WO2024125674A2 - 一种回填搅拌摩擦点焊设备 - Google Patents

一种回填搅拌摩擦点焊设备 Download PDF

Info

Publication number
WO2024125674A2
WO2024125674A2 PCT/CN2024/076247 CN2024076247W WO2024125674A2 WO 2024125674 A2 WO2024125674 A2 WO 2024125674A2 CN 2024076247 W CN2024076247 W CN 2024076247W WO 2024125674 A2 WO2024125674 A2 WO 2024125674A2
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
shaft
axis
stirring needle
sleeve
Prior art date
Application number
PCT/CN2024/076247
Other languages
English (en)
French (fr)
Other versions
WO2024125674A3 (zh
Inventor
树西
万龙
朱哲凯
Original Assignee
安徽万宇机械设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211604687.0A external-priority patent/CN115958282A/zh
Priority claimed from CN202211601088.3A external-priority patent/CN116197517A/zh
Application filed by 安徽万宇机械设备科技有限公司 filed Critical 安徽万宇机械设备科技有限公司
Publication of WO2024125674A2 publication Critical patent/WO2024125674A2/zh
Publication of WO2024125674A3 publication Critical patent/WO2024125674A3/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to the technical field of friction stir spot welding, and in particular to a backfill friction stir spot welding device.
  • Friction stir spot welding is a new type of solid phase welding technology developed on the basis of friction stir welding technology. Friction stir spot welding technology can form lap joints similar to resistance spot welding and riveting, and has the advantages of high joint quality, stable welding quality, small deformation and high efficiency and energy saving, which effectively makes up for the defects of resistance spot welding and riveting.
  • the emergence of backfill friction stir spot welding has successfully solved the problem of a keyhole left in the center of the weld after the traditional friction stir spot welding is completed.
  • the passive displacement adjustment method requires the use of a pressure sensor for feedback adjustment, which will lead to hysteresis problems.
  • a backfill friction stir spot welding device comprising: a stirring needle assembly, the stirring needle assembly comprising a stirring needle; a stirring sleeve assembly, the stirring sleeve assembly comprising a stirring sleeve, the stirring sleeve being arranged outside the stirring needle, the stirring sleeve and the stirring needle having the same axis; and an axial drive assembly and a rotary drive assembly; the axial drive assembly drives the stirring needle and the stirring sleeve to move respectively along the axis, and the rotary drive assembly drives the stirring needle and the stirring sleeve to rotate around the axis, and the central axis of the axial drive assembly and the rotary axis of the rotary drive assembly are both located on the axis.
  • the stirring needle assembly includes a stirring needle shaft, the stirring needle shaft is fixedly connected to the stirring needle, and the stirring needle shaft and the rotation axis of the stirring needle are located on the axis.
  • the stirring needle shaft is provided with a first mating structure
  • the stirring needle is provided with a second mating structure
  • the first mating structure cooperates with the second mating structure to limit the relative movement between the stirring needle shaft and the stirring needle.
  • the stirring sleeve assembly includes a stirring sleeve shaft, the stirring sleeve shaft is disposed outside the stirring needle shaft, the rotating axes of the stirring sleeve shaft and the stirring needle shaft are located on the axis, the stirring sleeve shaft and the stirring needle shaft can move relative to each other along the axis, the stirring sleeve shaft and the stirring needle shaft are anti-rotationally engaged, and the stirring sleeve shaft is fixedly connected to the stirring sleeve.
  • the axial drive assembly includes at least one hollow motor, the central axis of the hollow motor is located on the axis, and the hollow motor drives the stirring needle shaft and/or the stirring sleeve shaft to move along the axis through a screw transmission assembly.
  • the hollow motor includes a first hollow motor and a second hollow motor, the first hollow motor drives the stirring needle shaft to move along the axis through the first group of the screw transmission components, and the second hollow motor drives the stirring sleeve shaft to move along the axis through the second group of the screw transmission components.
  • the screw drive assembly includes a screw and a screw nut, the screw is drivingly connected to the screw nut, the screw nut is connected to the rotor of at least one of the hollow motors, the stirring needle shaft and/or the stirring sleeve shaft is rotatably connected to the screw, and the relative movement between the stirring needle shaft and/or the stirring sleeve shaft and the screw along the axis is locked.
  • the axial drive assembly includes only one of the hollow motors, the lead screw includes a first lead screw and a second lead screw, the lead screw nut is connected to the rotor of the hollow motor, the lead screw nut is provided with a first internal thread and a second internal thread, the first internal thread and the second internal thread have opposite thread rotation directions, the first internal thread is transmission-connected to the first lead screw, and the second internal thread is transmission-connected to the second lead screw;
  • the stirring needle shaft is rotatably connected to the first lead screw, and the relative movement between the stirring needle shaft and the first lead screw along the axis is locked;
  • the stirring sleeve shaft is rotatably connected to the second lead screw, and the relative movement between the stirring sleeve shaft and the second lead screw along the axis is locked.
  • the axial drive assembly includes a first hollow power cylinder and a second hollow power cylinder, the central axes of the first hollow power cylinder and the second hollow power cylinder are both located on the axis, the piston rod of the first hollow power cylinder is connected to the stirring needle shaft, and the piston rod of the second hollow power cylinder is connected to the stirring sleeve shaft.
  • the stirring needle shaft includes a first stirring needle shaft and a second stirring needle shaft, the rotation axes of the first stirring needle shaft and the second stirring needle shaft are located on the axis, the first stirring needle shaft and the second stirring needle shaft are fixedly connected by a connecting rod, and the stirring needle is connected to the second stirring needle shaft.
  • the connecting rod is provided with a through groove along the axial direction, and the first stirring needle shaft and the second stirring needle shaft are both provided with a pin head matching the through groove.
  • the second stirring needle shaft is provided with a third mating structure
  • the stirring needle is provided with a fourth mating structure
  • the third mating structure cooperates with the fourth mating structure to limit the relative movement between the second stirring needle shaft and the stirring needle.
  • the stirring sleeve shaft is arranged outside the second stirring needle shaft, the rotation axes of the stirring sleeve shaft and the second stirring needle shaft are located on the axis, the stirring sleeve shaft and the second stirring needle shaft can move relative to each other along the axis, and the stirring sleeve shaft and the second stirring needle shaft are in anti-rotation cooperation.
  • both ends of the piston rod of the first hollow power cylinder are respectively connected to the first stirring needle shaft and the second stirring needle shaft.
  • the stirring sleeve shaft is fixedly disposed inside the piston rod of the second hollow power cylinder.
  • the axial drive assembly includes an inner power cylinder and an outer power cylinder; the piston rod of the inner power cylinder is connected to a first hollow slider, which is sleeved outside the stirring needle shaft, and the center axis of the first hollow slider is located on the axis.
  • the stirring needle shaft and the first hollow slider can perform relative rotational motion, and the relative motion between the stirring needle shaft and the first hollow slider along the axis is locked;
  • the piston rod of the outer power cylinder is connected to a second hollow slider, which is sleeved outside the stirring sleeve shaft, and the center axis of the second hollow slider is located on the axis.
  • the stirring sleeve shaft and the second hollow slider can perform relative rotational motion, and the relative motion between the stirring sleeve shaft and the second hollow slider along the axis is locked.
  • the number of the internal power cylinders is at least 2, and at least 2 of the internal power cylinders are distributed with the axis as the center; the number of the external power cylinders is at least 2, and at least 2 of the external power cylinders are distributed with the axis as the center.
  • the rotary drive assembly includes an electric spindle, in which a core shaft is provided.
  • the core shaft is sleeved outside the stirring needle shaft, and the rotating axis of the core shaft and the stirring needle shaft are located on the axis.
  • the core shaft and the stirring needle shaft can move relative to each other along the axis, and the core shaft and the stirring needle shaft are in anti-rotation cooperation.
  • a compression sleeve is further included, wherein an opening is provided at the lower portion of the compression sleeve, and at least a portion of the stirring sleeve can be movably disposed in the opening along the axis; the surface roughness of the contact surface between the stirring sleeve and the compression sleeve is less than 0.08 ⁇ m.
  • the surface roughness of the contact surface between the stirring sleeve and the stirring needle is less than 0.08 ⁇ m.
  • FIG1 is a schematic diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG. 2 is an exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification
  • FIG3 is an enlarged schematic diagram of point A according to some embodiments of the present specification.
  • FIG4 is a partial exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG5 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG6 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG7 is an enlarged schematic diagram of a point B according to some embodiments of the present specification.
  • FIG8 is another exemplary structural diagram of a portion of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG9 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG. 10 is another exemplary cross-sectional view of a backfill friction stir spot welding apparatus according to some embodiments of the present specification.
  • some embodiments of the present specification provide a backfill stir friction spot welding device, which drives the movement of the stirring sleeve of the stirring needle through coaxial control, has a compact structure, solves the problem of bending moment generated by side-axis drive, and has high welding accuracy.
  • FIG. 1 is a schematic diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • the backfill friction stir spot welding device includes a stirring needle assembly, a stirring sleeve assembly, an axial drive assembly, and a rotary drive assembly.
  • the stirring needle assembly includes a stirring needle 11
  • the stirring sleeve assembly includes a stirring sleeve 21, and the stirring sleeve 21 is sleeved outside the stirring needle 11, and the stirring sleeve 21 and the stirring needle 11 have the same axis h.
  • the axial drive assembly can drive the stirring needle 11 and the stirring sleeve 21 to move along the axis h respectively, and the rotary drive assembly drives the stirring needle 11 and the stirring sleeve 21 to rotate around the axis h, and the central axis of the axial drive assembly and the rotary axis of the rotary drive assembly are both located on the axis h.
  • the stirring pin assembly is an assembly of parts used to achieve spot welding.
  • the stirring pin assembly may include a stirring pin 11 .
  • the stirring needle 11 is a component used to stir the surface of the workpiece, generate heat through friction, and achieve spot welding.
  • the stirring needle 11 can rotate around the axis h, that is, the axis h is the rotation axis of the stirring needle 11, so that the stirring needle 11 can stir the workpiece.
  • the stirring needle 11 can be a columnar structure, and the axis h can be the central axis of the columnar stirring needle 11.
  • the stirring needle 11 can be a high-temperature wear-resistant material, such as alloy steel.
  • the stirring pin assembly may include a stirring pin shaft 12.
  • the stirring needle shaft 12 is used to transmit power to the stirring needle 11.
  • the stirring needle shaft 12 can rotate around the axis h, that is, the axis h is the rotation axis of the stirring needle shaft 12.
  • the stirring needle shaft 12 can be a rod-shaped structure, and the axis h can be the central axis of the stirring needle shaft 12.
  • the material of the stirring needle shaft 12 can be a high-strength rigid material, such as steel.
  • the stirring needle shaft 12 can be fixedly connected to the stirring needle 11, and the rotation axes of the stirring needle shaft 12 and the stirring needle 11 are located on the axis h. In some embodiments, when the stirring needle shaft 12 rotates, the stirring needle 11 can rotate synchronously and coaxially.
  • the stirring needle shaft 12 can be fixedly connected to the stirring needle 11 .
  • the stirring needle shaft 12 and the stirring needle 11 can be fixedly connected by a first matching structure and a second matching structure.
  • the stirring needle shaft 12 can be provided with a first matching structure
  • the stirring needle 11 can be provided with a second matching structure.
  • the first matching structure is a limiting structure arranged on the stirring needle shaft 12.
  • the second matching structure is a limiting structure arranged on the stirring needle 11 and matches the first matching structure.
  • the first matching structure cooperates with the second matching structure to limit the relative movement of the stirring needle shaft 12 and the stirring needle 11. Relative movement includes rotational relative movement and relative movement along the axis h.
  • the relative movement of the stirring needle shaft 12 and the stirring needle 11 can be limited, but the synchronous movement of the stirring needle shaft 12 and the stirring needle 11 cannot be limited. That is, the stirring needle shaft 12 and the stirring needle 11 cannot rotate relative to each other, and can only rotate together with the axis h as the center. At the same time, the stirring needle shaft 12 and the stirring needle 11 cannot move relative to each other along the axis h, and can only move synchronously along the axis h.
  • the first mating structure may include a cylindrical groove opened at the bottom of the stirring needle shaft 12, and the second mating structure may include a rectangular structure arranged at the top of the stirring needle 11, and the rectangular structure can be embedded in the cylindrical groove to limit the relative movement of rotation between the stirring needle 11 and the stirring needle shaft 12; the first mating structure or the second mating structure also includes a locking nut, and the stirring needle 11 and the stirring needle shaft 12 can be locked and fixed by the locking nut to limit the relative movement of the stirring needle 11 and the stirring needle shaft 12 along the axis h.
  • the first matching structure may include a cross hole opened at the bottom of the stirring needle shaft 12, and the second matching structure may include a cross-shaped structure arranged at the top of the stirring needle 11, and the cross-shaped structure can be embedded in the cross hole to limit the relative movement of the stirring needle 11 and the stirring needle shaft 12 in rotation; the first matching structure or the second matching structure also includes a locking nut, and the stirring needle 11 and the stirring needle shaft 12 can be locked and fixed by the locking nut to limit the relative movement of the stirring needle 11 and the stirring needle shaft 12 along the axis h.
  • the cross-shaped structure is connected, and the torsional rigidity is high and it is not easy to be eccentric.
  • the first matching structure includes a tapered hole disposed at the bottom of the stirring needle shaft 12, and the second matching structure includes a tapered structure disposed at the upper end of the stirring needle 11.
  • the stirring needle shaft 12 and the stirring needle 11 can be fixed by interference fitting of the tapered hole and the tapered structure to limit the relative movement of the stirring needle shaft 12 and the stirring needle 11.
  • the fixing by interference fitting does not require an additional locking nut, and the tapered connection is not easy to be eccentric.
