WO2024120527A1 - 一种含硼氮的有机化合物及其在有机电子器件中的应用 - Google Patents

一种含硼氮的有机化合物及其在有机电子器件中的应用 Download PDF

Info

Publication number
WO2024120527A1
WO2024120527A1 PCT/CN2023/137506 CN2023137506W WO2024120527A1 WO 2024120527 A1 WO2024120527 A1 WO 2024120527A1 CN 2023137506 W CN2023137506 W CN 2023137506W WO 2024120527 A1 WO2024120527 A1 WO 2024120527A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
group
boron
ring
organic
Prior art date
Application number
PCT/CN2023/137506
Other languages
English (en)
French (fr)
Inventor
潘君友
张皓
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Publication of WO2024120527A1 publication Critical patent/WO2024120527A1/zh

Links

Definitions

  • the present technology relates to the technical field of organic electronic materials and devices, and in particular to an organic compound containing boron and nitrogen, a polymer, a mixture, a composition thereof, and applications thereof in organic electronic devices, in particular in organic electroluminescent devices.
  • organic semiconductor materials have diversity in chemical synthesis, relatively low manufacturing costs in large-scale production, and excellent optical and electrical properties, their optoelectronic devices, especially organic light-emitting diodes (OLEDs), have great application potential in the display field.
  • OLEDs organic light-emitting diodes
  • the width of the half-maximum width (FWHM) of the blue luminous spectrum of commercially available smartphones is about 20 to 25nm, but the FWHM value of general fluorescent materials is about 40 to 60nm, the FWHM value of phosphorescent materials is about 60 to 90nm, and if it is a TADF material, the FWHM value is about 70 to 100nm.
  • the FWHM width is relatively narrow, it is sufficient to remove only a part of the unnecessary colors, but in the case of using phosphorescent materials or TADF materials, more than half of the colors need to be removed, and the actual luminous efficiency is greatly reduced.
  • the planar structure of boron nitrogen compounds is characterized by the high merger of the energy levels of the molecular vibration mode, which makes the half-maximum width (FWHM) of its luminescence spectrum significantly narrower than other types of luminescent materials (such as traditional fluorescent materials), which is conducive to achieving high color purity.
  • FWHM half-maximum width
  • boron nitride compounds have high device efficiency, high color purity and potentially high device stability, this type of material is highly valued by academia and industry and is one of the hottest topics in the field of OLED luminescent materials.
  • the width of their luminescence spectrum FWHM and the level of luminescence efficiency often depend on whether the vibration and rotational freedom of the molecular internal groups can be effectively suppressed.
  • the phenyl group connected to the nitrogen atom has a large torsion angle with the rigid conjugated plane of boron-nitrogen, the phenyl group does not directly participate in the super-resonance effect of the rigid conjugated plane of boron-nitrogen, and cannot directly participate in the luminescence process of the boron-nitrogen ring compound.
  • this type of phenyl group often has a large vibration and rotational freedom, which has an adverse effect on narrowing the FWHM of the boron-nitrogen compound.
  • boron-nitrogen compounds There is still room for improvement in boron-nitrogen compounds in achieving higher luminescence efficiency, narrower FWHM and longer device operating life.
  • an object of the present invention is to provide an organic compound containing boron and nitrogen, or a polymer, mixture, composition, organic electronic device and application thereof, aiming to solve the problems of efficiency and life span of existing OLEDs.
  • a boron-nitrogen-containing organic compound wherein the structure of the boron-nitrogen-containing organic compound is represented by a combination of chemical formula (I-1) and chemical formula (I-2):
  • * represents the connection point of the fusion of chemical formula (I-1) and chemical formula (I-2);
  • Q1 ring, Q2 ring, Q3 ring are independently selected from substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, or substituted or unsubstituted fused ring structure;
  • V0 is independently selected from CR2 or NR3 each time it appears;
  • R 1 to R 3 may, at each occurrence, be selected, identically or differently, from H, D, or a straight-chain alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or a branched or cyclic alkyl, alkoxy, thioalkoxy or silyl group having 3 to 20 C atoms, or a substituted keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, or an aryloxycarbonyl group having 7 to 20 C atoms, or a cyano group, a carbamoyl group, a haloformyl group, a formyl group, an isocyano group, an isocyanate group, a thiocyanate group, an isothiocyanate group, a hydroxyl group, a nitro group, CF 3 , Cl, Br, F, a crosslinkable group, or a substituted or unsubstitute
  • the present invention also relates to a polymer, comprising at least one first repeating unit, wherein the first repeating unit comprises at least one structure corresponding to the above-mentioned boron-nitrogen-containing organic compound.
  • the present invention also relates to a composition
  • a composition comprising an organic solvent, and at least one boron-nitrogen-containing organic compound as described above or at least one polymer as described above.
  • the present invention further relates to a mixture comprising an organic compound containing boron and nitrogen as described above or a polymer as described above, and at least one organic functional material, wherein the organic functional material is selected from at least one of a hole injection material, a hole transport material, an electron transport material, an electron injection material, an electron blocking material, a hole blocking material, a luminophore and a host material.
  • the present invention further relates to an organic electronic device comprising at least one boron-nitrogen-containing organic compound as described above or a polymer as described above or a mixture as described above.
  • the present invention by applying the boron-nitrogen-containing organic compound to an organic light-emitting device, can enable the organic light-emitting device to have high luminous efficiency, high color purity, high device stability, and long device service life.
  • the boron-nitrogen-containing organic compound according to the present invention mainly uses a large conjugated group as a modifying group to improve the optical properties of the boron-nitrogen skeleton.
  • a large conjugated group that is, the Q3 ring is fused to the core structure of BN through a five-ring ring, the conjugation length of the boron-nitrogen molecule can be extended and the stability of the molecule can be improved.
  • the electron cloud density around adjacent B atoms can be adjusted, which is convenient for adjusting the luminescence spectrum of the molecule; at the same time, the large conjugated group improves the planar stacking effect of the molecule to a certain extent, which can reduce The exciton annihilation phenomenon in the device is reduced, thereby achieving the effect of adjusting the light color of the organic compound and improving the efficiency and life of the light-emitting device.
  • the present invention provides an organic compound containing boron and nitrogen, which can be used as an organic light-emitting material in an organic light-emitting device, but is not limited thereto.
  • the organic compound containing boron and nitrogen is optimized and selected to have at least high luminous efficiency, narrow luminous spectrum FWHM and long luminous lifetime.
  • main material, matrix material, host material and matrix material have the same meaning and can be interchangeable.
  • guest material luminescent material and emitter material have the same meaning and can be interchangeable.
  • color converter color conversion layer and CCL have the same meaning and can be interchangeable.
  • composition printing ink, ink and ink have the same meaning and can be interchangeable.
  • each substituent may be independently selected from different groups.
  • substituted or unsubstituted means that the defined group may be substituted or unsubstituted.
  • substituted or unsubstituted means that the defined group may be substituted or unsubstituted.
  • substituent it should be understood that it is optionally substituted by a substituent acceptable in the art, and the above substituent may also be further substituted by a substituent acceptable in the art.
  • the "number of ring atoms” refers to the number of atoms constituting the ring itself in a structural compound (e.g., a monocyclic compound, a condensed ring compound, a cross-linked compound, a carbocyclic compound, a heterocyclic compound) obtained by bonding atoms to form a ring.
  • a structural compound e.g., a monocyclic compound, a condensed ring compound, a cross-linked compound, a carbocyclic compound, a heterocyclic compound
  • the atoms contained in the substituent are not included in the ring atoms.
  • the “number of ring atoms” described below is the same unless otherwise specified. For example, the number of ring atoms of a benzene ring is 6, the number of ring atoms of a naphthalene ring is 10, and the number of ring atoms of a thienyl group is 5.
  • Aromatic groups refer to hydrocarbon groups containing at least one aromatic ring.
  • Heteroaromatic groups refer to aromatic hydrocarbon groups containing at least one heteroatom.
  • the heteroatom is preferably selected from Si, N, P, O, S and/or Ge, and is particularly preferably selected from Si, N, P, O and/or S.
  • a condensed ring aromatic group refers to a ring of an aromatic group that can have two or more rings, in which two carbon atoms are shared by two adjacent rings, i.e., a condensed ring.
  • a condensed heterocyclic aromatic group refers to a condensed ring aromatic hydrocarbon group containing at least one heteroatom.
  • aromatic groups or heteroaromatic groups include not only systems of aromatic rings, but also non-aromatic ring systems. Therefore, systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, etc. are also considered to be aromatic groups or heterocyclic aromatic groups for the purposes of this invention.
  • fused aromatic or fused heteroaromatic ring systems include not only systems of aromatic or heteroaromatic groups, but also systems in which multiple aromatic or heteroaromatic groups may be interrupted by short non-aromatic units ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamines, diaryl ethers, etc. are also considered to be aromatic ring systems for the purposes of the present invention.
  • the energy level structure of the organic material the singlet energy level S 1 , the resonance factor f1 , the triplet energy level T 1 , HOMO, and LUMO play a key role.
  • the determination of these energy levels is introduced below.
  • HOMO and LUMO energy levels can be measured by photoelectric effects, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereafter referred to as CV).
  • photoelectric effects such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereafter referred to as CV).
  • CV cyclic voltammetry
  • quantum chemical methods such as density functional theory (hereafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • DFT density functional theory
  • the singlet energy level S1 of organic materials can be determined by luminescence spectrum, and the triplet energy level T1 can be determined by low-temperature time-resolved emission.
  • S 1 and T 1 can also be obtained by quantum simulation calculation (such as by Time-dependent DFT), such as by commercial software Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110 or described in the examples below.
  • ⁇ E ST is defined as (S 1 -T 1 ).
  • the absolute values of HOMO, LUMO, S 1 , and T 1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as the starting point and the peak point on the CV curve, may give different HOMO/LUMO values. Therefore, a reasonable and meaningful comparison should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, S 1 , f1, and T 1 are based on the simulation of Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level
  • (LUMO+2) is the third lowest occupied orbital energy level, and so on.
  • the present invention relates to an organic compound containing boron and nitrogen, wherein the structure of the organic compound containing boron and nitrogen is represented by a combination of chemical formula (I-1) and chemical formula (I-2):
  • * represents the connection point of the fusion of chemical formula (I-1) and chemical formula (I-2);
  • Q1 ring, Q2 ring, Q3 ring are independently selected from substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, or substituted or unsubstituted fused ring structure;
  • V0 is independently selected from CR2 or NR3 each time it appears;
  • R1 -R 3 may be selected, identically or differently, at each occurrence, from H, D, or a straight-chain alkyl, alkoxy or thioalkoxy group having 1 to 20
  • the Q1 ring, Q2 ring, and Q3 ring of the boron-nitrogen-containing organic compound are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted.
  • Q1 ring, Q2 ring, Q3 ring, at each occurrence may be selected from a substituted or unsubstituted aromatic or heteroaromatic ring system having 6 to 50 ring atoms, or an aryloxy or heteroaryloxy group having 6 to 50 ring atoms, or a combination of these groups.
  • Q1 ring, Q2 ring, Q3 ring, at each occurrence may be selected from a substituted or unsubstituted aromatic or heteroaromatic ring system having 6 to 30 ring atoms, or an aryloxy or heteroaryloxy group having 6 to 30 ring atoms, or a combination of these groups.
  • Q1 ring, Q2 ring, Q3 ring at each occurrence, may be selected from a substituted or unsubstituted aromatic or heteroaromatic ring system having 6 to 20 ring atoms, or an aryloxy or heteroaryloxy group having 6 to 20 ring atoms, or a combination of these groups.
  • Q1 ring, Q2 ring, Q3 ring when they appear each time, can be selected identically or differently from a substituted or unsubstituted aromatic or heteroaromatic ring system having 6 to 15 ring atoms, or an aryloxy or heteroaryloxy group having 6 to 15 ring atoms, or a combination of these groups.
  • X 1 and X 2 are selected from B or N.
  • the structure of the boron-nitrogen-containing organic compound is represented by a combination of chemical formula (I-1a) and chemical formula (I-2a):
  • V 0 , Y 1 , Y 2 , Y 3 , Q 1 ring, Q 2 ring, Q 3 ring and * are as defined above.
  • the boron-nitrogen-containing organic compound has a structure as shown in one of the general formulas (II-1) to (II-10):
  • V 0 , Y 1 , Y 2 , Y 3 , Q 1 ring and Q 3 ring are as defined above, and V 1 is as defined above for V 0 .
  • the boron-nitrogen-containing organic compound is selected from the general formula (II-1)-(II-6):
  • V 0 , Y 1 , Y 2 , Y 3 , Q 1 ring, Q 3 ring are defined as above, V 1 is defined as V 0
  • the boron-nitrogen-containing organic compound is selected from the general formula (II-7), (II-8) and (II-10):
  • the present invention is preferably directed to compounds that emit blue light. Therefore, compounds with a smaller effective conjugation length are preferred, such as compounds with the structures of general formula (II-1)-(II-6), (II-7), (II-8) and (II-10).
  • the compound having the general formula (II-9) tends to emit green or blue-green light and is therefore not a preferred structure in certain embodiments.
  • Q1 ring, Q2 ring, and Q3 ring when they appear each time, are independently selected from one or more combinations of the following structures:
  • V is independently selected from CR 4 or NR 5 at each occurrence; W is independently selected from BR 6 , C( ⁇ O), NR 7 , O, S, P, P ⁇ O or P ⁇ S at each occurrence; R 4 -R 7 are identically or differently selected from H, D, or a linear alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or a branched or cyclic alkyl, alkoxy, thioalkoxy or silyl group having 3 to 20 C atoms, or a substituted keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, or an aryloxycarbonyl group having 7 to 20 C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br, F,
  • Q1 ring, Q2 ring, and Q3 ring are independently selected from an aromatic ring system, a heteroaromatic ring system, or a fused aromatic group.
  • the aromatic or heteroaromatic ring system is selected from the following groups:
  • V and W are the same as above.
  • aromatic or heteroaromatic ring system is selected from:
  • V and W are the same as above.
