がある。ジョンソン・ラーベック力は一般にクーロン力よりも強い。またジョンソン・ラーベック力タイプの静電チャックにおいても、吸着対象物との接触面積を大きくするほど吸着力を強くすることができる。 Johnson-Rahbek force type electrostatic chucks attract conductive objects by passing a leakage current through the positive electrode, the object to be attracted, and the negative electrode in that order, and require a dielectric with a volume resistance value within a specified range to be placed between the electrode and the object to be attracted. The Johnson-Rahbek force is generally stronger than the Coulomb force. Also, with the Johnson-Rahbek force type electrostatic chuck, the greater the contact area with the object to be attracted, the stronger the suction force can be.
(有機EL表示装置の製造ライン)
 図3に、有機EL表示装置の製造ラインの一例を示す。図3に示す製造ラインは、図1に示す4つの成膜室11を備えた成膜クラスタ(成膜装置)1が5つ(成膜クラスタ1-1~1~5)、2つの成膜室11を備えた成膜クラスタ1bが一つ(成膜クラスタ1-6)、直列的に接続されたラインとなっている。
(Organic EL display manufacturing line)
An example of a manufacturing line for an organic EL display device is shown in Fig. 3. The manufacturing line shown in Fig. 3 is a line in which five film formation clusters (film formation devices) 1 (film formation clusters 1-1 to 1-5), each having four film formation chambers 11 as shown in Fig. 1, and one film formation cluster 1b (film formation cluster 1-6), each having two film formation chambers 11, are connected in series.
 5つの成膜クラスタ1―1~1-5のうち、ライン上流の4つの成膜クラスタ1-1~1-4は、製造ラインにおいて、計8層の有機層を形成する第一の有機蒸着部102を構成し、各成膜クラスタにおいて2層ずつ有機層が基板Sに成膜される。第一の有機蒸着部102のライン下流の成膜クラスタ1-5は、製造ラインにおける金属蒸着部103を構成し、2層の金属層が基板Sに成膜される。そのライン下流の成膜クラスタ1bは、製造ラインにける第二の有機蒸着部104を構成し、1層の有機層が基板Sに成膜される。 Of the five deposition clusters 1-1 to 1-5, the four deposition clusters 1-1 to 1-4 located upstream in the line constitute a first organic vapor deposition section 102 that forms a total of eight organic layers in the production line, and two organic layers are deposited on the substrate S in each deposition cluster. The deposition cluster 1-5 located downstream in the line from the first organic vapor deposition section 102 constitutes the metal vapor deposition section 103 in the production line, and two metal layers are deposited on the substrate S. The deposition cluster 1b located downstream in the line constitutes the second organic vapor deposition section 104 in the production line, and one organic layer is deposited on the substrate S.
 有機EL表示装置の製造ラインにおいて、基板Sは、先ず前処理部101に投入され、必要な前処理工程を施された後、第一の有機蒸着部102、金属蒸着部103、第二の有機蒸着部104を経て、後処理工程に運ばれる。図3に示す製造ラインにおいては、基板Sは、例えば、図中矢印で示すAルート、もしくはBルートを通り、後工程に流れる。 In a manufacturing line for organic EL display devices, a substrate S is first fed into a pre-processing section 101, where it undergoes the necessary pre-processing steps, and then is transported to a post-processing step via a first organic vapor deposition section 102, a metal vapor deposition section 103, and a second organic vapor deposition section 104. In the manufacturing line shown in Figure 3, the substrate S flows to a post-processing step, for example, via route A or route B indicated by the arrows in the figure.
 基板Sは、各蒸着部102~104において加熱される。すなわち、基板Sは、製造ラインを通過する過程で繰り返し加熱されることになる。一般的に、蒸着源を蒸発させるためには、有機膜の成膜では450℃近辺まで、金属膜の成膜では1300℃近辺まで蒸着源が加熱される。 The substrate S is heated in each of the deposition sections 102-104. In other words, the substrate S is repeatedly heated as it passes through the production line. In general, to evaporate the deposition source, the deposition source is heated to approximately 450°C for forming an organic film, and to approximately 1300°C for forming a metal film.
 仮に、上記ラインにおいて、有機蒸着室で0.1℃、金属蒸着室で0.3℃、基板Sが温度上昇すると仮定すると、真空環境下ではほとんど放熱しないため、前処理部101に23℃で投入された基板Sは、11回蒸着されて24.5℃に上昇する。一般的なガラス基板の熱膨張率を3.8×10^-6/m/℃とすると、1mあたり3.8×10^-6×24.5℃=93.1μm伸びることになる。また、有機蒸着室から次の有機蒸着室に移動する際も、3.8×0.1=0.38μm/m伸びることになる。大型サイズに分類されるG8Hサイズのガラス基板では、長辺が2.5mあり、0.1℃の温度変化でも0.38×2.5=0.95μmも伸びることになる。 If we assume that the temperature of the substrate S rises by 0.1°C in the organic deposition chamber and 0.3°C in the metal deposition chamber in the above line, since there is almost no heat dissipation in a vacuum environment, the substrate S, which is placed in the pretreatment section 101 at 23°C, is vapor-deposited 11 times and rises to 24.5°C. If the thermal expansion coefficient of a typical glass substrate is 3.8 x 10^-6/m/°C, it will expand by 3.8 x 10^-6 x 24.5°C = 93.1 μm per meter. In addition, when moving from one organic deposition chamber to the next, it will expand by 3.8 x 0.1 = 0.38 μm/m. A G8H size glass substrate, which is classified as a large size, has a long side of 2.5 m, and even a temperature change of 0.1°C will cause it to expand by 0.38 x 2.5 = 0.95 μm.
 上記のようなサイズ変化が生じてしまうと、例えば、基板SとマスクMとを±2.0μmでアライメントしていたとしても、基板Sの伸びによるズレが生じ、アライメント精度が低下する可能性がある。さらに、アライメント精度の低下により、膜質が低下し、良好な蒸着結果が得られなくなる可能性がある。また、蒸着時の高温によるサイズ変化は、静電チャックCにも生じ得るため、静電チャックCのサイズ変化も重なることで、アライメント精度の低下がより増長される可能性がある。 If the above-mentioned size changes occur, even if the substrate S and mask M are aligned to within ±2.0 μm, for example, the substrate S may stretch and cause misalignment, which may reduce the alignment accuracy. Furthermore, the reduced alignment accuracy may lead to a deterioration in film quality, making it difficult to obtain good deposition results. Furthermore, size changes due to high temperatures during deposition may also occur in the electrostatic chuck C, and the size change of the electrostatic chuck C may also exacerbate the reduction in alignment accuracy.
(温調機構)
 本実施形態における成膜装置は、上述した有機EL製造ラインにおける基板Sの伸びの影響を抑制すべく基板Sの温度を制御する手段として、基板Sを貼着する静電チャックCの温度を制御する温調機構(温度調整手段)を備える。静電チャックCを温調することで、蒸着により基板Sに付与される熱を、静電チャックCを介して吸収し、基板Sの温度上昇を抑制する。さらには、次工程に投入される前の基板Sの温度を、次工程において好適な投入温度まで温度を下げてから、基板Sを次工程に流すことができるように制御する。なお、ここでは基板の温度が上昇する例を示しているが、搬送過程で基板の温度が低下していくこともある。その場合には、次工程において好適な投入温度まで温度を上げてから、基板Sを次工程に流すことができるように制御する。基板の温度を一定に保つことに限らず、各チャンバで異なる目標の基板温度に制御してもよい。目的に応じて、温度調整手段は、加熱及び冷却の両方を行うもの、加熱のみを行うもの、並びに、冷却のみを行うものが適宜採用される。
(Temperature control mechanism)
The film forming apparatus in this embodiment includes a temperature control mechanism (temperature control means) for controlling the temperature of the electrostatic chuck C to which the substrate S is attached, as a means for controlling the temperature of the substrate S to suppress the influence of the elongation of the substrate S in the organic EL manufacturing line described above. By controlling the temperature of the electrostatic chuck C, the heat given to the substrate S by the deposition is absorbed through the electrostatic chuck C, suppressing the temperature rise of the substrate S. Furthermore, the temperature of the substrate S before being input to the next process is controlled so that the substrate S can be sent to the next process after the temperature is lowered to a suitable input temperature in the next process. Note that, although an example in which the temperature of the substrate rises is shown here, the temperature of the substrate may be lowered during the transfer process. In that case, the temperature is controlled so that the substrate S can be sent to the next process after the temperature is raised to a suitable input temperature in the next process. The temperature of the substrate is not limited to being kept constant, and may be controlled to a different target substrate temperature in each chamber. Depending on the purpose, the temperature control means may be appropriately adopted, which performs both heating and cooling, only heating, or only cooling.
 以下に、温調機構の具体的構成例として、実施例1~7に係る温調ユニットT1~T7を示す。 Below, temperature control units T1 to T7 for Examples 1 to 7 are shown as specific configuration examples of the temperature control mechanism.
<実施例1>
 図4は、本発明の実施例1に係る温調機構の構成を説明する模式的断面図である。
Example 1
FIG. 4 is a schematic cross-sectional view illustrating the configuration of the temperature adjustment mechanism according to the first embodiment of the present invention.
 図4に示すように、本実施例の成膜装置における温度調整手段は、温調ユニットT1を備える。温調ユニットT1は、温調部材TM、高熱伝導シートHT、冷却板CPなどを備える。温度調整手段を構成する要素しては、温調ユニットT1の他、温度センサTS1、温度センサTS2(図2参照)、第1の伝熱部材としてのマグネット板MP、第2の伝熱部材としての静電チャックCなどが含まれる。 As shown in FIG. 4, the temperature adjustment means in the film forming apparatus of this embodiment includes a temperature adjustment unit T1. The temperature adjustment unit T1 includes a temperature adjustment member TM, a high thermal conductivity sheet HT, a cooling plate CP, etc. In addition to the temperature adjustment unit T1, the elements constituting the temperature adjustment means include a temperature sensor TS1, a temperature sensor TS2 (see FIG. 2), a magnet plate MP as a first heat transfer member, and an electrostatic chuck C as a second heat transfer member.
