WO2024120460A1 - 一种超声波流量计 - Google Patents

一种超声波流量计 Download PDF

Info

Publication number
WO2024120460A1
WO2024120460A1 PCT/CN2023/136933 CN2023136933W WO2024120460A1 WO 2024120460 A1 WO2024120460 A1 WO 2024120460A1 CN 2023136933 W CN2023136933 W CN 2023136933W WO 2024120460 A1 WO2024120460 A1 WO 2024120460A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular sub
chamber
ultrasonic
fluid chamber
ultrasonic transducer
Prior art date
Application number
PCT/CN2023/136933
Other languages
English (en)
French (fr)
Inventor
熊友辉
刘志强
吴俊�
吴欢
Original Assignee
四方光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四方光电股份有限公司 filed Critical 四方光电股份有限公司
Publication of WO2024120460A1 publication Critical patent/WO2024120460A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Definitions

  • the utility model relates to the technical field of flow measurement instruments, in particular to an ultrasonic flow meter.
  • the transducer of the ultrasonic flowmeter disclosed in patent CN210441930U has a long signal acoustic path propagated in the air chamber, which not only requires a higher driving voltage and high power consumption, but also easily causes signal instability, and ultimately the measurement accuracy of the flowmeter is low.
  • an embodiment of the utility model provides an ultrasonic flow meter, which aims to solve the problems of low flow measurement accuracy and high power consumption existing in the flow meter of the existing ultrasonic gas meter when measuring large flow gas.
  • the embodiment of the utility model provides an ultrasonic flow meter, comprising:
  • a fluid chamber wherein the fluid to be measured flows in the fluid chamber, and the two ends of the fluid chamber are respectively an inlet and an outlet;
  • a partition plate is provided inside the fluid chamber, extending along the flow direction of the measured fluid, and the length of the partition plate is equal to the length of the fluid chamber, so as to divide the cross-sectional area of the fluid chamber into two rectangular sub-chambers according to a certain ratio, and the cross-sectional aspect ratios of the two rectangular sub-chambers are different;
  • An ultrasonic transducer pair wherein the ultrasonic transducer pair is disposed on one of the two rectangular sub-chambers;
  • a flow metering unit which is used to measure the propagation time of the ultrasonic wave of the ultrasonic transducer pair to measure the flow rate of the measured fluid
  • connection part is arranged outside the fluid chamber and is used for connection with the instrument body or the piping.
  • the two rectangular sub-chambers are distributed in a vertical or horizontal direction so that the cross-section of the fluid chamber is convex.
  • the ultrasonic transducer pair is arranged on the upper layer or the left side of the surface where the short side of the rectangular sub-chamber cross section is located.
  • the other ultrasonic transducer pair is arranged on the rectangular sub-chamber on the lower layer or the right side.
  • the cross section of the rectangular sub-chamber is a rectangle, and two groups of ultrasonic transducer pairs are arranged at intervals along the width direction of the rectangle.
  • a pair of transducer mounting seats are protruded outwardly from the outer wall of one side of the rectangular sub-chamber and are arranged at intervals, and the ultrasonic transducer pair is installed in the pair of transducer mounting seats.
  • the ultrasonic transducer pair is reflected at least once in the rectangular sub-chamber to form a signal propagation path.
  • cross-sectional areas of the two rectangular sub-chambers are equal.
  • the inlet is provided with a fairing to ensure that the fluid entering the fluid chamber is more uniform.
  • a plurality of laminar sheets are provided in the rectangular sub-chamber, and the plurality of laminar sheets are arranged in parallel in the rectangular sub-chamber at vertical intervals to separate a plurality of flow channels in the rectangular sub-chamber.
  • the upper and lower inner walls of the fluid chamber are respectively provided with a plurality of first card slots arranged at intervals
  • the upper and lower side surfaces of the partition are respectively provided with a plurality of second card slots arranged at intervals
  • the first card slots correspond to the second card slots one by one
  • the upper and lower ends of each of the laminar sheets are respectively arranged in the first card slot and the second card slot.
  • a partition is arranged in the fluid chamber to divide the fluid chamber into two rectangular sub-chambers, and an ultrasonic transducer is arranged on one of the rectangular sub-chambers for measurement, thereby shortening the signal sound path of the ultrasonic transducer pair.
