WO2024119315A1 - 驱动器和终端设备 - Google Patents
驱动器和终端设备 Download PDFInfo
- Publication number
- WO2024119315A1 WO2024119315A1 PCT/CN2022/136616 CN2022136616W WO2024119315A1 WO 2024119315 A1 WO2024119315 A1 WO 2024119315A1 CN 2022136616 W CN2022136616 W CN 2022136616W WO 2024119315 A1 WO2024119315 A1 WO 2024119315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- cathode
- conductive
- mesh
- meshes
- Prior art date
Links
- 229920001746 electroactive polymer Polymers 0.000 claims abstract description 191
- 239000004800 polyvinyl chloride Substances 0.000 claims description 28
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 21
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000000499 gel Substances 0.000 description 20
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/06—Drive circuits; Control arrangements or methods
Definitions
- the present application relates to the field of terminal technology, and in particular to a driver and a terminal device.
- Electroactive polymers have the advantages of simple structure, high energy density, light weight, no noise, flexibility, etc. They can produce deformation after being electrically stimulated and convert electrical energy into mechanical energy. Therefore, electroactive polymers can be used as energy converters, such as actuators.
- the present application provides a driver and a terminal device, which can fully utilize the mesh in the anode to improve the actual deformation rate of the first electroactive polymer and the second electroactive polymer, thereby improving the deformation rate of the driver.
- the present application provides a driver, the driver comprising a driving unit, the driving unit comprising a first cathode, a first electroactive polymer, an anode, a second electroactive polymer, and a second cathode stacked in sequence.
- the anode comprises a first anode, a second anode, and a third anode stacked in sequence and electrically connected;
- the first anode and the third anode are conductive gauze, the conductive gauze comprising a plurality of meshes;
- the second anode is a non-porous conductive plate.
- the mesh of the first anode When charging the first cathode, the anode, and the second cathode, the mesh of the first anode carries a positive charge, and the first electroactive polymer carries a negative charge near the anode. Therefore, the mesh of the first anode and the first electroactive polymer attract each other, and the first electroactive polymer creeps along the mesh surface of the first anode and drills into the mesh of the first anode.
- the mesh of the third anode carries a positive charge
- the second electroactive polymer carries a negative charge near the anode. Therefore, the mesh of the third anode and the second electroactive polymer attract each other, and the second electroactive polymer creeps along the mesh surface of the third anode and drills into the mesh of the third anode.
- the anode since the anode includes not only the first anode and the third anode, but also the second anode disposed between the first anode and the third anode, and the positive charge carried by the second anode is electrically opposite to the negative charge enrichment layers of the first electroactive polymer and the second electroactive polymer on both sides thereof, the second anode and the first electroactive polymer attract each other at the mesh position of the first anode, and the first electroactive polymer continuously gathers at the second anode (or the mesh of the first anode) and drills into the mesh of the first anode.
- the second anode and the second electroactive polymer attract each other, and the second electroactive polymer continuously gathers at the second anode (or the mesh of the third anode) and drills into the mesh of the third anode.
- the embodiment of the present application can utilize the second anode to fully attract the first electroactive polymer and make the first electroactive polymer gather at the mesh of the first anode, and fully attract the second electroactive polymer to gather at the mesh of the third anode, so as to fully fill the mesh of the first anode and the third anode, thereby improving the actual deformation rate of the first electroactive polymer and the second electroactive polymer, thereby improving the deformation rate of the driver.
- the first anode includes a plurality of first conductive meshes arranged at intervals and a plurality of second conductive meshes arranged at intervals, and the plurality of first conductive meshes and the plurality of second conductive meshes are intertwined to form a mesh.
- the third anode includes a plurality of third conductive meshes arranged at intervals and a plurality of fourth conductive meshes arranged at intervals, and the plurality of third conductive meshes and the plurality of fourth conductive meshes are intertwined to form a mesh.
- the first electroactive polymer can fully fill the mesh formed by the first conductive mesh and the second conductive mesh; since the second anode has opposite electrical properties to the second electroactive polymer, the second electroactive polymer can fully fill the mesh formed by the third conductive mesh and the fourth conductive mesh.
- the first anode and the third anode have the same shape and size. In this way, the positive projection of a first conductive mesh of any first anode on the first cathode coincides with the positive projection of a third conductive mesh of the third anode on the first cathode. The positive projection of a second conductive mesh of any first anode on the first cathode coincides with the positive projection of a fourth conductive mesh of the third anode on the first cathode.
- the orthographic projections of the plurality of first conductive meshes on the first cathode are staggered with the orthographic projections of the plurality of third conductive meshes on the first cathode.
- the orthographic projections of the plurality of second conductive meshes on the first cathode are staggered with the orthographic projections of the plurality of fourth conductive meshes on the first cathode.
- the first electroactive polymer and the second electroactive polymer include polyvinyl chloride gel; and/or, the materials of the first anode and the third anode include stainless steel or copper-nickel alloy; and/or, the materials of the second anode, the first cathode, and the second cathode include aluminum foil.
- the materials of the above structure can also be other materials, which are not limited in this application.
- the mesh number range of the first anode and the third anode is 50 to 200 meshes, that is, in the first anode and the third anode, there are 50 to 200 mesh holes within one inch*one inch; and/or, along the direction from the first cathode to the anode, the thickness range of the first anode and the third anode is 50 ⁇ m to 300 ⁇ m; and/or, along the direction from the first cathode to the anode, the thickness range of the second anode is less than or equal to 30 ⁇ m.
- the mesh number range of the first anode and the third anode, and the thickness range of the first anode, the second anode, and the third anode may be other, and this application does not limit them.
- there are multiple drive units and multiple drive units are stacked in the direction from the first cathode to the anode, thereby increasing the deformation displacement of the driver. Because the first cathode and the second cathode of all drive units are negatively charged under the action of the electric field, the second cathode of any drive unit can be reused as the first cathode of the adjacent drive unit stacked with it.
- the present application provides a driver, which includes a driving unit, and the driving unit includes a first cathode, a first electroactive polymer, an anode, a second electroactive polymer, and a second cathode that are stacked in sequence.
- the driving unit includes a first cathode, a first electroactive polymer, an anode, a second electroactive polymer, and a second cathode that are stacked in sequence.
- the anode includes a first anode and a second anode that are stacked in sequence and electrically connected.
- the first anode includes a plurality of first conductive meshes that are spaced apart and a plurality of second conductive meshes that are spaced apart, and the plurality of first conductive meshes and the plurality of second conductive meshes are intertwined to form a mesh;
- the second anode includes a plurality of third conductive meshes that are spaced apart and a plurality of fourth conductive meshes that are spaced apart, and the plurality of third conductive meshes and the plurality of fourth conductive meshes are intertwined to form a mesh.
- the orthographic projections of the plurality of first conductive meshes on the first cathode are staggered with the orthographic projections of the plurality of third conductive meshes on the first cathode; the orthographic projections of the second conductive meshes on the first cathode are staggered with the orthographic projections of the plurality of fourth conductive meshes on the first cathode.
- the mesh of the first anode When the control circuit is used to charge the first cathode, the anode, and the second cathode, the mesh of the first anode carries a positive charge, and the first electroactive polymer carries a negative charge near the first anode. Therefore, the mesh of the first anode and the first electroactive polymer attract each other, and the first electroactive polymer creeps along the mesh surface of the first anode and drills into the mesh of the first anode. Similarly, the mesh of the second anode carries a positive charge, and the second electroactive polymer carries a negative charge near the second anode. Therefore, the mesh of the second anode and the second electroactive polymer attract each other, and the second electroactive polymer creeps along the mesh surface of the second anode and drills into the mesh of the second anode.
- the positive projections of the multiple first conductive meshes on the first cathode are staggered with the positive projections of the multiple third conductive meshes on the first cathode.
- the positive projections of the second conductive meshes on the first cathode are staggered with the positive projections of the multiple fourth conductive meshes on the first cathode.
- the second anode and the first electroactive polymer attract each other, and the first electroactive polymer continuously gathers at the second anode (that is, the mesh of the first anode) and drills into the mesh of the first anode.
- the first anode and the second electroactive polymer attract each other, and the second electroactive polymer continuously gathers at the first anode (that is, the mesh of the second anode) and drills into the mesh of the first anode.
- the first electroactive polymer and the second electroactive polymer repel each other at the mesh of the anode, and the mesh of the anode is not fully filled.
- the second anode can be used to attract the first electroactive polymer, prompting the first electroactive polymer to drill into the mesh of the first anode; the first anode can be used to attract the second electroactive polymer, prompting the second electroactive polymer to drill into the mesh of the second anode, thereby increasing the actual deformation rate of the first electroactive polymer and the second electroactive polymer.
- the first conductive meshes, the third conductive meshes, the second conductive meshes, and the fourth conductive meshes are arranged alternately in sequence along the direction of any first conductive mesh pointing to the first conductive mesh adjacent to it, or along the direction of any second conductive mesh pointing to the second conductive mesh adjacent to it.
- the first electroactive polymer and the second electroactive polymer creep along the nearby surfaces of the first anode and the second anode, respectively, and drill into the meshes of the first anode and the second anode, respectively.
- the first electroactive polymer drills into the gap between the third conductive mesh and the fourth conductive mesh the first conductive mesh and the second conductive mesh between the third conductive mesh and the fourth conductive mesh both promote the first electroactive polymer to further gather in the mesh between the third conductive mesh and the fourth conductive mesh.
- the third conductive mesh and the fourth conductive mesh between the first conductive mesh and the second conductive mesh both promote the second electroactive polymer to further gather in the mesh between the first conductive mesh and the second conductive mesh.
- the first electroactive polymer and the second electroactive polymer repel each other at the mesh of the anode and do not fully fill the mesh of the anode.
- the embodiment of the present application can improve the actual deformation rate of the first electroactive polymer and the second electroactive polymer.
- the thickness of the junction of the first conductive mesh and the second conductive mesh is the same as that of the first conductive mesh and the second conductive mesh.
- the thickness of the junction of the third conductive mesh and the fourth conductive mesh is the same as that of the third conductive mesh and the fourth conductive mesh. That is, the first conductive mesh and the second conductive mesh are integrated and interwoven into a mesh, and the third conductive mesh and the fourth conductive mesh are integrated and interwoven into a mesh.
- first anode and the second anode have the same shape and size.
- first anode and the second anode may also have different shapes and sizes, which is not limited in the present application.
- the orthographic projection of the center of the first conductive mesh on the first cathode coincides with the center of the line connecting the orthographic projections of two adjacent third conductive meshes on the first cathode.
- the orthographic projection of the center of the second conductive mesh on the first cathode coincides with the center of the line connecting the orthographic projections of two adjacent fourth conductive meshes on the first cathode.
- the second anode can be used to attract the first electroactive polymer to the mesh of the first anode to the maximum extent and gather; at the position where the mesh of the second anode and the projection of the first anode on the first cathode coincide, the first anode can be used to attract the second electroactive polymer to the mesh of the second anode to the maximum extent and gather.
- the first electroactive polymer and the second electroactive polymer include polyvinyl chloride gel; and/or, the material of the anode includes stainless steel or copper-nickel alloy; and/or, the material of the first cathode and the second cathode includes aluminum foil.
- the material of the above structure can also be other materials, which is not limited in this application.
- the mesh number range of the first anode and the second anode is 50 to 200 meshes, that is, in the first anode and the second anode, there are 50 to 200 mesh holes within every inch*one inch; and/or, along the direction from the first cathode to the anode, the thickness range of the first anode and the second anode is 50 ⁇ m to 300 ⁇ m.
- the mesh number range of the first anode and the third anode, and the thickness range of the first anode, the second anode, and the third anode may be other, and this application does not limit them.
- there are multiple drive units and multiple drive units are stacked in the direction from the first cathode to the anode, thereby increasing the deformation displacement of the driver. Because the first cathode and the second cathode of all drive units are negatively charged under the action of the electric field, the second cathode of any drive unit can be reused as the first cathode of the adjacent drive unit stacked therewith.
- the present application provides a terminal device, comprising a control circuit and a driver of the first aspect or the second aspect; the control circuit is used to supply power to a first cathode, a second cathode, and an anode of the driver when the driver is working.
- the implementation of the third aspect corresponds to any one of the implementations of the first aspect or the second aspect.