(温調部材TM)
 本実施例の温調部材TMは、ペルチェ素子が組み込まれた板状の温調部材である。温調部材TMは、マグネット板MPと一体的に設けられており、マグネット板MPとともに昇降する。具体的には、マグネット板MPのベース板BPの上面(静電チャックCに対向する側の面とは反対側の面)に接触配置されている。
(Temperature control member TM)
The temperature control member TM in this embodiment is a plate-shaped temperature control member incorporating a Peltier element. The temperature control member TM is provided integrally with the magnet plate MP and moves up and down together with the magnet plate MP. Specifically, the temperature control member TM is disposed in contact with the upper surface (the surface opposite to the surface facing the electrostatic chuck C) of the base plate BP of the magnet plate MP.
 また、本実施例では、温調部材TMを複数分割配置している。すなわち、マグネット板MPのベース板BPの上面に複数の温調部材TMを等間隔に配置している。なお、温調部材TMがベース板BP上面の略全域に渡って接触するように、温調部材TMを一枚の部材で構成してもよい。すなわち、温調部材TMの構成は、図4に示す構成に限定されない。  In addition, in this embodiment, the temperature control member TM is divided and arranged in multiple parts. That is, multiple temperature control members TM are arranged at equal intervals on the upper surface of the base plate BP of the magnet plate MP. Note that the temperature control member TM may be formed from a single member so that the temperature control member TM is in contact with almost the entire upper surface of the base plate BP. In other words, the configuration of the temperature control member TM is not limited to the configuration shown in FIG. 4.
 また、温調部材TMの上面(マグネット板MPに接する面とは反対側の面)には、冷却板CPが接触配置されている。すなわち、温調部材TMは、マグネット板MPと冷却板CPとの間にZ軸方向に挟まれた配置となっており、直接的には、マグネット板MPと冷却板CPとの間で熱交換を行うように構成されている。 In addition, the cooling plate CP is arranged in contact with the upper surface of the temperature control member TM (the surface opposite to the surface in contact with the magnet plate MP). In other words, the temperature control member TM is arranged between the magnet plate MP and the cooling plate CP in the Z-axis direction, and is configured to directly exchange heat between the magnet plate MP and the cooling plate CP.
 ここで、ペルチェ素子は、P型半導体、N型半導体を交互に配列した板状の素子である。ペルチェ素子に直流電流を流すと、素子の両面間で熱が移動し、一方の面は発熱して温度が上がり、反対側の他方の面は吸熱して温度が下がる現象が起こる。このペルチェ素子に入力する電流の方向を切り替えることで、加熱・冷却を行うことができる。一般的に、ペルチェ素子は、温調素子の中でも応答が速く、高速でスイッチングが可能なため、高精度な温度制御が可能である。 Here, a Peltier element is a plate-shaped element in which P-type and N-type semiconductors are arranged alternately. When a direct current is passed through a Peltier element, heat is transferred between both sides of the element, with one side generating heat and increasing its temperature, and the other side absorbing heat and decreasing its temperature. Heating and cooling can be achieved by switching the direction of the current input to this Peltier element. Generally, Peltier elements have a fast response among temperature control elements, and can be switched at high speed, allowing for highly accurate temperature control.
(高熱伝導シートHT)
 高熱伝導シートHT(高熱伝導部材)は、静電チャックCやマグネット板MPよりも熱伝導率が高い材料から構成されたシート状部材である。高熱伝導シートHTは、静電チャックCの上面261(基板Sを吸着する吸着面260とは反対側の面)に接触配置されている。マグネット板MPがマスクMを基板Sに引き付ける(吸着させる)ために静電チャックCに向かって下降すると、マグネット板MPのマグネットMGが、高熱伝導シートHTの上面(静電チャックCに接する面とは反対側の面)に接触する。すなわち、高熱伝導シートHTは、マグネット板MPの下降時(マスクMの吸引動作時)において、静電チャックCとマグネット板MPとの間にZ軸方向に挟まれた配置状態となる。この状態において、高熱伝導シートHTは、静電チャックCとマグネット板MPとの間で熱交換を行うように構成されている。
(High thermal conductive sheet HT)
The highly thermally conductive sheet HT (highly thermally conductive member) is a sheet-like member made of a material having a higher thermal conductivity than the electrostatic chuck C and the magnet plate MP. The highly thermally conductive sheet HT is arranged in contact with the upper surface 261 of the electrostatic chuck C (the surface opposite to the adsorption surface 260 that adsorbs the substrate S). When the magnet plate MP descends toward the electrostatic chuck C to attract (adsorb) the mask M to the substrate S, the magnet MG of the magnet plate MP comes into contact with the upper surface of the highly thermally conductive sheet HT (the surface opposite to the surface that contacts the electrostatic chuck C). That is, when the magnet plate MP descends (when the mask M is attracted), the highly thermally conductive sheet HT is sandwiched between the electrostatic chuck C and the magnet plate MP in the Z-axis direction. In this state, the highly thermally conductive sheet HT is configured to exchange heat between the electrostatic chuck C and the magnet plate MP.
 静電チャックCよりも熱伝導率が高い高熱伝導シートHTが静電チャックCに接触することで、静電チャックCを効率良く冷却することが可能である。この冷却効果は、高熱伝導シートHTと静電チャックCとの接触面積の大小に関わらず得ることが可能であるが、接触面積が大きくなるほど、冷却効果は高くなる。 The highly thermally conductive sheet HT, which has a higher thermal conductivity than the electrostatic chuck C, comes into contact with the electrostatic chuck C, thereby making it possible to efficiently cool the electrostatic chuck C. This cooling effect can be obtained regardless of the size of the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C, but the larger the contact area, the greater the cooling effect.
 ここで、本実施例では、高熱伝導シートHTと静電チャックCとの接触面積が、マグネット板MPの複数のマグネットMGのZ軸方向の射影面積(複数のマグネットMGにおける高熱伝導シートHTとの総接触面積)よりも広くなる構成としている。これにより、マグネット板MPの複数のマグネットMGが直接、静電チャックCと接触する場合よりも、冷却効果を高めることができる。 In this embodiment, the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is configured to be larger than the projected area in the Z-axis direction of the multiple magnets MG of the magnet plate MP (the total contact area of the multiple magnets MG with the highly thermally conductive sheet HT). This makes it possible to improve the cooling effect compared to when the multiple magnets MG of the magnet plate MP are in direct contact with the electrostatic chuck C.
 また、本実施例では、高熱伝導シートHTと静電チャックCとの接触面積が、温調部材TMのZ軸方向の射影面積(複数の温調部材TMにおけるマグネットMG(ベース板BP)との総接触面積)よりも広くなる構成としている。これにより、複数の温調部材TMが直接、静電チャックCと接触する場合よりも、冷却効果を高めることができる。 In addition, in this embodiment, the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is configured to be larger than the projection area of the temperature control member TM in the Z-axis direction (the total contact area of the multiple temperature control members TM with the magnet MG (base plate BP)). This makes it possible to improve the cooling effect compared to when the multiple temperature control members TM are in direct contact with the electrostatic chuck C.
 さらに、本実施例では、高熱伝導シートHTと静電チャックCとの接触面積を可能な限り広く確保し、かつ、高熱伝導シートHTが静電チャックCの上面261全体に満遍なく接するように構成している。例えば、高熱伝導シートHTと静電チャックCとの接触面積が、Z軸方向に射影した静電チャックCの面積の50%以上であると好適である。これにより、静電チャックCの温度を全体的に均一に下げることが可能となる。 Furthermore, in this embodiment, the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is secured to be as large as possible, and the highly thermally conductive sheet HT is configured to be in contact with the entire upper surface 261 of the electrostatic chuck C evenly. For example, it is preferable that the contact area between the highly thermally conductive sheet HT and the electrostatic chuck C is 50% or more of the area of the electrostatic chuck C projected in the Z-axis direction. This makes it possible to lower the temperature of the electrostatic chuck C uniformly all over.
(冷却板CP)
 冷却板CPは、ステンレスからなる板状の冷却部材であり、その内部に、冷媒を流す冷却管である水路WPを備えている。水路WPは、チャンバ200の外部との間で冷媒としての冷却水を循環可能に構成されており、冷却板CPに付与された熱を、冷却水で吸収して外部へ排出することが可能である。冷却板CPは、冷却効果をより高めるためのオプション構成であり、温調ユニットT1から省いてもよい。
(Cooling plate CP)
The cooling plate CP is a plate-shaped cooling member made of stainless steel, and has a water channel WP inside, which is a cooling pipe for flowing a refrigerant. The water channel WP is configured to be able to circulate cooling water as a refrigerant between the chamber 200 and the outside, and the heat applied to the cooling plate CP can be absorbed by the cooling water and discharged to the outside. The cooling plate CP is an optional component for further enhancing the cooling effect, and may be omitted from the temperature adjustment unit T1.
(温度センサTS1)
 温度センサTS1(第1温度検知手段)は、静電チャックCの温度を検知する温度センサであり、静電チャックCの基材250に組み込まれており、検知温度を制御部270に送ることができるように構成されている。温度センサTS1としては、例えば、サーミスタやダイオード等を用いることができる。
(Temperature sensor TS1)
The temperature sensor TS1 (first temperature detection means) is a temperature sensor that detects the temperature of the electrostatic chuck C, is incorporated in the base material 250 of the electrostatic chuck C, and is configured to be able to send the detected temperature to the control unit 270. As the temperature sensor TS1, for example, a thermistor, a diode, or the like can be used.
 本実施例では、基板Sを貼着している静電チャックCの温度を、常に、温度センサTS1でモニタする。基板Sは蒸着の熱エネルギーを受けることで温度上昇し、その熱エネルギーが静電チャックCに伝わる。このときの静電チャックCの温度を温度センサTS1で検知し、温調ユニットT1(特に温調部材TM)による冷却動作にフィードバックする。  In this embodiment, the temperature of the electrostatic chuck C to which the substrate S is attached is constantly monitored by the temperature sensor TS1. The temperature of the substrate S rises when it receives thermal energy from deposition, and this thermal energy is transferred to the electrostatic chuck C. The temperature of the electrostatic chuck C at this time is detected by the temperature sensor TS1 and fed back to the cooling operation by the temperature control unit T1 (particularly the temperature control member TM).