  • the first matching structure and the second matching structure can also be set to other feasible structures to achieve a fixed connection between the stirring needle shaft 12 and the stirring needle 11 and limit the relative movement between the stirring needle shaft 12 and the stirring needle 11.
  • the stirring sleeve assembly is a combined component for protecting the stirring pin assembly.
  • the keyhole formed during the welding process can be backfilled by the cooperation of the stirring sleeve assembly and the stirring pin assembly.
  • the stirring needle and stirring sleeve can be used for welding and backfilling. They have both functions, but one of the stirring needle and stirring sleeve is used for piercing and the other is used for backfilling. In the same scenario, their functions are opposite.
  • the stirring needle can be inserted into the welding, and the stirring sleeve can be backfilled.
  • the stirring sleeve can be inserted into the welding, and the stirring needle can be backfilled.
  • the stirring sleeve assembly may include a stirring sleeve 21 .
  • the stirring sleeve 21 is a component for protecting the stirring needle 11.
  • the stirring sleeve 21 can be sleeved outside the stirring needle 11 to wrap the lower end of the stirring needle 11 to ensure that the stirring needle 11 will not bend under stress.
  • the stirring sleeve 21 can adopt a hollow cylindrical structure, and the axis h can be the central axis of the stirring sleeve 21.
  • the stirring sleeve 21 can be made of high-temperature wear-resistant material, such as alloy steel.
  • the stirring sleeve assembly may include a stirring sleeve shaft 22 .
  • the stirring sleeve shaft 22 is used to transmit power to the stirring sleeve 21.
  • the stirring sleeve shaft 22 may be a hollow rod-shaped structure, and the axis h may be the central axis of the stirring sleeve shaft 22.
  • the stirring sleeve shaft 22 may be made of a high-strength rigid material, such as steel.
  • the stirring sleeve shaft 22 can rotate around the axis h, that is, the axis h is the rotation axis of the stirring sleeve shaft 22.
  • the rotation axes of the stirring sleeve shaft 22 and the stirring needle shaft 12 can be located on the axis h, and the stirring sleeve shaft 22 and the stirring needle shaft 12 can move relative to each other along the axis h.
  • the stirring sleeve shaft 22 and the stirring needle shaft 12 are in a stop-rotation fit, that is, the stirring sleeve shaft 22 and the stirring needle shaft 12 cannot rotate relative to each other, and can only rotate synchronously.
  • the stirring sleeve shaft 22 and the stirring needle shaft 12 can be connected in any feasible manner.
  • the stirring sleeve shaft 22 can be connected to the outside of the stirring needle shaft 12 by a spline sleeve.
  • the spline can be a rectangular spline, an involute spline, or a rolling spline.
  • the stirring sleeve shaft 22 and the stirring needle shaft 12 are connected by a spline to further improve the accuracy of the connection structure and reduce noise.
  • the stirring sleeve shaft 22 can be fixedly connected to the stirring sleeve 21.
  • the stirring sleeve shaft 22 and the stirring sleeve 21 can be fixedly connected in any feasible manner.
  • the stirring sleeve shaft 22 and the stirring sleeve 21 can be fixedly connected by a spline nut 23.
  • the stirring sleeve shaft 22 and the stirring sleeve 21 can rotate synchronously and move synchronously along the axis h.
  • the rotary drive assembly is used to drive the stirring needle 11 and the stirring sleeve 21 to rotate around the axis h.
  • the rotary drive assembly has a rotary shaft (or rotation axis), and the rotary shaft of the rotary drive assembly can be considered as the rotation center of the rotary drive assembly, and the rotary drive assembly can rotate around the rotary shaft.
  • the rotary shaft of the rotary drive assembly is located on the axis h.
  • the rotation drive assembly may include an electric spindle.
  • the electric spindle is a component that provides rotation torque through an electric power source.
  • the electric spindle may be disposed on the upper portion of the outer shell 60 and fixedly connected to the outer shell 60, for example, the electric spindle and the outer shell 60 may be fixedly connected by bolts.
  • the electric spindle is provided with a core shaft 41.
  • the core shaft 41 is a component for transmitting rotational torque.
  • the core shaft 41 can be fixedly arranged in the middle of the electric spindle.
  • the mandrel 41 may be a hollow column, the axis h may be the rotation axis of the mandrel 41, and the mandrel 41 may rotate around the axis h.
  • the mandrel 41 may be sleeved outside the stirring needle shaft 12, the rotation axes of the mandrel 41 and the stirring needle shaft 12 are located on the axis h, the mandrel 41 and the stirring needle shaft 12 can move relative to each other along the axis h, and the mandrel 41 and the stirring needle shaft 12 are in anti-rotation cooperation.
  • a spline may be provided on the top of the stirring needle shaft 12
  • a spline groove may be provided on the inner wall of the core shaft 41
  • the core shaft 41 may be connected to the stirring needle shaft 12 via the spline, so that the core shaft 41 and the stirring needle shaft 12 can move relative to each other along the axis h direction, but cannot rotate relative to each other.
  • the core shaft 41 when the core shaft 41 rotates, it can drive the stirring needle shaft 12 to rotate synchronously, and the stirring needle shaft 12 can drive the stirring needle 11 to rotate synchronously, thereby realizing the transmission of torque.
  • the axial drive assembly is used to drive the stirring needle 11 and the stirring sleeve 21 to move along the axis h.
  • the axial drive assembly has a central axis.
  • the central axis of the axial drive assembly can be considered as the central axis of the axial drive assembly along its extension direction, and the central axis is located at the center of the physical structure of the axial drive assembly.
  • the central axis of the axial drive assembly can be considered as the power output shaft of the axial drive assembly, and the power output shaft may not have an actual physical structure.
  • the axial drive assembly outputs power through the hollow column along the extension direction of the hollow column.
  • the power output shaft can be considered as the central axis of the hollow shaft.
  • the central axis of the axial drive assembly is located on the axis h.
  • the axial motion assembly can drive the stirring needle 11 and the stirring sleeve 21 to move along the axis h by various driving modes.
  • the driving mode may include at least one of electric drive or hydraulic drive, etc.
  • the rotary drive assembly and the axial drive assembly are powered, the rotary drive assembly drives the stirring needle 11 and the stirring sleeve 21 to rotate, and the axial drive assembly drives the stirring needle 11 and the stirring sleeve 21 to move up and down along the axis h, respectively, to achieve backfilling friction stir spot welding.
  • the preset pressure and displacement relationship can be used to coordinate and control the stirring needle 11 and the stirring sleeve 21, so as to accurately perform welding.
  • the stirring needle 11 and the stirring sleeve 21 can rotate around the axis h and move along the axis, and the driving source is coaxial with the stirring needle 11 and the stirring sleeve 21, which solves the problem of bending moment generated by the side-axis drive, ensures the rigidity of the system during the welding process, avoids the hysteresis problem, and improves the welding accuracy.
  • Fig. 2 is an exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • Fig. 3 is an enlarged schematic diagram of A shown in some embodiments of the present specification.
  • Fig. 4 is a partial exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • the axial drive assembly includes at least one hollow motor.
  • the hollow motor is a motor used to provide a power source for movement along the axis h.
  • the hollow motor is a hollow structure and can be sleeved on the outside of at least one of the stirring sleeve assembly and the stirring needle assembly.
  • the central axis of the hollow motor may be located on the axis h.
  • the central axis of the hollow motor may be located in a cavity inside the motor.
  • the hollow motor can drive at least one of the stirring needle shaft 12 and the stirring sleeve shaft 22 to move along the axis h through the screw transmission assembly.
  • the rotor of the hollow motor can rotate, and the screw transmission assembly can convert the rotational motion into motion along the axis h, thereby driving at least one of the stirring needle shaft 12 and the stirring sleeve shaft 22 to move along the axis h.
  • the hollow motor can be alternatively set to an ordinary motor (such as a servo motor), which can be connected to a driving wheel, and the driving wheel can drive the driven wheel to rotate through a transmission belt; the driven wheel can drive a screw transmission assembly, and the screw transmission assembly can convert the rotational motion into motion along the axis h, thereby driving at least one of the stirring needle shaft 12 and the stirring sleeve shaft 22 to move along the axis h.
  • an ordinary motor such as a servo motor
  • the hollow motor may include a first hollow motor 31 and a second hollow motor 32.
  • the first hollow motor 31 and the second hollow motor 32 may be coaxially disposed along the axis h direction.
  • the first hollow motor 31 drives the stirring needle shaft 12 to move along the axis h through a first set of screw transmission components
  • the second hollow motor 32 drives the stirring sleeve shaft 22 to move along the axis through a second set of screw transmission components.
  • a screw drive assembly refers to an assembly that converts rotational motion into linear motion.
  • the screw drive assembly includes a screw and a screw nut.
  • the screw and the screw nut are connected in a transmission manner, such as by threaded engagement.
  • the screw drive assembly can utilize the threaded engagement between the screw and the screw nut to achieve linear motion by rotating the screw.
  • the screw nut is connected to the rotor of at least one hollow motor, at least one of the stirring needle shaft 12 and the stirring sleeve shaft 22 is rotatably connected to the screw, and the relative movement between at least one of the stirring needle shaft 12 and the stirring sleeve shaft 22 and the screw along the axis h is locked.
  • At least one of the stirring pin shaft 12 and the stirring sleeve shaft 22 can be connected to the lead screw in various ways, such as by fixing with a locking nut.
  • the lead screw can be sleeved and installed on the outside of at least one of the stirring pin shaft 12 and the stirring sleeve shaft 22.
  • first hollow motor 31 and the second hollow motor 32 are further explained by taking the first hollow motor 31 and the second hollow motor 32 as an example. It should be noted that the following is only a feasible implementation method and not a limitation. It can be understood that the installation position and connection method of the hollow motor can be set as needed. For example, the setting positions of the first hollow motor 31 and the second hollow motor 32 can be exchanged. For another example, the first hollow motor 31 and the second hollow motor 32 can be respectively connected to the stirring needle shaft 12 and the stirring sleeve shaft 22 through a variety of feasible connection structures to achieve a driving effect.
  • the first hollow motor 31 is connected to the first group of screw transmission assemblies
  • the second hollow motor 32 is connected to the second group of screw transmission assemblies.
  • the first group of screw transmission assemblies includes a screw 331 and a screw nut 332
  • the second group of transmission assemblies includes a screw 341 and a screw nut 342.
  • the first hollow motor 31 is installed in the outer shell 60 near the upper position, and first rolling bearings 333 (such as angular contact bearings, self-aligning ball bearings, tapered roller bearings or self-aligning roller bearings, etc.) are arranged on the upper and lower sides.
  • the two sides of the first rolling bearing 333 can be fixedly abutted against the first spacer sleeve 313.
  • the outer ring of the first rolling bearing 333 limits the stator of the first hollow motor 31 along the axis h direction.
  • the rotor of the first hollow motor 31 is fixedly connected to the screw nut 332, and the inner ring of the first rolling bearing 333 limits the screw nut 332 along the axis h direction.
  • the lead screw 331 is sleeved and installed on the outside of the stirring needle shaft 12, and the two are connected by a second rolling bearing 334.
  • the second rolling bearing 334 can be a thrust bearing, and the second rolling bearing 334 is respectively provided with a first bearing cover and a first bearing locking nut on the upper and lower parts to limit the movement of the lead screw 331 and the stirring needle shaft 12 along the axis h, but does not affect the relative rotation between the stirring needle shaft 12 and the lead screw 331.
  • the first hollow motor 31 When the first hollow motor 31 is started, its rotor rotates, thereby driving the lead screw nut 332 fixedly connected to it to rotate.
  • the lead screw nut 332 can only rotate but cannot move along the axis h, and the lead screw 331 cannot rotate. Therefore, the lead screw 331 can only move along the axis h under the rotation of the lead screw nut 332, thereby driving the stirring needle shaft 12 to move along the axis h, and the stirring needle 11 fixedly connected to the lower part of the stirring needle shaft 12 moves along the axis h accordingly.
  • the second hollow motor 32 is installed in the outer shell 60 near the lower position, and the rotor part of the second hollow motor 32 is fixedly connected to the screw nut 342, and the inner side of the screw nut 342 is threadedly connected with the screw 341, so that the rotor of the second hollow motor 32 is connected to the screw 341 through the screw nut 342, and the upper and lower sides of the second hollow motor 32 are provided with third rolling bearings 343 (such as angular contact bearings, self-aligning ball bearings, tapered roller bearings or self-aligning roller bearings, etc.), and the outer ring of the third rolling bearing 343 limits the stator of the second hollow motor 32 along the axis h direction, and the inner ring of the third rolling bearing 343 limits the screw nut 342 along the axis h direction.
  • third rolling bearings 343 such as angular contact bearings, self-aligning ball bearings, tapered roller bearings or self-aligning roller bearings, etc.
  • the lead screw 341 is sleeved and installed on the outside of the stirring sleeve shaft 22, and the two are connected by a fourth rolling bearing 344.
  • the fourth rolling bearing 344 can be a thrust bearing, and the fourth rolling bearing 344 is respectively provided with a second bearing cover and a second bearing locking nut on the upper and lower parts to limit the movement between the lead screw 341 and the stirring sleeve shaft 22 along the axis h, but does not affect the relative rotation between the stirring sleeve shaft 22 and the lead screw 341.
  • the second hollow motor 32 When the second hollow motor 32 is started, its rotor rotates, thereby driving the screw nut 342 fixedly connected to it to rotate.
  • the screw nut 342 can only rotate but cannot move along the axis h.
  • the screw nut 342 and the screw 341 are threadedly engaged with each other, and the screw 341 cannot rotate, so it can only move along the axis h, and further drive the stirring sleeve shaft 22 to move along the axis h.
  • the backfill stir friction spot welding device may include a control system, in which a control program for the relationship between pressure and displacement may be embedded to control the two hollow motors, thereby enabling precise control of the welding process.
  • the structure is compact and ingenious, the system has high stability, the welding accuracy can be guaranteed, the welding quality is good, and the service life of the entire welding device can be improved.
  • the application range is wide, and it can be applied to any friction stir welding equipment such as dynamic shoulder and static shoulder friction stir welding, gantry form and robotic arm form.
  • FIG. 5 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • the axial drive assembly may include only one hollow motor 351 , and the lead screw may include a first lead screw 354 and a second lead screw 355 .
  • the lead screw nut 35 may be connected to the rotor 356 of the hollow motor 351, and the lead screw nut 35 may be provided with a first internal thread 352 and a second internal thread 353, the first internal thread 352 and the second internal thread 353 have opposite thread rotation directions (for example, the first internal thread 352 is a right-handed thread, and the second internal thread 353 is a left-handed thread), the first internal thread 352 is transmission-connected to the first lead screw 354, and the second internal thread 353 is transmission-connected to the second lead screw 355.
