WO2024120425A1 - 光线入射结构、车窗、车窗面板、车窗面板总成及车辆 - Google Patents

光线入射结构、车窗、车窗面板、车窗面板总成及车辆 Download PDF

Info

Publication number
WO2024120425A1
WO2024120425A1 PCT/CN2023/136699 CN2023136699W WO2024120425A1 WO 2024120425 A1 WO2024120425 A1 WO 2024120425A1 CN 2023136699 W CN2023136699 W CN 2023136699W WO 2024120425 A1 WO2024120425 A1 WO 2024120425A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
medium
introducing
layer
Prior art date
Application number
PCT/CN2023/136699
Other languages
English (en)
French (fr)
Inventor
林生野
叶家荣
林寿
陈宏伟
王志鑫
叶允祥
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211561724.4A external-priority patent/CN115823532A/zh
Priority claimed from CN202310025008.2A external-priority patent/CN116123485B/zh
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2024120425A1 publication Critical patent/WO2024120425A1/zh

Links

Definitions

  • the present application relates to the field of vehicle window products, and in particular to a light incident structure, a vehicle window, a vehicle window panel, a vehicle window panel assembly and a vehicle.
  • a light source 20 is usually installed on the glass 10 of a vehicle window, so that light is incident from the end face of the glass 10 (such as the end of the glass, a cut face, or an end face of a local hole in the glass) into the glass 10, and the light propagates in the glass 10 (i.e., the optical waveguide medium layer) to achieve the effect of lighting the interior of the vehicle or enhancing the atmosphere in the vehicle.
  • the end face of the glass 10 such as the end of the glass, a cut face, or an end face of a local hole in the glass
  • the optical waveguide medium layer i.e., the optical waveguide medium layer
  • the light guide block is fixed on the surface of the optical waveguide medium layer through the first adhesive layer, and the light emitted by the light source is incident on the light guide block.
  • the light guide block reflects the light and makes the light incident on the optical waveguide medium layer.
  • the light is totally reflected in the optical waveguide medium layer, thereby propagating in the optical waveguide medium layer.
  • it is necessary to set a complex optical structure between the light guide block and the surface of the optical waveguide medium layer (such as: multiple groups of asymmetric prisms with sizes in the millimeter or micron range, and each group of asymmetric prisms is arranged in a three-dimensional array or linearly) to assist the light to be incident on the optical waveguide medium layer.
  • the structure of the light guide block has a narrow range of use (such as: it cannot be installed on curved glass), the process is difficult, and the product stability cannot be guaranteed. Due to the matching of the light guide block and the light source's luminous angle and the fact that the light needs to pass through the light guide block and the first adhesive layer before it can be incident on the optical waveguide medium layer, light will be lost, resulting in low light incidence efficiency and poor product use effect.
  • a light incident structure a vehicle window, a vehicle window panel, a vehicle window panel assembly and a vehicle are provided.
  • the present application provides a light incident structure, which is used to conduct light into an optical waveguide medium layer, wherein the optical waveguide medium layer has at least a first main surface for light to be incident, and includes:
  • a light-introducing medium wherein at least a portion of the light-introducing medium is solidified and formed on the first main surface of the optical waveguide medium layer, so that at least a portion of the light-introducing medium is a part of the optical waveguide medium layer, and the light-introducing medium has at least one incident surface for light to be incident;
  • a luminous light source wherein the light emitted by the luminous light source enters the light-introducing medium through the incident surface, and the light enters the optical waveguide medium layer from the first main surface after being refracted by the light-introducing medium.
  • the light-introducing medium is a protruding structure located on the first main surface of the optical waveguide medium layer.
  • the first main surface is a plane or a curved surface.
  • the optical waveguide medium layer has a second main surface opposite to the first main surface, and a reflective portion is disposed on the second main surface, and light entering the optical waveguide medium layer is reflected at the reflective portion.
  • the reflective portion is in a preset pattern.
  • the incident surface is a plane or a convex mirror surface or a concave mirror surface.
  • the light introducing medium has a refractive index that is the same as that of the optical waveguide medium layer or is within a preset range.
  • the visible light transmittance of the light-introducing medium is greater than or equal to the visible light transmittance of the optical waveguide medium layer.
  • the light-introducing medium and the optical waveguide medium layer are integrally formed.
  • the light-introducing medium is formed by solidifying a viscous liquid on the optical waveguide medium layer.
  • the light incident structure further comprises a cover plate, the cover plate has a first end and a second end opposite to each other, the first end of the cover plate is connected to the optical waveguide medium layer, the second end of the cover plate is inclined in a direction away from the optical waveguide medium layer, and the light introducing medium is located between the cover plate and the optical waveguide medium layer;
  • the incident surface is located between the second end of the cover plate and the optical waveguide medium layer, or the incident surface is located between a position close to the second end of the cover plate and the optical waveguide medium layer.
  • the light source is disposed on the optical waveguide medium layer and close to the incident surface.
  • the present application provides a vehicle window, comprising an optical waveguide medium layer, an outer glass layer and the above-mentioned light incident structure, wherein the optical waveguide medium layer has a first main surface and a second main surface opposite to each other, the light incident structure is arranged on the first main surface, and the outer glass layer is connected to the second main surface.
  • the vehicle window further includes a first adhesive layer, wherein the first adhesive layer is bonded between the outer glass layer and the second main surface.
  • the present application provides a vehicle window panel, wherein the vehicle window panel comprises:
  • optical waveguide medium layer wherein the optical waveguide medium layer is provided with a first main surface and a second main surface opposite to each other, and a light reflecting layer is provided on the first main surface and/or the second main surface;
  • a light-introducing medium comprising a first surface and a second surface arranged parallel to each other, the light-introducing medium being closely connected to the first main surface via the first surface, and a connection portion of the first main surface connected to the first surface being parallel to the first surface;
  • a luminous light source is located at one end of the light-introducing medium, and the light of the luminous light source enters the light-introducing medium.
  • the light-introducing medium is used to introduce the light of the luminous light source into the optical waveguide medium layer.
  • the light-introducing medium further includes a third surface and a fourth surface arranged opposite to each other, the light source is arranged adjacent to the third surface, and the light of the light source enters the light-introducing medium through the third surface; the third surface and the fourth surface are respectively arranged as a straight surface or a curved surface.
  • the first main surface and/or the second main surface of the optical waveguide medium layer is provided with an optical isolation layer and/or a thermal insulation film layer.
  • a transparent area is provided at a connection portion of the first main surface connected to the first surface, and the transparent area is the first main surface of the connection portion without any additional processing.
  • the light-introducing medium and the optical waveguide medium layer are integrally formed; or, the light-introducing medium and the optical waveguide medium layer are separately manufactured and assembled together.
  • the light-inducing medium is fixedly connected to the optical waveguide medium layer through a curable liquid;
  • the liquid is a transparent optical glue or an optically transparent resin;
  • the material refractive index of the liquid is 1.45 to 1.65;
  • the visible light transmittance of the liquid material is 90% to 99.9%; and
  • the haze of the liquid material is ⁇ 5%.
  • the light-introducing medium and the optical waveguide medium layer are made of the same glass material; and/or the glass material is inorganic glass or organic glass.
  • the refractive index of the light-introducing medium is 1.45-1.65; the light transmittance of the light-introducing medium is 80%-99.9%; and the haze of the light-introducing medium is ⁇ 5%.
  • the light-introducing medium is connected to at least one side of the optical waveguide medium layer; and/or the light-introducing medium is in the shape of a long strip or an arc strip.
  • h:a:b 1:8:200.
  • the vehicle window panel further includes an outer glass layer; the second main surface is connected to the outer glass layer via a first adhesive layer.
  • a vehicle window panel assembly comprises the vehicle window panel and a covering component, wherein the covering component is used for covering the outside of the light-introducing medium and the light source.
  • the present application provides a vehicle, which includes the vehicle window or the vehicle window panel.
  • the characteristics and advantages of the light incident structure, vehicle window and vehicle of the present application include at least:
  • FIG. 1 is a schematic diagram of a light incident structure of a vehicle window glass in the prior art.
  • FIG. 2 is one of the schematic diagrams of the light incident structure of the present application.
  • FIG3 is a three-dimensional diagram of the light incident structure of the present application.
  • Figure 4 is a partial enlarged view of position A in Figure 3.
  • FIG. 5 is a second schematic diagram of the light incident structure of the present application.
  • FIG. 6 is a third schematic diagram of the light incident structure of the present application.
  • FIG. 7 is the fourth schematic diagram of the light incident structure of the present application.
  • FIG. 8 is the fifth schematic diagram of the light incident structure of the present application.
  • FIG. 9 is the sixth schematic diagram of the light incident structure of the present application.
  • FIG. 10 is a schematic structural diagram of a vehicle window panel according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a vehicle window panel according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a vehicle window panel according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a vehicle window panel according to yet another embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the state of light being transmitted inside an optical waveguide medium layer according to an embodiment of the present invention.
  • FIG. 15 is a top view of the structure shown in FIG. 10 .
  • FIG. 16 is a schematic structural diagram of a vehicle window panel assembly according to yet another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a vehicle window panel assembly according to yet another embodiment of the present invention.
  • the reference numerals in this application are: 1. light-introducing medium; 101. incident surface; 102. first surface; 103. second surface; 104. fourth surface; 105. Liquid; 2. Optical waveguide medium layer; 201. First main surface; 202. Second main surface; 203. Light reflecting layer; 3. Light emitting source; 4. Cover plate; 5. Outer glass layer; 6. First adhesive layer; 7. Reflective part; 8. Covering component; 9. Second adhesive layer.
  • the present application provides a light incident structure, which is used to transmit light into the optical waveguide medium layer 2.
  • the optical waveguide medium layer 2 has at least a first main surface for light to be incident.
  • the light incident structure includes a light-introducing medium 1 and a light-emitting light source 3. At least part of the light-introducing medium 1 is solidified and formed on the first main surface of the optical waveguide medium layer 2, so that at least part of the light-introducing medium 1 is a part of the optical waveguide medium layer 2.