  • the condensed ring aromatic group is selected from: benzene, naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, dinaphthylene, tetracene, pyrene, benzopyrene, acenaphthene, fluorene, and derivatives thereof;
  • the condensed ring heteroaromatic group is selected from: benzofuran, benzothiophene, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furanopyrrole, furanofuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, o-naphthylidene, quinoxaline, phenanthridine, primary idine, quinazoline,
  • R 1 -R 3 at each occurrence, may be independently selected from the following groups:
  • V and W are defined as above; n 2 , n 3 , n 4 , and n 5 are all integers greater than or equal to 1.
  • R 1 -R 3 when each occurs, are independently selected from the following groups:
  • the H atoms on the ring can be further substituted.
  • R 1 -R 3 in the above-mentioned boron-nitrogen-containing organic compound, R 1 -R 3 can be further selected from the following structural units or combinations thereof:
  • n1 is 1 or 2 or 3 or 4.
  • the boron-nitrogen-containing organic compound is at least partially deuterated, preferably 10% of the H is deuterated, more preferably 20% of the H is deuterated, most preferably 30% of the H is deuterated, and most preferably 40% of the H is deuterated.
  • the boron-nitrogen-containing organic compounds of the present invention are mainly divided into two categories.
  • One category of compounds is to modify the boron-nitrogen ring structure by using indolecarbazoles as modifying groups to adjust the optical properties of the existing boron-nitrogen skeleton; at the same time, the frontier orbital energy level of the organic compound can be effectively adjusted, and the multiple resonance effect of the rigid conjugated plane of the boron-nitrogen ring structure can be enhanced, thereby achieving the effect of adjusting the luminous color of the organic compound and narrowing the luminous spectrum FHWM; in addition, compared with the traditional aromatic amine skeleton, the carbazole-type skeleton has stronger rigidity, which can effectively improve the oscillator strength of the compound, and N and B are located in the opposite position of the conjugated six-membered ring, and no free rotation will occur, thereby improving the planarity of the boron-nitrogen-containing organic compound molecule, which is beneficial to further narrow the FWHM
  • Another type of compound is a boron-nitrogen ring structure modified by introducing carbazole and furan as a modifying group in the skeleton of the boron-nitrogen ring. Since furan has a poorer electron donating ability than carbazole, the electron cloud density around the B atom can be reduced to improve the luminescence efficiency of the boron-nitrogen-containing organic compound; and the conjugation length of the overall molecule can be extended to improve the stability of the compound.
  • the boron-nitrogen-containing organic compound according to the present invention can be used as a functional material in electronic devices, especially light-emitting devices.
  • the light-emitting device can be selected from color converters, OLEDs, OLEECs, and organic light-emitting field effect tubes; OLED devices are particularly preferred.
  • Organic functional materials can be divided into color conversion materials (CCMs), hole injection materials (HIMs), hole transport materials (HTMs), electron transport materials (ETMs), electron injection materials (EIMs), electron blocking materials (EBMs), hole blocking materials (HBMs), light-emitting materials (Emitters), host materials (Hosts) and organic dyes.
  • CCMs color conversion materials
  • HTMs hole transport materials
  • ETMs electron transport materials
  • EIMs electron injection materials
  • EBMs electron blocking materials
  • HBMs hole blocking materials
  • light-emitting materials (Emitters) host materials
  • Hos host materials
  • organic dyes organic dyes.
  • the light emitting device has a light emission wavelength of 300nm-1500nm, preferably 400nm-1000nm, and more preferably 400nm-800nm.
  • the boron-nitrogen-containing organic compound according to the present invention can be used as a fluorescent guest material (ie, a fluorescent light-emitting material).
  • the fluorescent guest material must have an appropriate singlet energy level, namely S 1 .
  • the boron nitrogen-containing organic compound according to the present invention has S 1 ⁇ 2.1 eV, preferably ⁇ 2.3 eV, more preferably ⁇ 2.5 eV, even more preferably ⁇ 2.7 eV, most preferably ⁇ 2.8 eV.
  • the boron-nitrogen-containing organic compound according to the present invention has a PLQY of ⁇ 40%, preferably ⁇ 50%, more preferably ⁇ 60%, and most preferably ⁇ 70%.
  • the boron-nitrogen-containing organic compound according to the present invention has a resonance factor f1 ⁇ 0.2, preferably ⁇ 0.3, more preferably ⁇ 0.4, and most preferably ⁇ 0.5.
  • the boron-nitrogen-containing organic compound according to the present invention has a glass transition temperature (Tg) ⁇ 100°C, preferably Tg ⁇ 140°C, and more preferably Tg ⁇ 180°C.
  • the boron-nitrogen containing organic compound according to the present invention has (HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.3 eV, more preferably ⁇ 0.4 eV, most preferably ⁇ 0.45 eV.
  • the boron-nitrogen-containing organic compound according to the present invention has ((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.30 eV, most preferably ⁇ 0.35 eV.
  • the present invention further provides a polymer, wherein the polymer comprises at least one first repeating unit, wherein the first repeating unit comprises at least one structure corresponding to the boron-nitrogen-containing organic compound described in the present invention.
  • the polymer further comprises at least one second repeating unit that is different from the first repeating unit.
  • the polymer is a conjugated polymer; in some preferred embodiments, the conjugated polymer comprises a second repeating unit, and the second repeating unit is selected from one of the following repeating units:
  • R' is independently selected from H, D, C1-C20 straight chain alkyl, C1-C20 alkoxy, C1-C20 thioalkoxy, C3-C20 branched chain alkyl, C3-C20 cyclic alkyl, C3-C20 branched chain alkoxy, C3-C20 cyclic alkoxy, C3-C20 branched chain thioalkoxy, C3-C20 cyclic thioalkoxy, silyl, C1-C20 keto, C2-C20 alkoxycarbonyl, C7-C20 aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF3 , Cl, Br, F, I, a cross-linkable group, a substituted or unsubstituted aryl group having 5 to 60 ring atom
  • the polymer comprises a polymer main chain and a branch chain connected to the polymer main chain, wherein the branch chain is derived from the boron-nitrogen-containing organic compound of the present invention. More preferably, the polymer is a non-conjugated polymer, which comprises a second repeating unit, wherein the second repeating unit is selected from one of the following repeating units:
  • R′′ is independently selected from H, D, C1-C20 straight-chain alkyl, C1-C20 alkoxy, C1-C20 thioalkoxy, C3-C20 branched-chain alkyl, C3-C20 cyclic alkyl, C3-C20 branched-chain alkoxy, C3-C20 cyclic alkoxy, C3-C20 branched-chain thioalkoxy, C3-C20 cyclic thioalkoxy, silyl, C1-C20 keto, C2-C20 alkoxycarbonyl, C7-C20 aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br, F, I, a cross-linkable group, a substituted or unsubstituted aryl group having 5 to 60
  • the synthesis method of the polymer is selected from SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the polymer according to the present invention has a glass transition temperature (Tg) ⁇ 100°C, preferably ⁇ 120°C, more preferably ⁇ 140°C, more preferably ⁇ 160°C, and most preferably ⁇ 180°C.
  • Tg glass transition temperature
  • the molecular weight distribution (PDI) of the polymer according to the present invention is preferably in the range of 1 to 5, more preferably 1 to 4, more preferably 1 to 3, even more preferably 1 to 2, and most preferably 1 to 1.5.
  • the weight average molecular weight (Mw) of the polymer according to the present invention is preferably in the range of 1 The range is from 10,000 to 1,000,000, more preferably from 50,000 to 500,000, more preferably from 100,000 to 400,000, even more preferably from 150,000 to 300,000, and most preferably from 200,000 to 250,000.
  • the boron-nitrogen-containing organic compound or polymer according to the present invention has a luminescent function, and its luminescent wavelength is between 300nm and 1000nm, preferably between 350nm and 900nm, and more preferably between 400nm and 800nm.
  • the luminescence referred to here refers to photoluminescence or electroluminescence.
  • the present invention also relates to a mixture, comprising an organic compound or polymer containing boron and nitrogen as described above, and at least one organic functional material.
  • the at least one organic functional material is selected from at least one of hole injection materials, hole transport materials, electron transport materials, electron injection materials, electron blocking materials, hole blocking materials, luminophores and host materials.
  • the luminophore is selected from singlet luminophores (fluorescent luminophores), triplet luminophores (phosphorescent luminophores) and organic thermally excited delayed fluorescence materials (TADF materials).
  • organic functional materials are described in detail in WO2010135519A1, US20090134784A1 and WO2011110277A1, and the entire contents of these three patent documents are hereby incorporated herein by reference.
  • the organic functional material can be a small molecule and a polymer material.
  • the mixture comprises at least one boron-nitrogen-containing organic compound or polymer according to the present invention and a fluorescent host material.
  • the boron-nitrogen-containing organic compound according to the present invention can be used as a fluorescent guest material, wherein the weight percentage of the fluorescent guest is ⁇ 10wt%, preferably ⁇ 9wt%, more preferably ⁇ 8wt%, particularly preferably ⁇ 7wt%, and most preferably ⁇ 5wt%.
  • An object of the present invention is to provide a material solution for evaporation-type OLEDs.
  • the boron-nitrogen-containing organic compound according to the present invention has a molecular weight of ⁇ 1200 g/mol, preferably ⁇ 1100 g/mol, very preferably ⁇ 1000 g/mol, more preferably ⁇ 950 g/mol, and most preferably ⁇ 900 g/mol.
  • Another object of the present invention is to provide a material solution for printed OLEDs.
  • the boron-nitrogen-containing organic compound according to the present invention has a molecular weight of ⁇ 800 g/mol, preferably ⁇ 1000 g/mol, preferably ⁇ 1100 g/mol, and most preferably ⁇ 1200 g/mol.
  • the boron-nitrogen-containing organic compound according to the present invention has a solubility in toluene of ⁇ 10 mg/mL at 25° C., preferably ⁇ 15 mg/mL, and most preferably ⁇ 20 mg/mL.
  • the invention further relates to a composition or ink comprising at least one boron-nitrogen-containing organic compound or polymer according to the invention and an organic solvent.
  • the viscosity and surface tension of the ink are important parameters.
  • the appropriate surface tension parameters of the ink are suitable for a specific substrate and a specific printing method.
  • the surface tension of the ink according to the present invention at working temperature or at 25°C is approximately in the range of 19 dyne/cm to 50 dyne/cm; more preferably in the range of 22 dyne/cm to 35 dyne/cm; and most preferably in the range of 25 dyne/cm to 33 dyne/cm.
  • the viscosity of the ink according to the present invention at the working temperature or 25° C. is about 1 cps to 100 cps; preferably 1 cps to 50 cps; more preferably 1.5 cps to 20 cps; and most preferably 4.0 cps to 20 cps.
  • the composition thus formulated will facilitate inkjet printing.
  • the viscosity can be adjusted by different methods, such as by selecting a suitable solvent and the concentration of the functional material in the ink.
  • the ink containing the metal organic complex or polymer according to the present invention can facilitate people to adjust the printing ink in an appropriate range according to the printing method used.
  • the weight ratio of the functional material contained in the composition according to the present invention is in the range of 0.3wt% to 30wt%, preferably in the range of 0.5wt% to 20wt%, more preferably in the range of 0.5wt% to 15wt%, more preferably in the range of 0.5wt% to 10wt%, and most preferably in the range of 1wt% to 5wt%.
  • the organic solvent is selected from aromatic or heteroaromatic based solvents, in particular aliphatic chain/ring substituted aromatic solvents, or aromatic ketone solvents, or aromatic ether solvents.
  • solvents suitable for the present invention include, but are not limited to: aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, Tetralin, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutyl
  • the organic solvent can be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, phorone, di-n-amyl ketone, etc.; or aliphatic ethers, for example, amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones for example, 2-nonanone, 3-nonanone, 5-nonanone, 2-de
  • the printing ink further comprises another organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methyl ethyl ketone, 1,2-dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetralin, decalin, indene and/or mixtures thereof.
  • the composition according to the present invention is a solution.
  • composition according to the present invention is a suspension.
  • composition in the embodiment of the present invention may include 0.01wt% to 20wt% of the boron-nitrogen-containing organic compound or its mixture according to the present invention, preferably 0.1wt% to 15wt%, more preferably 0.2wt% to 10wt%, and most preferably 0.25wt% to 5wt% of the organic compound or its mixture.
  • the present invention also relates to the use of the composition as a coating or printing ink in the preparation of organic electronic devices, and particularly preferably a preparation method by printing or coating.
  • suitable printing or coating techniques include (but are not limited to) inkjet printing, gravure printing, nozzle printing, letterpress printing, screen printing, dip coating, spin coating, doctor blade coating, roller printing, twist roller printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slot extrusion coating, etc.
  • the preferred ones are inkjet printing, nozzle printing and gravure printing.
  • the solution or suspension may further include one or more components such as surfactant compounds, lubricants, wetting agents, dispersants, hydrophobic agents, adhesives, etc., for adjusting viscosity, film-forming properties, improving adhesion, etc.
  • the present invention also provides an application of the boron-nitrogen-containing organic compound or polymer as described above, that is, applying the boron-nitrogen-containing organic compound or polymer to an organic electronic device.
  • the organic electronic device may be selected from, but not limited to, a color converter, an organic light-emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light-emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light-emitting field effect transistor, an organic laser, an organic spin electronic device, an organic sensor, and an organic plasmon emitting diode (Organic Plasmon Emitting Diode), etc., and organic electroluminescent devices such as OLED, OLEEC, and organic light-emitting field effect transistor are particularly preferred.
  • the organic compound is preferably used in the light-emitting layer of an electroluminescent device.
  • the present invention further relates to an organic electronic device, comprising at least one organic compound or polymer or mixture containing boron and nitrogen as described above.
  • an organic electronic device comprising at least one organic compound or polymer or mixture containing boron and nitrogen as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer located between the cathode and the anode, wherein the functional layer comprises at least one organic compound or polymer or mixture containing boron and nitrogen as described above.
  • the organic electronic device can be selected from, but not limited to, color converters, organic light emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic light emitting cells (OLEECs), organic field effect transistors (OFETs), organic light emitting field effect transistors, organic lasers, organic spin electronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diodes), etc., and organic electroluminescent devices such as OLEDs, OLEECs and organic light emitting field effect transistors are particularly preferred.
