WO2024128120A1 - 記憶装置、センサ装置、及びセンサシステム - Google Patents

記憶装置、センサ装置、及びセンサシステム Download PDF

Info

Publication number
WO2024128120A1
WO2024128120A1 PCT/JP2023/043812 JP2023043812W WO2024128120A1 WO 2024128120 A1 WO2024128120 A1 WO 2024128120A1 JP 2023043812 W JP2023043812 W JP 2023043812W WO 2024128120 A1 WO2024128120 A1 WO 2024128120A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
sensor device
storage unit
error detection
acceleration sensor
Prior art date
Application number
PCT/JP2023/043812
Other languages
English (en)
French (fr)
Inventor
洋 山城
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024128120A1 publication Critical patent/WO2024128120A1/ja

Links

Images

Definitions

  • the invention disclosed in this specification relates to a storage device, as well as a sensor device and a sensor system using the same.
  • the acceleration sensor device (see, for example, Patent Document 1) is mounted, for example, on an electronic vehicle key.
  • the electronic vehicle key normally operates only with the acceleration sensor device.
  • the acceleration sensor device on the electronic vehicle key detects acceleration associated with the movement of the person carrying the electronic vehicle key, it outputs an interrupt signal to a microcomputer, which is a host device, and the microcomputer operates.
  • the microcomputer provided in the electronic vehicle key then communicates wirelessly with the vehicle to unlock the vehicle.
  • the microcomputer which is the host device, will not operate unless the acceleration sensor device detects the acceleration associated with the movement of the person carrying the electronic vehicle key. Therefore, the above electronic vehicle key can prevent theft of the vehicle through relay attacks.
  • the sensing settings of the acceleration sensor device are stored in a memory device provided in the acceleration sensor device. If the sensing settings of the acceleration sensor device stored in the memory device change due to unintended causes such as noise or surges, the acceleration sensor device may fall into a state where it does not perform the operation expected by the microcomputer, which is the host device. In this case, the microcomputer, which is the host device, will be in a state where it continues to wait indefinitely for an interrupt signal output from the acceleration sensor, and the electronic key for the vehicle will not be able to perform the unlocking operation.
  • the acceleration sensor device In applications such as electronic vehicle keys, the acceleration sensor device is often kept powered and in constant operation, and it is expected that the application will be used continuously for long periods of time without the acceleration sensor device being reset. If the continuous use continues for a long period of time, there is a high possibility that the sensing settings of the acceleration sensor device stored in the storage device will change due to unintended causes such as noise or surges, and there is also a high possibility that the application will not be able to automatically recover to a normal state because the device will not be reset.
  • the storage device disclosed in this specification includes a first storage unit and a second storage unit configured to store data with mutually opposite polarities, and an error detection unit configured to detect an error when the output of the first storage unit and the output of the second storage unit have the same polarity.
  • the sensor device disclosed in this specification includes a sensor element and a memory device having the above-described configuration.
  • the sensor system disclosed in this specification comprises a sensor device having the above-described configuration and a signal processing device configured to receive the sensing results and error detection results of the sensor device.
  • the invention disclosed in this specification makes it possible to detect changes in memory contents caused by unintended factors such as noise or surges.
  • FIG. 1 is a diagram showing a configuration of an electronic key according to an embodiment.
  • FIG. 2 is a diagram showing a configuration of a portion of the storage device.
  • FIG. 3 is a diagram showing the relationship between the data value and the state of the error detection unit.
  • FIG. 4 is a timing chart for explaining the operation of the electronic key according to the embodiment.
  • FIG. 1 is a diagram showing the configuration of an electronic key SYS1 according to an embodiment.
  • the electronic key SYS1 is an example of a sensor system that includes a sensor device and a signal processing device.
  • the electronic key SYS1 includes an acceleration sensor device 10, a microcomputer 20, and a battery 30.
  • the acceleration sensor device 10 and the microcomputer 20 are each driven by the output power of the battery 30.
  • the microcomputer 20 is normally in a sleep state, and upon receiving an interrupt signal output from the acceleration sensor device 10, it cancels the sleep state and becomes capable of wireless communication with the vehicle.
  • the acceleration sensor device 10 comprises a sensor element 1, an AFE 2, a data processing circuit 3, an interrupt generating circuit 4, a storage device 5, and a control circuit 6.
  • the acceleration sensor device 10 is a capacitance-type three-axis acceleration sensor that can simultaneously measure acceleration in three mutually orthogonal axial directions. Note that the acceleration that can be simultaneously measured by the acceleration sensor device 10 is not limited to acceleration in three mutually orthogonal axial directions, but may also be acceleration in two mutually orthogonal axial directions, or may be acceleration in one axial direction.
  • the sensor element 1 is a capacitance type acceleration sensor element that uses MEMS (Micro Electro Mechanical System) technology.
  • the sensor element 1 has a fixed electrode, a movable electrode, and a spring, which are made of, for example, silicon.
  • the distance between the fixed electrode and the movable electrode does not change.