  • the light-introducing medium 1 has at least one incident surface 101 for light to be incident.
  • the light emitted by the light-emitting light source 3 enters the light-introducing medium 1 through the incident surface 101, and the light enters the optical waveguide medium layer 2 from the first main surface after being refracted by the light-introducing medium 1.
  • the structure and molding process between the light-guiding medium 1 and the optical waveguide medium layer 2 are made simpler while ensuring the smooth propagation of light.
  • no other connecting structure is set between the light-guiding medium 1 and the optical waveguide medium layer 2, the incident efficiency of light can be greatly improved, light loss can be avoided, and the lighting and atmosphere effects in the vehicle can be effectively improved.
  • the light-introducing medium 1 is a protruding structure located on the first main surface of the optical waveguide medium layer 2, and the incident surface 101 is located on one side of the protruding structure and the incident surface 101 is adjacent to the optical waveguide medium.
  • the first main surface of the layer 2 is connected. Because the light-introducing medium 1 is a convex structure, the light can be refracted inside the convex structure, and then the refracted light enters the optical waveguide medium layer 2.
  • the light-introducing medium 1 is located on the first principal surface of the optical waveguide medium layer 2 (i.e., the surface of the optical waveguide medium layer 2)
  • the light emitted by the light source 3 can be incident into the optical waveguide medium layer 2 through the surface of the optical waveguide medium layer 2, which replaces the incident method of the light emitted by the light source 3 being incident into the optical waveguide medium layer 2 through the end face or cut face of the optical waveguide medium layer 2 (i.e., glass).
  • the structure Under the premise of ensuring the incident efficiency of the light, the structure can be simplified and the cost can be saved.
  • the first main surface of the optical waveguide medium layer 2 may be, but is not limited to, a plane or a curved surface. Since the light-introducing medium 1 is formed directly on the optical waveguide medium layer 2, it is not necessary to consider whether the first main surface of the optical waveguide medium layer 2 can be adapted and connected with the light-introducing medium 1. In the case of a plane or a curved surface, the light-introducing medium 1 can be arranged on the first main surface of the optical waveguide medium layer 2, and the incident efficiency of the light can be ensured.
  • the position where the light-introducing medium 1 is required to be arranged on the optical waveguide medium layer 2 is a transparent area (a transparent area can be reserved according to the preset area of the light-introducing medium 1). Only after the light-introducing medium 1 is arranged in the transparent area can it be ensured that the light can smoothly enter the optical waveguide medium layer 2 through the light-introducing medium 1.
  • the position and area of the light-introducing medium 1 on the first main surface of the optical waveguide medium layer 2 can be set according to the actual product requirements, and are not specifically limited here.
  • the optical waveguide medium layer 2 has a second main surface opposite to the first main surface, and a reflective portion 7 is provided on the second main surface. After the light enters the optical waveguide medium layer 2, it will be irradiated on the reflective portion 7, and the light will be reflected at the point where it is extracted by the reflective portion 7, thereby achieving lighting and atmosphere effects.
  • the reflecting portion 7 can cover the second main surface of the optical waveguide medium layer 2, and the reflecting portion 7 can also be in a preset pattern (different patterns can be set as needed).
  • the light enters the optical waveguide medium layer 2 and propagates in the optical waveguide medium layer 2.
  • the propagated light will be extracted by the reflecting portion 7 after being irradiated by the reflecting portion 7, so that the reflecting portion 7 appears to be in a luminous state, so as to achieve the effects of lighting and atmosphere.
  • the incident surface 101 of the light-introducing medium 1 may be a plane.
  • the incident surface 101 of the light-introducing medium 1 may also be a convex mirror surface or a concave mirror surface or other structural surfaces with optical properties, which can ensure that the light emitted by the light source 3 can smoothly enter the light-introducing medium 1, and can smoothly enter the optical waveguide medium layer 2 after being refracted in the light-introducing medium 1.
  • the light-introducing medium 1 can be set as a long strip-shaped protruding structure according to the size of the optical waveguide medium layer 2, and the light-emitting light source 3 is set on the optical waveguide medium layer 2 and close to the incident surface 101.
  • the number of light-emitting light sources 3 can be multiple, and each light-emitting light source 3 can be spaced and evenly distributed along the length direction of the light-introducing medium 1 to ensure the overall light-emitting effect of the optical waveguide medium layer 2.
  • the specific number and setting position of the light-emitting light source 3 can be set according to the length of the light-introducing medium 1, and it is sufficient to ensure that the light emitted by each light-emitting light source 3 can be fully distributed in the optical waveguide medium layer 2.
  • the incident angle of the light emitted by the luminescent light source 3 relative to the incident surface 101 can be set according to the optical structure of the incident surface 101. It is preferred that the light emitted by the luminescent light source 3 is incident into the light-introducing medium 1 perpendicular to the incident surface 101.
  • the light introducing medium 1 has a refractive index that is the same as or within a preset range as that of the optical waveguide medium layer 2 , and the visible light transmittance of the light introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2 .
  • the preset range of the refractive index of the light-introducing medium 1 is 1.35 to 1.65.
  • the preset range of the refractive index of the light-introducing medium 1 is 1.48 to 1.55.
  • the difference between the refractive index of the light introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05.
  • the visible light transmittance of the light-introducing medium 1 is 85% to 99.9%.
  • the visible light transmittance of the light-introducing medium 1 is 95% to 99.9%.
  • the visible light transmittance of the light introducing medium 1 is greater than or equal to 3% of the visible light transmittance of the optical waveguide medium layer 2 .
  • the haze of the light-introducing medium 1 is less than or equal to 5%.
  • the haze of the light-introducing medium 1 is less than or equal to 2%.
  • the present application sets the refractive index, visible light transmittance and haze of the light-introducing medium 1 so that the light-introducing medium 1 and the optical waveguide medium layer 2 have similar optical properties, thereby greatly improving the efficiency of light incident on the optical waveguide medium layer 2 and avoiding light loss.
  • the light-introducing medium 1 and the optical waveguide medium layer 2 can be integrally formed, or the light-introducing medium 1 and the optical waveguide medium layer 2 can be made of the same material or made of materials with similar refractive index, optical transmittance, haze and other optical properties, so that the light-introducing medium 1 and the optical waveguide medium layer 2 have the same or equivalent optical properties, and the light-introducing medium 1 and the optical waveguide medium layer 2 can be treated as the same medium. In this case, the best light incident efficiency can be obtained.
  • the light-introducing medium 1 is formed by curing a viscous liquid on the optical waveguide medium layer 2. It can be used but not limited to transparent optical adhesive OCA (Optically Clear Adhesive), liquid transparent optical adhesive LOCA (Liquid Optical Clear Adhesive) or optical transparent resin OCR (Optical Clear Resin).
  • OCA Optically Clear Adhesive
  • LOCA Liquid Optical Clear Adhesive
  • OCR Optical Clear Resin
  • the light-introducing medium 1 is formed by curing by light (such as UV, etc.) or heat.
  • the molding method of the light-introducing medium 1 can be: by injecting material into a pre-designed mold installed on the surface of the optical waveguide medium layer 2 (such as: using extrusion injection, drip injection, etc.); or pre-coating the material on the surface of the optical waveguide medium layer 2, and then removing the excess material by pressing and taking the mold; or using 3D printing to form the light-introducing medium 1 on the optical waveguide medium layer 2; or using coating, stacking, etc. to form the light-introducing medium 1 on the optical waveguide medium layer 2.
  • a pre-designed mold installed on the surface of the optical waveguide medium layer 2 such as: using extrusion injection, drip injection, etc.
  • pre-coating the material on the surface of the optical waveguide medium layer 2 and then removing the excess material by pressing and taking the mold
  • 3D printing to form the light-introducing medium 1 on the optical waveguide medium layer 2
  • coating, stacking, etc. to form the light-introducing medium 1 on the optical waveguide medium layer 2.
  • a liquid transparent optical adhesive LOCA with a viscosity of 2500cps to 4500cps may be used to bond the optical waveguide medium layer 2 to the substrate.
  • the light-inducing medium 1 is formed by solidifying the light-inducing medium 1.
  • the light-introducing medium 1 and the optical waveguide medium layer 2 are integrally formed, or the light-introducing medium 1 is formed on the optical waveguide medium layer 2 by curing, it can be considered that the light-introducing medium 1 is directly formed on the optical waveguide medium layer 2.
  • the light-introducing medium 1 is directly formed on the optical waveguide medium layer 2.
  • a covering member (not shown in the figure) can be set on the entire surface of the optical waveguide medium layer 2, and the optical waveguide medium layer 2 and the light-introducing medium 1 can be covered by the covering member, thereby playing a role in protecting and beautifying the appearance.
  • the light incident structure further includes a cover plate 4, the cover plate 4 having a first end and a second end opposite to each other, the first end of the cover plate 4 being connected to the optical waveguide medium layer 2, the second end of the cover plate 4 being inclined in a direction away from the optical waveguide medium layer 2, and the light-introducing medium 1 being located between the cover plate 4 and the optical waveguide medium layer 2; the incident surface 101 being located between the second end of the cover plate 4 and the optical waveguide medium layer 2, or the incident surface 101 being located between the position close to the second end of the cover plate 4 and the optical waveguide medium layer 2.
  • the cover plate 4 In the process of forming the light-introducing medium 1, the cover plate 4 can be pre-arranged, and then the light-introducing medium 1 is formed between the cover plate 4 and the optical waveguide medium layer 2, and the cover plate 4 plays a certain shaping role on the light-introducing medium 1, so as to ensure the smooth forming of the light-introducing medium 1.
  • the shape and size of the cover plate 4 can be set according to the shape and size of the light-introducing medium 1 to be formed. In the present application, it is not limited whether the cover plate 4 is made of a transparent material, and it is preferred that the cover plate 4 is made of a non-black material.
  • the cross section of the light-introducing medium 1 is a right triangle, the position corresponding to the longer right-angled side of the light-introducing medium 1 is in contact with the first main surface of the optical waveguide medium layer 2, and the position corresponding to the shorter right-angled side of the light-introducing medium 1 is the incident surface 101 of the light-introducing medium 1.
  • the incident surface 101 of the light-introducing medium 1 is perpendicular to the first main surface of the optical waveguide medium layer 2, and a cover plate 4 is arranged on the hypotenuse of the light-introducing medium 1.