(温度センサTS2)
 温度センサTS2(第2温度検知手段)は、マスクMの温度を検知する温度センサであり、図2に示すようにチャンバ200の側壁に設けられており、検知温度を制御部270に送ることができるように構成されている。温度センサTS2としては、例えば、マスクMから放出される電磁波(光)からマスクMの温度を測定する放射温度計を用いることができる。
(Temperature sensor TS2)
2, the temperature sensor TS2 (second temperature detection means) is provided on the side wall of the chamber 200 and is configured to be able to send the detected temperature to the control unit 270. As the temperature sensor TS2, for example, a radiation thermometer that measures the temperature of the mask M from electromagnetic waves (light) emitted from the mask M can be used.
(温度制御部)
 制御部270は、電源290から供給される電力をもとに温調部材TMのペルチェ素子へ電流を流す電流供給部(図7参照)を備える。制御部270は、温度制御手段における制御部として、電流供給部が温調部材TMのペルチェ素子に流す電流を制御することで、温調部材TMの温度(熱交換状態)を制御する。制御部270は、電源290とともに、本発明の温度制御手段の構成(温度制御部)に含まれると考えてよい。
(Temperature control unit)
The control unit 270 includes a current supply unit (see FIG. 7) that supplies current to the Peltier element of the temperature adjustment member TM based on the power supplied from the power source 290. The control unit 270, as a control unit in the temperature control means, controls the temperature (heat exchange state) of the temperature adjustment member TM by controlling the current that the current supply unit supplies to the Peltier element of the temperature adjustment member TM. The control unit 270, together with the power source 290, may be considered to be included in the configuration (temperature control unit) of the temperature control means of the present invention.
 制御部270は、温度センサTS1の検知温度や温度センサTS2の検知温度に基づいて、温調部材TMを制御する。具体的には、例えば、基板Sが複数の成膜室に渡って成膜される場合において、現在の成膜室(第1成膜室)に備えられた静電チャックCの温度が、次の成膜室(第2成膜室)に備えられたマスクMの温度に近づくように制御する。この際に、次の成膜室(第2成膜室)に備えられたマスクMの温度を、次の成膜室のチャンバ200に備えられた温度センサTS2を用いて検知する。 The control unit 270 controls the temperature adjustment member TM based on the temperature detected by the temperature sensor TS1 and the temperature detected by the temperature sensor TS2. Specifically, for example, when a substrate S is subjected to film formation across multiple film formation chambers, the temperature of the electrostatic chuck C provided in the current film formation chamber (first film formation chamber) is controlled to approach the temperature of the mask M provided in the next film formation chamber (second film formation chamber). At this time, the temperature of the mask M provided in the next film formation chamber (second film formation chamber) is detected using the temperature sensor TS2 provided in the chamber 200 of the next film formation chamber.
 すなわち、現在の成膜室(第1成膜室)の静電チャックC(第1静電チャック)の温度を、現在の成膜室(第1成膜室)の静電チャックC(第1静電チャック)に備えられた温度センサTS1(第1温度センサ)によりモニタする。それとともに、次の成膜室(第2成膜室)のマスクM(第2マスク)の温度を、次の成膜室(第2成膜室)に備えられた温度センサTS2(第2温度センサ)により検知する。そして、温度センサTS1(第1温度センサ)の検知温度が、温度センサTS2(第2温度センサ)の検知温度に近づくように、現在の成膜室(第1成膜室)の温調部材TM(第1温調部材)の電流印加を制御する。 That is, the temperature of the electrostatic chuck C (first electrostatic chuck) in the current film formation chamber (first film formation chamber) is monitored by the temperature sensor TS1 (first temperature sensor) provided on the electrostatic chuck C (first electrostatic chuck) in the current film formation chamber (first film formation chamber). At the same time, the temperature of the mask M (second mask) in the next film formation chamber (second film formation chamber) is detected by the temperature sensor TS2 (second temperature sensor) provided in the next film formation chamber (second film formation chamber). Then, the current applied to the temperature adjustment member TM (first temperature adjustment member) in the current film formation chamber (first film formation chamber) is controlled so that the temperature detected by the temperature sensor TS1 (first temperature sensor) approaches the temperature detected by the temperature sensor TS2 (second temperature sensor).
 図5は、有機EL製造ラインにおける温調制御の一例を示す模式図である。有機EL製造ラインにおいて、基板Sの温度を、各工程におけるチャンバ200内の温度や各工程におけるマスクMの温度に合わせることが要求される場合がある。図5に示すように、各成膜クラスタ1―1~1-5、1bにおいて、成膜条件の違い等によりマスクMの温度が異なる場合がある。また、図3に示す本実施例の温調制御を行わない場合の基板Sの温度上昇との対比で理解されるように、特に、ライン後半において、基板SとマスクMの温度差はより顕著なものとなる。 FIG. 5 is a schematic diagram showing an example of temperature control in an organic EL production line. In an organic EL production line, it may be required to match the temperature of the substrate S to the temperature inside the chamber 200 in each process or to the temperature of the mask M in each process. As shown in FIG. 5, the temperature of the mask M may differ in each film formation cluster 1-1 to 1-5, 1b due to differences in film formation conditions, etc. Also, as can be seen in comparison with the temperature rise of the substrate S when the temperature control of this embodiment is not performed as shown in FIG. 3, the temperature difference between the substrate S and the mask M becomes more noticeable, especially in the latter half of the line.
 本実施例によれば、静電チャックCの温度、すなわち、基板Sの温度を、各チャンバ200内の温度やマスクMの温度に合わせることが可能となる。すなわち、本実施例によれば、基板Sの温度を、図5に示す各成膜クラスタ1―1~1-5、1bのマスクMの温度に合せるように制御することが可能である。 According to this embodiment, it is possible to match the temperature of the electrostatic chuck C, i.e., the temperature of the substrate S, to the temperature inside each chamber 200 and the temperature of the mask M. In other words, according to this embodiment, it is possible to control the temperature of the substrate S to match the temperature of the mask M of each of the deposition clusters 1-1 to 1-5 and 1b shown in FIG. 5.
(その他の伝熱部材)
 マグネット板MPは、静電チャックCと接触する部材であり、温調ユニットTの具体態様によっては、静電チャックCとともに、基板Sと温調部材TMとの間において熱の伝達を担う伝熱部材と捉えることができる。すなわち、本発明の温度制御手段の構成に含まれると考えてよい。
(Other heat transfer components)
The magnet plate MP is a member that comes into contact with the electrostatic chuck C, and depending on the specific embodiment of the temperature adjustment unit T, can be regarded as a heat transfer member that transfers heat between the substrate S and the temperature adjustment member TM together with the electrostatic chuck C. In other words, it can be considered to be included in the configuration of the temperature control means of the present invention.
 マグネット板MPは、ベース板BPと、複数のマグネットMGと、から構成される磁力発生手段である。複数のマグネットMGは、ベース板BPの下面(ベース板BPにおいて静電チャックCと対向する側の面)に等間隔配置で貼り付けられている。個々のマグネットMGは、ベース板BPの下面から静電チャックCが配置される側に向かってZ軸方向に突出する突起状に構成されており、その先端面が高熱伝導シートHTの上面と接触する。  The magnet plate MP is a magnetic force generating means composed of a base plate BP and multiple magnets MG. The multiple magnets MG are attached at equal intervals to the underside of the base plate BP (the surface of the base plate BP facing the electrostatic chuck C). Each magnet MG is configured as a protrusion that protrudes in the Z-axis direction from the underside of the base plate BP toward the side where the electrostatic chuck C is located, and its tip surface comes into contact with the upper surface of the highly thermally conductive sheet HT.
 複数のマグネットMGは、その磁力によってマスクMを基板Sに向かって(Z軸方向に)引き付けるものであり、その配置は特に限定されるものではないが、例えば、マスクMのフレーム形状に対応した配置が採用される場合がある。すなわち、静電チャックCの上面261の全域に対応して満遍なく散らばった配置ではなく、偏った配置となる場合がある。 The magnets MG attract the mask M toward the substrate S (in the Z-axis direction) with their magnetic force, and although there are no particular limitations on their arrangement, for example, an arrangement corresponding to the frame shape of the mask M may be adopted. In other words, instead of being evenly distributed over the entire area of the upper surface 261 of the electrostatic chuck C, they may be arranged in a biased manner.
 また、静電チャックCは、温調対象である基板Sと接触する部材であり、基板Sの温調の観点からは、基板Sと温調部材TMとの間において熱の伝達を担う伝熱部材と捉えることができる。静電チャックCは、セラミック等からなる基材250中に正電極251と負電極252が埋め込まれた構成となっている。正電極251および負電極252は、電源290に接続されており、制御部270の制御により所望の大きさの電圧を印加され、電圧の大きさに対応する吸着力を発生させて、基板Sを引き付ける。 The electrostatic chuck C is a member that comes into contact with the substrate S, the temperature of which is to be controlled, and from the viewpoint of controlling the temperature of the substrate S, it can be considered as a heat transfer member that transfers heat between the substrate S and the temperature control member TM. The electrostatic chuck C is configured such that a positive electrode 251 and a negative electrode 252 are embedded in a base material 250 made of ceramic or the like. The positive electrode 251 and the negative electrode 252 are connected to a power source 290, and a voltage of a desired magnitude is applied to them under the control of the control unit 270, generating an adsorption force corresponding to the magnitude of the voltage to attract the substrate S.
(温調ユニットT1の構成的特徴)
 本実施例の温調ユニットT1は、ペルチェ素子などから構成される温調部材を用い、静電チャックCの温度やマスクMの温度をモニタしながら、静電チャックCの温度を制御するように構成した。また、静電チャックCに高熱伝導シートHTを接触させる構成とし、該高熱伝導部材を介して(該高熱伝導部材の温度を制御することで)静電チャックCの温度を制御するように構成した。
(Structural Features of Temperature Adjustment Unit T1)
The temperature adjustment unit T1 of this embodiment is configured to use a temperature adjustment member formed of a Peltier element or the like, and to control the temperature of the electrostatic chuck C while monitoring the temperature of the electrostatic chuck C and the temperature of the mask M. In addition, a highly thermally conductive sheet HT is brought into contact with the electrostatic chuck C, and the temperature of the electrostatic chuck C is controlled via the highly thermally conductive member (by controlling the temperature of the highly thermally conductive member).