  • the movable electrode is displaced relative to the fixed electrode, and the capacitance between the fixed electrode and the movable electrode changes. In other words, the capacitance of the sensor element 1 changes according to the acceleration applied to the sensor element 1.
  • the sensor element 1 is not limited to a capacitance type acceleration sensor element, but may be, for example, a piezo-resistance type acceleration sensor element, a thermal detection type acceleration sensor element, etc. In other words, the sensor element 1 may be any sensor element whose characteristics change in response to the acceleration applied to the sensor element 1.
  • AFE (Analog Front End) 2 is connected to the sensor element 1 and outputs an analog signal indicating the change in capacitance of the sensor element 1.
  • AFE 21 receives the analog signal indicating the change in capacitance of the sensor element 1 from the sensor element 1 and outputs it to the data processing circuit 3.
  • the data processing circuit 3 converts the analog signal indicating the change in capacitance of the sensor element 1 into a digital signal, performs data adjustments such as gain adjustment and offset adjustment on the digital signal, and detects the acceleration associated with the movement of the person holding the electronic key SYS1 based on the data-adjusted digital signal.
  • the interrupt generation circuit 4 sends an interrupt signal to the microcomputer 20.
  • the microcomputer 20 does not need to communicate with the acceleration sensor device 10 periodically; as long as it communicates with the acceleration sensor device 10 when it receives an interrupt signal, it can detect all acceleration associated with the movement of the person carrying the electronic key SYS1. By not having the microcomputer 20 and the acceleration sensor device 10 communicate periodically, the power required for communication in both the microcomputer 20 and the acceleration sensor 101 can be reduced. Furthermore, the microcomputer 20 can enter a sleep state until it receives an interrupt signal, thereby reducing power consumption in the microcomputer 20.
  • the storage device 5 is, for example, a shift register, and stores settings related to sensing by the acceleration sensor device 10.
  • Settings related to sensing by the acceleration sensor device 10 include, for example, the adjustments made in the data processing circuit 3, the format of the interrupt signal, and the control of the sensor element 1 and AFE 2.
  • the sensing settings of the acceleration sensor device 10 stored in the storage device 5 are used in the data processing circuit 3, the interrupt generation circuit 4, and the control circuit 6.
  • the control circuit 6 controls the sensor element 1 and the AFE 2.
  • FIG. 2 is a diagram showing a configuration of a portion of the storage device 5.
  • important data D0 is stored in two bits as shown in FIG. 2.
  • Data D0 may be a portion or all of the data stored by the storage device 5.
  • the storage device 5 has the same number of circuits shown in FIG. 2 as the number of pieces of data D0.
  • the circuit shown in FIG. 2 includes flip-flops FF1 and FF2, inverters INV1 and INV2, and an exclusive OR gate XOR1.
  • Flip-flop FF1 stores data D0 without changing the polarity.
  • Inverter INV1 and flip-flop FF2 store data D0 with the polarity inverted. Therefore, the first storage unit formed by flip-flop FF1 and the second storage unit formed by inverter INV1 and flip-flop FF2 store data D0 with opposite polarity. Note that flip-flops FF1 and FF2 store data supplied to the data input terminal (D) in synchronization with the clock signal CLK supplied to the clock input terminal.
  • the first memory unit composed of flip-flop FF1 and the second memory unit composed of inverter INV1 and flip-flop FF2 store data D0 in opposite polarities, so they are unlikely to behave in the same way even if the contents stored in memory device 5 change due to unintended causes such as noise or a surge.
  • the contents stored in memory device 5 change due to unintended causes such as noise or a surge, it is highly likely that the polarity of the stored data will be inverted in one of the first memory unit composed of flip-flop FF1 and the second memory unit composed of inverter INV1 and flip-flop FF2, and that the polarity of the stored data will not be inverted in the other.
  • the error detection unit which is composed of the inverter INV2 and the exclusive OR gate XOR1, detects an error when the output of the first memory unit and the output of the second memory unit have the same polarity.
  • the inverter INV2 receives the output of the second memory unit.
  • the exclusive OR gate XOR1 outputs the exclusive OR of the output of the first memory unit and the output of the inverter INV2.
  • the inverter INV2 may be provided between the flip-flop FF1 and the exclusive OR gate XOR1, rather than between the flip-flop FF2 and the exclusive OR gate XOR1.
  • Figure 3 shows the relationship between the data value and the state of the error detection unit.
  • the data D1 output from the output terminal (Q) of flip-flop FF1 and the data D2 output from the output terminal (Q) of flip-flop FF2 will have different values.
  • the data D3 supplied to the first input terminal of the exclusive-OR gate XOR1 and the data D4 supplied to the second input terminal of the exclusive-OR gate XOR1 will have the same value, and the value of the data D5 output from the exclusive-OR gate XOR1 will be "0".
  • the error detection unit formed by the inverter INV2 and the exclusive-OR gate XOR1 outputs data D5 with a value of "0" if it does not detect an error.
  • the data D1 output from the output terminal (Q) of flip-flop FF1 and the data D2 output from the output terminal (Q) of flip-flop FF2 will have the same value.
  • the data D3 supplied to the first input terminal of the exclusive-OR gate XOR1 will have a different value from the data D4 supplied to the second input terminal of the exclusive-OR gate XOR1, and the value of the data D5 output from the exclusive-OR gate XOR1 will be "2".
  • the error detection unit formed by the inverter INV2 and the exclusive-OR gate XOR1 outputs data D5 with a value of "1" when it detects an error.