  • the angle between the longer right-angled side of the light-introducing medium 1 and the hypotenuse is 4° to 10°, preferably 4° to 7°, and the length of the shorter right-angled side of the light-introducing medium 1 is less than or equal to 4 mm.
  • the refractive index of the optical waveguide medium layer 2 can be 1.51
  • the visible light transmittance (TL) can be 91.5%
  • the first adhesive layer 6 is ethylene polyether
  • the material of the light-introducing medium 1 is selected to be UV-cured LOCA (i.e., liquid optical transparent adhesive) with a refractive index of 1.51 and a visible light transmittance (TL) greater than or equal to 91%.
  • the light-guiding medium 1 realizes that the light generated by the luminous light source 3 is incident on the optical waveguide medium layer 2, and the light continues to propagate in the optical waveguide medium layer 2. During the process of propagating in the optical waveguide medium layer 2, the incident light is irradiated onto the reflective portion 7 and is reflected at the reflective portion 7, thereby achieving effects such as luminescence and displaying patterns.
  • the visible light transmittance (TL) of the material of the light-introducing medium 1 is 99%.
  • the cross section of the light-introducing medium 1 is a triangular shape, and the incident surface 101 of the light-introducing medium 1 is a concave lens surface.
  • the refractive index of the light-introducing medium 1 is the same as or close to the refractive index of the optical waveguide medium layer 2, and preferably the difference between the refractive index of the light-introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05; the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, and preferably greater than or equal to 3%.
  • the cross section of the light-introducing medium 1 is a triangular shape, and the incident surface 101 of the light-introducing medium 1 is a convex lens surface.
  • the refractive index of the light-introducing medium 1 is the same as or close to the refractive index of the optical waveguide medium layer 2, and preferably the difference between the refractive index of the light-introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05; the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, and preferably greater than or equal to 3%.
  • the incident surface 101 of the light-introducing medium 1 can also be a free-form surface, and it is necessary to ensure that the convergence directions of the light rays emitted by the light source 3 are basically consistent (ie, the light rays are distributed within an angle range of ⁇ 2.5°).
  • the cross-section of the light-introducing medium 1 is semi-elliptical, the position corresponding to the straight edge of the light-introducing medium 1 is connected to the first main surface of the optical waveguide medium layer 2, and the incident surface 101 of the light-introducing medium 1 is close to the position where the light-introducing medium 1 is connected to the first main surface of the optical waveguide medium layer 2.
  • the refractive index of the light-introducing medium 1 is the same as or close to the refractive index of the optical waveguide medium layer 2, and preferably the difference between the refractive index of the light-introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05; the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, and is preferably greater than or equal to 3%.
  • the cross-section of the light-introducing medium 1 is a right-angled trapezoid, the position corresponding to the longer bottom side of the light-introducing medium 1 is connected to the first main surface of the optical waveguide medium layer 2, and the incident surface 101 of the light-introducing medium 1 is a plane corresponding to the waist of the two bottom sides, the angles between which are both right angles.
  • the refractive index of the light-introducing medium 1 is the same as or close to the refractive index of the optical waveguide medium layer 2, and preferably the difference between the refractive index of the light-introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05; the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, and preferably greater than or equal to 3%.
  • the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, and is preferably greater than or equal to 5%.
  • the cross section of the light-introducing medium 1 is a non-right triangle
  • the position corresponding to the first side (the longer side among the three sides) of the light-introducing medium 1 is in contact with the first main surface of the optical waveguide medium layer 2
  • the position corresponding to the second side (the shorter side among the three sides) of the light-introducing medium 1 is the incident surface 101 of the light-introducing medium 1.
  • the angle of the light-emitting light source 3 can be adjusted so that the light emitted by the light-emitting light source 3 is as perpendicular as possible to the incident surface 101 of the light-introducing medium 1 and enters the light-introducing medium 1.
  • the refractive index of the light-introducing medium 1 is equal to that of the optical waveguide medium 2.
  • the refractive index of the light-introducing medium 1 is the same as or close to that of the optical waveguide medium layer 2.
  • the difference between the refractive index of the light-introducing medium 1 and the refractive index of the optical waveguide medium layer 2 is within the range of ⁇ 0.05.
  • the visible light transmittance of the light-introducing medium 1 is greater than or equal to the visible light transmittance of the optical waveguide medium layer 2, preferably greater than or equal to 3%.
  • the light-introducing medium 1 is fixed on the optical waveguide medium layer 2, which can greatly improve the light incident efficiency, avoid light loss, and effectively improve the lighting and atmosphere effects in the car.
  • the light introducing medium 1 and the optical waveguide medium layer 2 have the same or similar optical properties, which can greatly improve the efficiency of light incident on the optical waveguide medium layer 2.
  • the setting surface of the optical waveguide medium layer 2 (ie, the first main surface) can be either a flat surface or a curved surface, and has a wide range of applications.
  • the structure and process are simpler, the occupied area is small, the space is saved, the layout is convenient, and it is suitable for industrial mass production.
  • the light incident structure can realize that the light passes through the surface of the optical waveguide medium layer 2 and enters the optical waveguide medium layer 2, replacing the incident method of the light emitted by the light source 3 entering the optical waveguide medium layer 2 from the end face or cut face of the optical waveguide medium layer 2. Under the premise of ensuring the incident efficiency of the light, it simplifies the structure, reduces the product weight, saves costs, and saves energy and reduces emissions.
  • the present application provides a vehicle window, which includes an optical waveguide medium layer 2, an outer glass layer 5 and the above-mentioned light incident structure, the optical waveguide medium layer 2 has a first main surface and a second main surface relative to each other, the light incident structure is arranged on the first main surface of the optical waveguide medium layer 2, and the outer glass layer 5 is connected to the second main surface of the optical waveguide medium layer 2.
  • the vehicle window further includes a first adhesive layer 6 , and the first adhesive layer 6 is bonded between the outer glass layer 5 and the second main surface of the optical waveguide medium layer 2 .
  • the reflective portion 7 is located between the first adhesive layer 6 and the second main surface of the optical waveguide medium layer 2 , and the reflective portion 7 is fixedly bonded to the first adhesive layer 6 .
  • the optical waveguide medium layer 2 and the outer glass layer 5 are made of the same material (i.e., the optical waveguide medium layer 2 and the outer glass layer 5 are both made of glass). Therefore, the present application is a two-piece sandwich structure after molding. By setting the light incident structure, the two-piece sandwich structure can replace the existing three-piece sandwich structure (as shown in FIG. 1 ), and there is no need to realize the incidence of light through the end face or cut face of the glass, which can avoid the setting of the third layer of glass, simplify the product structure and reduce the product weight.
  • the present application provides a vehicle having the above-mentioned vehicle window.
  • FIG. 10 shows a schematic diagram of the structure of a vehicle window panel according to an embodiment of the present application
  • FIG. 15 shows a top view of the structure shown in FIG. 10
  • FIG. 11 shows a schematic diagram of the structure of a vehicle window panel according to another embodiment of the present application.
  • a vehicle window panel provided in an embodiment of the present application comprises: an optical waveguide medium layer 2, a light guide medium 1, and a light source 3.
  • the optical waveguide medium layer 2 includes but is not limited to an optical waveguide glass layer.
  • the optical waveguide medium layer 2 is provided with a first main surface 201 and a second main surface 202 opposite to each other.
  • a light reflection layer 203 is provided on the first main surface 201 or the second main surface 202, or a light reflection layer 203 is provided on each of the first main surface 201 and the second main surface 202 (as shown in FIG. 11).
  • the light guide medium 1 comprises a first surface 102 and a second surface 103 arranged parallel to each other, and the light guide medium 1 is closely connected to the first main surface 201 through the first surface 102, and the connection part of the first main surface 201 connected to the first surface 102 is parallel to the first surface 102.
  • the light source 3 is, for example, an LED light-emitting component, which is located at one end of the light-introducing medium 1 . The light from the light source 3 enters the light-introducing medium 1 .
  • the light-introducing medium 1 is used to introduce the light from the light source 3 into the optical waveguide medium layer 2 .
  • first surface 102 and the first main surface 201 are “closely connected”, which means that there is no other layer between the first surface 102 and the first main surface 201 to achieve close “contact” connection, or the first surface 102 and the first main surface 201 are closely connected through other layers such as bonding or locking.
  • the light reflecting layer 203 can be arranged as a whole on the second main surface 202, or it can exist in any form of pattern, including but not limited to multiple triangles, multiple water drop shapes, multiple stars, multiple quadrilaterals, multiple circles, multiple ellipses and other regular shapes and irregular shapes. Its specific shape can be flexibly adjusted and designed according to actual needs.
  • the light-guiding medium 1 since the light-guiding medium 1 includes a first surface 102 and a second surface 103 arranged parallel to each other, the light-guiding medium 1 is closely connected to the first main surface 201 through the first surface 102, and the connection part of the first main surface 201 connected to the first surface 102 is parallel to the first surface 102, so that when the light of the luminous light source 3 enters the light-guiding medium 1, the light-guiding medium 1 can realize that the light of the luminous light source 3 is incident on the optical waveguide medium layer 2, so that the light propagates in the optical waveguide medium layer 2, and the propagated light encounters the light reflection layer 203 made in advance to generate reflection, and the light reflection layer 203 emits light to achieve lighting or atmosphere effect.
  • the atmosphere or lighting effect is achieved by the light reflection layer 203 cooperating with the light-guiding medium 1 and the optical waveguide medium layer 2.
  • the structure of the light-guiding medium 1 is simplified, the processing difficulty is reduced, the production efficiency is improved, the installation stability on the first main surface 201 of the optical waveguide medium layer 2 is good, and the incident efficiency of the luminous light source 3 is improved.
  • the light-introducing medium 1 has the same light-introducing effect as the light-introducing method of the end face (end, cut face) of the third glass layer in the related art.