 さらに、温調ユニットT1の構成を、Z軸方向(静電チャックCの吸着面260に交差する方向)において、マスクM側から見て、マスクM、静電チャックC、マグネット板MP、温度制御手段(温調部材TM、冷却板CPなど)の順に並ぶ構成とした。かかる構成によれば、例えば、温度制御手段の中に磁性部材が含まれるような場合であっても、該磁性部材がマグネット板MPによるマスクMの吸着効果に及ぼす影響を小さくすることができる。 Furthermore, the temperature control unit T1 is configured such that, as viewed from the mask M side, the mask M, electrostatic chuck C, magnet plate MP, and temperature control means (temperature control member TM, cooling plate CP, etc.) are arranged in this order in the Z-axis direction (the direction intersecting the adsorption surface 260 of the electrostatic chuck C). With this configuration, even if, for example, a magnetic member is included in the temperature control means, it is possible to reduce the influence of the magnetic member on the adsorption effect of the mask M by the magnet plate MP.
 成膜装置に用いられる温度制御手段(冷却手段)としては種々の構成が挙げられ、例えば、本実施例の上記温度制御手段とは別に、マグネット板MPとマスクMの間に、さらに別の冷却部材を配置するような構成も考えられる。そのような構成においても、本実施例の温調ユニットT1の構成を採用することで、冷却手段の少なくとも一部がマグネット板MPのマスク吸着に対して影響の少ない位置に配置されることになり、上記と同様の効果を得ることができる。当然ながら、温度制御構成が本実施例の温調ユニットT1に集約されることで、マグネット板MPのマスク吸着に対する影響を低減する効果がより高められることは言うまでもない。 Various configurations can be given for the temperature control means (cooling means) used in the film forming apparatus. For example, a configuration in which a separate cooling member is placed between the magnet plate MP and the mask M in addition to the above-mentioned temperature control means of this embodiment is also conceivable. Even in such a configuration, by adopting the configuration of the temperature adjustment unit T1 of this embodiment, at least a part of the cooling means is placed in a position that has little effect on the magnet plate MP's attraction to the mask, and the same effect as above can be obtained. Naturally, it goes without saying that by consolidating the temperature control configuration into the temperature adjustment unit T1 of this embodiment, the effect of reducing the effect of the magnet plate MP's attraction to the mask is further enhanced.
(温調制御)
 本実施例の温調ユニットT1を用いた静電チャックCの温調は、マグネット板MPが静電チャックCから離間した位置(第1の位置)から下降し(高熱伝導シートHTを介して)静電チャックCと接触する位置(第2の位置)にあるときに、最大の効果が得られる。マグネット板MPを静電チャックCに接触させる(下降させる)のは、成膜工程の流れの中では、アライメントされた基板SがマスクMに載置された状態となった後、すなわち、マグネット板MPの磁力によってマスクMを基板Sに密着させる際が典型的である。
(Temperature control)
The temperature control of the electrostatic chuck C using the temperature control unit T1 of this embodiment is most effective when the magnet plate MP is lowered from a position (first position) spaced apart from the electrostatic chuck C to a position (second position) in which it comes into contact with the electrostatic chuck C (through the highly thermally conductive sheet HT). In the film formation process, the magnet plate MP is typically brought into contact with the electrostatic chuck C (lowered) after the aligned substrate S is placed on the mask M, that is, when the mask M is brought into close contact with the substrate S by the magnetic force of the magnet plate MP.
 温調ユニットT1において、特に、温調部材TM(ペルチェ素子)の制御を行うタイミングや期間としては、蒸発源240が成膜材料を放出するとき、すなわち、基板Sが最も高温に曝されるときが典型的である。また、成膜終了後も、マグネット板MPを静電チャックCに接触させたまま、すなわち、マスクMに基板Sを密着させたままとして、例えば、シャッタを備える成膜装置であればシャッタを閉じた状態として、温調を継続してもよい。あるいは、成膜中は温調せず、成膜終了後に、マグネット板MPを静電チャックCに接触させたままにして、初めて温調を開始するようにしてもよい。 In the temperature control unit T1, the timing and period for controlling the temperature control member TM (Peltier element) is typically when the evaporation source 240 releases the film-forming material, i.e., when the substrate S is exposed to the highest temperature. Even after film formation is completed, temperature control may be continued with the magnet plate MP in contact with the electrostatic chuck C, i.e., with the substrate S in close contact with the mask M, for example, with the shutter closed if the film formation device is equipped with a shutter. Alternatively, temperature control may not be performed during film formation, and temperature control may only begin after film formation is completed, with the magnet plate MP in contact with the electrostatic chuck C.
 また、温調部材TM(ペルチェ素子)の制御による温調を、成膜動作中とは別のタイミングで行うようにしてもよい。例えば、成膜動作の前後の基板Sを搬送している最中に、マグネット板MPを静電チャックCに接触させて静電チャックCの温度を制御する構成としてもよい。すなわち、マスクMの基板Sへの吸着を伴わないマグネット板MPの静電チャックCへの接触(下降)を行い、温調部材TM(ペルチェ素子)の制御による温調を行うようにしてもよい。 Furthermore, temperature control by controlling the temperature control member TM (Peltier element) may be performed at a timing other than during the film formation operation. For example, a configuration may be adopted in which the magnet plate MP is brought into contact with the electrostatic chuck C to control the temperature of the electrostatic chuck C while the substrate S is being transported before and after the film formation operation. In other words, the magnet plate MP may be brought into contact with the electrostatic chuck C (lowered) without adhering the mask M to the substrate S, and temperature control may be performed by controlling the temperature control member TM (Peltier element).
 また、後述する実施例2のように、ペルチェ素子からなる温調部材TMが直接、静電チャックCに取り付けられる構成においては、成膜装置の動作状況に関わらず、任意のタイミングで静電チャックCの温調を行うようにしてよい。 Furthermore, in a configuration in which a temperature control member TM made of a Peltier element is directly attached to the electrostatic chuck C, as in Example 2 described below, the temperature of the electrostatic chuck C may be controlled at any time regardless of the operating status of the film forming apparatus.
 また、温調ユニットT1による温調制御は、典型的には、基板Sを冷却することである。しかしながら、例えば、図5に示す成膜ラインにおいて基板Sの温度がマスクMの温度に対して低くなってしまったような場合には、温調部材TMのペルチェ素子の動作によって静電チャックCを加熱する場合もあり得る。したがって、温調部材TMとしては、ペルチェ素子を用いたものに限られず、電熱線等から構成されるヒータを用いたものであってもよい。 The temperature control by the temperature adjustment unit T1 typically involves cooling the substrate S. However, for example, in the film formation line shown in FIG. 5, if the temperature of the substrate S becomes lower than the temperature of the mask M, the electrostatic chuck C may be heated by the operation of the Peltier element of the temperature adjustment member TM. Therefore, the temperature adjustment member TM is not limited to one that uses a Peltier element, and may also use a heater composed of an electric heating wire or the like.
 また、温調ユニットT1による温調制御の目的の一つは、上述したように、図5に示すような一連の成膜ライン(複数の成膜室を跨いでの複数回の成膜動作)での流れにおいて、次の成膜で使用されるマスクMの温度に合せて基板Sを温調することである。しかしながら、温調ユニットT1による温調制御の目的は、上記に限定されない。 Furthermore, as described above, one of the purposes of the temperature control by the temperature adjustment unit T1 is to adjust the temperature of the substrate S to match the temperature of the mask M to be used in the next film formation in a series of film formation lines (multiple film formation operations across multiple film formation chambers) as shown in FIG. 5. However, the purpose of the temperature control by the temperature adjustment unit T1 is not limited to the above.
 例えば、基板Sに蒸着させる膜の特性によっては、できるだけ基板Sの温度を下げたい、あるいは上げたい、といったことの要求がある場合がある。そのような場合には、一つの成膜室において、静電チャックCの検知温度に基づいて静電チャックC(すなわち基板S)の温度を温調ユニットT1により制御してよい。 For example, depending on the characteristics of the film to be deposited on the substrate S, there may be a need to lower or raise the temperature of the substrate S as much as possible. In such a case, in one film formation chamber, the temperature of the electrostatic chuck C (i.e., the substrate S) may be controlled by the temperature adjustment unit T1 based on the detected temperature of the electrostatic chuck C.
 また、ペルチェ素子による冷却又は加熱は、温調部材TMが接している部材の温度を変化させ、さらに、当該部材に接する別の部材の温度も熱伝導により連鎖的に変化させていく。すなわち、温調部材TMがマグネット板MPを冷却することで、マグネット板MPに接した高熱伝導シートHT、高熱伝導シートHTに接した静電チャックC、静電チャックCに接した基板Sが、順次冷却されることになる。そして、当然ながら、基板Sに接したマスクMも冷却されることになる(温調部材TMは、上記各部材の温度を制御する温度制御手段である)。 In addition, the cooling or heating by the Peltier element changes the temperature of the member in contact with the temperature adjustment member TM, and further changes the temperature of other members in contact with that member in a chain reaction due to thermal conduction. That is, when the temperature adjustment member TM cools the magnet plate MP, the highly thermally conductive sheet HT in contact with the magnet plate MP, the electrostatic chuck C in contact with the highly thermally conductive sheet HT, and the substrate S in contact with the electrostatic chuck C are sequentially cooled. And, naturally, the mask M in contact with the substrate S is also cooled (the temperature adjustment member TM is a temperature control means that controls the temperature of each of the above-mentioned members).