  • the storage device 5 can detect changes in the stored contents caused by unintended factors such as noise or surges, i.e., errors.
  • Figure 4 is a timing chart to explain the operation of the electronic key SYS1.
  • the acceleration sensor device 10 performs intermittent sensing operations that alternate between sensing periods and idle periods.
  • the acceleration sensor device 10 operates with a high-precision clock generator (not shown in FIG. 1) built into the acceleration sensor device 10, and operates based on the clock signal output from the high-precision clock generator.
  • the acceleration sensor device 10 operates with a low-precision clock generator (not shown in FIG. 1) built into the acceleration sensor device 10, and times the idle periods based on the clock signal output from the low-precision clock generator.
  • the error detection unit which is composed of the inverter INV2 and the exclusive OR gate XOR1, operates during the sensing period. This allows the clock signal output from the high-precision clock generator to be used as the clock signal CLK supplied to the flip-flops FF1 and FF2.
  • the interrupt generation circuit 4 outputs an interrupt signal to the microcomputer 20 not only when the data processing circuit 3 detects acceleration associated with the movement of a person holding the electronic key SYS1, but also when the error detection unit composed of the inverter INV2 and the exclusive OR gate XOR1 detects an error. In other words, the microcomputer 20 receives the sensing results and error detection results of the acceleration sensor device 10.
  • the microcomputer 20 When the microcomputer 20 receives an interrupt signal, it checks the contents of the storage device 5 and determines whether it has received an interrupt signal resulting from the sensing result of the acceleration sensor device 10 or an interrupt signal resulting from an error detection result of the acceleration sensor device 10. If the microcomputer 20 determines that it has received an interrupt signal resulting from an error detection result of the acceleration sensor device 10, it resets the acceleration sensor device 10. In other words, when the microcomputer 20 receives an error detection result of the acceleration sensor device 10, it resets the acceleration sensor device 10. This allows the acceleration sensor device 10 to be returned to a normal state. Therefore, the reliability of the electronic key SYS1 can be improved without increasing power consumption.
  • the interrupt generation circuit 4 needs to generate an interrupt signal that is compatible with the method of detecting an interrupt signal by the microcomputer 20.
  • the acceleration sensor device 10 outputs a toggle signal that alternates between HIGH level and LOW level to the signal processing device when an error detection unit composed of an inverter INV2 and an exclusive OR gate XOR1 detects an error. For example, as shown in FIG.
  • the interrupt signal output from the interrupt generation circuit 4 becomes a toggle signal that alternates between a HIGH level and a LOW level.
  • the toggle signal which alternates between a HIGH level and a LOW level, includes rising edges, falling edges, HIGH levels, and LOW levels. Therefore, by using a toggle signal that alternates between a HIGH level and a LOW level as an interrupt signal, the microcomputer 20 can detect the interrupt signal regardless of the method used by the microcomputer 20 to detect the interrupt signal. Therefore, the microcomputer 20 can reliably grasp the error detection result.
  • the sensor device used in the above-described embodiment was an acceleration sensor device that senses acceleration, but the sensor device in which the memory device is mounted may be a sensor device other than an acceleration sensor device.
  • the memory device may be mounted in a device, system, equipment, etc. other than a sensor device.
  • the storage device (5) of the present disclosure has a configuration (first configuration) including a first storage unit (FF1) and a second storage unit (INV1, FF2) configured to store data with mutually opposite polarities, and an error detection unit (INV2, XOR1) configured to detect an error when the output of the first storage unit and the output of the second storage unit have the same polarity.
  • first configuration including a first storage unit (FF1) and a second storage unit (INV1, FF2) configured to store data with mutually opposite polarities, and an error detection unit (INV2, XOR1) configured to detect an error when the output of the first storage unit and the output of the second storage unit have the same polarity.
  • the error detection unit may be configured (second configuration) to include an inverter (INV2) configured to receive one of the output of the first storage unit and the output of the second storage unit, and an exclusive-OR gate (XOR1) configured to output the exclusive-OR of the other of the output of the first storage unit and the output of the second storage unit and the output of the inverter.
  • INV2 inverter
  • XOR1 exclusive-OR gate
  • the sensor device (10) disclosed herein has a configuration (third configuration) including a sensor element (1) and a memory device having either the first or second configuration described above.
  • the sensor device may be configured to perform an intermittent sensing operation in which a sensing period and a rest period are repeated, and the error detection unit may be configured to operate during the sensing period (fourth configuration).
  • the sensor system (SYS1) disclosed herein has a configuration (fifth configuration) including a sensor device of the third or fourth configuration described above and a signal processing device (20) configured to receive the sensing results and error detection results of the sensor device.
  • the signal processing device may be configured to reset the sensor device when it receives the error detection result (sixth configuration).
  • the sensor device may be configured to output a toggle signal that alternates between a high level and a low level to the signal processing device when the error detection unit detects an error (seventh configuration).