- the technical effects corresponding to the implementation of the third aspect can be referred to the technical effects corresponding to the first aspect, the second aspect, and any one of the implementations of the first aspect and the second aspect, which will not be repeated here.
- FIG. 1a is a top view of a driving unit provided in the related art
- FIG1b is a cross-sectional view taken along the line A1-A2 in FIG1a;
- FIG1c is a schematic diagram of a driving unit in a charging state provided by the related art.
- FIG2a is a top view of a driving unit provided in an embodiment of the present application.
- Fig. 2b is a cross-sectional view taken along the line A1-A2 in Fig. 2a;
- FIG2c is a schematic diagram of a driving unit in a charging state provided by an embodiment of the present application.
- FIG3a is a top view of another driving unit provided in an embodiment of the present application.
- Fig. 3b is a cross-sectional view taken along the line A1-A2 in Fig. 3a;
- FIG3c is a schematic diagram of another driving unit in a charging state provided by an embodiment of the present application.
- FIG4 is a schematic diagram of the structure of a driving unit provided in an embodiment of the present application.
- FIG5 is a schematic diagram of the structure of a driver provided in an embodiment of the present application.
- FIG6 is a top view of another driving unit provided in an embodiment of the present application.
- FIG7a is a top view of another driving unit provided in an embodiment of the present application.
- FIG7b is a cross-sectional view taken along line B1-B2 in FIG7a;
- FIG7c is a schematic diagram of another driving unit in a charging state provided by an embodiment of the present application.
- FIG8a is a schematic structural diagram of another driving unit provided in an embodiment of the present application.
- FIG8b is a schematic diagram of another driving unit in a charging state provided by an embodiment of the present application.
- FIG9 is a schematic diagram of the structure of another driving unit provided in an embodiment of the present application.
- FIG. 10 is a schematic diagram of the structure of a driver provided in an embodiment of the present application.
- 10-driving unit 11-first cathode; 12-first electroactive polymer; 13-anode; 131-first anode; 1311-first conductive mesh; 1312-second conductive mesh; 132-second anode; 133-third anode; 1331-third conductive mesh; 1332-fourth conductive mesh; 14-second electroactive polymer; 15-second cathode; 21-first cathode; 22-first electroactive polymer; 23-anode; 231-first anode; 2311-first conductive mesh; 2312-second conductive mesh; 232-second anode; 2321-third conductive mesh; 2322-fourth conductive mesh; 24-second electroactive polymer; 25-second cathode.
- a and/or B in this article is merely a description of the association relationship of associated objects, indicating that three relationships may exist.
- a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
- first and second in the description and claims of the embodiments of the present application are used to distinguish different objects rather than to describe a specific order of objects.
- a first target object and a second target object are used to distinguish different target objects rather than to describe a specific order of target objects.
- words such as “exemplary” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific way.
- multiple refers to two or more than two.
- multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
- the embodiment of the present application provides a terminal device, which can be a device containing electroactive polymers such as smart bionics, flexible robots, aerospace, smart medical devices, wearable devices, etc.
- the terminal can also be other devices, and the embodiment of the present application does not limit the specific form of the terminal device.
- the electroactive polymer used in the actuator has the advantages of high strain, good flexibility, lightness, and no noise.
- the electroactive polymer can be polyvinyl chloride (PVC) gel, and the driver prepared from it has a deformation rate, mechanical strength and response speed comparable to human muscles, and the driving voltage is generally lower than 400V, which can be used to make artificial muscles.
- PVC polyvinyl chloride
- the driving voltage is generally lower than 400V, which can be used to make artificial muscles.
- the electroactive polymer can undergo elastic deformation to achieve the contraction and relaxation of artificial muscles.
- the terminal device may also include a control circuit, which can be used to charge and discharge the first cathode, the second cathode, and the anode to cause the driver to deform.
- a control circuit which can be used to charge and discharge the first cathode, the second cathode, and the anode to cause the driver to deform.
- the control circuit can be electrically connected to the driver through a switch, as shown in FIG1b , when the control circuit is not needed to charge the first cathode 11, the second cathode 15, and the anode 13 of the driver, the switch can be disconnected. When the control circuit is needed to charge the first cathode 11, the second cathode 15, and the anode 13 of the driver, the switch can be turned on.
- the driver may include at least one driving unit, and the driver made of laminated PVC gel is the main form of the driver.
- the driving unit 10 includes a first cathode 11, a first electroactive polymer 12, an anode 13, a second electroactive polymer 14, and a second cathode 15, which are sequentially stacked.
- the first cathode 11 and the second cathode 15 are in a planar shape;
- the anode 13 is in a mesh shape, and the anode 13 includes a plurality of mesh wires, and the plurality of mesh wires are interwoven into a mesh;
- the first electroactive polymer 12 and the second electroactive polymer 14 can be PVC gel.
- the plasticizer in the first electroactive polymer 12 and the second electroactive polymer 14 can carry the negative charge from the first cathode 11 and the second cathode 15, respectively, and gather on the first electroactive polymer 12 and the second electroactive polymer 14 near the anode 13 to form a negative charge enrichment layer.
- the first electroactive polymer 12 and the second electroactive polymer near the anode 13 creep along the mesh surface of the anode 13, and partially drill into the mesh gap, thereby achieving compression of the drive unit 10 in the thickness direction.
- the first cathode 11 When the first cathode 11, the anode 13, and the second cathode 15 are stopped from charging (or de-charging), due to the self-resilience of the first electroactive polymer 12 and the second electroactive polymer, the first electroactive polymer 12 and the second electroactive polymer return to their original form, and the drive unit 10 also returns to its initial thickness. In this way, through cyclic charging and discharging, the reciprocating deformation of the drive unit 10 in the thickness direction can be achieved.
- the thickness direction of the driving unit 10 can be the direction from the first cathode 11 to the anode 13, and the thickness of any structure mentioned below is the thickness of the structure in the thickness direction.
- the first electroactive polymer 12 and the second electroactive polymer 14 can also be other materials besides PVC gel, as long as their working principles are the same as when the first electroactive polymer 12 and the second electroactive polymer 14 are PVC gel.
- the following description is based on the example of the first electroactive polymer 12 and the second electroactive polymer 14 being PVC gel.
- an embodiment of the present application provides a driver, which improves the structure of the anode 13 so as to reduce the repulsive force between the first electroactive polymer 12 and the second electroactive polymer 14 at the mesh of the anode 13 under the action of the electric field.
- the driver includes a driving unit 10, which includes a first cathode 11, a first electroactive polymer 12, an anode 13, a second electroactive polymer 14, and a second cathode 15 stacked in sequence.
- the anode 13 includes a first anode 131, a second anode 132, and a third anode 133 stacked in sequence and electrically connected.
- the first anode 131 and the third anode 133 are conductive gauze, the conductive gauze includes a plurality of meshes, and the second anode 132 is a non-porous conductive plate.
- the meshes of the first anode 131 and the third anode 133 may be formed by interweaving a plurality of mesh wires.
- the first anode 131 includes a plurality of first conductive meshes 1311 and a plurality of second conductive meshes 1312 arranged at intervals, and the plurality of first conductive meshes 1311 and the plurality of second conductive meshes 1312 are intertwined to form a mesh.
- the third anode 133 includes a plurality of third conductive meshes 1331 and a plurality of fourth conductive meshes 1332 arranged at intervals, and the plurality of third conductive meshes 1331 and the plurality of fourth conductive meshes 1332 are intertwined to form a mesh.
- the thickness of the first conductive mesh 1311 may be the same as or different from the thickness of the second conductive mesh 1312.
- the thickness of the third conductive mesh 1331 may be the same as or different from the thickness of the fourth conductive mesh 1332.
- the following description is based on the example that the thickness of the first conductive mesh 1311 is the same as the thickness of the second conductive mesh 1312, and the thickness of the third conductive mesh 1331 is the same as the thickness of the fourth conductive mesh 1332.
- the embodiments of the present application do not limit the interweaving manner of the multiple first conductive meshes 1311 and the multiple second conductive meshes 1312 of the first anode 131 , and the interweaving manner of the multiple third conductive meshes 1331 and the multiple fourth conductive meshes 1332 of the third anode 133 .
- the plurality of first conductive meshes 1311 and the plurality of second conductive meshes 1312 may be interwoven into a mesh by using flat knots, oblique knots, or integrated knots.
- the plurality of third conductive meshes 1331 and the plurality of fourth conductive meshes 1332 may be interwoven into a mesh by using flat knots, oblique knots, or integrated knots.
- other methods may also be used to interweave the mesh, which is not limited in the present embodiment of the application.
- a plurality of first conductive meshes 1311 and a plurality of second conductive meshes 1312 are intertwined to form a mesh using flat knots.
- the thickness of the intersection of the first conductive mesh 1311 and the second conductive mesh 1312 is the sum of the thickness of the first conductive mesh 1311 and the second conductive mesh 1312.
- the thickness of the intersection of the first conductive mesh 1311 and the second conductive mesh 1312 may be twice the thickness of the first conductive mesh 1311 or twice the thickness of the second conductive mesh 1312.
- a plurality of third conductive meshes 1331 and a plurality of fourth conductive meshes 1332 are interwoven into a mesh by flat knots.
- the thickness of the junction of the third conductive mesh 1331 and the fourth conductive mesh 1332 is the sum of the thickness of the third conductive mesh 1331 and the fourth conductive mesh 1332.
- the thickness of the junction of the third conductive mesh 1331 and the fourth conductive mesh 1332 may be twice the thickness of the third conductive mesh 1331 or twice the thickness of the fourth conductive mesh 1332.
- a plurality of first conductive meshes 1311 and a plurality of second conductive meshes 1312 are integrated and interwoven into a mesh.
- the thickness of the intersection of the first conductive meshes 1311 and the second conductive meshes 1312 is the same as the thickness of the first conductive meshes 1311 and the thickness of the second conductive meshes 1312.
- a plurality of third conductive meshes 1331 and a plurality of fourth conductive meshes 1332 are integrated and interwoven into a mesh.
- the thickness of the intersection of the third conductive mesh 1331 and the fourth conductive mesh 1332 is the same as the thickness of the third conductive mesh 1331 and the thickness of the fourth conductive mesh 1332.
- the control circuit of the terminal device can supply power to the first cathode 11, the second cathode 15, and the anode 13 to meet the charging and discharging conditions when the driver is working.
- the first anode 131 , the second anode 132 , and the third anode 133 of the anode 13 are electrically connected, when the control circuit charges the anode 13 , the first anode 131 , the second anode 132 , and the third anode 133 are all positively charged.
- the second anode 132 is a non-porous conductive plate, that is, the second anode 132 may be in the shape of a flat plate, and the surface of the second anode 132 is sealed and has no mesh.
- the working principle of the driving unit 10 can be: when the control circuit is used to charge the first cathode 11, the anode 13, and the second cathode 15, the mesh of the first anode 131 carries a positive charge, and the first electroactive polymer 12 carries a negative charge on the side close to the anode 13, therefore, the mesh of the first anode 131 and the first electroactive polymer 12 attract each other, the first electroactive polymer 12 creeps along the mesh surface of the first anode 131, and drills into the mesh of the first anode 131.
- the mesh of the third anode 133 carries a positive charge
- the second electroactive polymer 14 carries a negative charge on the side close to the anode 13 Therefore, the mesh of the third anode 133 and the second electroactive polymer 14 attract each other, the second electroactive polymer 14 creeps along the mesh surface of the third anode 133, and drills into the mesh of the third anode 133.
- the anode 13 includes, in addition to the first anode 131 and the third anode 132, the second anode 132 disposed between the first anode 131 and the third anode 133, and the positive charge carried by the second anode 132 is electrically opposite to the negative charge enrichment layers of the first electroactive polymer 12 and the second electroactive polymer 14 on both sides thereof, the second anode 132 and the first electroactive polymer 12 attract each other at the mesh position of the first anode 131, and the first electroactive polymer 12 continuously gathers at the second anode 132 (or the mesh of the first anode) and drills into the mesh of the first anode 131.
- the second anode 132 and the second electroactive polymer 14 attract each other, and the second electroactive polymer 14 continuously gathers at the second anode 132 (or the mesh of the third anode) and drills into the mesh of the third anode 133.