  • the transmission connection mode is a threaded meshing transmission connection, and the transmission action mode can refer to the above description.
  • the stirring needle shaft 12 is rotatably connected to the first lead screw 354, and the relative movement between the stirring needle shaft 12 and the first lead screw 354 along the axis h is locked; the stirring sleeve shaft 22 is rotatably connected to the second lead screw 355, and the relative movement between the stirring sleeve shaft 22 and the second lead screw 355 along the axis h is locked.
  • the connection mode and mode of action of the stirring needle shaft 12 and the stirring sleeve shaft 22 and the lead screw are similar to those described above and will not be repeated.
  • the rotation of the lead screw nut 35 can drive the stirring needle 11 and the stirring sleeve 21 to move in opposite directions at the same speed along the axis h.
  • the stirring sleeve 21 moves down along the axis h; or if the stirring needle 11 moves down along the axis h, the stirring sleeve 21 moves up along the axis h.
  • the pitch of the first internal thread 352 and the pitch of the second internal thread 353 can be set to be different, and different pitches can correspond to different movement speeds of the stirring needle 11 and the stirring sleeve 21.
  • the pitch is positively correlated with the movement speed, that is, the ratio of the pitch of the first internal thread 352 to the pitch of the second internal thread 353 can be equal to the ratio of the movement speed of the stirring needle 11 to the movement speed of the stirring sleeve 21.
  • the lead screw nut 35, the first lead screw 354 and the second lead screw 355 can be replaced according to welding requirements to achieve control of the movement speed of the stirring needle 11 and the stirring sleeve 21.
  • the movement speed of the stirring needle 11 moving up and down along the axis h can be set to be faster than that of the stirring sleeve 21.
  • only one hollow motor is used as the axial driving power source, which can simplify the overall structure and reduce the overall structural size of the backfilling friction stir spot welding device.
  • the movement speed of the stirring needle and the stirring sleeve can be controlled, thereby improving the applicability of the backfilling friction stir spot welding device.
  • FIG. 6 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • FIG. 7 is an enlarged schematic diagram of a B portion according to some embodiments of the present specification.
  • FIG. 8 is another exemplary structural diagram of a portion of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • the axial drive assembly may further include a first hollow power cylinder 36 and a second hollow power cylinder 37 .
  • the power cylinder is an actuator that converts hydraulic or pneumatic energy into mechanical energy and performs linear reciprocating motion.
  • the power cylinder can use the pressure difference of liquid or gas to generate thrust or pull on the piston rod, thereby achieving the displacement of the object.
  • the hollow power cylinder is a power cylinder with a hollow structure.
  • the hollow power cylinder can be a hollow hydraulic cylinder or a pneumatic cylinder.
  • the first hollow power cylinder 36 is used to drive the stirring needle 11 to move along the axis h; the second hollow power cylinder 37 is used to drive the stirring sleeve 21 to move along the axis h.
  • the central axes of the first hollow power cylinder 36 and the second hollow power cylinder 37 are both located on the axis h, the piston rod of the first hollow power cylinder 36 is connected to the stirring needle shaft 12, and the piston rod of the second hollow power cylinder 37 is connected to the stirring sleeve shaft 22.
  • the stirring needle shaft 12 includes a first stirring needle shaft 121 and a second stirring needle shaft 122.
  • the rotation axes of the first stirring needle shaft 121 and the second stirring needle shaft 122 are located on the axis h, and the first stirring needle shaft 121 and the second stirring needle shaft 122 can be fixedly connected by a connecting rod 123, and the stirring needle 11 is connected to the second stirring needle shaft 122.
  • the connecting rod 123 can be disposed in a cavity in the first hollow power cylinder 36, and the connecting rod 123 can be in the shape of a hollow rod.
  • the single length of the stirring needle shaft 12 is shortened without affecting the transmission effect, making the stirring needle shaft 121 less susceptible to damage, while making the structure compact, reducing weight, and lowering costs.
  • the core shaft 41 can be sleeved outside the first stirring needle shaft 121, and the first stirring needle shaft 121 and the core shaft 41 can move relative to each other along the axis h, and the first stirring needle shaft 121 and the core shaft 41 are locked.
  • a spline can be provided on the top of the first stirring needle shaft 121, and a spline groove can be provided on the inner wall of the core shaft 41.
  • the connecting rod 123 is provided with a through groove along the axis h, and the first stirring needle shaft 121 and the second stirring needle shaft 122 are both provided with a pin head matching the through groove.
  • the through groove and the pin head can limit the relative movement between the connecting rod 123 and the first stirring needle shaft 121 and the second stirring needle shaft 122.
  • the through slot can be set to a preset shape
  • the pin head shape matches the through slot
  • the pin head is set at the lower end of the first stirring pin shaft 121 and the upper end of the second stirring pin shaft 122.
  • the preset shape can be a square, prism or other shape that is not easy to rotate.
  • the second stirring needle shaft 122 is provided with a third matching structure, and the stirring needle 11 is provided with a fourth matching structure.
  • the third matching structure is a limiting structure arranged on the second stirring needle shaft 122.
  • the fourth matching structure is a limiting structure arranged on the stirring needle 11 and matching the third matching structure.
  • the third matching structure cooperates with the fourth matching structure to limit the relative movement between the second stirring needle shaft 122 and the stirring needle 11.
  • the structure and mode of action of the third matching structure and the fourth matching structure are the same as those of the first matching structure and the second matching structure, and can be referred to above and will not be described again.
  • the stirring sleeve shaft 22 is sleeved outside the second stirring needle shaft 122, and the rotation axes of the stirring sleeve shaft 22 and the second stirring needle shaft 122 are located on the axis, and the stirring sleeve shaft 22 and the second stirring needle shaft 122 can perform relative movement along the axis h, and the stirring sleeve shaft 22 and the second stirring needle shaft 122 are locked, that is, the stirring sleeve shaft 22 and the second stirring needle shaft 122 cannot rotate relative to each other, and can only perform synchronous rotation.
  • the stirring sleeve shaft 22 and the second stirring pin shaft 122 can be connected in any feasible manner.
  • the stirring sleeve shaft 22 can be connected to the outer side of the second stirring pin shaft 122 by a spline sleeve.
  • a spline sleeve For more description of the spline, please refer to the above related description.
  • both ends of the piston rod of the first hollow power cylinder 36 are respectively connected to the first stirring needle shaft 121 and the second stirring needle shaft 122.
  • the upper and lower ends of the piston rod of the first hollow power cylinder 36 can respectively fix the first stirring needle shaft 121 and the second stirring needle shaft 122 along the axis h direction through the first locking nut 391.
  • the piston rod of the first hollow power cylinder 36 moves along the axis h, thereby being able to drive the first stirring needle shaft 121 and the second stirring needle shaft 122 to move along the axis h.
  • the stirring sleeve shaft 22 is fixedly arranged in the piston rod of the second hollow power cylinder 37.
  • the piston rod of the second hollow power cylinder 37 can fix the stirring sleeve shaft 22 along the axis h direction through the second locking nut 395.
  • the piston rod of the second hollow power cylinder 37 moves along the axis h, thereby driving the stirring sleeve shaft 22 to move along the axis h.
  • a second spacer sleeve 38 is arranged between the first hollow power cylinder 36 and the second hollow power cylinder 37.
  • the non-moving parts of the two hollow power cylinders can be fixedly connected through the second spacer sleeve 38, and the moving parts and non-moving parts of the two hollow power cylinders can be separated by the bearing 393.
  • the top and bottom of the bearing 393 are limited and fixed by the upper bearing cover 392 and the lower bearing cover 394 respectively.
  • two coaxially arranged hollow power cylinders are used to control the movement of the stirring needle 11 and the stirring sleeve 21, which solves the problem of bending moment generated by the side-axis drive, ensures the rigidity of the system during welding, has a compact structure, and reliable operation, can eliminate the need for a deceleration device, and has no transmission gap and smooth movement. It eliminates the problem of a loose structure and difficulty in coaxial control caused by transmission components such as a motor screw being embedded in the main shaft. It has a wide range of applications and can be applied to any friction stir welding equipment such as dynamic shoulder and static shoulder friction stir welding, gantry type, and robotic arm type.
  • the backfill friction stir spot welding device may further include the aforementioned 1 hollow motor and the aforementioned 1 hollow power cylinder, the hollow motor is used to drive any one of the stirring needle 11 and the stirring sleeve 21, and the hollow power cylinder is used to drive the other of the stirring needle 11 and the stirring sleeve 21.
  • the structure of the hollow motor, the structure of the hollow power cylinder, the structure of the stirring needle assembly, and the structure of the stirring sleeve assembly are the same as above, and the connection method can refer to the above description and will not be repeated.
  • Fig. 9 is another exemplary structural diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • Fig. 10 is another exemplary cross-sectional diagram of a backfill friction stir spot welding device according to some embodiments of the present specification.
  • the axial drive assembly includes an inner power cylinder 71 and an outer power cylinder 72 .
  • the piston rod of the inner power cylinder 71 is connected to the first hollow slider 73, the first hollow slider 73 is sleeved outside the stirring needle shaft 12, and the central axis of the first hollow slider 73 is located on the axis h.
  • the stirring needle shaft 12 and the first hollow slider 73 can perform relative rotational motion, and the relative motion between the stirring needle shaft 12 and the first hollow slider 73 along the axis h is locked.
  • the first hollow slider 73 and the stirring needle shaft 12 can be connected through a first thrust bearing, the first hollow slider 73 can be slidably connected to the first guide rail 751, and the first guide rail 751 can be fixedly connected to the outer shell 60 through a first fixing member 752.
  • the piston rod of the inner power cylinder 71 is extended and retracted, which can push the first hollow slider 73 to move along the axis h, and drive the stirring needle shaft 12 to move along the axis h.
  • the piston rod of the external power cylinder 72 is connected to the second hollow slider 74, the second hollow slider 74 is sleeved outside the stirring sleeve shaft 22, and the central axis of the second hollow slider 74 is located on the axis h.
  • the stirring sleeve shaft 22 and the second hollow slider 74 can perform relative rotational motion, and the relative motion between the stirring sleeve shaft 22 and the second hollow slider 74 along the axis h is locked.
  • the second hollow slider 74 and the stirring sleeve shaft 22 may be connected via a second thrust bearing, the second hollow slider 74 may be slidably connected to the second guide rail 761, and the second guide rail 761 may be fixedly connected to the outer shell 60 via a second fixing member 762.
  • the piston rod of the external power cylinder 72 is extended and retracted to push the second hollow slider 74 to move along the axis h, thereby driving the stirring sleeve shaft 22 to move along the axis h.
  • the number of the internal power cylinders 71 is at least 2, and at least 2 internal power cylinders 71 are distributed around the axis h; the number of the external power cylinders 72 is at least 2, and at least 2 external power cylinders are distributed around the axis h.
  • At least two inner power cylinders 71 may be provided with a synchronization circuit.
  • an electro-hydraulic servo valve may be used to implement a circuit for synchronous motion.
  • the servo valve in the circuit continuously controls the opening of its valve port according to the feedback signals of the two displacement sensors, so that the flow rate passing through is the same as the flow rate passing through the reversing valve, thereby ensuring that the two inner power cylinders obtain bidirectional synchronous motion.
  • a synchronization circuit may be implemented by connecting hydraulic cylinders in series. The oil discharged from the return oil chamber of the first hydraulic cylinder is sent to the oil inlet chamber of the second hydraulic cylinder.
  • At least two inner power cylinders 71 and at least two outer power cylinders 72 can be completed by a set of hydraulic circuits.
  • a relay can be used to select the inner power cylinder 71 or the outer power cylinder 72 to perform an action
  • a diverter valve can be used to control the movement speed of the power cylinder.
  • the backfill friction stir spot welding apparatus may include a compression sleeve 50 .
  • the clamping sleeve 50 is a component used to clamp the workpiece to be welded.
  • the clamping sleeve 50 can be annular or columnar, and can be made of a variety of materials, such as high-strength steel.
  • the clamping sleeve 50 is positioned and clamped on the workpiece to be welded, thereby positioning and fixing the backfilling friction stir spot welding device.
  • the lower portion of the compression sleeve 50 is provided with an opening, and at least part of the stirring sleeve 21 can be movably disposed in the opening along the axis h.
  • the surface roughness of the contact surface between the stirring sleeve 21 and the compression sleeve 50 is less than 0.08 ⁇ m, that is, it is set to a mirror surface, thereby reducing the friction generated when the stirring sleeve 21 and the compression sleeve 50 move relative to each other along the axial direction, thereby reducing the wear of the equipment.
  • the surface roughness of the contact surface between the stirring sleeve 21 and the stirring needle 11 is less than 0.08 ⁇ m, that is, it is set to a mirror surface, thereby reducing the friction generated when the stirring sleeve 21 and the stirring needle 11 move relative to each other along the axial direction, thereby reducing the wear of the equipment.
  • the surface roughness less than 0.08 ⁇ m is only a preferred embodiment. In actual working process, the surface roughness can be adaptively adjusted according to different working conditions.
  • the outer shell 60 may be composed of a plurality of shell structures for easy disassembly and maintenance.
  • the position on the outer shell 60 for mounting the bearing may be correspondingly set as a step structure for easy installation of the bearing.
  • numbers describing the number of components and attributes are used. It should be understood that such numbers used in the description of the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Unless otherwise specified, “about”, “approximately” or “substantially” indicate that the numbers are allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximate values, which may change according to the required features of individual embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and adopt the general method of retaining the digits. Although the numerical domains and parameters used to confirm the breadth of the range in some embodiments of this specification are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本说明书实施例提供一种回填搅拌摩擦点焊设备,包括搅拌针组件、搅拌套组件、轴向驱动组件和旋转驱动组件:搅拌针组件包括搅拌针;搅拌套组件包括搅拌套,搅拌套套设于搅拌针外,搅拌套与搅拌针具有相同的轴线;轴向驱动组件驱动搅拌针和搅拌套沿轴线运动,旋转驱动组件驱动搅拌针和搅拌套以轴线为中心旋转运动,轴向驱动组件的中心轴和旋转驱动组件的回转轴均位于轴线上。