  • the two-piece sandwich product structure can replace the related technology by assisting the light-guiding medium 1.
  • the three-piece sandwich product in the process reduces product weight, reduces resource utilization, and greatly reduces production costs.
  • the light reflecting layer 203 can be flexibly arranged according to actual needs. It can be arranged on the first main surface 201, or on the second main surface 202, or a light reflecting layer 203 can be provided on both the first main surface 201 and the second main surface 202, so that the light can be reflected to the inside of the vehicle, thereby achieving lighting or atmosphere effects.
  • first surface 102 and the second surface 103 each include but are not limited to flat surfaces, curved surfaces or arc-shaped surfaces designed to be parallel to each other, or surfaces of other regular and irregular shapes, which are not limited here and can be flexibly adjusted and set according to actual needs.
  • connection part of the first main surface 201 is adapted to the first surface 102.
  • the connection part of the first main surface 201 is correspondingly set as a flat surface;
  • the connection part of the first main surface 201 is correspondingly set as an arcuate surface;
  • the connection part of the first main surface 201 is correspondingly set as a curved surface.
  • the light-introducing medium 1 further includes a third surface (i.e., the incident surface 101 in the first embodiment) and a fourth surface 104 that are arranged opposite to each other.
  • the light source 3 is arranged adjacent to the third surface, and the light of the light source 3 enters the light-introducing medium 1 through the third surface.
  • the third surface and the fourth surface 104 are each arranged as a flat surface or an arc surface or other surfaces of regular and irregular shapes, which can be flexibly adjusted and arranged according to actual needs, and are not limited here.
  • the third surface and the fourth surface 104 can be designed to be parallel to each other, or they do not need to be designed to be parallel to each other, which can be flexibly adjusted and arranged according to actual needs, and are not limited here.
  • the light source 3 is arranged adjacent to the third surface, when the light source 3 emits light, the light generated is incident toward the third surface, enters the light-introducing medium 1, and is introduced into the optical waveguide medium layer 2 by the light-introducing medium 1.
  • the fourth surface 104 may be perpendicular to the first main surface 201 (as shown in FIG. 12 ), or may be arranged at an angle with the first main surface 201 (as shown in FIG. 13 ), and the angle includes but is not limited to an acute angle or an obtuse angle.
  • the first main surface 201 and/or the second main surface 202 of the optical waveguide medium layer 2 are provided with an optical isolation layer and/or a heat-insulating film layer.
  • an optical isolation layer such as a UV-blocking, infrared-blocking, anti-reflection coating layer or a chemical coating, can be added to the first main surface 201 and/or the second main surface 202.
  • a heat-insulating film layer such as a LOW-E heat-insulating film layer, can also be added, for example, in summer, it can effectively isolate the external heat of the vehicle from entering the vehicle, and in winter, it can effectively preserve the heat inside the vehicle.
  • a transparent area is provided at the connection part of the first main surface 201 connected to the first surface 102.
  • the transparent area is the first main surface 201 that has not been subjected to any additional treatment at the connection part. In this way, the transparent area must be free of other additional functional film layers. If there are additional functional film layers similar to the above, the area must be cleared to ensure that the light-inducing medium The material 1 is in direct contact with the first main surface 201 .
  • FIG. 10 or FIG. 11 shows a schematic diagram of the structure of a vehicle window panel according to another embodiment of the present application.
  • the light-introducing medium 1 is directly connected to the optical waveguide medium layer 2 to form, for example, an integrated structure, that is, obtained by integrated molding.
  • the light-introducing medium 1 and the optical waveguide medium layer 2 are manufactured separately and assembled together.
  • the light-introducing medium 1 can be made of the same material as the optical waveguide medium layer 2 or different materials.
  • the material can be flexibly adjusted and configured according to actual needs, which is not limited here.
  • the light-introducing medium 1 and the optical waveguide medium layer 2 into which the light is incident can be understood as the same medium on the light propagation plane, that is, the light is well incident from the light-introducing medium 1 to the optical waveguide medium layer 2.
  • the light-guiding medium 1 and the optical waveguide medium layer 2 when the light-guiding medium 1 and the optical waveguide medium layer 2 are manufactured separately and assembled together, the light-guiding medium 1 and the first main surface 201 of the optical waveguide medium layer 2 have the same profile (such as both are planes or single arc surfaces or hyperbolic surfaces composed of cross arc surfaces, etc.).
  • the secondary manufactured light-guiding medium 1 can be formed by mold (such as hot pressing molding or hot gravity molding) or cold molding to make it consistent with the profile of the assembly area of the optical waveguide medium layer 2, and then the light-guiding medium 1 and the first main surface 201 of the optical waveguide medium layer 2 are connected to each other.
  • a liquid 105 with a certain viscosity can also be used.
  • the liquid 105 can be cured by light or heat to combine the light-introducing medium 1 with the optical waveguide medium layer 2.
  • the liquid 105 can be, but is not limited to, optically clear adhesive (OCA), liquid optical clear adhesive (LOCA), or optically clear resin (OCR).
  • the refractive index of the liquid 105 material is 1.45-1.65, preferably 1.48-1.55; the visible light transmittance (TL) of the liquid 105 material is 90%-99.9%, preferably 97%-99.9%; the haze of the liquid 105 material is ⁇ 5%, preferably ⁇ 1%.
  • the refractive index, transmittance (TL), and haze of the liquid 105, the light-introducing medium 1, and the optical waveguide medium layer 2 are completely consistent, so that light can be incident from the light-introducing medium 1 to the optical waveguide medium layer 2 better.
  • the light-introducing medium 1 and the optical waveguide medium layer 2 are made of the same glass material or different glass materials, which is not limited here.
  • the glass material includes but is not limited to inorganic glass or organic glass.
  • the light-introducing medium 1 can be made of the same glass material as the optical waveguide medium layer 2.
  • the light-introducing medium 1 is directly cut from a flat material and then fixedly combined with the optical waveguide medium layer 2 at the connection part by mold thermoforming. In this way, the light can be incident from the light-introducing medium 1 to the optical waveguide medium layer 2 in a better manner.
  • the refractive index of the light-introducing medium 1 is 1.45-1.65; and/or the light transmittance of the light-introducing medium 1 is 80%-99.9%; and/or the haze of the light-introducing medium 1 is ⁇ 5%.
  • the refractive index of the light-introducing medium 1 is 1.48 to 1.55; the light transmittance of the light-introducing medium 1 is 85% to 99.9%; and the haze of the light-introducing medium 1 is ⁇ 1%.
  • the light-introducing medium 1 is connected to the circumference, one side, two sides, or three sides of the optical waveguide medium layer 2, or any other region that can be constructed.
  • the light-introducing medium 1 is in the shape of a long strip or an arc strip.
  • the shape of the light-introducing medium 1 is simple and does not need to be made into a wedge shape or a special optical structure.
  • the light propagation distance of the optical waveguide medium layer 2 is defined as b
  • the spacing between the third surface and the fourth surface 104 of the light-introducing medium 1 is a
  • the spacing between the first surface 102 of the light-introducing medium 1 and the first main surface 201 of the optical waveguide medium layer 2 is h; wherein, b ⁇ 20a-30a, preferably b ⁇ 22a-28a, more preferably b ⁇ 24a-26a, a ⁇ 6h-10h, preferably a ⁇ 7h-9h.
  • a and h are not designed in size within this range. If the design is too small, the amount of incident light will be insufficient.
  • the spacing a is small, the spacing h is small, and the occupied area is small, so it is convenient to arrange and use.
  • the relationship between the size design of the light-introducing medium 1 (spacing a and spacing h) and the distance b required for light propagation in the optical waveguide medium layer 2 satisfies: h:a:b ⁇ 1:8:200.
  • This size design of the light-introducing medium 1 will enable the light emitted by the light source 3 to be introduced into the optical waveguide medium layer 2 with maximum efficiency.
  • the light guide medium 1 of this size will allow the light emitted by the LED light source to be introduced into the light waveguide medium layer 2 with maximum efficiency.
  • the vehicle window panel further comprises an outer glass layer 5.
  • the second main surface 202 is connected to the outer glass layer 5 via a first adhesive layer 6.
  • the outer glass layer 5 is closer to the outside of the vehicle, and the optical waveguide medium layer 2 is closer to the inside of the vehicle.
  • the light reflecting layer 203 can be observed to emit light outside the vehicle.
  • the first adhesive layer 6 includes but is not limited to ethylene polytetrafluoroethylene.
  • a window panel assembly includes the window panel of any of the above embodiments, and a cover assembly 8, which is used to cover the outside of the light-introducing medium 1 and the light-emitting light source 3. In this way, the light-introducing medium 1 and the light-emitting light source 3 are shielded and protected by the cover assembly 8.
  • the cover assembly 8 is bonded and fixed on the first main surface 201 of the optical waveguide medium layer 2 through the second bonding layer 9 .
  • the covering component 8 is bonded and fixed to the first main surface 201 of the optical waveguide medium layer 2 through the second adhesive layer 9 on one side, and bonded and fixed to the second surface 103 of the light-introducing medium 1 on the other side.
  • This design can reduce the occupancy of the first main surface 201 of the optical waveguide medium layer 2, and the structure is compact.
  • a vehicle includes the window panel assembly of any one of the above embodiments.
  • the light-guiding medium 1 since the light-guiding medium 1 includes a first surface 102 and a second surface 103 arranged parallel to each other, the light-guiding medium 1 is closely connected to the first main surface 201 through the first surface 102, and the connection part of the first main surface 201 connected to the first surface 102 is parallel to the first surface 102, so that when the light of the luminous light source 3 enters the light-guiding medium 1, the light-guiding medium 1 can realize that the light of the luminous light source 3 is incident on the optical waveguide medium layer 2, so that the light propagates in the optical waveguide medium layer 2, and the propagated light encounters the light reflection layer 203 made in advance to generate reflection, and the light reflection layer 203 emits light to achieve lighting or atmosphere effect.
  • the atmosphere or lighting effect is achieved by the light reflection layer 203 cooperating with the light-guiding medium 1 and the optical waveguide medium layer 2.
  • the structure of the light-guiding medium 1 is simplified, the processing difficulty is reduced, the production efficiency is improved, the installation stability on the first main surface 201 of the optical waveguide medium layer 2 is good, and the incident efficiency of the luminous light source 3 is improved.
  • the light-introducing medium 1 has the same light-introducing effect as the light-introducing method of the end face (end, cut face) of the third glass layer in the related art.
  • the two-piece sandwich product structure assisted by the light-guiding medium 1 can replace the three-piece sandwich product in the related technology, reduce product weight, reduce resource utilization, and greatly reduce production costs.