  • This not only reduces the driving voltage, but also arranges the ultrasonic transducer pair on the surface where the short side of the cross-section of the rectangular sub-chamber is located, thereby ensuring that the ultrasonic transducer signal covers the measurement cross-section to the maximum extent, thereby improving the signal stability and measurement accuracy.
  • FIG1 is a schematic structural diagram of an ultrasonic flowmeter according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of the structure decomposition in FIG1;
  • FIG3 is a schematic front view of FIG1 ;
  • FIG4 is a schematic right view of FIG3 ;
  • FIG5 is a schematic cross-sectional view of FIG1 ;
  • FIG. 6 is a right side schematic diagram of a second embodiment of an ultrasonic flow meter provided by the present utility model
  • FIG. 7 is a right side schematic diagram of a third embodiment of an ultrasonic flow meter provided by the present utility model
  • FIG. 8 is a cross-sectional schematic diagram of a fourth embodiment of an ultrasonic flow meter provided by the present utility model
  • FIG9 is a schematic diagram of the installation of the connecting portion in FIG1 in one embodiment
  • FIG. 10 is a schematic diagram of the installation of another connecting portion of an ultrasonic flow meter provided by the utility model in one embodiment
  • FIG. 11 is a schematic structural diagram of a fifth embodiment of an ultrasonic flow meter provided by the present utility model.
  • ultrasonic flowmeter 100 ultrasonic flowmeter, 1 fluid chamber, 11 inlet, 12 outlet, 2 partition, 3 ultrasonic transducer pair, 4 flow metering part, 5 transducer mounting seat, 6 fairing, 7 laminar sheet, 8 connecting part.
  • An ultrasonic flow meter 100 provided in an embodiment of the utility model includes a fluid chamber 1, a partition 2, an ultrasonic transducer pair 3, a flow metering part 4 and a connecting part 8.
  • the fluid chamber 1 is for the measured fluid to flow, and the two ends of the fluid chamber 1 are respectively an inlet 11 and an outlet 12.
  • the partition 2 is extended along the flow direction of the measured fluid and is arranged inside the fluid chamber 1.
  • the length of the partition 2 is equal to the length of the fluid chamber 1, so as to divide the cross-sectional area of the fluid chamber 1 into two upper and lower rectangular sub-chambers in the vertical direction according to a certain ratio, and the cross-sectional aspect ratios of the two rectangular sub-chambers are different.
  • the ultrasonic transducer pair 3 is arranged on one of the two rectangular sub-chambers.
  • the flow metering part 4 is used to measure the propagation time of the ultrasonic wave of the ultrasonic transducer pair 3 to measure the flow rate of the measured fluid.
  • the connecting part 8 is arranged outside the fluid chamber 1 for connecting to the instrument body or piping.
  • another ultrasonic transducer pair can be arranged on the surface where the short side of the upper or left rectangular sub-chamber cross section is located, that is, two pairs of ultrasonic transducers are measured simultaneously. To ensure measurement accuracy.
  • connection part in this embodiment is a connection plate arranged perpendicular to the extension direction of the fluid chamber 1, and is directly connected to the instrument housing through the connection part 8.
  • connection part 8 is arranged on the outside of the outlet of the fluid chamber 1, and the outlet 12 of the fluid chamber 1 is connected to the pipe through the connection part 8, and then indirectly connected to the gas outlet of the instrument.
  • the cross-sectional areas of the two rectangular sub-chambers are equal.
  • the two rectangular sub-chambers can also be divided by the partition plate 2 into left and right horizontal arrangements.
  • the ultrasonic transducer pair is arranged on the surface where the short side of the cross section of the upper or left rectangular sub-chamber is located.
  • a partition 2 is provided in the fluid chamber 1 to divide the fluid chamber 1 into two upper and lower rectangular sub-chambers, and the ultrasonic transducer pair 3 is provided on one of the rectangular sub-chambers for measurement, thereby shortening the signal sound path of the ultrasonic transducer pair 3. This not only reduces the driving voltage, but also ensures that the ultrasonic transducer pair 3 signal covers the measurement cross-section to the maximum extent, thereby improving the signal stability and measurement accuracy.
  • the cross section of the fluid chamber 1 is convex.
  • the cross-sectional areas of the upper and lower rectangular sub-chambers are the same or similar, and only one ultrasonic transducer pair 3 can be provided to measure the gas flow rate of one of the rectangular sub-chambers, so that the overall flow rate can be accurately calculated based on the relationship between the flow rate of the rectangular sub-chamber and the overall flow rate, which greatly expands the test range of the gas meter.
