WO2024120495A2 - 激光加工设备的控制方法与设备、计算机程序介质 - Google Patents

激光加工设备的控制方法与设备、计算机程序介质 Download PDF

Info

Publication number
WO2024120495A2
WO2024120495A2 PCT/CN2023/137159 CN2023137159W WO2024120495A2 WO 2024120495 A2 WO2024120495 A2 WO 2024120495A2 CN 2023137159 W CN2023137159 W CN 2023137159W WO 2024120495 A2 WO2024120495 A2 WO 2024120495A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser processing
processing
actuator
processing equipment
Prior art date
Application number
PCT/CN2023/137159
Other languages
English (en)
French (fr)
Other versions
WO2024120495A3 (zh
Inventor
赵祚梁
高超
Original Assignee
深圳市创客工场科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创客工场科技有限公司 filed Critical 深圳市创客工场科技有限公司
Publication of WO2024120495A2 publication Critical patent/WO2024120495A2/zh
Publication of WO2024120495A3 publication Critical patent/WO2024120495A3/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the present disclosure relates to the field of laser processing technology, and in particular to a control method and device for laser processing equipment, and a computer program medium.
  • laser processing equipment With the development of laser processing equipment from industry to terminal applications, laser processing equipment will no longer be limited to its industrial applications. Laser processing equipment has gradually become intelligent hardware that can be used by terminals. People can use laser processing equipment to perform processing on the processing object with laser.
  • the actuator of the laser processing equipment is controlled so that the actuator of the laser processing equipment emits laser to process the processing object.
  • the laser emitted by the actuator of the laser processing equipment has a relatively high power.
  • the user touches the processing area for example, the user opens the cabin of the laser processing equipment that is sealed during processing, or even touches the area where the actuator is processing, there will be a very high safety hazard.
  • the present disclosure aims to solve and eliminate the potential safety hazard caused by user's physical involvement when laser processing equipment is processing.
  • the present disclosure provides a control method for a laser processing device.
  • the method comprises: configuring an actuator to perform laser processing on the laser processing equipment; and the method comprises:
  • the laser output executed by the actuator is controlled to be transformed into a weak light output, and the power of the weak light is reduced relative to the laser reference power of the laser processing.
  • controlling the laser output executed by the actuator to be converted into weak light output, after the power of the weak light is reduced relative to the laser reference power of the laser processing includes:
  • the actuator In response to the release of the intervention behavior, the actuator is initiated to end the weak light output and continue the processing according to the laser reference power.
  • the power of the weak light output is lower than 39mw.
  • the intervention behavior includes an external intervention action, and during the laser processing of the laser processing device, sensing the triggering of the intervention behavior includes:
  • the sensing device configured in the laser processing equipment is triggered by the external intervention action to generate an electrical signal
  • the triggering of the external intervention action is obtained by sensing the electrical signal transmitted by the sensing device.
  • controlling the laser output executed by the actuator to be converted into weak light output includes:
  • the intervention behavior is performed by controlling the movement of the actuator and the use of the laser, so that the movement is interrupted, and the power of the laser is reduced relative to the reference power so that the laser is converted into a weak light output.
  • controlling the laser output executed by the actuator to be converted into a weak light output further includes:
  • the output weak light is controlled to switch on and off according to a set time interval, so that the weak light spot flashes.
  • the intervention behavior is an external data receiving operation, and in response to the release of the intervention behavior, the method further includes initiating the actuator to end the weak light output and continuing the processing according to the laser reference power:
  • the intervention behavior is released, and the laser processing equipment continues to execute the interrupted program execution process.
  • the method further includes:
  • the laser processing equipment simulates and locates the starting trajectory point and the end trajectory point of the motion control implemented according to the data configured for motion control;
  • the program instructions for the movement of the actuator at the trajectory points are obtained by performing motion pre-calculation according to the starting trajectory point and the terminal trajectory point of the motion control, and the program instructions are used to control the movement of the actuator along the trajectory points distributed in the processing space.
  • the laser processing equipment includes a shell and a sensing device, at least a portion of the shell forms a processing space, the shell includes an openable barrier, the barrier can weaken the laser transmission between the processing space and the outside of the laser processing equipment, and the sensing device is used to detect whether the barrier is opened or closed.
  • the actuator includes a movable head, which is arranged in the shell, and at least a part of the processing object is located in the processing space of the laser processing equipment.
  • the movable head can transmit laser to the processing space to process the processing object.
  • the method before the laser processing process of the laser processing equipment, the method further includes:
  • a preview image including an expected manufacturing target processing pattern on a processing object is generated.
  • a laser processing process of the laser processing equipment includes:
  • the movable head transmits laser light to a processing object based on the processing motion plan to achieve a change in a material of the processing object.
  • the laser processing equipment includes at least one camera disposed in the processing space, capable of capturing an image including at least a portion of the processing object.
  • the present disclosure provides a laser processing device, characterized in that it includes a shell, an actuator, a track device for driving the actuator to slide, and a processor, at least a portion of the shell forms a processing space, the actuator and the track device are arranged in the processing space, and the processor is used to execute any one of the methods described above.
  • the present disclosure provides a computer program medium having computer-readable instructions stored thereon, and when the computer-readable instructions are executed by a processor of a computer, the computer is enabled to execute any one of the methods described above.
  • the laser output executed by the control actuator is first converted into a weak light output in response to the intervention behavior, and the output weak light is lower in power relative to the reference power of the laser processing.
  • the laser output is converted into a weak light output, reducing or preventing the actuator from causing harm to the user's body. In this way, possible safety hazards can be avoided.
  • FIG. 1 shows a system architecture diagram according to an embodiment of the present disclosure.
  • FIG. 2 shows a flow chart of a control method in a laser processing device according to an embodiment of the present disclosure.
  • FIG. 3 shows a flow chart of sensing intervention behavior during laser processing of a laser processing device according to an embodiment of the present disclosure.
  • FIG. 4 shows a flow chart of sensing intervention behavior during laser processing of a laser processing device according to another embodiment of the present disclosure.
  • the intervention behavior is an external data receiving operation, and through the release of the intervention behavior, the actuator is initiated to end the weak light output and continue to perform the previous behavior of effective processing according to the laser reference power.
  • FIG. 6 shows a hardware schematic diagram of a laser processing device according to an embodiment of the present disclosure.
  • FIG. 7 shows a flow chart of actions before sensing intervention actions during laser processing of a laser processing device according to an embodiment of the present disclosure.
  • FIG8 shows a schematic diagram of a control device in a laser processing device according to an embodiment of the present disclosure.
  • FIG. 9 shows a hardware structure diagram of a laser processing device according to an embodiment of the present disclosure.
  • FIG. 1 is a system architecture diagram used in an embodiment of the present disclosure.
  • the system architecture may include: at least one external device 11, such as a host computer, and a CNC machine 12 facing each external device 11, and at least one production jig (not shown) that can be used by the CNC machine 12, so as to provide users with a function that can customize laser engraving or cutting.
  • the CNC machine 12 realizes the laser engraving or cutting through the imaging process performed by itself, and displays the results of the laser engraving or cutting through a visual display.
  • the numerical control machine 12 corresponds to the laser processing device 100 described below and the processing device in FIG. 9 .
  • FIG. 2 shows a laser processing device according to an embodiment of the present disclosure.
  • the laser processing equipment is configured with an actuator to perform laser processing.
  • the embodiment of the present disclosure provides a control method in the laser processing equipment, including:
  • Step S210 sensing intervention behavior during laser processing of the laser processing equipment
  • Step S220 in response to the intervention behavior control execution mechanism, the laser output is transformed into a weak light output, and the output weak light has a power lower than the reference power of the laser processing.
  • the actuator is a device that moves on a track device built into the laser processing equipment according to a processing program of the laser processing equipment and emits a laser with a set power.
  • step S210 it should be clear that the technical problem to be solved by the embodiment of the present disclosure is: how to perceive the occurrence of intervention behavior.
  • the intervention behavior at least includes: (1) external intervention action; (2) external data receiving operation.
  • the following is a method for triggering perceived intervention behavior for intervention behavior.
  • External intervention refers to when a user or object enters the processing space, or the processing space changes from a closed state to an open state, while the laser processing equipment is processing. This situation can easily cause harm to the user or damage to the laser processing equipment, so it is necessary to monitor whether intervention behavior is triggered and respond in a timely manner. For example, (1) a human body or other object enters a certain range of the laser processing equipment; (2) the status of the laser processing equipment hardware device is changed and does not meet the preset standards, such as the cover of the laser processing equipment is opened,
  • the monitoring of external intervention is achieved by installing sensors and other sensing devices on the laser processing equipment.
  • the sensing device When the external intervention occurs, the sensing device generates a corresponding electrical signal, and the laser processing equipment determines the occurrence of the external intervention based on the received electrical signal.
  • the sensor can be a photoelectric sensor or other detection circuit, which generates a high level when it senses that the user enters the processing space, so as to quickly and accurately sense the triggering of the intervention behavior for the laser processing equipment in the processing process.
  • External data receiving operation refers to the external data receiving triggered by any communication port of the laser processing equipment.
  • the external data receiving requested by any communication port is monitored in real time. When the external data receiving requested by any communication port occurs, it is considered that the intervention behavior occurs.
  • FIG. 3 shows a flow chart of sensing intervention behavior during laser processing of a laser processing device according to an embodiment of the present disclosure.
  • the intervention behavior includes external intervention actions.
  • the present embodiment provides a step S210 of sensing intervention behavior during laser processing of a laser processing device, including:
  • Step S211a during the processing performed by the output of laser by the actuator of the laser processing equipment, the sensing device configured in the laser processing equipment is triggered by the external intervention action to generate an electrical signal;
  • Step S212a sensing the triggering of the external intervention action through the electrical signal transmitted by the sensing device.
  • step S211a in order to timely sense the triggering of external intervention actions when the laser processing equipment is processing, different sensing devices are configured for the laser processing equipment according to the different structures of the laser processing equipment to realize the sensing of the triggering of external intervention actions.
  • the processing space is limited by a closed cabin, and the closed cabin is provided with a hatch.
  • a sensing device is configured on the hatch or around the hatch, and the sensing device is triggered to generate a specific electrical signal when the hatch is opened or closed.
  • the sensing device can be a Hall sensor, a photoelectric sensor, etc. When the hatch is opened, the sensing device detects the cover opening signal, thereby sensing the external intervention action.
