WO2024120761A1 - Ereigniserkennungsverfahren - Google Patents
Ereigniserkennungsverfahren Download PDFInfo
- Publication number
- WO2024120761A1 WO2024120761A1 PCT/EP2023/081675 EP2023081675W WO2024120761A1 WO 2024120761 A1 WO2024120761 A1 WO 2024120761A1 EP 2023081675 W EP2023081675 W EP 2023081675W WO 2024120761 A1 WO2024120761 A1 WO 2024120761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- variables
- data
- model
- processing unit
- data processing
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000007613 environmental effect Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000002689 soil Substances 0.000 claims description 8
- 238000013473 artificial intelligence Methods 0.000 claims description 6
- 239000003673 groundwater Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/10—Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
Definitions
- the invention relates to a method for detecting an environmental event according to the preamble of claim 1 and a system for carrying out the method.
- Early warning systems often include sensors, event detection and decision subsystems to identify hazards early. Historical data and predictive models are often used to detect such an event. For example, to predict a flood event, rainfall data is continuously fed into a model. The simulation results are then displayed as discharge and water level forecasts at predefined desired locations.
- these event detection methods are based on a single measured variable. Although some methods are based on more than one variable, they often do not provide the relationship between the variables. Therefore, the capabilities in terms of warning and prediction/forecasting are limited.
- the object of the present invention is to provide a more detailed and precise prediction method for environmental events.
- the task is solved with the following steps: a) measuring at least two variables that are detected by at least one detection system arranged at a decentralized measuring point; b) transmitting the measured values of the at least two variables from the detection system to a data processing unit which is designed to execute a model for evaluating the current environmental state and/or for predicting the possibility of an environmental event occurring.
- the method is characterized in that the correlation of the at least two variables is measured, which is based on cross-correlation.
- Cross-correlation is a measure of the similarity of two data series depending on the shift relative to each other, which is often used in signal processing.
- the at least two variables are measured continuously in a predefined measurement interval.
- the detection system comprises at least one of: a sensor, a measuring device, a geographic information system (GIS) model, a web service, and/or a database.
- GIS geographic information system
- the data processing unit is part of the recognition system.
- the data processing unit is located in a central station for remote monitoring to be protected from damage during the environmental event.
- the model comprises a simulation based on artificial intelligence techniques.
- the model is trained based on historical measurements of the at least two variables.
- the at least two variables comprise at least two of a soil moisture, a water level, a pressure head/groundwater pressure head (or pressure), a water temperature, a pH, a conductivity, a turbidity, a flow, an oxygen content, a nitrite content, a soil bearing capacity and/or other ion concentration data, geological data, geographical data, climate data, weather data, weather forecast data.
- the environmental event includes at least one of a flood, a landslide, an unauthorized discharge/withdrawal of water, and/or an upstream chemical spill.
- a system comprising at least one detection system arranged at a decentralized measuring point; and a data processing unit designed to execute a model for evaluating the current environmental state and/or for predicting the possibility of an environmental event occurring in order to carry out the method described above.
- FIG 1 shows an embodiment of the claimed measuring system.
- identical features are marked with the same reference numerals.
- a detection system 1 e.g. a field device
- a detection system 1 comprises at least one sensor arranged at a measuring point near a river 2 (could also be other water bodies, such as a lake, a reservoir) or on a slope 3 (e.g. for detecting a landslide event), wherein the detection system 1 measures two variables (m, n): soil moisture and water level.
- the variables could also be at least one of a pressure head/groundwater head (or pressure), a water temperature, a flow, a soil bearing capacity and/or other geological data, geographical data, climate data, weather data, weather forecast data (differentiation of rain/snow).
- the two variables (m, n) are then continuously measured in a predefined measuring interval.
- the measured values (mt, nt) of the two variables are then transmitted to a data processing unit 4 which is designed to execute a model for evaluating the current risk of flooding and/or for predicting the possibility of a flooding event occurring.
- the data processing unit 4 is located in a central station for remote monitoring, which is connected to the detection system 1 by wire or wirelessly.
- the model includes AI (artificial intelligence) based methods (e.g. anomaly detection) which are trained based on the historical measurements for the two variables (m, n).
- AI artificial intelligence
- the model is improved using cross-correlation. Specifically, it is used to test whether the two variables (m, n) are correlated and, if so, to test the time lag between the two sets of variables (m, n). High soil moisture can indicate a high probability of flood or landslide events. When abnormal water levels are detected, it is often a sign of a flood or landslide.
