JP7170017B2 - Film forming apparatus, film forming method using the same, and electronic device manufacturing method - Google Patents

Film forming apparatus, film forming method using the same, and electronic device manufacturing method Download PDF

Info

Publication number
JP7170017B2
JP7170017B2 JP2020172700A JP2020172700A JP7170017B2 JP 7170017 B2 JP7170017 B2 JP 7170017B2 JP 2020172700 A JP2020172700 A JP 2020172700A JP 2020172700 A JP2020172700 A JP 2020172700A JP 7170017 B2 JP7170017 B2 JP 7170017B2
Authority
JP
Japan
Prior art keywords
film
deposition
mask
substrate
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020172700A
Other languages
Japanese (ja)
Other versions
JP2021080560A (en
Inventor
達也 新海
隆介 中島
雅史 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2021080560A publication Critical patent/JP2021080560A/en
Application granted granted Critical
Publication of JP7170017B2 publication Critical patent/JP7170017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、成膜装置、これを用いた成膜方法及び電子デバイスの製造方法に関するものである。 The present invention relates to a film forming apparatus, a film forming method using the same, and a method of manufacturing an electronic device.

有機EL表示装置(有機ELディスプレイ)は、スマートフォン、テレビ、自動車用ディスプレイだけでなく、VR HMD(Virtual Reality Head Mount Display)などにその応用分野が広がっている。特に、VR HMDに用いられるディスプレイは、ユーザーのめまいを低減するなどのために画素パターンを高精細に形成することが求められる。すなわち、さらなる高解像度化が求められている。 Organic EL display devices (organic EL displays) are not limited to smartphones, televisions, and displays for automobiles, and their application fields are expanding to VR HMDs (Virtual Reality Head Mount Displays) and the like. In particular, displays used for VR HMDs are required to form pixel patterns with high definition in order to reduce dizziness of users. That is, there is a demand for higher resolution.

有機EL表示装置の製造においては、有機EL表示装置を構成する有機発光素子(有機EL素子;OLED)を形成する際に、成膜装置の成膜源から放出された成膜材料を、画素パターンが形成されたマスクを介して、基板に成膜することで、有機物層や金属層を形成する。 In the manufacture of an organic EL display device, when forming an organic light emitting element (organic EL element; OLED) that constitutes the organic EL display device, the film forming material discharged from the film forming source of the film forming apparatus is used as a pixel pattern. An organic layer or a metal layer is formed by forming a film on a substrate through a mask on which is formed.

このような成膜装置においては、成膜源から放出された成膜材料がマスクや基板以外の場所にも付着し堆積する。堆積した成膜材料はある程度の膜厚まで成長すると剥離しやすくなり、パーティクルの発生源となる。そのため、堆積した成膜材料を定期的に除去するメンテナンスが行われる。従来、このメンテナンスを容易に行うために、成膜源から放出された成膜材料が飛散するマスクや基板以外の場所に、チャンバから取り出し可能な防着板を設置することが行われている(特許文献1)。 In such a film forming apparatus, the film forming material discharged from the film forming source adheres and accumulates on places other than the mask and the substrate. When the deposited film material grows to a certain thickness, it becomes easy to separate and becomes a source of particle generation. Therefore, maintenance is performed periodically to remove the deposited film forming material. Conventionally, in order to facilitate this maintenance, an anti-adhesion plate that can be removed from the chamber has been installed at a place other than the mask or substrate where the film-forming material discharged from the film-forming source scatters ( Patent document 1).

特開2010-174344号公報JP 2010-174344 A

チャンバ内に防着板が設置される場合、防着板は成膜源からの輻射熱や飛散してくる成膜材料によって加熱され、温度が上昇する。防着板の温度が上昇すると、防着板から発生する輻射熱によって基板やマスクが加熱される。基板やマスクが加熱されて温度上昇すると、基板とマスクの熱膨張率が異なることに起因して、基板とマスクの相対位置にズレが生じてしまう。すなわち、チャンバ内に配置した防着板によって基板やマスクが加熱されて成膜精度が低下してしまうという課題があった。 When the anti-adhesion plate is installed in the chamber, the anti-adhesion plate is heated by the radiant heat from the film forming source and the scattering film-forming material, and the temperature rises. When the temperature of the anti-adhesion plate rises, the substrate and mask are heated by radiant heat generated from the anti-adhesion plate. When the substrate and the mask are heated and the temperature rises, the relative positions of the substrate and the mask are shifted due to the difference in coefficient of thermal expansion between the substrate and the mask. That is, there is a problem that the substrate and the mask are heated by the deposition-preventing plate arranged in the chamber, and the deposition accuracy is lowered.

そこで、本発明は、上記の従来技術の有する課題に鑑み、成膜精度の低下を抑制することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to suppress deterioration in film formation accuracy in view of the above-described problems of the prior art.

本発明の一実施形態による成膜装置は、チャンバ内において、成膜源から放出される成膜材料をマスクを介して基板に成膜する成膜装置であって、前記チャンバ内に配置され、前記成膜源から飛散する成膜材料が付着する複数の防着部材を有し、前記複数の防着部材は、前記成膜源と対向する前記防着部材の対向面と前記基板の成膜面の法線との角度が、前記法線の方向における前記マスクからの距離に応じて異なり、前記法線の方向における前記マスクからの距離が遠い防着部材ほど前記対向面と前記法線との角度が小さいことを特徴とする。 A film forming apparatus according to an embodiment of the present invention is a film forming apparatus for forming a film on a substrate through a mask with a film forming material discharged from a film forming source in a chamber, the film forming apparatus being arranged in the chamber, a plurality of deposition-inhibiting members to which the film-forming material scattered from the film-forming source adheres, wherein the plurality of deposition-inhibiting members are formed on the surface of the deposition-inhibiting member facing the film-forming source and on the substrate; The angle with the normal to the surface varies depending on the distance from the mask in the direction of the normal, and the farther the distance from the mask in the direction of the normal, the greater the distance between the facing surface and the normal. is characterized by a small angle of

本発明によれば、成膜精度の低下を抑制することができる。 According to the present invention, it is possible to suppress deterioration in film formation accuracy.

図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。FIG. 1 is a plan view schematically showing a configuration of part of an electronic device manufacturing apparatus. 図2は、本発明の一実施形態による成膜装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of a film forming apparatus according to one embodiment of the present invention. 図3は、本発明の一実施形態による防着部材の配置構造を示す、成膜装置の模式断面図である。FIG. 3 is a schematic cross-sectional view of a film forming apparatus showing an arrangement structure of a deposition-inhibiting member according to one embodiment of the present invention. 図4は、電子デバイスを示す模式図である。FIG. 4 is a schematic diagram showing an electronic device.

以下、図面を参照しつつ本発明の好ましい実施形態および実施例を説明する。ただし、以下の実施形態および実施例は、本発明の好ましい構成を例示的に表すものであり、本発明の範囲は、これらの構成に限定されない。また、以下の説明における、装置のハードウェア構成およびソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、限定的な記載がない限り、本発明の範囲をこれらのみに限定する趣旨のものではない。 Preferred embodiments and examples of the present invention will now be described with reference to the drawings. However, the following embodiments and examples exemplify preferred configurations of the present invention, and the scope of the present invention is not limited to these configurations. In addition, the hardware configuration and software configuration of the apparatus, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. in the following description are intended to limit the scope of the present invention only to these unless otherwise specified. not a thing

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に好適に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to an apparatus for forming a film by depositing various materials on the surface of a substrate, and can be suitably applied to an apparatus for forming a thin film (material layer) with a desired pattern by vacuum deposition. .