  • the sensing device detects the cover closing signal;
  • Open laser processing equipment For the sensing device of the open laser processing equipment, according to the degree of openness of the open laser processing equipment, the laser processing equipment is configured with a sensing device, and the sensing layer formed thereby forms a safe processing space by the sensing layer and the laser processing equipment. When the sensing layer contacts the human body or foreign matter, the sensing device will generate a specific electrical signal. For example, in the case of an open laser processing equipment, only the bottom has a shell, and the hardware mechanism of the other parts of the laser processing equipment is exposed. For example, a cuboid has six faces, so it is necessary to construct a five-sided sensing layer for the open laser processing equipment to form a closed safe processing space with the bottom of the laser processing equipment.
  • step S212a the laser processing equipment determines the occurrence of external intervention based on the electrical signal transmitted by the sensing device in step S211.
  • FIG. 4 shows a flowchart of sensing intervention behavior during laser processing of a laser processing device according to another embodiment of the present disclosure.
  • the intervention behavior includes an external data receiving operation.
  • the present embodiment provides a step S210 of sensing intervention behavior during laser processing of a laser processing device, and further includes:
  • Step S211b the laser processing equipment implementing the laser processing listens to and receives external data requested by any communication port;
  • Step S212b in response to the request sensing, a trigger of an external data receiving operation is obtained.
  • step S211b when the laser processing device processes the processing object, it listens in real time to the external data received by each communication port request.
  • the external data includes but not only includes motion control data.
  • Real-time monitoring of external data reception requested by each communication port can, on the one hand, enhance the real-time nature of data reception without being affected by the current operating status of the laser processing equipment, thereby enhancing the reliability of data reception. On the other hand, it can enable the user to adjust the unexecuted part of the processing program according to the real-time situation when the laser processing equipment is processing according to the pre-set processing program.
  • laser processing equipment is equipped with many communication ports, such as USB (Universal Serial Bus) port, serial communication port, debug serial communication port, RGB board serial communication port, etc. Laser processing equipment realizes interaction between itself and the outside world through communication ports.
  • USB Universal Serial Bus
  • step S212b when the communication port of the laser processing equipment is detected to request an external data receiving operation, the external data receiving operation is triggered, that is, the intervention behavior is triggered.
  • step S220 when the laser processing equipment senses that the intervention behavior has been triggered, in order to eliminate the possible danger to the user and the laser processing equipment itself, the laser processing equipment responds accordingly. Specifically, the laser processing equipment immediately stops the laser processing equipment actuator at the current position, and at the same time adjusts the laser output of the actuator to a weak light output. The power of the weak light output is lower than the reference power of the laser output, and the weak light output cannot cause harm to the human body. At this time, the processing equipment is in a state where it cannot continue processing. If forced operation is performed, an alarm will be issued, such as a light alarm, a buzzer alarm, etc.
  • the actuator of the laser processing equipment when the laser processing equipment senses that an intervention behavior is triggered, the actuator of the laser processing equipment immediately stops moving, and the laser of the actuator is converted to weak light output and the power is reduced, which will not cause harm to the human body.
  • the output weak light is controlled to switch on and off according to a set time interval, so that the weak light spot flashes to indicate the processing stop point of the current actuator and that it is in a pause state.
  • the laser processing equipment when the laser processing equipment is a closed cabin, and an indicator light is configured outside the cabin to indicate the current processing status of the laser processing equipment.
  • the indicator light When processing is performed in the connected state, the indicator light will be displayed in blue and flash, for example, its on-off time can be 500ms.
  • the lid When the lid is opened, the light spot of the weak light output of the actuator flashes, the on-off time is 500ms, and the indicator light is always blue.
  • aimpwr is the target power (that is, the actual power of the laser processing equipment during processing)
  • pwr is the power set in the current execution program (that is, the reference power)
  • curpsd is the movement speed of the current trajectory point, which refers to the speed of the actuator passing through the trajectory point.
  • aimspd is the target speed of the next trajectory point, which refers to the preset speed of the actuator passing through the next trajectory point.
  • the laser processing equipment ensures the safety of the operator by suspending the movement of the actuator and reducing the output power of the actuator. It should be noted that in order to ensure the safety of the user, the power of the weak light output should be lower than 39mw.
  • the laser processing equipment When the external data receiving operation occurs, the laser processing equipment will suspend the processing of the processing object for the external data reception that is about to occur, so as to receive the external data, thereby ensuring the real-time data transmission.
  • the laser processing equipment can receive the external data in real time, and the communication efficiency and performance are improved.
  • the user At the same time, it realizes the function that when the laser processing equipment is processing according to the pre-set processing program, the user can adjust the unexecuted part of the processing program according to the real-time situation. For example, replace the unexecuted part of the current processing program with other processing programs.
  • intervention behavior occurs when external data is received, it includes but is not limited to the above-mentioned response methods, and can also be methods such as flashing indicator lights.
  • FIG5 shows a flowchart of an embodiment of the present disclosure, in which the intervention behavior is an external data receiving operation, and in response to the release of the intervention behavior, the initiator terminates the weak light output and continues the previous processing behavior according to the laser reference power.
  • the embodiment of the present disclosure provides the steps of initiating the actuator to terminate the weak light output and continue the previous processing behavior according to the laser reference power in response to the release of the intervention behavior, and also includes:
  • Step S301 ending the external data reception, and configuring the stored external data as an updated configuration of the executed program, the updated configuration being used to control the laser processing performed by the actuator;
  • Step S302 After the external data is stored, the intervention behavior is released, and the laser processing equipment continues to execute the interrupted program execution process.
  • step S301 after receiving the external data, the laser processing equipment needs to store the external data after taking it out from the communication port.
  • the processing of the external data is completed, that is, the verification of the integrity and accuracy.
  • the verified data can be converted into valid data for storage.
  • the valid data is the motion control data that can be used by the laser processing equipment.
  • the external data transmitted through the external channel can achieve the control of the laser processing equipment by the external equipment.
  • the received external data includes motion control data for implementing laser processing
  • the motion control data is used to realize the control of the laser processing equipment by an external device, such as a host computer; it should be understood that the motion control data is data used to control the laser processing equipment, for example, controlling the movement of the actuator in the laser processing equipment, and the use of the laser.
  • the laser processing equipment uses the corresponding processing method to process the motion control data according to the obtained motion control data, or executes it immediately, or adds it to the execution queue and executes it in the order of first-in-first-out. It should be clear that different motion control data have different processing methods. For example, some motion control data needs to be executed immediately, and some motion control data needs to be executed in sequence. So far, through the above steps, the external data received by the laser processing equipment is processed and stored for use in the operation of the laser processing equipment, so that the unexecuted part of the current execution program can be changed, making the laser processing equipment processing program flexible and changeable.
  • step S302 when the external data is stored, the intervention of the laser processing equipment is released, the actuator of the laser processing equipment continues to move, and the implemented laser output is restored from weak light output to laser output.
  • the laser processing equipment continues to perform the unfinished processing without having to restart.
  • the laser processing equipment restarts processing, which means that after the laser processing equipment is stopped and restarted, it can no longer continue to process the processing object with the unfinished processing program, and can only start a new processing program, so a new processing object needs to be replaced, and the unfinished processing object can no longer be used.
  • the laser processing equipment continues processing, which means that after the processing equipment is stopped and restarted, it can continue to process the processing object with the unfinished processing program, avoiding the above-mentioned problem of material waste.
  • the laser processing equipment always monitors the state of the intervention behavior in real time. When it detects that the intervention behavior has been released, the laser processing equipment is in a state where processing can continue. At this time, the laser processing equipment can respond to the instruction to continue processing and continue processing the processing object. When the motion of the actuator of the laser processing equipment is restored, the laser output reference power of the actuator is restored, and effective processing is continued at the laser reference power.
  • FIG6 shows a hardware schematic diagram of a laser processing device according to an embodiment of the present disclosure.
  • the laser processing device includes a housing, the processing space is at least partially formed by the housing, the movable head is arranged in the housing, and the housing includes an openable blocking member 20, the blocking member 20 can reduce the laser transmission between the processing space and the outside of the laser processing device.
  • the housing can be a cabin of the laser processing device, and the blocking member 20 can be a cabin cover of the laser processing device.
  • the laser processing device 100 includes a housing, a movable head 50, and a camera.
  • a processing space is provided in the housing.
  • the camera is provided in the housing. The camera may be located at the top, side, or the connection between the top and side of the processing space.
  • the laser processing device processes an object, at least a portion of the object is located in the processing space of the laser processing device.
  • the camera can capture an image including at least a portion of the object being processed.
  • a laser processing process of a laser processing device includes:
  • the laser processing equipment transmits laser light to a processing object based on the processing motion plan to achieve a change in the material of the processing object.
  • a processing motion plan of the movable head is generated, and the processing motion plan includes but is not limited to the motion speed, motion path, motion time, etc.
  • the movable head transmits electromagnetic energy to the processing object based on the processing motion plan to achieve the change of the material of the processing object.
  • the change of the material includes engraving, cutting, indentation, spraying raw material printing, etc.
  • the camera provided in the laser processing equipment 100 includes but is not limited to a long-range camera for shooting a panoramic processing screen, and a close-up camera.
  • the close-up camera is provided on the movable head 50, and the movable close-up camera can move and shoot.
  • the shell of the laser processing equipment 100 as shown in FIG7 includes an upper shell 90 and a bottom shell 70, which together enclose a processing space that can accommodate the processing object.
  • the upper shell 90 and the bottom shell 70 can be detachably connected or fixedly connected, or the upper shell 90 and the bottom shell 70 are an integrally formed structure.
  • the housing is further provided with a blocking member 20 that can be opened or closed, and the operator can open the processing space by opening the blocking member 20 to put in or take out the processing object, that is, the workpiece.
  • the barrier 20 can be made of a translucent material. When the barrier 20 is closed, the user can use the barrier 20 as a window to observe the laser processing of the processing object in the processing space.