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种光线入射结构、车窗、车窗面板、车窗面板总成及车辆,光线入射结构用于将光线传导至光波导介质层(2)内,光波导介质层(2)至少具有供光线射入的第一主面(201),光线入射结构包括引光介质(1)和发光光源(3),引光介质(1)的至少部分位置固化形成于光波导介质层(2)的第一主面(201)上,以使至少部分引光介质(1)为光波导介质层(2)的一部分,引光介质(1)具有供光线射入的至少一个入射面(101);发光光源(3)发射的光线经过入射面(101)进入至引光介质(1)内,光线经过引光介质(1)的折射后由第一主面(201)进入至光波导介质层(2)内。可以解决车窗的光线入射结构复杂、光线入射效率低等技术问题。

Description

光线入射结构、车窗、车窗面板、车窗面板总成及车辆
相关申请的交叉引用
本公开要求于2022年12月7日提交中国专利局、申请号为202211561724.4、名称为“一种光线入射结构、车窗及车辆”的中国专利的优先权,以及要求于2023年1月9日提交中国专利局、申请号为202310025008.2、名称为“车窗面板、车窗面板总成及车辆”的中国专利的优先权,所述专利申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及车窗产品领域,尤其涉及一种光线入射结构、车窗、车窗面板、车窗面板总成及车辆。
背景技术
现阶段,如图1所示,通常采用在车窗的玻璃10上安装发光光源20,使光线由玻璃10的端面(如:玻璃的端部、切面或玻璃局部挖孔位置的端面)入射至玻璃10内,通过光线在玻璃10(即:光波导介质层)内传播,达到实现车辆内部照明或提升车内氛围效果。
而相关技术中,将导光块通过第一粘接层固定在光波导介质层的表面上,发光光源发出的光线入射到导光块中,导光块对光线进行反射后使光线入射到光波导介质层中,光线在光波导介质层中进行全反射,从而在光波导介质层中进行传播。为提升导光效果,需要在导光块与光波导介质层的表面之间设置复杂的光学结构(如:尺寸在毫米或者微米范围的多组非对称棱镜,各组非对称棱镜之间以三维阵列或者线性方式排列),以辅助光线入射到光波导介质层中,不仅制作、安装难度高,而且会占用光波导介质层的部分空间,影响光波导介质层的发光效果;另外,导光块的结构使用范围窄(如:无法在曲面玻璃上安装),工艺难度大、产品稳定性无法保证;由于导光块与发光光源发光角度的匹配性以及光线需要通过导光块和第一粘接层后才能入射到光波导介质层中,都会对光线造成损失,从而导致光线的入射效率低下,产品使用效果不佳。
针对相关技术中车窗的光线入射结构复杂、光线入射效率低等问题,目前尚未给出有效的解决方案。
由此,本申请人凭借多年从事相关行业的经验与实践,提出一种光线入射结构、车窗及车辆,以克服现有技术的缺陷。
发明内容
根据本申请的各种实施例,提供一种光线入射结构、车窗、车窗面板、车窗面板总成及车辆。
本申请的目的可采用下列方案来实现:
本申请提供了一种光线入射结构,其用于将光线传导至光波导介质层内,所述光波导介质层至少具有供光线射入的第一主面,其中,包括:
引光介质,所述引光介质的至少部分位置固化形成于所述光波导介质层的第一主面上,以使至少部分所述引光介质为所述光波导介质层的一部分,所述引光介质具有供光线射入的至少一个入射面;
发光光源,所述发光光源发射的光线经过所述入射面进入至所述引光介质内,所述光线经过所述引光介质的折射后由所述第一主面进入至所述光波导介质层内。
在其中一个实施例中,所述引光介质为位于所述光波导介质层的第一主面上的凸起结构。
在其中一个实施例中,所述第一主面为平面或曲面。
在其中一个实施例中,所述光波导介质层具有与所述第一主面相对的第二主面,所述第二主面上设置有反光部,进入所述光波导介质层内的光线在所述反光部处发生反射。
在其中一个实施例中,所述反光部呈预设的图案。
在其中一个实施例中,所述入射面为平面或凸镜面或凹镜面。
在其中一个实施例中,所述引光介质具有与所述光波导介质层相同或位于预设范围内的折射率。
在其中一个实施例中,所述引光介质的可见光透过率大于或等于所述光波导介质层的可见光透过率。
在其中一个实施例中,所述引光介质与所述光波导介质层一体成型。
在其中一个实施例中,所述引光介质由具有黏度的液体在所述光波导介质层上固化形成。
在其中一个实施例中,所述光线入射结构还包括盖板,所述盖板具有相对的第一端和第二端,所述盖板的第一端与所述光波导介质层连接,所述盖板的第二端向远离所述光波导介质层的方向倾斜,所述引光介质位于所述盖板与所述光波导介质层之间;
所述入射面位于所述盖板的第二端与所述光波导介质层之间,或所述入射面位于靠近所述盖板的第二端的位置与所述光波导介质层之间。
在其中一个实施例中,所述发光光源设置于所述光波导介质层上且靠近所述入射面的位置。
本申请提供了一种车窗,包括光波导介质层、外玻璃层和上述的光线入射结构,所述光波导介质层具有相对的第一主面和第二主面,所述光线入射结构设置于所述第一主面,所述外玻璃层与所述第二主面连接。
在其中一个实施例中,所述车窗还包括第一粘接层,所述第一粘接层粘接于所述外玻璃层与所述第二主面之间。
本申请提供了一种车窗面板,其中,所述车窗面板包括:
光波导介质层,所述光波导介质层设有相对的第一主面与第二主面,所述第一主面和/或所述第二主面上设有光反射图层;
引光介质,所述引光介质包括相互平行设置的第一表面与第二表面,所述引光介质通过所述第一表面与所述第一主面紧密相连,与所述第一表面相连的所述第一主面的连接部位平行于所述第一表面;
发光光源,所述发光光源位于所述引光介质的一端,所述发光光源的光线进入到所述引光介质中,所述引光介质用于将所述发光光源的光线引入到所述光波导介质层中。
在其中一个实施例中,所述引光介质还包括相对设置的第三表面与第四表面,所述发光光源与所述第三表面相邻设置,所述发光光源的光线经过所述第三表面进入到所述引光介质中;所述第三表面、所述第四表面各自设置为平直面或弧形面。
在其中一个实施例中,所述光波导介质层的第一主面和/或第二主面设有光学隔离层和/或隔热膜层。
在其中一个实施例中,与所述第一表面相连的所述第一主面的连接部位设有透明区,所述透明区为所述连接部位未进行任何附加处理的第一主面。
在其中一个实施例中,所述引光介质与所述光波导介质层一体成型;或者,所述引光介质与所述光波导介质层各自分开制造并相互组装在一起。
在其中一个实施例中,所述引光介质通过可固化的液体与所述光波导介质层固定相连;所述液体为透明光学胶或光学透明树脂;所述液体的材料折射率为1.45~1.65;所述液体材料的可见光透过率为90%~99.9%;所述液体材料的雾度≦5%。
在其中一个实施例中,所述引光介质与所述光波导介质层采用相同玻璃材料;和/或,所述玻璃材料为无机玻璃或有机玻璃。
在其中一个实施例中,所述引光介质的折射率为1.45~1.65;所述引光介质的光透过率为80%~99.9%;所述引光介质的雾度≦5%。
在其中一个实施例中,所述引光介质为连接于所述光波导介质层的至少一边上;和/或,所述引光介质为长条形状或弧形条状。
在其中一个实施例中,将所述光波导介质层的光线传播距离定义为b,所述引光介质的第三表面与第四表面的间距为a,所述引光介质的第一表面与所述光波导介质层第一主面的间距为h;其中,b=20a~30a,a=6h~10h。
在其中一个实施例中,h:a:b=1:8:200。
在其中一个实施例中,所述车窗面板还包括外玻璃层;所述第二主面通过第一粘接层与所述外玻璃层相连。
一种车窗面板总成,所述车窗面板总成包括所述的车窗面板,以及遮盖组件,所述遮盖组件用于罩设于所述引光介质与所述发光光源的外部。
本申请提供了一种车辆,所述车辆包括所述的车窗或者所述的车窗面板。
由上所述,本申请的光线入射结构、车窗及车辆的特点及优点至少包括:
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的范围。其中:
图1:为现有技术中车窗玻璃的光线入射结构的示意图。
图2:为本申请光线入射结构的示意图之一。
图3:为本申请光线入射结构的立体图。
图4:为图3中A位置的局部放大图。
图5:为本申请光线入射结构的示意图之二。
图6:为本申请光线入射结构的示意图之三。
图7:为本申请光线入射结构的示意图之四。
图8:为本申请光线入射结构的示意图之五。
图9:为本申请光线入射结构的示意图之六。
图10为本发明一实施例的车窗面板的结构示意图。
图11为本发明另一实施例的车窗面板的结构示意图。
图12为本发明又一实施例的车窗面板的结构示意图。
图13为本发明再一实施例的车窗面板的结构示意图。
图14为本发明一实施例的光线在光波导介质层内部传输的状态示意图。
图15为图10所示结构的俯视图。
图16为本发明再一实施例的车窗面板总成的结构示意图。
图17为本发明再一实施例的车窗面板总成的结构示意图。
背景技术中的附图标号为:
10、玻璃;20、发光光源。
本申请中的附图标号为:
1、引光介质;101、入射面;102、第一表面;103、第二表面;104、第四表面;105、
液体;2、光波导介质层;201、第一主面;202、第二主面;203、光反射图层;3、发光光源;4、盖板;5、外玻璃层;6、第一粘接层;7、反光部;8、遮盖组件;9、第二粘接层。
具体实施方式
为了对本申请的技术特征、目的和效果有更加清楚的理解,现对照附图说明本申请的具体实施方式。
实施方式一
如图2至图4所示,本申请提供了一种光线入射结构,该光线入射结构用于将光线传导至光波导介质层2内,光波导介质层2至少具有供光线射入的第一主面,该光线入射结构包括引光介质1和发光光源3,引光介质1的至少部分位置固化形成于光波导介质层2的第一主面上,以使至少部分引光介质1为光波导介质层2的一部分,引光介质1具有供光线射入的至少一个入射面101;发光光源3发射的光线经过入射面101进入至引光介质1内,光线经过引光介质1的折射后由第一主面进入至光波导介质层2内。本申请中,由于引光介质1固设于光波导介质层2的第一主面上,在保证光线顺利传播的前提下,使引光介质1与光波导介质层2之间的结构以及成型工艺更加简单;另外,由于引光介质1与光波导介质层2之间未设置其他连接结构,能够大大提高光线的入射效率,避免光线损失,有效提升车内的照明和氛围效果。
在本申请的一个可选实施例中,如图2至图4所示,引光介质1为位于光波导介质层2的第一主面上的凸起结构,入射面101位于凸起结构的一侧且入射面101与光波导介质 层2的第一主面相连,正是由于引光介质1为凸起结构,使得光线能够在凸起结构的内部发生折射,进而使发生折射后的光线进入至光波导介质层2内。
在本申请中,由于引光介质1位于光波导介质层2的第一主面(即:光波导介质层2的表面),因此,可实现发光光源3发射的光线通过光波导介质层2的表面射入至光波导介质层2内,取代了将发光光源3发射的光线由光波导介质层2(即:玻璃)的端面或切面射入至光波导介质层2内的入射方式,在保证光线的入射效率的前提下,能够简化结构、节约成本。
进一步的,光波导介质层2的第一主面可为但不限于平面或曲面,由于直接在光波导介质层2上形成引光介质1,因此无需考虑光波导介质层2的第一主面是否能够与引光介质1适配连接,在平面或曲面的情况下,均能将引光介质1设置于光波导介质层2的第一主面上,并能够保证光线的入射效率。但在在形成引光介质1之前,需要保证光波导介质层2上需要设置引光介质1的位置为透明区域(可根据预设的引光介质1的面积预留出透明区域),再将引光介质1设置于该透明区域后,才能保证光线能够通过引光介质1顺利进入至光波导介质层2内。其中,引光介质1在光波导介质层2的第一主面上的位置以及面积可根据实际产品的需求进行设定,在此不做具体限定。