- the embodiment of the present application can utilize the second anode 132 to fully attract the first electroactive polymer 12, and make the first electroactive polymer 12 gather at the mesh of the first anode 131, and fully attract the second electroactive polymer 14 to gather at the mesh of the third anode 133, so as to fully fill the mesh of the first anode 131 and the third anode 133, thereby improving the actual deformation rate of the first electroactive polymer 12 and the second electroactive polymer 14, thereby improving the deformation rate of the driver.
- the embodiments of the present application do not limit the materials of the first cathode 11, the first electroactive polymer 12, the anode 13, the second electroactive polymer 14, and the second cathode 15. As long as the first cathode 11, the anode 13, and the second cathode 13 are conductive, the first electroactive polymer 12 and the second electroactive polymer 14 can gather toward the anode 13 under the action of the electric field.
- the materials of the first cathode 11, the second cathode 15, and the second anode 132 may be aluminum foil, etc.
- the materials of the first anode 131 and the third anode 133 may be stainless steel, copper-nickel alloy, etc.
- the materials of the first electroactive polymer 12 and the second electroactive polymer 14 may be PVC gel.
- the preparation process of PVC gel can be: dibutyl phthalate (DBA) and tetrahydrofuran (THF) are mixed, and the mixture is stirred at a speed of 500 rpm/min for about 1 minute (min) by a magnetic stirrer, and then PVC powder is slowly added to the mixture, wherein the mass ratio of DBA to PVC powder is 4:1, and the total mass ratio of DBA and PVC powder to the total mass ratio of THF is 1:2.25, and stirring is continued for about 24 hours (h).
- DBA dibutyl phthalate
- THF tetrahydrofuran
- the mixture is prepared into a film of a certain thickness (for example, 200 ⁇ m) by a film coating instrument, and then cut into a size suitable for the drive unit 10 (for example, a circular film with a diameter of 28 mm) by a die cutter.
- a film coating instrument for example, 200 ⁇ m
- a size suitable for the drive unit 10 for example, a circular film with a diameter of 28 mm
- the embodiment of the present application does not limit the mesh size of the first anode 131 and the third anode 133 , nor does it limit the thickness of each layer of the anode 13 .
- the mesh number range of the first anode 131 and the third anode 133 may be 50 to 200 meshes, that is, there are 50 to 200 meshes in each inch*one inch range in the first anode 131 and the third anode 133.
- the thickness of the first anode 131 may be the same as or different from the thickness of the third anode 133, and this embodiment of the application is not limited thereto.
- the thickness of the first anode 131 and the third anode 133 may be in the range of 50 ⁇ m to 300 ⁇ m.
- the thickness of the second anode 132 may be greater than 0, less than or equal to 30 ⁇ m.
- the thickness of the first anode 131 and the third anode 133 may be 90 ⁇ m, and the thickness of the second anode 132 may be 8 ⁇ m.
- the first anode 131 and the third anode 133 may have the same shape and size.
- the shape of the first anode 131 is the same as that of the third anode 133, and the size of the first anode 131 is different from that of the third anode 133.
- the shape of the first anode 131 is different from that of the third anode 133, and the size of the first anode 131 is the same as that of the third anode 133.
- first anode 131 and the third anode 133 have the same shape and size, the embodiments of the present application do not limit the relative positional relationship between the first anode 131 and the third anode 133 , as long as the first anode 131 and the third anode 133 are electrically connected through the second anode 132 .
- the orthographic projection of a first conductive mesh 1311 of any first anode 131 on the first cathode 11 coincides with the orthographic projection of a third conductive mesh 1331 of the third anode 133 on the first cathode 11.
- the orthographic projection of a second conductive mesh 1312 of any first anode 11 on the first cathode 11 coincides with the orthographic projection of a fourth conductive mesh 1332 of the third anode 133 on the first cathode 11.
- the orthographic projections of the plurality of first conductive meshes 1311 on the first cathode 11 are staggered with the orthographic projections of the plurality of third conductive meshes 1331 on the first cathode 11.
- the orthographic projections of the plurality of second conductive meshes 1312 on the first cathode 11 are staggered with the orthographic projections of the plurality of fourth conductive meshes 1332 on the first cathode 11.
- the second anode 132 can be used to attract the first electroactive polymer 12 carrying negative charges to gather in the mesh of the first anode 131, and the second anode 132 can be used to attract the second electroactive polymer 14 carrying negative charges to gather in the mesh of the third anode 133.
- the second cathode 15 of any drive unit 10 can be reused as the first cathode 11 of the adjacent drive unit 10 stacked therewith.
- the mesh occupancy rate of the anode 13 provided in the embodiment of the present application and the maximum deformation rate of the driver including a plurality of driving units 10 are calculated.
- the shape of the first conductive mesh 1311, the second conductive mesh 1312, the third conductive mesh 1331, and the fourth conductive mesh 1332 are all cylinders, and the bottom diameter of the cylinder is d1; the total thickness of the anode 13 is D; the thickness of the first anode 131 and the third anode 133 are both 2d1 (i.e., the thickness at the knot of the flat knot); the side lengths of the square first anode 131 and the positive direction third anode 131 are both L; the thickness of the first cathode 11 and the second cathode 15 are both d2, and the thickness of the first electroactive polymer 12 and the second electroactive polymer 14 are both d3; the mesh count of the first anode 131 and the third anode 133 are both n.
- the total volume of the first conductive mesh 1311 , the second conductive mesh 1312 , and the meshes of the first anode 131 is 2d1L 2
- the total volume of the third conductive mesh 1331 , the fourth conductive mesh 1332 , and the meshes of the third anode 133 is also 2d1L 2 .
- the volume of any first conductive mesh 1311 or any second conductive mesh 1312 is The number of the first conductive mesh 1311 and the second conductive mesh 1312 is Among them, one inch is 25.4mm, Indicates that any first conductive mesh 1311 or any second conductive mesh 1312 is inch; It means that the number of the first conductive mesh 1311 and the second conductive mesh 1312 are both
- the total volume of the first conductive mesh 1311 and the second conductive mesh 1312 is in, It represents the volume of each first conductive mesh thread 1311 or second conductive mesh thread 1312 .
- the total volume of the third conductive mesh 1331 and the fourth conductive mesh 1332 is also known.
- the total volume of the mesh of the first anode 131 is The volume occupancy ratio of the mesh in the first anode 131
- the deformation rate of the driver can be obtained as follows:
- the mesh numbers of the first anode 131 and the third anode 133 are both 100.
- the pore volume occupancy of the first anode 131 and the third anode 133 When the gap between the first anode 131 and the third anode 133 is filled, the deformation rate of the driver is the largest, which is Compared with related technologies, please refer to Table 1:
- the embodiment of the present application also provides a driver, which includes a driving unit 10, and the driving unit 10 includes a first cathode 21, a first electroactive polymer 22, an anode 23, a second electroactive polymer 24, and a second cathode 25 stacked in sequence.
- the anode 23 includes a first anode 231 and a second anode 232 which are stacked in sequence and electrically connected.
- the first anode 231 includes a plurality of first conductive meshes 2311 and a plurality of second conductive meshes 2312 which are arranged at intervals, and the plurality of first conductive meshes 2311 and the plurality of second conductive meshes 2312 are intertwined to form a mesh.
- the second anode 232 includes a plurality of third conductive meshes 2321 and a plurality of fourth conductive meshes 2322 which are arranged at intervals, and the plurality of third conductive meshes 2321 and the plurality of fourth conductive meshes 2322 are intertwined to form a mesh.
- the orthographic projections of the first conductive meshes 2311 on the first cathode 21 are staggered with the orthographic projections of the third conductive meshes 2321 on the first cathode 21.
- the orthographic projections of the second conductive meshes 2312 on the first cathode 21 are staggered with the orthographic projections of the fourth conductive meshes 2322 on the first cathode 21.
- the thickness of the first conductive mesh 2311 may be the same as or different from the thickness of the second conductive mesh 2312.
- the thickness of the third conductive mesh 2321 may be the same as or different from the thickness of the fourth conductive mesh 2322.
- the following description is based on the example that the thickness of the first conductive mesh 2311 is the same as the thickness of the second conductive mesh 2312, and the thickness of the third conductive mesh 2321 is the same as the thickness of the fourth conductive mesh 2322.
- the embodiments of the present application do not limit the interweaving manner of the multiple first conductive meshes 2311 and the multiple second conductive meshes 2312 of the first anode 231, and the interweaving manner of the multiple third conductive meshes 2321 and the multiple fourth conductive meshes 2322 of the second anode 232.
- multiple first conductive mesh wires 2311 and multiple second conductive mesh wires 2312 can be interwoven into a mesh by integration
- multiple third conductive mesh wires 2321 and multiple fourth conductive mesh wires 2322 can be interwoven into a mesh by integration
- multiple first conductive mesh wires 2311 and multiple second conductive mesh wires 2312 can be interwoven into a mesh by flat knots
- multiple third conductive mesh wires 2321 and multiple fourth conductive mesh wires 2322 can be interwoven into a mesh by flat knots.
- other methods can also be used to interweave into a mesh, and the embodiments of the present application are not limited to this.
- oblique knots can also be used to interweave into a mesh.
- a plurality of first conductive meshes 2311 and a plurality of second conductive meshes 2312 are integrated and interwoven into a mesh.
- the thickness of the intersection of the first conductive mesh 2311 and the second conductive mesh 2312 is the same as the thickness of the first conductive mesh 2311 and the thickness of the second conductive mesh 2312.
- a plurality of third conductive meshes 2321 and a plurality of fourth conductive meshes 2322 are integrated into a mesh.
- the thickness of the intersection of the third conductive mesh 2321 and the fourth conductive mesh 2322 is the same as the thickness of the third conductive mesh 2321 and the thickness of the fourth conductive mesh 2322.
- the control circuit of the terminal device can supply power to the first cathode 21, the second cathode 25, and the anode 23 to meet the charging and discharging conditions when the driver is working.
- both the first anode 231 and the second anode 232 of the anode 23 are electrically connected, when the control circuit charges the anode 23 , both the first anode 231 and the second anode 232 are positively charged.
- the working principle of the driving unit 10 may be: when the control circuit is used to charge the first cathode 21, the anode 23, and the second cathode 25, the mesh of the first anode 231 carries a positive charge, and the first electroactive polymer 22 carries a negative charge on the side close to the first anode 231, therefore, the mesh of the first anode 231 and the first electroactive polymer 22 attract each other, the first electroactive polymer 22 creeps along the mesh surface of the first anode 231, and drills into the mesh of the first anode 231.
- the mesh of the second anode 232 carries a positive charge
- the second electroactive polymer 24 carries a negative charge on the side close to the second anode 232, therefore, the mesh of the second anode 232 and the second electroactive polymer 24 attract each other, the second electroactive polymer 24 creeps along the mesh surface of the second anode 232, and drills into the mesh of the second anode 232.
- the orthographic projections of the multiple first conductive meshes 2311 on the first cathode 21 are staggered with the orthographic projections of the multiple third conductive meshes 2321 on the first cathode 21.
- the orthographic projections of the second conductive meshes 2312 on the first cathode 21 are staggered with the orthographic projections of the multiple fourth conductive meshes 2322 on the first cathode 21.
- the second anode 232 and the first electroactive polymer 22 attract each other, and the first electroactive polymer 22 continuously gathers at the second anode 232 (i.e., the mesh of the first anode) and drills into the mesh of the first anode 231.
- the first anode 231 and the second electroactive polymer 24 attract each other, and the second electroactive polymer 24 continuously gathers at the first anode 231 (i.e., the mesh of the second anode) and drills into the mesh of the first anode 231.
- the first electroactive polymer 22 and the second electroactive polymer 24 repel each other at the mesh of the anode 23, and do not fully fill the mesh of the anode 23.
- the second anode 232 can be used to attract the first electroactive polymer 22, so as to cause the first electroactive polymer 22 to drill into the mesh of the first anode 231; the first anode 231 can be used to attract the second electroactive polymer 24, so as to cause the second electroactive polymer 24 to drill into the mesh of the second anode 232, thereby increasing the actual deformation rate of the first electroactive polymer 22 and the second electroactive polymer 24.
- the first conductive meshes 2311, the third conductive meshes 2321, the second conductive meshes 2312, and the fourth conductive meshes 2322 are alternately arranged in sequence along the direction of any first conductive mesh 2311 pointing to the first conductive mesh 2311 adjacent to it, or along the direction of any second conductive mesh 2312 pointing to the second conductive mesh 2312 adjacent to it.