Description

一种回填搅拌摩擦点焊设备 交叉引用
本申请要求于2022年12年13日提交的申请号为202211601088.3的中国申请的优先权,于2022年12年13日提交的申请号为202211604687.0的中国申请的优先权,全部内容通过引用并入本文。
技术领域
本说明书涉及搅拌摩擦点焊技术领域,特别涉及一种回填搅拌摩擦点焊设备。
背景技术
搅拌摩擦点焊是在搅拌摩擦焊技术的基础上研究开发的一种新型的固相焊接技术。采用搅拌摩擦点焊技术可以形成类似电阻点焊和铆接的搭接接头,并且具有接头质量高,焊接质量稳定,变形小以及高效节能等优点,有效的弥补了电阻点焊和铆接的缺陷。回填式搅拌摩擦点焊的出现又成功的解决了传统搅拌摩擦点焊焊接完成后在焊点中心留有匙孔的问题。
在进行点焊的过程中,需要精确控制搅拌针位移与压力的变化,而目前采用的旁轴驱动的位移调节会导致弯矩的产生,从而导致焊接位置精度的损失,而采用被动位移调节方式则需要采用压力传感器进行反馈调节,会导致存在滞后性的问题。
因此,需要提供一种控制精度高的回填搅拌摩擦点焊设备。
技术问题
在此处键入技术问题描述段落。
发明内容
本说明书一个或多个实施例提供一种回填搅拌摩擦点焊设备,包括:搅拌针组件,所述搅拌针组件包括搅拌针;搅拌套组件,所述搅拌套组件包括搅拌套,所述搅拌套套设于所述搅拌针外,所述搅拌套与所述搅拌针具有相同的轴线;以及轴向驱动组件和旋转驱动组件;所述轴向驱动组件驱动所述搅拌针和所述搅拌套分别沿所述轴线运动,所述旋转驱动组件驱动所述搅拌针和所述搅拌套以所述轴线为中心旋转运动,所述轴向驱动组件的中心轴和所述旋转驱动组件的回转轴均位于所述轴线上。
在一些实施例中,所述搅拌针组件包括搅拌针轴,所述搅拌针轴与所述搅拌针固定连接,所述搅拌针轴与所述搅拌针的旋转轴位于所述轴线上。
在一些实施例中,所述搅拌针轴设有第一配合结构,所述搅拌针设有第二配合结构,所述第一配合结构与所述第二配合结构配合,以限制所述搅拌针轴与所述搅拌针相对运动。
在一些实施例中,所述搅拌套组件包括搅拌套轴,所述搅拌套轴套设于所述搅拌针轴外,所述搅拌套轴与所述搅拌针轴的旋转轴位于所述轴线上,所述搅拌套轴与所述搅拌针轴之间能够沿所述轴线进行相对运动,所述搅拌套轴与所述搅拌针轴止转配合,所述搅拌套轴与所述搅拌套固定连接。
在一些实施例中,所述轴向驱动组件包括至少一个中空电机,所述中空电机的中心轴位于所述轴线上,所述中空电机通过丝杠传动组件带动所述搅拌针轴和/或所述搅拌套轴沿所述轴线运动。
在一些实施例中,所述中空电机包括第一中空电机和第二中空电机,所述第一中空电机通过第一组所述丝杠传动组件带动所述搅拌针轴沿所述轴线运动,所述第二中空电机通过第二组所述丝杠传动组件带动所述搅拌套轴沿所述轴线运动。
在一些实施例中,所述丝杠传动组件包括丝杠和丝杠螺母,所述丝杠与所述丝杠螺母传动连接,所述丝杠螺母与至少一个所述中空电机的转子连接,所述搅拌针轴和/或所述搅拌套轴可转动地与所述丝杠连接,所述搅拌针轴和/或所述搅拌套轴与所述丝杠之间沿所述轴线的相对运动被锁定。
在一些实施例中,所述轴向驱动组件仅包括1个所述中空电机,所述丝杠包括第一丝杠和第二丝杠,所述丝杠螺母与所述中空电机的转子连接,所述丝杠螺母上设有第一内螺纹和第二内螺纹,所述第一内螺纹与所述第二内螺纹的螺纹旋转方向相反,所述第一内螺纹与所述第一丝杠传动连接,所述第二内螺纹与所述第二丝杠传动连接;所述搅拌针轴可转动地与所述第一丝杠连接,所述搅拌针轴与所述第一丝杠之间沿所述轴线的相对运动被锁定;所述搅拌套轴可转动地与所述第二丝杠连接,所述搅拌套轴与所述第二丝杠之间沿所述轴线的相对运动被锁定。
在一些实施例中,所述轴向驱动组件包括第一中空动力缸和第二中空动力缸,所述第一中空动力缸和所述第二中空动力缸的中心轴均位于所述轴线上,所述第一中空动力缸的活塞杆与所述搅拌针轴连接,所述第二中空动力缸的活塞杆与所述搅拌套轴连接。
在一些实施例中,所述搅拌针轴包括第一搅拌针轴和第二搅拌针轴,所述第一搅拌针轴与所述第二搅拌针轴的旋转轴位于所述轴线上,所述第一搅拌针轴与所述第二搅拌针轴之间通过连接杆固定连接,所述搅拌针与所述第二搅拌针轴连接。
在一些实施例中,所述连接杆沿所述轴线方向开设有通槽,所述第一搅拌针轴与所述第二搅拌针轴均设置有与所述通槽匹配的销头。
在一些实施例中,所述第二搅拌针轴设有第三配合结构,所述搅拌针设有第四配合结构,所述第三配合结构与所述第四配合结构配合,以限制所述第二搅拌针轴与所述搅拌针相对运动。
在一些实施例中,所述搅拌套轴套设于所述第二搅拌针轴外,所述搅拌套轴与所述第二搅拌针轴的旋转轴位于所述轴线上,所述搅拌套轴与所述第二搅拌针轴之间能够沿所述轴线进行相对运动,所述搅拌套轴与所述第二搅拌针轴止转配合。
在一些实施例中,所述第一中空动力缸的活塞杆两端分别与所述第一搅拌针轴和所述第二搅拌针轴连接。
在一些实施例中,所述第二中空动力缸的活塞杆内固定设置所述搅拌套轴。
在一些实施例中,所述轴向驱动组件包括内动力缸和外动力缸;所述内动力缸的活塞杆与第一中空滑块连接,所述第一中空滑块套设于所述搅拌针轴外,所述第一中空滑块的中心轴位于所述轴线上,所述搅拌针轴与所述第一中空滑块能够进行旋转的相对运动,所述搅拌针轴与所述第一中空滑块之间沿所述轴线的相对运动被锁定;所述外动力缸的活塞杆与第二中空滑块连接,所述第二中空滑块套设于所述搅拌套轴外,所述第二中空滑块的中心轴位于所述轴线上,所述搅拌套轴与所述第二中空滑块能够进行旋转的相对运动,所述搅拌套轴与所述第二中空滑块之间沿所述轴线的相对运动被锁定。
在一些实施例中,所述内动力缸的数量为至少2个,至少2个所述内动力缸的以所述轴线为中心分布;所述外动力缸的数量为至少2个,至少2个所述外动力缸以所述轴线为中心分布。
在一些实施例中,所述旋转驱动组件包括电主轴,所述电主轴中设有芯轴,所述芯轴套设于所述搅拌针轴外,所述芯轴与所述搅拌针轴的旋转轴位于所述轴线上,所述芯轴与所述搅拌针轴之间能够沿所述轴线进行相对运动,所述芯轴与所述搅拌针轴止转配合。
在一些实施例中,还包括压紧套,所述压紧套下部设有开口,至少部分所述搅拌套可沿所述轴线运动地设置于所述开口中;所述搅拌套与所述压紧套之间的接触面的表面粗糙度小于0.08μm。
在一些实施例中,所述搅拌套与所述搅拌针之间的接触面的表面粗糙度 小于0.08μm。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的示意图;
图2是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的示例性结构图;
图3是根据本说明书一些实施例所示的A处的放大示意图;
图4是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的部分示例性结构图;
图5是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的又一示例性结构图;
图6是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的再一示例性结构图;
图7是根据本说明书一些实施例所示的B处的放大示意图;
图8是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的部分再一示例性结构图;
图9是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的另一示例性结构图;
图10是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的另一示例性截面图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
在点焊的过程中,为了实现精确焊接,需要精准控制搅拌针位移与压力的变化。由于安装空间和结构设计上的难度,目前大多采用旁轴驱动的位移调节或者采用类似弹簧的弹性件的方式来实现被动位移调节。但是旁轴驱动的方式会产生弯矩,从而导致焊接位置精度的损失,而被动位移调节需要采用压力传感器进行反馈调节,存在滞后性的问题。
鉴于此,本说明书一些实施例提供一种回填搅拌摩擦点焊设备,通过同轴控制驱动搅拌针的搅拌套的运动,结构紧凑,解决了旁轴驱动会产生弯矩的问题,焊接精度高。
图1是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的示意图。
在一些实施例中,如图1所示,回填搅拌摩擦点焊设备包括搅拌针组件、搅拌套组件、轴向驱动组件和旋转驱动组件。在一些实施例中,搅拌针组件包括搅拌针11,搅拌套组件包括搅拌套21,搅拌套21套设于搅拌针11外,搅拌套21与搅拌针11具有相同的轴线h。在一些实施例中,轴向驱动组件可以驱动搅拌针11和搅拌套21分别沿轴线h运动,旋转驱动组件驱动搅拌针11和搅拌套21以轴线h为中心旋转运动,轴向驱动组件的中心轴和旋转驱动组件的回转轴均位于轴线h上。
搅拌针组件是用于实现点焊作用的部件的组合件。
在一些实施例中,搅拌针组件可以包括搅拌针11。
搅拌针11是用于搅拌工件表面,通过摩擦产生热量,实现点焊作用的部件。在一些实施例中,搅拌针11能够以轴线h为中心进行旋转,即轴线h为搅拌针11的旋转轴,从而使搅拌针11实现对工件的搅拌。在一些实施例中,搅拌针11可以为柱状结构,轴线h可以是柱状搅拌针11的中心轴。在一些实施例中,搅拌针11可以为高温耐磨材料,如合金钢等。
在一些实施例中,搅拌针组件可以包括搅拌针轴12。
搅拌针轴12用以向搅拌针11传递动力。在一些实施例中,搅拌针轴12能够以轴线h为中心进行旋转,即轴线h为搅拌针轴12的旋转轴。在一些实施例中,搅拌针轴12可以为杆状结构,轴线h可以是搅拌针轴12的中心轴。在一些实施例中,搅拌针轴12的材质可以为高强度的刚性材料,例如钢材等。
在一些实施例中,搅拌针轴12可以与搅拌针11固定连接,搅拌针轴12与搅拌针11的旋转轴位于轴线h上。在一些实施例中,当搅拌针轴12转动时,搅拌针11可以同步发生同轴转动。
在一些实施例中,搅拌针轴12可以与搅拌针11固定连接。
在一些实施例中,搅拌针轴12与搅拌针11可以通过第一配合结构与第二配合结构固定连接。搅拌针轴12可以设有第一配合结构,搅拌针11可以设有第二配合结构。第一配合结构是设置在搅拌针轴12上的限位结构。第二配合结构是设置在搅拌针11上的与第一配合结构匹配的限位结构。第一配合结构与第二配合结构配合,可以限制搅拌针轴12与搅拌针11的相对运动。相对运动包括旋转的相对运动与沿轴线h的相对运动。可以理解的,通过第一配合结构与第二配合结构的配合,可以限制搅拌针轴12与搅拌针11的相对运动,而不能限制搅拌针轴12与搅拌针11的同步运动。即搅拌针轴12与搅拌针11无法发生相对转动,只能够以轴线h为中心一同旋转,同时,搅拌针轴12与搅拌针11无法发生沿轴线h的相对运动,只能够沿轴线h同步运动。
在一些实施例中,第一配合结构可以包括开设在搅拌针轴12底部的柱状凹槽,第二配合结构可以包括设置在搅拌针11的顶端的矩形结构,矩形结构能够嵌设于柱状凹槽中,以限制搅拌针11与搅拌针轴12之间旋转的相对运动;第一配合结构或第二配合结构还包括锁紧螺母,通过锁紧螺母能够将搅拌针11与搅拌针轴12锁紧固定,以限制搅拌针11与搅拌针轴12沿轴线h的相对运动。