在本申请的一个可选实施例中,如图2所示,光波导介质层2具有与第一主面相对的第二主面,第二主面上设置有反光部7,光线在进入光波导介质层2内之后,会照射在反光部7上,光线会在被反光部7提取处发生反射,从而实现照明和氛围效果。
进一步的,反光部7可覆盖光波导介质层2的第二主面,反光部7也可呈预设的图案(根据需要设置不同的图案),光线进入至光波导介质层2内并在光波导介质层2内传播,传播的光线在照射到反光部7后会被反光部7提取,使得反光部7呈现发光状态,以实现照明和氛围的效果。
在本申请的一个可选实施例中,如图2所示,引光介质1的入射面101可为平面,当然,如图5、图6所示,引光介质1的入射面101也可为凸镜面或凹镜面或其他具有光学性能的结构面,能够保证发光光源3发射的光线能够顺利进入至引光介质1,并且在引光介质1内发生折射后能够顺利进入至光波导介质层2内即可。
进一步的,如图2至图4所示,引光介质1可根据光波导介质层2的尺寸设置为长条状的凸起结构,发光光源3设置于光波导介质层2上且靠近入射面101的位置,发光光源3的数量可为多个,各发光光源3可沿引光介质1的长度方向间隔且均匀分布,以确保光波导介质层2的整体发光效果。其中,发光光源3的具体数量以及设置位置可根据引光介质1的长度设定,保证各发光光源3发射的光线能够充分分布于光波导介质层2内即可。
进一步的,如图2、图5至图9所示,发光光源3发射的光线相对于入射面101的入射角度可以根据入射面101的光学结构进行设定。其中,优选发光光源3发射的光线垂直入射面101射入至引光介质1内。
在本申请的一个可选实施例中,引光介质1具有与光波导介质层2相同或位于预设范围内的折射率,引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率。
进一步的,引光介质1的折射率的预设范围为1.35至1.65。其中优选的,引光介质1的折射率的预设范围为1.48至1.55。
进一步的,引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内。
进一步的,引光介质1的可见光透过率为85%至99.9%。其中优选的,引光介质1的可见光透过率为95%至99.9%。
进一步的,引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率3%。
进一步的,引光介质1的雾度小于或等于5%。其中优选的,引光介质1的雾度小于或等于2%。
本申请通过对引光介质1的折射率、可见光透过率和雾度的设定,使引光介质1与光波导介质层2具有接近的光学性能,从而能够大大提高光线入射光波导介质层2中的效率,避免光线损失。
在本申请的一个可选实施例中,引光介质1与光波导介质层2可为一体成型,或者引光介质1与光波导介质层2采用同种材料制成或者采用折射率、可将光透过率和雾度等光学性能相近似的材料制成,使得引光介质1和光波导介质层2具有相同或相当的光学性能,进而可将引光介质1与光波导介质层2作为同一介质,该种情况下,能获得最佳的光线入射效率。
在本申请的另一个可选实施例中,引光介质1由具有黏度的液体在光波导介质层2上固化形成。可采用但不限于透明光学胶OCA(英文全称为Optically Clear Adhesive)、液态透明光学胶LOCA(英文全称为Liquid OpticalClear Adhesive)或光学透明树脂OCR(英文全称为OpticalClear Resin)等。通过光(如UV等)或热等方式进行固化而形成引光介质1。其中,引光介质1的成型方式可以为:通过向安装在光波导介质层2的表面的预先设计的模具进行材料注入(如:采用挤压注入、点滴注入等操作);或在光波导介质层2的表面上预先涂覆材料,再通过压模、取模去除多余材料;或使用3D打印的方式在光波导介质层2上形成引光介质1;或使用涂覆、堆筑等方式也能在光波导介质层2上形成引光介质1。引光介质1的具体成型方式可以有多种选择或者组合,在此不做限定。
例如,可采用黏度为2500cps至4500cps的液态透明光学胶LOCA在光波导介质层2 上固化形成引光介质1。
需要说明的是,无论是引光介质1与光波导介质层2一体成型,还是将引光介质1通过固化的方式形成于光波导介质层2上的方式,均可认为是将引光介质1直接形成于光波导介质层2上,优选地,引光介质1与光波导介质层2之间可以既不存在其他层结构,也可以不需要在引光介质1与光波导介质层2之间采取额外粘接工艺步骤使两者相连,从而使得引光介质1与光波导介质层2之间的结构更加简单以及成型工艺更为简化,且光线由引光介质1进入光波导介质层2不会改变偏振状态。
进一步的,在光波导介质层2上形成引光介质1后,可在光波导介质层2整体的表面上设置遮盖件(图中未示出),通过遮盖件对光波导介质层2和引光介质1进行遮盖,从而起到保护以及美化外观的作用。
在本申请的一个可选实施例中,如图2至图4所示,光线入射结构还包括盖板4,盖板4具有相对的第一端和第二端,盖板4的第一端与光波导介质层2连接,盖板4的第二端向远离光波导介质层2的方向倾斜,引光介质1位于盖板4与光波导介质层2之间;入射面101位于盖板4的第二端与光波导介质层2之间,或入射面101位于靠近盖板4的第二端的位置与光波导介质层2之间。在引光介质1的形成过程中,可预先设置盖板4,再在盖板4与光波导介质层2之间形成引光介质1,通过盖板4对引光介质1起到一定的塑形作用,保证引光介质1的顺利成型。其中,盖板4的形状和尺寸可根据要形成的引光介质1的形状和尺寸设定。在本申请中对盖板4是否采用透明材料不做限定,优选盖板4采用非黑色材料。
本申请的一个具体实施例中,如图2所示,引光介质1的横截面为直角三角形,引光介质1的较长直角边所对应的位置与光波导介质层2的第一主面相接,引光介质1的较短直角边所对应的位置为引光介质1的入射面101,此时,引光介质1的入射面101与光波导介质层2的第一主面相垂直,在引光介质1的斜边上设置盖板4。其中,引光介质1的较长直角边与斜边之间的夹角为4°至10°,优选4°至7°,引光介质1的较短直角边的长度小于或等于4mm。在本实施例中,光波导介质层2的折射率可为1.51,可见光透过率(TL)可为91.5%;第一粘接层6为乙烯聚酸乙酯;引光介质1的材料选用折射率为1.51,可见光透过率(TL)为大于或等于91%的紫外固化LOCA(即:液态光学透明胶)。该引光介质1实现了将发光光源3发生的光线入射到光波导介质层2中,光线在光波导介质层2中持续传播,入射的光线在光波导介质层2内传播的过程中照射到反光部7上,并在反光部7处产生反射,从而实现发光、显示图案等效果。
优选的,引光介质1的材料的可见光透过率(TL)为99%。
本申请的一个具体实施例中,如图5所示,引光介质1的横截面为类三角形,引光介质1的入射面101为凹透镜面。在本实施例中,要保证引光介质1的折射率与光波导介质层2的折射率相同或相接近,优选引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内;引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于3%。
本申请的一个具体实施例中,如图6所示,引光介质1的横截面为类三角形,引光介质1的入射面101为凸透镜面。在本实施例中,要保证引光介质1的折射率与光波导介质层2的折射率相同或相接近,优选引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内;引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于3%。
当然,引光介质1的入射面101也可自由曲面,需要保证发光光源3所发射的各条光线汇聚的方向基本一致(即:各条光线分布在±2.5°的夹角范围内)。
本申请的一个具体实施例中,如图8所示,引光介质1的横截面为半椭圆形,引光介质1的直边所对应的位置与光波导介质层2的第一主面相接,引光介质1的入射面101为靠近引光介质1与光波导介质层2的第一主面相接的位置,在本实施例中,要保证引光介质1的折射率与光波导介质层2的折射率相同或相接近,优选引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内;引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于3%。
本申请的一个具体实施例中,如图9所示,引光介质1的横截面为直角梯形,引光介质1的较长底边所对应的位置与光波导介质层2的第一主面相接,引光介质1的入射面101为与两底边之间的夹角均为直角的腰所对应的平面,在本实施例中,要保证引光介质1的折射率与光波导介质层2的折射率相同或相接近,优选引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内;引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于3%。
进一步的,引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于5%。
本申请的一个具体实施例中,如图7所示,引光介质1的横截面为非直角三角形,引光介质1的第一条边(三条边中较长的边)所对应的位置与光波导介质层2的第一主面相接,引光介质1的第二条边(三条边中较短的边)所对应的位置为引光介质1的入射面101,此时,可通过调整发光光源3的角度,使发光光源3发射的光线尽可能垂直引光介质1的入射面101射入至引光介质1内。在本实施例中,要保证引光介质1的折射率与光波导介 质层2的折射率相同或相接近,优选引光介质1的折射率与光波导介质层2的折射率的差值在±0.05范围内;引光介质1的可见光透过率大于或等于光波导介质层2的可见光透过率,优选大于或等于3%。
本申请的光线入射结构的特点及优点至少包括:
一、该光线入射结构中,引光介质1固设于光波导介质层2上,能够大大提高光线的入射效率,避免光线损失,有效提升车内的照明和氛围效果。
二、该光线入射结构中,引光介质1与光波导介质层2具有相同或接近的光学性能,能够极大提高光线入射光波导介质层2中的效率。
三、该光线入射结构中,光波导介质层2的设置面(即:第一主面)既可为平面,也可为曲面,适用范围广。
四、该光线入射结构中,结构、工艺更加简单,占用区域小,节省空间,便于布置使用,适合工业化批量生产。
五、该光线入射结构可实现光线通过光波导介质层2的表面射入至光波导介质层2内,取代了将发光光源3发射的光线由光波导介质层2的端面或切面射入至光波导介质层2内的入射方式,在保证光线的入射效率的前提下,简化结构、减轻产品重量、节约成本、节能减排。
实施方式二
如图2、图3所示,本申请提供了一种车窗,该车窗包括光波导介质层2、外玻璃层5和上述的光线入射结构,光波导介质层2具有相对的第一主面和第二主面,光线入射结构设置于光波导介质层2的第一主面上,外玻璃层5与光波导介质层2的第二主面连接。
在本申请的一个可选实施例中,如图2、图3所示,车窗还包括第一粘接层6,第一粘接层6粘接于外玻璃层5与光波导介质层2的第二主面之间。
进一步的,如图2所示,反光部7位于第一粘接层6与光波导介质层2的第二主面之间,反光部7与第一粘接层6固定粘接。
进一步的,光波导介质层2和外玻璃层5为相同材质(即:光波导介质层2和外玻璃层5均采用玻璃),因此,本申请在成型后为两片式夹层结构,通过光线入射结构的设置,可通过该两片式夹层结构取代现有的三片式夹层结构(如图1所示),无需再通过玻璃的端面或切面实现光线的入射,能够免去第三层玻璃的设置,简化产品结构、降低产品重量。
实施方式三
本申请提供了一种车辆,该车辆具有上述的车窗。
实施方式四