Landscapes

  • Lock And Its Accessories (AREA)

Abstract

記憶装置は、データを互いに逆極性で記憶するように構成された第1記憶部及び第2記憶部と、前記第1記憶部の出力と前記第2記憶部の出力とが同極性であるときにエラーを検出するように構成されたエラー検出部と、を備える。

Description

記憶装置、センサ装置、及びセンサシステム
 本明細書中に開示されている発明は、記憶装置、並びにこれを用いたセンサ装置及びセンサシステムに関する。
 加速度センサ装置(例えば特許文献1参照)は、例えば車両用電子キーに搭載される。車両用電子キーは、消費電力削減のため、普段は加速度センサ装置のみが動作する。車両用電子キーでは、加速度センサ装置が車両用電子キーを所持している人間の動きに伴う加速度を検出したら、ホスト装置であるマイクロコンピュータにインタラプト信号を出力し、ホスト装置であるマイクロコンピュータが動作する。そして、車両用電子キーに設けられるマイクロコンピュータが車両と無線通信を行うことで、車両の開錠が実行される。
 上記の車両用電子キーでは、加速度センサ装置が車両用電子キーを所持している人間の動きに伴う加速度を検出しなければ、ホスト装置であるマイクロコンピュータが動作しない。このため、上記の車両用電子キーは、リレーアタックによる車両の盗難を防止することができる。
特開2019―49434号公報
 加速度センサ装置のセンシングに関する設定は加速度センサ装置に設けられる記憶装置に記憶される。記憶装置に記憶されている加速度センサ装置のセンシングに関する設定が、ノイズ、サージ等の意図しない原因によって変化すると、ホスト装置であるマイクロコンピュータが期待している動作を加速度センサ装置が行わない状態に陥るおそれがある。この場合、ホスト装置であるマイクロコンピュータが加速度センサから出力されるインタラプト信号を延々と待ち続ける状態となり、車両用電子キーが開錠動作を行えない状態となる。
 車両用電子キーなどのアプリケーションでは、加速度センサ装置は通電されたまま常時動作するケースが多く、加速度センサ装置にリセットがかからない状態でアプリケーションが長時間連続使用されることが想定される。連続使用時間が長くなると、ノイズ、サージ等の意図しない原因によって記憶装置に記憶されている加速度センサ装置のセンシングに関する設定が変化する可能性が高くなり、且つ、リセットがかからないためアプリケーションが正常状態に自動復旧できない可能性も高くなる。
 本明細書中に開示されている記憶装置は、データを互いに逆極性で記憶するように構成された第1記憶部及び第2記憶部と、前記第1記憶部の出力と前記第2記憶部の出力とが同極性であるときにエラーを検出するように構成されたエラー検出部と、を備える。
 本明細書中に開示されているセンサ装置は、センサ素子と、上記構成の記憶装置と、を備える。
 本明細書中に開示されているセンサシステムは、上記構成のセンサ装置と、前記センサ装置のセンシング結果及びエラー検出結果を受け取るように構成された信号処理装置と、を備える。
 本明細書中に開示されている発明によれば、ノイズ、サージ等の意図しない原因によって記憶内容が変化したことを検出することができる。
図1は、実施形態に係る電子キーの構成を示す図である。 図2は、記憶装置の一部の構成を示す図である。 図3は、データの値とエラー検出部の状態との関係を示す図である。 図4は、実施形態に係る電子キーの動作を説明するためのタイミングチャートである。
 図1は、実施形態に係る電子キーSYS1の構成を示す図である。電子キーSYS1は、センサ装置及び信号処理装置を備えるセンサシステムの一例である。
 電子キーSYS1は、加速度センサ装置10と、マイクロコンピュータ20と、バッテリー30と、を備える。加速度センサ装置10及びマイクロコンピュータ20はそれぞれバッテリー30の出力電力によって駆動する。
 マイクロコンピュータ20は、通常スリープ状態であり、加速度センサ装置10から出力されるインタラプト信号を受け取ると、スリープ状態を解除し、車両との無線通信を行うことができる状態になる。
 加速度センサ装置10は、センサ素子1と、AFE2と、データ処理回路3と、インタラプト生成回路4と、記憶装置5と、制御回路6と、を備える。加速度センサ装置10は、互いに直交する3軸方向の加速度を同時に計測可能な静電容量型3軸加速度センサである。なお、加速度センサ装置10によって同時に計測可能な加速度は、互いに直交する3軸方向の加速度に限らず、互いに直交する2軸方向の加速度であってもよく、1軸方向の加速度であってもよい。