  • the organic electronic device comprises a light-emitting layer, wherein the light-emitting layer comprises an organic compound containing boron and nitrogen, or comprises an organic compound containing boron and nitrogen and a host material, or comprises an organic compound containing boron and nitrogen, a phosphorescent light-emitting body and a host material.
  • the organic electronic device is an organic light-emitting device, which comprises a light-emitting layer, and the guest material of the light-emitting layer comprises at least one boron-nitrogen-containing organic compound or polymer or mixture as described above.
  • the electroluminescent device described above especially OLED, comprises a substrate, an anode, at least one light-emitting layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting device. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass. It is best that the substrate has a smooth surface. Substrates without surface defects are particularly ideal.
  • the substrate is flexible and can be selected from a polymer film or plastic with a glass transition temperature (Tg) of more than 150°C, preferably more than 200°C, more preferably more than 250°C, and most preferably more than 300°C. Examples of suitable flexible substrates are polyethylene terephthalate (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may include a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or the hole transport layer (HTL) or the light-emitting layer.
  • the absolute value of the difference between the work function of the anode and the HOMO energy level or valence band energy level of the light emitter in the light-emitting layer or the p-type semiconductor material as the HIL or HTL or the electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), etc.
  • suitable anode materials are known and can be easily selected for use by a person skilled in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), etc.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the light-emitting layer.
  • the absolute value of the difference between the work function of the cathode and the LUMO energy level or conduction band energy level of the light emitter in the light-emitting layer or the n-type semiconductor material serving as the electron injection layer (EIL) or the electron transport layer (ETL) or the hole blocking layer (HBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • cathode materials examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, etc.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), etc.
  • OLEDs may also include other functional layers, such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer thereof is prepared by the composition according to the present invention.
  • the light emitting device especially OLED, has a light emitting wavelength between 300nm and 1500nm, preferably between 350nm and 1200nm, and more preferably between 400nm and 800nm.
  • the present invention also relates to the application of the organic electronic device according to the present invention in various electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors and the like.
  • the present invention also relates to electronic devices including the organic electronic device according to the present invention, including, but not limited to, display devices, lighting devices, light sources, sensors, etc.
  • the electronic device includes a housing and the above-mentioned device arranged on the housing.
  • the electronic device can be various terminal devices equipped with an OLED display screen, including but not limited to smart phones, tablet computers, personal laptop computers, smart TVs, car displays, smart watches, etc.
  • the electronic device is a smart phone.
  • intermediate 1e 100 g
  • triethyl phosphite 50 g
  • DMF 1000 mL
  • Extract with ethyl acetate and deionized water wash the organic phase twice, dry, filter, and spin-dry the filtrate to obtain 80 g of crude product of intermediate 1f. Separate by column chromatography (petroleum ether/ethyl acetate 15:1), collect 75 g of intermediate 1f. Yield 75%.
  • Product characterization: MS (ASAP) 335.2.
  • intermediate 2b 100 g
  • triethyl phosphite 50 g
  • DMF 1000 mL
  • Extract with ethyl acetate and deionized water wash the organic phase twice, dry, filter, and spin dry the filtrate to obtain 75 g of crude product of intermediate 2c. Separate by column chromatography (petroleum ether/ethyl acetate 15:1) to collect 72 g of intermediate 2c. Yield 70%.
  • Product characterization: MS (ASAP) 410.3.
  • intermediate 10d The synthesis of intermediate 10d is similar to that of intermediate 9d.
  • 10a (100 g), 10b (100 g), tris(dibenzylideneacetone)dipalladium (16 g), and anhydrous sodium tert-butoxide (67 g) were dissolved in toluene (500 mL), heated to 90° C. and stirred for 2 hours. After the reaction solution was cooled to room temperature, a large amount of deionized water and dichloromethane were added to extract, and the organic phase was retained. After the organic solvent was removed by reduced pressure distillation, it was purified by silica gel column chromatography to obtain 85 g of intermediate 10c with a yield of 80%.
  • Product characterization: MS (ASAP) 417.
  • intermediate 11c 100g
  • triethyl phosphite 50g
  • DMF 1000mL
  • Extract with ethyl acetate and deionized water wash the organic phase twice, dry, filter, and spin dry the filtrate to obtain 75g of crude product of intermediate 11d. Separate by column chromatography (petroleum ether/ethyl acetate 15:1) to obtain 70g of intermediate 11d with a yield of 65%.
  • Product characterization: MS (ASAP) 335.2.
  • intermediate 12c 100 g
  • triethyl phosphite 50 g
  • DMF 1000 mL
  • Extract with ethyl acetate and deionized water wash the organic phase twice, dry, filter, and spin dry the filtrate to obtain 75 g of crude product of intermediate 12d. Separate by column chromatography (petroleum ether/ethyl acetate 15:1) to obtain 78 g of intermediate 12d with a yield of 67%.
  • Product characterization: MS (ASAP) 255.
  • intermediate 15c The synthesis of intermediate 15c is similar to that of intermediate 9d.
  • 15a 100 g
  • 10b 100 g
  • anhydrous sodium tert-butoxide 67 g
  • toluene 500 mL
  • a large amount of deionized water and dichloromethane were added to extract, and the organic phase was retained.
  • the organic solvent was removed by reduced pressure distillation, it was purified by silica gel column chromatography to obtain 83 g of intermediate 15b with a yield of 80%.
  • Product characterization: MS (ASAP) 416.09.
  • 16a (synthesis method reference patent document: CN107922837A) (100g), 16b (100g), potassium carbonate (25g), tetratriphenylphosphine palladium (3g) and 1000mL toluene/50mL ethanol/50mL water in a three-necked flask, replace with nitrogen three times, heat to 100°C for reaction, heat to reflux for 12h to stop the reaction, and cool down. Extract with ethyl acetate and deionized water, wash the organic phase with water twice, dry, filter, and spin dry the filtrate to obtain 16c 106g crude product. Separate by column chromatography (petroleum ether/ethyl acetate 15:1), collect the product to obtain 93.5g, with a yield of 70%.
  • 17a (synthesis method reference patent document: CN107922837A) (100g), 16b (100g), potassium carbonate (25g), tetratriphenylphosphine palladium (3g) and 1000mL toluene/50mL ethanol/50mL water in a three-necked flask, replace with nitrogen three times, heat to 100°C for reaction, heat to reflux for 12h to stop the reaction, and cool down. Extract with ethyl acetate and deionized water, wash the organic phase with water twice, dry, filter, and spin dry the filtrate to obtain 17b 109g crude product. Separate by column chromatography (petroleum ether/ethyl acetate 15:1), collect the product to obtain 94.5g, with a yield of 70%.
  • the intermediate 1j (10 g) was dissolved in tert-butylbenzene (300 mL), and tert-butyl lithium (16 mL, 1.3 M n-hexane solution) was added dropwise under ice bath. After the addition was completed, the reaction solution was heated to 100°C and stirred for 2 hours. Then, the reaction solution was cooled to ice. Bath, add boron tribromide (5.2mL) dropwise. After the addition is complete, heat to 180°C and stir for 8 hours. Subsequently, add N,N-diisopropylethylamine (24mL) dropwise in an ice bath. After the addition is complete, heat to 180°C and stir overnight.
  • tert-butylbenzene 300 mL
  • tert-butyl lithium 16 mL, 1.3 M n-hexane solution
  • the existing boron-nitrogen material structure is as follows:
  • the specific synthesis method of the existing boron-nitrogen material can be prepared by using the existing synthesis method, and the present invention will not elaborate on it in detail.
  • the existing boron nitrogen structure is as follows:
  • the intermediate d6 (10 g) was dissolved in tert-butylbenzene (300 mL), and tert-butyl lithium (16 mL, 1.3 M n-hexane solution) was added dropwise under an ice bath. After the addition was complete, the reaction solution was heated to 100 ° C and stirred for 2 hours. Subsequently, the reaction solution was cooled to an ice bath and boron tribromide (5.2 mL) was added dropwise. After the addition was complete, it was heated to 180 ° C and stirred for 8 hours. Subsequently, N, N-diisopropylethylamine (24 mL) was added dropwise under an ice bath.
  • the energy levels of organic compounds can be obtained by quantum calculation, for example, using TD-DFT (time-dependent density functional theory) through Gaussian09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian09W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the molecular geometry is optimized using the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet)
  • the energy structure of the organic molecule is calculated by the TD-DFT (time-dependent density functional theory) method "TD-SCF/DFT/Default Spin/B3PW91” and the basis set "6-31G(d)” (Charge 0/Spin Singlet).
  • HOMO and LUMO energy levels are calculated according to the following calibration formula, and S 1 , T 1 and the resonance factor f(S 1 ) are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • LUMO(eV) ((LUMO(G) ⁇ 27.212)-2.0041)/1.385
  • HOMO(G) and LUMO(G) are the direct calculation results of Gaussian 09W, and the unit is Hartree. The results are shown in Table 1:
  • the wavelength range of 407nm to 505nm is the blue light region, and the wavelength range of 505nm to 525nm is the green light region.
  • the compounds 2, 5, and 7 synthesized in the present invention use an indole carbazole group as a modifying group connected to the B atom, effectively inhibiting the rotation and vibration of the internal free radicals, thereby narrowing the luminescence spectrum FHWM and improving the quantum efficiency, and achieving efficient narrow FHMW blue light emission.
  • compound 7 uses a deuterated benzene ring as a modifying group to modify the benzene ring located in the para position of the B atom, thereby enhancing the electron cloud density of the benzene ring in the para position of the B atom, thereby adjusting the light color.
  • a carbazole and furan group is used as a modifying group in the framework of the boron-nitrogen ring structure to connect to the B atom. Since the oxygen atom has a certain electron-withdrawing effect, the electron cloud density of the benzene ring adjacent to the B atom can be reduced, the super-resonance effect of the overall compound can be improved, and the FWHM of the luminescence spectrum of the new organic compound can be effectively narrowed. In addition, the light of the new B-N organic compound can be slightly blue-shifted. In compound 17, a carbazole and thiophene group is used as a modifying group in the framework of the boron-nitrogen ring structure to connect to the B atom, which has a similar effect to the use of carbazole and furan.
  • the luminescence spectrum of the comparative example compound 2 shows green light emission, which indicates that the position of the condensed ring has a great influence on the maximum emission peak of the molecule.
  • Step S1 Use transparent glass as a substrate, clean the anode (ITO (15nm) / Ag (150nm) / ITO (15nm)) on it, and use stripping liquid, pure water, and isopropanol ultrasonic cleaning respectively, and then dry and then perform Ar 2 ozone treatment.
  • ITO anode
  • Ag 150nm
  • ITO isopropanol
  • Step S2 The cleaned substrate is moved into a vacuum vapor deposition device, and under high vacuum (1 ⁇ 10 -6 mbar), the ratio of PD to HT-1 is controlled to be 3:100 to form a 10 nm hole injection layer (HIL).
  • HIL hole injection layer
  • Step S3 On the hole injection layer, 125 nm of hole transport layer material HT-1 is deposited by vacuum evaporation.
  • Step S4 On the hole injection layer, 10 nm of electron blocking layer material HT-2 is deposited by vacuum evaporation.
  • Step S5 On the electron blocking layer, a light-emitting layer is deposited by vacuum evaporation, wherein the main material is BH and the guest material is the compound 1 of the present invention, the mass ratio is 98:2, and the thickness is 25 nm.
  • Step S6 Vacuum evaporation is used to deposit 2 nm of hole blocking layer material ET-1 on the light-emitting layer.
  • Step S7 On the hole blocking layer, ET-2 and Liq are evaporated by vacuum evaporation as an electron transport layer, with a mass ratio of 50:50 and a thickness of 35 nm.
  • Step S8 1.5 nm of Yb is deposited on the electron transport layer by vacuum evaporation as an electron injection layer.
  • Step S9 17 nm of Mg:Ag (1:9) alloy was evaporated on the electron injection layer as a cathode.
  • Step S10 evaporating 55 nm of CPL material on the cathode layer.
  • Example 2 The difference between Example 2 and Example 1 is that in step S3, 120 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 2.
  • step S3 120 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 2.
  • step S5 120 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 2.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • Example 3 The difference between Example 3 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 3.
  • step S3 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 3.
  • step S5 is the difference between Example 3 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 3.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • Example 4 The difference between Example 4 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 8.
  • step S3 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 8.
  • step S5 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 8.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • Example 5 The difference between Example 5 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 13.
  • step S3 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 13.
  • step S5 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 13.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • Example 6 The difference between Example 6 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 14.
  • step S3 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 14.
  • step S5 the guest material in step S5 is the aforementioned compound 14.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • Example 7 The difference between Example 7 and Example 1 is that in step S3, 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 16.
  • step S3 122 nm of hole transport layer material HT-1 is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the aforementioned compound 16.
  • step S5 is the guest material in step S5 is the aforementioned compound 16.
  • the remaining steps are the same as in Example 1, please refer to the aforementioned Example 1 for details.
  • step S3 a hole transport layer material HT-1 with a thickness of 121 nm is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the existing boron-nitrogen material corresponding to the comparative compound 1.
  • step S5 a hole transport layer material HT-1 with a thickness of 121 nm is deposited on the hole injection layer by vacuum evaporation, and the guest material in step S5 is the existing boron-nitrogen material corresponding to the comparative compound 1.
  • the remaining steps are the same as those in Example 1, and please refer to the aforementioned Example 1 for details.
  • LT95@1000nit The working time when the device has 5% brightness loss at 1000 nits brightness.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种含硼氮的有机化合物及其在有机电子器件的应用,该含硼氮的有机化合物具有结构(I-1)和结构(I-2)组合表示的通式,所述含硼氮的有机化合物应用于有机器件中,应用所述含硼氮的有机化合物的器件兼具高的发光效率、窄的发光光谱FWHM及较长的工作寿命等。