  • the barrier 20 can filter high-energy lasers so that the barrier 20 can weaken the laser transmission between the processing space and the outside of the laser processing equipment, and weaken the spillage of the laser to avoid physical harm to the user.
  • the blocking and/or filtering effects of the upper shell 90 and the bottom shell 70 can prevent the laser emitted by the movable head 50 from spilling over during operation and causing personal injury to the operator.
  • a track device may be provided in the processing space, and the movable head 50 may be installed on the track device.
  • the track device may be an X-axis and a Y-axis guide rail, and the X-axis and the Y-axis guide rail may be a linear guide rail, or a guide rail in which an optical axis and a roller slide together, etc. It is sufficient to be able to drive the movable head 50 to move and process on the X-axis and the Y-axis.
  • a Z-axis moving track may also be provided in the movable head 50, which is used to move and focus in the Z-axis direction before and/or during processing.
  • a laser may be disposed in the movable head 50 to generate and output laser light.
  • the types of lasers include but are not limited to semiconductor lasers, solid-state lasers, fiber lasers, and the like.
  • a laser is provided in the laser processing equipment.
  • the laser may be a galvanometer laser.
  • the galvanometer laser outputs laser light and changes the laser emission direction through a galvanometer to perform laser processing on the processing object.
  • the laser processing equipment 100 further includes a laser light source 30, which may be a carbon dioxide laser tube, etc., that is, the laser light source 30 of the carbon dioxide laser tube generates and outputs laser light, which then passes through a reflector, etc., enters the movable head 50, and outputs laser light after being reflected in the movable head 50 to process the workpiece.
  • a reflector 10 is arranged between the movable head 50 and the laser tube 30, and the laser light generated by the laser tube 30 passes through the reflector 10 and is reflected to the movable head 50, and then is adjusted in the optical path by reflection, focusing, etc., and finally is emitted to process the workpiece.
  • FIG. 7 shows a flow chart of sensing the behavior before the intervention behavior during the laser processing of the laser processing device according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides the step of sensing the behavior before the intervention behavior during the laser processing of the laser processing device, further comprising:
  • Step S401 the laser processing equipment simulates and locates the starting trajectory point and the end trajectory point of the motion control implemented according to the data configured for motion control;
  • Step S402 Pre-calculate the motion based on the starting and ending trajectory points of the motion control.
  • a program instruction for the actuator to move at the trajectory point is obtained, and the program instruction is used to control the actuator to move along the distributed trajectory points in the processing space.
  • step S401 the motion control data stored is a number of frames of data sent sequentially by an external device. These frames of data will be used to control the motion of the corresponding actuator of the laser processing equipment at each trajectory point and the use of the laser.
  • the laser processing equipment will take out frames of motion control data to sequentially generate a trajectory point queue.
  • the queue elements in the trajectory point queue contain trajectory point motion instructions, which carry several instruction parameters, such as the position of the point on the corresponding curve trajectory, point type, etc. It should be understood that the trajectory point motion instructions contained in the queue elements will be used to describe the trajectory point of laser cutting or engraving on the one hand, and on the other hand, to indicate the motion state of the actuator under the trajectory point.
  • the generation of the trajectory point queue is the process of continuously taking out the motion control data from the buffer area and converting it into trajectory point motion instructions, and then adding them to the queue.
  • the trajectory point motion instructions constitute the data in the queue elements.
  • the laser processing of the laser processing equipment is not immediately executed under the control of the trajectory point queue, but the curve pre-scan of the trajectory point queue is jumped to execute.
  • trajectory point queue is mapped consistently with the processing curve and processing working status (laser usage), wherein the processing curve refers to the motion curve of the motor-driven tool head and/or movable head to perform laser cutting and/or engraving; the processing working status refers to the laser power, laser mode, etc. used in the processing process.
  • processing curve refers to the motion curve of the motor-driven tool head and/or movable head to perform laser cutting and/or engraving
  • processing working status refers to the laser power, laser mode, etc. used in the processing process.
  • the processing curve includes several curve segments.
  • the processing processes involved in different curve segments are often very different.
  • the processing processes performed on different trajectory points in the same curve segment are relatively stable. Therefore, the trajectory point queue is pre-scanned to determine the beginning and end of each curve segment, thereby avoiding the subsequent actual processing process from being calculated, reducing the amount of calculation in the subsequent processing process, and improving the processing efficiency.
  • different curve segments on the processing curve are also composed of trajectory points, and the range of a curve segment is determined by its first trajectory point and last trajectory point.
  • the first track point and The tail track point is then used to facilitate the motion pre-calculation of each included track point under the clear determination of the range of each curve segment.
  • step S402 after the curve is pre-scanned to determine the starting point and the ending point of the scanned curve segment, the motion pre-calculation of the covered trajectory points of the curve segment can be performed to obtain the instruction parameters of the trajectory points.
  • the pre-calculated instruction parameters will more accurately describe and control the movement of the actuator in the laser processing equipment. Therefore, the instruction parameters are updated in the corresponding queue elements in the trajectory point queue.
  • the trajectory point motion instructions carrying richer and more accurate instruction parameters will make the processing performed by the laser processing equipment more reliable and accurate.
  • the pre-calculated instruction parameters may include information such as the position vector of the corresponding trajectory point in three-dimensional space. For example, after determining the first and last trajectory points of the currently scanned curve segment, the length of the curve segment can be known, and then the position determination and speed planning of the trajectory point can be pre-calculated according to the length, which is the instruction parameter carried by the trajectory point motion instruction expansion.
  • the traversal of the trajectory point queue is initiated to run the curve segments and the trajectory points on the curve segments one by one, and finally realize the engraving or cutting of the laser processing equipment at each trajectory point.
  • the traversal of the track point queue is allowed to be executed only when it is confirmed that the buffer area is empty or the track point queue is full.
  • each curve segment refers to the execution process of sending the corresponding trajectory operation instruction, and each curve segment necessarily includes several trajectory points. Therefore, the operation of the curve segment is the process of separately operating several trajectory points.
  • FIG8 shows a schematic diagram of a control device in a laser processing device according to an embodiment of the present disclosure.
  • the control device in a laser processing device according to an embodiment of the present disclosure mainly includes the following modules:
  • Sensor 610 configured to sense intervention behavior during laser processing of the laser processing device
  • Pause device 620 configured to control the laser output executed by the actuator to be converted into weak light output in response to the intervention behavior, and the output weak light has a power lower than the reference power of the laser processing;
  • the control method in the laser processing device according to the embodiment of the present disclosure can be implemented by the processing device of FIG. 9.
  • the processing device according to the embodiment of the present disclosure is described below with reference to FIG. 9.
  • FIG. 8 shows The processing equipment is merely an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
  • the processing device may be in the form of a general-purpose computing device.
  • the components of the processing device may include, but are not limited to: at least one processing unit 810, at least one storage unit 820, and a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810).
  • the storage unit stores a program code, which can be executed by the processing unit 810, so that the processing unit 810 performs the steps according to various exemplary embodiments of the present disclosure described in the description section of the exemplary method described above.
  • the processing unit 810 can perform the steps shown in Figure 2.
  • the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 8201 and/or a cache storage unit 8202 , and may also include a read-only storage unit (ROM) 8203 .
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 820 may also include a program/utility 8204 having a set (at least one) of program modules 8205, such program modules 8205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • program modules 8205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • Bus 830 may represent one or more of several types of bus structures, including a memory unit bus or memory unit controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local bus using any of a variety of bus architectures.
  • the processing device may also communicate with one or more external devices 700 (e.g., keyboards, pointing devices, Bluetooth devices, etc.), one or more devices that enable a user to interact with the processing device, and/or any device that enables the processing device to communicate with one or more other computing devices (e.g., routers, modems, etc.). Such communication may be performed via input/output (I/O) interface 850.
  • the processing device may also communicate with one or more networks (e.g., local area networks (LANs), wide area networks (WANs), and/or public networks such as the Internet) via network adapter 860.
  • LANs local area networks
  • WANs wide area networks
  • public networks such as the Internet
  • processing device including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data backup storage systems.
  • the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network, and includes several instructions to enable a computing device (which can be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to the embodiment of the present disclosure.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computing device which can be a personal computer, a server, a terminal device, or a network device, etc.
  • a computer program medium is further provided, on which computer-readable instructions are stored.
  • the computer-readable instructions are executed by a processor of a computer, the computer is enabled to execute the method described in the above method embodiment.
  • a program product for implementing the method in the above method embodiment is also provided, which can adopt a portable compact disk read-only memory (CD-ROM) and include program code, and can be run on a terminal device, such as a personal computer.
  • a readable storage medium can be any tangible medium containing or storing a program, which can be used by or in combination with an instruction execution system, an apparatus or a device.
  • the program product may use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples (non-exhaustive list) of readable storage media include: an electrical connection with one or more wires, a portable disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • Computer readable signal media may include data signals propagated in baseband or as part of a carrier wave, in which readable program code is carried. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. Readable signal media may also be any readable medium other than a readable storage medium, which may send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • the program code embodied on the readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., and conventional procedural programming languages such as "C" or similar programming languages.
  • the program code may be executed entirely on the user computing device, partially on the user device, as a separate software package, partially on the user computing device and partially on a remote computing device, or entirely on a remote computing device or server.
  • the remote computing device may be connected to the user computing device through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, etc.
  • the technical solution according to the implementation methods of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network, and includes several instructions to enable a computing device (which can be a personal computer, a server, a mobile terminal, or a network device, etc.) to execute the method according to the implementation methods of the present disclosure.
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a computing device which can be a personal computer, a server, a mobile terminal, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本公开提供了一种激光加工设备的控制方法与设备、计算机程序介质,所述激光加工设备配置执行机构执行激光加工,包括:在激光加工设备的激光加工过程中,感知介入行为,响应介入行为控制执行机构执行的激光输出变换为弱光输出,输出的弱光在功率上相对激光实施加工的基准功率下浮。本公开消除了激光加工设备进行加工时出现用户介入所存在的风险。