基板の材料としては、半導体(例えば、シリコン)、ガラス、高分子材料のフィルム、金属などの任意の材料を選ぶことができ、基板は、例えば、シリコンウエハ、又はガラス基板上にポリイミドなどのフィルムが積層された基板であってもよい。また、成膜材料としても、有機材料、金属性材料(金属、金属酸化物)などの任意の材料を選ぶことができる。 As the material of the substrate, any material such as semiconductor (for example, silicon), glass, polymer material film, metal, etc. can be selected. may be a laminated substrate. In addition, any material such as an organic material and a metallic material (metal, metal oxide) can be selected as a film forming material.

なお、本発明は、加熱蒸発による真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、適用することができる。本発明の技術は、具体的には、半導体デバイス、磁気デバイス、電子部品などの各種電子デバイスや、光学部品などの製造装置に適用可能である。電子デバイスの具体例としては、発光素子や光電変換素子、タッチパネルなどが挙げられる。本発明は、中でも、OLEDなどの有機発光素子や、有機薄膜太陽電池などの有機光電変換素子の製造装置に好ましく適用可能である。なお、本発明における電子デバイスは、発光素子を備えた表示装置(例えば有機EL表示装置)や照明装置(例えば有機EL照明装置)、光電変換素子を備えたセンサ(例えば有機CMOSイメージセンサ)も含むものである。 It should be noted that the present invention can also be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus in addition to the vacuum vapor deposition apparatus that uses heat evaporation. Specifically, the technology of the present invention can be applied to various electronic devices such as semiconductor devices, magnetic devices, and electronic parts, and manufacturing apparatuses for optical parts and the like. Specific examples of electronic devices include light-emitting elements, photoelectric conversion elements, and touch panels. Among others, the present invention is preferably applicable to manufacturing apparatuses for organic light-emitting elements such as OLEDs and organic photoelectric conversion elements such as organic thin-film solar cells. The electronic device in the present invention includes a display device (eg, an organic EL display device) and a lighting device (eg, an organic EL lighting device) equipped with a light-emitting element, and a sensor (eg, an organic CMOS image sensor) equipped with a photoelectric conversion element. It is a thing.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
<Electronic Device Manufacturing Equipment>
FIG. 1 is a plan view schematically showing a configuration of part of an electronic device manufacturing apparatus.

図1の製造装置は、例えば、スマートフォン用の有機EL表示装置、またはVR HMD用の有機EL表示装置の表示パネルの製造に用いられる。スマートフォン用の表示パネルの場合、例えば、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルに製作する。VR HMD用の表示パネルの場合、例えば、所定のサイズ(例えば、300mm)のシリコンウエハに有機EL素子の形成のための成膜を行った後、素子形成領域の間の領域(スクライブ領域)に沿って該シリコンウエハを切り抜いて複数の小さなサイズのパネルに製作する。 The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing display panels of organic EL display devices for smartphones or organic EL display devices for VR HMDs. In the case of a display panel for smartphones, for example, a 4.5th generation substrate (about 700 mm x about 900 mm) or a 6th generation full size (about 1500 mm x about 1850 mm) or half cut size (about 1500 mm x about 925 mm) substrate After forming a film for forming an organic EL element, the substrate is cut out to manufacture a plurality of small-sized panels. In the case of a display panel for VR HMD, for example, after film formation for forming an organic EL element is performed on a silicon wafer of a predetermined size (for example, 300 mm), a region (scribe region) between the device formation regions is covered with The silicon wafer is cut along to fabricate a plurality of small size panels.

電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置1の間を繋ぐ中継装置とを含む。 An electronic device manufacturing apparatus generally includes a plurality of cluster apparatuses 1 and a relay apparatus that connects the cluster apparatuses 1 .

クラスタ装置1は、基板Wに対する処理(例えば、成膜)を行う複数の成膜装置11と、使用前後のマスクを収納する複数のマスクストック装置12と、その中央に配置される搬送室13と、を具備する。搬送室13は、図1に示すように、複数の成膜装置11およびマスクストック装置12のそれぞれと接続されている。 The cluster device 1 includes a plurality of film forming devices 11 that perform processing (for example, film formation) on substrates W, a plurality of mask stock devices 12 that store masks before and after use, and a transfer chamber 13 arranged in the center. , The transfer chamber 13 is connected to each of a plurality of film forming apparatuses 11 and mask stock apparatuses 12, as shown in FIG.

搬送室13内には、基板およびマスクを搬送する搬送ロボット14が配置されている。搬送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Wを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクを搬送する。搬送ロボット14は、例えば、多関節アームに、基板W又はマスクを保持するロボットハンドが取り付けられた構造を有するロボットである。 A transfer robot 14 for transferring substrates and masks is arranged in the transfer chamber 13 . The transport robot 14 transports the substrate W from the pass chamber 15 of the relay device arranged on the upstream side to the film forming device 11 . Further, the transport robot 14 transports the mask between the film forming device 11 and the mask stock device 12 . The transport robot 14 is, for example, a robot having a structure in which a robot hand holding a substrate W or a mask is attached to an articulated arm.

成膜装置11(蒸着装置とも呼ぶ)では、蒸発源に収納された蒸着材料がヒータによって加熱されて蒸発し、マスクを介して基板上に蒸着される。搬送ロボット14との基板Wの受け渡し、基板Wとマスクの相対位置の調整(アライメント)、マスク上への基板Wの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), a vapor deposition material contained in an evaporation source is heated by a heater to evaporate, and is vapor deposited onto a substrate through a mask. A series of film formation processes, such as delivery of the substrate W to and from the transfer robot 14, adjustment of the relative position of the substrate W and the mask (alignment), fixing of the substrate W on the mask, film formation (evaporation), etc., are carried out by the film formation apparatus 11. done by

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットに収納された新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, new masks to be used in the film forming process in the film forming device 11 and used masks are stored separately in two cassettes. The transport robot 14 transports the used mask from the film forming apparatus 11 to the cassette of the mask stocking apparatus 12 , and transports the new mask stored in another cassette of the mask stocking apparatus 12 to the film forming apparatus 11 .

クラスタ装置1には、基板Wの流れ方向において上流側からの基板Wを当該クラスタ装置1に伝達するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Wを下流側の他のクラスタ装置に搬送するためのバッファー室16が連結される。搬送室13の搬送ロボット14は、上流側のパス室15から基板Wを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、当該クラスタ装置1での成膜処理が完了した基板Wを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結されたバッファー室16に搬送する。 The cluster device 1 includes a pass chamber 15 for transferring the substrates W from the upstream side to the cluster device 1 in the flow direction of the substrates W, and a pass chamber 15 for transferring the substrates W completed the film forming process in the cluster device 1 to the other downstream side. A buffer chamber 16 is connected for transport to the cluster device. The transport robot 14 in the transport chamber 13 receives the substrate W from the pass chamber 15 on the upstream side and transports it to one of the film forming apparatuses 11 (for example, the film forming apparatus 11a) within the cluster apparatus 1 . Further, the transport robot 14 receives the substrate W for which the film forming process in the cluster apparatus 1 has been completed from one of the plurality of film forming apparatuses 11 (for example, the film forming apparatus 11b), and transfers the substrate W to the buffer connected downstream. Transfer to chamber 16 .

バッファー室16とパス室15との間には、基板の向きを変える旋回室17が設置される。旋回室17には、バッファー室16から基板Wを受け取って基板Wを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側のクラスタ装置と下流側のクラスタ装置で基板Wの向きが同じくなり、基板処理が容易になる。 Between the buffer chamber 16 and the pass chamber 15, a swirling chamber 17 for changing the orientation of the substrate is installed. The swirl chamber 17 is provided with a transport robot 18 for receiving the substrate W from the buffer chamber 16 , rotating the substrate W by 180°, and transporting it to the pass chamber 15 . As a result, the orientation of the substrate W becomes the same between the upstream cluster device and the downstream cluster device, thereby facilitating substrate processing.