 成膜室での熱源は、気化した成膜材料と蒸発源からの輻射熱であり、これらは主にマスクMと基板Sを加熱する。基板SとマスクMの温度は、最終的には、加熱エネルギーの量と静電チャックCを介した冷却能力の差で変化し、また、蒸発源に近い側の温度が高くなる温度勾配は生じ得るものの、本実施例の温調ユニットT1による冷却を行わない場合と比べれば、基板SとともにマスクMの温度上昇も抑制されることになる。すなわち、本実施例の温調ユニットT1による温調制御は、基板Sの温調(冷却)が第一ではあるものの、間接的には、マスクMの昇温抑制するものと言うこともできる。 The heat sources in the film formation chamber are the vaporized film formation material and radiant heat from the evaporation source, which mainly heat the mask M and substrate S. The temperatures of the substrate S and mask M ultimately change depending on the difference between the amount of heating energy and the cooling capacity via the electrostatic chuck C, and although a temperature gradient in which the temperature is higher on the side closer to the evaporation source can occur, the temperature rise of both the substrate S and the mask M is suppressed compared to the case where cooling by the temperature adjustment unit T1 of this embodiment is not performed. In other words, although the temperature adjustment control by the temperature adjustment unit T1 of this embodiment is primarily intended to regulate (cool) the temperature of the substrate S, it can also be said to indirectly suppress the temperature rise of the mask M.
 したがって、例えば、図5に示す成膜ラインと異なり、各成膜室内のマスクMの温度をそれぞれ同じ温度に制御したいような場合において、本実施例の温調ユニットT1による温調制御を利用することも可能である。 Therefore, for example, unlike the deposition line shown in FIG. 5, in cases where it is desired to control the temperature of the mask M in each deposition chamber to the same temperature, it is possible to utilize the temperature control by the temperature adjustment unit T1 of this embodiment.
<実施例2>
 図6、図7を参照して、本発明の実施例2に係る温調ユニットT2について説明する。図6は、本発明の実施例2に係る温調機構の構成を説明する模式的断面図である。図7は、図6のAA矢視図に対応する図であり、複数の温調部材の配置構成、制御構成の別の例を示す模式的平面図である。
Example 2
A temperature adjustment unit T2 according to a second embodiment of the present invention will be described with reference to Fig. 6 and Fig. 7. Fig. 6 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the second embodiment of the present invention. Fig. 7 is a schematic plan view corresponding to the view taken along the line AA in Fig. 6, illustrating another example of the arrangement and control configuration of a plurality of temperature adjustment members.
 ここでは、実施例2の構成において、実施例1の構成とは異なる点についてのみ説明する。実施例2の構成において、実施例1の構成と同様のものについては、同じ符号を付し、説明を省略する。 Here, only the differences between the configuration of Example 2 and the configuration of Example 1 will be described. In the configuration of Example 2, the same reference numerals will be used for the same parts as in Example 1, and the description will be omitted.
 実施例1の温調ユニットT1では、温調部材TMが、静電チャックCとは直接接触せずに、マグネット板MP及び高熱伝導シートHTを介して、静電チャックCを温調する構成とした。これに対し、実施例2の温調ユニットT2では、図6に示すように、温調部材TMを静電チャックCの上面261に直接接触するように配置した。 In the temperature control unit T1 of Example 1, the temperature control member TM is not in direct contact with the electrostatic chuck C, but controls the temperature of the electrostatic chuck C via the magnet plate MP and the highly thermally conductive sheet HT. In contrast, in the temperature control unit T2 of Example 2, as shown in FIG. 6, the temperature control member TM is arranged so as to be in direct contact with the upper surface 261 of the electrostatic chuck C.
 すなわち、実施例2の温調ユニットT2では、静電チャックCに伝わった熱エネルギーを、ペルチェ素子からなる温調部材TMで直接的に熱回収し、静電チャックCを冷やす一方、マグネット板MPに熱エネルギーを輻射伝達する。マグネット板MPに伝わった熱エネルギーは、冷却板CPに設けられた水路WPで回収する。これにより、基板Sを、温度上昇を抑制して次工程に送ることができる。 In other words, in the temperature control unit T2 of the second embodiment, the thermal energy transferred to the electrostatic chuck C is directly recovered by the temperature control member TM made of a Peltier element, cooling the electrostatic chuck C while radiating the thermal energy to the magnet plate MP. The thermal energy transferred to the magnet plate MP is recovered by the water passage WP provided in the cooling plate CP. This makes it possible to send the substrate S to the next process while suppressing the temperature rise.
 図7に示すように、実施例2の温調ユニットT2は、静電チャックCの上面261を複数の領域261-1~261-4に分割し、各分割領域261-1~261-4にそれぞれ独立した温調部材TM1~TM4を配置する構成としている。そして、各温調部材TM1~TM4をそれぞれ独立して制御可能に構成している。すなわち、複数の温調部材TM1~TM4にそれぞれに対応した複数の電源回路部TC1~TC4を設ける構成としている。各電源回路部TC1~TC4はそれぞれ、二つの電源と二つのスイッチが並列接続された構成となっており、ペルチェ素子に入力される電流の方向を切り替えることで、それぞれ個別にペルチェ素子の加熱状態と冷却状態とを切り替え可能に構成されている。 As shown in FIG. 7, the temperature adjustment unit T2 of the second embodiment is configured to divide the upper surface 261 of the electrostatic chuck C into a plurality of regions 261-1 to 261-4, and to place independent temperature adjustment members TM1 to TM4 in each of the divided regions 261-1 to 261-4. Each of the temperature adjustment members TM1 to TM4 is configured to be independently controllable. In other words, a plurality of power supply circuit sections TC1 to TC4 are provided corresponding to the plurality of temperature adjustment members TM1 to TM4. Each of the power supply circuit sections TC1 to TC4 is configured with two power supplies and two switches connected in parallel, and is configured to be able to individually switch between the heating state and the cooling state of each Peltier element by switching the direction of the current input to the Peltier element.
 また、実施例2の温調ユニットT2は、静電チャックCの温度検知手段として、複数の分割領域261-1~261-4及び複数の温調部材TM1~TM4に対応して、複数の温度センサTS1-1~TS1-4を設ける構成としている。すなわち、静電チャックCを複数の領域に分け、各領域に温度センサを配置して各領域の温度をモニタし、各領域が所望の温度になるようにペルチェ素子に電流を流し、静電チャックCの温度を制御する。これにより、分割領域261-1~261-4の間の温度差に対応した温調制御、例えば、当該温度差を小さくするような制御が可能となる。 The temperature adjustment unit T2 of the second embodiment is configured to have multiple temperature sensors TS1-1 to TS1-4 corresponding to the multiple divided regions 261-1 to 261-4 and the multiple temperature adjustment members TM1 to TM4 as temperature detection means for the electrostatic chuck C. In other words, the electrostatic chuck C is divided into multiple regions, a temperature sensor is placed in each region to monitor the temperature of each region, and a current is passed through the Peltier element so that each region reaches the desired temperature, thereby controlling the temperature of the electrostatic chuck C. This makes it possible to perform temperature control corresponding to the temperature difference between the divided regions 261-1 to 261-4, for example, control to reduce the temperature difference.
 なお、追加の構成として、温調部材TMとマグネット板MPとの間の熱伝達を高めるために、例えば、複数のマグネットMG間のスペースに高熱伝導部材を配置し、該高熱伝導部材を介して温調部材TMとベース板BPが接続するようにしてもよい。 As an additional configuration, in order to increase the heat transfer between the temperature control member TM and the magnet plate MP, for example, a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
 また、静電チャックCの上面261を縦横2つずつの4つの分割領域261-1~261-4に分割し、温調部材TM1~TM4、電源回路部TC1~TC4、温度センサTS1-1~TS1-4をそれぞれ4つずつ設ける構成としたが、分割数や分割の仕方は、これに限定されない。 The upper surface 261 of the electrostatic chuck C is divided into four divided regions 261-1 to 261-4, two vertically and two horizontally, and four temperature adjustment members TM1 to TM4, four power supply circuit units TC1 to TC4, and four temperature sensors TS1-1 to TS1-4 are provided, but the number of divisions and the method of division are not limited to this.
<実施例3>
 図8を参照して、本発明の実施例3に係る温調ユニットT3について説明する。図8は、本発明の実施例3に係る温調機構の構成を説明する模式的断面図である。
Example 3
A temperature adjustment unit T3 according to a third embodiment of the present invention will be described with reference to Fig. 8. Fig. 8 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the third embodiment of the present invention.
 ここでは、実施例3の構成において、実施例1、2の構成とは異なる点についてのみ説明する。実施例3の構成において、実施例1、2の構成と同様のものについては、同じ符号を付し、説明を省略する。 Here, only the differences between the configuration of Example 3 and the configurations of Examples 1 and 2 will be described. In the configuration of Example 3, the same reference numerals will be used for the same parts as those in the configurations of Examples 1 and 2, and the description will be omitted.
 実施例3の温調ユニットT3は、静電チャックCよりも熱伝導率が高く、かつ、マグネット板MPよりも熱伝導率が高い、非磁性体金属部材MMを、マグネット板MPのベース板BPに取り付けた構成としている。非磁性体金属部材MMを設ける代わり、実施例3の温調ユニットT3は、実施例1の温調ユニットT1の高熱伝導シートHTを排した構成となっている。 The temperature control unit T3 of Example 3 is configured by attaching a non-magnetic metal member MM, which has a higher thermal conductivity than the electrostatic chuck C and also has a higher thermal conductivity than the magnet plate MP, to the base plate BP of the magnet plate MP. Instead of providing the non-magnetic metal member MM, the temperature control unit T3 of Example 3 is configured without the high thermal conductivity sheet HT of the temperature control unit T1 of Example 1.
 上述したように、マグネット板MPが備える複数のマグネットMGは、静電チャックCの上面261に対してその全域に満遍なく配置されず、偏った配置とされる場合が有り得る。また、温度伝達の観点からは、十分な接触面積を確保できないような配置構成となることもあり得る。すなわち、マグネット板MPにおいて、少なくともマグネットMGは、マスクMの磁力吸引効果の確保を第一として配置される部材である。したがって、マグネットMGとは別に、伝熱性確保を第一とした部材を配置することが好適である。 As described above, the multiple magnets MG of the magnet plate MP may not be evenly arranged over the entire area of the upper surface 261 of the electrostatic chuck C, but may be arranged in a biased manner. Furthermore, from the standpoint of heat transfer, the arrangement may be such that a sufficient contact area cannot be ensured. In other words, in the magnet plate MP, at least the magnets MG are components that are arranged primarily to ensure the magnetic attraction effect of the mask M. Therefore, it is preferable to arrange a component separate from the magnets MG that prioritizes ensuring heat transfer.