Description

激光加工设备的控制方法与设备、计算机程序介质
交叉引用
本公开要求于2022年12月8日提交的申请号为2022115760721名称为“激光加工设备的控制方法与装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及激光加工技术领域,具体涉及一种激光加工设备的控制方法与设备、计算机程序介质。
背景技术
随着激光加工设备从工业向终端应用的发展,激光加工设备将不再限于其在工业上的应用,激光加工设备已经逐渐成为终端可使用的智能硬件,人们能够通过激光加工设备的使用而在加工对象之上以激光实现加工。
激光加工设备所执行的加工过程中,通过控制激光加工设备的执行机构,使得激光加工设备的执行机构发出激光,对加工对象进行加工。
但是,在对加工对象进行加工时,激光加工设备的执行机构发出的激光,拥有较高功率,此时一旦用户触碰加工区域,例如用户打开加工时封装的激光加工设备舱体,甚至于触碰执行机构正在加工的区域,都会存在非常高的安全隐患。
随着激光加工的持续进行,若是用户靠近,激光加工设备仍然继续加工,则存在极大可能会伤害用户,进而发生安全事故。
因此如何消除激光加工设备进行加工时,用户身体介入所存在的安全隐患是当前所亟待解决的问题。
公开内容
本公开的旨在解决消除激光加工设备进行加工时,用户身体介入所存在的安全隐患。
根据本公开实施例的一方面,本公开提供了一种激光加工设备的控制 方法,所述激光加工设备配置执行机构执行激光加工,所述方法包括:
在所述激光加工设备的激光加工过程中,感知介入行为;
响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,所述弱光的功率相对所述激光加工的激光基准功率下浮。
根据本公开实施例的一方面,所述响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,所述弱光的功率相对所述激光加工的激光基准功率下浮之后,包括:
响应于所述介入行为的解除,发起所述执行机构结束所述弱光输出,按照所述激光基准功率继续加工。
根据本公开实施例的一方面,所述弱光输出的功率低于39mw。
根据本公开实施例的一方面,所述介入行为包括外部介入动作,在所述激光加工设备的激光加工过程中,感知介入行为的触发,包括:
激光加工设备的执行机构输出激光所实施的加工中,所述激光加工设备配置的感知器件被外部介入动作触发产生电信号;
通过所述感知器件传送的电信号感知得到所述外部介入动作的触发。
根据本公开实施例的一方面,响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,包括:
对所述介入行为执行所述执行机构运动和激光使用的控制,使所述运动中断,且相对所述激光基准功率下浮功率使所述激光变换为弱光输出。
根据本公开实施例的一方面,所述响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,还包括:
对所输出的弱光,按照设定时间间隔控制所述弱光的亮灭切换,使所述弱光光斑闪烁。
根据本公开实施例的一方面,所述介入行为是外部数据接收操作,所述响应于所述介入行为的解除,发起所述执行机构结束所述弱光输出,按照所述激光基准功率继续加工之前,所述方法还包括:
结束外部数据接收,且配置存储所述外部数据为所执行程序的更新配置,所述更新配置用于控制所述执行机构实施的激光加工;
待所述外部数据被存储之后,所述介入行为解除,激光加工设备继续执行被中断的程序执行过程。
根据本公开实施例的一方面,所述在所述激光加工设备的激光加工过 程中,感知介入行为之前,所述方法还包括:
所述激光加工设备根据配置为运动控制的数据,模拟定位所实施运动控制的起始轨迹点与末端轨迹点;
根据所述运动控制的起始轨迹点与末端轨迹点进行运动预计算获得所述执行机构在轨迹点运动的程序指令,所述程序指令用于控制所述执行机构在所述加工空间沿分布的轨迹点运动。
根据本公开实施例的一方面,所述激光加工设备包括壳体和感知器件,至少部分所述壳体形成加工空间,所述壳体包括可打开的阻挡件,所述阻挡件能够减弱所述加工空间和所述激光加工设备的外部之间的激光传送,所述感知器件用于检测所述阻挡件被打开或关闭。
根据本公开实施例的一方面,所述执行机构包括可移动头,所述可移动头设置在所述壳体内,加工对象至少一部分位于所述激光加工设备的加工空间内,所述可移动头能够将激光传送到所述加工空间,以加工所述加工对象。
根据本公开实施例的一方面,所述激光加工设备的激光加工过程之前,所述方法还包括:
生成所述可移动头的加工运动计划;
生成包括在加工对象上的预期制造目标加工图形的预览图像。
根据本公开实施例的一方面,所述激光加工设备的激光加工过程,包括:
所述可移动头基于所述加工运动计划将激光传送到加工对象,以实现对加工对象的材料的改变。
根据本公开实施例的一方面,所述激光加工设备包括至少一个设置于所述加工空间内的摄像头,能够捕获包括所述加工对象至少一部分的图像。
根据本公开实施例的一方面,本公开提供了一种激光加工设备,其特征在于,包括壳体、执行机构、驱动执行机构滑动的轨道装置以及处理器,至少部分所述壳体形成加工空间,所述执行机构和所述轨道装置设置于所述加工空间内,所述处理器用于执行上述的任意一项所述的方法。
根据本公开实施例的一方面,本公开提供了一种计算机程序介质,其上存储有计算机可读指令,当所述计算机可读指令被计算机的处理器执行时,使计算机执行上述的任意一项所述的方法。
在本公开实施例中,对于激光加工设备当前所实施的激光加工,若在激光加工设备的激光加工过程中,感知介入行为发生,首先响应介入行为控制执行机构执行的激光输出变换为弱光输出,输出的弱光在功率上相对激光实施加工的基准功率下浮。通过改变执行机构的输出功率,将激光输出变换为弱光输出,减少或防止执行机构对用户人体造成伤害。以此来避免可能存在的安全隐患。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1示出了根据本公开一个实施例的所应用的一种体系架构图。
图2示出了根据本公开一个实施例的一种激光加工设备中的控制方法的流程图。
图3示出了根据本公开一个实施例的激光加工设备的激光加工过程中,感知介入行为的流程图。
图4示出了根据本公开另一实施例的激光加工设备的激光加工过程中,感知介入行为的流程图。
图5示出了根据本公开一个实施例的介入行为是外部数据接收操作,通过所述介入行为的解除,发起执行机构结束所述弱光输出,并按照激光基准功率继续实施有效加工之前行为的流程图。
图6示出了根据本公开一个实施例的激光加工设备的硬件示意图。
图7示出了根据本公开一个实施例的在激光加工设备的激光加工过程中,感知介入行为之前行为的流程图。
图8示出了根据本公开一实施例的一种激光加工设备中的控制装置的示意图。
图9示出了根据本公开一个实施例的激光加工设备的硬件结构图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些示例实施方式使得本公开的描述将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多示例实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的示例实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、步骤等。在其它情况下,不详细示出或描述公知结构、方法、实现或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
请参阅图1,图1是本公开一个实施例的所应用的一种体系架构图。该体系架构可以包括:至少一个外部设备11,如一上位机,以及面向各外部设备11的数控机器12,可供数控机器12使用的至少一生产治具(图未示),以此来为用户构成能够自定义进行激光雕刻或切割的功能。其中,数控机器12通过自身执行的成像过程实现所进行的激光雕刻或切割能够所见即得,通过可视化显示来显示激光雕刻或切割的结果。
需要明确是,数控机器12对应于下文的激光加工设备100、以及图9中的加工设备。
应当理解,图1中的外部设备11的数目仅仅是示意性的。根据实现需要,可以具有任意数目的外部设备11。
本公开实施例的一些技术方案可以基于如图1所示的体系架构或其变形架构来具体实施。
请参阅图2,图2示出了根据本公开一个实施例的一种激光加工设备 中的控制方法的流程图。激光加工设备配置执行机构执行激光加工,本公开实施例提供了一种激光加工设备中的控制方法,包括:
步骤S210,在激光加工设备的激光加工过程中,感知介入行为;
步骤S220,响应介入行为控制执行机构执行的激光输出变换为弱光输出,输出的弱光在功率上相对激光实施加工的基准功率下浮。
下面对以上2个步骤进行详细描述。
在本公开一实施例中执行机构是根据激光加工设备的加工程序在激光加工设备所内置的轨道装置上进行运动并发射设定功率激光的装置。
在步骤S210中,应当明确的是,本公开实施例首先要解决的技术问题是:如何感知介入行为的发生。在本公开一实施例中,介入行为至少包括:(1)外部介入动作;(2)外部数据接收操作。
以下是针对介入行为,进行感知介入行为触发的方法。
外部介入动作是指在激光加工设备进行加工时,用户或者物品进入到加工空间内,或者加工空间由封闭状态变为开放状态。这种情况下易造成用户伤害或者激光加工设备损坏,因此需要对是否触发介入行为进行监测,并及时做出响应。如(1)人体或者其他物品进入到激光加工设备的一定范围内;(2)激光加工设备硬件装置状态被改变,且没有达到预设标准,如激光加工设备的舱盖被打开,