パス室15、バッファー室16、旋回室17は、クラスタ装置間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファー室、旋回室のうち少なくとも1つを含む。 The pass chamber 15, the buffer chamber 16, and the swirl chamber 17 are so-called relay devices that connect the cluster devices. At least one of the swirl chambers.

成膜装置11、マスクストック装置12、搬送室13、バッファー室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。パス室15は、通常低真空状態に維持されるが、必要に応じて高真空状態に維持されてもいい。 The film forming device 11, the mask stock device 12, the transfer chamber 13, the buffer chamber 16, the swirling chamber 17, and the like are maintained in a high vacuum state during the manufacturing process of the organic light emitting device. The pass chamber 15 is normally maintained in a low vacuum state, but may be maintained in a high vacuum state if necessary.

本実施形態では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバを有してもよく、これらの装置やチャンバ間の配置が変わってもいい。例えば、本発明の一実施形態による電子デバイスの製造装置は、図1に示すクラスタタイプでなく、インラインタイプであってもいい。つまり、基板とマスクをキャリアに搭載して、一列で並んでいる複数の成膜装置内を搬送させながら成膜を行う構成を有しても良い。また、クラスタタイプとインラインタイプを組み合わせたタイプの構造を有しても良い。例えば、有機層の成膜まではクラスタタイプの製造装置で行い、電極層(カソード層)の成膜工程から、封止工程及び切断工程などはインラインタイプの製造装置で行うこともできる。 In this embodiment, the configuration of the electronic device manufacturing apparatus has been described with reference to FIG. or the arrangement between the chambers may be changed. For example, the electronic device manufacturing apparatus according to the embodiment of the present invention may be of an in-line type instead of the cluster type shown in FIG. In other words, the substrate and the mask may be mounted on a carrier, and film formation may be performed while being transported in a plurality of film formation apparatuses arranged in a row. Also, it may have a structure of a combination of a cluster type and an in-line type. For example, a cluster-type manufacturing apparatus may be used for forming the organic layer, and an in-line type manufacturing apparatus may be used for the film-forming process of the electrode layer (cathode layer), the sealing process, the cutting process, and the like.

以下、成膜装置11の具体的な構成について説明する。 A specific configuration of the film forming apparatus 11 will be described below.

<成膜装置>
図2は、本発明の一実施形態による成膜装置11の構成を示す模式図である。
<Deposition equipment>
FIG. 2 is a schematic diagram showing the configuration of the film forming apparatus 11 according to one embodiment of the present invention.

成膜装置11は、成膜源の成膜材料を加熱することで蒸発または昇華させ、マスクMを介して基板Wに成膜する。基板WとマスクMの相対位置の調整(アライメント)は、ステージ駆動により位置合わせを行うことで実施される。アライメントから成膜に至る一連の成膜プロセスは、真空蒸着装置内において行われる。 The film forming apparatus 11 heats the film forming material of the film forming source to evaporate or sublime, and forms a film on the substrate W through the mask M. FIG. The adjustment (alignment) of the relative positions of the substrate W and the mask M is performed by aligning them by driving the stage. A series of film formation processes from alignment to film formation are performed in a vacuum deposition apparatus.

成膜装置11は、真空雰囲気または窒素ガスなどの不活性ガス雰囲気に維持される真空チャンバ21より成る。基板Wの位置を調整する微動ステージ機構22と、基板Wを吸着保持する基板吸着手段24と、マスクMを支持するマスク置台23と、マスクMの位置を調整する粗動ステージ232と、成膜材料を加熱放出する成膜源25を含む。 The film forming apparatus 11 comprises a vacuum chamber 21 maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas. A fine movement stage mechanism 22 for adjusting the position of the substrate W, a substrate adsorption means 24 for adsorbing and holding the substrate W, a mask table 23 for supporting the mask M, a coarse motion stage 232 for adjusting the position of the mask M, and a film formation. It includes a deposition source 25 that heats and releases material.

本発明の一実施形態による成膜装置11は、磁気力によって金属製のマスクMを基板W側に密着させるための磁力印加手段26をさらに含むことができる。 The film forming apparatus 11 according to one embodiment of the present invention can further include magnetic force application means 26 for bringing the metal mask M into close contact with the substrate W side by magnetic force.

本発明の一実施形態による成膜装置11の真空チャンバ21は、真空ポンプPを接続することにより、真空チャンバ21の内部空間を高真空状態に維持することができる。 By connecting a vacuum pump P to the vacuum chamber 21 of the film forming apparatus 11 according to one embodiment of the present invention, the internal space of the vacuum chamber 21 can be maintained in a high vacuum state.

微動ステージ機構22は、基板Wまたは基板吸着手段24の位置を調整するためのステージ機構であって、基板WのマスクMに対する相対位置をしきい値以下にすることを可能とする。微動ステージ機構22は、支持構造体として機能する基準プレート部221(第1プレート部)と、可動台として機能する微動ステージプレート部222(第2プレート部)とを含む。 The fine movement stage mechanism 22 is a stage mechanism for adjusting the position of the substrate W or the substrate attracting means 24, and enables the relative position of the substrate W with respect to the mask M to be below a threshold value. The fine movement stage mechanism 22 includes a reference plate portion 221 (first plate portion) functioning as a support structure and a fine movement stage plate portion 222 (second plate portion) functioning as a movable table.

微動ステージ機構22は、基板Wまたは基板吸着手段24の位置を高精度で調整することを可能にするため、磁気浮上リニアモータによって駆動される磁気浮上ステージ機構として構成することができる。即ち、例えば、基準プレート部221に電流が流れるコイルを固定子として設置するとともに、これに対応する微動ステージプレート部222の領域には可動子として永久磁石を設置し、基準プレート部221に対して微動ステージプレート部222を磁気浮上させた状態で移動させることで、微動ステージプレート部222の一主面(例えば、下面)に搭載される基板吸着手段24及びこれに吸着された基板Wの位置を高精度で調整することができる。微動ステージ機構22は、微動ステージプレート部222の位置を測定するための位置測定手段と、微動ステージプレート部222にかかる重力を補償するための自重補償手段と、微動ステージプレート部222の原点位置を決めるための原点位置決め手段などを更に含むことができる。 The fine movement stage mechanism 22 can be configured as a magnetic levitation stage mechanism driven by a magnetic levitation linear motor in order to adjust the position of the substrate W or the substrate attracting means 24 with high precision. That is, for example, a coil through which a current flows is installed in the reference plate portion 221 as a stator, and a permanent magnet is installed as a mover in the area of the fine movement stage plate portion 222 corresponding to this. By moving the fine movement stage plate portion 222 in a state of being magnetically levitated, the position of the substrate chucking means 24 mounted on one main surface (for example, the lower surface) of the fine movement stage plate portion 222 and the substrate W chucked thereon can be changed. It can be adjusted with high precision. The fine movement stage mechanism 22 includes position measuring means for measuring the position of the fine movement stage plate section 222 , self-weight compensation means for compensating for the gravity acting on the fine movement stage plate section 222 , and the origin position of the fine movement stage plate section 222 . Origin positioning means or the like for determining may also be included.

マスク置台23は、マスクMを設置および固定する支持構造体であり、粗動ステージ232上に設置されている。これにより、マスクMの基板Wに対する相対位置および鉛直方向の間隔を調整することができる。 The mask stand 23 is a support structure for setting and fixing the mask M, and is set on the coarse movement stage 232 . Thereby, the relative position of the mask M to the substrate W and the vertical spacing can be adjusted.