- the correlation and time lag between the two sets of variables (m, n) could improve the detection method by providing a more detailed and accurate prediction.
- a further implementation of the invention is a method for detecting an unauthorized discharge/withdrawal of water and/or predicting what has happened upstream.
- a detection system 1 comprises two sensors arranged at a measuring point in a river that measures two variables (m, n): water level and water temperature.
- variables m, n
- other variables could also be used for the method, such as soil moisture, head/groundwater head (or pressure), flow, water temperature, pH, conductivity, turbidity, oxygen content, nitrite content and/or other ion concentration data, climate data, weather data, weather forecast data (differentiation of rain/snow).
- the two variables (m, n) are then continuously measured at a predefined measuring interval.
- the measured values (mt, nt) of the two variables are then transmitted to a data processing unit 4 which is designed to execute a model for evaluating the current water condition, for detecting an unauthorized discharge/withdrawal of water and/or for predicting the possibility of an upstream chemical accident.
- the data processing unit 4 could be a computer in a central station for remote monitoring.
- the model includes AI (artificial intelligence) based procedures (e.g. anomaly detection) that are trained based on the historical measurements of the two variables (m, n). An abnormal water level or temperature may indicate an unauthorized discharge/withdrawal of water.
- the model is then trained using of cross-correlation. In particular, it is used to test whether the two variables (m, n) are correlated and, if so, to test the time lag between the two sets of variables (m, n).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
Abstract
Die Erfindung offenbart ein Erkennungsverfahren und ein System zum Durchführen des Verfahrens. Das Verfahren umfasst die folgenden Schritte: a) Messen mindestens zweier Variablen, die durch mindestens ein Erkennungssystem erkannt werden, das an einem dezentralen Messpunkt angeordnet ist; b) Übertragen der Messwerte der mindestens zwei Variablen von dem Erkennungssystem an eine Datenverarbeitungseinheit, die dazu ausgebildet ist, ein Modell zum Auswerten des aktuellen Umweltzustands und/oder zum Vorhersagen der Möglichkeit des Eintretens eines Umweltereignisses auszuführen. Das Verfahren ist dadurch gekennzeichnet, dass die Korrelation der mindestens zwei Variablen gemessen wird, die auf Kreuzkorrelation basiert.
Description
Ereigniserkennungsverfahren
Die Erfindung betrifft ein Verfahren zum Erkennen eines Umweltereignisses gemäß dem Oberbegriff nach Anspruch 1 und ein System zum Durchführen des Verfahrens.
Frühwarnsysteme stellen Informationen über Bereiche bereit, die anfällig für spezifische Umweltereignisse wie etwa Naturkatastrophen sind, beispielsweise ein Erdrutsch, eine Überflutung und ein Erdbeben, eine nicht autorisierte Einleitung ungeklärter oder unzureichend behandelter Abwässer in einer Zone, in der keine Einleitung erlaubt ist, und eine illegale Entnahme von Wasser. Diese Umweltereignisse können lebensbedrohlich oder umweltschädlich sein, sodass eine genaue Vorhersage/Prognose und Warnung wichtig sind.
Frühwarnsysteme umfassen häufig Messaufnehmer, Ereigniserkennungs- und Entscheidungssubsysteme zum frühzeitigen Identifizieren von Gefahren. Historische Daten und Vorhersagemodelle werden häufig verwendet, um ein solches Ereignis zu erkennen. Zum Beispiel werden zum Vorhersagen eines Überflutungsereignisses Niederschlagsdaten kontinuierlich in ein Modell eingespeist. Die Simulationsergebnisse werden dann als Abfluss- und Wasserstandsvorhersagen an vordefinierten gewünschten Orten angezeigt.
Üblicherweise basieren diese Ereigniserkennungsverfahren auf einer einzigen gemessenen GrößeA/ariablen. Obwohl einige Verfahren auf mehr als einer Variablen basieren, stellen sie oft nicht die Beziehung zwischen den Variablen bereit. Daher sind die Fähigkeiten in Bezug auf die Warnung und die Vorhersage/Prognose beschränkt.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein detaillierteres und präziseres Vorhersage-ZPrognoseverfahren für Umweltereignisse bereitzustellen.