对于外部介入动作发生的监测,是通过在激光加工设备上装配传感器等感应器件来实现的。当外部介入动作发生时,使感应器件产生相应的电信号,激光加工设备根据接收的电信号判定外部介入动作的发生。例如,该传感器可以是光电传感器,或者其它检测电路,在感知得到用户进入加工空间之时产生高电平,以此来快速准确的为处于加工过程的激光加工设备感知得到介入行为的触发。
外部数据接收操作是指激光加工设备对任意一通讯端口触发进生的外部数据接收。实时监测任意一通讯端口请求进行的外部数据接收,当发生任意一通讯端口请求进行的外部数据接收,则认为介入行为的发生。
请参阅图3,图3示出了根据本公开一个实施例的激光加工设备的激光加工过程中,感知介入行为的流程图。介入行为包括外部介入动作,本公开实施例提供了激光加工设备的激光加工过程中,感知介入行为的步骤S210,包括:
步骤S211a,激光加工设备的执行机构输出激光所实施的加工中,激光加工设备配置的感知器件被外部介入动作触发产生电信号;
步骤S212a,通过感知器件传送的电信号感知得到外部介入动作的触发。
下面以介入行为是外部介入动作为例,对这两个步骤进行详细描述。
在步骤S211a中,为了在激光加工设备进行加工时,及时感知外部介入动作的触发,根据激光加工设备的结构不同,对激光加工设备配置不同的感知器件,来实现对外部介入动作触发的感知。如:(1)加工空间由封闭舱体所限定,该封闭舱体附带舱盖。在舱盖或者舱盖周边配置感知器件,当舱盖打开或关闭时感知器件触发产生特定电信号。在一些实施例中,感知器件可以是霍尔传感器、光电传感器等,在打开舱盖时,通过感知器件检测到开盖信号,据此感知外部介入动作,类似地,在关闭舱盖时通过感知器件检测到关盖信号;(2)开放式激光加工设备。对开放式激光加工设备感知器件,根据开放式激光加工设备开放程度,对该激光加工设备配置感应器件,并由此而形成的感应层,由感应层和激光加工设备形成安全加工空间。当感应层与人体或者异物接触,感应器件则将会发生特定电信号。如当开放式激光机加工设备,只有底部存在外壳,其他部分的激光加工设备的硬件机构均裸露在外。示例性的,一个长方体有6个面,因此需要对该开放式激光加工设备构建5面感应层,与激光加工设备底部形成密闭的安全加工空间。
在步骤S212a中,激光加工设备根据步骤S211中感知器件传送的电信号,判定外部介入动作的发生。
请参阅图4,图4示出了根据本公开另一实施例的激光加工设备的激光加工过程中,感知介入行为的流程图。介入行为包括外部数据接收操作,本公开实施例提供了激光加工设备的激光加工过程中,感知介入行为的步骤S210,还包括:
步骤S211b,实施激光加工的激光加工设备侦听得到任意一通讯端口请求进行的外部数据接收;
步骤S212b,响应于请求感知得到外部数据接收操作的触发。
下面以介入行为是外部数据接收操作为例,对上面两个步骤进行详细描述。
在步骤S211b中,激光加工设备在对加工对象进行加工时,实时侦听各通讯端口请求进行的外部数据接收。需要明确的是外部数据包括但不仅仅包括运动控制数据。
实时侦听各通讯端口请求进行的外部数据接收,一方面增强数据接收的实时性,而不会受到激光加工设备当前运行状况的影响,使数据接收的可靠性得到相应增强。另一方面实现激光加工设备的在按照预先设定的加工程序进行加工时,用户根据实时情况对加工程序的未执行部分进行调整的功能。
需要明确的是,激光加工设备配置了众多通讯端口,例如,USB(Universal Serial Bus,通用串行总线)端口、串行通讯端口、调试串行通讯端口、RGB板卡串行通讯端口等。激光加工设备通过通讯端口实现自身与外部的交互。
在步骤S212b中,在侦听到激光加工设备的通讯端口请求外部数据接收操作时,则外部数据接收操作被触发,既介入行为被触发。
在步骤S220中,当激光加工设备感知到介入行为被触发,为了消除可能对用户以及激光加工设备本身的危险,激光加工设备做出相应响应。具体而言,激光加工设备立刻使激光加工设备执行机构停留在当前位置,且同时调整执行机构的激光输出为弱光输出。弱光输出的功率相对于激光输出的基准功率下浮,且该弱光输出对人体无法造成伤害。此时加工设备处于不可继续加工状态,若强行操作将进行示警,如灯光示警、蜂鸣示警等。
在本公开一实施例中,当激光加工设备感知到介入行为触发时,激光加工设备执行机构立即停止运动,执行机构的激光变换为弱光输出且功率下浮,对人体无法造成伤害。
在本公开另一实施例中执行结构进行弱光输出时,对所输出的弱光,按照设定时间间隔控制所述弱光的亮灭切换,使弱光光斑闪烁,以表示当前执行机构的加工停止点,以及处于暂停状态。
示例性的,当激光加工设备为封闭舱体,且舱体外部配置有指示灯,指示激光加工设备当前加工状态时。在连接状态下进行加工,指示灯会显示为蓝色并且进行闪烁,例如,其亮灭时间可为500ms。在打开盖子这时候执行机构弱光输出的光斑进行闪烁,亮灭时间为500ms,指示灯常亮为蓝色。
激光功率的变化,在加工随变模式下,激光功率会在基准功率上下浮动。公式如下:
aimpwr=pwr*curspd/aimspd
其中,aimpwr为目标功率(也即激光加工设备加工时的实际功率),pwr当前执行程序中设置的功率(也即基准功率),curpsd为当前轨迹点的运动速度,当前轨迹点的运动速度是指执行机构在经过该轨迹点的速度。aimspd为下一个轨迹点的目标速度,下一个轨迹点的目标速度是指预设的执行机构在经过下一轨迹点的速度。
在外部介入动作发生时,激光加工设备通过暂停执行机构的运动,并降低执行机构的输出功率,保证了操作人员的安全。应该说明的是为了保证用户的安全,弱光输出的功率应该低于39mw。
需要明确的是,在外部介入动作发生时,包括但不仅仅包括上述响应方式。
在外部数据接收操作发生时,激光加工设备对于所即将发生的外部数据接收,激光加工设备暂停对加工对象的加工,以通过此来接收外部数据,从而保证数据传输的实时性,激光加工设备能够实时接收到外部数据,通讯效率和性能得到提升。同时实现了实现激光加工设备的在按照预先设定的加工程序进行加工时,用户根据实时情况对加工程序的未执行部分进行调整的功能。如将目前加工程序的未执行部分替换为其他加工程序。
需要明确的是,当介入行为是外部数据接收时并发生时,包括但不仅仅包括上述响应方式,还可以是指示灯闪烁等方式。
请参阅图5,图5示出了根据本公开一个实施例的介入行为是外部数据接收操作,响应于介入行为的解除,发起执行机构结束弱光输出,按照激光基准功率继续加工之前行为的流程图。本公开实施例提供了响应于介入行为的解除,发起执行机构结束弱光输出,按照激光基准功率继续加工之前行为步骤,还包括:
步骤S301,结束外部数据接收,且配置存储外部数据为所执行程序的更新配置,更新配置用于控制执行机构实施的激光加工;
步骤S302,待外部数据被存储之后,介入行为解除,激光加工设备继续执行被中断的程序执行过程。
下面对这两个步骤进行详细描述。
在步骤S301中,在外部数据接收结束之后,激光加工设备从通讯端口取出外部数据之后,需执行外部数据的存储,存储过程中完成对外部数据的处理,即完整性和准确性的校验。可以经过校验的,变为有效数据进行存储,有效数据为激光加工设备能够使用的运动控制数据。从而最终通过外部通道传递的外部数据来达成外部设备对激光加工设备的控制,
示例性的,所接收的外部数据包括实施激光加工的运动控制数据,该运动控制数据用于实现外部设备,如上位机对激光加工设备的控制;应当理解的,运动控制数据是用于控制激光加工设备的数据,例如,控制激光加工设备中执行机构的运动,以及激光使用。
激光加工设备根据所获得的运动控制数据,使用其对应的处理方式来处理运动控制数据,或将其立即执行,或加入执行队列,按照先进先出的顺序分别执行。需要明确的是不同的运动控制数据有着不同的处理方式。例如,有的运动控制数据是需要立即执行,有的运动控制数据则需要按序执行。至此,通过上述步骤执行,对激光加工设备接收的外部数据进行了处理和存储,以供激光加工设备运行中取用,从而便能够实现对当前执行程序未执行部分进行更改,使激光加工设备加工程序具有灵活可变性。
在步骤S302中,当外部数据完成存储,激光加工设备的介入行为被解除,激光加工设备的执行机构继续运动,所实施的激光输出由弱光输出恢复为激光输出。
在本公开一个实施例中,在介入行为解除后激光加工设备继续执行未完成的加工,不必重新开始。激光加工设备重新开始加工,是指激光加工设备在停止之后再启动的,不能再延续未完成的加工程序对加工对象进行加工,只能再开始一个新的加工程序,因此需要更换新的加工对象,未完成的加工对象不可再继续使用。激光加工设备继续加工,是指加工设备在停止之后再启动的,可以延续未完成的加工程序对加工对象进行加工,避免了出现上述材料浪费的问题。
具体的,激光加工设备始终实时监测介入行为的状态,当监测到介入行为被解除,激光加工设备则处于可继续加工状态,此时激光加工设备可响应继续加工的指令,对加工对象继续加工。在恢复激光加工设备执行机构运动的同时,恢复执行机构的激光输出基准功率,以激光基准功率继续实施有效加工。
请参阅图6,图6示出了根据本公开一个实施例的激光加工设备的硬件示意图。所述激光加工设备包括壳体,所述加工空间至少部分由所述壳体形成,可移动头设置在壳体内,所述壳体包括可打开的阻挡件20,所述阻挡件20能够减弱所述加工空间和所述激光加工设备的外部之间的激光传送。壳体可以是激光加工设备的舱体,阻挡件20可以是激光加工设备的舱盖。
在一些实施例中,如图7所示,激光加工设备100包括壳体、可移动头50、摄像头,壳体内设有加工空间,摄像头设置于壳体,摄像头可位于加工空间的顶部、侧部、或者位于顶部和侧部的连接处等。激光加工设备对加工对象时,加工对象至少一部分位于所述激光加工设备的加工空间内。摄像头能够捕获包括所述加工对象至少一部分的图像。