参阅图10、图11与图15,图10示出了本申请一实施例的车窗面板的结构示意图,图15示出了图10所示结构的俯视图,图11示出了本申请另一实施例的车窗面板的结构示意图。本申请一实施例提供的一种车窗面板,车窗面板包括:光波导介质层2、引光介质1、以及发光光源3。可选地,光波导介质层2包括但不限于为光波导玻璃层。光波导介质层2设有相对的第一主面201与第二主面202。其中,第一主面201或第二主面202上设有光反射图层203,或者,第一主面201与第二主面202上各自均设有光反射图层203(如图11所示)。引光介质1包括相互平行设置的第一表面102与第二表面103,引光介质1通过第一表面102与第一主面201紧密相连,与第一表面102相连的第一主面201的连接部位平行于第一表面102。发光光源3例如为LED发光组件,位于引光介质1的一端,发光光源3的光线进入到引光介质1中,引光介质1用于将发光光源3的光线引入到光波导介质层2中。
需要说明的是,第一表面102与第一主面201“紧密相连”指的是:既可以是第一表面102与第一主面201之间没有其他层实现紧密“接触”相连,也可以是第一表面102与第一主面201之间通过其他层从而实现粘接或锁扣等紧密相连。
其中,光反射图层203可以是整体布设于第二主面202上,也可以以任意形式的图案存在,包括但不限于为多个三角形、多个水滴形、多个星形、多个四边形、多个圆形、多个椭圆形等等规则形状与不规则形状,其具体形状可以根据实际需求灵活调整与设计。
上述的车窗面板,由于引光介质1包括相互平行设置的第一表面102与第二表面103,引光介质1通过第一表面102与第一主面201紧密相连,与第一表面102相连的第一主面201的连接部位平行于第一表面102,这样发光光源3的光线进入到引光介质1中时,引光介质1能实现把发光光源3的光线入射到光波导介质层2中,从而光线在光波导介质层2中传播,传播的光线遇到事先制作的光反射图层203产生反射,光反射图层203发光,实现照明或氛围效果。如此,通过光反射图层203与引光介质1、光波导介质层2配合实现氛围或照明效果。此外,使得引光介质1的结构简化,加工难度降低,生产效率提高,在光波导介质层2的第一主面201上的安装稳定性好,发光光源3入射效率提高。
另外,使用组建引光介质1方式与相关技术中的第三片玻璃层端面(端部、切面)的进光方式相比,具有同等的入光效果。
此外,实现同等功能状态下,通过引光介质1辅助两片式夹层产品结构可取代相关技 术中的三片式夹层产品,减轻产品重量,减少资源利用,以及大大降低生产成本。
其次,光反射图层203在布置时可以根据实际需求灵活设置,既可以是布置在第一主面201上,又可以是布置在第二主面202上,还可以是在第一主面201与第二主面202上各自均设有光反射图层203,能使得光线反射到车内侧,均能实现照明或者氛围效果。
可选地,第一表面102与第二表面103各自包括但不限于设计为相互平行的平直面、曲面或弧形面或者其它规则形状与不规则形状的面,在此不进行限定,具体可以根据实际需求灵活调整与设置。
为了使得第一主面201的连接部位和第一表面102紧密相连,第一主面201的连接部位与第一表面102相互适应。具体而言,当第一表面102为平直面时,第一主面201的连接部位相应设为平直面;当第一表面102为弧形面时,第一主面201的连接部位相应设为弧形面;当第一表面102为曲面时,第一主面201的连接部位相应设为曲面。
请参阅图12与图13,图12与图13示出了本申请另外两个实施例的车窗面板的结构示意图,图12与图13的区别在于第四表面104的设置方式不同。在一个实施例中,引光介质1还包括相对设置的第三表面(也即实施方式一中的入射面101)与第四表面104。发光光源3与第三表面相邻设置,发光光源3的光线经过第三表面进入到引光介质1中。第三表面、第四表面104各自设置为平直面或弧形面或其它规则形状与不规则形状的面,具体可以根据实际需求灵活调整与设置,在此不进行限定。此外,第三表面与第四表面104两者可以相互平行设计,也可以无需相互平行设计,具体可以根据实际需求灵活调整与设置,在此不进行限定。在工作时,由于发光光源3与第三表面相邻设置,发光光源3发光时,产生的光线朝第三表面入射,进入到引光介质1中,由引光介质1引入到光波导介质层2中。
可选地,第四表面104既可以垂直于第一主面201(如图12所示),又可以与第一主面201呈夹角设置(如图13所示),该夹角包括但不限于为锐角或钝角。
请参阅图10,在一个实施例中,光波导介质层2的第一主面201和/或第二主面202设有光学隔离层和/或隔热膜层。如此,第一主面201和/或第二主面202上可以附加光学隔离层,如隔紫外、红外、减反射等镀膜层或化学涂层;以上可实现隔绝太阳光照射时的有害光波段,降低有害光对车载内饰及人员伤害。也可以附加隔热膜层,如LOW-E隔热膜层,如夏季时可有效隔绝车载外部热量传入车内,冬季时可有效保存车内热量。
请参阅图10,在一个实施例中,与第一表面102相连的第一主面201的连接部位设有透明区,透明区为连接部位未进行任何附加处理的第一主面201。如此,透明区需保证无其他附加功能膜层,如有类似以上附加功能膜层,该区域需进行清除处理,以保证引光介 质1与第一主面201直接接触。
请参阅图10或图11,图11示出了本申请另一实施例的车窗面板的结构示意图,相比于图10,图11所示结构中引光介质1直接与光波导介质层2相连,形成例如一体化结构,即通过一体化成型得到。当然,引光介质1与光波导介质层2各自分开制造并相互组装在一起。
其中,引光介质1既可以与光波导介质层2的制造材料相同,也可以不同,具体可以根据实际需求灵活调整与设置,在此不进行限定。
可选地,当该引光介质1与光波导介质层2材料的折射率、透过率属性相同时,光线入射的引光介质1与光波导介质层2二者在光传播面上可以理解成为同一介质,即很好实现了光线从引光介质1入射到光波导介质层2中。
请参阅图10或图11,在一个实施例中,当引光介质1与光波导介质层2各自分开制造并相互组装在一起时,引光介质1与光波导介质层2的第一主面201的型面一致(如都为平面或单弧面或交叉弧面组成的双曲面等),二次制作的引光介质1可通过模具成型(如热压成型或热重力成型)或冷成型等,使与光波导介质层2组建区域型面一致,然后将引光介质1与光波导介质层2的第一主面201相互连接在一起。
请参阅图10,在一个实施例中,当引光介质1与光波导介质层2各自分开制造并相互组装在一起时,也可以使用有一定黏度的液体105,该液体105可通过光或热进行固化,使引光介质1与光波导介质层2结合在一起。具体而言,该液体105可采用但不限于透明光学胶(OCA,英文全称为Optically Clear Adhesive)、液态透明光学胶(LOCA,英文全称为Liquid Optical Clear Adhesive)或光学透明树脂(OCR,英文全称为Optical Clear Resin)等。
可选地,该液体105材料折射率为1.45~1.65,优选1.48~1.55;该液体105材料的可见光透过率(TL)为90%~99.9%,优选97%~99.9%;该液体105材料的雾度≦5%,优选≦1%。
在一个具体实施例中,该液体105与引光介质1和光波导介质层2三者的折射率、透过率(TL)、雾度完全一致。如此,能使得光线从引光介质1较好地入射到光波导介质层2中。
在一个实施例中,引光介质1与光波导介质层2例如采用相同的玻璃材料或不同的玻璃材料,在此不进行限定。可选地,玻璃材料包括但不限于为无机玻璃或有机玻璃。
具体而言,引光介质1可选用与光波导介质层2相同的玻璃材料,例如直接通过平面材料切割,再通过模具热成型与光波导介质层2的连接部位以相同型面固定结合在一起所 得。如此,能使得光线从引光介质1较好地入射到光波导介质层2中。
在一个实施例中,引光介质1的折射率为1.45~1.65;和/或,引光介质1的光透过率为80%~99.9%;和/或,引光介质1的雾度≦5%。
具体而言,引光介质1的折射率为1.48~1.55;引光介质1的光透过率为85%~99.9%;引光介质1的雾度≦1%。
在一个实施例中,引光介质1为连接于光波导介质层2的周圈、一边、两边或三边上,或其他可组建任何区域。
请参阅图10与图15,在一个实施例中,引光介质1为长条形状或弧形条状。如此,引光介质1的外形单一,无需制作成楔形或特殊光学结构。
请参阅图14,在一个实施例中,将光波导介质层2的光线传播距离定义为b,引光介质1的第三表面与第四表面104的间距为a,引光介质1的第一表面102与光波导介质层2的第一主面201的间距为h;其中,b≈20a~30a,优选b≈22a~28a,更优选b≈24a~26a,a≈6h~10h,优选a≈7h~9h。如此,a和h未在该范围内进行尺寸设计,如设计偏小,入射光量将不足。如设计偏大,入射光量不会增加,将导致材料及空间浪费。此外,引光介质1与光波导玻璃窗相互组建后的整体结构中,间距a较小、间距h较小,占用区域较小,从而便于布置使用。
在一个具体实施例中,引光介质1的尺寸设计(间距a与间距h)与光波导介质层2需求光线传播的距离b三者之间关系满足于:h:a:b≈1:8:200,引光介质1该尺寸设计将使发光光源3发射的光线最大效率引入到光波导介质层2中。
如:可知光波导介质层2需求光线传播的距离b=600mm,则引光介质1的第三表面与第四表面104的间距a≈25mm,则引光介质1的第一表面102与第二表面103的间距h≈3mm。也即引光介质1的宽度为24mm,高度为3mm,该尺寸的引光介质1将使LED光源发射的光线最大效率引入到光波导介质层2中。
请参阅图10,在一个实施例中,车窗面板还包括外玻璃层5。第二主面202通过第一粘接层6与外玻璃层5相连。其中,外玻璃层5更加靠近于车外侧,光波导介质层2更加靠近于车内侧。当发光源发光时,在车外能观察到光反射图层203发光。
可选地,第一粘接层6包括但不限于为乙烯聚酸乙酯。
请参阅图16与图17,图16与图17分别示出了本申请另外两个实施例的车窗面板总成的结构示意图,相比于图10所示结构,在一个实施例中,一种车窗面板总成,车窗面板总成包括上述任一实施例的车窗面板,以及遮盖组件8,遮盖组件8用于罩设于引光介质1与发光光源3的外部。如此,引光介质1与发光光源3使用遮盖组件8进行遮蔽保护。
请参阅图16,可选地,遮盖组件8通过第二粘接层9粘接固定在光波导介质层2的第一主面201上。
请参阅图17,在另一个实施例中,遮盖组件8通过第二粘接层9一侧粘接固定在光波导介质层2的第一主面201上,另一侧粘接固定在引光介质1的第二表面103上,该设计可减少对光波导介质层2的第一主面201的占用,结构布置紧凑。
实施方式五
请参阅图10与图15,在一个实施例中,一种车辆,车辆包括上述任一实施例的车窗面板总成。
上述的车辆,由于引光介质1包括相互平行设置的第一表面102与第二表面103,引光介质1通过第一表面102与第一主面201紧密相连,与第一表面102相连的第一主面201的连接部位平行于第一表面102,这样发光光源3的光线进入到引光介质1中时,引光介质1能实现把发光光源3的光线入射到光波导介质层2中,从而光线在光波导介质层2中传播,传播的光线遇到事先制作的光反射图层203产生反射,光反射图层203发光,实现照明或氛围效果。如此,通过光反射图层203与引光介质1、光波导介质层2配合实现氛围或照明效果。此外,使得引光介质1的结构简化,加工难度降低,生产效率提高,在光波导介质层2的第一主面201上的安装稳定性好,发光光源3入射效率提高。
另外,使用组建引光介质1方式与相关技术中的第三片玻璃层端面(端部、切面)的进光方式相比,具有同等的入光效果。
此外,实现同等功能状态下,通过引光介质1辅助两片式夹层产品结构可取代相关技术中的三片式夹层产品,减轻产品重量,减少资源利用,以及大大降低生产成本。
以上所述仅为本申请示意性的具体实施方式,并非用以限定本申请的范围。任何本领域的技术人员,在不脱离本申请的构思和原则的前提下所作出的等同变化与修改,均应属于本申请保护的范围。