在一些实施例中,第一配合结构可以包括开设在搅拌针轴12底部的十字孔,第二配合结构可以包括设置在搅拌针11的顶端的十字形结构,十字形结构能够嵌设于十字孔中,以限制搅拌针11与搅拌针轴12之间旋转的相对运动;第一配合结构或第二配合结构还包括锁紧螺母,通过锁紧螺母能够将搅拌针11与搅拌针轴12锁紧固定,以限制搅拌针11与搅拌针轴12沿轴线h的相对运动。通过十字形结构配合连接,扭转刚度较高,不易偏心。
在一些实施例中,第一配合结构包括设置于搅拌针轴12的底部的锥形孔,第二配合结构包括设置于搅拌针11上端的锥形结构,搅拌针轴12与搅拌针11可以通过锥形孔与锥形结构过盈装配固定,以限制搅拌针轴12与搅拌针11的相对运动。通过过盈装配固定无需额外的锁紧螺母即可进行固定,且锥形连接不易偏心。
在一些实施例中,第一配合结构和第二配合结构还可以设置为其他可行的结构,以实现搅拌针轴12与搅拌针11的固定连接,并限制搅拌针轴12与搅拌针11的相对运动。
搅拌套组件是用于保护搅拌针组件的组合部件。在一些实施例中,通过搅拌套组件与搅拌针组件的配合,能够实现对焊接过程中形成的匙孔回填。
搅拌针和搅拌套,既可以作为焊接使用,也可以作为回填使用,这两个功能都具备,但是搅拌针和搅拌套一个用于扎入,一个用于回填,在同一场景下,两者功能相反,可以第一次焊接时搅拌针扎入焊接,搅拌套回填,第二次焊接时搅拌套扎入焊接,搅拌针回填。
在一些实施例中,搅拌套组件可以包括搅拌套21。
搅拌套21是用于保护搅拌针11的部件。搅拌套21可以套设在搅拌针11外,对搅拌针11的下端端部形成包裹,保证搅拌针11在受力状态下不会发生弯折。在一些实施例中,搅拌套21可以采用空心圆柱状结构,轴线h可以是搅拌套21的中心轴。在一些实施例中,搅拌套21材质可以为高温耐磨材料,如合金钢等。
在一些实施例中,搅拌套组件可以包括搅拌套轴22。
搅拌套轴22用于向搅拌套21传递动力。搅拌套轴22可以为空心杆状结构,轴线h可以是搅拌套轴22的中心轴。在一些实施例中,搅拌套轴22的材质可以为高强度的刚性材料,例如钢材等。
在一些实施例中,搅拌套轴22可以以轴线h为中心旋转,即轴线h为搅拌套轴22的旋转轴。搅拌套轴22与搅拌针轴12的旋转轴可以位于轴线h上,搅拌套轴22与搅拌针轴12之间能够沿轴线h进行相对运动,搅拌套轴22与搅拌针轴12止转配合,即搅拌套轴22与搅拌针轴12不能相对旋转,只能同步进行旋转运动。
在一些实施例中,搅拌套轴22与搅拌针轴12可以通过任意可行的方式连接。示例的,搅拌套轴22可以通过花键套设连接在搅拌针轴12的外侧。花键可以为矩形花键、渐开线花键或滚动花键等。在一些实施例中,搅拌套轴22与搅拌针轴12通过花键连接可以进一步提高连接结构的精度,同时降低噪音。
在一些实施例中,搅拌套轴22可以与搅拌套21固定连接。搅拌套轴22与搅拌套21可以通过任意可行的方式固定连接。示例的,搅拌套轴22与搅拌套21可以通过花键螺母23固定连接。通过固定连接,搅拌套轴22与搅拌套21可以同步进行旋转运动以及同步沿轴线h运动。
旋转驱动组件用于驱动搅拌针11和搅拌套21以轴线h为中心进行旋转运动。在一些实施例中,旋转驱动组件具有回转轴(或旋转轴),旋转驱动组件的回转轴可以认为是旋转驱动组件的旋转中心,旋转驱动组件能够绕回转轴转动。旋转驱动组件的回转轴位于轴线h上。
在一些实施例中,旋转驱动组件可以包括电主轴。电主轴是通过电力源提供旋转扭矩的组件。电主轴可以设置在外壳体60的上部并与外壳体60固定连接,例如,电主轴与外壳体60可以通过螺栓固定连接。
在一些实施例中,电主轴中设有芯轴41。芯轴41是用于传递旋转扭矩的部件。芯轴41可以固定设置在电主轴的中部。
在一些实施例中,芯轴41可以为空心柱状,轴线h可以是芯轴41的旋转轴,芯轴41可以以轴线h为中心进行旋转。芯轴41可以套设于搅拌针轴12外,芯轴41与搅拌针轴12的旋转轴位于轴线h上,芯轴41与搅拌针轴12之间能够沿轴线h方向进行相对运动,芯轴41与搅拌针轴12止转配合。
示例的,搅拌针轴12的顶部可以设置花键,在芯轴41的内壁上可以开设花键槽,芯轴41可以通过花键连接搅拌针轴12,从而使得芯轴41与搅拌针轴12之间能够沿轴线h方向进行相对运动,而不能发生相对旋转。关于花键的更多内容参见上文相关说明。
在一些实施例中,当芯轴41发生旋转运动时,可以带动搅拌针轴12同步进行旋转运动,搅拌针轴12可以带动搅拌针11同步进行旋转运动,从而实现扭矩的传递。
轴向驱动组件用于驱动搅拌针11和搅拌套21沿轴线h运动。在一些实施例中,轴向驱动组件具有中心轴。轴向驱动组件的中心轴可以认为是轴向驱动组件的沿其延伸方向的中心轴,该中心轴位于轴向驱动组件物理结构的中心。轴向驱动组件的中心轴可以认为是轴向驱动组件的动力输出轴,该动力输出轴可以不具有实际的物理结构,例如,轴向驱动组件沿空心柱的延伸方向,通过空心柱输出动力,此时,动力输出轴可以认为是该空心轴的中轴。轴向驱动组件的中心轴位于轴线h上。
在一些实施例中,轴向运动组件可以通过多种驱动方式驱动搅拌针11和搅拌套21沿轴线h运动。驱动方式可以包括电力驱动或液压驱动等中的至少一种。关于轴向驱动组件的更多内容可以参见后文相关说明。
在一些实施例中,给旋转驱动组件和轴向驱动组件进行供电,旋转驱动组件带动搅拌针11及搅拌套21旋转,轴向驱动组件驱动搅拌针11和搅拌套21分别沿轴线h发生上移和下移的运动,实现回填式搅拌摩擦点焊。焊接时,可以利用预设的压力与位移关系,对搅拌针11和搅拌套21进行协调控制,从而精准地进行焊接。
在一些实施例中,通过同轴设置搅拌针组件、搅拌套组件、轴向驱动组件和旋转驱动组件,在焊接过程中,搅拌针11及搅拌套21能发生以轴线h为中心的旋转和沿轴线的运动,且驱动源与搅拌针11及搅拌套21同轴,解决了旁轴驱动会产生弯矩的问题,保证了焊接过程中系统的刚性,也避免了滞后性问题,提高了焊接精度。
图2是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的示例性结构图。图3是根据本说明书一些实施例所示的A处的放大示意图。图4是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的部分示例性结构图。
在一些实施例中,如图2所示,轴向驱动组件包括至少一个中空电机。
中空电机是用于提供沿轴线h运动的动力源的电机。中空电机为中空结构,可以套设在搅拌套组件和搅拌针组件中的至少一个的外侧。
在一些实施例中,中空电机的中心轴可以位于轴线h上。中空电机的中心轴可以位于其内部的空腔中。
在一些实施例中,中空电机可以通过丝杠传动组件带动搅拌针轴12和搅拌套轴22中的至少一个沿轴线h运动。示例的,当中空电机工作时,中空电机的转子可以进行旋转运动,通过丝杠传动组件可以将旋转运动转化为沿轴线h的运动,从而带动搅拌针轴12和搅拌套轴22中的至少一个沿轴线h运动。
关于丝杠传动组件的更多内容参见后文。
在另一些实施例中,中空电机可以被替代性地设置为普通电机(如伺服电机),普通电机可以连接主动轮,主动轮可以通过传动带带动从动轮转动;从动轮可以带动丝杠传动组件,通过丝杠传动组件可以将旋转运动转化为沿轴线h的运动,从而带动搅拌针轴12和搅拌套轴22中的至少一个沿轴线h运动。
在一些实施例中,如图2所示,中空电机可以包括第一中空电机31和第二中空电机32。第一中空电机31和第二中空电机32可以沿轴线h方向同轴设置。
在一些实施例中,第一中空电机31通过第一组丝杠传动组件带动搅拌针轴12沿轴线h运动,第二中空电机32通过第二组丝杠传动组件带动搅拌套轴22沿轴线运动。
丝杠传动组件是指将旋转运动转换为线性运动的组件。在一些实施例中,丝杠传动组件包括丝杠和丝杠螺母。丝杠和丝杠螺母传动连接,如通过螺纹啮合传动。丝杠传动组件可以利用丝杠和丝杠螺母之间的螺纹啮合传动,通过旋转丝杠来实现线性运动。
在一些实施例中,丝杠螺母与至少一个中空电机的转子连接,搅拌针轴12和搅拌套轴22中的至少一个可转动地与丝杠连接,搅拌针轴12和搅拌套轴22中的至少一个与丝杠之间沿轴线h的相对运动被锁定。
在一些实施例中,搅拌针轴12和搅拌套轴22中的至少一个与丝杠可以多种方式连接,例如通过锁紧螺母固定。丝杠可以套设安装在搅拌针轴12和搅拌套轴22中的至少一个的外侧。
以下以第一中空电机31和第二中空电机32为例进行进一步的说明。需要说明的是,以下仅为一种可行的实施方式而非限制。可以理解的,中空电机的安装位置及连接方式等可以根据需要设置。例如,第一中空电机31和第二中空电机32的设置位置可以交换。又例如,第一中空电机31和第二中空电机32可以通过多种可行的连接结构分别与搅拌针轴12和搅拌套轴22连接,以实现驱动效果。
示例的,如图2、图3和图4所示,第一中空电机31与第一组丝杠传动组件传动连接,第二中空电机32通过第二组丝杠传动组件,第一组丝杠传动组件包括丝杠331和丝杠螺母332,第二组传动组件包括丝杠341和丝杠螺母342。
第一中空电机31安装在外壳体60内靠近上部位置,且上下两侧均设置有第一滚动轴承333(如角接触轴承、调心球轴承、圆锥滚子轴承或调心滚子轴承等),第一滚动轴承333的两侧可以固定抵接第一隔套313,第一滚动轴承333的外圈对第一中空电机31的定子沿轴线h方向进行限位,第一中空电机31的转子与丝杠螺母332固定连接,第一滚动轴承333的内圈对丝杠螺母332沿轴线h方向进行限位。
丝杠331套设安装在搅拌针轴12的外侧,且两者之间通过第二滚动轴承334进行连接,第二滚动轴承334可以为推力轴承,且第二滚动轴承334上下分别设置第一轴承盖和第一轴承锁紧螺母,以限制丝杠331与搅拌针轴12沿轴线h的运动,但是不影响搅拌针轴12与丝杠331之间的相对旋转。
当第一中空电机31启动时,其转子转动,从而带动与其固定连接的丝杠螺母332转动,丝杠螺母332只能旋转而不会发生沿轴线h的运动,丝杠331无法旋转,因此丝杠331在丝杠螺母332的旋转作用下只能发生沿轴线h的运动,从而带动搅拌针轴12沿轴线h运动,固定连接于搅拌针轴12下部的搅拌针11随之沿轴线h运动。
第二中空电机32安装在外壳体60内靠近下部位置,第二中空电机32的转子部分与丝杠螺母342固定连接,丝杠螺母342的内侧螺纹连接有丝杠341,从而第二中空电机32的转子通过丝杠螺母342与丝杠341连接在一起,第二中空电机32的上下两侧均设置有第三滚动轴承343(如角接触轴承、调心球轴承、圆锥滚子轴承或调心滚子轴承等),第三滚动轴承343的外圈对第二中空电机32的定子沿轴线h方向进行限位,第三滚动轴承343的内圈对丝杠螺母342沿轴线h方向进行限位。
丝杠341套设安装在搅拌套轴22的外侧,且两者之间通过第四滚动轴承344进行连接,第四滚动轴承344可以为推力轴承,且第四滚动轴承344上下分别设置第二轴承盖和第二轴承锁紧螺母,以限制丝杠341与搅拌套轴22之间沿轴线h的运动,但是不影响搅拌套轴22与丝杠341之间的相对旋转。
当第二中空电机32启动时,其转子转动,从而带动与其固定连接的丝杠螺母342转动,丝杠螺母342只能旋转而不会发生沿轴线h的运动,丝杠螺母342与丝杠341之间通过螺纹啮合传动,丝杠341无法旋转,因此只能发生沿轴线h的运动,并进一步带动搅拌套轴22沿轴线h的运动。
在一些实施例中,回填搅拌摩擦点焊设备可以包括控制系统,控制系统中可以嵌入压力与位移关系的控制程序,对两个中空电机进行控制,即能够实现对焊接过程的精确控制。
在一些实施例中,通过两个中空电机驱动和电主轴配合,结构紧凑巧妙,系统的稳定性高,焊接精度能够得到保证,焊接质量好,且能够提升整个焊接装置的使用寿命应用范围广,可以应用于动轴肩和静轴肩搅拌摩擦焊、龙门形式和机械臂形式等任意搅拌摩擦焊设备。