マスクMは、基板W上に形成される薄膜パターンに対応する開口パターンを有し、マスク置台23によって支持される。例えば、VR HMD用の有機EL表示パネルを製造するのに使われるマスクMは、有機EL素子の発光層のRGB画素パターンに対応する微細な開口パターンが形成された金属製マスクであるファインメタルマスク(Fine Metal Mask)と、有機EL素子の共通層(正孔注入層、正孔輸送層、電子輸送層、電子注入層など)を形成するのに使われるオープンマスク(Open Mask)とを含む。マスクMの開口パターンは、成膜材料の粒子を通過させない遮断パターンによって定義される。また、マスクMはシリコンを材料として製作されることもある。 The mask M has an opening pattern corresponding to the thin film pattern formed on the substrate W, and is supported by the mask table 23 . For example, the mask M used to manufacture an organic EL display panel for VR HMD is a fine metal mask, which is a metal mask in which a fine opening pattern corresponding to the RGB pixel pattern of the light emitting layer of the organic EL element is formed. (Fine Metal Mask) and an open mask used to form common layers (hole injection layer, hole transport layer, electron transport layer, electron injection layer, etc.) of the organic EL device. The pattern of openings in mask M is defined by a blocking pattern that does not allow the passage of particles of deposition material. Also, the mask M may be manufactured using silicon as a material.

基板吸着手段24は、装置内に搬入された被成膜体としての基板Wを吸着して保持する手段である。基板吸着手段24は、微動ステージ機構22の可動台である微動ステージプレート部222に設置される。基板吸着手段24は、例えば、誘電体又は絶縁体(例えば、セラミック材質)マトリックス内に金属電極などの電気回路が埋設された構造を有する静電チャックである。基板吸着手段24としての静電チャックは、電極と吸着面との間に相対的に抵抗が高い誘電体が介在して、電極と被吸着体との間のクーロン力によって吸着が行われるクーロン力タイプの静電チャックであってもよいし、電極と吸着面との間に相対的に抵抗が低い誘電体が介在して、誘電体の吸着面と被吸着体との間に発生するジョンソン・ラーベック力によって吸着が行われるジョンソン・ラーベック力タイプの静電チャックであってもよいし、不均一電界によって被吸着体を吸着するグラジエント力タイプの静電チャックであってもよい。被吸着体が導体または半導体(シリコンウエハ)である場合には、クーロン力タイプの静電チャックまたはジョンソン・ラーベック力タイプの静電チャックを用いることが好ましく、被吸着体がガラスのような絶縁体である場合には、グラジエント力タイプの静電チャックを用いることが好ましい。 The substrate adsorption means 24 is a means for adsorbing and holding a substrate W as a film-forming object carried into the apparatus. The substrate adsorption means 24 is installed on the fine movement stage plate portion 222 which is the movable base of the fine movement stage mechanism 22 . The substrate chucking means 24 is, for example, an electrostatic chuck having a structure in which electric circuits such as metal electrodes are embedded in a dielectric or insulator (eg, ceramic material) matrix. The electrostatic chuck as the substrate attracting means 24 has a dielectric material having a relatively high resistance interposed between the electrode and the attracting surface, and the Coulomb force that attracts the object by the Coulomb force between the electrode and the object to be attracted. type electrostatic chuck, or a dielectric having a relatively low resistance is interposed between the electrode and the chucking surface, and the Johnson chucking occurs between the chucking surface of the dielectric and the object to be chucked. It may be a Johnson-Rahbek force type electrostatic chuck in which attraction is performed by a Rabeck force, or a gradient force type electrostatic chuck in which an object to be attracted is attracted by a non-uniform electric field. When the object to be adsorbed is a conductor or semiconductor (silicon wafer), it is preferable to use a Coulomb force type electrostatic chuck or a Johnson-Rahbek force type electrostatic chuck, and the object to be adsorbed is an insulator such as glass. , it is preferable to use a gradient force type electrostatic chuck.

成膜源25は、基板Wに成膜される成膜材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)などを含む。成膜源25は、点(point)成膜源や線状(linear)成膜源など、用途に従って多様な構成を有することができる。 The film forming source 25 includes a crucible (not shown) containing a film forming material to be formed on the substrate W, a heater (not shown) for heating the crucible, and the like. The deposition source 25 can have a variety of configurations depending on the application, such as a point deposition source or a linear deposition source.

磁力印加手段26は、成膜時に磁力によって金属製のマスクMを基板W側に引き寄せて密着させるための手段であって、鉛直方向に昇降可能に設置される。例えば、磁力印加手段26は、電磁石や永久磁石で構成される。真空チャンバ21の上部外側(大気側)には、磁力印加手段26を昇降させるための昇降機構27が設置される。基板WとマスクMが接触する蒸着位置に達すると、磁力印加手段26を下降させ、静電チャック24および基板W越しにマスクMを引き寄せることで、基板WとマスクMを密着させる。ここで、マスクMが金属でなくシリコンで製作される場合には、磁力印加手段26は不要となる。 The magnetic force applying means 26 is a means for attracting the metal mask M to the substrate W side by magnetic force during film formation, and is installed so as to be vertically movable. For example, the magnetic force applying means 26 is composed of an electromagnet or a permanent magnet. An elevating mechanism 27 for elevating the magnetic force applying means 26 is installed on the upper outer side (atmosphere side) of the vacuum chamber 21 . When the deposition position where the substrate W and the mask M are in contact is reached, the magnetic force applying means 26 is lowered to draw the mask M over the electrostatic chuck 24 and the substrate W, thereby bringing the substrate W and the mask M into close contact. Here, if the mask M is made of silicon instead of metal, the magnetic force application means 26 becomes unnecessary.

成膜装置11は、真空チャンバ21の内部には、防着部材30が配置されている。防着部材30は、成膜源25から放出される成膜材料のうち、マスクM以外の方向に飛散する成膜材料が、成膜装置11の基板W以外の他の部品に付着することを防止する。この防着部材30は、ステンレスやアルミニウムなどの金属製の板材によって作製されており、成膜が繰り返して行われるたびに、余計な成膜材料が付着されるため、洗浄のために定期的に着脱して真空チャンバ21の外部に搬出することができる構造になっている。防着部材30は、真空チャンバ21の内部の異なる領域を効果的にカバーするように、複数設けることができる。本発明の実施形態による防着部材30の詳細な配置構造については、後述する。 The deposition apparatus 11 is provided with a deposition-inhibiting member 30 inside the vacuum chamber 21 . The deposition-inhibiting member 30 prevents the film-forming material that scatters in a direction other than the mask M, among the film-forming materials discharged from the film-forming source 25, from adhering to parts other than the substrate W of the film-forming apparatus 11. To prevent. This deposition-inhibiting member 30 is made of a plate material made of metal such as stainless steel or aluminum. It is structured such that it can be detached and carried out to the outside of the vacuum chamber 21 . A plurality of deposition-inhibiting members 30 can be provided so as to effectively cover different areas inside the vacuum chamber 21 . A detailed arrangement structure of the deposition-inhibiting member 30 according to the embodiment of the present invention will be described later.