Die Aufgabe wird durch das in dem unabhängigen Anspruch 1 angegebene Verfahren und das in Anspruch 10 beschriebene System zum Durchführen des Verfahrens erfüllt.
Hinsichtlich des Verfahrens wird die Aufgabe mit den folgenden Schritten gelöst: a) Messen mindestens zweier Variablen, die durch mindestens ein Erkennungssystem erkannt werden, das an einem dezentralen Messpunkt angeordnet ist; b) Übertragen
der Messwerte der mindestens zwei Variablen von dem Erkennungssystem an eine Datenverarbeitungseinheit, die dazu ausgebildet ist, ein Modell zum Auswerten des aktuellen Umweltzustands und/oder zum Vorhersagen der Möglichkeit des Eintretens eines Umweltereignisses auszuführen. Das Verfahren ist dadurch gekennzeichnet, dass die Korrelation der mindestens zwei Variablen gemessen wird, die auf Kreuzkorrelation basiert. Kreuzkorrelation ist ein Maß für die Ähnlichkeit von zwei Datenreihen in Abhängigkeit von der Verschiebung relativ zueinander, das in der Signalverarbeitung häufig verwendet wird.
Vorteilhafterweise werden die mindestens zwei Variablen in einem vordefinierten Messintervall kontinuierlich gemessen.
In einer Ausführungsform umfasst das Erkennungssystem mindestens eines von: einem Messaufnehmer, einer Messvorrichtung, einem Modell eines geografischen Informationssystems (GIS-Modell), einem Webdienst und/oder einer Datenbank.
In einer Ausführungsform ist die Datenverarbeitungseinheit Teil des Erkennungssystems.
In einer Ausführungsform befindet sich die Datenverarbeitungseinheit in einer zentralen Station für Fernüberwachung, um vor Beschädigung bei dem Umweltereignis geschützt zu sein.
In einer Ausführungsform umfasst das Modell eine Simulation basierend auf Verfahren mit künstlicher Intelligenz.
In einer Ausführungsform wird das Modell basierend auf historischen Messwerten der mindestens zwei Variablen trainiert.
In einer Ausführungsform umfassen die mindestens zwei Variablen mindestens zwei von einer Bodenfeuchtigkeit, einem Wasserstand, einer Druckhöhe/Grundwasserdruckhöhe (oder einem Druck), einer Wassertemperatur, einem pH-Wert, einer Leitfähigkeit, einer Trübung, einem Durchfluss, einem Sauerstoffgehalt, einem Nitritgehalt, einer Bodentragfähigkeit und/oder sonstigen lonenkonzentrationsdaten, geologischen Daten, geografischen Daten, Klimadaten, Wetterdaten, Wetterprognosedaten.
In einer Ausführungsform umfasst das Umweltereignis mindestens eines von einer Überflutung, einem Erdrutsch, einer nicht autorisierten Einleitung/Entnahme von Wasser und/oder einem ström aufwärtigen Chemieunfall.
Diese Aufgabe wird ferner durch ein System erzielt, umfassend mindestens ein Erkennungssystem, das an einem dezentralen Messpunkt angeordnet ist; und eine Datenverarbeitungseinheit, die dazu ausgebildet ist, ein Modell zum Auswerten des aktuellen Umweltzustands und/oder zum Vorhersagen der Möglichkeit des Eintretens eines Umweltereignisses auszuführen, um das vorstehend beschriebene Verfahren durchzuführen.
Dies wird unter Bezugnahme auf die folgende Figur näher erläutert.
Die Figur 1 zeigt eine Ausführungsform des beanspruchten Messsystems. In der Figur 1 sind gleiche Merkmale mit denselben Bezugszeichen markiert.