图5是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的又一示例性结构图。
在一些实施例中,如图5所示,轴向驱动组件可以仅包括1个中空电机351,丝杠可以包括第一丝杠354和第二丝杠355。
在一些实施例中,丝杠螺母35可以与中空电机351的转子356连接,丝杠螺母35上可以设有第一内螺纹352和第二内螺纹353,第一内螺纹352与第二内螺纹353的螺纹旋转方向相反(例如,第一内螺纹352为右旋螺纹,第二内螺纹353为左旋螺纹),第一内螺纹352与所述第一丝杠354传动连接,第二内螺纹353与第二丝杠355传动连接。传动连接方式为螺纹啮合传动连接,传动作用方式可以参见上文的说明。
在一些实施例中,搅拌针轴12可转动地与第一丝杠354连接,搅拌针轴12与第一丝杠354之间沿轴线h的相对运动被锁定;搅拌套轴22可转动地与第二丝杠355连接,搅拌套轴22与第二丝杠355之间沿轴线h的相对运动被锁定。搅拌针轴12和搅拌套轴22与丝杠的连接方式和作用方式与上文类似,不再赘述。在一些实施例中,丝杠螺母35转动能够带动搅拌针11和搅拌套21沿轴线h方向做方向相反的同速运动。例如,搅拌针11沿轴线h上移,则搅拌套21沿轴线h下移;或搅拌针11沿轴线h下移,搅拌套21沿轴线h上移。
在一些实施例中,第一内螺纹352的螺距与第二内螺纹353的螺距可以设为不相同的,不同的螺距可以对应使得搅拌针11和搅拌套21具有不同的运动速度。螺距与运动速度正相关,即第一内螺纹352的螺距与第二内螺纹353的螺距的比值可以等于搅拌针11的运动速度与搅拌套21的运动速度的比值。
在一些实施例中,可以根据焊接需求,对丝杠螺母35、第一丝杠354和第二丝杠355进行更换,从而实现对于搅拌针11和搅拌套21的运动速度的控制。例如,为了实现下压时快速填平匙孔,可以设置为搅拌针11沿轴线h上移、下移的运动速度比搅拌套21更快。
在一些实施例中,仅采用1个中空电机作为轴向驱动动力源,可以简化整体结构,缩小回填搅拌摩擦点焊设备的整体结构尺寸。同时,通过对丝杠螺母和丝杠进行更换,可以实现搅拌针与搅拌套运动速度的控制,从而提高回填搅拌摩擦点焊设备的适用性。
图6是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的再一示例性结构图。图7是根据本说明书一些实施例所示的B处的放大示意图。图8是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的部分再一示例性结构图
在一些实施例中,如图6所示,轴向驱动组件还可以包括第一中空动力缸36和第二中空动力缸37。
动力缸是将液压或气压能转变为机械能的,做直线往复运动的执行元件。动力缸可以利用液体或气体的压力差,在活塞杆上产生推力或拉力,从而实现物体的位移。中空动力缸是中空结构的动力缸,中空动力缸可以为中空液压缸或气动缸等。第一中空动力缸36用于驱动搅拌针11沿轴线h运动;第二中空动力缸37用于驱动搅拌套21沿轴线h运动。
在一些实施例中,第一中空动力缸36和第二中空动力缸37的中心轴均位于轴线h上,第一中空动力缸36的活塞杆与搅拌针轴12连接,第二中空动力缸37的活塞杆与搅拌套轴22连接。
在一些实施例中,搅拌针轴12包括第一搅拌针轴121和第二搅拌针轴122。第一搅拌针轴121与第二搅拌针轴122的旋转轴位于轴线h上,第一搅拌针轴121与第二搅拌针轴122之间可以通过连接杆123固定连接,搅拌针11与第二搅拌针轴122连接。在一些实施例中,连接杆123可以设置于第一中空动力缸36内的空腔中,连接杆123可以呈中空杆状。
在一些实施例中,通过设置第一搅拌针轴121和第二搅拌针轴122,在不影响传动效果的情况下,缩短了搅拌针轴12的单个长度,使得搅拌针轴121更不易损伤,同时可以使结构紧凑,质量减轻,成本降低。
在一些实施例中,芯轴41可以套设在第一搅拌针轴121外,第一搅拌针轴121与芯轴41之间能够沿轴线h进行相对运动,第一搅拌针轴121与芯轴41止转配合。示例性的,可以在第一搅拌针轴121的顶部设置花键,在芯轴41的内壁上设置花键槽,关于花键的更多内容参见上文相关说明。
在一些实施例中,连接杆123沿轴线h方向开设有通槽,第一搅拌针轴121与第二搅拌针轴122均设置有与通槽匹配的销头。通过通槽与销头配合可以限制连接杆123与第一搅拌针轴121和第二搅拌针轴122发生相对运动。
在一些实施例中,通槽可以设置为预设形状,销头形状与通槽匹配,销头设置在第一搅拌针轴121的下端与第二搅拌针轴122的上端。预设形状可以是方形、棱柱形等不易发生转动的形状。
在一些实施例中,第二搅拌针轴122设有第三配合结构,搅拌针11设有第四配合结构。
第三配合结构是设置在第二搅拌针轴122上的限位结构。第四配合结构是设置在搅拌针11上与第三配合结构匹配的限位结构。第三配合结构与第四配合结构配合,可以限制第二搅拌针轴122与搅拌针11相对运动。第三配合结构和第四配合结构的结构及作用方式与第一配合结构和第二配合结构的结构及作用方式相同,可以参见上文,不再赘述。
在一些实施例中,搅拌套轴22套设于第二搅拌针轴122外,搅拌套轴22与第二搅拌针轴122的旋转轴位于所述轴线上,搅拌套轴22与第二搅拌针轴122之间能够沿轴线h进行相对运动,搅拌套轴22与第二搅拌针轴122止转配合,即搅拌套轴22与第二搅拌针轴122无法相对旋转,只能同步进行旋转运动。
在一些实施例中,搅拌套轴22与第二搅拌针轴122可以通过任意可行的方式连接。示例的,搅拌套轴22可以通过花键套设连接在第二搅拌针轴122的外侧。关于花键的更多描述参见上文相关说明。
在一些实施例中,第一中空动力缸36的活塞杆两端分别与第一搅拌针轴121和第二搅拌针轴122连接。示例的,如图7所示,第一中空动力缸36的活塞杆上下两端可以分别通过第一锁紧螺母391沿轴线h方向固定第一搅拌针轴121和第二搅拌针轴122。第一中空动力缸36工作时,第一中空动力缸36的活塞杆沿轴线h运动,从而能够带动第一搅拌针轴121和第二搅拌针轴122沿轴线h运动。
在一些实施例中,第二中空动力缸37的活塞杆内固定设置搅拌套轴22。示例的,如图8所示,第二中空动力缸37的活塞杆可以通过第二锁紧螺母395沿轴线h方向固定搅拌套轴22。第二中空动力缸37工作时,第二中空动力缸37的活塞杆沿轴线h运动,从而带动搅拌套轴22沿轴线h运动。
在一些实施例中,如图6所示,第一中空动力缸36与第二中空动力缸37之间设置有第二隔套38,通过第二隔套38可以将两个中空动力缸的非运动部件进行固定连接,通过轴承393可以将两个中空动力缸的运动部分与非运动部件分隔,轴承393的顶部和底部分别通过上轴承盖392和下轴承盖394进行限位固定。
在一些实施例中,采用两个同轴设置的中空动力缸控制搅拌针11和搅拌套21的运动,解决了旁轴驱动会产生弯矩的问题,保证了焊接过程中系统的刚性,结构紧凑、工作可靠,可免去减速装置,并且没有传动间隙,运动平稳,消除了电机丝杠等传动部件嵌入主轴内部导致结构不紧凑、不易同轴控制的问题,应用范围广,可以应用于动轴肩和静轴肩搅拌摩擦焊、龙门形式和机械臂形式等任意搅拌摩擦焊设备。
在一些实施例中,回填搅拌摩擦点焊设备还可以包括前述的1个中空电机和前述的1个中空动力缸,中空电机用于驱动搅拌针11和搅拌套21中的任一个,中空动力缸用于驱动搅拌针11和搅拌套21中的另一个。可以理解的,中空电机的结构、中空动力缸结构、搅拌针组件的结构以及搅拌套组件的结构与上文相同,连接方式可以参照上文的描述,不再赘述。
图9是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的另一示例性结构图。图10是根据本说明书一些实施例所示的回填搅拌摩擦点焊设备的另一示例性截面图。
在一些实施例中,如图9和图10所示,轴向驱动组件包括内动力缸71和外动力缸72。
在一些实施例中,内动力缸71的活塞杆与第一中空滑块73连接,第一中空滑块73套设于搅拌针轴12外,第一中空滑块73的中心轴位于轴线h上。搅拌针轴12与第一中空滑块73能够进行旋转的相对运动,搅拌针轴12与第一中空滑块73之间沿轴线h的相对运动被锁定。
在一些实施例中,第一中空滑块73与搅拌针轴12可以通过第一推力轴承连接,第一中空滑块73可以与第一导轨751滑动连接,第一导轨751可以通过第一固定件752与外壳体60固定连接。内动力缸71的活塞杆伸缩,可以推动第一中空滑块73沿轴线h运动,带动搅拌针轴12沿轴线h运动。
在一些实施例中,外动力缸72的活塞杆与第二中空滑块74连接,第二中空滑块74套设于搅拌套轴22外,第二中空滑块74的中心轴位于轴线h上。搅拌套轴22与第二中空滑块74能够进行旋转的相对运动,搅拌套轴22与第二中空滑块74之间沿轴线h的相对运动被锁定。
在一些实施例中,第二中空滑块74与搅拌套轴22可以通过第二推力轴承连接,第二中空滑块74可以与第二导轨761滑动连接,第二导轨761可以通过第二固定件762与外壳体60固定连接。外动力缸72的活塞杆伸缩,可以推动第二中空滑块74沿轴线h运动,带动搅拌套轴22沿轴线h运动。
在一些实施例中,内动力缸71的数量为至少2个,至少2个内动力缸71以轴线h为中心分布;外动力缸72的数量为至少2个,至少2个外动力缸以轴线h为中心分布。
在一些实施例中,至少2个内动力缸71可以设置同步回路。例如,可以采用电液伺服阀实现同步运动的回路。回路中伺服阀根据两个位移传感器的反馈信号持续不断地控制其阀口的开度,使通过的流量与通过换向阀时的流量相同,从而保证了两个内动力缸获得双向的同步运动。又例如,可以通过串联液压缸实现同步回路。第一个液压缸回油腔排出的油液,被送入第二个液压缸的进油腔。如果串联油腔活塞的有效面积相等,便可实现同步运动。这种回路两缸能承受不同的负载,但泵的供油压力要大于两缸工作压力之和。可以理解的,至少2个外动力缸72设置同步回路的方式同内动力缸71,不再赘述。
在一些实施例中,对于至少2个内动力缸71以及至少两个外动力缸72(例如共4个动力缸),可以通过一套液压回路完成。例如,可以利用继电器选择内动力缸71或外动力缸72执行动作,并可以利用分流阀控制动力缸的运动速度。
在一些实施例中,回填搅拌摩擦点焊设备可以包括压紧套50。
压紧套50是用于压紧待焊接工件的部件。压紧套50可以采用圆环状或柱状结构,压紧套50可以采用多种材质,如高强度钢材。在进行焊接时,将压紧套50定位压紧在待焊接工件上,从而对回填搅拌摩擦点焊设备进行定位和固定。
在一些实施例中,压紧套50下部设有开口,至少部分搅拌套21可沿轴线h运动地设置于开口中。在一些实施例中,搅拌套21与压紧套50之间的接触面的表面粗糙度小于0.08μm,即设置为镜面,从而降低搅拌套21与压紧套50沿轴线方向进行相对运动时产生的摩擦,进而减少设备的磨损。
在一些实施例中,搅拌套21与搅拌针11之间的接触面的表面粗糙度小于0.08μm,即设置为镜面,从而降低搅拌套21与搅拌针11沿轴线方向进行相对运动时产生的摩擦,进而减少设备的磨损。表面粗糙度小于0.08μm仅为较优选的实施例,实际工作过程中表面粗糙度可根据工况的不同做出适应性调整。
在一些实施例中,外壳体60可以由多段壳体结构组合构成,以便于拆卸和维修。在一些实施例中,外壳体60上用以安装轴承的位置可以对应设置为台阶结构,以便于轴承的安装。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (20)