上述の説明では、成膜装置11は、基板Wの成膜面が鉛直方向下方を向いた状態で成膜が行われる、いわゆる上向き蒸着方式(デポアップ)の構成としたが、本発明はこれに限定されない。基板Wが真空チャンバ21の側面側に垂直に立てられた状態で配置され、基板Wの成膜面が重力方向と平行な状態で成膜が行われる構成であってもよい。また、マスクMに対する基板Wの相対位置を調整する(アライメント)ための構成として、基板Wを基板吸着手段である静電チャックに吸着した状態で磁気浮上ステージ機構により移動させる例について説明したが、基板とマスクをそれぞれ外周を支持する支持台に載置し、これらを機械的なモーター、ボールねじ、リニアガイドなどで構成される機械的ステージ機構によって移動させてもよい。 In the above description, the film forming apparatus 11 has a configuration of a so-called upward vapor deposition system (depot-up) in which film formation is performed with the film forming surface of the substrate W facing downward in the vertical direction. Not limited. The substrate W may be placed vertically on the side surface of the vacuum chamber 21, and the film formation may be performed with the film formation surface of the substrate W parallel to the direction of gravity. Also, as a configuration for adjusting (aligning) the relative position of the substrate W with respect to the mask M, an example has been described in which the substrate W is moved by the magnetic levitation stage mechanism while being attracted to an electrostatic chuck, which is a substrate attracting means. Alternatively, the substrate and the mask may be placed on supports that support their outer peripheries and moved by a mechanical stage mechanism composed of mechanical motors, ball screws, linear guides, and the like.

<成膜プロセス>
以下、本実施形態による成膜装置を使用した成膜方法について説明する。
<Deposition process>
A film forming method using the film forming apparatus according to this embodiment will be described below.

真空チャンバ21内のマスク置台23にマスクMが支持された状態で、基板Wが真空チャンバ21内に搬入される。搬入された基板Wが基板吸着手段24に十分に近接あるいは接触した後に、基板吸着手段24に基板吸着電圧を印加し、基板Wを吸着させる。基板WとマスクMのアライメントは、微動ステージ機構22および粗動ステージ232を駆動させることで行う。基板WとマスクMとの相対位置のずれ量が所定のしきい値より小さくなると、磁力印加手段26を下降させ、基板WとマスクMを密着させた後、成膜材料を基板Wに成膜する。所望の厚さに成膜した後、磁力印加手段26を上昇させてマスクMを分離し、基板Wを搬出する。 The substrate W is carried into the vacuum chamber 21 while the mask M is supported on the mask table 23 inside the vacuum chamber 21 . After the carried-in substrate W is sufficiently close to or in contact with the substrate attracting means 24, the substrate attracting voltage is applied to the substrate attracting means 24 to attract the substrate W. As shown in FIG. Alignment of the substrate W and the mask M is performed by driving the fine movement stage mechanism 22 and the coarse movement stage 232 . When the amount of relative positional deviation between the substrate W and the mask M becomes smaller than a predetermined threshold value, the magnetic force applying means 26 is lowered to bring the substrate W and the mask M into close contact with each other. do. After the film is formed to a desired thickness, the magnetic force applying means 26 is lifted to separate the mask M and the substrate W is unloaded.

<防着部材配置構造>
図3は、本発明の一実施形態による防着部材30の配置構造を示す、成膜装置の模式断面図である。
<Anti-adhesion member layout structure>
FIG. 3 is a schematic cross-sectional view of a film forming apparatus, showing the arrangement structure of the deposition-inhibiting member 30 according to one embodiment of the present invention.

図3において、真空チャンバ21の底面に成膜源25が設けられている。成膜源25には成膜材料の放出孔があり、その放出孔の指向する先に、基板WおよびマスクMが成膜する面を放出孔に向けて配置されている。マスクMには、成膜材料を所望の箇所において通過させるパターン孔が設けられており、成膜源25から放出された成膜材料が、マスクMを介して基板Wに所望のパターンで付着することが可能になる。 In FIG. 3, a film forming source 25 is provided on the bottom surface of the vacuum chamber 21 . The film forming source 25 has an ejection hole for the film forming material, and the surface of the substrate W and the mask M on which the film is to be formed faces the ejection hole. The mask M is provided with patterned holes through which the film-forming material passes at desired locations, and the film-forming material discharged from the film-forming source 25 adheres to the substrate W in a desired pattern through the mask M. becomes possible.

成膜源25から成膜材料を放出するために成膜源25内のるつぼ25aの内部を例えば、500℃の高温に加熱する。 In order to discharge the film forming material from the film forming source 25, the inside of the crucible 25a in the film forming source 25 is heated to a high temperature of, for example, 500.degree.

また、真空チャンバ21の内部には、防着部材30が成膜源25を囲うように真空チャンバ21の壁に隣接して設置されている。これにより、成膜源25から放出されてマスクM以外の方向へ飛散する成膜材料は、防着部材30に付着する。 Further, inside the vacuum chamber 21 , an anti-adhesion member 30 is installed adjacent to the wall of the vacuum chamber 21 so as to surround the film formation source 25 . As a result, the film-forming material discharged from the film-forming source 25 and scattered in a direction other than the mask M adheres to the deposition-inhibiting member 30 .

防着部材30は、通常、ステンレスやアルミニウムなどの金属製の板材によって製作される。このような防着部材30は、前述したように、成膜時に成膜源25からの輻射熱を受けて温度上昇し、基板WとマスクMの相対位置に影響を与える輻射熱源となり、基板WとマスクMのアライメント精度を落とす原因となり得る。 The deposition-inhibiting member 30 is usually made of a plate material made of metal such as stainless steel or aluminum. As described above, the deposition-inhibiting member 30 receives radiant heat from the film-forming source 25 during film formation, and its temperature rises. This may cause the alignment accuracy of the mask M to drop.

本発明によれば、まず、防着部材30の配置角度を最適化して、輻射熱源となる防着部材30による基板WとマスクMの相対位置の変化を抑制する。より具体的に、防着部材30は、被輻射体であるマスクMに対する形態係数を最小化することができる角度で設置される。ここで、形態係数とは、被輻射体から見た輻射熱源の面積を意味し、形態係数が小さいほど、同じ輻射熱源による影響も減る。 According to the present invention, first, the arrangement angle of the deposition-inhibiting member 30 is optimized to suppress the change in the relative position between the substrate W and the mask M due to the deposition-inhibiting member 30 serving as a radiant heat source. More specifically, the deposition-inhibiting member 30 is installed at an angle capable of minimizing the view factor with respect to the mask M, which is the object to be irradiated. Here, the view factor means the area of the radiant heat source as viewed from the body to be radiated, and the smaller the view factor, the less the influence of the same radiant heat source.

本発明の実施形態によれば、防着部材30は、真空チャンバ21の壁面に対して傾斜して設置される。より詳細には、たとえば、防着部材30が成膜源25とマスクMとの間に配置される場合、防着部材30は、基板の成膜面の法線方向において、真空チャンバ21の壁面と接続する端部(壁面側端部)よりも真空チャンバ21の内側の中央側端部がマスクMに近くなるように傾斜して設置され、かつ、壁面側端部と中央側端部を結ぶ直線の延長線が概略マスクMの中心に向かうように設置される。これにより、マスクMから見た防着部材30の面積を減し、防着部材30から基板W及びマスクMへの形態係数を抑えることによって、防着部材30から基板W及びマスクMへ及ばされる輻射熱量を抑えることができる。したがって、基板WとマスクMのアライメント精度が低下することを抑制することができる。 According to the embodiment of the present invention, the deposition-inhibiting member 30 is installed at an angle with respect to the wall surface of the vacuum chamber 21 . More specifically, for example, when the deposition-inhibiting member 30 is arranged between the film-forming source 25 and the mask M, the deposition-inhibiting member 30 extends along the wall surface of the vacuum chamber 21 in the direction normal to the film-forming surface of the substrate. is inclined so that the center side end inside the vacuum chamber 21 is closer to the mask M than the end (wall side end) connected to the wall side end and the center side end. A straight extension line is installed so as to face the center of the mask M roughly. As a result, the area of the deposition-inhibitory member 30 viewed from the mask M is reduced, and the view factor from the deposition-inhibitory member 30 to the substrate W and the mask M is suppressed, thereby extending from the deposition-inhibitory member 30 to the substrate W and the mask M. It is possible to suppress the amount of radiant heat generated. Therefore, it is possible to prevent the alignment accuracy between the substrate W and the mask M from deteriorating.