- the first electroactive polymer 22 and the second electroactive polymer 24 creep along the surfaces of the first anode 231 and the second anode 232 nearby, respectively, and drill into the meshes of the first anode 231 and the second anode 232.
- the first electroactive polymer 22 drills into the gap between the third conductive mesh 2321 and the fourth conductive mesh 2322
- the first conductive mesh 2311 and the second conductive mesh 2312 between the third conductive mesh 2321 and the fourth conductive mesh 2322 both promote the first electroactive polymer 22 to further gather in the mesh between the third conductive mesh 2321 and the fourth conductive mesh 2322.
- the third conductive mesh 2321 and the fourth conductive mesh 2322 between the first conductive mesh 2311 and the second conductive mesh 2312 promote the second electroactive polymer 24 to further gather in the mesh between the first conductive mesh 2311 and the second conductive mesh 2312.
- the first electroactive polymer 22 and the second electroactive polymer 24 repel each other at the mesh of the anode 23 and do not fully fill the mesh of the anode 23.
- the embodiment of the present application can improve the actual deformation rate of the first electroactive polymer 22 and the second electroactive polymer 24.
- the embodiments of the present application do not limit the relative positions of the first conductive mesh 2311 and the third conductive mesh 2321, and the relative positions of the second conductive mesh 2312 and the fourth conductive mesh 2322.
- the orthographic projections of multiple first conductive meshes 2311 on the first cathode 21 are staggered with the orthographic projections of multiple third conductive meshes 2321 on the first cathode 21; the orthographic projections of the second conductive mesh 2312 on the first cathode 21 are staggered with the orthographic projections of multiple fourth conductive meshes 2322 on the first cathode 21.
- the orthographic projection of the center of the first conductive mesh 2311 on the first cathode 21 coincides with the center of the line connecting the orthographic projections of two adjacent third conductive meshes 2321 on the first cathode 21; the orthographic projection of the center of the second conductive mesh 2312 on the first cathode 21 coincides with the center of the line connecting the orthographic projections of two adjacent fourth conductive meshes 2322 on the first cathode 21.
- the second anode 232 can be used to attract the first electroactive polymer 22 to the mesh of the first anode 231 to the maximum extent and gather; at the position where the mesh of the second anode 232 and the projection of the first anode 231 on the first cathode 21 coincide, the first anode 231 can be used to attract the second electroactive polymer 24 to the mesh of the second anode 232 to the maximum extent and gather.
- the embodiments of the present application do not limit the materials of the first cathode 21, the first electroactive polymer 22, the anode 23, the second electroactive polymer 24, and the second cathode 25, as long as the first cathode 21, the anode 23, and the second cathode 23 are conductive, and the first electroactive polymer 22 and the second electroactive polymer 24 can gather toward the anode 23 under the action of the electric field.
- the material of the first cathode 21 and the second cathode 23 can be aluminum foil, etc.
- the material of the first anode 231 and the second anode 232 can be stainless steel, copper-nickel alloy, etc.
- the material of the first electroactive polymer 22 and the second electroactive polymer 24 can be PVC gel.
- the preparation process of PVC gel can be: dibutyl phthalate and tetrahydrofuran are mixed, and the mixture is stirred at a speed of 500 rpm/min for about 1 minute by a magnetic stirrer, and then PVC powder is slowly added to the mixture, wherein the mass ratio of DBA to PVC powder is 4:1, and the total mass ratio of DBA and PVC powder to the total mass ratio of THF is 1:2.25, and stirring is continued for about 24 hours.
- the mixture is prepared into a film of a certain thickness (for example, 200 ⁇ m) by a film coating instrument, and then cut into a size suitable for the drive unit 10 (for example, a circular film with a diameter of 28 mm) by a die cutter.
- the embodiment of the present application does not limit the mesh size of the first anode 231 and the second anode 232 , nor does it limit the thickness of each layer of the anode 23 .
- the mesh number range of the first anode 231 and the second anode 232 may be 50 to 200 meshes, that is, there are 50 to 200 meshes in each inch*one inch range in the first anode 231 and the second anode 232.
- the thickness of the first anode 231 may be the same as or different from the thickness of the second anode 232, and this embodiment of the application is not limited thereto.
- the thickness of the first anode 231 and the second anode 232 may be in the range of 50 ⁇ m to 300 ⁇ m.
- the thickness of the first anode 231 and the second anode 232 may be 90 ⁇ m.
- the first anode 231 and the second anode 232 may have the same shape and size.
- the shape of the first anode 231 is the same as that of the second anode 232, and the size of the first anode 231 is different from that of the second anode 232.
- the shape of the first anode 231 is different from that of the second anode 232, and the size of the first anode 231 is the same as that of the second anode 233.
- the second cathode 25 of any drive unit 10 can be reused as the first cathode 21 of the adjacent drive unit 10 stacked therewith.
- the mesh occupancy rate of the anode 23 provided in the embodiment of the present application and the maximum deformation rate of the driver including a plurality of driving units 10 are calculated.
- the shape of the first conductive mesh 2311, the second conductive mesh 2312, the third conductive mesh 2321, and the fourth conductive mesh 2322 are all cylinders, and the bottom diameter of the cylinder is d1; the total thickness of the anode 23 is D; the thickness of the first anode 231 and the second anode 232 are both 2d1 (i.e., the thickness at the knot of the flat knot); the side lengths of the square first anode 231 and the positive direction first anode 231 are both L; the thickness of the first cathode 21 and the second cathode 25 are both d2, and the thickness of the first electroactive polymer 22 and the second electroactive polymer 24 are both d3; the mesh count of the first anode 231 and the second anode 232 are both n.