  1. 一种回填搅拌摩擦点焊设备,其特征在于,包括:
    搅拌针组件,所述搅拌针组件包括搅拌针;
    搅拌套组件,所述搅拌套组件包括搅拌套,所述搅拌套套设于所述搅拌针外,所述搅拌套与所述搅拌针具有相同的轴线;以及
    轴向驱动组件和旋转驱动组件;所述轴向驱动组件驱动所述搅拌针和所述搅拌套分别沿所述轴线运动,所述旋转驱动组件驱动所述搅拌针和所述搅拌套以所述轴线为中心旋转运动,所述轴向驱动组件的中心轴和所述旋转驱动组件的回转轴均位于所述轴线上。
  2. 根据权利要求1所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌针组件包括搅拌针轴,所述搅拌针轴与所述搅拌针固定连接,所述搅拌针轴与所述搅拌针的旋转轴位于所述轴线上。
  3. 根据权利要求2所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌针轴设有第一配合结构,所述搅拌针设有第二配合结构,所述第一配合结构与所述第二配合结构配合,以限制所述搅拌针轴与所述搅拌针相对运动。
  4. 根据权利要求2所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌套组件包括搅拌套轴,所述搅拌套轴套设于所述搅拌针轴外,所述搅拌套轴与所述搅拌针轴的旋转轴位于所述轴线上,所述搅拌套轴与所述搅拌针轴之间能够沿所述轴线进行相对运动,所述搅拌套轴与所述搅拌针轴止转配合,所述搅拌套轴与所述搅拌套固定连接。
  5. 根据权利要求4所述的回填搅拌摩擦点焊设备,其特征在于,所述轴向驱动组件包括至少一个中空电机,所述中空电机的中心轴位于所述轴线上,所述中空电机通过丝杠传动组件带动所述搅拌针轴和/或所述搅拌套轴沿所述轴线运动。
  6. 根据权利要求5所述的回填搅拌摩擦点焊设备,其特征在于,所述中空电机包括第一中空电机和第二中空电机,所述第一中空电机通过第一组所述丝杠传动组件带动所述搅拌针轴沿所述轴线运动,所述第二中空电机通过第二组所述丝杠传动组件带动所述搅拌套轴沿所述轴线运动。
  7. 根据权利要求5所述的回填搅拌摩擦点焊设备,其特征在于,所述丝杠传动组件包括丝杠和丝杠螺母,所述丝杠与所述丝杠螺母传动连接,所述丝杠螺母与至少一个所述中空电机的转子连接,所述搅拌针轴和/或所述搅拌套轴可转动地与所述丝杠连接,所述搅拌针轴和/或所述搅拌套轴与所述丝杠之间沿所述轴线的相对运动被锁定。
  8. 根据权利要求7所述的回填搅拌摩擦点焊设备,其特征在于,所述轴向驱动组件仅包括1个所述中空电机,所述丝杠包括第一丝杠和第二丝杠,所述丝杠螺母与所述中空电机的转子连接,所述丝杠螺母上设有第一内螺纹和第二内螺纹,所述第一内螺纹与所述第二内螺纹的螺纹旋转方向相反,所述第一内螺纹与所述第一丝杠传动连接,所述第二内螺纹与所述第二丝杠传动连接;
    所述搅拌针轴可转动地与所述第一丝杠连接,所述搅拌针轴与所述第一丝杠之间沿所述轴线的相对运动被锁定;
    所述搅拌套轴可转动地与所述第二丝杠连接,所述搅拌套轴与所述第二丝杠之间沿所述轴线的相对运动被锁定。
  9. 根据权利要求4所述的回填搅拌摩擦点焊设备,其特征在于,所述轴向驱动组件包括第一中空动力缸和第二中空动力缸,所述第一中空动力缸和所述第二中空动力缸的中心轴均位于所述轴线上,所述第一中空动力缸的活塞杆与所述搅拌针轴连接,所述第二中空动力缸的活塞杆与所述搅拌套轴连接。
  10. 根据权利要求9所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌针轴包括第一搅拌针轴和第二搅拌针轴,所述第一搅拌针轴与所述第二搅拌针轴的旋转轴位于所述轴线上,所述第一搅拌针轴与所述第二搅拌针轴之间通过连接杆固定连接,所述搅拌针与所述第二搅拌针轴连接。
  11. 根据权利要求10所述的回填搅拌摩擦点焊设备,其特征在于,所述连接杆沿所述轴线方向开设有通槽,所述第一搅拌针轴与所述第二搅拌针轴均设置有与所述通槽匹配的销头。
  12. 根据权利要求10所述的回填搅拌摩擦点焊设备,其特征在于,所述第二搅拌针轴设有第三配合结构,所述搅拌针设有第四配合结构,所述第三配合结构与所述第四配合结构配合,以限制所述第二搅拌针轴与所述搅拌针相对运动。
  13. 根据权利要求10所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌套轴套设于所述第二搅拌针轴外,所述搅拌套轴与所述第二搅拌针轴的旋转轴位于所述轴线上,所述搅拌套轴与所述第二搅拌针轴之间能够沿所述轴线进行相对运动,所述搅拌套轴与所述第二搅拌针轴止转配合。
  14. 根据权利要求13所述的回填搅拌摩擦点焊设备,其特征在于,所述第一中空动力缸的活塞杆两端分别与所述第一搅拌针轴和所述第二搅拌针轴连接。
  15. 根据权利要求14所述的回填搅拌摩擦点焊设备,其特征在于,所述第二中空动力缸的活塞杆内固定设置所述搅拌套轴。
  16. 根据权利要求4所述的回填搅拌摩擦点焊设备,其特征在于,所述轴向驱动组件包括内动力缸和外动力缸;
    所述内动力缸的活塞杆与第一中空滑块连接,所述第一中空滑块套设于所述搅拌针轴外,所述第一中空滑块的中心轴位于所述轴线上,所述搅拌针轴与所述第一中空滑块能够进行旋转的相对运动,所述搅拌针轴与所述第一中空滑块之间沿所述轴线的相对运动被锁定;
    所述外动力缸的活塞杆与第二中空滑块连接,所述第二中空滑块套设于所述搅拌套轴外,所述第二中空滑块的中心轴位于所述轴线上,所述搅拌套轴与所述第二中空滑块能够进行旋转的相对运动,所述搅拌套轴与所述第二中空滑块之间沿所述轴线的相对运动被锁定。
  17. 根据权利要求16所述的回填搅拌摩擦点焊设备,其特征在于,所述内动力缸的数量为至少2个,至少2个所述内动力缸的以所述轴线为中心分布;所述外动力缸的数量为至少2个,至少2个所述外动力缸以所述轴线为中心分布。
  18. 根据权利要求2所述的回填搅拌摩擦点焊设备,其特征在于,所述旋转驱动组件包括电主轴,所述电主轴中设有芯轴,所述芯轴套设于所述搅拌针轴外,所述芯轴与所述搅拌针轴的旋转轴位于所述轴线上,所述芯轴与所述搅拌针轴之间能够沿所述轴线进行相对运动,所述芯轴与所述搅拌针轴止转配合。
  19. 根据权利要求1所述的回填搅拌摩擦点焊设备,其特征在于,还包括压紧套,所述压紧套下部设有开口,至少部分所述搅拌套可沿所述轴线运动地设置于所述开口中;所述搅拌套与所述压紧套之间的接触面的表面粗糙度小于0.08μm。
  20. 根据权利要求1所述的回填搅拌摩擦点焊设备,其特征在于,所述搅拌套与所述搅拌针之间的接触面的表面粗糙度小于0.08μm。
PCT/CN2024/076247 2022-12-13 2024-02-06 一种回填搅拌摩擦点焊设备 WO2024125674A2 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211601088.3 2022-12-13
CN202211604687.0A CN115958282A (zh) 2022-12-13 2022-12-13 一种双电机同轴驱动回填搅拌摩擦点焊设备
CN202211604687.0 2022-12-13
CN202211601088.3A CN116197517A (zh) 2022-12-13 2022-12-13 一种双液压驱动回填搅拌摩擦点焊设备