Claims (28)

  1. 一种光线入射结构,其用于将光线传导至光波导介质层内,所述光波导介质层至少具有供光线射入的第一主面,包括:
    引光介质,所述引光介质的至少部分位置固化形成于所述光波导介质层的第一主面上,以使至少部分所述引光介质为所述光波导介质层的一部分,所述引光介质具有供光线射入的至少一个入射面;
    发光光源,所述发光光源发射的光线经过所述入射面进入至所述引光介质内,所述光线经过所述引光介质的折射后由所述第一主面进入至所述光波导介质层内。
  2. 如权利要求1所述的光线入射结构,其中,所述引光介质为位于所述光波导介质层的第一主面上的凸起结构。
  3. 如权利要求2所述的光线入射结构,其中,所述第一主面为平面或曲面。
  4. 如权利要求2所述的光线入射结构,其中,所述光波导介质层具有与所述第一主面相对的第二主面,所述第二主面上设置有反光部,进入所述光波导介质层内的光线在所述反光部处发生反射。
  5. 如权利要求4所述的光线入射结构,其中,所述反光部呈预设的图案。
  6. 如权利要求1或2所述的光线入射结构,其中,所述入射面为平面或凸镜面或凹镜面。
  7. 如权利要求1或2所述的光线入射结构,其中,所述引光介质具有与所述光波导介质层相同或位于预设范围内的折射率。
  8. 如权利要求7所述的光线入射结构,其中,所述引光介质的可见光透过率大于或等于所述光波导介质层的可见光透过率。
  9. 如权利要求1或2所述的光线入射结构,其中,所述引光介质与所述光波导介质层一体成型。
  10. 如权利要求1或2所述的光线入射结构,其中,所述引光介质由具有黏度的液体在所述光波导介质层上固化形成。
  11. 如权利要求10所述的光线入射结构,其中,所述光线入射结构还包括盖板,所述盖板具有相对的第一端和第二端,所述盖板的第一端与所述光波导介质层连接,所述盖板的第二端向远离所述光波导介质层的方向倾斜,所述引光介质位于所述盖板与所述光波导介质层之间;
    所述入射面位于所述盖板的第二端与所述光波导介质层之间,或所述入射面位于靠近所述盖板的第二端的位置与所述光波导介质层之间。
  12. 如权利要求11所述的光线入射结构,其中,所述发光光源设置于所述光波导介质层上且靠近所述入射面的位置。
  13. 一种车窗,其中,包括光波导介质层、外玻璃层和权利要求1至12中任一项所述的光线入射结构,所述光波导介质层具有相对的第一主面和第二主面,所述光线入射结构设置于所述第一主面,所述外玻璃层与所述第二主面连接。
  14. 如权利要求13所述的车窗,其中,所述车窗还包括第一粘接层,所述第一粘接层粘接于所述外玻璃层与所述第二主面之间。
  15. 一种车窗面板,其中,所述车窗面板包括:
    光波导介质层,所述光波导介质层设有相对的第一主面与第二主面,所述第一主面和/或所述第二主面上设有光反射图层;
    引光介质,所述引光介质包括相互平行设置的第一表面与第二表面,所述引光介质通过所述第一表面与所述第一主面紧密相连,与所述第一表面相连的所述第一主面的连接部位平行于所述第一表面;
    发光光源,所述发光光源位于所述引光介质的一端,所述发光光源的光线进入到所述引光介质中,所述引光介质用于将所述发光光源的光线引入到所述光波导介质层中。
  16. 如权利要求15所述的车窗面板,其中,所述引光介质还包括相对设置的第三表面与第四表面,所述发光光源与所述第三表面相邻设置,所述发光光源的光线经过所述第三表面进入到所述引光介质中;所述第三表面、所述第四表面各自设置为平直面或弧形面。
  17. 如权利要求15所述的车窗面板,其中,所述光波导介质层的第一主面和/或第二主面设有光学隔离层和/或隔热膜层。
  18. 如权利要求15至17任一项所述的车窗面板,其中,与所述第一表面相连的所述第一主面的连接部位设有透明区,所述透明区为所述连接部位未进行任何附加处理的第一主面。
  19. 如权利要求15所述的车窗面板,其中,所述引光介质与所述光波导介质层一体成型;或者,所述引光介质与所述光波导介质层各自分开制造并相互组装在一起。
  20. 如权利要求15或19所述的车窗面板,其中,所述引光介质通过可固化的液体与所述光波导介质层固定相连;所述液体为透明光学胶或光学透明树脂;所述液体的材料折射率为1.45~1.65;所述液体材料的可见光透过率为90%~99.9%;所述液体材料的雾度≦5%。
  21. 如权利要求15所述的车窗面板,其中,所述引光介质与所述光波导介质层采用相同玻璃材料;和/或,所述玻璃材料为无机玻璃或有机玻璃。
  22. 如权利要求15所述的车窗面板,其中,所述引光介质的折射率为1.45~1.65;所述引光介质的光透过率为80%~99.9%;所述引光介质的雾度≦5%。
  23. 如权利要求15所述的车窗面板,其中,所述引光介质为连接于所述光波导介质层的至少一边上;和/或,所述引光介质为长条形状或弧形条状。
  24. 如权利要求15所述的车窗面板,其中,将所述光波导介质层的光线传播距离定义为b,所述引光介质的第三表面与第四表面的间距为a,所述引光介质的第一表面与所述光波导介质层第一主面的间距为h;其中,b=20a~30a,a=6h~10h。
  25. 如权利要求24所述的车窗面板,其中,h:a:b=1:8:200。
  26. 如权利要求15所述的车窗面板,其中,所述车窗面板还包括外玻璃层;所述第二主面通过第一粘接层与所述外玻璃层相连。
  27. 一种车窗面板总成,其中,所述车窗面板总成包括如权利要求15至26任一项所述的车窗面板,以及遮盖组件,所述遮盖组件用于罩设于所述引光介质与所述发光光源的外部。
  28. 一种车辆,其中,所述车辆包括如权利要求13至14中任一项所述的车窗或者15至26任一项所述的车窗面板。
PCT/CN2023/136699 2022-12-07 2023-12-06 光线入射结构、车窗、车窗面板、车窗面板总成及车辆 WO2024120425A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211561724.4 2022-12-07
CN202211561724.4A CN115823532A (zh) 2022-12-07 2022-12-07 一种光线入射结构、车窗及车辆
CN202310025008.2 2023-01-09
CN202310025008.2A CN116123485B (zh) 2023-01-09 车窗面板、车窗面板总成及车辆

Publications (1)

Publication Number Publication Date
WO2024120425A1 true WO2024120425A1 (zh) 2024-06-13

Family

ID=91378586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136699 WO2024120425A1 (zh) 2022-12-07 2023-12-06 光线入射结构、车窗、车窗面板、车窗面板总成及车辆

Country Status (1)

Country Link
WO (1) WO2024120425A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174934A (ja) * 1993-12-21 1995-07-14 Ricoh Co Ltd プリズム結合装置及びその製造方法
US20140226361A1 (en) * 2012-02-14 2014-08-14 Sergiy Victorovich Vasylyev Face-lit waveguide illumination systems
CN211454018U (zh) * 2020-03-24 2020-09-08 杭州矽能新材料有限公司 引光条及带有引光条的导光装置
CN112677880A (zh) * 2020-12-18 2021-04-20 福耀玻璃工业集团股份有限公司 氛围窗和交通工具
CN217443725U (zh) * 2022-04-20 2022-09-16 深圳光峰科技股份有限公司 光机系统
CN115823532A (zh) * 2022-12-07 2023-03-21 福耀玻璃工业集团股份有限公司 一种光线入射结构、车窗及车辆
CN116123485A (zh) * 2023-01-09 2023-05-16 福耀玻璃工业集团股份有限公司 车窗面板、车窗面板总成及车辆
CN117087396A (zh) * 2023-08-28 2023-11-21 福耀玻璃工业集团股份有限公司 车窗总成、车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174934A (ja) * 1993-12-21 1995-07-14 Ricoh Co Ltd プリズム結合装置及びその製造方法
US20140226361A1 (en) * 2012-02-14 2014-08-14 Sergiy Victorovich Vasylyev Face-lit waveguide illumination systems
CN211454018U (zh) * 2020-03-24 2020-09-08 杭州矽能新材料有限公司 引光条及带有引光条的导光装置
CN112677880A (zh) * 2020-12-18 2021-04-20 福耀玻璃工业集团股份有限公司 氛围窗和交通工具
CN217443725U (zh) * 2022-04-20 2022-09-16 深圳光峰科技股份有限公司 光机系统
CN115823532A (zh) * 2022-12-07 2023-03-21 福耀玻璃工业集团股份有限公司 一种光线入射结构、车窗及车辆
CN116123485A (zh) * 2023-01-09 2023-05-16 福耀玻璃工业集团股份有限公司 车窗面板、车窗面板总成及车辆
CN117087396A (zh) * 2023-08-28 2023-11-21 福耀玻璃工业集团股份有限公司 车窗总成、车辆

Similar Documents

Publication Publication Date Title
JP4142016B2 (ja) 導光板およびそれを備えた照明装置、平面光源装置ならびに表示装置
JP4170677B2 (ja) 光源装置及びディスプレイ
US10921506B2 (en) Light guide plate, method of fabricating light guide plate, backlight module, display device
CN105501032B (zh) 一种可发光的夹层玻璃
CN110133793B (zh) 一种导光膜及显示装置
KR20130108455A (ko) 광학 복합 시트
US6545827B1 (en) Optical sheet
JP2020500398A (ja) 光偏向デバイス、採光デバイス、および使用
CN104977648B (zh) 导光板、背光模组及显示装置
CN110308511B (zh) 一种导光结构、侧入式背光模组及显示设备
KR20190108622A (ko) 광학 조작 피처들을 포함하는 도광 어셈블리들
WO2024120425A1 (zh) 光线入射结构、车窗、车窗面板、车窗面板总成及车辆
CN115823532A (zh) 一种光线入射结构、车窗及车辆
KR102108792B1 (ko) 필터링패널 및 이를 포함하는 태양광 발전모듈
CN109212656B (zh) 导光组件、背光模组及显示装置
US10018769B2 (en) Light guide plate and method of producing the same
CN116123485B (zh) 车窗面板、车窗面板总成及车辆
US20190107662A1 (en) Backlight units comprising a thin light guide plate and a light coupling unit
CN116123485A (zh) 车窗面板、车窗面板总成及车辆
CN112213805A (zh) 一种齿形光波导单元阵列透镜
CN112444908A (zh) 导光结构及其制备方法、光源和显示装置
KR101118989B1 (ko) 도광판 및 그 제조방법
CN105467504A (zh) 直下式背光模组及显示装置
CN221303615U (zh) 背光模组以及显示装置
WO2023153306A1 (ja) 車両用合わせガラス