Unter Bezugnahme auf die Figur 1 wird das Verfahren zum Erkennen/Vorhersagen eines Überflutungsereignisses, eines Erdrutschereignisses oder anderer Naturkatastrophen verwendet. Ein Erkennungssystem 1 (z. B. ein Feldgerät) umfasst mindestens einen Messaufnehmer, der an einem Messpunkt nahe einem Fluss 2 (könnten auch andere Wasserkörper sein, wie ein See, ein Stausee) oder an einem Hang 3 (z. B. zum Erkennen eines Erdrutschereignisses) angeordnet ist, wobei das Erkennungssystem 1 zwei Variablen (m, n) misst: Bodenfeuchtigkeit und Wasserstand. Die Variablen könnten jedoch auch mindestens eines von einer Druckhöhe/Grundwasserdruckhöhe (oder einem Druck), einer Wassertemperatur, einem Durchfluss, einer Bodentragfähigkeit und/oder sonstigen geologischen Daten, geografischen Daten, Klimadaten, Wetterdaten, Wetterprognosedaten (Unterscheidung von Regen/Schnee) sein. Die zwei Variablen (m, n) werden dann in einem vordefinierten Messintervall kontinuierlich gemessen. Die Messwerte (mt, nt) der zwei Variablen werden dann an eine Datenverarbeitungseinheit 4 übertragen, die dazu ausgebildet ist, ein Modell zum Auswerten des aktuellen Risikos von Überflutung und/oder zum Vorhersagen der Möglichkeit des Eintretens eines Überflutungsereignisses auszuführen.
Die Datenverarbeitungseinheit 4 befindet sich in einer zentralen Station für Fernüberwachung, die mit dem Erkennungssystem 1 mit Draht oder drahtlos verbunden
ist. Das Modell umfasst auf Kl (künstlicher Intelligenz) basierende Verfahren (z. B. Anomalieerfassung), die basierend auf den historischen Messwerten für die zwei Variablen (m, n) trainiert werden. Das Modell wird unter Verwendung von Kreuzkorrelation verbessert. Insbesondere wird es verwendet, um zu testen, ob die zwei Variablen (m, n) korrelieren und, falls ja, die Zeitverzögerung zwischen den zwei Reihen der Variablen (m, n) zu testen. Hohe Bodenfeuchtigkeit kann auf eine hohe Wahrscheinlichkeit von Überflutungs- oder Erdrutschereignissen hinweisen. Wenn abnormale Wasserstände erkannt werden, ist dies oft ein Anzeichen für eine Überflutung oder einen Erdrutsch. Die Korrelation und die Zeitverzögerung zwischen den zwei Reihen der Variablen (m, n) könnten das Erkennungsverfahren durch eine detailliertere und genauere Vorhersage verbessern.
Eine weitere Implementierung der Erfindung ist ein Verfahren zum Erkennen einer nicht autorisierten Einleitung/Entnahme von Wasser und/oder zum Vorhersagen dessen, was stromaufwärts geschehen ist. Ein Erkennungssystem 1 umfasst zwei Messaufnehmer, die an einem Messpunkt in einem Fluss angeordnet sind, der zwei Variablen (m, n) misst: Wasserstand und Wassertemperatur. Für das Verfahren könnten jedoch auch andere Variablen verwendet werden, wie eine Bodenfeuchtigkeit, eine Druckhöhe/Grundwasserdruckhöhe (oder ein Druck), ein Durchfluss, eine Wassertemperatur, ein pH-Wert, eine Leitfähigkeit, eine Trübung, ein Sauerstoffgehalt, ein Nitritgehalt und/oder sonstige lonenkonzentrationsdaten, Klimadaten, Wetterdaten, Wetterprognosedaten (Unterscheidung von Regen/Schnee). Die zwei Variablen (m, n) werden dann n einem vordefinierten Messintervall kontinuierlich gemessen. Die Messwerte (mt, nt) der zwei Variablen werden dann an eine Datenverarbeitungseinheit 4 übertragen, die dazu ausgebildet ist, ein Modell zum Auswerten des aktuellen Wasserzustands, zum Erkennen einer nicht autorisierten Einleitung/Entnahme von Wasser und/oder zum Vorhersagen der Möglichkeit eines ström aufwärtigen Chemieunfalls auszuführen.
Die Datenverarbeitungseinheit 4 könnte ein Computer in einer zentralen Station für Fernüberwachung sein. Das Modell umfasst auf Kl (künstlicher Intelligenz) basierende Verfahren (z. B. Anomalieerfassung), die basierend auf den historischen Messwerten der zwei Variablen (m, n) trainiert werden. Ein abnormaler Wasserstand oder eine abnormale Wassertemperatur können auf eine nicht autorisierte Einleitung/Entnahme von Wasser hinweisen. Das Modell wird dann unter Verwendung
von Kreuzkorrelation verbessert. Insbesondere wird es verwendet, um zu testen, ob die zwei Variablen (m, n) korrelieren und, falls ja, die Zeitverzögerung zwischen den zwei Reihen von Variablen (m, n) zu testen.