- the total volume of the first conductive mesh 2311 , the second conductive mesh 2312 , and the meshes of the first anode 231 is 2d1L 2
- the total volume of the third conductive mesh 2321 , the fourth conductive mesh 2322 , and the meshes of the second anode 232 is also 2d1L 2 .
- the volume of any first conductive mesh 2311 or any second conductive mesh 2312 is The number of the first conductive mesh 2311 and the second conductive mesh 2312 is Among them, one inch is 25.4mm, Indicates that any first conductive mesh 2311 or any second conductive mesh 2312 is inch; It means that the number of the first conductive mesh 2311 and the second conductive mesh 2312 are both
- the total volume of the first conductive mesh 2311 and the second conductive mesh 2312 is in, It represents the volume of each first conductive mesh thread 2311 or second conductive mesh thread 2312.
- the total volume of the third conductive mesh 2321 and the fourth conductive mesh 2322 is also known.
- the total volume of the mesh of the first anode 231 is The volume occupancy ratio of the mesh in the first anode 231
- the deformation rate of the driver can be obtained as follows:
- the mesh numbers of the first anode 231 and the second anode 232 are both 100.
- the repulsive force between the first electroactive polymer 12 and the second electroactive polymer 14 can be completely avoided when the first electroactive polymer 12 and the second electroactive polymer 14 creep toward the anode 13, so as to achieve a maximum deformation rate of 26%.
- the repulsive force between the first electroactive polymer 22 and the second electroactive polymer 24 may not be completely avoided when the first electroactive polymer 22 and the second electroactive polymer 24 creep toward the anode 23, and the maximum deformation rate may be slightly lower than the maximum deformation rate of the previous embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Prostheses (AREA)
Abstract
本申请实施例提供了一种驱动器和终端设备,涉及终端技术领域,可以充分利用阳极中的网孔,提高第一电活性聚合物和第二电活性聚合物的实际形变率,从而提高驱动器的形变率。该驱动器包括驱动单元,驱动单元包括依次层叠设置的第一阴极、第一电活性聚合物、阳极、第二电活性聚合物、以及第二阴极。沿第一阴极指向阳极的方向,阳极包括依次层叠设置、且电连接的第一阳极、第二阳极、以及第三阳极;第一阳极和第三阳极为导电纱网,导电纱网包括多个网孔;第二阳极为无孔导电板。
Description
本申请涉及终端技术领域,尤其涉及一种驱动器和终端设备。
电活性聚合物具有结构简单、能量密度高、轻便、无噪音、柔性等优点,在受到电刺激后可以产生形变,将电能转化为机械能。因此,电活性聚合物可以用作能量转化器,例如驱动器。
现有技术中,在电场驱动下,电活性聚合物不能完全填满驱动器中阳极的所有空隙,驱动器中的实际形变电活性聚合物量小于理论形变率。因此,驱动器中电活性聚合物的形变率仍有待提升。
发明内容
为了解决上述技术问题,本申请提供一种驱动器和终端设备,可以充分利用阳极中的网孔,提高第一电活性聚合物和第二电活性聚合物的实际形变率,从而提高驱动器的形变率。
第一方面,本申请提供一种驱动器,该驱动器包括驱动单元,驱动单元包括依次层叠设置的第一阴极、第一电活性聚合物、阳极、第二电活性聚合物、以及第二阴极。沿第一阴极指向阳极的方向,阳极包括依次层叠设置、且电连接的第一阳极、第二阳极、以及第三阳极;第一阳极和第三阳极为导电纱网,导电纱网包括多个网孔;第二阳极为无孔导电板。
在对第一阴极、阳极、第二阴极充电时,第一阳极的网丝带正电荷,第一电活性聚合物在靠近阳极侧带负电荷,因此,第一阳极的网丝与第一电活性聚合物相互吸引,第一电活性聚合物沿着第一阳极的网丝表面发生蠕变,并钻进第一阳极的网孔中。同理,第三阳极的网丝带正电荷,第二电活性聚合物在靠近阳极侧带负电荷,因此,第三阳极的网丝与第二电活性聚合物相互吸引,第二电活性聚合物沿着第三阳极的网丝表面发生蠕变,并钻进第三阳极的网孔中。
在此基础上,由于阳极除了包括第一阳极和第三阳极以外,还包括设置于第一阳极和第三阳极之间的第二阳极,并且,第二阳极所带的正电荷,与其两侧的第一电活性聚合物和第二电活性聚合物的负电荷富集层电性相反,因此,在第一阳极的网孔位置处,第二阳极与第一电活性聚合物相互吸引,第一电活性聚合物不断向第二阳极(也可以说,第一阳极的网孔)处聚集,并钻进第一阳极的网孔中。在第三阳极的网孔位置处,第二阳极与第二电活性聚合物相互吸引,第二电活性聚合物不断向第二阳极(也可以说,第三阳极的网孔)处聚集,并钻进第三阳极的网孔中。相较于相关技术的第一电活性聚合物和第二电活性聚合物在阳极的网孔处互相排斥,不能填满阳极的网孔,本申请实施例可 以利用第二阳极充分吸引第一电活性聚合物,并使第一电活性聚合物在第一阳极的网孔处聚集,充分吸引第二电活性聚合物在第三阳极的网孔处聚集,从而可以充分填满第一阳极和第三阳极的网孔,提高第一电活性聚合物和第二电活性聚合物的实际形变率,从而提高驱动器的形变率。
在一些可能实现的方式中,第一阳极包括间隔设置的多根第一导电网丝和间隔设置的多根第二导电网丝,多根第一导电网丝与多根第二导电网丝交结成网。第三阳极包括间隔设置的多根第三导电网丝和间隔设置的多根第四导电网丝,多根第三导电网丝与多根第四导电网丝交结成网。在对第一阴极、阳极、第二阴极充电时,由于第二阳极与第一电活性聚合物的电性相反,因此,第一电活性聚合物可以充分填满第一导电网丝与第二导电网丝构成的网孔中;由于第二阳极与第二电活性聚合物的电性相反,因此,第二电活性聚合物可以充分填满第三导电网丝与第四导电网丝构成的网孔中。
在一些可能实现的方式中,第一阳极与第三阳极的形状和尺寸相同。这样一来,任一第一阳极的一根第一导电网丝在第一阴极上的正投影,均与第三阳极的一根第三导电网丝在第一阴极上的正投影重合。任一第一阳极的一根第二导电网丝在第一阴极上的正投影,均与第三阳极的一根第四导电网丝在第一阴极上的正投影重合。
在另一些可能实现的方式中,无论第一阳极与第三阳极的形状和尺寸是否相同,多根第一导电网丝在第一阴极上的正投影,均与多根第三导电网丝在第一阴极上的正投影错开设置。多根第二导电网丝在第一阴极上的正投影,均与多根第四导电网丝在第一阴极上的正投影错开设置。
在一些可能实现的方式中,第一电活性聚合物和第二电活性聚合物包括聚氯乙烯凝胶;和/或,第一阳极和第三阳极的材料包括不锈钢或铜镍合金;和/或,第二阳极、第一阴极、以及第二阴极的材料包括铝箔。当然,上述结构的材料还可以是其他,本申请对此不作限定。
在一些可能实现的方式中,第一阳极和第三阳极的目数范围为50~200目,即,第一阳极和第三阳极中,每一英寸*一英寸范围内,有50~200个网孔;和/或,沿第一阴极指向阳极的方向,第一阳极和第三阳极的厚度范围为50μm~300μm;和/或,沿第一阴极指向阳极的方向,第二阳极的厚度范围小于或等于30μm。
当然,对于不同尺寸的驱动器,第一阳极和第三阳极的目数范围、第一阳极、第二阳极、以及第三阳极的厚度范围,还可以是其他,本申请不作限定。
在一些可能实现的方式中,驱动单元的数量为多个,沿第一阴极指向阳极的方向,多个驱动单元层叠设置,从而提高驱动器形变位移量。由于在电场作用下,所有驱动单元的第一阴极和第二阴极均带负电荷,因此,任一驱动单元的第二阴极,可以复用作与其层叠设置且相邻的驱动单元的第一阴极。
第二方面,本申请提供一种驱动器,该驱动器包括驱动单元,驱动单元包括依次层叠设置的第一阴极、第一电活性聚合物、阳极、第二电活性聚合物、以及第二阴极。沿第一阴极指向阳极的方向,阳极包括依次层叠设置、且电连接的第一阳极和第二阳极。第一阳极包括间隔设置的多根第一导电网丝和间隔设置的多根第二导电网丝,多根第一导电网丝与多根第二导电网丝交结成网;第二阳极包括间隔设置的多根第三导电网丝和间 隔设置的多根第四导电网丝,多根第三导电网丝与多根第四导电网丝交结成网。多个第一导电网丝在第一阴极上的正投影,均与多根第三导电网丝在第一阴极上的正投影错开设置;第二导电网丝在第一阴极上的正投影,均与多根第四导电网丝在第一阴极上的正投影错开设置。
在利用控制电路对第一阴极、阳极、第二阴极充电时,第一阳极的网丝带正电荷,第一电活性聚合物在靠近第一阳极侧带负电荷,因此,第一阳极的网丝与第一电活性聚合物相互吸引,第一电活性聚合物沿着第一阳极的网丝表面发生蠕变,并钻进第一阳极的网孔中。同理,第二阳极的网丝带正电荷,第二电活性聚合物在靠近第二阳极侧带负电荷,因此,第二阳极的网丝与第二电活性聚合物相互吸引,第二电活性聚合物沿着第二阳极的网丝表面发生蠕变,并钻进第二阳极的网孔中。
在此基础上,对于一体化交结成网的多根第一导电网丝和多根第二导电网丝,以及一体化交结成网的多根第三导电网丝和多根第四导电网丝,由于多个第一导电网丝在第一阴极上的正投影,均与多根第三导电网丝在第一阴极上的正投影错开设置。第二导电网丝在第一阴极上的正投影,均与多根第四导电网丝在第一阴极上的正投影错开设置。因此,在第一阳极的网孔与第二阳极在第一阴极的投影重合位置处,第二阳极与第一电活性聚合物相互吸引,第一电活性聚合物不断向第二阳极(即,第一阳极的网孔)处聚集,并钻进第一阳极的网孔中。在第二阳极的网孔与第一阳极在第一阴极的投影重合位置处,第一阳极与第二电活性聚合物相互吸引,第二电活性聚合物不断向第一阳极(即,第二阳极的网孔)处聚集,并钻进第一阳极的网孔中。相较于相关技术的第一电活性聚合物和第二电活性聚合物在阳极的网孔处互相排斥,没有充分填满阳极的网孔。本申请实施例可以利用第二阳极吸引第一电活性聚合物,促使第一电活性聚合物钻进第一阳极的网孔中;利用第一阳极吸引第二电活性聚合物,促使第二电活性聚合物钻进第二阳极的网孔中,提高第一电活性聚合物和第二电活性聚合物的实际形变率。
对于采用平结交结成网的多根第一导电网丝和多根第二导电网丝,以及采用平结交结成网的多根第三导电网丝和多根第四导电网丝,沿任一第一导电网丝指向与其相邻的第一导电网丝的方向,或者,沿任一第二导电网丝指向与其相邻的第二导电网丝的方向,第一导电网丝、第三导电网丝、第二导电网丝、以及第四导电网丝依次交错设置。
在利用控制电路对第一阴极、阳极、第二阴极充电时,第一电活性聚合物和第二电活性聚合物分别沿着附近的第一阳极和第二阳极表面蠕变,分别钻进第一阳极和第二阳极的网孔中。当第一电活性聚合物钻进第三导电网丝和第四导电网丝之间的间隙中时,处于第三导电网丝和第四导电网丝之间的第一导电网丝和第二导电网丝均促进了第一电活性聚合物进一步向第三导电网丝与第四导电网丝之间的网孔中聚集。同样的,当第二电活性聚合物钻进第一导电网丝和第二导电网丝之间的间隙中时,处于第一导电网丝和第二导电网丝之间的第三导电网丝和第四导电网丝均促进了第二电活性聚合物进一步向第一导电网丝与第二导电网丝之间的网孔中聚集。相较于相关技术的第一电活性聚合物和第二电活性聚合物在阳极的网孔处互相排斥,没有充分填满阳极的网孔。本申请实施例可以提高第一电活性聚合物和第二电活性聚合物的实际形变率。
在一些可能实现的方式中,沿第一阴极指向阳极的方向,第一导电网丝与第二导电 网丝交结处的厚度,与第一导电网丝和第二导电网丝相同。沿第一阴极指向阳极的方向,第三导电网丝与第四导电网丝交结处的厚度,与第三导电网丝和第四导电网丝的厚度相同。即,第一导电网丝和第二导电网丝一体化交结成网,第三导电网丝与第四导电网丝一体化交结成网。
在一些可能实现的方式中,第一阳极与第二阳极的形状和尺寸相同。当然,第一阳极与第二阳极的形状和尺寸也可以不同,本申请对此不作限定。