 センサ素子1は、MEMS(Micro Electro Mechanical System)技術を用いた静電容量型加速度センサ素子である。センサ素子1は、例えばシリコンで作られた固定電極、可動電極、及びスプリングを有する。センサ素子1に加速度が加わっていない状態では、固定電極と可動電極の間の距離は変化しない。一方、センサ素子1に加速度が加わると、固定電極に対して可動電極が変位し、固定電極と可動電極との間の静電容量が変化する。つまり、センサ素子1に加わる加速度に応じて、センサ素子1の静電容量が変化する。
 なお、センサ素子1は、静電容量型加速度センサ素子に限らず、例えば、ピエゾ抵抗型加速度センサ素子、熱検知型加速度センサ素子等であってもよい。つまり、センサ素子1は、センサ素子1に加わる加速度に応じて特性が変化するセンサ素子であればよい。
 AFE(Analog Front End)2は、センサ素子1に接続され、センサ素子1の静電容量の変化を示すアナログ信号を出力する。AFE21は、センサ素子1の静電容量の変化を示すアナログ信号をセンサ素子1から受け取りデータ処理回路3に出力する。
 データ処理回路3は、センサ素子1の静電容量の変化を示すアナログ信号をデジタル信号に変換し、そのデジタル信号に対して、ゲイン調整、オフセット調整等のデータ調整を行い、データ調整後のデジタル信号に基づき、電子キーSYS1を所持している人間の動きに伴う加速度を検知する。
 インタラプト生成回路4は、電子キーSYS1を所持している人間の動きに伴う加速度がデータ処理回路3によって検知されると、インタラプト信号をマイクロコンピュータ20に送信する。
 マイクロコンピュータ20は、加速度センサ装置10と周期的に通信を行わなくても、インタラプト信号を受信したときに加速度センサ装置10との通信を行えば、電子キーSYS1を所持している人間の動きに伴う加速度の検知を漏れなく捉えることができる。マイクロコンピュータ20と加速度センサ装置10とが周期的な通信を行わないことで、マイクロコンピュータ20及び加速度センサ101の双方で通信のために必要な電力を低減することができる。また、マイクロコンピュータ20は、インタラプト信号を受け取るまでスリープ状態になることができるため、マイクロコンピュータ20における消費電力を低減することができる。
 記憶装置5は、例えばシフトレジスタであり、加速度センサ装置10のセンシングに関する設定等を記憶する。加速度センサ装置10のセンシングに関する設定としては、例えばデータ処理回路3での調整内容、インタラプト信号の形式、センサ素子1及びAFE2に対する制御の内容等である。
 記憶装置5によって記憶されている加速度センサ装置10のセンシングに関する設定は、データ処理回路3、インタラプト生成回路4、及び制御回路6において利用される。
 制御回路6は、センサ素子1及びAFE2を制御する。
 図2は、記憶装置5の一部の構成を示す図である。記憶装置5によって記憶されるデータのうち重要なデータD0は、図2に示すように2ビット化して記憶される。データD0は、記憶装置5によって記憶されるデータの一部であっても全部であってもよい。記憶装置5は、図2に示す回路をデータD0の個数と同じ個数備える。
 図2に示す回路は、フリップフロップFF1及びFF2と、インバータINV1及びINV2と、排他的論理和ゲートXOR1と、を備える。
 フリップフロップFF1は、極性を変えずにデータD0を記憶する。インバータINV1及びフリップフロップFF2は、極性を反転させてデータD0を記憶する。したがって、フリップフロップFF1によって構成される第1記憶部と、インバータINV1及びフリップフロップFF2によって構成される第2記憶部とは、データD0を互いに逆極性で記憶する。なお、フリップフロップFF1及びFF2は、データ入力端子(D)に供給されるデータを、クロック入力端子に供給されるクロック信号CLKに同期して記憶する。
 フリップフロップFF1によって構成される第1記憶部と、インバータINV1及びフリップフロップFF2によって構成される第2記憶部とは、データD0を互いに逆極性で記憶するので、ノイズ、サージ等の意図しない原因によって記憶装置5の記憶内容が変化する場合でも同じ挙動になり難い。つまり、ノイズ、サージ等の意図しない原因によって記憶装置5の記憶内容が変化する場合、フリップフロップFF1によって構成される第1記憶部と、インバータINV1及びフリップフロップFF2によって構成される第2記憶部との一方は、記憶しているデータの極性が反転し、他方は、記憶しているデータの極性が反転しない可能性が高い。
 インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部は、上記の第1記憶部の出力と上記の前記第2記憶部の出力とが同極性であるときにエラーを検出する。本実施形態では、インバータINV2は、上記の第2記憶部の出力を受け取る。そして、排他的論理和ゲートXOR1は、上記の第1記憶部の出力と、インバータINV2の出力との排他的論理和を出力する。なお、本実施形態とは異なり、インバータINV2は、フリップフロップFF2と排他的論理和ゲートXOR1との間ではなく、フリップフロップFF1と排他的論理和ゲートXOR1との間に設けられてもよい。
 図3は、データの値とエラー検出部の状態との関係を示す図である。
 記憶装置5の記憶内容が変化していない場合、フリップフロップFF1の出力端子(Q)から出力されるデータD1と、フリップフロップFF2の出力端子(Q)から出力されるデータD2とは異なる値となる。この場合、排他的論理和ゲートXOR1の第1入力端子に供給されるデータD3と、排他的論理和ゲートXOR1の第2入力端子に供給されるデータD4とは同じ値となり、排他的論理和ゲートXOR1から出力されるデータD5の値は「0」になる。つまり、インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部は、エラーを検出しない場合には、値が「0」であるデータD5を出力する。
 ノイズ、サージ等の意図しない原因によってフリップフロップFF1及びFF2のいずれか一方のみの記憶内容が変化した場合、フリップフロップFF1の出力端子(Q)から出力されるデータD1と、フリップフロップFF2の出力端子(Q)から出力されるデータD2とは同じ値となる。この場合、排他的論理和ゲートXOR1の第1入力端子に供給されるデータD3と、排他的論理和ゲートXOR1の第2入力端子に供給されるデータD4とは異なる値となり、排他的論理和ゲートXOR1から出力されるデータD5の値は「2」になる。つまり、インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部は、エラーを検出した場合には、値が「1」であるデータD5を出力する。
 以上説明した通り、記憶装置5は、ノイズ、サージ等の意図しない原因によって記憶内容が変化したこと、すなわちエラーを検出することができる。
 図4は、電子キーSYS1の動作を説明するためのタイミングチャートである。
 加速度センサ装置10は、センシング期間と休止期間と繰り返す間欠センシング動作を行う。センシング期間において、加速度センサ装置10は、加速度センサ装置10に内蔵されている高精度クロック生成器(図1において不図示)が動作し、高精度クロック生成器から出力されるクロック信号に基づき動作する。休止期間において、加速度センサ装置10は、加速度センサ装置10に内蔵されている低高精度クロック生成器(図1において不図示)が動作し、低精度クロック生成器から出力されるクロック信号に基づき休止期間を計時する。
 インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部は、上記のセンシング期間中に動作する。これにより、高精度クロック生成器から出力されるクロック信号を、フリップフロップFF1及びFF2に供給するクロック信号CLKとして用いることができる。
 インタラプト生成回路4は、電子キーSYS1を所持している人間の動きに伴う加速度がデータ処理回路3によって検知されたときのみならず、インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部がエラーを検出したときも、インタラプト信号をマイクロコンピュータ20に出力する。つまり、マイクロコンピュータ20は、加速度センサ装置10のセンシング結果及びエラー検出結果を受け取る。
 マイクロコンピュータ20は、インタラプト信号を受け取ると、記憶装置5の記憶内容を確認し、加速度センサ装置10のセンシング結果に起因するインタラプト信号、加速度センサ装置10のエラー検出結果に起因するインタラプト信号のいずれを受け取ったのかを判定する。マイクロコンピュータ20は、加速度センサ装置10のエラー検出結果に起因するインタラプト信号のいずれを受け取ったと判定した場合、加速度センサ装置10にリセットをかける。つまり、マイクロコンピュータ20は、加速度センサ装置10のエラー検出結果を受け取ると、加速度センサ装置10にリセットをかける。これにより、加速度センサ装置10を正常な状態に戻すことができる。したがって、消費電力を増加させることなく、電子キーSYS1の信頼性を向上させることができる。