  • the ultrasonic transducer pair 3 is arranged on the surface where the short side of the rectangular cross section of the upper rectangular sub-chamber is located.
  • the ultrasonic transducer pair 3 is arranged on the short side of the rectangular cross section of the rectangular sub-chamber to maximize the Shortening the signal sound path of the ultrasonic transducer 3 to a certain extent can cover the measurement cross section to the maximum extent and improve the signal stability and measurement accuracy.
  • the other rectangular sub-chamber By setting an ultrasonic transducer in one of the rectangular sub-chambers for measurement 3, which is used as a measuring cavity, the other rectangular sub-chamber can be used as a non-measuring cavity.
  • the design of metering modules with different ranges can be quickly realized without changing the measuring cavity.
  • another pair of ultrasonic transducers 3 is further included, and the other pair of ultrasonic transducers 3 is arranged on the surface where the short side of the cross section of the lower rectangular sub-chamber is located.
  • Another pair of ultrasonic transducers 3 is installed in another rectangular sub-chamber to measure its flow rate. The flow rates of the two rectangular sub-chambers are compared with the overall flow rate, which can greatly improve the measurement accuracy.
  • the cross section of the rectangular sub-chamber is a rectangle, and two groups of ultrasonic transducer pairs 3 are arranged at intervals along the width direction of the rectangle, and the width direction is perpendicular to the flow direction of the airflow.
  • the air chamber flow channel needs to be widened. If the opening is too large, the intake air will be unevenly dispersed. The measurement range of a pair of ultrasonic transducers is limited and the accuracy is inaccurate. By setting two sets of ultrasonic transducer pairs 3 in the width direction, or even multiple pairs of ultrasonic transducers for measurement, it is helpful to improve the measurement accuracy.
  • two sets of ultrasonic transducer pairs 3 are arranged at intervals in the width direction of the rectangular sub-chamber.
  • multiple pairs of ultrasonic transducer pairs 3 can also be arranged.
  • the cross-section of the fluid chamber 1 can be "convex" or in other shapes, as long as the volumes of the two air chambers are different.
  • a pair of spaced-apart transducer mounting seats 5 are protruded outwardly from the outer wall of one side of the rectangular sub-chamber, and the ultrasonic transducer pair 3 is respectively mounted in the transducer mounting seats 5 .
  • the ultrasonic transducer pair 3 is provided in a rectangular sub-chamber. Reflect at least once to form a signal propagation path.
  • a fairing 6 is provided at the inlet 11 to ensure that the fluid entering the fluid chamber 1 is more uniform.
  • the fairing 6 can unify the air intake direction of the fluid, play a certain buffering role on the fluid entering the fluid chamber 1, make the flow rate of the fluid entering the fluid chamber 1 stable and uniform, reduce the fluid disturbance in the fluid chamber under a small flow rate, and improve the stability of the overall zero point.
  • the rectangular sub-chamber is further provided with a plurality of laminar flow sheets 7, which are arranged in parallel in the rectangular sub-chamber along the vertical interval to separate a plurality of flow channels in the rectangular sub-chamber.
  • the laminar flow sheets 7 can further rectify the gas entering the rectangular sub-chamber to improve the measurement accuracy.
  • the upper and lower inner side walls of the fluid chamber 1 are respectively provided with a plurality of first slots arranged at intervals
  • the upper and lower side surfaces of the partition plate 2 are respectively provided with a plurality of second slots arranged at intervals
  • the first slots correspond to the second slots one by one
  • the upper and lower ends of each laminar sheet 7 are respectively arranged in the first slot and the second slot.
  • the laminar sheet 7 is fixed by the first slot and the second slot, which is convenient for installation and removal.
  • the directional words such as front, back, top, and bottom are defined by the positions of the components in the drawings and the positions of the components relative to each other, and are only for the sake of clarity and convenience in expressing the technical solution. It should be understood that the use of the directional words should not limit the scope of protection claimed in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种超声波流量计(100),包括流体腔室(1)、隔板(2)、超声波换能器对(3)、流量计量部(4)和连接部(8),流体腔室(1)的两端分别为入口部(11)和出口部(12);隔板(2)沿被测流体流动方向延伸设于流体腔室(1)内部,隔板(2)的长度与流体腔室(1)的长度相等,以将流体腔室(1)分为两个矩形子腔室;超声波换能器对(3)设于其中一个矩形子腔室的上方,流量计量部(4)用于测定超声波换能器对(3)的超声波的传播时间来计量被测流体流量。通过在流体腔室(1)内设置隔板(2)将流体腔室(1)分为两个矩形子腔室,将超声波换能器对(3)设于其中一个矩形子腔室上进行测量,缩短了超声波换能器的信号声程,这样不仅降低了驱动电压,还提高了信号的稳定性和测量精度。