 そのような観点から、実施例3の温調ユニットT3は、複数の非磁性体金属部材MMを、マグネット板MPの静電チャックCとの対向面における複数のマグネットMGの間のスペースに配置した。各非磁性体金属部材MMは、マグネットMGの上記対向面から、マグネットMGよりも静電チャックCに向かって突出している。したがって、マグネット板MPが下降すると、非磁性体金属部材MMの先端面が静電チャックCの上面261に接触した状態となる。マグネットMGと静電チャックCの上面261との間には隙間が形成されるが、マグネットMGの高さは、マスクMの磁力吸引力が十分確保されるように構成される。 From this perspective, the temperature control unit T3 of Example 3 arranges multiple non-magnetic metal members MM in the spaces between multiple magnets MG on the surface of the magnet plate MP facing the electrostatic chuck C. Each non-magnetic metal member MM protrudes from the above-mentioned facing surface of the magnet MG toward the electrostatic chuck C beyond the magnet MG. Therefore, when the magnet plate MP descends, the tip surface of the non-magnetic metal member MM comes into contact with the upper surface 261 of the electrostatic chuck C. A gap is formed between the magnet MG and the upper surface 261 of the electrostatic chuck C, but the height of the magnet MG is configured so that the magnetic attraction force of the mask M is sufficiently ensured.
 なお、実施例3の温調ユニットT3において、実施例1の温調ユニットT1の高熱伝導シートHTを静電チャックCの上面261に配置し、非磁性体金属部材MMが高熱伝導シートHTを介して静電チャックCと接続される構成としてもよい。 In the temperature control unit T3 of Example 3, the highly thermally conductive sheet HT of the temperature control unit T1 of Example 1 may be disposed on the upper surface 261 of the electrostatic chuck C, and the non-magnetic metal member MM may be connected to the electrostatic chuck C via the highly thermally conductive sheet HT.
<実施例4>
 図9を参照して、本発明の実施例4に係る温調ユニットT4について説明する。図9は、本発明の実施例4に係る温調機構の構成を説明する模式的断面図である。
Example 4
A temperature adjustment unit T4 according to a fourth embodiment of the present invention will be described with reference to Fig. 9. Fig. 9 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the fourth embodiment of the present invention.
 ここでは、実施例4の構成において、実施例1~3の構成とは異なる点についてのみ説明する。実施例4の構成において、実施例1~3の構成と同様のものについては、同じ符号を付し、説明を省略する。 Here, only the differences between the configuration of Example 4 and the configurations of Examples 1 to 3 will be described. In the configuration of Example 4, the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 3, and the description will be omitted.
 上述したように、冷却板CPは、温調ユニットTにおいてオプションの構成である。したがって、実施例4の温調ユニットT4では、実施例1~3とは異なり、図9に示すように冷却板CPを排した構成とした。基板Sの温調が温調部材TMによる温調能力で十分に賄えるような場合には、冷却板CPを排することによるコストメリットが得られる。 As mentioned above, the cooling plate CP is an optional component of the temperature control unit T. Therefore, unlike the temperature control unit T4 of Example 4 in Examples 1 to 3, the cooling plate CP is omitted as shown in FIG. 9. In cases where the temperature control capacity of the temperature control member TM is sufficient to control the temperature of the substrate S, there is a cost advantage in omitting the cooling plate CP.
 なお、追加の構成として、温調部材TMとマグネット板MPとの間の熱伝達を高めるために、例えば、複数のマグネットMG間のスペースに高熱伝導部材を配置し、該高熱伝導部材を介して温調部材TMとベース板BPが接続するようにしてもよい。 As an additional configuration, in order to increase the heat transfer between the temperature control member TM and the magnet plate MP, for example, a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
<実施例5>
 図10を参照して、本発明の実施例5に係る温調ユニットT5について説明する。図10は、本発明の実施例5に係る温調機構の構成を説明する模式的断面図である。
Example 5
A temperature adjustment unit T5 according to a fifth embodiment of the present invention will be described with reference to Fig. 10. Fig. 10 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the fifth embodiment of the present invention.
 ここでは、実施例5の構成において、実施例1~4の構成とは異なる点についてのみ説明する。実施例5の構成において、実施例1~4の構成と同様のものについては、同じ符号を付し、説明を省略する。 Here, only the differences between the configuration of Example 5 and the configurations of Examples 1 to 4 will be described. In the configuration of Example 5, the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 4, and the description will be omitted.
 実施例5の温調ユニットT5は、実施例1~4の温調ユニットT1~T4におけるペルチェ素子を用いた温調部材TMに代替する冷却手段として、マグネット板MPのベース板BPに冷媒を流す冷却管である水路WPを設けた構成となっている。実施例5の温調ユニットT5では、マグネット板MPに埋め込まれた温度制御手段として、水路WPを冷媒としての冷却水が循環する。これによってベース板BPが冷却され、静電チャックCに対して、高熱伝導シートHT、マグネットMGを介して、熱交換が行われる。 The temperature control unit T5 of Example 5 is configured to have a water channel WP, which is a cooling pipe that flows a refrigerant through the base plate BP of the magnet plate MP, as a cooling means that replaces the temperature control member TM using a Peltier element in the temperature control units T1 to T4 of Examples 1 to 4. In the temperature control unit T5 of Example 5, cooling water as a refrigerant circulates through the water channel WP as a temperature control means embedded in the magnet plate MP. This cools the base plate BP, and heat is exchanged with the electrostatic chuck C via the highly thermally conductive sheet HT and magnet MG.
 水冷式の温調構成は、高い応答性や微調整の可否が求められないような成膜環境や成膜装置構成において、温調部材TM(及び、これを制御する電源回路部)を排することによるコストメリットが得られる。 In deposition environments and deposition equipment configurations where high responsiveness and fine adjustment are not required, the water-cooled temperature control configuration offers cost benefits by eliminating the temperature control member TM (and the power supply circuitry that controls it).
 なお、追加の構成として、温調部材TMとマグネット板MPとの間の熱伝達を高めるために、例えば、複数のマグネットMG間のスペースに高熱伝導部材を配置し、該高熱伝導部材を介して温調部材TMとベース板BPが接続するようにしてもよい。 As an additional configuration, in order to increase the heat transfer between the temperature control member TM and the magnet plate MP, for example, a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
<実施例6>
 図11を参照して、本発明の実施例6に係る温調ユニットT6について説明する。図11は、本発明の実施例6に係る温調機構の構成を説明する模式的断面図である。
Example 6
A temperature adjustment unit T6 according to a sixth embodiment of the present invention will be described with reference to Fig. 11. Fig. 11 is a schematic cross-sectional view illustrating the configuration of a temperature adjustment mechanism according to the sixth embodiment of the present invention.
 ここでは、実施例6の構成において、実施例1~5の構成とは異なる点についてのみ説明する。実施例6の構成において、実施例1~5の構成と同様のものについては、同じ符号を付し、説明を省略する。 Here, only the differences between the configuration of Example 6 and the configurations of Examples 1 to 5 will be described. In the configuration of Example 6, the same reference numerals will be used for the same parts as those in the configurations of Examples 1 to 5, and the description will be omitted.
 実施例6の温調ユニットT6は、他の実施例の温調ユニットTにおけるペルチェ素子を用いた温調部材TMや冷却板CPに代替する冷却手段として、ヒートシンクHSを備えた構成とした。ヒートシンクHSは、マグネット板MPのベース板BPの上面(静電チャックCとの対向面とは反対側の面)に設けられている。 The temperature control unit T6 of the sixth embodiment is configured with a heat sink HS as a cooling means to replace the temperature control member TM using a Peltier element and the cooling plate CP in the temperature control units T of the other embodiments. The heat sink HS is provided on the upper surface of the base plate BP of the magnet plate MP (the surface opposite to the surface facing the electrostatic chuck C).
 ヒートシンクHSは、ベース板BPとの接触面とは反対側の面に複数の突起部を有しており、突起部が設けられた側の凹凸形状の表面積が接触面の面積よりも広くなる放熱構造(ヒートシンク構造)を有している。すなわち、ヒートシンクHSは、ベース板BPとの接触面に伝達された静電チャックCの熱を、接触面とは反対側の凹凸形状面において放熱し、静電チャックCの冷却を促すように構成されている。 The heat sink HS has multiple protrusions on the surface opposite the contact surface with the base plate BP, and has a heat dissipation structure (heat sink structure) in which the surface area of the uneven shape on the side where the protrusions are provided is larger than the area of the contact surface. In other words, the heat sink HS is configured to dissipate heat from the electrostatic chuck C transferred to the contact surface with the base plate BP on the uneven surface opposite the contact surface, promoting cooling of the electrostatic chuck C.
 ヒートシンクHSの放熱形状部の具体的な構成は、特定のものに限定されない。放熱形状部の突起部の形状としては、例えば、板状の突起部でもよいし、柱状の突起部でもよいし、他の形状の突起部でもよい。さらに、互いに形状の異なる複数の突起を組み合わせたものでもよい。 The specific configuration of the heat dissipation shape portion of the heat sink HS is not limited to a specific one. The shape of the protrusions of the heat dissipation shape portion may be, for example, a plate-shaped protrusion, a columnar protrusion, or a protrusion of another shape. Furthermore, it may be a combination of multiple protrusions of different shapes.
 本実施例の温調ユニットT6は、特に、蒸着による蓄熱がマグネット板MPからの放熱量よりも同等以下となるような成膜装置において好適に採用し得る。すなわち、成膜条件によっては、本実施例の温調ユニットT6の、マグネット板MPにヒートシンクHSを追加するのみの簡素な構成により、有効な冷却を行うことが可能である。 The temperature control unit T6 of this embodiment can be particularly suitable for use in a film formation apparatus in which the heat stored by vapor deposition is equal to or less than the heat dissipated from the magnet plate MP. In other words, depending on the film formation conditions, effective cooling can be achieved with the simple configuration of the temperature control unit T6 of this embodiment, which simply adds a heat sink HS to the magnet plate MP.