 マイクロコンピュータ20によるインタラプト信号の検知手法として、立ち上がりエッジ検知、立ち下がりエッジ検知、HIGHレベル検知、LOWレベル検知などの種々の設定がある。したがって、インタラプト生成回路4は、マイクロコンピュータ20によるインタラプト信号の検知手法に適合するインタラプト信号を生成する必要がある。しかしながら、インタラプト信号の生成に関する設定がノイズ、サージ等の意図しない原因によって変化している場合、マイクロコンピュータ20によるインタラプト信号の検知手法に適合するインタラプト信号が生成されない可能性がある。そのような不具合を回避するために、加速度センサ装置10は、インバータINV2及び排他的論理和ゲートXOR1によって構成されるエラー検出部がエラーを検出すると、HIGHレベルとLOWレベルとを交互に繰り返すトグル信号を前記信号処理装置に出力する。例えば、図4に示すようにタイミングTM1においてノイズ、サージ等の意図しない原因によってフリップフロップFF1の出力端子(Q)から出力されるデータD1が変化し場合、その後エラー検出動作が実行されると、インタラプト生成回路4から出力されるインタラプト信号は、HIGHレベルとLOWレベルとを交互に繰り返すトグル信号になる。
 HIGHレベルとLOWレベルとを交互に繰り返すトグル信号は、立ち上がりエッジ、立ち下がりエッジ、HIGHレベル、LOWレベルのいずれも含んでいる。このため、HIGHレベルとLOWレベルとを交互に繰り返すトグル信号をインタラプト信号として用いることで、マイクロコンピュータ20によるインタラプト信号の検知手法にかかわらず、マイクロコンピュータ20がインタラプト信号を検知することができる。したがって、マイクロコンピュータ20がエラー検出結果を確実に把握することができる。
<その他>
 発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 例えば上述した実施形態で用いられたセンサ装置は、加速度をセンシングする加速度センサ装置であったが、記憶装置が搭載されるセンサ装置は、加速度センサ装置以外のセンサ装置であってもよい。また、記憶装置は、センサ装置以外の装置、システム、機器等に搭載されてもよい。
<付記>
 上述の実施形態にて具体的構成例が示された本開示について付記を設ける。
 本開示の記憶装置(5)は、データを互いに逆極性で記憶するように構成された第1記憶部(FF1)及び第2記憶部(INV1、FF2)と、前記第1記憶部の出力と前記第2記憶部の出力とが同極性であるときにエラーを検出するように構成されたエラー検出部(INV2、XOR1)と、を備える構成(第1の構成)である。
 上記第1の構成の記憶装置において、前記エラー検出部は、前記第1記憶部の出力と前記第2記憶部の出力の一方を受け取るように構成されたインバータ(INV2)と、前記第1記憶部の出力と前記第2記憶部の出力の他方と、前記インバータの出力との排他的論理和を出力するように構成された排他的論理和ゲート(XOR1)と、を備える構成(第2の構成)であってもよい。
 本開示のセンサ装置(10)は、センサ素子(1)と、上記第1又は第2いずれかの構成の記憶装置と、を備える構成(第3の構成)である。
 上記第3の構成のセンサ装置において、前記センサ装置は、センシング期間と休止期間と繰り返す間欠センシング動作を行うように構成され、前記エラー検出部は、前記センシング期間中に動作する構成(第4の構成)であってもよい。
 本開示のセンサシステム(SYS1)は、上記第3又は第4の構成のセンサ装置と、前記センサ装置のセンシング結果及びエラー検出結果を受け取るように構成された信号処理装置(20)と、を備える構成(第5の構成)である。
 上記第5の構成のセンサシステムにおいて、前記信号処理装置は、前記エラー検出結果を受け取ると、前記センサ装置にリセットをかけるように構成されている構成(第6の構成)であってもよい。
 上記第5又は第6の構成のセンサシステムにおいて、前記センサ装置は、前記エラー検出部がエラーを検出すると、HIGHレベルとLOWレベルとを交互に繰り返すトグル信号を前記信号処理装置に出力するように構成されている構成(第7の構成)であってもよい。
   1 センサ素子
   2 AFE
   3 データ処理回路
   4 インタラプト生成回路
   5 記憶装置
   6 制御回路
   10 加速度センサ装置
   20 マイクロコンピュータ
   30 バッテリー
   FF1、FF2 フリップフロップ
   INV1、INV2 インバータ
   SYS1 モータシステム
   XOR1 排他的論理和ゲート