Description

一种超声波流量计 技术领域
本实用新型涉及流量测量仪表技术领域,尤其涉及一种超声波流量计。
背景技术
目前,基于超声波的流量计量装置已逐渐在家用领域得到了普及,但在现有的工业或商业等应用场合,由于流量较大,为了满足压损要求,测量管道的截面积会设计得比较大,导致换能器的声程增加,信号衰减,造成信号不稳定;同时需要更高的驱动电压,增大了整机的功耗;由于截面增大,换能器信号不能有效覆盖全部测量流道,引起流量精度偏差较大。如专利CN210441930U中所公开超声流量计的换能器在气室中传播的信号声程较长,不仅需要更高驱动电压,功耗大,而且易造成信号不稳定,最终流量计的测量准确度较低。
因此,需要设计一种适用于大流量燃气检测,且测量精度高、低功耗的超声波流量计及燃气表。
实用新型内容
有鉴于此,本实用新型的实施例提供了一种超声波流量计,旨在解决现有超声波燃气表的流量计测量大流量气体时存在的流量测量精度低、功耗高的问题。
本实用新型的实施例提供一种超声波流量计,包括:
流体腔室,所述流体腔室供被测流体流动,所述流体腔室的两端分别为入口部和出口部;
隔板,沿被测流体流动方向延伸设于所述流体腔室内部,所述隔板的长度与所述流体腔室的长度相等,以将所述流体腔室横截面面积按一定比例分为两个矩形子腔室,且两个所述矩形子腔室的截面长宽比不同;
超声波换能器对,所述超声波换能器对设于两个所述矩形子腔室的其中一个上;
流量计量部,其用于测定所述超声波换能器对的超声波的传播时间来计量被测流体流量;以及,
连接部,设于所述流体腔室的外部,用于与仪表主体连接或者配管连接。
进一步地,两个所述矩形子腔室沿竖直或水平方向分布,以使所述流体腔室横截面呈“凸”型。
进一步地,所述超声波换能器对设于上层或左边所述矩形子腔室横截面的短边所在的面上。
进一步地,还包括另一超声波换能器对,另一所述超声波换能器对设于下层或右边所述矩形子腔室上。
进一步地,所述矩形子腔室的横截面为矩形,沿矩形的宽度方向间隔设有两组超声波换能器对。
进一步地,在一个所述矩形子腔室一侧的外壁上向外凸设有一对间隔设置的换能器安装座,所述超声波换能器对安装于一对所述换能器安装座内。
进一步地,所述的超声波换能器对通过在所述矩形子腔室内反射至少一次以形成信号传播路径。
进一步地,两个所述矩形子腔室的横截面面积相等。
进一步地,所述入口部设有整流罩,以保证进入所述流体腔室内的流体更加均匀。
进一步地,所述矩形子腔室内还设有多个层流片,多个所述层流片均沿竖向间隔并行设置设于所述矩形子腔室内,以将所述矩形子腔室内分隔出多个流道。
进一步地,所述流体腔室的上下内侧壁分别设有多个间隔设置的第一卡槽,所述隔板的上下两侧面分别设有多个间隔设置的第二卡槽,所述第一卡槽与所述第二卡槽一一对应,每一所述层流片的上下端分别对应设于所述第一卡槽和所述第二卡槽内。
本实用新型的实施例提供的技术方案带来的有益效果是:本实用新型的一种超声波流量计中通过在流体腔室内设置隔板将流体腔室分为两个矩形子腔室,将超声波换能器设于其中一个矩形子腔室上进行测量,缩短了超声波换能器对的信号声程,这样不仅降低了驱动电压,同时将超声波换能器对设置于矩形子腔室所在横截面的短边所在的面上,从而保证超声波换能器信号最大限度覆盖测量截面,提高了信号的稳定性和测量精度。
附图说明
图1是本实用新型提供的超声波流量计一实施例的结构示意图;
图2是图1中结构分解示意图;
图3是图1的正视示意图;
图4是图3的右视示意图;
图5是图1中的剖面示意图;
图6是本实用新型提供的超声波流量计第二实施例的右视示意图;
图7是本实用新型提供的超声波流量计第三实施例的右视示意图;
图8是本实用新型提供的超声波流量计第四实施例的剖面示意图;
图9是图1中的连接部在一实施例中的安装示意图;
图10是本实用新型提供的超声波流量计另一种连接部在一实施例中的安装示意图;
图11是本实用新型提供的超声波流量计第五实施例的结构示意图。
图中:100超声波流量计、1流体腔室、11入口部、12出口部、2隔板、3超声波换能器对、4流量计量部、5换能器安装座、6整流罩、7层流片、8连接部。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地描述。
请参考图1-图5所示,本实用新型的实施例提供的一种超声波流量计100,包括流体腔室1、隔板2、超声波换能器对3、流量计量部4和连接部8,所述流体腔室1供被测流体流动,所述流体腔室1的两端分别为入口部11和出口部12,隔板2沿被测流体流动方向延伸设于所述流体腔室1内部,所述隔板2的长度与所述流体腔室1的长度相等,以将所述流体腔室1横截面面积按一定比例分为竖直方向的上下两个矩形子腔室,且两个所述矩形子腔室的截面长宽比不同,所述超声波换能器对3设于所述两个矩形子腔室的其中一个上,流量计量部4其用于测定所述超声波换能器对3的超声波的传播时间来计量被测流体流量,连接部8设于所述流体腔室1的外部,用于与仪表主体连接或者配管连接。