Bezugszeichenliste Erkennungssystem Fluss Hang Datenverarbeitungseinheit
Claims
1 . Verfahren zum Erkennen eines Umweltereignisses, umfassend die Schritte: a) Messen mindestens zweier Variablen (m, n), die durch mindestens ein Erkennungssystem (1 ) erkannt werden, das an einem dezentralen Messpunkt angeordnet ist; b) Übertragen der Messwerte (mt, nt) der mindestens zwei Variablen (m, n) von dem Erkennungssystem (1 ) an eine Datenverarbeitungseinheit (4), die ausgebildet ist, um ein Modell auszuführen, um den aktuellen Umweltzustand auszuwerten und/oder um die Möglichkeit des Eintretens eines Umweltereignisses vorherzusagen; dadurch gekennzeichnet, dass die Korrelation der mindestens zwei Variablen (m, n) gemessen wird, die auf Kreuzkorrelation basiert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die mindestens zwei Variablen (m, n) in einem vordefinierten Messintervall kontinuierlich gemessen werden.
3. Verfahren nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Erkennungssystem (1 ) mindestens eines umfasst von: einem Messaufnehmer, einer Messvorrichtung, einem Modell eines geografischen Informationssystems (GIS-Modell), einem Webdienst und/oder einer Datenbank.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Datenverarbeitungseinheit (4) Teil des Erkennungssystems (1) ist.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich die Datenverarbeitungseinheit (4) in einer zentralen Station für Fernüberwachung befindet.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Modell eine Simulation basierend auf Verfahren mit künstlicher Intelligenz umfasst.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Modell basierend auf historischen Messwerten der mindestens zwei Variablen (m, n) trainiert wird.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens zwei Variablen (m, n) mindestens zwei von einer Bodenfeuchtigkeit, einem Wasserstand, einer Druckhöhe/Grundwasserdruckhöhe (oder einem Druck), einer Wassertemperatur, einem pH-Wert, einer Leitfähigkeit, einer Trübung, einem Durchfluss, einem Sauerstoffgehalt, einem Nitritgehalt, einer Bodentragfähigkeit und/oder sonstigen lonenkonzentrationsdaten, geologischen Daten, geografischen Daten, Klimadaten, Wetterdaten, Wetterprognosedaten umfassen.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Umweltereignis mindestens eines von einer Überflutung, einem Erdrutsch, einer nicht autorisierten Einleitung/Entnahme von Wasser und/oder einem ström aufwärtigen Chemieunfall umfasst.
10. System zum Implementieren des Verfahrens nach mindestens einem der Ansprüche 1 bis 9, umfassend mindestens ein Erkennungssystem (1 ), das an einem dezentralen Messpunkt angeordnet ist; und eine Datenverarbeitungseinheit (4), die ausgebildet ist, um ein Modell auszuführen, um den aktuellen Umweltzustand auszuwerten und/oder die Möglichkeit des Eintretens eines Umweltereignisses vorherzusagen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022132383.8A DE102022132383A1 (de) | 2022-12-06 | 2022-12-06 | Ereigniserkennungsverfahren |
DE102022132383.8 | 2022-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024120761A1 true WO2024120761A1 (de) | 2024-06-13 |
Family
ID=88874591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/081675 WO2024120761A1 (de) | 2022-12-06 | 2023-11-14 | Ereigniserkennungsverfahren |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022132383A1 (de) |
WO (1) | WO2024120761A1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170193305A1 (en) * | 2014-06-16 | 2017-07-06 | Agt International Gmbh | Flash flooding detection system |
CN111275931A (zh) * | 2019-12-24 | 2020-06-12 | 湖北民族大学 | 一种危岩体断裂预警方法及系统 |
CN112699572A (zh) * | 2021-01-18 | 2021-04-23 | 长安大学 | 一种基于时滞相关性分析预测滑坡变形的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009020709A1 (de) | 2009-05-11 | 2010-11-18 | Basso, Gertrud | Verfahren und Vorrichtung zur Überwachung und Detektion von Zuständen der Luft und Bewuchs in Waldgebieten mit selbstlernenden Analyseverfahren zur Generierung von Alarmwahrscheinlichkeiten |