このような本発明の実施形態によれば、防着部材30の配置角度は、マスクMとの相対位置により異なる。具体的に、防着部材30が、マスクMに対する相対位置(図3の場合には、垂直方向への距離)が異なる、複数の防着部材31~34を有する場合、各防着部材31~34の成膜源と対向する対向面と基板の成膜面の法線とがなす角(図3のθ1、θ2、θ3、θ4)は、基板の成膜面の法線方向におけるマスクMからの距離が遠くなるにつれ、小さくなる(θ1>θ2>θ3>θ4)。 According to such an embodiment of the present invention, the arrangement angle of the deposition-inhibitory member 30 varies depending on the relative position with respect to the mask M. FIG. Specifically, when the deposition-inhibiting member 30 has a plurality of deposition-inhibiting members 31 to 34 having different relative positions (vertical distances in the case of FIG. 3) with respect to the mask M, each of the deposition-inhibiting members 31 to The angles (θ1, θ2, θ3, θ4 in FIG. 3) formed by the surface facing the film formation source of 34 and the normal to the film formation surface of the substrate are from the mask M in the direction normal to the film formation surface of the substrate. becomes smaller as the distance of .theta.1>.theta.2>.theta.3>.theta.4.

本実施形態の一態様によれば、防着部材30の表面は、放射率を低減することができる、材料および/または構造で形成してもよい。より具体的に、防着部材30は、ステンレスやアルミニウムなどの金属製の板材で形成するが、防着部材30の真空チャンバ21壁面と対向する外側表面30aは、ニッケル鍍金層として形成し、放射率の低減を図ることができる。また、必要な場合、ニッケル鍍金を施した上で研磨により鏡面加工することで更に放射率の低減を図る。これにより、真空チャンバ21の壁面を通した外気の輻射熱影響を削減することができる。 According to one aspect of this embodiment, the surface of the deposition-inhibiting member 30 may be formed of a material and/or structure capable of reducing emissivity. More specifically, the anti-adhesion member 30 is formed of a plate material made of metal such as stainless steel or aluminum. rate can be reduced. If necessary, the emissivity can be further reduced by applying nickel plating and polishing to a mirror finish. As a result, the radiant heat effect of outside air passing through the wall surface of the vacuum chamber 21 can be reduced.

また、防着部材30の成膜源25と対向する内側表面30bも、外側表面30aと同様に、ニッケル鍍金層として形成し、また、必要な場合、鏡面加工することで放射率の低減を図ることができる。これにより、成膜源25からの輻射熱を受けることによる、防着部材30の温度上昇を抑えることができる。 Similarly to the outer surface 30a, the inner surface 30b of the anti-adhesion member 30 facing the film forming source 25 is also formed as a nickel-plated layer, and if necessary, mirror-finished to reduce the emissivity. be able to. As a result, the temperature rise of the deposition-inhibiting member 30 due to receiving radiant heat from the film forming source 25 can be suppressed.

なお、本実施形態の他の一態様によれば、防着部材30の想定温度より外気の方が低い場合には、防着部材30から真空チャンバ21壁面に輻射排熱することで防着部材30の温度上昇を抑えることができる。その場合には、防着部材30の外側表面30aにDLC(ダイヤモンドライクカーボン;diamond-like carbon)膜の処理をすることで、放射率の向上を図ることが有効となる。外側表面30aの放射率を高くする方法としては、前述したDLC膜処理の他にも、表面を粗くする処理または黒色面にする処理などを適用することができる。このような表面処理としては、例えは、ブラスト加工処理、黒色メッキ処理、酸化被膜形成処理、溶射(thermal spraying)処理などが挙げられる。 In addition, according to another aspect of the present embodiment, when the outside air is lower than the assumed temperature of the deposition-inhibiting member 30, the deposition-inhibiting member 30 temperature rise can be suppressed. In that case, it is effective to improve the emissivity by applying a DLC (diamond-like carbon) film to the outer surface 30a of the deposition-inhibitory member 30. FIG. As a method for increasing the emissivity of the outer surface 30a, in addition to the above-described DLC film treatment, a surface roughening treatment, a black surface treatment, or the like can be applied. Examples of such surface treatments include blasting, black plating, oxide film formation, and thermal spraying.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
<Method for manufacturing electronic device>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of this embodiment will be described. The configuration and manufacturing method of an organic EL display device will be exemplified below as an example of an electronic device.

まず、製造する有機EL表示装置について説明する。図4(a)は有機EL表示装置60の全体図、図4(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be described. FIG. 4A shows an overall view of the organic EL display device 60, and FIG. 4B shows a cross-sectional structure of one pixel.

図4(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施形態にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 4A, in a display region 61 of an organic EL display device 60, a plurality of pixels 62 each having a plurality of light emitting elements are arranged in a matrix. Although details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The term "pixel" as used herein refers to a minimum unit capable of displaying a desired color in the display area 61. FIG. In the case of the organic EL display device according to this embodiment, the pixel 62 is configured by a combination of the first light-emitting element 62R, the second light-emitting element 62G, and the third light-emitting element 62B that emit light different from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element and a white light emitting element. It is not limited.

図4(b)は、図4(a)のA-B線における部分断面模式図である。画素62は、基板63上に、陽極64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、陰極68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、陽極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と陰極68は、複数の発光素子62R、62G、62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、陽極64と陰極68とが異物によってショートするのを防ぐために、陽極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。 FIG. 4(b) is a schematic partial cross-sectional view taken along line AB in FIG. 4(a). The pixel 62 has an organic EL element provided on a substrate 63 with an anode 64, a hole transport layer 65, one of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a cathode 68. there is Among these layers, the hole transport layer 65, the light emitting layers 66R, 66G and 66B, and the electron transport layer 67 correspond to organic layers. In this embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light-emitting layers 66R, 66G, and 66B are formed in patterns corresponding to light-emitting elements (also referred to as organic EL elements) that emit red, green, and blue, respectively. Also, the anode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the cathode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, and 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the anodes 64 to prevent the anodes 64 and cathodes 68 from being short-circuited by foreign matter. Furthermore, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 is provided to protect the organic EL element from moisture and oxygen.

図4(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、陽極64と正孔輸送層65との間には陽極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、陰極68と電子輸送層67の間にも電子注入層を形成することができる。 In FIG. 4B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but depending on the structure of the organic EL display element, they may be formed of multiple layers including a hole blocking layer and an electron blocking layer. may be In addition, a hole injection layer having an energy band structure capable of smoothly injecting holes from the anode 64 to the hole transport layer 65 is provided between the anode 64 and the hole transport layer 65 . can also be formed. Similarly, an electron injection layer can be formed between cathode 68 and electron transport layer 67 .

次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, an example of a method for manufacturing an organic EL display device will be specifically described.

まず、有機EL表示装置を駆動するための回路(不図示)および陽極64が形成された基板63を準備する。 First, a substrate 63 on which a circuit (not shown) for driving an organic EL display device and an anode 64 are formed is prepared.