Description

一种含硼氮的有机化合物及其在有机电子器件中的应用 技术领域
本技术涉及有机电子材料和器件技术领域,尤其涉及一种含硼氮的有机化合物,包含其的聚合物、混合物、组合物,及其在有机电子器件中的应用,特别是在有机电致发光器件中的应用。
背景技术
由于有机半导体材料在化学合成上具有多样性,而且大规模生产时制造成本相对较低,同时具有优良的光学与电学性能等,其光电器件,特别是有机发光二极管(OLED)在显示领域具有很大的应用潜力。
在OLED显示器中,通过将光的三原色即红色、绿色、蓝色的发光加以混合来表现各种颜色,但若三原色各自的色纯度低,则无法再现较多的颜色,导致显示器的画质大幅降低。因此,在市售的显示器中,通过利用光学滤波器将不需要的颜色自发光光谱中去除,从而提高色纯度。若原来的光谱宽度宽,则去除的比例增加,因此,即便在发光效率高的情况下,实质的发光效率也大幅降低。例如,市售的智能手机的蓝色发光光谱的半峰宽(FWHM)的宽度约为20~25nm左右,但一般的荧光材料的FWHM的值为40~60nm左右,磷光材料的FWHM的值为60~90nm左右,若为TADF材料,则FWHM的值为70~100nm左右。在使用了荧光材料的情况下,由于FWHM宽度比较窄,因此仅去除一部分不需要的颜色便足够,但在使用了磷光材料或TADF材料的情况下,需要去除一半以上的颜色,实质的发光效率大幅降低。
Hatakeyama等在2016年首次报道具有窄发光谱的蓝光BN化合物(DOI:10.1002/adma.201505491)以来,此类化合物受到广泛的关注。硼氮化合物具有多重共振效应,即将分子结构保持在一个特殊的平面刚性共轭结构内,并利用硼原子上特有的可以参与电子云共轭的空轨道以及氮原子上可以参与电子云共轭的孤对电子所带来的不同的电负性通过共轭效应相互增强,从而形成分子内短程的电荷转移态,从而实现具有热活化延迟荧光(TADF)性质的高效发光。而且相比于其他发光材料(例如传统荧光材料),硼氮化合物的平面结构的特色之处在于分子振动模式的能级高度兼并,从而使得其发光光谱的半峰宽(FWHM)相比于其它类型的发光材料(例如传统荧光材料)明显变窄,从而有利于实现高的色纯度。由于硼氮化合物兼具高器件效率、高色纯度以及潜在的较高的器件稳定性,该类材料受到学术界与产业界的高度重视,是OLED发光材料领域最热门的课题之一。
然而,对于硼氮化合物,其发光光谱FWHM的宽窄与发光效率的高低往往取决于是否能有效抑制分子内部基团的振动与旋转自由度。例如,针对目前已经开发的硼氮化合物(结构如下式a至e所示)而言,由于与氮原子相连的苯基与硼氮刚性共轭平面存在较大的扭转角,该苯基并不直接参与硼氮刚性共轭平面的超共振效应,不能直接参与硼-氮环化合物的发光过程,而且这类苯基往往具有较大的振动与旋转自由度,对收窄硼氮化合物的FWHM具有不利的影响。硼氮化合物在实现更高发光效率、更窄FWHM与更长的器件工作寿命方面仍存在继续改良的空间。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种含硼氮的有机化合物、或包含其的聚合物、混合物、组合物、有机电子器件及应用,旨在解决现有的OLED的效率和寿命的问题。
本发明的技术方案如下:
一种含硼氮的有机化合物,所述含硼氮的有机化合物的结构由化学式(I-1)和化学式(I-2)组合表示:
其中:*表示化学式(I-1)和化学式(I-2)稠合的连接点;Q1环、Q2环、Q3环分别独立地选自取代或未取代的芳基、或取代或未取代的杂芳基、或取代或未取代的稠环结构;X1、X2分别独立地选自B、N、P、P=O或Al;Y1、Y2分别独立地选自C=O、N-R1、O、S、Se、P、P=O或P=S;Y3选自C=O、N-R1、O、Se、P、P=O或P=S;V0每次出现时,分别独立地选自C-R2或N-R3
R1-R3在每次出现时,可以相同或不同地选自H、D,或者具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或者具有1至20个C原子的取代的酮基,或者具有2至20个C原子的烷氧基羰基,或者具有7至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或者具有5至60个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至60个环原子的芳氧基或杂芳氧基基团,或者这些基团的组合。
本发明还涉及一种聚合物,包含至少一个第一重复单元,所述第一重复单元包含至少一种如上所述的含硼氮的有机化合物所对应的结构。
本发明还涉及一种组合物,包括有机溶剂、以及至少一种如上所述的含硼氮的有机化合物或至少一种如上所述的聚合物。
本发明进一步涉及一种混合物,包括一种如上所述的含硼氮的有机化合物或如上所述的聚合物,以及至少一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体及主体材料中的至少一种。
本发明进一步涉及一种有机电子器件,包含至少一种如上所述的含硼氮的有机化合物或如上所述的聚合物或如上所述的混合物。
有益效果:本发明通过将所述的含硼氮的有机化合物应用到有机发光器件中,能使有机发光器件兼具高的发光效率、高色纯度、较高的器件稳定性及较长的器件工作寿命等。按照本发明的含硼氮的有机化合物主要通过大共轭基团作为修饰基团来改善硼氮骨架的光学性能。通过引入大共轭基团,即Q3环通过五环稠合到BN的核心结构可以延长硼氮分子的共轭长度,提高分子的稳定性。另外,通过引入不同的共轭基团可以调节相邻B原子周围的电子云密度,便于调整分子的发光光谱;同时,大共轭基团在一定程度上改善分子的平面堆积效应,可以降 低在器件中的激子湮灭现象,从而达到调节所述有机化合物发光光色及提高发光器件效率及寿命的效果。本发明人惊奇的发现,在某些情况下,即使在共轭结构变大的情况下,仍能保持蓝光发光,从而使有机发光器件兼具高的发光效率、高色纯度、及较长的器件工作寿命等。
具体实施方式
本发明提供了一种含硼氮的有机化合物,可以作为有机发光器件中的有机发光材料使用,但不以此为限,该含硼氮的有机化合物经过优化选型,使其至少兼具高的发光效率、窄的发光光谱FWHM及较长的发光寿命等。
为使本发明的目的、技术方案及效果更加清楚、明确,以下结合具体实施例对本发明作进一步详细的说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本发明中涉及的数据范围如无特别说明均应包括端值。
在本发明中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明中,客体材料、发光材料、Emitter材料材料具有相同的含义,可以互换。
在本发明中,颜色转换器、颜色转换层和CCL具有相同的含义,可以互换。
在本发明中,组合物、印刷油墨、油墨和墨水具有相同的含义,可以互换。
在本发明中,“|取代”表示化合物中的氢原子被取代基所取代。
在本发明中,同一取代基多次出现时,可分别独立地选自不同的基团。
在本发明中,“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团被取代基取代时,应理解为任选被本领域可接受的取代基所取代,且上述取代基也可以进一步被本领域可接受的取代基取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)中构成该环自身的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
芳香基团指至少包含一个芳环的烃基。杂芳香基团指包含至少一个杂原子的芳香烃基。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,比如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
在本发明实施例中,有机材料的能级结构,单线态能级S1、谐振因子f1、三线态能级T1、HOMO、LUMO起着关键的作用。下面对这些能级的确定做介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的单线态能级S1可通过发光光谱来确定,三线态能级T1可通过低温时间分辨发 光光谱来测量。S1和T1还可以或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。ΔEST定义为(S1-T1)。
应该注意,HOMO、LUMO、S1、T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、S1、f1、T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明涉及一种含硼氮的有机化合物,所述含硼氮的有机化合物的结构由化学式(I-1)和化学式(I-2)组合表示:
其中:*表示化学式(I-1)和化学式(I-2)稠合的连接点;Q1环、Q2环、Q3环分别独立地选自取代或未取代的芳基、或取代或未取代的杂芳基,或取代或未取代的稠环结构;X1、X2分别独立地选自B、N、P、P=O或Al;Y1、Y2分别独立地选自C=O、N-R1、O、S、Se、P、P=O或P=S;Y3选自C=O、N-R1、O、Se、P、P=O或P=S;V0每次出现时,分别独立地选自C-R2或N-R3;R1-R3在每次出现时,可以相同或不同地选自H、D,或者具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或者具有1至20个C原子的取代的酮基,或者具有2至20个C原子的烷氧基羰基,或者具有7至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或者具有5至60个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至60个环原子的芳氧基或杂芳氧基基团,或者这些基团的组合。
在一些实施例中,所述含硼氮的有机化合物Q1环、Q2环、Q3环分别独立地为芳基环或杂芳基环,这些环中的至少一个氢可被取代。
在一些实施例中,Q1环、Q2环、Q3环在每次出现时,可以相同或不同地选自具有6至50个环原子的取代或未取代的芳族或杂芳族环系,或具有6至50个环原子的芳氧基或杂芳氧基基团,或这些基团的组合。在一些实施例中,Q1环、Q2环、Q3环在每次出现时,可以相同或不同地选自具有6至30个环原子的取代或未取代的芳族或杂芳族环系,或具有6至30个环原子的芳氧基或杂芳氧基基团,或这些基团的组合。在一些优选的实施例中,Q1环、Q2环、Q3环在每次出现时,可以相同或不同地选自具有6至20个环原子的取代或未取代的芳族或杂芳族环系,或具有6至20个环原子的芳氧基或杂芳氧基基团,或这些基团的组合。在一些较为优选的实施例中,Q1环、Q2环、Q3环在每次出现时,可以相同或不同地选自具有6至15个环原子的取代或未取代的芳族或杂芳族环系,或具有6至15个环原子的芳氧基或杂芳氧基基团,或这些基团的组合。
在一些实施例中,X1、X2选自B或N。
在一些优选的实施例中,所述含硼氮的有机化合物的结构由化学式(I-1a)和化学式(I-2a)组合表示:
其中,V0、Y1、Y2、Y3、Q1环、Q2环、Q3环、*的定义同上所述。
在一些优选的实施例中,所述含硼氮的有机化合物具有如通式(II-1)-(II-10)结构之一所示的结构:
其中,V0、Y1、Y2、Y3、Q1环、Q3环的定义同上所述,V1的定义同V0所述。
在一些优选的实施例中,所述含硼氮的有机化合物选自通式(II-1)-(II-6)结构:

其中,V0、Y1、Y2、Y3、Q1环、Q3环的定义同上所述,V1的定义同V0所述
在另一些优选的实施例中,所述含硼氮的有机化合物选自通式(II-7)、(II-8)和(II-10)结构:
出于本发明的目的,本发明优先涉及发蓝光的化合物。因此具有较小的有效共轭长度的化合物是优选的,如具有通式(II-1)-(II-6)、(II-7)、(II-8)和(II-10)结构的化合物。
具有通式(II-9)的化合物,倾向于发绿光或蓝绿光,因此在某些实施例中不是优选的结构。
在一些优选的实施例中,所述含硼氮的有机化合物,Q1环、Q2环、Q3环在每次出现时,分别独立地选自如下结构中的一种或多种的组合:
其中,V每次出现时,分别独立地选自C-R4或N-R5;W每次出现时,分别独立地选自B-R6、C(=O)、N-R7、O、S、P、P=O或P=S;R4-R7每次出现时,相同或不同地选自H、D,或者具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或者具有1至20个C原子的取代的酮基,或者具有2至20个C原子的烷氧基羰基,或者具有7至20个C原子的芳氧基羰基,氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或者具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或者具有5至40个环原子的芳氧基或杂芳氧基,或者这些基团的组合;其中一个或多个基团可以彼此和/或与其键合的基团形成环系。
在某些实施例中,Q1环、Q2环、Q3环分别独立地选自芳族环系、杂芳族环系或稠环芳香基团。
在某个优选的实施例中,所述的芳族或杂芳族环系选自以下基团:
其中:V、W的定义同上所述。
更优选的,所述的芳族或杂芳族环系选自:
其中:V、W的定义同上所述。
在某个优选的实施例中,所述稠环芳香基团选自:苯、萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物等;所述稠环杂芳香基团选自苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物等。
在某些实施例中,R1-R3在每次出现时,可相互独立选自如下基团:
其中:V、W的定义如上述;n2,n3,n4,n5均为大于或等于1的整数。
进一步的,R1-R3在每次出现时,相互独立选自如下基团:
其中:环上的H原子可以进一步被取代。
在某些优选的实施例中,上述含硼氮的有机化合物,其中R1-R3可进一步选自以下结构单元或它们的组合:
其中n1是1或2或3或4。
在一个比较优选的实施例中,所述含硼氮的有机化合物是至少部分被氘代,较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
下面列出按照本发明所述含硼氮的有机化合物的具体例子,但并不限定于此:






在某些优选的实施例中,按照本发明的含硼氮的有机化合物主要分为两类,一类化合物是通过吲哚咔唑类作为修饰基团来修饰硼-氮类环结构,调节已有硼氮骨架的光学性能;同时可以有效调节所述有机化合物的前线轨道能级,增强硼-氮类环结构刚性共轭平面的多重共振效应,从而达到调节所述有机化合物发光光色及收窄发光光谱FHWM的效果;另外相比于传统的芳胺型骨架,咔唑类型的骨架具有更强的刚性,能有效提升化合物的振子强度,且N与B位于共轭六元环的对位,不会发生自由旋转,进而能提高所述含硼氮的有机化合物分子的平面性,有利于进一步收窄新型有机化合物发光光谱的FWHM。
另一类化合物是通过在硼-氮环的骨架中引咔唑并呋喃类作为修饰基团来修饰硼-氮类环结构,由于呋喃相比于咔唑的给电子能力较差,可以降低B原子周围的电子云密度提高所述含硼氮的有机化合物的发光效率;而且可以延长整体分子的共轭长度,提高化合物的稳定性。
按照本发明的含硼氮的有机化合物,可以作为功能材料应用于电子器件,特别是发光器件中。所述的发光器件可选于颜色转换器、OLED、OLEEC、有机发光场效应管;特别优选OLED器件。有机功能材料可分为颜色转换材料(CCM)、空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光材料(Emitter)、主体材料(Host)和有机染料。在一个优选的实施例中,按照本发明的含硼氮的有机化合物可作为发光材料。
在一个优选的实施例中,所述的发光器件的发光波长在300nm-1500nm,优选400nm-1000nm,更优选400nm-800nm。
在一个优选的实施例中,按照本发明的含硼氮的有机化合物可作为荧光客体材料(即荧光发光材料)。
作为荧光客体材料必须有适当的单线态能级,即S1。在某些实施例中,按照本发明的含硼氮的有机化合物,其S1≥2.1eV,较好是≥2.3eV,更好是≥2.5eV,更更好是≥2.7eV,最好是≥2.8eV。
作为荧光客体材料必须有较高的光致发光量子效率,即PLQY。在某些实施例中,按照本发明的含硼氮的有机化合物,其PLQY≥40%,较好是≥50%,更好是≥60%,最好是≥70%。
在某些实施例中,按照本发明的含硼氮的有机化合物,其谐振因子f1≥0.2,较好是≥0.3,更好是≥0.4,最好是≥0.5。
作为有机功能材料希望有好的热稳定性。一般的,按照本发明的含硼氮的有机化合物,其玻璃化温度(Tg)≥100℃,较好的Tg≥140℃,更好的Tg≥180℃。
在某些优选的实施例中,按照本发明的含硼氮的有机化合物,其(HOMO-(HOMO-1))≥0.2eV,较好是≥0.3eV,更好是≥0.4eV,最好是≥0.45eV。
在另一些优选的实施例中,按照本发明的含硼氮的有机化合物,其((LUMO+1)-LUMO)≥0.15eV,较好是≥0.25eV,更好是≥0.30eV,最好是≥0.35eV。
本发明还提供了一种聚合物,所述聚合物包含至少一个第一重复单元,所述第一重复单元包含至少一种本发明所述的含硼氮的有机化合物所对应的结构。
在一些实施例中,所述聚合物还包括至少一个区别于所述第一重复单元的第二重复单元。
在某些实施例中,所述的聚合物是共轭聚合物;在一些优选的实施例中,所述的共轭聚合物包含一第二重复单元,所述第二重复单元选自以下重复单元中的一种:
其中,R'分别独立地选自H、D、C1-C20直链烷基、C1-C20烷氧基、C1-C20硫代烷氧基、C3-C20支链烷基、C3-C20环状烷基、C3-C20支链烷氧基、C3-C20环状烷氧基、C3-C20支链硫代烷氧基、C3-C20环状硫代烷氧基、甲硅烷基、C1-C20酮基、C2-C20烷氧基羰基、C7-C20芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代或未取代的芳基、具有5至60个环原子的取代或未取代杂芳基、具有5至60个环原子的芳氧基、以及具有5至60个环原子的杂芳氧基中的一种或多种的组合。
在另一些优选的实施例中,所述聚合物包括聚合物分子主链和连接于所述聚合物分子主链上的支链,所述支链衍生自本发明所述的含硼氮的有机化合物。更优选的,所述的聚合物是非共轭聚合物,其中包含一第二重复单元,所述第二重复单元选自以下重复单元中的一种:
其中,R″分别独立地选自H、D、C1-C20直链烷基、C1-C20烷氧基、C1-C20硫代烷氧基、C3-C20支链烷基、C3-C20环状烷基、C3-C20支链烷氧基、C3-C20环状烷氧基、C3-C20支链硫代烷氧基、C3-C20环状硫代烷氧基、甲硅烷基、C1-C20酮基、C2-C20烷氧基羰基、C7-C20芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代芳基或未取代的芳基、具有5至60个环原子的取代或未取代的杂芳基、具有5至60个环原子的芳氧基、以及具有5至60个环原子的杂芳氧基中的一种或多种的组合。
在一个优选的实施例中,其中的聚合物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优选的实施例中,按照本发明的聚合物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优选的实施例中,按照本发明的聚合物,其分子量分布(PDI)取值范围优选为1~5,较优选为1~4,更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优选的实施例中,按照本发明的聚合物,其重均分子量(Mw)取值范围优选为1 万~100万,较优选为5万~50万,更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
在某些实施例中,按照本发明的含硼氮的有机化合物或聚合物具有发光功能,其发光波长在300nm到1000nm之间,较好是在350nm到900nm之间,更好是在400nm到800nm之间。这里指的发光是指光致发光或电致发光。
本发明还涉及一种混合物,包含一种如上所述的含硼氮的有机化合物或聚合物,以及至少一种有机功能材料。所述至少一种有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体及主体材料中的至少一种。其中所述发光体选自单重态发光体(荧光发光体)、三重态发光体(磷光发光体)及有机热激发延迟荧光材料(TADF材料)。例如在WO2010135519A1、US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和聚合物材料。
在一些优选的实施例中,所述的混合物,包含至少一种按照本发明的含硼氮的有机化合物或聚合物和一种荧光主体材料。这里按照本发明的含硼氮的有机化合物可以作为荧光客体材料,其中所述的荧光客体重量百分比为≤10wt%,较好是≤9wt%,更好是≤8wt%,特别好是≤7wt%,最好是≤5wt%。
其中关于主体材料,荧光发光体材料,TADF材料及其他有机功能材料的详细描述详见WO2018095395,特将此专利文件中的全部内容并入本文作为参考。
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,按照本发明的含硼氮的有机化合物,其分子量≤1200g/mol,优选≤1100g/mol,很优选≤1000g/mol,更优选≤950g/mol,最优选≤900g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的含硼氮的有机化合物,其分子量≥800g/mol,优选≥1000g/mol,优选≥1100g/mol,最优选≥1200g/mol。
在另一些实施例中,按照本发明的含硼氮的有机化合物,在25℃时,在甲苯中的溶解度≥10mg/mL,优选≥15mg/mL,最优选≥20mg/mL。
本发明还进一步涉及一种组合物或油墨,包含至少一种按照本发明的含硼氮的有机化合物或聚合物,以及有机溶剂。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将便于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地金属有机配合物或聚合物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般的,按照本发明的组合物包含的功能材料的重量比为0.3wt%~30wt%范围,较好的为0.5wt%~20wt%范围,更好的为0.5wt%~15wt%范围,更更好的为0.5wt%~10wt%范围,最好的为1wt%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、 四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4-二氧杂环己烷、丙酮、甲基乙基酮、1,2-二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施例中,按照本发明的组合物是一溶液。
在另一个优选的实施例中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01wt%至20wt%的按照本发明的含硼氮的有机化合物或其混合物,较好的是0.1wt%至15wt%,更好的是0.2wt%至10wt%,最好的是0.25wt%至5wt%的有机化合物或其混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,凹版印刷,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是喷墨印刷,喷印及凹版印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度、粘度等,详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook ofPrint Media:Technologies andProduction Methods),ISBN 3-540-67326-1。
本发明还提供一种如上所述的含硼氮的有机化合物或聚合物的应用,即将所述含硼氮的有机化合物或聚合物应用于有机电子器件,所述的有机电子器件可选于,但不限于,颜色转换器、有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。本发明实施例中,优选将所述有机化合物用于电致发光器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的含硼氮的有机化合物或聚合物或混合物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的含硼氮的有机化合物或聚合物或混合物。所述的有机电子器件可选于,但不限于,颜色转换器、有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED、OLEEC、有机发光场效应管。
在某些特别优选的实施例中,所述的有机电子器件,包含一发光层,所述的发光层包含一种所述的含硼氮的有机化合物,或包含一种所述的含硼氮的有机化合物和一种主体材料,或包含一种所述的含硼氮的有机化合物,一种磷光发光体和一种主体材料。
在某些特别优选的实施例中,所述有机电子器件为有机发光器件,所述有机发光器件包含一发光层,所述发光层的客体材料包含至少一种如上所述的含硼氮的有机化合物或聚合物或混合物。
在以上所述的电致发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度(Tg)为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚对苯二甲酸乙二醇酯(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优选的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个优选的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、 Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的发光器件中,其发光层是通过按照本发明的组合物制备而成。
按照本发明的发光器件,特别是OLED,其发光波长在300nm到1500nm之间,较好的是在350nm到1200nm之间,更好的是在400nm到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机电子器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。在某些实施例中,所述的电子设备设备包括壳体和设于所述壳体上的如上所述的器件。该电子设备可以是搭载有OLED显示屏幕的各类终端设备,包含并不限于,智能手机、平板电脑、个人笔记本电脑、智能电视、车载显示、智能手表等。在一些实施例中,该电子设备为智能手机。
下面将结合优选实施例对本发明进行说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.化合物的合成
中间体1b的合成:
将1a(100g),4叔丁基苯胺(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得126g中间体1b,产率77%。产物表征:MS(ASAP)=337.5。
中间体1h的合成:
将中间体1b(100g),间氟溴苯(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶 柱层析法提纯,得167g中间体1h,产率91%。产物表征:MS(ASAP)=431.6。
中间体1f的合成:
在氮气保护下在三口烧瓶中,加入1c(100g)、1d(100g)、碳酸钾(25g)、四三苯基膦钯3g和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12小时停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体1e 124g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得123.2g中间体1e。产率81%。
在氮气保护下在三口烧瓶中,加入中间体1e(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24小时停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体1f80g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得75g中间体1f。产率75%。产物表征:MS(ASAP)=335.2。
中间体2c的合成:
在氮气保护下在三口烧瓶中,加入2a(100g)、1d(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体2b 124g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得114.2g中间体2b。产率75%。
在氮气保护下在三口烧瓶中,加入中间体2b(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体2c 75g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得72g中间体2c。产率70%。产物表征:MS(ASAP)=410.3。
中间体3c的合成:
在氮气保护下在三口烧瓶中,加入3a(100g)、氘代苯硼酸(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12小时停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥, 抽滤,旋干滤液,得中间体3b 180g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得175g中间体3b。产率95%。
将中间体3b(100g),中间体1b(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得105g中间体3c,产率78%。产物表征:MS(ASAP)=573.6。
中间体4c的合成:
将1a(100g),中间体4b(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得167g中间体4c,产率91%。产物表征:MS(ASAP)=391.6。
中间体4d的合成:
在氮气保护下在三口烧瓶中,加入4a(100g)、咔唑(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12小时停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体4b 150g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集得142g中间体4b。产率71%。
将中间体4b(100g),中间体4c(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得152g中间体4d,产率85%。产物表征:MS(ASAP)=650.9。
中间体5b的合成:
将1a(100g),5a(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得131g中间体5b,产率78%。产物表征:MS(ASAP)=371.5。
中间体5c的合成:
将中间体5b(100g),间氟溴苯(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得82g中间体5c,产率70%。产物表征:MS(ASAP)=465.6。
中间体9d的合成:
将9a 2-氨基二苯并呋喃(100g),9b(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得82g中间体9c,产率71%。产物表征:MS(ASAP)=417.