DE102016219029A1 (de) | 2016-09-30 | 2018-04-05 | Ford Global Technologies, Llc | Verfahren und Vorrichtung zur Generierung von Informationen über den Salzzustand eines Fahrwegs und Verwendung der Informationen |
DE102019203895A1 (de) | 2019-03-21 | 2020-09-24 | Robert Bosch Gmbh | Verfahren zum Auswerten mindestens eines Signals |
DE102020134382A1 (de) | 2020-12-21 | 2022-06-23 | Endress+Hauser SE+Co. KG | Vorrichtung zur Niederschlagsmessung |
DE202022100778U1 (de) | 2022-02-10 | 2022-03-01 | Vinayak Ashok Bharadi | IoT-basiertes automatisiertes System zur Vorhersage der Luftqualität mit einem unbemannten Luftfahrzeug (UAV) |
-
2022
- 2022-12-06 DE DE102022132383.8A patent/DE102022132383A1/de active Pending
-
2023
- 2023-11-14 WO PCT/EP2023/081675 patent/WO2024120761A1/de unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170193305A1 (en) * | 2014-06-16 | 2017-07-06 | Agt International Gmbh | Flash flooding detection system |
CN111275931A (zh) * | 2019-12-24 | 2020-06-12 | 湖北民族大学 | 一种危岩体断裂预警方法及系统 |
CN112699572A (zh) * | 2021-01-18 | 2021-04-23 | 长安大学 | 一种基于时滞相关性分析预测滑坡变形的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102022132383A1 (de) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bieroza et al. | Seasonal variation in phosphorus concentration–discharge hysteresis inferred from high-frequency in situ monitoring | |
Najafi et al. | Trends in total precipitation and magnitude-frequency of extreme precipitation in Iran, 1969-2009. | |
EP1913363B1 (de) | Verfahren und vorrichtung zur überwachung und detektierung von beschichtungsdefekten einer erd- oder wasserverlegten rohrleitung | |
US20030189435A1 (en) | Automated cathodic protection monitor and control system | |
CN102393299A (zh) | 一种定量计算滚动轴承运行可靠性的方法 | |
DE102012017415A1 (de) | Verfahren und Vorrichtung zur Überwachung der Wirksamkeit des kathodischen Korrosionsschutzes von im Erdreich verlegten Anlagen aus Metall | |
Tavazohi et al. | Assessment of drought in the Zayandehroud basin during 2000-2015 using NDDI and SPI indices | |
Bonacci et al. | Proposal of a new method for drought analysis | |
Alogdianakis et al. | Macroscopic effect of distance from seacoast on bridge deterioration–statistical data assessment of structural condition recordings | |
Califano et al. | Heavy rainfall temporal characterization in the peri-urban Solofrana river basin, Southern Italy | |
Andersen et al. | Ranking procedure on maintenance tasks for monitoring of embankment dams | |
Badyalina et al. | Flood frequency analysis using L-moment for Segamat river | |
WO2024120761A1 (de) | Ereigniserkennungsverfahren | |
van Leth et al. | Rainfall Spatiotemporal Correlation and Intermittency Structure from Micro-γ to Meso-β Scale in the Netherlands | |
CN112836897A (zh) | 一种基于机器学习的电网地质沉降隐患风险预测方法 | |
CN115545112A (zh) | 一种大量地下水实时自动监测数据自动识别和处理的方法 | |
Rahmat et al. | Analysis of spatio-temporal trends using Standardised Precipitation Index (SPI) | |
DE10025914A1 (de) | Verfahren und Vorrichtung zur permanenten Überwachung von elektrochemischen, physikalischen und chemischen Parametern an Bauwerken aus Stahlbeton | |
EP2390383A2 (de) | Verfahren zur Erkennung von Beschädigungen der Umhüllung von in Erde und/oder in Gewässern verlegten und durch kathodischen Korrosionsschutz geschützten Objekten | |
EP3771594A1 (de) | Verfahren zum erkennen fehlerhafter messereignisse und computerprogrammprodukt | |
Qiao et al. | Modeling the relationships between pavement distress and performance | |
ALI et al. | Standardized precipitation index (SPI) in north Libya and connection with North Atlantic oscillation (NAO) | |
DE19942436C2 (de) | Verfahren zur Abschätzung der Ausbreitung von Schadstoffen für den Grundwasserschutz | |
Hernández et al. | Quality control procedures at Euskalmet data center | |
CN117759493A (zh) | 一种风电场区域雷电防护方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23809473 Country of ref document: EP Kind code of ref document: A1 |