 なお、追加の構成として、温調部材TMとマグネット板MPとの間の熱伝達を高めるために、例えば、複数のマグネットMG間のスペースに高熱伝導部材を配置し、該高熱伝導部材を介して温調部材TMとベース板BPが接続するようにしてもよい。 As an additional configuration, in order to increase the heat transfer between the temperature control member TM and the magnet plate MP, for example, a highly thermally conductive member may be placed in the space between the multiple magnets MG, and the temperature control member TM and the base plate BP may be connected via the highly thermally conductive member.
 上述した実施例1~6の各構成は、互いに任意に組み合わせることができる。また、各実施例の冷却手段は、いずれも加熱手段あるいは加熱と冷却の両方を行う温度調節手段に置換できる。例えば、電熱線ヒータなどを用いたり、あるいは、ペルチェ素子に反対向きの電流を印加することで、温調対象の冷却と加熱とを変更したりすることができる。 The configurations of the above-mentioned embodiments 1 to 6 can be combined with each other in any way. Furthermore, the cooling means in each embodiment can be replaced with a heating means or a temperature control means that performs both heating and cooling. For example, it is possible to use an electric wire heater or to apply a current in the opposite direction to a Peltier element, thereby switching between cooling and heating the temperature control target.
<電子デバイスの製造方法>
 次に、本実施例に係る成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成を示し、有機EL表示装置の製造方法を例示する。
<Method of Manufacturing Electronic Device>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus according to this embodiment will be described below. The configuration of an organic EL display device will be shown as an example of an electronic device, and a method for manufacturing the organic EL display device will be illustrated.
 まず、製造する有機EL表示装置について説明する。図12(a)は有機EL表示装置700の全体図、図12(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be described. Figure 12(a) is an overall view of the organic EL display device 700, and Figure 12(b) shows the cross-sectional structure of one pixel.
 図12(a)に示すように、有機EL表示装置700の表示領域701には、発光素子を複数備える画素702がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域701において所望の色の表示を可能とする最小単位を指している。本実施例に係る有機EL表示装置の場合、互いに異なる発光を示す第1発光素子702R、第2発光素子702G、第3発光素子702Bの組み合わせにより画素702が構成されている。画素702は、赤色発光素子と緑色発光素子と青色発光素子の組み合わせで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 12(a), a plurality of pixels 702 each including a plurality of light-emitting elements are arranged in a matrix in a display area 701 of an organic EL display device 700. As will be described in detail later, each light-emitting element has a structure including an organic layer sandwiched between a pair of electrodes. Note that the pixel referred to here refers to the smallest unit that allows a desired color to be displayed in the display area 701. In the case of the organic EL display device according to this embodiment, the pixel 702 is configured by a combination of a first light-emitting element 702R, a second light-emitting element 702G, and a third light-emitting element 702B that emit light different from each other. The pixel 702 is often configured by a combination of a red light-emitting element, a green light-emitting element, and a blue light-emitting element, but may also be a combination of a yellow light-emitting element, a cyan light-emitting element, and a white light-emitting element, and is not particularly limited as long as it is at least one color.
 図12(b)は、図12(a)のB-B線における部分断面模式図である。画素702は、複数の発光素子からなり、各発光素子は、基板703上に、第1電極(陽極)704と、正孔輸送層705と、発光層706R、706G、706Bのいずれかと、電子輸送層707と、第2電極(陰極)708と、を有している。これらのうち、正孔輸送層705、発光層706R、706G、706B、電子輸送層707が有機層に当たる。また、本実施例では、発光層706Rは赤色を発する有機EL層、発光層706Gは緑色を発する有機EL層、発光層706Bは青色を発する有機EL層である。発光層706R、706G、706Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。 FIG. 12(b) is a schematic partial cross-sectional view taken along line B-B in FIG. 12(a). A pixel 702 is made up of a plurality of light-emitting elements, each of which has a first electrode (anode) 704, a hole transport layer 705, one of light-emitting layers 706R, 706G, and 706B, an electron transport layer 707, and a second electrode (cathode) 708 on a substrate 703. Of these, the hole transport layer 705, the light-emitting layers 706R, 706G, and 706B, and the electron transport layer 707 are organic layers. In this embodiment, the light-emitting layer 706R is an organic EL layer that emits red light, the light-emitting layer 706G is an organic EL layer that emits green light, and the light-emitting layer 706B is an organic EL layer that emits blue light. The light-emitting layers 706R, 706G, and 706B are formed in patterns that correspond to the light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue light, respectively.
 また、第1電極704は、発光素子毎に分離して形成されている。正孔輸送層705と電子輸送層707と第2電極708は、複数の発光素子702R、702G、702Bで共通に形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極704と第2電極708とが異物によってショートするのを防ぐために、第1電極704間に絶縁層709が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層710が設けられている。 The first electrode 704 is formed separately for each light-emitting element. The hole transport layer 705, the electron transport layer 707, and the second electrode 708 may be formed in common for the multiple light-emitting elements 702R, 702G, and 702B, or may be formed for each light-emitting element. In order to prevent the first electrode 704 and the second electrode 708 from shorting out due to foreign matter, an insulating layer 709 is provided between the first electrodes 704. Furthermore, since the organic EL layer deteriorates due to moisture and oxygen, a protective layer 710 is provided to protect the organic EL element from moisture and oxygen.
 図12(b)では正孔輸送層705や電子輸送層707は一つの層で示されているが、有機EL表示素子の構造によっては、正孔ブロック層や電子ブロック層を備える複数の層で形成されてもよい。また、第1電極704と正孔輸送層705との間には第1電極704から正孔輸送層705への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、第2電極708と電子輸送層707の間にも電子注入層が形成することもできる。 In FIG. 12(b), the hole transport layer 705 and the electron transport layer 707 are shown as a single layer, but depending on the structure of the organic EL display element, they may be formed of multiple layers including a hole blocking layer and an electron blocking layer. In addition, a hole injection layer having an energy band structure that can smoothly inject holes from the first electrode 704 to the hole transport layer 705 can be formed between the first electrode 704 and the hole transport layer 705. Similarly, an electron injection layer can be formed between the second electrode 708 and the electron transport layer 707.
 次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, we will explain in detail an example of a manufacturing method for an organic EL display device.
 まず、有機EL表示装置を駆動するための回路(不図示)及び第1電極704が形成された基板(マザーガラス)703を準備する。 First, a circuit (not shown) for driving the organic EL display device and a substrate (mother glass) 703 on which a first electrode 704 is formed are prepared.
 第1電極704が形成された基板703の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極704が形成された部分に開口が形成されるようにパターニングし絶縁層709を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 703 on which the first electrode 704 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the area where the first electrode 704 is formed, forming an insulating layer 709. This opening corresponds to the light-emitting area where the light-emitting element actually emits light.
 絶縁層709がパターニングされた基板703を粘着部材が配置された基板キャリアに載置する。粘着部材によって、基板703は保持される。第1の有機材料成膜装置に搬入し、反転後、正孔輸送層705を、表示領域の第1電極704の上に共通する層として成膜する。正孔輸送層705は真空蒸着により成膜される。実際には正孔輸送層705は表示領域701よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 703 with the patterned insulating layer 709 is placed on a substrate carrier on which an adhesive member is arranged. The substrate 703 is held by the adhesive member. It is then carried into a first organic material deposition apparatus and, after inversion, a hole transport layer 705 is deposited as a common layer on top of the first electrode 704 in the display area. The hole transport layer 705 is deposited by vacuum deposition. In practice, the hole transport layer 705 is formed to be larger than the display area 701, so no high-definition mask is required.
 次に、正孔輸送層705までが形成された基板703を第2の有機材料成膜装置に搬入する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板703の赤色を発する素子を配置する部分に、赤色を発する発光層706Rを成膜する。 Next, the substrate 703 on which the hole transport layer 705 has been formed is carried into a second organic material deposition apparatus. The substrate and the mask are aligned, the substrate is placed on the mask, and a red-emitting light-emitting layer 706R is deposited on the portion of the substrate 703 where the red-emitting element is to be located.
 発光層706Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層706Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層706Bを成膜する。発光層706R、706G、706Bの成膜が完了した後、第5の成膜装置により表示領域701の全体に電子輸送層707を成膜する。電子輸送層707は、3色の発光層706R、706G、706Bに共通の層として形成される。 Similar to the deposition of light-emitting layer 706R, light-emitting layer 706G that emits green light is deposited by a third organic material deposition apparatus, and then light-emitting layer 706B that emits blue light is deposited by a fourth organic material deposition apparatus. After deposition of light-emitting layers 706R, 706G, and 706B is completed, electron transport layer 707 is deposited over the entire display area 701 by a fifth deposition apparatus. Electron transport layer 707 is formed as a layer common to the three color light-emitting layers 706R, 706G, and 706B.
 電子輸送層707まで形成された基板を金属性蒸着材料成膜装置で移動させて第2電極708を成膜する。 The substrate on which the electron transport layer 707 has been formed is moved by a metallic deposition material deposition device to deposit the second electrode 708.
 その後プラズマCVD装置に移動して保護層710を成膜して、基板703への成膜工程を完了する。反転後、粘着部材を基板703から剥離することで、基板キャリアから基板703を分離する。その後、裁断を経て有機EL表示装置700が完成する。 Then, it is moved to a plasma CVD device, where a protective layer 710 is deposited, completing the deposition process on the substrate 703. After inversion, the adhesive member is peeled off from the substrate 703, thereby separating the substrate 703 from the substrate carrier. After that, it is cut to complete the organic EL display device 700.
 絶縁層709がパターニングされた基板703を成膜装置に搬入してから保護層710の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本実施例において、成膜装置間の基板の搬入搬出は、真空雰囲気又は不活性ガス雰囲気の下で行われる。 If the substrate 703 with the patterned insulating layer 709 is exposed to an atmosphere containing moisture or oxygen from the time it is carried into the deposition apparatus until the deposition of the protective layer 710 is completed, the light-emitting layer made of the organic EL material may be deteriorated by moisture or oxygen. Therefore, in this embodiment, the substrate is carried in and out of the deposition apparatus in a vacuum atmosphere or an inert gas atmosphere.