Claims (7)

  1.  データを互いに逆極性で記憶するように構成された第1記憶部及び第2記憶部と、
     前記第1記憶部の出力と前記第2記憶部の出力とが同極性であるときにエラーを検出するように構成されたエラー検出部と、
     を備える、記憶装置。
  2.  前記エラー検出部は、
      前記第1記憶部の出力と前記第2記憶部の出力の一方を受け取るように構成されたインバータと、
      前記第1記憶部の出力と前記第2記憶部の出力の他方と、前記インバータの出力との排他的論理和を出力するように構成された排他的論理和ゲートと、
      を備える、請求項1に記載の記憶装置。
  3.  センサ素子と、
     請求項1又は請求項2に記載の記憶装置と、
     を備える、センサ装置。
  4.  前記センサ装置は、センシング期間と休止期間と繰り返す間欠センシング動作を行うように構成され、
     前記エラー検出部は、前記センシング期間中に動作する、請求項3に記載のセンサ装置。
  5.  請求項3又は請求項4に記載のセンサ装置と、
     前記センサ装置のセンシング結果及びエラー検出結果を受け取るように構成された信号処理装置と、を備えるセンサシステム。
  6.  前記信号処理装置は、前記エラー検出結果を受け取ると、前記センサ装置にリセットをかけるように構成されている、請求項5に記載のセンサシステム。
  7.  前記センサ装置は、前記エラー検出部がエラーを検出すると、HIGHレベルとLOWレベルとを交互に繰り返すトグル信号を前記信号処理装置に出力するように構成されている、請求項5又は請求項6に記載のセンサシステム。
PCT/JP2023/043812 2022-12-16 2023-12-07 記憶装置、センサ装置、及びセンサシステム WO2024128120A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022201027 2022-12-16
JP2022-201027 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024128120A1 true WO2024128120A1 (ja) 2024-06-20

Family

ID=91484967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043812 WO2024128120A1 (ja) 2022-12-16 2023-12-07 記憶装置、センサ装置、及びセンサシステム

Country Status (1)

Country Link
WO (1) WO2024128120A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315253A (en) * 1979-02-07 1982-02-09 Tytus Hulbert T Error correction in recirculating remainder analog-to-digital converters
US5608328A (en) * 1994-11-18 1997-03-04 Radar Engineers Method and apparatus for pin-pointing faults in electric power lines
JP2020159993A (ja) * 2019-03-28 2020-10-01 株式会社デンソー 検出ユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315253A (en) * 1979-02-07 1982-02-09 Tytus Hulbert T Error correction in recirculating remainder analog-to-digital converters
US5608328A (en) * 1994-11-18 1997-03-04 Radar Engineers Method and apparatus for pin-pointing faults in electric power lines
JP2020159993A (ja) * 2019-03-28 2020-10-01 株式会社デンソー 検出ユニット

Similar Documents

Publication Publication Date Title
US8347715B2 (en) Variable capacitance electronic device and microelectromechanical device incorporating such electronic device
CN104636101B (zh) 定时控制器、包括该定时控制器的显示系统及其使用方法
JP4404125B2 (ja) 電子制御装置及び信号監視回路
US20060080495A1 (en) Method and device for transmitting data on a data line between a central control unit and at least one data processing unit interface of at least one decentralized data processing unit
US8866474B2 (en) Magnetic sensor device
JP2012026824A (ja) センシング装置、電子機器
EP2871854B1 (en) Multi-function pins for a programmable acoustic sensor
JP6091833B2 (ja) 信号処理回路、信号処理方法、位置検出装置、及び電子機器
US8212555B2 (en) Magnetic sensor circuit
US8903678B2 (en) Sensing device and electronic apparatus
WO2024128120A1 (ja) 記憶装置、センサ装置、及びセンサシステム
JP2008131670A (ja) 電池電圧監視装置
CN107659313B (zh) 电路装置、电子设备、物理量传感器和移动体
JP5251667B2 (ja) 電子部品
TWI573022B (zh) 傳輸器電路、接收器電路及傳輸/接收系統
CN213398730U (zh) 电容检测电路、电容检测系统和电子设备
US11816290B2 (en) System for detecting a touch gesture of a user, device comprising the system, and method
WO2013111454A1 (ja) 物理量検出装置
JP2002188921A (ja) 角速度センサの故障診断装置および故障診断方法
WO2017141759A1 (ja) 端末機および端末機の制御方法、並びにこの端末機を用いた無線通信システム
JP5669419B2 (ja) 画像形成装置
CN107658292B (zh) 比较器、电路装置、物理量传感器、电子设备以及移动体
JP2011014963A (ja) 半導体装置、半導体装置のノイズ除去方法
JP5082697B2 (ja) シリアルインターフェース回路及び電子機器
JP2005030989A (ja) ロータリーエンコーダの回転検出装置および電子機器