优选地,当测量流量达到100m3/h,可以在上层或左边矩形子腔室横截面的短边所在的面上再设置一超声波换能器对,即两对超声波换能器对同时测量, 以保证测量精度。
如图9所示,本实施例中连接部为与流体腔室1延伸方向垂直设置的连接板,通过连接部8直接卡接在仪表壳体上,在另一实施例中,如图10所示,提供了另外一种连接部8的设置及另一种与仪表主体的连接方式,具体地,连接部8设于所述流体腔室1出口部的外侧,通过连接部8将流体腔室1的出口部12连接在配管上,再间接地连接在仪表的出气口。优选地,两个所述的矩形子腔室横截面面积相等。
另外,如图6和图7所示,根据具体仪表主体的不同结构,所述两个矩形子腔室也可以被隔板2分割为左右水平方向排布。
可以理解的是,无论两个矩形子腔室是沿竖直或水平方向分布,整个流体腔室横截面都呈“凸”型,只是朝向不同。且无论是沿竖直或者水平方向分布,超声波换能器对均设置于上层或左边矩形子腔室横截面的短边所在的面上。
具体地,在两个矩形子腔室竖直排布的情况下,通过在流体腔室1内设置隔板2将流体腔室1分为上下两层矩形子腔室,并将超声波换能器对3设于其中一个矩形子腔室上进行测量,缩短了超声波换能器对3的信号声程,这样不仅降低了驱动电压,同时保证超声波换能器对3信号最大限度覆盖测量截面,提高了信号的稳定性和测量精度。
在本实施例中,参照图4所示,所述流体腔室1的横截面呈“凸”形。上下两个矩形子腔室的截面面积相同或相近,可以只设置一超声波换能器对3测量其中一个矩形子腔室的气体流量,从而根据矩形子腔室的流量与整体流量的关系,精确计算出整体的流量,极大的扩大了燃气表的测试范围。
优选地,所述一超声波换能器对3设于上层矩形子腔室矩形横截面的短边所在的面上。超声波换能器对3设置于矩形子腔室矩形横截面的短边上能最大 程度的缩短超声波换能器对3的信号声程可以最大限度覆盖测量截面,提高信号的稳定性和测量精度。
通过在其中一矩形子腔室中设置超声波换能器对3进行测量,将其作为测量腔体,另一矩形子腔室可以作为非测量腔室,适当改变非测量腔室的矩形截面为其他形状,可以在测量腔体不变的情况下,快速实现不同量程的计量模块的设计。
更进一步地,参照图8所示,还包括另一超声波换能器对3,所述的另外一对超声波换能器对3设于下层矩形子腔室横截面的短边所在的面上。在另外一个矩形子腔室中安装另外一超声波换能器对3,测量其流量,两个矩形子腔室的流量与整体的流量对比,可以极大提高测量精度。
进一步地,所述矩形子腔室的横截面为矩形,沿矩形的宽度方向间隔设有两组超声波换能器对3,所述宽度方向为与气流的流向垂直。
当测量流量较大时,气室流道需加宽,开口太大,会导致进气分散不均匀,一对超声波换能器计量范围有限,精度不准,通过在宽度方向设置两组超声波换能器对3,甚至多对超声波换能器计量,有助于提高计量精度,本实施例中,参照图11所示,在矩形子腔室的宽度方向间隔设置了两组超声波换能器对3,在其他实施例中,当测量流量更大,气室流道宽度更宽时,还可以设置多对超声波换能器对3。此实施例中,流体腔室1的横截面可以呈“凸”形,也可以是其他形状,两个气室体积不同即可。
具体地,参照图1和图2所示,在一个所述矩形子腔室一侧的外壁上向外凸设有一对间隔设置的换能器安装座5,所述的一超声波换能器对3分别安装于所述换能器安装座5内。
进一步地,参照图5所示,所述的超声波换能器对3通过在矩形子腔室内 反射至少一次以形成信号传播路径。
进一步地,所述入口部11处设有整流罩6,以保证进入所述流体腔室1内的流体更加均匀。整流罩6能够统一流体的进气方向,对进入流体腔室1内的流体起到一定的缓冲作用,使进入流体腔室1内的流体的流速稳定均匀,可以降低在微小流量下流体腔体内的流体扰动,提升整体零点的稳定性。
更进一步地,所述矩形子腔室内还设有多个层流片7,多个所述层流片7均沿竖向间隔并行设置设于所述矩形子腔室内,以将所述矩形子腔室内分隔出多个流道。层流片7可以进一步对进入矩形子腔室内的气体进行整流,提高测量精度。
具体地,所述流体腔室1的上下内侧壁分别设有多个间隔设置的第一卡槽,所述隔板2的上下两侧面分别设有多个间隔设置的第二卡槽,所述第一卡槽与所述第二卡槽一一对应,每一所述层流片7的上下端分别对应设于所述第一卡槽和所述第二卡槽内。通过第一卡槽和第二卡槽固定层流片7,方便安装和拆卸。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (11)