 1…成膜装置、S…基板、M…マスク、C…静電チャック、TM…温調部材、MP…マグネット板、CP…冷却板 1...film deposition device, S...substrate, M...mask, C...electrostatic chuck, TM...temperature control member, MP...magnet plate, CP...cooling plate

Claims (14)

  1.  基板に成膜を行う成膜装置に用いられる基板保持装置であって、
     基板を吸着する静電チャックと、
     前記静電チャックの熱伝導率よりも高い熱伝導率を有し、前記静電チャックに接触する部材と、
     前記部材の温度を制御する温度制御手段と、
    を備えることを特徴とする基板保持装置。
    A substrate holding device used in a film forming apparatus that forms a film on a substrate,
    an electrostatic chuck for adsorbing the substrate;
    a member having a thermal conductivity higher than the thermal conductivity of the electrostatic chuck and in contact with the electrostatic chuck;
    A temperature control means for controlling the temperature of the member;
    A substrate holding device comprising:
  2.  前記静電チャックに吸着された基板に向かってマスクを引き付ける磁力を発生させる磁力発生手段をさらに備え、
     前記温度制御手段は、前記部材に接触した前記磁力発生手段を介して、前記部材の温度を制御することを特徴とする請求項1に記載の基板保持装置。
    a magnetic force generating means for generating a magnetic force that attracts a mask toward the substrate attracted to the electrostatic chuck,
    2. The substrate holding device according to claim 1, wherein the temperature control means controls the temperature of the member via the magnetic force generating means in contact with the member.
  3.  前記温度制御手段は、前記磁力発生手段と接触して配置される、又は、前記磁力発生手段に埋め込まれていることを特徴とする請求項2に記載の基板保持装置。 The substrate holding device according to claim 2, characterized in that the temperature control means is disposed in contact with the magnetic force generating means or is embedded in the magnetic force generating means.
  4.  前記部材の熱伝導率は、前記磁力発生手段の熱伝導率よりも高いことを特徴とする請求項2に記載の基板保持装置。 The substrate holding device according to claim 2, characterized in that the thermal conductivity of the member is higher than the thermal conductivity of the magnetic force generating means.
  5.  前記静電チャックは、基材と、前記基材に埋め込まれた電極と、を有し、
     前記部材の熱伝導率は、前記基材の熱伝導率よりも高いことを特徴とする請求項1に記載の基板保持装置。
    The electrostatic chuck has a substrate and an electrode embedded in the substrate,
    2. The substrate holding device according to claim 1, wherein the thermal conductivity of the member is higher than the thermal conductivity of the base material.
  6.  前記温度制御手段は、
      ペルチェ素子を備えた温調部材と、
      前記ペルチェ素子に電流を流す電流供給部と、
      前記電流供給部が前記ペルチェ素子に流す電流を制御する制御部と、
     を含み、
     前記制御部は、前記ペルチェ素子に流れる電流の向きが変わるように前記電流供給部を制御することで、前記部材が前記静電チャックを加熱する状態と、前記部材が前記静電チャックを冷却する状態と、を切り替えることを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。
    The temperature control means is
    A temperature control member having a Peltier element;
    A current supply unit that supplies a current to the Peltier element;
    a control unit that controls a current that is supplied to the Peltier element by the current supply unit;
    Including,
    6. The substrate holding device according to claim 1, wherein the control unit switches between a state in which the member heats the electrostatic chuck and a state in which the member cools the electrostatic chuck by controlling the current supply unit so as to change a direction of a current flowing through the Peltier element.
  7.  前記温度制御手段は、冷媒を流す冷却管であることを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。 The substrate holding device according to any one of claims 1 to 5, characterized in that the temperature control means is a cooling pipe through which a refrigerant flows.
  8.  前記温度制御手段は、放熱形状を有する部材であることを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。 The substrate holding device according to any one of claims 1 to 5, characterized in that the temperature control means is a member having a heat dissipating shape.
  9.  前記温度制御手段は、ヒータであることを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。 The substrate holding device according to any one of claims 1 to 5, characterized in that the temperature control means is a heater.
  10.  前記部材において前記静電チャックと接触する部分の面積は、前記静電チャックにおける基板の吸着面に交差する方向に射影した前記温度制御手段の面積よりも広いことを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。 The substrate holding device according to any one of claims 1 to 5, characterized in that the area of the part of the member that comes into contact with the electrostatic chuck is greater than the area of the temperature control means projected in a direction intersecting the substrate adsorption surface of the electrostatic chuck.
  11.  前記部材において前記静電チャックと接触する部分の面積は、前記静電チャックにおける基板の吸着面に交差する方向に射影した前記磁力発生手段の面積よりも広いことを特徴とする請求項2~4のいずれか1項に記載の基板保持装置。 The substrate holding device according to any one of claims 2 to 4, characterized in that the area of the part of the member that contacts the electrostatic chuck is larger than the area of the magnetic force generating means projected in a direction intersecting the substrate adsorption surface of the electrostatic chuck.
  12.  前記部材において前記静電チャックと接触する部分の面積は、前記静電チャックにおける基板の吸着面に交差する方向に射影した前記静電チャックの面積の50%以上であることを特徴とする請求項1~5のいずれか1項に記載の基板保持装置。 A substrate holding device according to any one of claims 1 to 5, characterized in that the area of the part of the member that contacts the electrostatic chuck is 50% or more of the area of the electrostatic chuck projected in a direction intersecting the substrate adsorption surface of the electrostatic chuck.
  13.  チャンバと、
     前記チャンバ内に設けられる蒸発源と、
     前記チャンバ内に設けられ、基板を吸着する静電チャックと、
     前記静電チャックに吸着された基板の被成膜面に接合されるマスクと、
    を備える成膜装置において、
     前記静電チャックの熱伝導率よりも高い熱伝導率を有し、前記静電チャックに接触する部材と、
     前記部材の温度を制御する温度制御手段と、
    を備えることを特徴とする成膜装置。
    A chamber;
    an evaporation source provided in the chamber;
    an electrostatic chuck provided in the chamber and configured to attract a substrate;
    a mask that is bonded to a film-forming surface of the substrate attracted to the electrostatic chuck;
    In a film forming apparatus comprising:
    a member having a thermal conductivity higher than the thermal conductivity of the electrostatic chuck and in contact with the electrostatic chuck;
    A temperature control means for controlling the temperature of the member;
    A film forming apparatus comprising:
  14.  前記被成膜面に向かって前記マスクを引き付ける磁力を発生させる磁力発生手段をさらに備え、
     前記温度制御手段は、前記部材に接触した前記磁力発生手段を介して、前記部材の温度を制御することを特徴とする請求項13に記載の成膜装置。
    a magnetic force generating means for generating a magnetic force that attracts the mask toward the deposition surface,
    14. The film forming apparatus according to claim 13, wherein the temperature control means controls the temperature of the member via the magnetic force generating means in contact with the member.
PCT/JP2023/043847 2022-12-14 2023-12-07 Substrate retention device and film formation device WO2024128130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022199478A JP2024085121A (en) 2022-12-14 Substrate holding device and film forming device
JP2022-199478 2022-12-14

Publications (1)

Publication Number Publication Date
WO2024128130A1 true WO2024128130A1 (en) 2024-06-20

Family

ID=91484892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043847 WO2024128130A1 (en) 2022-12-14 2023-12-07 Substrate retention device and film formation device

Country Status (1)

Country Link
WO (1) WO2024128130A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080365A (en) * 2018-11-13 2020-05-28 三星電子株式会社Samsung Electronics Co.,Ltd. Wafer stage, semiconductor manufacturing apparatus, and wafer stage manufacturing method
JP2021102811A (en) * 2019-12-24 2021-07-15 キヤノントッキ株式会社 Film deposition device and method for producing electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080365A (en) * 2018-11-13 2020-05-28 三星電子株式会社Samsung Electronics Co.,Ltd. Wafer stage, semiconductor manufacturing apparatus, and wafer stage manufacturing method
JP2021102811A (en) * 2019-12-24 2021-07-15 キヤノントッキ株式会社 Film deposition device and method for producing electronic device

Similar Documents

Publication Publication Date Title
US8859438B2 (en) Vapor deposition method, vapor deposition device and organic EL display device
CN109837505B (en) Film forming apparatus, film forming method, and method for manufacturing organic EL display device
CN113106387B (en) Film forming apparatus and method for manufacturing electronic device
JP7271740B2 (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
US20220148931A1 (en) Alignment mechanism, alignment method, film forming device and film forming method
TWI812894B (en) Film-forming apparatus, film-forming method using same, and manufacturing method of electronic device
JP7278193B2 (en) Deposition equipment
JP7499571B2 (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
WO2024128130A1 (en) Substrate retention device and film formation device
WO2024128251A1 (en) Substrate holding device, film forming device, and method for controlling film forming device
WO2024128132A1 (en) Film deposition device
JP2021066952A (en) Film deposition apparatus, manufacturing apparatus for electronic device, film deposition method, and manufacturing method for electronic device
JP2024085122A (en) Film forming equipment
JP2024085121A (en) Substrate holding device and film forming device
JP2024085003A (en) SUBSTRATE HOLDING DEVICE, FILM FORMING APPARATUS, AND METHOD FOR CONTROLL
KR102505832B1 (en) Adsorption apparatus, position adjusting method, and method for forming film
KR102594630B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
CN111434797B (en) Film forming apparatus and electronic device manufacturing apparatus
CN112813381A (en) Film forming apparatus
JP7170017B2 (en) Film forming apparatus, film forming method using the same, and electronic device manufacturing method
WO2024075377A1 (en) Film forming device, detection device, and method for controlling film forming device
JP7220136B2 (en) Film deposition equipment and electronic device manufacturing equipment
KR20210061125A (en) Cooling jacket, film forming apparatus, film forming method and electronic device manufacturing method using the same
JP2024054824A (en) Film forming apparatus, detection device, and method for controlling film forming apparatus
JP2023105428A (en) Substrate holding device, electrostatic chuck, and substrate holding method