在一些可能实现的方式中,第一导电网丝的中心在第一阴极上的正投影,与相邻两个第三导电网丝在第一阴极上的正投影连线的中心重合。第二导电网丝的中心在第一阴极上的正投影,与相邻两个第四导电网丝在第一阴极上的正投影连线的中心重合。这样一来,在第一阳极的网孔与第二阳极在第一阴极的投影重合位置处,可以利用第二阳极最大程度吸引第一电活性聚合物向第一阳极的网孔处移动并聚集;在第二阳极的网孔与第一阳极在第一阴极的投影重合位置处,可以利用第一阳极最大程度吸引第二电活性聚合物向第二阳极的网孔处移动并聚集。
在一些可能实现的方式中,第一电活性聚合物和第二电活性聚合物包括聚氯乙烯凝胶;和/或,阳极的材料包括不锈钢或铜镍合金;和/或,第一阴极和第二阴极的材料包括铝箔。当然,上述结构的材料还可以是其他,本申请对此不作限定。
在一些可能实现的方式中,第一阳极和第二阳极的目数范围为50~200目,即,第一阳极和第二阳极中,每一英寸*一英寸范围内,有50~200个网孔;和/或,沿第一阴极指向阳极的方向,第一阳极和第二阳极的厚度范围为50μm~300μm。
当然,对于不同尺寸的驱动器,第一阳极和第三阳极的目数范围、第一阳极、第二阳极、以及第三阳极的厚度范围,还可以是其他,本申请不作限定。
在一些可能实现的方式中,驱动单元的数量为多个,沿第一阴极指向阳极的方向,多个驱动单元层叠设置,从而提高驱动器形变位移量。由于在电场作用下,所有驱动单元的第一阴极和第二阴极均带负电荷,因此,任一驱动单元的第二阴极,可以复用作与其层叠设置且相邻的驱动单元的第一阴极。
第三方面,本申请提供一种终端设备,终端设备包括控制电路、以及第一方面或第二方面的驱动器;控制电路,用于在驱动器工作时,为驱动器的第一阴极第二阴极、以及阳极供电。
第三方面的实现方式与第一方面或者第二方面的任意一种实现方式相对应。第三方面的实现方式所对应的技术效果可参见上述第一方面、第二方面以及第一方面和第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。
图1a为相关技术提供的驱动单元的俯视图;
图1b为图1a中A1-A2向的剖视图;
图1c为相关技术提供的驱动单元在充电状态下的示意图;
图2a为本申请实施例提供的一种驱动单元的俯视图;
图2b为图2a中A1-A2向的剖视图;
图2c为本申请实施例提供的一种驱动单元在充电状态下的示意图;
图3a为本申请实施例提供的另一种驱动单元的俯视图;
图3b为图3a中A1-A2向的剖视图;
图3c为本申请实施例提供的另一种驱动单元在充电状态下的示意图;
图4为本申请实施例提供的驱动单元的结构示意图;
图5为本申请实施例提供的一种驱动器的结构示意图;
图6为本申请实施例提供的又一种驱动单元的俯视图;
图7a为本申请实施例提供的又一种驱动单元的俯视图;
图7b为图7a中B1-B2向的剖视图;
图7c为本申请实施例提供的又一种驱动单元在充电状态下的示意图;
图8a为本申请实施例提供的又一种驱动单元的结构示意图;
图8b为本申请实施例提供的又一种驱动单元在充电状态下的示意图;
图9为本申请实施例提供的又一种驱动单元的结构示意图;
图10为本申请实施例提供的一种驱动器的结构示意图。
附图标记:
10-驱动单元;11-第一阴极;12-第一电活性聚合物;13-阳极;131-第一阳极;1311-第一导电网丝;1312-第二导电网丝;132-第二阳极;133-第三阳极;1331-第三导电网丝;1332-第四导电网丝;14-第二电活性聚合物;15-第二阴极;21-第一阴极;22-第一电活性聚合物;23-阳极;231-第一阳极;2311-第一导电网丝;2312-第二导电网丝;232-第二阳极;2321-第三导电网丝;2322-第四导电网丝;24-第二电活性聚合物;25-第二阴极。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例提供一种终端设备,上述终端设备可以是智能仿生、柔性机器人、航空航天、智能医疗器件、可穿戴设备等包含电活性聚合物的设备。当然,终端还可以是其他设备,本申请实施例不对终端设备的具体形式进行限定。
以终端设备为智能仿生的人工肌肉为例,应用于致动器的电活性聚合物具有应变高、柔软性好、轻便、无噪声等优点。例如,电活性聚合物可以为聚氯乙烯(poly vinylchloride,PVC)凝胶,由其制备而成的驱动器具有与人类肌肉相比拟的形变率、力学强度和响应速度,且驱动电压一般低于400V,可以用于制作人工肌肉。在对致动器充电和去电的情况下,电活性聚合物可以发生弹性形变,实现人工肌肉的收缩和舒张。
终端设备除了包括驱动器以外,还可以包括控制电路。可以利用控制电路对第一阴极、第二阴极、以及阳极进行充、放电,以使得驱动器发生形变。
控制电路可以通过开关与驱动器电连接,如图1b所示,在无需利用控制电路为驱动器的第一阴极11、第二阴极15、以及阳极13进行充电时,开关可以断开。在需要利用控制电路为驱动器的第一阴极11、第二阴极15、以及阳极13进行充电时,开关可以导通。
例如,相关技术中,驱动器可以包括至少一个驱动单元,叠层型PVC凝胶制备而成的驱动器是驱动器的主要形式,如图1a和图1b所示,驱动单元10包括依次层叠设置的第一阴极11、第一电活性聚合物12、阳极13、第二电活性聚合物14、以及第二阴极15。其中,第一阴极11和第二阴极15呈平面状;阳极13呈网孔状,阳极13包括多根网丝,多根网丝交结成网;第一电活性聚合物12和第二电活性聚合物14可以是PVC凝胶。
在利用控制电路对第一阴极11、阳极13、以及第二阴极15充电时,第一电活性聚合物12和第二电活性聚合物14中的塑化剂可以分别携带来自第一阴极11和第二阴极15的负电荷,并分别聚集在第一电活性聚合物12和第二电活性聚合物14靠近阳极13侧,形成负电荷富集层。如图1c所示,由于静电力作用,阳极13附近的第一电活性聚合物12和第二电活性聚合物沿着阳极13的网丝表面蠕动,部分钻进网孔空隙中,从而实现驱动单元10在厚度方向上压缩。停止对第一阴极11、阳极13、以及第二阴极15充电(也可以说,去电)时,由于第一电活性聚合物12和第二电活性聚合物自身回弹力的作用,第一电活性聚合物12和第二电活性聚合物恢复为原有的形态,驱动单元10也恢复初始厚度。这样一来,通过循环充放电,可以实现驱动单元10在厚度方向上的往复形变。
此处,驱动单元10的厚度方向,可以是第一阴极11指向阳极13的方向,下文提到的任一结构的厚度,均为该结构在厚度方向上的厚度。并且,对于本申请实施例,第一电活性聚合物12和第二电活性聚合物14还可以是除了PVC凝胶以外的其他材料,只要其工作原理,与第一电活性聚合物12和第二电活性聚合物14为PVC凝胶时的工作原理相同即可。为了方便描述,下文均以第一电活性聚合物12和第二电活性聚合物14为PVC凝胶为例进行说明。
然而,发明人发现,相关技术中,驱动器的实际形变率远小于理论形变率。以目数为100目、厚度为180μm、空隙率为72%的阳极13,以及厚度为200μm的PVC凝胶为例,在电场作用下,驱动器的实际最大形变率约为11%。而经计算,当PVC凝胶填充满整个 阳极13网孔的空隙时,驱动器的理论形变量可以达到22%,远超实际的形变率。这一结果表明PVC凝胶并没有充分填满阳极13的网孔,阳极13网孔没有被充分利用,驱动器的形变率还有很大提升空间。
如图1c所示,发明人分析PVC凝胶不能充分填满阳极13网孔的原因,是由于在电场作用下,沿厚度方向,阳极13附近的PVC凝胶(即,第一电活性聚合物和第二电活性聚合物)在朝向网孔中间蠕变过程中互相排斥,随着阳极13两侧的PVC凝胶之间的间隙越来越小,PVC凝胶负电荷富集层之间的静电斥力越来越大。
如图2a-图3c所示,本申请实施例提供一种驱动器,通过对阳极13的结构进行改进,以在电场作用下,减小阳极13网孔处第一电活性聚合物12和第二电活性聚合物14间的斥力。
该驱动器包括驱动单元10,驱动单元10包括依次层叠设置的第一阴极11、第一电活性聚合物12、阳极13、第二电活性聚合物14、第二阴极15。除此以外,沿第一阴极11指向阳极13的方向,阳极13包括依次层叠设置、且电连接的第一阳极131、第二阳极132、以及第三阳极133。第一阳极131和第三阳极133为导电纱网,导电纱网包括多个网孔,第二阳极132为无孔导电板。
在一些可能实现的方式中,如图2a和图3a所示,第一阳极131和第三阳极133的网孔可以由多根网丝交结而成。
可选的,第一阳极131包括间隔设置的多根第一导电网丝1311和间隔设置的多根第二导电网丝1312,多根第一导电网丝1311与多根第二导电网丝1312交结成网。第三阳极133包括间隔设置的多根第三导电网丝1331和间隔设置的多根第四导电网丝1332,多根第三导电网丝1331与多根第四导电网丝1332交结成网。
此处,第一导电网丝1311的厚度与第二导电网丝1312的厚度可以相同,也可以不相同。第三导电网丝1331的厚度与第四导电网丝1332的厚度可以相同,也可以不相同。为了方便描述,下文均以第一导电网丝1311的厚度与第二导电网丝1312的厚度相同,第三导电网丝1331的厚度与第四导电网丝1332的厚度相同为例进行说明。
在一些可能实现的方式中,本申请实施例不对第一阳极131的多根第一导电网丝1311和多根第二导电网丝1312的交结方式,以及第三阳极133的多根第三导电网丝1331和多根第四导电网丝1332的交结方式进行限定。
可选的,多根第一导电网丝1311和多根第二导电网丝1312可以采用平结、或斜结、或一体化交结成网。多根第三导电网丝1331和多根第四导电网丝1332可以采用平结、或斜结、或一体化交结成网。当然,还可以采用其他方式交结成网,本申请实施例对此不作限定。
例如,如图2a和图2b所示,多根第一导电网丝1311和多根第二导电网丝1312采用平结交结成网。第一导电网丝1311与第二导电网丝1312的交结处的厚度,是第一导电网丝1311和第二导电网丝1312的厚度之和。在第一导电网丝1311的厚度与第二导电网丝1312的厚度相同的情况下,第一导电网丝1311与第二导电网丝1312的交结处的厚度,可以是第一导电网丝1311的厚度的两倍,也可以是第二导电网丝1312的厚度的两倍。
如图2a和图2b所示,多根第三导电网丝1331和多根第四导电网丝1332采用平结交结成网。第三导电网丝1331与第四导电网丝1332的交结处的厚度,是第三导电网丝1331和第四导电网丝1332的厚度之和。在第三导电网丝1331的厚度与第四导电网丝1332的厚度相同的情况下,第三导电网丝1331与第四导电网丝1332的交结处的厚度,可以是第三导电网丝1331的厚度的两倍,也可以是第四导电网丝1332的厚度的两倍。
又例如,如图3a和图3b所示,多根第一导电网丝1311和多根第二导电网丝1312一体化交结成网。第一导电网丝1311与第二导电网丝1312的交结处的厚度,与第一导电网丝1311的厚度和第二导电网丝1312的厚度均相同。
如图3a和图3b所示,多根第三导电网丝1331和多根第四导电网丝1332一体化交结成网。第三导电网丝1331与第四导电网丝1332的交结处的厚度,与第三导电网丝1331的厚度和第四导电网丝1332的厚度均相同。
在一些可能实现的方式中,在驱动器工作时,终端设备的控制电路,可以为第一阴极11、第二阴极15、以及阳极13供电,以满足驱动器工作时的充、放电条件。
此处,由于阳极13的第一阳极131、第二阳极132、以及第三阳极133电连接,因此,在控制电路为阳极13充电的过程中,第一阳极131、第二阳极132、以及第三阳极133均带正电荷。
在一些可能实现的方式中,第二阳极132为无孔导电板,即,第二阳极132可以是平板状,且第二阳极12的表面密封,无网孔。
基于此,本申请实施例提供的驱动单元10的工作原理可以为:在利用控制电路对第一阴极11、阳极13、第二阴极15充电时,第一阳极131的网丝带正电荷,第一电活性聚合物12在靠近阳极13侧带负电荷,因此,第一阳极131的网丝与第一电活性聚合物12相互吸引,第一电活性聚合物12沿着第一阳极131的网丝表面发生蠕变,并钻进第一阳极131的网孔中。同理,第三阳极133的网丝带正电荷,第二电活性聚合物14在靠近阳极13侧带负电荷,因此,第三阳极133的网丝与第二电活性聚合物14相互吸引,第二电活性聚合物14沿着第三阳极133的网丝表面发生蠕变,并钻进第三阳极133的网孔中。
在此基础上,由于阳极13除了包括第一阳极131和第三阳极132以外,还包括设置于第一阳极131和第三阳极133之间的第二阳极132,并且,第二阳极132所带的正电荷,与其两侧的第一电活性聚合物12和第二电活性聚合物14的负电荷富集层电性相反,因此,在第一阳极131的网孔位置处,第二阳极132与第一电活性聚合物12相互吸引,第一电活性聚合物12不断向第二阳极132(也可以说,第一阳极的网孔)处聚集,并钻进第一阳极131的网孔中。在第三阳极133的网孔位置处,第二阳极132与第二电活性聚合物14相互吸引,第二电活性聚合物14不断向第二阳极132(也可以说,第三阳极的网孔)处聚集,并钻进第三阳极133的网孔中。相较于相关技术的第一电活性聚合物12和第二电活性聚合物14在阳极13的网孔处互相排斥,不能填满阳极13的网孔,本申请实施例可以利用第二阳极132充分吸引第一电活性聚合物12,并使第一电活性聚合物12在第一阳极131的网孔处聚集,充分吸引第二电活性聚合物14在第三阳极133的网孔处聚集,从而可以充分填满第一阳极131和第三阳极133的网孔,提高第一电活性聚合物 12和第二电活性聚合物14的实际形变率,从而提高驱动器的形变率。
在一些可能实现的方式中,本申请实施例不对第一阴极11、第一电活性聚合物12、阳极13、第二电活性聚合物14、以及第二阴极15的材料进行限定,只要第一阴极11、阳极13、以及第二阴极13可以导电,第一电活性聚合物12和第二电活性聚合物14可以在电场作用下向阳极13聚集即可。
例如,第一阴极11、第二阴极15、第二阳极132的材料可以是铝箔等。第一阳极131和第三阳极133的材料可以是不锈钢、铜镍合金等。第一电活性聚合物12和第二电活性聚合物14的材料可以是PVC凝胶。
PVC凝胶的制备过程可以是:将邻苯二甲酸二丁酯(dibutyl phthalate,DBA)与四氢呋喃(tetrahydrofuran,THF)混合,并通过磁力搅拌器按照500rpm/min的转速搅拌混合液约1分钟(min),再缓慢添加PVC粉末到混合液中,其中,DBA与PVC粉末的质量比为4:1,DBA和PVC粉末总质量与THF总质量比为1:2.25,持续搅拌约24小时(h)。将混合液通过涂膜仪制备一定厚度(例如200μm)的薄膜,再通过刀模切割为适用于驱动单元10的尺寸(例如直径28mm的圆形薄膜)。