陽極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、陽極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 An acrylic resin is formed by spin coating on the substrate 63 on which the anode 64 is formed, and the acrylic resin is patterned by lithography so that an opening is formed in the portion where the anode 64 is formed, thereby forming an insulating layer 69 . . This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、静電チャックにて基板を保持し、正孔輸送層65を、表示領域の陽極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 63 on which the insulating layer 69 is patterned is carried into the first organic material deposition apparatus, the substrate is held by an electrostatic chuck, and the hole transport layer 65 is formed as a common layer on the anode 64 in the display area. It forms a film as The hole transport layer 65 is deposited by vacuum deposition. Since the hole transport layer 65 is actually formed to have a size larger than that of the display area 61, a high-definition mask is not required.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、静電チャックにて保持する。基板とマスクとのアライメントを行い、マグネット板でマスクを吸引して基板に密着させた後、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the holes up to the hole transport layer 65 are formed is carried into the second organic material film forming apparatus and held by an electrostatic chuck. After the substrate and the mask are aligned and the mask is attracted to the substrate by a magnet plate, a light-emitting layer 66R emitting red is formed on the portion of the substrate 63 where the elements emitting red are to be arranged.

発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similarly to the deposition of the light-emitting layer 66R, the third organic material deposition apparatus is used to deposit a green-emitting light-emitting layer 66G, and the fourth organic material deposition apparatus is used to deposit a blue-emitting light-emitting layer 66B. . After the formation of the light-emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed over the entire display area 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the three color light-emitting layers 66R, 66G, and 66B.

電子輸送層67まで形成された基板を金属性蒸着材料成膜装置で移動させて陰極68を成膜する。 The substrate on which the electron transport layer 67 has been formed is moved by the metallic vapor deposition material film-forming apparatus to form the cathode 68 .

その後プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。 After that, the substrate is moved to a plasma CVD apparatus to form a protective layer 70, and the organic EL display device 60 is completed.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。 If the substrate 63 on which the insulating layer 69 is patterned is carried into the film forming apparatus and is exposed to an atmosphere containing moisture and oxygen until the film formation of the protective layer 70 is completed, the light emitting layer made of the organic EL material will be damaged. It may deteriorate due to moisture and oxygen. Therefore, in this example, substrates are carried in and out between film forming apparatuses under a vacuum atmosphere or an inert gas atmosphere.

上記実施形態は本発明の一例を示すものでしかなく、本発明は上記実施形態の構成に限定されないし、その技術思想の範囲内で適宜に変形しても良い。 The above-described embodiment merely shows an example of the present invention, and the present invention is not limited to the configuration of the above-described embodiment, and may be appropriately modified within the scope of the technical idea thereof.

11:成膜装置、21:真空チャンバ、25:成膜源、30、31、32、33、34:防着部材 11: Film forming apparatus, 21: Vacuum chamber, 25: Film forming source, 30, 31, 32, 33, 34: Anti-adhesion member

Claims (9)

チャンバ内において、成膜源から放出される成膜材料をマスクを介して基板に成膜する成膜装置であって、
前記チャンバ内に配置され、前記成膜源から飛散する成膜材料が付着する複数の防着部材を有し、
前記複数の防着部材は、前記成膜源と対向する前記防着部材の対向面と前記基板の成膜面の法線との角度が、前記法線の方向における前記マスクからの距離に応じて異なり、前記法線の方向における前記マスクからの距離が遠い防着部材ほど前記対向面と前記法線との角度が小さいことを特徴とする成膜装置。
A film forming apparatus for forming a film on a substrate through a mask with a film forming material discharged from a film forming source in a chamber,
Having a plurality of deposition-inhibiting members arranged in the chamber and to which film-forming material scattered from the film-forming source adheres,
In the plurality of deposition-inhibiting members, an angle between a surface of the deposition-inhibiting member facing the film formation source and a normal line to the film formation surface of the substrate is determined according to a distance from the mask in the direction of the normal line. different from each other, and the angle between the facing surface and the normal line is smaller for a deposition-inhibiting member that is farther from the mask in the direction of the normal line.
前記複数の防着部材は、第1防着部材と、第2防着部材とを含み、
前記第1防着部材及び前記第2防着部材は、別体であり、それぞれ前記チャンバの同じ側の壁面側の異なる場所に設けられた壁面側端部と、前記チャンバの内側の中央側端部と、を有し、
前記第1防着部材及び前記第2防着部材は、前記基板の成膜面の法線方向において、前記壁面側端部よりも前記中央側端部が前記マスクと近くなるように前記チャンバの壁面に対して傾斜して設置され、
前記第2防着部材と前記マスクとの距離は、前記第1防着部材と前記マスクとの距離よりも大きく、
前記成膜源と対向する前記第1防着部材の第1対向面と前記基板の成膜面の法線との第1の角度が、前記成膜源と対向する前記第2防着部材の第2対向面と前記法線との第2の角度より大きいことを特徴とする請求項1に記載の成膜装置。
The plurality of adhesion-inhibiting members includes a first adhesion-inhibiting member and a second adhesion-inhibiting member,
The first adhesion-inhibiting member and the second adhesion-inhibiting member are separate bodies, and are respectively provided at different locations on the wall surface side of the same side of the chamber and a center side end inside the chamber. and
The first deposition-inhibiting member and the second deposition-inhibiting member are arranged in the chamber such that the central side edge is closer to the mask than the wall side edge in the normal direction of the film formation surface of the substrate. Installed at an angle to the wall,
the distance between the second deposition-inhibiting member and the mask is greater than the distance between the first deposition-inhibiting member and the mask;
A first angle between a first opposing surface of the first deposition prevention member facing the film formation source and a normal line of the film formation surface of the substrate is the angle of the second adhesion prevention member facing the film formation source. 2. The film forming apparatus according to claim 1, wherein the second angle is larger than the second angle between the second opposing surface and the normal line.
チャンバ内において、成膜源から放出される成膜材料をマスクを介して基板に成膜する成膜装置であって、
前記チャンバ内に配置され、前記成膜源から飛散する成膜材料が付着する第1防着部材と、
前記チャンバ内に配置され、前記マスクとの距離が前記第1防着部材と前記マスクとの距離よりも大きく、前記成膜源から飛散する成膜材料が付着する第2防着部材と、を備え、
前記成膜源と対向する前記第1防着部材の第1対向面と前記基板の成膜面の法線との第1の角度は、前記成膜源と対向する前記第2防着部材の第2対向面と前記法線との第2の角度より大きいことを特徴とする成膜装置。
A film forming apparatus for forming a film on a substrate through a mask with a film forming material discharged from a film forming source in a chamber,
a first deposition-inhibiting member disposed in the chamber to which the film-forming material scattered from the film-forming source adheres;
a second deposition-inhibiting member disposed in the chamber, having a distance from the mask that is greater than the distance between the first deposition-inhibiting member and the mask, and to which the film-forming material scattered from the film-forming source adheres; prepared,
A first angle between the first opposing surface of the first deposition-inhibiting member facing the film formation source and a normal to the film formation surface of the substrate is the angle of the second adhesion-inhibition member facing the film formation source. A film forming apparatus, wherein the angle between the second opposing surface and the normal line is larger than a second angle.
前記チャンバ内に配置され、前記マスクとの距離が前記第2防着部材と前記マスクとの距離よりも大きく、前記成膜源から飛散する成膜材料が付着する第3防着部材をさらに有し、
前記成膜源と対向する前記第3防着部材の第3対向面と前記法線との第3の角度は、前記第2の角度より小さいことを特徴とする請求項3に記載の成膜装置。
Further provided is a third deposition-inhibiting member disposed in the chamber, having a distance from the mask greater than the distance between the second deposition-inhibiting member and the mask, to which the film-forming material scattered from the film-forming source adheres. death,
4. The film formation according to claim 3, wherein a third angle between a third opposing surface of said third deposition-inhibiting member facing said film formation source and said normal line is smaller than said second angle. Device.
前記第1防着部材の前記成膜源と対向する面は、鏡面加工されていることを特徴とする請求項~4のいずれか一項に記載の成膜装置。 5. The film forming apparatus according to claim 2 , wherein a surface of said first deposition-inhibiting member facing said film forming source is mirror-finished. チャンバ内において、成膜源から放出される成膜材料をマスクを介して基板に成膜する成膜装置であって、
前記チャンバ内に配置され、前記成膜源から飛散する成膜材料が付着する防着部材を有し、
前記防着部材は、前記基板の成膜面の法線方向において、前記チャンバの壁面と接続する端部よりも前記チャンバの内側の中央側端部が前記マスクと近くなるように前記チャンバの壁面に対して傾斜して設置され、かつ、前記壁面と接続する端部と前記中央側端部とを結ぶ直線の延長線が前記マスクの中央を通るように設置されていることを特徴とする成膜装置。
A film forming apparatus for forming a film on a substrate through a mask with a film forming material discharged from a film forming source in a chamber,
a deposition-inhibiting member disposed in the chamber to which the film-forming material scattered from the film-forming source adheres;
The deposition-inhibiting member is arranged on the wall surface of the chamber so that the center side end portion inside the chamber is closer to the mask than the end portion connected to the wall surface of the chamber in the normal direction of the film formation surface of the substrate. , and a straight extension line connecting the end connected to the wall surface and the center side end is installed so as to pass through the center of the mask. membrane device.
前記チャンバ内に配置された複数の前記防着部材は、前記成膜源と対向する前記防着部材の対向面と前記基板の成膜面の法線との角度が、前記法線の方向における前記マスクからの距離に応じて異なり、
前記防着部材の前記成膜源と対向する面は、鏡面加工されていることを特徴とする請求項6に記載の成膜装置。
The plurality of deposition-preventing members arranged in the chamber are configured such that an angle between a surface of the deposition-preventing members facing the film formation source and a normal to the film formation surface of the substrate is in the direction of the normal. depending on the distance from said mask,
7. The film forming apparatus according to claim 6, wherein a surface of said deposition-inhibiting member facing said film forming source is mirror-finished.
請求項1~7のいずれか一項に記載の成膜装置を用いて、前記成膜装置のチャンバの内部でマスクを介して基板に成膜材料を成膜することを特徴とする成膜方法。 8. A film forming method, comprising: using the film forming apparatus according to any one of claims 1 to 7, to form a film of a film forming material on a substrate through a mask inside a chamber of the film forming apparatus. . 請求項8に記載の成膜方法を用いて、電子デバイスを製造することを特徴とする電子デバイスの製造方法。 A method for manufacturing an electronic device, comprising manufacturing an electronic device using the film forming method according to claim 8 .
JP2020172700A 2019-11-20 2020-10-13 Film forming apparatus, film forming method using the same, and electronic device manufacturing method Active JP7170017B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190149442A KR20210061639A (en) 2019-11-20 2019-11-20 Film forming apparatus, film forming method and electronic device manufacturing method using the same
KR10-2019-0149442 2019-11-20