将中间体9c(7.5g,20mmol),叔丁醇钠(17.68g,184mmol),醋酸钯(0.2g,1.0mmol),与三叔丁基膦四氟硼酸盐(0.53g,1.8mmol)溶解于二氧六环(200mL)中,在氮气保护下加热至110℃并搅拌18小时。将反应液冷却至室温后,加入盐酸(2M,20mL)淬灭,然后用二氯甲烷萃取萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得1.4g中间体9d,产率20%。产物表征:MS(ASAP)=335.2。
中间体10d的合成:
中间体10d的合成与中间体9d相似。将10a(100g),10b(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得85g中间体10c,产率80%。产物表征:MS(ASAP)=417。
将中间体10c(7.5g,20mmol),叔丁醇钠(17.68g,184mmol),醋酸钯(0.2g,1.0mmol),与三叔丁基膦四氟硼酸盐(0.53g,1.8mmol)溶解于二氧六环(200mL)中,在氮气保护下加热至110℃并搅拌18小时。将反应液冷却至室温后,加入盐酸(2M,20mL)淬灭,然后用二氯甲烷萃取萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得1.6g中间体10d,产率20%。产物表征:MS(ASAP)=335.2。
中间体11d的合成:
在氮气保护下在三口烧瓶中,加入11a(100g)、11b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体11c 100g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得94.2g中间体11c,产率70%。
在氮气保护下在三口烧瓶中,加入中间体11c(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体11d 75g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得70g中间体11d,产率65%。产物表征:MS(ASAP)=335.2。
中间体12d的合成:
在氮气保护下在三口烧瓶中,加入12a(100g)、12b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体12c 105g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得95.2g中间体12c,产率71%。
在氮气保护下在三口烧瓶中,加入中间体12c(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体12d 75g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得78g中间体12d,产率67%。产物表征:MS(ASAP)=255。
中间体13b的合成:
在氮气保护下在三口烧瓶中,加入13a(100g),二氯(100mL),用氮气置换三次,缓慢加入1eq的NBS,反应2小时后加水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体13b 15g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得10g中间体13b,产率10%。产物表征:MS(ASAP)=335.2。
中间体14c的合成:
在氮气保护下在三口烧瓶中,加入14a(100g)、11b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应, 加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得14b 115g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得99.5g,产率80%。
在氮气保护下在三口烧瓶中,加入14b(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体14c 73g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得69g中间体14c,产率66%。产物表征:MS(ASAP)=335.2。
中间体15c的合成:
中间体15c的合成与中间体9d相似。将15a(100g),10b(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得83g中间体15b,产率80%。产物表征:MS(ASAP)=416.09。
将中间体15b(7.5g,20mmol),叔丁醇钠(17.68g,184mmol),醋酸钯(0.2g,1.0mmol),与三叔丁基膦四氟硼酸盐(0.53g,1.8mmol)溶解于二氧六环(200mL)中,在氮气保护下加热至110℃并搅拌18小时。将反应液冷却至室温后,加入盐酸(2M,20mL)淬灭,然后用二氯甲烷萃取萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得1.3g中间体15c,产率18%。产物表征:MS(ASAP)=335.2。
中间体16d的合成:
在氮气保护下在三口烧瓶中,加入16a(合成方法参考专利文献:CN107922837A)(100g)、16b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mLl水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得16c 106g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得93.5g,产率70%。
在氮气保护下在三口烧瓶中,加入16c(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体16d 72g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得64g中间体16d,产率65%。产物表征:MS(ASAP)=335.2。
中间体17c的合成:
在氮气保护下在三口烧瓶中,加入17a(合成方法参考专利文献:CN107922837A)(100g)、16b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得17b 109g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得94.5g,产率70%。
在氮气保护下在三口烧瓶中,加入17b(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体17c 74g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得66g中间体17c,产率65%。产物表征:MS(ASAP)=335.2。
中间体18c的合成:
在氮气保护下在三口烧瓶中,加入18a(100g)、11b(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得18b 101g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得90.5g,产率68%。
在氮气保护下在三口烧瓶中,加入18b(100g)、亚磷酸三乙酯(50g)和DMF(1000mL),用氮气置换三次,升温至150℃反应,加热回流24h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得中间体18c 70g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),得67g中间体18c,产率65%。产物表征:MS(ASAP)=335.2。
化合物1的合成:
将中间体1h(50g),中间体1f(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得105g中间体1j,产率92%。
将中间体1j(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰 浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得3.3g化合物1,产率34%。产物表征:MS(ASAP)=676.7。
化合物2的合成:
将中间体1h(50g),中间体2c(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得112g中间体2d,产率95%。
将中间体2d(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得3.9g化合物2,产率41%。产物表征:MS(ASAP)=751.8。
化合物3的合成:
将中间体1f(50g),中间体3c(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得101g中间体3d,产率95%。
将中间体3d(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.1g化合物3,产率24%。产物表征:MS(ASAP)=757.81。
化合物4的合成:
将中间体4d(50g),中间体1f(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得43g中间体4e,产率53%。
将中间体4e(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.6g化合物4,产率30%。产物表征:MS(ASAP)=895.9。
化合物5的合成:
将中间体5c(50g),中间体2c(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得52g中间体5d,产率64%。
将中间体5d(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.5g化合物5,产率30%。产物表征:MS(ASAP)=785.7。
化合物6的合成:
将中间体5c(50g),中间体1f(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得54g中间体6a,产率65%。
将中间体6a(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.4g化合物6,产率30%。产物表征:MS(ASAP)=710.6。
化合物7的合成:
将中间体3c(50g),中间体2c(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得59g中间体7a,产率67%。
将中间体7a(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.5g化合物7,产率30%。产物表征:MS(ASAP)=832.9。
化合物8的合成:
将中间体1h(50g),8a(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得54g中间体8b,产率65%。
将中间体8b(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温 后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.4g化合物8,产率30%。产物表征:MS(ASAP)=676.7。
化合物9的合成:
合成过程与化合物1的合成类似(9d替换1f,9-1替换1j,即先在碱的作用下形成中间体9-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物9,产率为8%,MS(ASAP)=676.7。
化合物10的合成:
合成过程与化合物1的合成类似(10d替换1f,10-1替换1j,即先在碱的作用下形成中间体10-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物10,产率为6%,MS(ASAP)=676.7。
化合物11的合成:
合成过程与化合物1的合成类似(11d替换1f,11-1替换1j,即先在碱的作用下形成中间体11-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物11,产率为10%,MS(ASAP)=676.7。
化合物12的合成:
合成过程与化合物1的合成类似(12d替换1f,12-1替换1j,即先在碱的作用下形成中间体12-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物12,产率为20%,MS(ASAP)=676.7。
化合物13的合成:
合成过程与化合物1的合成类似(13b替换1f,13-1替换1j,即先在碱的作用下形成中间体13-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物13,产率为8%,MS(ASAP)=676.7。
化合物14的合成:
合成过程与化合物1的合成类似(14c替换1f,14-1替换1j,即先在碱的作用下形成中间体14-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物14,产率为5%,MS(ASAP)=676.7。
化合物15的合成:
合成过程与化合物5的合成类似(15c替换2c,15-1替换5d,即先在碱的作用下形成中间体15-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物15,产率为7%,MS(ASAP)=710.6。
化合物16的合成:
将16e(100g),间氟碘苯(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠 (67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得116g中间体16f,产率89%。
将中间体16f(100g),16h(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得98g中间体16i,产率85%。
将中间体16i(100g),1a(100g),三(二亚苄基丙酮)二钯(16g),与无水叔丁醇钠(67g)溶解于甲苯(500mL)中,加热至90℃并搅拌2小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得96g中间体16j,产率80%。
将中间体16j(50g),16d(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得55g中间体16k,产率67%。
将中间体16k(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得2.5g化合物16,产率6%。产物表征:MS(ASAP)=865。
化合物17的合成:
合成过程与化合物1的合成类似(17c替换1f,17-1替换1j,即先在碱的作用下形成中间体17-1),然后在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物17,产率为4%,MS(ASAP)=692.75。
化合物18的合成:
合成过程与化合物1的合成类似(18c替换1f,18-1替换1j,即先在碱的作用下形成中间体18-1),然后,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物18,产率为8%,MS(ASAP)=710.6。
对比化合物1(DB1)
现有硼-氮材料结构如下:
该现有的硼-氮材料的具体合成方法采用现有合成方法即可,本发明不做过多赘述。
对比化合物2(DB2)
现有硼氮结构如下:
对比化合物2的合成:
在氮气保护下在三口烧瓶中,加入d1(100g)、d2(100g)、碳酸钾(25g)、四三苯基膦钯(3g)和1000mL甲苯/50mL乙醇/50mL水,用氮气置换三次,升温至100℃反应,加热回流12h停止反应,降温。用乙酸乙酯和去离子水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得d380g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品得75g。产率38%。
化合物d4的合成参考文献“Synthesis of Dibenzofurans via Palladium-Catalyzed Phenol-Directed C-H Activation/C-O Cyclization”在这里不再赘述。
在氮气保护下在三口烧瓶中,加入化合物d4(100g),二氯(100mL),用氮气置换三次,缓慢加入1eq的NBS,反应2小时后加水萃取,水洗有机相2次,干燥,抽滤,旋干滤液,得d5共80g粗产品。通过柱层析分离(石油醚/乙酸乙酯15:1),收集产品d5得10g。 产率10%。产物表征:MS(ASAP)=335.2。
将中间体1h(50g),d5(110g)与无水碳酸铯(285g)溶解于无水N,N-二甲基甲酰胺(500mL)中,加热至100℃并搅拌8小时。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得51g中间体d6,产率63%。
将中间体d6(10g)溶解于叔丁基苯(300mL)中,冰浴下滴加叔丁基锂(16mL,1.3M正己烷溶液)。滴加完毕后,将反应液加热至100℃,搅拌2小时。随后,将反应液降温至冰浴,滴加三溴化硼(5.2mL)。滴加完毕后加热至180℃,搅拌8小时。随后,在冰浴下滴加N,N-二异丙基乙基胺(24mL)。滴加完毕后加热至180℃,搅拌过夜。将反应液冷却至室温后,加入大量去离子水与二氯甲烷萃取,保留有机相。将有机溶剂通过减压蒸馏去除后,通过硅胶柱层析法提纯,得1.2g化合物DB2,产率12%。产物表征:MS(ASAP)=676.7。
2.化合物的能级结构
有机化合物的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1,T1和谐振因子f(S1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表1所示:
表1