在一些可能实现的方式中,本申请实施例不对第一阳极131和第三阳极133的目数进行限定,也不对阳极13各层的厚度进行限定。
可选的,第一阳极131和第三阳极133的目数范围可以是50~200目,即,第一阳极131和第三阳极133中,每一英寸*一英寸范围内,有50~200个网孔。此处,第一阳极131的厚度可以与第三阳极133的厚度相同,也可以不相同,本申请实施例对此不作限定。
可选的,第一阳极131和第三阳极133的厚度范围可以是50μm~300μm。第二阳极132的厚度范围可以大于0、小于或等于30μm。例如,第一阳极131和第三阳极133的厚度可以为90μm,第二阳极132的厚度可以为8μm。
在一些可能实现的方式中,第一阳极131与第三阳极133的形状和尺寸可以相同。或者,第一阳极131的形状与第三阳极133的形状相同,第一阳极131的尺寸与第三阳极133的尺寸不同。或者,第一阳极131的形状与第三阳极133的形状不同,第一阳极131的尺寸与第三阳极133的尺寸相同。
无论第一阳极131和第三阳极133的形状和尺寸是否相同,本申请实施例均不对第一阳极131和第三阳极133的相对位置关系进行限定,只要第一阳极131与第三阳极133通过第二阳极132电连接即可。
如图2b所示,在第一阳极131与第三阳极133的形状和尺寸可以相同的情况下,任一第一阳极131的一根第一导电网丝1311在第一阴极11上的正投影,均与第三阳极133的一根第三导电网丝1331在第一阴极11上的正投影重合。任一第一阳极11的一根第二导电网丝1312在第一阴极11上的正投影,均与第三阳极133的一根第四导电网丝1332在第一阴极11上的正投影重合。
或者,如图4所示,无论第一阳极131与第三阳极133的形状和尺寸相同与否,多根第一导电网丝1311在第一阴极11上的正投影,均与多根第三导电网丝1331在第一阴极11上的正投影错开设置。多根第二导电网丝1312在第一阴极11上的正投影,均与多 根第四导电网丝1332在第一阴极11上的正投影错开设置。
而无论多根第一导电网丝1311在第一阴极11上的正投影,与多根第三导电网丝1331在第一阴极11上的正投影重合或错开,多根第二导电网丝1312在第一阴极11上的正投影,与多根第四导电网丝1332在第一阴极11上的正投影错开重合或是错开,均可以利用第二阳极132吸引携带负电荷的第一电活性聚合物12聚集在第一阳极131的网孔中,利用第二阳极132吸引携带负电荷的第二电活性聚合物14聚集在第三阳极133的网孔中。
在一些可能实现的方式中,如图5所示,驱动单元10的数量为多个,沿第一阴极11指向阳极13的方向,多个驱动单元10层叠设置,从而提高驱动器形变位移量。由于在电场作用下,所有驱动单元10的第一阴极11和第二阴极15均带负电荷,因此,任一驱动单元10的第二阴极15,可以复用作与其层叠设置且相邻的驱动单元10的第一阴极11。
下面结合具体示例,计算本申请实施例提供的阳极13的网孔占有率,以及包括多个驱动单元10的驱动器的最大形变率。
如图5和图6所示,假设第一导电网丝1311、第二导电网丝1312、第三导电网丝1331、以及第四导电网丝1332的形状均为圆柱,圆柱的底面直径为d1;阳极13的总厚度为D;第一阳极131和第三阳极133的厚度均为2d1(即,平结打结处的厚度);正方形第一阳极131和正方向第三阳极131的边长均为L;第一阴极11和第二阴极15的厚度均为d2,第一电活性聚合物12和第二电活性聚合物14的厚度均为d3;第一阳极131和第三阳极133的目数均为n。
第一阳极131的第一导电网丝1311、第二导电网丝1312、以及网孔的总体积为2d1L
2,第三阳极133的第三导电网丝1331、第四导电网丝1332、以及网孔的总体积也为2d1L
2。
任一第一导电网丝1311或任一第二导电网丝1312的体积为
第一导电网丝1311和第二导电网丝1312的个数均为
其中,一英寸为25.4mm,
表示任一第一导电网丝1311或任一第二导电网丝1312为
英寸;
表示第一导电网丝1311和第二导电网丝1312的数量均为
以d1=0.045mm,d2=0.008mm,d3=0.2mm,D=(45*2+8+45*2)mm=0.188mm,第一阳极131和第三阳极133的目数均为100。第一阳极131和第三阳极133的孔隙体积占有率
当第一阳极131和第三阳极133的空隙被填满时,驱动器的形变率最大,为
相较于相关技术,可参考表1:
表1
从表1可以看出,本申请提供的方案的驱动器理论最大形变率为26%,远大于相关技术的驱动器最大形变率11%。
另一个实施例中,如图7a-图8b所示,本申请实施例还提供一种驱动器,该驱动器包括驱动单元10,驱动单元10包括依次层叠设置的第一阴极21、第一电活性聚合物22、阳极23、第二电活性聚合物24、以及第二阴极25。
沿第一阴极21指向阳极23的方向,阳极23包括依次层叠设置、且电连接的第一阳极231和第二阳极232。第一阳极231包括间隔设置的多根第一导电网丝2311和间隔设置的多根第二导电网丝2312,多根第一导电网丝2311与多根第二导电网丝2312交结成网。第二阳极232包括间隔设置的多根第三导电网丝2321和间隔设置的多根第四导电网丝2322,多根第三导电网丝2321与多根第四导电网丝2322交结成网。
多个第一导电网丝2311在第一阴极21上的正投影,均与多根第三导电网丝2321在第一阴极21上的正投影错开设置。第二导电网丝2312在第一阴极21上的正投影,均与多根第四导电网丝2322在第一阴极21上的正投影错开设置。
此处,第一导电网丝2311的厚度与第二导电网丝2312的厚度可以相同,也可以不相同。第三导电网丝2321的厚度与第四导电网丝2322的厚度可以相同,也可以不相同。为了方便描述,下文均以第一导电网丝2311的厚度与第二导电网丝2312的厚度相同,第三导电网丝2321的厚度与第四导电网丝2322的厚度相同为例进行说明。
在一些可能实现的方式中,本申请实施例不对第一阳极231的多根第一导电网丝2311和多根第二导电网丝2312的交结方式,以及第二阳极232的多根第三导电网丝2321和多根第四导电网丝2322的交结方式进行限定。
可选的,如图7a和图7b所示,多根第一导电网丝2311和多根第二导电网丝2312可以采用一体化交结成网,多根第三导电网丝2321和多根第四导电网丝2322可以采用一体化交结成网。如图8a所示,多根第一导电网丝2311和多根第二导电网丝2312可以采用平结交结成网,多根第三导电网丝2321和多根第四导电网丝2322可以采用平结交结成网。当然,还可以采用其他方式交结成网,本申请实施例对此不作限定。例如,还可以采用斜结交结成网。
例如,如图7a和图7b所示,多根第一导电网丝2311和多根第二导电网丝2312一体化交结成网。第一导电网丝2311与第二导电网丝2312的交结处的厚度,与第一导电网丝2311的厚度和第二导电网丝2312的厚度均相同。
如图7a和图7b所示,多根第三导电网丝2321和多根第四导电网丝2322一体化交结成网。第三导电网丝2321与第四导电网丝2322的交结处的厚度,与第三导电网丝2321的厚度和第四导电网丝2322的厚度均相同。
在一些可能实现的方式中,在驱动器工作时,终端设备的控制电路,可以为第一阴极21、第二阴极25、以及阳极23供电,以满足驱动器工作时的充、放电条件。
此处,由于阳极23的第一阳极231和第二阳极232电连接,因此,在控制电路为阳极23充电的过程中,第一阳极231和第二阳极232均带正电荷。
本申请实施例提供的驱动单元10的工作原理可以为:在利用控制电路对第一阴极21、阳极23、第二阴极25充电时,第一阳极231的网丝带正电荷,第一电活性聚合物22在靠近第一阳极231侧带负电荷,因此,第一阳极231的网丝与第一电活性聚合物22相互吸引,第一电活性聚合物22沿着第一阳极231的网丝表面发生蠕变,并钻进第一阳极231的网孔中。同理,第二阳极232的网丝带正电荷,第二电活性聚合物24在靠近第二阳极232侧带负电荷,因此,第二阳极232的网丝与第二电活性聚合物24相互吸引,第二电活性聚合物24沿着第二阳极232的网丝表面发生蠕变,并钻进第二阳极232的网孔中。
在此基础上,对于一体化交结成网的多根第一导电网丝2311和多根第二导电网丝2312,以及一体化交结成网的多根第三导电网丝2321和多根第四导电网丝2322,由于多个第一导电网丝2311在第一阴极21上的正投影,均与多根第三导电网丝2321在第一阴极21上的正投影错开设置。第二导电网丝2312在第一阴极21上的正投影,均与多根第四导电网丝2322在第一阴极21上的正投影错开设置。因此,在第一阳极231的网孔与第二阳极232在第一阴极21的投影重合位置处,第二阳极232与第一电活性聚合物22相互吸引,第一电活性聚合物22不断向第二阳极232(即,第一阳极的网孔)处聚集,并钻进第一阳极231的网孔中。在第二阳极232的网孔与第一阳极231在第一阴极21的投影重合位置处,第一阳极231与第二电活性聚合物24相互吸引,第二电活性聚合物24不断向第一阳极231(即,第二阳极的网孔)处聚集,并钻进第一阳极231的网孔中。相较于相关技术的第一电活性聚合物22和第二电活性聚合物24在阳极23的网孔处互相排 斥,没有充分填满阳极23的网孔。本申请实施例可以利用第二阳极232吸引第一电活性聚合物22,促使第一电活性聚合物22钻进第一阳极231的网孔中;利用第一阳极231吸引第二电活性聚合物24,促使第二电活性聚合物24钻进第二阳极232的网孔中,提高第一电活性聚合物22和第二电活性聚合物24的实际形变率。
对于采用平结交结成网的多根第一导电网丝2311和多根第二导电网丝2312,以及采用平结交结成网的多根第三导电网丝2321和多根第四导电网丝2322,沿任一第一导电网丝2311指向与其相邻的第一导电网丝2311的方向,或者,沿任一第二导电网丝2312指向与其相邻的第二导电网丝2312的方向,第一导电网丝2311、第三导电网丝2321、第二导电网丝2312、以及第四导电网丝2322依次交错设置。
如图8b所示,在利用控制电路对第一阴极21、阳极23、第二阴极25充电时,第一电活性聚合物22和第二电活性聚合物24分别沿着附近的第一阳极231和第二阳极232表面蠕变,分别钻进第一阳极231和第二阳极232的网孔中。当第一电活性聚合物22钻进第三导电网丝2321和第四导电网丝2322之间的间隙中时,处于第三导电网丝2321和第四导电网丝2322之间的第一导电网丝2311和第二导电网丝2312均促进了第一电活性聚合物22进一步向第三导电网丝2321与第四导电网丝2322之间的网孔中聚集。同样的,当第二电活性聚合物24钻进第一导电网丝2311和第二导电网丝2312之间的间隙中时,处于第一导电网丝2311和第二导电网丝2312之间的第三导电网丝2321和第四导电网丝2322均促进了第二电活性聚合物24进一步向第一导电网丝2311与第二导电网丝2312之间的网孔中聚集。相较于相关技术的第一电活性聚合物22和第二电活性聚合物24在阳极23的网孔处互相排斥,没有充分填满阳极23的网孔。本申请实施例可以提高第一电活性聚合物22和第二电活性聚合物24的实际形变率。在一些可能实现的方式中,如图7b和图9所示,本申请实施例不对第一导电网丝2311与第三导电网丝2321的相对位置,以及第二导电网丝2312与第四导电网丝2322的相对位置进行限定,只要多个第一导电网丝2311在第一阴极21上的正投影,均与多根第三导电网丝2321在第一阴极21上的正投影错开设置;第二导电网丝2312在第一阴极21上的正投影,均与多根第四导电网丝2322在第一阴极21上的正投影错开设置即可。
可选的,如图7b所示,第一导电网丝2311的中心在第一阴极21上的正投影,与相邻两个第三导电网丝2321在第一阴极21上的正投影连线的中心重合;第二导电网丝2312的中心在第一阴极21上的正投影,与相邻两个第四导电网丝2322在第一阴极21上的正投影连线的中心重合。这样一来,在第一阳极231的网孔与第二阳极232在第一阴极21的投影重合位置处,可以利用第二阳极232最大程度吸引第一电活性聚合物22向第一阳极231的网孔处移动并聚集;在第二阳极232的网孔与第一阳极231在第一阴极21的投影重合位置处,可以利用第一阳极231最大程度吸引第二电活性聚合物24向第二阳极232的网孔处移动并聚集。
在一些可能实现的方式中,本申请实施例不对第一阴极21、第一电活性聚合物22、阳极23、第二电活性聚合物24、以及第二阴极25的材料进行限定,只要第一阴极21、阳极23、以及第二阴极23可以导电,第一电活性聚合物22和第二电活性聚合物24可以在电场作用下向阳极23聚集即可。例如,第一阴极21和第二阴极23的材料可以是铝 箔等。第一阳极231和第二阳极232的材料可以是不锈钢、铜镍合金等。第一电活性聚合物22和第二电活性聚合物24的材料可以是PVC凝胶。
PVC凝胶的制备过程可以是:将邻苯二甲酸二丁酯与四氢呋喃混合,并通过磁力搅拌器按照500rpm/min的转速搅拌混合液约1min,再缓慢添加PVC粉末到混合液中,其中,DBA与PVC粉末的质量比为4:1,DBA和PVC粉末总质量与THF总质量比为1:2.25,持续搅拌约24h。将混合液通过涂膜仪制备一定厚度(例如200μm)的薄膜,再通过刀模切割为适用于驱动单元10的尺寸(例如直径28mm圆形薄膜)。
在一些可能实现的方式中,本申请实施例不对第一阳极231和第二阳极232的目数进行限定,也不对阳极23各层的厚度进行限定。
可选的,第一阳极231和第二阳极232的目数范围可以是50~200目,即,第一阳极231和第二阳极232中,每一英寸*一英寸范围内,有50~200个网孔。此处,第一阳极231的厚度可以与第二阳极232的厚度相同,也可以不相同,本申请实施例对此不作限定。
可选的,第一阳极231和第二阳极232的厚度范围可以是50μm~300μm。例如,第一阳极231和第二阳极232的厚度可以为90μm。
在一些可能实现的方式中,第一阳极231与第二阳极232的形状和尺寸可以相同。或者,第一阳极231的形状与第二阳极232的形状相同,第一阳极231的尺寸与第二阳极232的尺寸不同。或者,第一阳极231的形状与第二阳极232的形状不同,第一阳极231的尺寸与第二阳极233的尺寸相同。
在一些可能实现的方式中,如图10所示,驱动单元10的数量为多个,沿第一阴极21指向阳极23的方向,多个驱动单元10层叠设置,从而提高驱动器形变位移量。由于在电场作用下,所有驱动单元10的第一阴极21和第二阴极25均带负电荷,因此,任一驱动单元10的第二阴极25,可以复用作与其层叠设置且相邻的驱动单元10的第一阴极21。