Publications (2)

Publication Number Publication Date
WO2024125674A2 true WO2024125674A2 (zh) 2024-06-20
WO2024125674A3 WO2024125674A3 (zh) 2024-08-15

Family

ID=91484423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/076247 WO2024125674A2 (zh) 2022-12-13 2024-02-06 一种回填搅拌摩擦点焊设备

Country Status (1)

Country Link
WO (1) WO2024125674A2 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857044B (zh) * 2018-07-18 2020-06-30 山东格物智能科技有限公司 一种轻量化回填式搅拌摩擦点焊装置
CN211490071U (zh) * 2019-12-09 2020-09-15 江苏理工学院 一种搅拌摩擦焊装置
CN110977139A (zh) * 2019-12-09 2020-04-10 江苏理工学院 一种搅拌摩擦焊装置
WO2023077334A1 (zh) * 2021-11-04 2023-05-11 黄山学院 一种用于铝合金板材无钥匙眼搅拌摩擦连接专用搅拌头
CN115958282A (zh) * 2022-12-13 2023-04-14 安徽万宇机械设备科技有限公司 一种双电机同轴驱动回填搅拌摩擦点焊设备
CN116197517A (zh) * 2022-12-13 2023-06-02 安徽万宇机械设备科技有限公司 一种双液压驱动回填搅拌摩擦点焊设备

Also Published As

Publication number Publication date
WO2024125674A3 (zh) 2024-08-15

Similar Documents

Publication Publication Date Title
CN109570731B (zh) 一种集成式摩擦塞补焊主轴头装置
US20090324438A1 (en) Variable flow pumping system
KR20090020549A (ko) 축방향 플런저 펌프 또는 모터
CN201021709Y (zh) 滚珠螺母装置和滚动螺旋传动装置
CN110174260B (zh) 机械封闭齿轮试验机的转矩加载装置
US4881419A (en) Fluid-power bearing actuator
CN201507567U (zh) 一种花键型万向轴
KR101843668B1 (ko) R-θ 테이블장치 및 암나사의 가공장치
CN116197517A (zh) 一种双液压驱动回填搅拌摩擦点焊设备
CN115958282A (zh) 一种双电机同轴驱动回填搅拌摩擦点焊设备
WO2024125674A2 (zh) 一种回填搅拌摩擦点焊设备
KR20010043542A (ko) 샤프트의 위상 위치를 조절하기 위한 조절장치
CN114453722A (zh) 摩擦焊机轴心调节装置、滑台机构及摩擦焊机
US20100024578A1 (en) Vibrator with a variable moment using a phase shifter with reduced clearances
WO2019210625A1 (zh) 新型波发生器的谐波传动机构
WO2023168962A1 (zh) 旋转隔离机构及摩擦焊机
CN205927212U (zh) 一种电锤
US2103314A (en) Variable delivery pump or motor
CN217056248U (zh) 一种带有自锁型液压离合器的空压机分动箱
US3735618A (en) Method and apparatus for internal gear rolling
CN113231730A (zh) 一种液压驱动控制的机器人搅拌摩擦焊电主轴
CN110125774B (zh) 直接驱动型高精度回转分度装置
CN201144916Y (zh) 一种转向输出角位移和扭矩的液压作动筒
CN212693236U (zh) 机械封闭齿轮试验机及其转矩加载装置
CN219151852U (zh) 一种组合式大功率搅拌摩擦焊电主轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24732828

Country of ref document: EP

Kind code of ref document: A2