Publications (2)

Publication Number Publication Date
JP2021080560A JP2021080560A (en) 2021-05-27
JP7170017B2 true JP7170017B2 (en) 2022-11-11

Family

ID=75907875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020172700A Active JP7170017B2 (en) 2019-11-20 2020-10-13 Film forming apparatus, film forming method using the same, and electronic device manufacturing method

Country Status (4)

Country Link
JP (1) JP7170017B2 (en)
KR (1) KR20210061639A (en)
CN (1) CN112824558B (en)
TW (1) TWI833047B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111916A (en) 2004-10-14 2006-04-27 Mitsubishi Electric Corp Vapor deposition system
JP2008144214A (en) 2006-12-08 2008-06-26 Seiko Epson Corp Film deposition apparatus
JP2010174344A (en) 2009-01-30 2010-08-12 Seiko Epson Corp Film deposition apparatus
JP2015021170A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vacuum vapor deposition device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168278A (en) * 1990-10-31 1992-06-16 Nec Corp Vapor deposition device
JPH06172973A (en) * 1992-12-04 1994-06-21 Toyota Motor Corp Thin film forming device
SG149680A1 (en) * 2001-12-12 2009-02-27 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
WO2009154853A2 (en) * 2008-04-16 2009-12-23 Applied Materials, Inc. Wafer processing deposition shielding components
CN201826007U (en) * 2010-10-14 2011-05-11 北京京东方光电科技有限公司 Anti-adhesion plate and membrane deposition equipment
US20140014036A1 (en) * 2011-03-30 2014-01-16 Sharp Kabushiki Kaisha Deposition particle emitting device, deposition particle emission method, and deposition device
JP2014055342A (en) * 2012-09-14 2014-03-27 Hitachi High-Technologies Corp Film deposition apparatus
JP6641242B2 (en) * 2016-07-05 2020-02-05 キヤノントッキ株式会社 Evaporator and evaporation source
CN206768212U (en) * 2017-06-08 2017-12-19 合肥鑫晟光电科技有限公司 Film-forming apparatus
KR101901072B1 (en) * 2017-10-31 2018-09-20 캐논 톡키 가부시키가이샤 Evaporation source device, film formation apparatus, film formation method and manufacturing method of electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111916A (en) 2004-10-14 2006-04-27 Mitsubishi Electric Corp Vapor deposition system
JP2008144214A (en) 2006-12-08 2008-06-26 Seiko Epson Corp Film deposition apparatus
JP2010174344A (en) 2009-01-30 2010-08-12 Seiko Epson Corp Film deposition apparatus
JP2015021170A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vacuum vapor deposition device

Also Published As

Publication number Publication date
JP2021080560A (en) 2021-05-27
TW202136555A (en) 2021-10-01
KR20210061639A (en) 2021-05-28
TWI833047B (en) 2024-02-21
CN112824558A (en) 2021-05-21
CN112824558B (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN113106387B (en) Film forming apparatus and method for manufacturing electronic device
JP7271740B2 (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
KR102505832B1 (en) Adsorption apparatus, position adjusting method, and method for forming film
JP7278193B2 (en) Deposition equipment
JP7119042B2 (en) Film forming apparatus, film forming method using the same, and electronic device manufacturing method
CN112680696B (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
KR102501609B1 (en) Film forming apparatus, film forming method and manufacturing method of electronic device
CN112813381A (en) Film forming apparatus
JP7170017B2 (en) Film forming apparatus, film forming method using the same, and electronic device manufacturing method
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
KR102520050B1 (en) Suction apparatus, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
JP7021318B2 (en) Film forming equipment and control method of film forming equipment
KR102501617B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
KR102501615B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
JP7271242B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
TWI757930B (en) Film forming device
KR102481907B1 (en) Film forming apparatus, film forming method and manufacturinh method of electronic device
JP6956244B2 (en) Film formation equipment and film formation method
JP7162845B2 (en) Electrostatic chuck system, film forming apparatus, adsorption and separation method, film forming method, and electronic device manufacturing method
KR20210061125A (en) Cooling jacket, film forming apparatus, film forming method and electronic device manufacturing method using the same
KR20210080802A (en) Film forming apparatus, film forming method and manufacturing method of electronic device
KR20210060172A (en) Cooling jacket, film forming apparatus, film forming method and electronic device manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R150 Certificate of patent or registration of utility model

Ref document number: 7170017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150