  1. 一种超声波流量计,其特征在于,包括:
    流体腔室,所述流体腔室供被测流体流动,所述流体腔室的两端分别为入口部和出口部;
    隔板,沿被测流体流动方向延伸设于所述流体腔室内部,所述隔板的长度与所述流体腔室的长度相等,以将所述流体腔室横截面面积按一定比例分为两个矩形子腔室,且两个所述矩形子腔室的截面长宽比不同;
    超声波换能器对,所述超声波换能器对设于两个所述矩形子腔室的其中一个上;
    流量计量部,其用于测定所述超声波换能器对的超声波的传播时间来计量被测流体流量;以及,
    连接部,设于所述流体腔室的外部,用于与仪表主体连接或者配管连接。
  2. 如权利要求1所述的一种超声波流量计,其特征在于,两个所述矩形子腔室沿竖直或水平方向分布,以使所述流体腔室横截面呈“凸”型。
  3. 如权利要求2所述的一种超声波流量计,其特征在于,所述超声波换能器对设于上层或左边所述矩形子腔室横截面的短边所在的面上。
  4. 如权利要求3所述的一种超声波流量计,其特征在于,还包括另一超声波换能器对,另一所述超声波换能器对设于下层或右边所述矩形子腔室上。
  5. 如权利要求1所述的一种超声波流量计,其特征在于,所述矩形子腔室的横截面为矩形,沿矩形的宽度方向间隔设有两组超声波换能器对。
  6. 如权利要求1所述的一种超声波流量计,其特征在于,在一个所述矩形子腔室一侧的外壁上向外凸设有一对间隔设置的换能器安装座,所述超声波换能器对安装于一对所述换能器安装座内。
  7. 如权利要求1-6所述的任意一种超声波流量计,其特征在于,所述的超声波换能器对通过在所述矩形子腔室内反射至少一次以形成信号传播路径。
  8. 如权利要求2所述的一种超声波流量计,其特征在于,两个所述矩形子腔室的横截面面积相等。
  9. 如权利要求1所述的一种超声波流量计,其特征在于,所述入口部处设有整流罩,以保证进入所述流体腔室内的流体更加均匀。
  10. 如权利要求1所述的一种超声波流量计,其特征在于,所述矩形子腔室内还设有多个层流片,多个所述层流片均沿竖向间隔并行设置设于所述矩形子腔室内,以将所述矩形子腔室内分隔出多个流道。
  11. 如权利要求10所述的一种超声波流量计,其特征在于,所述流体腔室的上下内侧壁分别设有多个间隔设置的第一卡槽,所述隔板的上下两侧面分别设有多个间隔设置的第二卡槽,所述第一卡槽与所述第二卡槽一一对应,每一所述层流片的上下端分别对应设于所述第一卡槽和所述第二卡槽内。
PCT/CN2023/136933 2022-12-08 2023-12-07 一种超声波流量计 WO2024120460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223287171.6U CN219084154U (zh) 2022-12-08 2022-12-08 一种超声波流量计
CN202223287171.6 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024120460A1 true WO2024120460A1 (zh) 2024-06-13