在一些实施例中,激光加工设备的激光加工过程,包括:
生成可移动头的加工运动计划;
生成包括在加工对象上的预期制造所述目标加工图形的预览图像;
所述激光加工设备基于所述加工运动计划将激光传送到加工对象,以实现对加工对象的材料的改变。
具体,通过预览图像的显示,方便用户进行目标加工图形的编辑、对位、缩放及查看等可视化操作。根据用户对目标加工图形的编辑对位及加工参数等调整之后,生成可移动头的加工运动计划,加工运动计划包括但不限于运动速度、运动路径、运动时间等。可移动头基于加工运动计划将电磁能传送到加工对象,以实现对加工对象的材料的改变。材料的改变包括被雕刻、切割、压痕、以及喷原料打印等等。
在一些实施例中,激光加工设备100设置的摄像头,包括但不限于用于拍摄全景加工画面的远景摄像头、及近景摄像头,近景摄像头设置于可移动头50,可移动的近景摄像头能够移动和拍摄。
在一实施例中,如图7所示激光加工设备100的壳体,包括上壳90和底壳70,共同围合形成可收容加工对象的加工空间,上壳90和底壳70之间可以是可拆卸连接或固定连接,或者上壳90和底壳70两者是一体成型结构。
在一实施例中,壳体还设置有可打开或关闭的阻挡件20,操作者可以通过打开阻挡件20来打开加工空间,以放入或取出加工对象,即工件。阻 挡件20可以是半透明的材质制成,在阻挡件20关闭时,用户可以通过阻挡件20作为窗口来观察加工空间中加工对象的激光加工,阻挡件20能够起到对高能量激光进行过滤的作用,以使得所述阻挡件20能够减弱所述加工空间和所述激光加工设备的外部之间的激光传送,减弱激光的外溢以避免对用户的身体伤害。
具体地,通过上壳90和底壳70的阻挡和/或过滤作用,能够防止可移动头50出射的激光在工作时出现激光外溢对操作者的人身伤害。
示例性的,在一实施例中,所述加工空间内还可设置轨道装置,可移动头50安装于轨道装置。其中轨道装置可以是X、Y轴导轨,X、Y轴导轨可以采用如直线导轨、或光轴与滚轮配合滑动的导轨等,只需要能够驱动可移动头50在X、Y轴上进行移动加工即可,可移动头50内还可设Z轴移动轨道,用于加工前和/或加工时在Z轴方向上移动进行调焦。
在一实施例中,可移动头50内可设置有激光器,通过激光器产生并输出激光,激光器的类型包括但不限于半导体激光器、固体激光器、光纤激光器等。
在一实施例中,激光加工设备内设激光器,激光器可以是振镜激光器,振镜激光器输出激光,并通过振镜改变激光出射方向,以对加工对象进行激光加工。
在另一实施例中,激光加工设备100还包括激光光源30,激光光源30可以是如二氧化碳激光管等,即,通过二氧化碳激光管的激光光源30产生并输出激光,再经过反射镜等进入可移动头50,通过可移动头50内反射后输出激光,以进行工件的加工。在一实施例中,可移动头50和激光管30之间设置反射镜10,激光管30产生的激光经过反射镜10后反射至可移动头50后经反射、聚焦等光路调整,最终射出激光以加工工件。
请参阅图7,图7示出了根据本公开一个实施例的在所述激光加工设备的激光加工过程中,感知介入行为之前行为的流程图。本公开实施例提供了在所述激光加工设备的激光加工过程中,感知介入行为之前行为步骤,还包括:
步骤S401,激光加工设备根据配置为运动控制的数据,模拟定位所实施运动控制的起始轨迹点与末端轨迹点;
步骤S402,根据运动控制的起始轨迹点与末端轨迹点进行运动预计算 获得执行机构在轨迹点运动的程序指令,程序指令用于控制执行机构在加工空间沿分布的轨迹点运动。
下面对这两个步骤进行详细描述。
在步骤S401中,被存储的运动控制数据,是外部设备所顺序发送的若干帧数据,这一帧帧数据将用于控制激光加工设备的相应执行机构在一个个轨迹点下的运动以及激光使用。
因此按照接收顺序,激光加工设备将取出一帧帧的运动控制数据来顺序生成轨迹点队列。轨迹点队列中的队列元素都包含了轨迹点运动指令,轨迹点运动指令携带了若干指令参数,例如,所对应曲线轨迹上点的位置,点类型等。应当理解的,队列元素所包含的轨迹点运动指令,一方面将用于描述所进行激光切割或雕刻的轨迹点,另一方面则用于指示该轨迹点下执行机构的运动状态。
轨迹点队列的生成,是不断从缓存区取出用于运动控制数据转换为轨迹点运动指令,进而加入队列的过程。轨迹点运动指令构成了队列元素中的数据存在。
对于所生成的轨迹点队列,即便条件允许,也未即时在轨迹点队列的控制下执行激光加工设备的激光加工过程中,而跳转执行轨迹点队列的曲线预扫描。
需要明确的是,轨迹点队列是与加工曲线、加工工作状态(激光使用)相映射一致的,其中,所指的加工曲线,即为电机驱动刀头和/或可移动头等工具执行激光切割和/或雕刻的运动曲线;加工工作状态即为加工过程所使用的激光功率、激光模式等。
加工曲线,包含了若干曲线段,不同的曲线段其所涉及的加工过程往往存在着非常大的差异,同一曲线段中对不同轨迹点执行的加工过程相对平稳,因此,对轨迹点队列进行曲线预扫描,确定每一曲线段的首尾,进而避免后续的实际加工过程再进行计算,降低后续加工过程的计算量,提高加工效率。
激光加工设备所即将启动遍历的轨迹点队列,其所对应的若干轨迹点形成了加工曲线,以此相对应的,加工曲线之上不同曲线段,也是由轨迹点所构成的,一曲线段的范围则是由其首轨迹点和尾轨迹点所确定的。
因此,通过曲线预扫描的执行,对所映射曲线段逐一定位首轨迹点和 尾轨迹点,进而便于在明确确定每一曲线段的范围之下执行所包含每一轨迹点的运动预计算。
在步骤S402中,对曲线预扫描确定了所扫描曲线段的起始点和截止点之后,即可对该曲线段进行所覆盖轨迹点的运动预计算,从而获得轨迹点的指令参数。
预计算所得到的指令参数,将更准确描述和控制激光加工设备中执行机构的运动。因此,将指令参数更新于轨迹点队列中相应的队列元素中。携带了更为丰富且准确的指令参数的轨迹点运动指令将使得激光加工设备所进行的加工更为可靠和精准。
示例性的,预计算得到的指令参数可包括所对应轨迹点在三维空间中的位置向量等信息。例如,在确定得到当前所扫描曲线段的首尾轨迹点之后,就能够获知该曲线段的长度,进而根据长度就能够对轨迹点的运行实施位置确定和速度规划等预计算,为轨迹点运动指令扩展所携带的指令参数。
激光加工设备的正常状态之下,在完成了所有曲线段的预计算之后,即发起轨迹点队列的遍历,以此来逐一运行曲线段,以及曲线段之上的轨迹点,进而最终实现激光加工设备在每一轨迹点上的雕刻或切割。
示例性的,正如前述所指出的,轨迹点队列的遍历,在确认缓存区为空,或者轨迹点队列已满的情况下方允许执行。
应当说明的是,对于每一曲线段的运行,指的是发送相应轨迹运行指令的执行过程,并且每一曲线段必不可少的包含若干轨迹点,因此,曲线段的运行即为若干轨迹点分别运行的过程。
请参阅图8,图8示出了根据本公开一实施例的一种激光加工设备中的控制装置的示意图。本公开实施例的一种激光加工设备中的控制装置主要包括以下模块:
感知器610:配置为在激光加工设备的激光加工过程中,感知介入行为;
暂停器620:配置为响应介入行为控制所述执行机构执行的激光输出变换为弱光输出,输出的弱光在功率上相对激光实施加工的基准功率下浮;
根据本公开实施例的激光加工设备中的控制方法可以由图9的加工设备来实现。下面参照图9来描述根据本公开实施例的加工设备。图8显示 的加工设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图9所示,加工设备或以通用计算设备的形式表现。加工设备的组件可以包括但不限于:上述至少一个处理单元810、上述至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书上述示例性方法的描述部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元810可以执行如图2中所示的各个步骤。
存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以包括只读存储单元(ROM)8203。
存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
加工设备也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该加工设备交互的设备通信,和/或与使得该加工设备能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,加工设备还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。应当明白,尽管图中未示出,可以结合加工设备使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述 的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机程序介质,其上存储有计算机可读指令,当所述计算机可读指令被计算机的处理器执行时,使计算机执行上述方法实施例部分描述的方法。
根据本公开的一个实施例,还提供了一种用于实现上述方法实施例中的方法的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里申请的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未申请的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (15)