下面结合具体示例,计算本申请实施例提供的阳极23的网孔占有率,以及包括多个驱动单元10的驱动器的最大形变率。
如图10所示,假设第一导电网丝2311、第二导电网丝2312、第三导电网丝2321、以及第四导电网丝2322的形状均为圆柱,圆柱的底面直径为d1;阳极23的总厚度为D;第一阳极231和第二阳极232的厚度均为2d1(即,平结打结处的厚度);正方形第一阳极231和正方向第一阳极231的边长均为L;第一阴极21和第二阴极25的厚度均为d2,第一电活性聚合物22和第二电活性聚合物24的厚度均为d3;第一阳极231和第二阳极232的目数均为n。
第一阳极231的第一导电网丝2311、第二导电网丝2312、以及网孔的总体积为2d1L
2,第二阳极232的第三导电网丝2321、第四导电网丝2322、以及网孔的总体积也为2d1L
2。
任一第一导电网丝2311或任一第二导电网丝2312的体积为
第一导电网丝2311和第二导电网丝2312的个数均为
其中,一英寸为25.4mm,
表示任一第一导电网丝2311或任一第二导电网丝2312为
英寸;
表示第一导电网丝2311和第 二导电网丝2312的数量均为
以d1=0.045mm,d2=0.008mm,d3=0.2mm,D=(45*2+45*2)mm=0.18mm,第一阳极231和第二阳极232的目数均为100。第一阳极231和第二阳极232的体积占有率
当PVC凝胶完全填充电极空隙时,驱动器的最大形变率
相较于相关技术,可参考表2。
对于前一实施例和本实施例,前一实施例因第二阳极132的存在,第一电活性聚合物12和第二电活性聚合物14在向阳极13蠕变时,可以完全避免第一电活性聚合物12与第二电活性聚合物14之间的斥力,以达到最大形变率26%。而本实施例中,第一电活性聚合物22和第二电活性聚合物24在向阳极23蠕变时,二者之间的斥力可能不能完全避免,其最大形变率可能略低于前一实施例的最大形变率。
表2
从表2可以看出,相较于相关技术的实际11%的形变率,本申请提供的方案的驱动器理论最大形变率可接近26%。从而可以更加有效地提高驱动器的压缩程度。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (14)
- 一种驱动器,其特征在于,包括驱动单元,所述驱动单元包括依次层叠设置的第一阴极、第一电活性聚合物、阳极、第二电活性聚合物、以及第二阴极;沿所述第一阴极指向所述阳极的方向,所述阳极包括依次层叠设置、且电连接的第一阳极、第二阳极、以及第三阳极;所述第一阳极和所述第三阳极为导电纱网,所述导电纱网包括多个网孔;所述第二阳极为无孔导电板。
- 根据权利要求1所述的驱动器,其特征在于,所述第一阳极包括间隔设置的多根第一导电网丝和间隔设置的多根第二导电网丝,所述多根第一导电网丝与所述多根第二导电网丝交结成网;所述第三阳极包括间隔设置的多根第三导电网丝和间隔设置的多根第四导电网丝,所述多根第三导电网丝与所述多根第四导电网丝交结成网。
- 根据权利要求2所述的驱动器,其特征在于,任一所述第一阳极的一根第一导电网丝在所述第一阴极上的正投影,均与所述第三阳极的一根第三导电网丝在所述第一阴极上的正投影重合;任一所述第一阳极的一根第二导电网丝在所述第一阴极上的正投影,均与第三阳极的一根第四导电网丝在所述第一阴极上的正投影重合。
- 根据权利要求2所述的驱动器,其特征在于,所述多根第一导电网丝在所述第一阴极上的正投影,均与所述多根第三导电网丝在所述第一阴极上的正投影错开设置;所述多根第二导电网丝在所述第一阴极上的正投影,均与所述多根第四导电网丝在所述第一阴极上的正投影错开设置。
- 根据权利要求1-4任一项所述的驱动器,其特征在于,所述第一电活性聚合物和所述第二电活性聚合物包括聚氯乙烯凝胶;和/或,所述第一阳极和所述第三阳极的材料包括不锈钢或铜镍合金;和/或,所述第二阳极、所述第一阴极、以及所述第二阴极的材料包括铝箔。
- 根据权利要求1-5任一项所述的驱动器,其特征在于,所述第一阳极和所述第三阳极的目数范围为50~200目;和/或,沿所述第一阴极指向所述阳极的方向,所述第一阳极和所述第三阳极的厚度范围为 50μm~300μm;和/或,沿所述第一阴极指向所述阳极的方向,所述第二阳极的厚度范围小于或等于30μm。
- 根据权利要求1-6任一项所述的驱动器,其特征在于,所述驱动单元的数量为多个,沿所述第一阴极指向所述阳极的方向,多个所述驱动单元层叠设置;任一所述驱动单元的所述第二阴极,复用作与其层叠设置且相邻的所述驱动单元的所述第一阴极。
- 一种驱动器,其特征在于,包括驱动单元,所述驱动单元包括依次层叠设置的第一阴极、第一电活性聚合物、阳极、第二电活性聚合物、以及所述第二阴极;沿所述第一阴极指向所述阳极的方向,所述阳极包括依次层叠设置、且电连接的所述第一阳极和所述第二阳极;所述第一阳极包括间隔设置的多根第一导电网丝和间隔设置的多根第二导电网丝,所述多根第一导电网丝与所述多根第二导电网丝交结成网;所述第二阳极包括间隔设置的多根第三导电网丝和间隔设置的多根第四导电网丝,所述多根第三导电网丝与所述多根第四导电网丝交结成网;所述多个第一导电网丝在所述第一阴极上的正投影,均与所述多根第三导电网丝在所述第一阴极上的正投影错开设置;所述第二导电网丝在所述第一阴极上的正投影,均与所述多根第四导电网丝在所述第一阴极上的正投影错开设置。
- 根据权利要求8所述的驱动器,其特征在于,沿所述第一阴极指向所述阳极的方向,第一导电网丝与第二导电网丝交结处的厚度,与所述第一导电网丝和所述第二导电网丝相同;沿所述第一阴极指向所述阳极的方向,第三导电网丝与第四导电网丝交结处的厚度,与所述第三导电网丝和所述第四导电网丝的厚度相同。
- 根据权利要求8或9所述的驱动器,其特征在于,第一导电网丝的中心在所述第一阴极上的正投影,与相邻两个第三导电网丝在所述第一阴极上的正投影连线的中心重合;第二导电网丝的中心在所述第一阴极上的正投影,与相邻两个第四导电网丝在所述第一阴极上的正投影连线的中心重合。
- 根据权利要求8-10任一项所述的驱动器,其特征在于,所述第一电活性聚合物和所述第二电活性聚合物包括聚氯乙烯凝胶;和/或,所述阳极的材料包括不锈钢或铜镍合金;和/或,所述第一阴极和所述第二阴极的材料包括铝箔。
- 根据权利要求8-11任一项所述的驱动器,其特征在于,所述第一阳极和所述第二阳极的目数范围为50~200目;和/或,沿所述第一阴极指向所述阳极的方向,所述第一阳极和所述第二阳极的厚度范围为50μm~300μm。
- 根据权利要求8-12任一项所述的驱动器,其特征在于,所述驱动单元的数量为多个,沿所述第一阴极指向所述阳极的方向,多个所述驱动单元层叠设置;任一所述驱动单元的所述第二阴极,复用作与其层叠设置且相邻的所述驱动单元的所述第一阴极。
- 一种终端设备,其特征在于,所述终端设备包括控制电路、以及权利要求1-7任一项或8-13任一项所述的驱动器;所述控制电路,用于在所述驱动器工作时,为所述驱动器的第一阴极第二阴极、以及阳极供电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/136616 WO2024119315A1 (zh) | 2022-12-05 | 2022-12-05 | 驱动器和终端设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/136616 WO2024119315A1 (zh) | 2022-12-05 | 2022-12-05 | 驱动器和终端设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024119315A1 true WO2024119315A1 (zh) | 2024-06-13 |
Family
ID=91378427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/136616 WO2024119315A1 (zh) | 2022-12-05 | 2022-12-05 | 驱动器和终端设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024119315A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130264972A1 (en) * | 2010-12-17 | 2013-10-10 | Shinshu University | Control method for contract-type gel actuator and control device |
JP2014050490A (ja) * | 2012-09-06 | 2014-03-20 | Shinshu Univ | 伸縮性衣類 |
US20150171305A1 (en) * | 2012-02-14 | 2015-06-18 | Shinshu University | Gel actuator and method for producing same |
JP2018038256A (ja) * | 2016-08-29 | 2018-03-08 | 国立大学法人信州大学 | ゲルアクチュエータ |
KR101971366B1 (ko) * | 2017-11-27 | 2019-04-22 | 한국기술교육대학교 산학협력단 | 직물 형상의 전기활성 겔을 이용한 진동 액츄에이터 |
CN111874196A (zh) * | 2020-06-11 | 2020-11-03 | 西安交通大学 | 一种基于pvc凝胶人工肌肉驱动的仿生鱼尾结构 |
JP2021083274A (ja) * | 2019-11-22 | 2021-05-27 | 株式会社ジェイテクト | ゲルアクチュエータ |
-
2022
- 2022-12-05 WO PCT/CN2022/136616 patent/WO2024119315A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130264972A1 (en) * | 2010-12-17 | 2013-10-10 | Shinshu University | Control method for contract-type gel actuator and control device |
US20150171305A1 (en) * | 2012-02-14 | 2015-06-18 | Shinshu University | Gel actuator and method for producing same |
JP2014050490A (ja) * | 2012-09-06 | 2014-03-20 | Shinshu Univ | 伸縮性衣類 |
JP2018038256A (ja) * | 2016-08-29 | 2018-03-08 | 国立大学法人信州大学 | ゲルアクチュエータ |
KR101971366B1 (ko) * | 2017-11-27 | 2019-04-22 | 한국기술교육대학교 산학협력단 | 직물 형상의 전기활성 겔을 이용한 진동 액츄에이터 |
JP2021083274A (ja) * | 2019-11-22 | 2021-05-27 | 株式会社ジェイテクト | ゲルアクチュエータ |
CN111874196A (zh) * | 2020-06-11 | 2020-11-03 | 西安交通大学 | 一种基于pvc凝胶人工肌肉驱动的仿生鱼尾结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209812321U (zh) | 一种柔性驱动单元及一种执行器 | |
US11101745B2 (en) | Electrostatic actuator | |
CN1183614C (zh) | 薄型电池 | |
CN102891249B (zh) | 电能产生器件及其驱动方法 | |
JP6198603B2 (ja) | 纎維状の構造体を含む電極組立体、及びそれを含む電池 | |
US10096762B2 (en) | Gel actuator and method for producing same | |
US7791251B2 (en) | Biomimetic electro-active paper actuators | |
CN106560946B (zh) | 电池 | |
EP2360770A3 (en) | Stacked battery | |
CN104868777A (zh) | 一种摩擦纳米发电机、发电机组和发电方法 | |
KR20160098843A (ko) | 에너지 하베스터 | |
CN111874196B (zh) | 一种基于pvc凝胶人工肌肉驱动的仿生鱼尾结构 | |
WO2013181952A1 (zh) | 压电和摩擦电混合纳米发电机 | |
CN108638049A (zh) | 一种基于电驱动的PVC-gel柔性机械手 | |
CN205195598U (zh) | 复合纳米发电机 | |
US7064473B2 (en) | Actuator film material, actuator film and actuator using the same | |
US9698390B2 (en) | Extremely deformable structure and lithium secondary battery made therefrom | |
WO2024119315A1 (zh) | 驱动器和终端设备 | |
CN104167950A (zh) | 摩擦发电机 | |
US6891313B1 (en) | Electrode contact for a piezoceramic actuator and method for producing same | |
JP6881753B2 (ja) | ゲルアクチュエータ | |
JP5129998B2 (ja) | 電歪素子 | |
JP2011103713A (ja) | アクチュエーター | |
JP2008079462A (ja) | アクチュエータとアクチュエータの製造方法 | |
CN110242005A (zh) | 一种磁粘性体发电地板及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22967479 Country of ref document: EP Kind code of ref document: A1 |