Family

ID=86407958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136933 WO2024120460A1 (zh) 2022-12-08 2023-12-07 一种超声波流量计

Country Status (2)

Country Link
CN (1) CN219084154U (zh)
WO (1) WO2024120460A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219084154U (zh) * 2022-12-08 2023-05-26 四方光电股份有限公司 一种超声波流量计

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318411A (ja) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2004233121A (ja) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd 超音波流量計
CN102257366A (zh) * 2008-12-18 2011-11-23 松下电器产业株式会社 超声波流量计
CN105043474A (zh) * 2015-06-03 2015-11-11 成都千嘉科技有限公司 一种用于超声波流量计的新型流道结构
CN210441930U (zh) * 2019-09-20 2020-05-01 湖北锐意自控系统有限公司 超声波测量气室及超声波气体流量计
CN217877841U (zh) * 2022-08-15 2022-11-22 金卡智能集团股份有限公司 超声波计量装置及超声波燃气表
CN219084154U (zh) * 2022-12-08 2023-05-26 四方光电股份有限公司 一种超声波流量计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318411A (ja) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2004233121A (ja) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd 超音波流量計
CN102257366A (zh) * 2008-12-18 2011-11-23 松下电器产业株式会社 超声波流量计
CN105043474A (zh) * 2015-06-03 2015-11-11 成都千嘉科技有限公司 一种用于超声波流量计的新型流道结构
CN210441930U (zh) * 2019-09-20 2020-05-01 湖北锐意自控系统有限公司 超声波测量气室及超声波气体流量计
CN217877841U (zh) * 2022-08-15 2022-11-22 金卡智能集团股份有限公司 超声波计量装置及超声波燃气表
CN219084154U (zh) * 2022-12-08 2023-05-26 四方光电股份有限公司 一种超声波流量计

Also Published As

Publication number Publication date
CN219084154U (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2024120460A1 (zh) 一种超声波流量计
US8701501B2 (en) Ultrasonic flowmeter
EP2639559B1 (en) Ultrasonic flow rate measuring device
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
CN212567542U (zh) 一种超声波燃气表测量装置及超声波燃气表
CN209432194U (zh) 一种超声波气体计量装置的流道结构及超声波计量表
CN216246570U (zh) 超声波计量用流道芯体、流道结构与超声波水表
JP2017125701A (ja) ガスメータ
CN112945326B (zh) 气体流量测量装置及方法
CN218724397U (zh) 对射型超声波气表的流道组件、气表组件及超声波气表
CN218822555U (zh) 一种对射式气体流量测量仪表流道组件及流量测量仪表
JP2004347374A (ja) 超音波式流体センサ
CN210135957U (zh) 超声波燃气表及燃气管路
CN214149456U (zh) 一种用于超声波气表的燃气计量仓结构
CN216283723U (zh) 一种弧形、折线声路超声波燃气表流道装置
EP3683553B1 (en) Gas flow metering gas chamber and gas flow meter
CN211717528U (zh) 一种内置式斜反射多声道超声波流量测量模块及流量计
CN204085590U (zh) 多片式超声波燃气表整流单元流道
Ramadas et al. Finite element modelling study to explore the possibilities of ultrasonic gas flow measurement in wet-gas applications
WO2020054383A1 (ja) 超音波流量計
CN113588020A (zh) 一种弧形、折线声路超声波燃气表流道装置
CN114323174B (zh) 一种超声波流量计
CN217585912U (zh) 一种分层的气体超声流量计测量流道
JP2000065613A (ja) 超音波流量計
CN218628464U (zh) 一种超声波流量计