  1. 一种激光加工设备的控制方法,其特征在于,所述激光加工设备配置执行机构执行激光加工,所述方法包括:
    在所述激光加工设备的激光加工过程中,感知介入行为;
    响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,所述弱光的功率相对所述激光加工的激光基准功率下浮。
  2. 根据权利要求1所述的方法,其中,所述响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,所述弱光的功率相对所述激光加工的激光基准功率下浮之后,包括:
    响应于所述介入行为的解除,发起所述执行机构结束所述弱光输出,按照所述激光基准功率继续加工。
  3. 根据权利要求1所述的方法,其中,所述弱光输出的功率低于39mw。
  4. 根据权利要求1所述的方法,其中,所述介入行为包括外部介入动作,在所述激光加工设备的激光加工过程中,感知介入行为的触发,包括:
    激光加工设备的执行机构输出激光所实施的加工中,所述激光加工设备配置的感知器件被外部介入动作触发产生电信号;
    通过所述感知器件传送的电信号感知得到所述外部介入动作的触发。
  5. 根据权利要求1所述的方法,其中,响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,包括:
    对所述介入行为执行所述执行机构运动和激光使用的控制,使所述运动中断,且相对所述激光基准功率下浮功率使所述激光变换为弱光输出。
  6. 根据权利要求5所述的方法,其中,所述响应于所述介入行为的触发,控制所述执行机构执行的激光输出变换为弱光输出,还包括:
    对所输出的弱光,按照设定时间间隔控制所述弱光的亮灭切换,使弱光光斑闪烁。
  7. 根据权利要求2所述的方法,其中,所述介入行为是外部数据接收操作,所述响应于所述介入行为的解除,发起所述执行机构结束所述弱光输出,按照所述激光基准功率继续加工之前,所述方法还包括:
    结束外部数据接收,且配置存储所述外部数据为所执行程序的更新配置,所述更新配置用于控制所述执行机构实施的激光加工;
    待所述外部数据被存储之后,所述介入行为解除,激光加工设备继续执行被中断的程序执行过程。
  8. 根据权利要求1所述的方法,其中,所述在所述激光加工设备的激光加工过程中,感知介入行为之前,所述方法还包括:
    所述激光加工设备根据配置为运动控制的数据,模拟定位所实施运动控制的起始轨迹点与末端轨迹点;
    根据所述运动控制的起始轨迹点与末端轨迹点进行运动预计算获得所述执行机构在轨迹点运动的程序指令,所述程序指令用于控制所述执行机构在加工空间沿分布的轨迹点运动。
  9. 根据权利要求1所述的方法,其中,所述激光加工设备包括壳体和感知器件,至少部分所述壳体形成加工空间,所述壳体包括可打开的阻挡件,所述阻挡件能够减弱所述加工空间和所述激光加工设备的外部之间的激光传送,所述感知器件用于检测所述阻挡件被打开或关闭。
  10. 根据权利要求9所述的方法,其中,所述执行机构包括可移动头,所述可移动头设置在所述壳体内,加工对象至少一部分位于所述激光加工设备的加工空间内,所述可移动头能够将激光传送到所述加工空间,以加工所述加工对象。
  11. 根据权利要求10所述的方法,其中,所述激光加工设备的激光加工过程之前,所述方法还包括:
    生成所述可移动头的加工运动计划;
    生成包括在加工对象上的预期制造目标加工图形的预览图像。
  12. 根据权利要求11所述的方法,其中,所述激光加工设备的激光加工过程,包括:
    所述可移动头基于所述加工运动计划将激光传送到加工对象,以实现对加工对象的材料的改变。
  13. 根据权利要求1所述的方法,其中,所述激光加工设备包括至少一个设置于所述加工空间内的摄像头,能够捕获包括所述加工对象至少一部分的图像。
  14. 一种激光加工设备,包括壳体、执行机构、驱动执行机构滑动的轨道装置以及处理器,至少部分所述壳体形成加工空间,所述执行机构和所述轨道装置设置于所述加工空间内,所述处理器用于执行权利要求1-13 中的任意一项所述的方法。
  15. 一种计算机程序介质,其上存储有计算机可读指令,其特征在于,当所述计算机可读指令被计算机的处理器执行时,使计算机执行权利要求1-13中的任意一项所述的方法。
PCT/CN2023/137159 2022-12-08 2023-12-07 激光加工设备的控制方法与设备、计算机程序介质 WO2024120495A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211576072.1 2022-12-08
CN202211576072 2022-12-08