3.化合物的光学性能
合成例中化合物1-18、DB1、及DB2的光学性能如表2所示。
表2
备注:407nm~505nm波长范围内为蓝光区域,505nm~525nm波长范围内为绿光区域。
由表2可看出,本发明合成的化合物2、5、7采用吲哚咔唑基团作为修饰基团与B原子相连,有效抑制其内部自由基团的旋转与振动,从而收窄发光光谱FHWM并提高量子效率,实现高效窄FHMW的蓝光发射。其中化合物7采用氘带苯环作为修饰基团修饰位于B原子对位的苯环,增强B原子对位苯环的电子云密度,从而对光色进行调节。
化合物1、3、4、6、8-18中在硼-氮环结构的骨架中采用咔唑并呋喃基团作为修饰基团与B原子相连,由于氧原子具有一定的吸电子作用,可以降低B原子相邻苯环的电子云密度,提高整体化合物的超共振效应,能有效收窄新型有机化合物发光光谱的FWHM,而且还能使新型B-N有机化合物的光轻微蓝移。化合物17在硼-氮环结构的骨架中采用咔唑并噻吩基团作为修饰基团与B原子相连,与采用咔唑并呋喃具有相似的效果。
对比例化合物2的发光光谱表现为绿光发射,这说明稠环位置会对分子的最大发射峰产生极大的影响。
4.OLED器件的制备和表征
实施例1(OLED器件1的制备)
步骤S1:使用透明玻璃作为基板,对其上的阳极(ITO(15nm)/Ag(150nm)/ITO(15nm))进行清洗,分别用剥离液,纯水,异丙醇超声清洗,之后烘干再进行Ar2臭氧处理。
步骤S2:将清洗后的基板移入真空气相沉积设备中,在高真空(1×10-6毫巴)下,控制PD和HT-1的比例为3:100,形成10nm的空穴注入层(HIL)。
步骤S3:在空穴注入层上,通过真空蒸镀的方式蒸镀125nm的空穴传输层材料HT-1。
步骤S4:在空穴注入层上,通过真空蒸镀的方式蒸镀10nm的电子阻挡层材料HT-2。
步骤S5:在电子阻挡层上,通过真空蒸镀的方式蒸镀发光层,主体材料为BH,客体材料为本发明化合物1,质量比为98:2,厚度为25nm。
步骤S6:在发光层上通过真空蒸镀的方式蒸镀2nm的空穴阻挡层材料ET-1。
步骤S7:在空穴阻挡层上,通过真空蒸镀的方式蒸镀ET-2和Liq作为电子传输层,质量比为50:50,厚度为35nm。
步骤S8:在电子传输层上通过真空蒸镀的方式蒸镀1.5nm的Yb作为电子注入层。
步骤S9:在电子注入层上蒸镀17nm的Mg:Ag(1:9)合金作为阴极。
步骤S10:在阴极层之上蒸镀55nm的CPL材料。
以下为各个功能层所用的材料的结构式:
实施例2(OLED器件2的制备)
实施例2与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀120nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物2。其余步骤与实施例1相同,请详参前述实施例1。
实施例3(OLED器件3的制备)
实施例3与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀122nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物3。其余步骤与实施例1相同,请详参前述实施例1。
实施例4(OLED器件4的制备)
实施例4与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀122nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物8。其余步骤与实施例1相同,请详参前述实施例1。
实施例5(OLED器件5的制备)
实施例5与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀122nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物13。其余步骤与实施例1相同,请详参前述实施例1。
实施例6(OLED器件6的制备)
实施例6与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀122nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物14。其余步骤与实施例1相同,请详参前述实施例1。
实施例7(OLED器件7的制备)
实施例7与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀122nm的空穴传输层材料HT-1,步骤S5中的客体材料选用前述化合物16。其余步骤与实施例1相同,请详参前述实施例1。
对比例1(OLED对比器件1的制备)
对比例1与实施例1的不同之处在于:步骤S3中,在空穴注入层上,通过真空蒸镀的方式蒸镀121nm的空穴传输层材料HT-1,步骤S5中的客体材料选用对比化合物1对应的现有硼-氮材料。其余步骤与实施例1相同,请详参前述实施例1。
实施例1至7以及对比例1制备的器件性能如表3所示。其中电流效率及LT95都以对比例1为基准。
表3
注:LT95@1000nit:1000尼特亮度下器件出现5%亮度损失时的工作时间。
由表3中的实施例1至实施例7与对比例1的器件的电流效率、发光光谱FWHM与1000亮度下的器件工作寿命(出现5%最大亮度损失时的工作时间)可知,相比于对比例1,采用了本发明合成的含硼氮的有机化合物的实施例1至实施例7的OLED器件表现出更高的发光效率与更长的工作寿命和更高的器件稳定性。
需要说明的是,以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内;在不冲突的情况下,本发明的实施方式及实施方式中的特征可以相互组合。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种含硼氮的有机化合物,其特征在于,所述含硼氮的有机化合物的结构由化学式(I-1)和化学式(I-2)组合表示:
    其中:
    *表示化学式(I-1)和化学式(I-2)稠合的连接点;
    Q1环、Q2环、Q3环分别独立地选自取代或未取代的芳基、或取代或未取代的杂芳基、或取代或未取代的稠环结构;
    X1、X2分别独立地选自B、N、P、P=O或Al;
    Y1、Y2分别独立地选自C=O、N-R1、O、S、Se、P、P=O或P=S;
    Y3选自C=O、N-R1、O、Se、P、P=O或P=S;
    V0每次出现时,分别独立地选自C-R2或N-R3
    R1-R3在每次出现时,相同或不同地选自H、D,或者具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或者具有1至20个C原子的取代的酮基,或者具有2至20个C原子的烷氧基羰基,或者具有7至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或者具有5至60个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至60个环原子的芳氧基或杂芳氧基基团,或者这些基团的组合。
  2. 根据权利要求1所述的含硼氮的有机化合物,其特征在于,所述含硼氮的有机化合物的结构由化学式(I-1a)和化学式(I-2a)组合表示:
    其中,V0、Y1、Y2、Y3、Q1环、Q2环、Q3环、*的定义同权利要求1。
  3. 根据权利要求1或2所述的含硼氮的有机化合物,其特征在于,所述含硼氮的有机化合物具有如式(II-1)-(II-10)之一所示的结构:

    其中,V0、Y1、Y2、Y3、Q1环、Q3环的定义同权利要求1,V1的定义同V0
  4. 根据权利要求1-3任意一项所述的含硼氮的有机化合物,其特征在于,Q1环、Q2环、Q3环在每次出现时,分别独立地选自如下结构中的一种或多种的组合:
    其中,V每次出现时,分别独立地选自C-R4或N-R5
    W每次出现时,分别独立地选自B-R6、C(=O)、N-R7、O、S、P、P=O或P=S;
    R4-R7每次出现时,相同或不同地选自H、D,或者具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或者具有1至20个C原子的取代的酮基,或者具有2至20个C原子的烷氧基羰基,或者具有7至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、可交联的基团,或者具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或者具有5至40个环原子的芳氧基或杂芳氧基,或者这些基团的组合,其中一个或多个基团可以彼此和/或与其键合的基团形成环系。
  5. 一种聚合物,包含至少一个第一重复单元,其特征在于,所述第一重复单元包含至少一种如权利要求1至4中任意一项所述的含硼氮的有机化合物所对应的结构。
  6. 一种组合物,其特征在于,包括有机溶剂、以及至少一种如权利要求1至4中任意一项所述的含硼氮的有机化合物或至少一种如权利要求5中所述的聚合物。
  7. 一种混合物,其特征在于,包括一种如权利要求1至4中任意一项所述的含硼氮的有机化合物或一种如权利要求5所述的聚合物,以及至少一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体以及主体材料中的至少一种。
  8. 一种有机电子器件,包括一种如权利要求1至4中任意一项所述的含硼氮的有机化合物或一种如权利要求5所述的聚合物或一种如权利要求7所述的混合物。
  9. 根据权利要求8所述的有机电子器件,其特征在于,所述有机电子器件选于颜色转换器、有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管。
  10. 根据权利要求8所述的有机电子器件,其特征在于,所述有机电子器件为有机发光器件,所述有机发光器件包含一发光层,所述发光层的客体材料包括至少一种如权利要求1至4中任意一项所述的含硼氮的有机化合物或一种如权利要求5所述的聚合物或一种如权利要求7所述的混合物。
PCT/CN2023/137506 2022-12-08 2023-12-08 一种含硼氮的有机化合物及其在有机电子器件中的应用 WO2024120527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211572027.9 2022-12-08
CN202211572027 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024120527A1 true WO2024120527A1 (zh) 2024-06-13

Family

ID=91378609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137506 WO2024120527A1 (zh) 2022-12-08 2023-12-08 一种含硼氮的有机化合物及其在有机电子器件中的应用

Country Status (1)

Country Link
WO (1) WO2024120527A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253421A (zh) * 2018-11-30 2020-06-09 Sfc株式会社 多环芳族化合物和使用其的有机电致发光器件
KR20210007398A (ko) * 2019-07-11 2021-01-20 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
CN112645969A (zh) * 2020-12-21 2021-04-13 中国科学院长春应用化学研究所 一种含有硼、硒/碲与氮原子的稠环化合物及有机电致发光器件
KR20210043468A (ko) * 2019-10-11 2021-04-21 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN113366002A (zh) * 2019-11-29 2021-09-07 株式会社Lg化学 化合物和包含其的有机发光器件
CN113527343A (zh) * 2020-04-17 2021-10-22 学校法人关西学院 多环芳香族化合物
WO2022119297A1 (ko) * 2020-12-01 2022-06-09 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
CN115215888A (zh) * 2021-04-16 2022-10-21 北京鼎材科技有限公司 一种含硼类化合物及含有其的有机电致发光器件
CN115368391A (zh) * 2021-05-21 2022-11-22 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼的有机化合物及其制备的有机电致发光器件
WO2023128521A1 (ko) * 2021-12-29 2023-07-06 에스에프씨 주식회사 유기발광소자

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253421A (zh) * 2018-11-30 2020-06-09 Sfc株式会社 多环芳族化合物和使用其的有机电致发光器件
KR20210007398A (ko) * 2019-07-11 2021-01-20 에스에프씨 주식회사 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
KR20210043468A (ko) * 2019-10-11 2021-04-21 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN113366002A (zh) * 2019-11-29 2021-09-07 株式会社Lg化学 化合物和包含其的有机发光器件
CN113527343A (zh) * 2020-04-17 2021-10-22 学校法人关西学院 多环芳香族化合物
WO2022119297A1 (ko) * 2020-12-01 2022-06-09 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
CN112645969A (zh) * 2020-12-21 2021-04-13 中国科学院长春应用化学研究所 一种含有硼、硒/碲与氮原子的稠环化合物及有机电致发光器件
CN115215888A (zh) * 2021-04-16 2022-10-21 北京鼎材科技有限公司 一种含硼类化合物及含有其的有机电致发光器件
CN115368391A (zh) * 2021-05-21 2022-11-22 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼的有机化合物及其制备的有机电致发光器件
WO2023128521A1 (ko) * 2021-12-29 2023-07-06 에스에프씨 주식회사 유기발광소자

Similar Documents

Publication Publication Date Title
WO2018103749A1 (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN112430239B (zh) 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件
CN110818642A (zh) 一种杂环芳胺化合物及其在有机电子器件上的应用
CN112778309B (zh) 一种含n稠环化合物及其在有机电子器件中应用
CN112794856B (zh) 有机化合物、混合物、组合物及其应用
CN115093333B (zh) 有机化合物、混合物、组合物及有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN112794824A (zh) 有机化合物、混合物、组合物及有机电子器件
CN115368203B (zh) 有机化合物、混合物、组合物以及有机电子器件
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
CN114380852B (zh) 芘类有机化合物及其应用
CN114341136B (zh) 一种有机化合物及有机电子器件
CN114075222B (zh) 含硼的有机化合物及其在有机电子器件中的应用
CN114163461B (zh) 含硼原子和氮原子的稠环化合物及其应用
CN112979678B (zh) 一种有机化合物、高聚物、混合物、组合物及有机电子器件
CN115651003A (zh) 一种氮杂硼杂稠环化合物及其在有机电子器件中应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
CN114763361A (zh) 一种含氮杂硼杂芘的有机化合物及其用途
WO2024120527A1 (zh) 一种含硼氮的有机化合物及其在有机电子器件中的应用
CN115403543B (zh) 有机化合物、混合物、组合物及有机电子器件
CN114075225B (zh) 含硼有机化合物及其用途
WO2024104383A1 (zh) 一种含苯并菲的有机化合物及其在有机光电器件中的应用
CN112724152B (zh) 含氮杂环有机化合物及其应用
CN112724125B (zh) 含氮有机化合物及其应用