Publications (2)

Publication Number Publication Date
WO2024120495A2 true WO2024120495A2 (zh) 2024-06-13
WO2024120495A3 WO2024120495A3 (zh) 2024-08-02

Family

ID=90078602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137159 WO2024120495A2 (zh) 2022-12-08 2023-12-07 激光加工设备的控制方法与设备、计算机程序介质

Country Status (2)

Country Link
CN (1) CN117655515A (zh)
WO (1) WO2024120495A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117655515A (zh) * 2022-12-08 2024-03-08 深圳市创客工场科技有限公司 激光加工设备的控制方法与设备、计算机程序介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529636B1 (en) * 2008-05-19 2009-05-05 International Business Machines Corporation Enabling safe use of high power laser for laser marking in a free space environment
CN102681312B (zh) * 2011-03-16 2015-06-24 宏瞻科技股份有限公司 激光投影系统的人眼安全保护系统
CN105537783B (zh) * 2016-01-12 2017-03-22 上海理工大学 激光加工装置的激光安全防护方法
CN105537760B (zh) * 2016-01-12 2017-03-29 上海理工大学 基于波前调制的可控激光加工装置
CN208164607U (zh) * 2018-04-23 2018-11-30 北京中航北工科技有限公司 一种pcb线路板雕刻机
CN117655515A (zh) * 2022-12-08 2024-03-08 深圳市创客工场科技有限公司 激光加工设备的控制方法与设备、计算机程序介质

Also Published As

Publication number Publication date
CN117655515A (zh) 2024-03-08
WO2024120495A3 (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
WO2024120495A2 (zh) 激光加工设备的控制方法与设备、计算机程序介质
US10387022B2 (en) Method for controlling information apparatus
US9662788B2 (en) Communication draw-in system, communication draw-in method, and communication draw-in program
JP5755011B2 (ja) ロボット群制御装置および方法
US8742318B2 (en) Tool length measuring method and tool length measuring device
CN106027896A (zh) 视频拍摄控制装置、方法及无人机
CN105094020B (zh) 一种机器人运行状态切换方法和系统
JP2017150860A (ja) 光学安全システム
CN106945044A (zh) 机器人暂停运动控制方法和系统
JP2013015948A5 (ja) プログラム、携帯端末の制御方法および印刷システム
CN103595972A (zh) 远程调焦设备实时浏览控制方法及系统
KR20120027934A (ko) 조작반 일체형 로봇 제어기를 갖는 로봇 시스템
JP2020028938A (ja) 制御装置、ロボットシステム、及び、ロボット
CN204950979U (zh) X光床边机及其遥控设备和移动式x光床边机系统
CN114939866B (zh) 机器人监视装置以及机器人系统
WO2023162248A1 (ja) 教示操作盤およびロボット制御システム
CN114952085B (zh) 一种焊枪的清理方法、装置、设备和存储介质
WO2021027690A1 (zh) 一种机器人控制方法及装置
CN112140099B (zh) 一种机器人的光效控制方法、装置、设备和介质
CN204595409U (zh) 一种防尘盖装置及超短焦投影设备
JP7407385B1 (ja) 溶接ティーチング装置および溶接ティーチングシステム
WO2019134122A1 (zh) 无人机操控方法及设备、无人机操控装置及记录介质
TW202217406A (zh) 控制雷射光的方法、控制系統及輸入裝置
JP2019211222A (ja) 測量装置
CN117215302B (zh) 智能设备控制方法、装置、智能设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900064

Country of ref document: EP

Kind code of ref document: A2